
 Soft Vine Robot
Abdul-Malik Mustapha, Juan Battaglia, Kevin

Abreu, Muhammad Gudaro

University of Central Florida, College of
Computer and Electrical Engineering,

Orlando, FL

 Abstract— ‘Soft’ robotics can be defined as
designing, controlling, and fabricating soft, flexible bodies,
as opposed to using conventional rigid materials, thus
mimicking both land and aquatic animals such as worms,
fishes, and octopi. This field of study has numerous benefits
and applications. It can be applied in areas ranging from
medicine to archaeology. The main goal of our project is to
create a soft robot using flexible materials such as poly
tubing that is programmed to navigate its way through an
obstacle course of rough terrain, narrow spaces, and
elevations.

Keywords— Pneumatic controls, Artificial muscles,
retraction, valves, autonomy, manual steering.

I. INTRODUCTION

 Soft robotics is a growing area of research that deals
with robotics designed with compliant materials, such as
fabric, poly tubing, or other flexible material, along with
flexible electronics, instead of the rigid material that is
conventionally used. Using this material can improve
safety, allow greater flexibility, and make it easier to
access hard-to-reach areas. This new technology could
have a variety of great applications in medicine,
construction, disaster relief, or archaeology. Moreover,
our project aims to study and showcase the potential of
soft robotics by bringing to life a soft robot capable of
reaching hard-to-reach places.

Fig 1: Design Overview

 The goal of our project would be to design a soft vine
robot, pictured above, using flexible materials that would
be programmed to navigate the obstacle course. Using
electronically controlled pneumatic valves, the robot
would attempt to navigate through a series of turns, tight
areas, sticky surfaces, liquids, rough terrain, and
elevations to retrieve a small object at the end. To grab
the object, a gripping system will be implemented on one
end of the vine robot. We also plan to implement a
graphical user interface where users can easily operate

robot using a laptop. In addition, we will be using
OpenCV, an open-source library for image processing
platform. It will be used to identify and track any desired
objects in the camera feed, which provides visual
feedback on the vine robot’s environment. To move the
vine robot, we will be using three motor encoders and
actuators to help guide the robot through the obstacle
course. An air pump will be used to inflate the robot and
use solenoid valves, ball valves, and relays to provide
accurate control based on feedback to correct error
signals or any degree of randomness when completing
the obstacle course. In this paper, we would be
discussing the design approach taken as a group as well
as the integration of the subsystems involved in building
the vine robot.

 II. MECHANICAL DESIGN

The mechanical design takes into account
several components including an air compressor which
provides the pneumatic pressure to the soft components,
pneumatic controls (a system of solenoid valves,
pressure regulator, poly tubing material, and tube
fittings), a base that will house the spooled vine robot
body and a motor, the robot body which will be a
pneumatically controlled rubber tube used for
elongation, the artificial muscles which will also be
pneumatically controlled rubber tubes used to steer the
robot, the internal roller which assists in retracting the
robot, the cap which will mount on the tip of the robot
and house some electronics, and the two-finger gripper
that will mount on the cap of the robot.

Fig 2: Mechanical Block Diagram

We will need a way to pressurize and store the
air so that we can use it later. Given that we want our
robot to function in the field without any outlets we will
need to find an air compressor that is portable and can
inflate our robot completely. We plan our robot to be
around 10 feet long and 5 inches in diameter. If we
assume that the robot will be a perfect cylinder, then we
find that our volume will be:

𝜋𝑟2 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ	 = 	𝜋(5/2)2 ∗ (10 ∗ 12) 	= 	2356.2	𝑖𝑛3

2356.2 cubic inches comes out to around 1.364 cubic feet
(10.2 gallons). We also know that we need 20 psi to
expand our robot and 10 psi to maintain the robot’s
shape.

A. Lengthening through Eversion

The moving parts of the vine robot will be made
up of the main body tube and several auxiliary tubes
(artificial muscles) that will assist in steering the robot.
It is important for these tubes to be made of a polymer
that is flexible enough to allow the robot to move in any
direction. Regardless of what material is picked for the
body and steering chambers, the robot must be
constructed in a way that preserves the lightweight nature
of soft robotics.

The robot should expand in the direction in
which it wants to navigate and retract when it is time to
explore a new path. In order to expand and retract, the
robot will expand from the tip through a process called
eversion. First, the thin-walled polymer that makes up
the body of the robot will be inverted and then the vessel
will evert from the tip and expand when pneumatic
pressure is introduced. Eversion of this material with
pneumatic pressure allows for substantial elongation at
relatively high speeds. The internal pressure forces of the
pneumatics force the inverted tubing to evert at the tip
while pulling more material through the middle of the
tube (see Fig. 3). The robot can continue to pull material
from the center of its body so long as there is material
available at its base. Ideally, this material can be stored
in a spool and dispensed as needed using a motor. A
benefit of eversion is that since only the tip moves, the
robot is not sliding through the environment in a way that
a snake or worm would. This means that the robot is not
generating any friction, which is important for
applications in fragile or delicate environments in which
soft robots often find themselves in.

Fig 3: Polyethylene Tubing Eversion

B. Reversible vs Non-Reversible Steering

Vine robot steering can be divided up into two
types: reversible steering and non-reversible steering.
Reversible steering refers to the ability to change the
steered direction of the robot without having to retract
the robot. Non-reversible steering refers to steering
mechanisms that do not have the ability to change the
steered direction of the robot without first retracting the
robot. The steering chambers can also be positioned in
one of two ways depending on how much directional
control the user would like. For creating shapes with the
vine robot in two dimensions, two chambers are required
in order to steer the robot in either the left or right
direction. For creating shapes with the vine robot in three
dimensions, three chambers are needed in order to steer
the robot left, right, or up by partially inflating the three
chambers in different combinations.

In order to achieve non-reversible steering,
there must be a mechanism for locking its shape as it
grows from the tip. This can be achieved in a variety of
ways. One way includes having a series of latches that
are embedded into the steering control chambers, with
each latch crossing pinched material. When the latches
are released, the steering chamber they belong to
lengthens and the robot is steered in the opposite non-
reversible releasing of the latches can be activated by
pressurizing their respected steering chamber as seen in
Fig 3.

Fig 4: Demonstration of Latch Locking Mechanism

C. Retraction Device

The purpose of adding a retraction device on
vine robots is to allow retraction without undesired
bending or buckling of the robot body. These devices are
introduced to the tip of the robot because retracting a
robot with zero-length (retracting from the tip) results in
no buckling or bending during the process. There exist
vine robot versions where the motor that drives the reel
at the base is not only used to control the release of
material as the vine robot lengthens, but also reverses its
motion to allow the vine robot to be retracted. This
method works well in constrained environments,
however, vine robots that are in loosely constrained or
open environments tend to bend and buckle in
unpredictable ways before shortening. This uncontrolled
movement can result in damage to the surrounding
environment or damage to the robot itself. When steering
chambers, wires, and sensors are introduced to the robot,
the buckling and bending become more mission-critical,
as different sections of the robot will be retracted at
different rates. This will cause the robot to be mangled
when redeployed and essentially renders it useless. The
buckling is caused by pulling tension that is not directly
aligned with the orientation of the tip of the vine robot.
One fact that can be exploited when creating a solution
to this problem is that vine robots with very short lengths
tend not to buckle. Knowing this, a retraction device that
directs the pulling tension of retraction right at the
robot’s tip can be devised that works in tandem with the
motor at the reel to successfully retract the robot without

having it buckle. The retraction device at the tip of the
robot serves to usher the robot material back into the
inverted tubing, and the motor at the reel serves to pull
the tail of the robot so that the slack generated by the
retraction device is spooled back up in the base and
prepared for redeployment. Fig. 4 depicts the retraction
devices discussed above. The device uses two motors to
rotate two rollers in opposite directions in order to feed
the robot tailback to the base.

Fig 5: Internal Roller Assembly

D. Pneumatic control and Gripper Design

In order to actuate the body and steering
chambers, vine robots use compressed air to pressurize
and depressurize their pneumatic actuators. When the
body chamber is pressurized, it will cause the vine robot
to lengthen/grow. This growth can be controlled by
balancing the body chamber pressure with the base reel
motor turning speed and direction. In order to lengthen
the robot, the reel motor must move in a direction that
releases the body chamber material and maintains
tension on the robot body while the body chamber itself
is pressurized in a range large enough to trigger eversion,
but small enough as to not cause the chamber to burst.
On the other hand, to make the robot retract the pressure
must be low enough for the chamber not to burst as the
motor shrinks its volume, and the motor must spin the
reel in a direction that spools the robot back into the base.
In order to accurately control the motion of the reel
motor, an encoder can be attached to the motor to read
its positioning. If the motor spins faster than the robot is
growing, the robot will become limp and the speed of
growth will not be controlled. 10 cm per second of
growth speed seems to be a good top speed for most vine
robots.

In order to make most vine robots lengthen the
air pressure must be at least 10 kPa, and most of the
common materials tend to burst at close to 20 kPa. As the
pressure inside the chambers increases, the velocity of
the body lengthening increases as well. The air pressure
to lengthening velocity relationship seems to be
monotonic and is described in Fig. 4. One of the most
common materials used for vine robot pneumatic
chambers is polyethylene, and Fig.4, 80 µm, 2.3 cm
radius polyethylene tubing was used to record values.
Although different vine robots will have different

radiuses, the relationship between pressure and
expansion rate follows a very similar relationship.

Fig 6: Robot lengthening vs air pressure

The gripper designed in Fig. 5 uses a sliding
mechanism and two levers to slide the two fingers of the
gripper away from each other when the micro servo turns
in the clockwise direction, and towards each other when
the micro servo turns in the counterclockwise direction.

Fig 7: Gripper Assembly

III. ELECTRONICS DESIGN

The electronics design comprises the major
electronic components that were used to build the soft
vine robot, as seen in the diagram below. Our soft robot
includes several pieces of hardware such as pneumatics,
a temperature sensor, accelerometer, pressure sensors,
and much more. A robust microcontroller is essential to
be able to control all the hardware components and low-
level movements effectively. The MCU will assist with
communicating to all the hardware devices, allowing the
vine to expand, retract, navigate autonomously, and read
all sensor values.

Fig 8: Hardware Block Diagram

A. Microcontroller

For this project, we selected an ATmega2560,
as it has excellent processing power with multiple digital
and analog pins. This microcontroller includes a 16Mhz
clock, 256KB flash memory, and 8KB of RAM, along
with multiple GPIO ports. The Arduino supports
communication protocols such as UART, SPI, and I2C,
which would allow us to communicate with our various
analog and digital sensors. Fig. 6 below showcases our
Atmega2560 microcontroller design on Autodesk
EagleCAD. The design includes the MCU, a 16 MHz
resonator, bypass capacitors used for filtering, an LED
indicator for power and UART, and USB serial header.
The design also includes pins for ICSP programming.
The PCB also includes headers for the digital and analog
pins.

Fig 9: ATMega2560 Schematic

B. Motors

The vine robot will include a single 12V DC
gearmotor motor at the base. This motor will require an
encoder, which provides closed-loop feedback signals by
tracking the speed and position of the motor shaft with a
hall sensor. The direction of spin of the motor is very
important in the design of robotics. Clockwise spinning
allows the spool, which contains the plastic material of
the robot to expand. This rotation allows the robot’s body
to grow and expand. The counterclockwise spinning
causes the spool to shift the plastic material backward,
forcing the body to retract. This motor allows for the
motion of expanding and retracting. The figure below
showcases how the motor direction influences the
expansion and retraction of the spool material. The robot

will also include two roller motors at the cap of the robot,
which will be used to pull the material back in at the tip
to prevent buckling, as seen in the motor diagram below.

Fig 10: Motor Block Diagram

C. Motor Drivers

Furthermore, the motors will be driven by a motor
driver that will be controlled by the GUI for growth and
retraction. The motor is a key element in the design of
the base. The size, speed, torque, power, performance,
cost, and compatibility are all factors that need to be
considered when selecting the appropriate gear motor.
We will have to select a gear motor that has enough
speed to grow and retract the soft material with the
spool. The motor must also have a viable size to hold
the spool and material without collapsing. Furthermore,
it must also meet the power requirements of our project
and must not exceed the power supply voltage of 12V.
The figure below illustrates the microcontroller
interaction with the Motors.

Fig 11: MCU-Motor Interaction

We selected an L293 motor driver, which is a
quadruple high current half-H driver. It provides
bidirectional drive currents of up to 1A at voltages from
4.5V to 36V. We will be supplying it with 12V, as our
motors are rated at this voltage. The L293 can be used to
drive inductive loads, such as solenoids, relays, DC
motors, and stepper motors. The motor driver IC has two
power input pins ‘Vcc1’ and ‘Vcc2.’ Vcc1 is used for
driving the internal logic circuitry, which should have a
5V input and Vcc2 is the power input for the internal H-
bridge, which can range from 4.5V to 36V. They are both
grounded to a common ground. The IC has four output
terminals that supply power to two motors. 1Y and +
2Y, along with 3Y and 3Y, are used to drive two motors.
As our project will utilize three motors, we will use two
L293 motor drivers within our design. The motor driver
IC also has two control pins used to control the speed and
to control the direction of the Dc motor. 1A and 2A

control spinning directions of motor A, while 3A and 4A
control motor B. A logic high or low needs to be applied
to either pin to control the motor. The spinning direction
is controlled by changing the polarity of the input
voltage, which can be accomplished by implementing an
H-bridge circuit, which contains four switches with the
motor at the center, which creates an H-like arrangement.
When selecting two particular switches in the H-bridge
circuit, it can reverse the polarity. The L293 has an
integrated H-bridge circuit within the chip itself, so
external H-bridge circuitry is not needed for this design.
The full motor circuitry for the robot can be seen in the
figure below.

Fig 12: Motor Driver Design

D. Sensors

The vine robot includes a temperature sensor,
pressure sensors, and an accelerometer. The purpose of
the temperature sensor will be sent temperature data at
the tip of the robot back to the user. The accelerometer
will return the speed of the robot. The pressure sensors
will be located at the pneumatic harness to send back
pressure data in PSI to the user. This will allow the user
to monitor PSI levels of the body and three steering tubes
of the robot. The pressure sensors will be directly
connected to the analog inputs of the Atmega2560 and
powered with 5V. The temperature and accelerometer
sensors will require 3.3V to 5V logical level conversion
to read the I2C data. To accomplish this, a logic level
conversion circuit was design using BSS138 N-channnel
FETs, as seen in the schematic below.

Fig 13: Logic-level Conversion

E. Phototransistors

The soft vine robot will also be autonomously
navigating toward the nearest light. This can be achieved
with OpenCV and phototransistors. Phototransistors are
sensors that allow you to detect light. These are small,
low-power, and inexpensive devices. They are referred
to as CdS cells, as they are made from Cadmium-Sulfide,
light-dependent resistors (LDR), and phototransistors.
The resistive value of a transistor changes depending on
how much light is shining onto the surface of the cell.
Furthermore, when exposed to no light, the resistance
increases greatly, and when exposed to light, the
resistance drops. The transistor that we will be utilizing
for our soft vine robot will be a 161 phototransistor from
the Adafruit industries, as seen in the image below. The
phototransistor requires a 3.3V - 5V input and a 10k ohm
resistor. One end is connected to power and the other end
connects to a pull-down resistor to the ground. The other
end of the resistor is then connected to the analog input
of a microcontroller.

The robot will include six phototransistors
located around the cap of the robot. These
phototransistors will be used to return data on how much
light is located around the field of view of the camera, so
whatever the light the camera is unable to detect, the
phototransistor will pick up that value, assisting in the
autonomous navigation toward a light source. The
resistors and analog connections will all be placed on the
sensor printed circuit board, which connects to the base
control board. The figure below showcases the
phototransistor alignment on the robot cap board.

Fig 14: Robot Cap with Phototransistors depicted in blue

F. Control Module

A control module is also needed to control the
pneumatic solenoid valves used to inflate and deflate the
soft vine robot. A total of four solenoid valves will be
used to inflate the robot for steering and base inflation
and deflation, as illustrated in Section 5.2.3. The joystick
from the controller board in section 6.7 will be used to
control the three solenoid valves. Moreover, this would
require three ways to drive current to the 12V inputs of
the solenoid valves. To achieve this, we will plan to use
Darlington transistors to drive current and switch the
solenoid valves on and off. The TIP120 from ON
Semiconductor is an NPN epitaxial Darlington transistor.
The table below showcases its electrical characteristics.
This transistor will be utilized like a switch to control the
solenoids.

Solenoid coils also have a very high inductance.
When switching them off, a high voltage spike is
generated as the magnetic field collapses, which can
potentially kill the transistor. To prevent this from
occurring, we will be incorporating a diode across the
solenoid, with the cathode of the diode connecting to the
positive terminal of the solenoid. A 1N4933RLG general
purpose 50V 1A diode from the semiconductor will be
used to accomplish this. Furthermore, a 2.2k ohm resistor
will be added between the base of the transistor and the
digital pin of the Atmega2560.

Fig 15: Solenoid Valve Control Circuit Schematic
To control the pressure coming from the air

compressor, 4 motorized ball valves controlled by an 8-
channel relay board will be used. The relay board will be
connected to the 8 digital pins on the PCB. 2 relays
control a single ball valve by switching the 12V between
the open and close wires. Taking away 12V from both
wires allows the ball valve to pause and control the flow
of the air.

G. Power Conversion

Our electronic design also includes a power conversion
circuit that can step down 12V to 5V to 3.3V, as seen in
the schematic below. A PJ-002A power jack is used for
the 12V power input. The 12V input is then stepped
down to 5V with a R-78E5 switching regulator, which is
then stepped down 3.3V using ADP160 linear regulator.
The design includes bypass capacitors to reduce voltage
noise. The 12V is used to power the pneumatics, motors,
and ball valves. The 5V is used to power the MCU and
pressure sensors, while the 3.3V is used to power the
temperature and accelerometer sensors.

Fig 16: Power Conversion Design

H. Microcontroller Firmware

The Atmega2560 firmware, developed on the
Arduino IDE, controls the motor direction, speed, and
receives encoder data. The code also control the ball
valves with active low switching and controls the
pneumatics with active high switching. 10 analog pins
are used as inputs to read phototransistor and pressure
sensor data. The temperature and accelerometer data are
also read over I2C communication. The robot
components can be controlled by writing bytes over
serial. The firmware expects certain bytes that are used
to control the components. The firmware also returns the
sensor values over USB serial at a 115200 baud rate. The
GUI developed in Python is used to read and write data
to the MCU, which allows for robot control.

IV: SOFTWARE DESIGN

A. Overview

The software components for this project allow for all the
hardware components to communicate with one another,
and more importantly, it allows the user to be in the loop.
The robot has its own User Interface (UI) developed in
PyQT6 that allows the software to interface with the PCB
via USB serial. The GUI allows COM port selection
along with the ability of having the user choose which
mode the robot will be set to. When in autonomous
mode, computer vision and image processing will be
used to interpret the environment the robot will be
navigating in order to identify and track a light bulb. We
will be using a USB camera connected back to the PC to
give live video feed to the user, a video feed that will be
processed using OpenCV. The UI will also be the host to
all the different values that we will be receiving from the
sensors as well as the live video of the robot’s path. All
the sensors will be connected to a PC that will act as a
mediator for the pneumatics, ball valves, motors, and
sensor data. The software GUI also includes a debug
window, which allows each individual pneumatic, ball
valve, and motor to be tested on its own. This is the main
method of testing that will be used before integrating all
the components. It allows us to test both the component
and PCB, as well as their relation with the GUI.

B. Manual vs. Autonomous

The vine robot includes two different modes, which are
autonomous and manual mode. The software design
details the autonomous mode in great detail as opposed
to the manual design which relies more on hardware
components. However, some of these components need
to interact with the MCU to convert those inputs into
commands for the pneumatic controls. In manual mode,
the MCU will receive the commands from the user,
which will be sent over wire from a physical controller.
When in autonomous mode, the robot will rely on the
camera to recognize a light bulb and track it. In this
mode, the camera and the sensors will report back data
to the user on the UI but the user will not need to send
any commands. In the diagram below, we can see how
the components interact in each different mode.

Fig 17: Manual vs. Autonomous Mode

C. Computer Vision

Computer vision is one of the main components
of this project that allows the robot to navigate
autonomously and recognize the light bulb. Initially, we
wanted to use a real-sense camera that allows the robot
to map out its surroundings and give it a better
understanding of its environment. The image processing
is done using the OpenCV library which will allow us to
identify a parametric object. Furthermore, we are going
to use the CSRT tracking algorithm since it seems more
applicable to the project. Our object will not be moving
at a fast speed if at all. The motion will come from the
everting vine robot. One issue that we do have to account
for is object occlusion since the light bulb might be
located behind walls in the obstacle course, so we are
choosing an algorithm that can account for that. The
figure below depicts the computer vision software
diagram.

Fig 18: Tracking Algorithm Diagram

The vision software sets up the object tracker
and then starts capturing the video input. Then, we
import the library cv2 for accomplishing all of the video
capture and processing. We then proceed to create the
bounding box that will surround the light blob as it
identifies them. The purpose of the boxes is for the
tracking itself; once the box is around a blob of light, the
software will continue to track this blob. From there, we
will implement an infinite loop that will process every
frame and use the tracking algorithm to focus on the light
blob. This loop can be broken out by pressing a key
which we will set to another button on the controller.
However, the loop will not be broken when an object is
not identified or gone into occlusion. The algorithm we
use is able to recover from partial occlusion and should
has no problems reporting failures as well.

Furthermore, the Image processing module also
interacts with the hardware. The OpenCV software maps
out the video frames and calculates the angles in which
the vine robot is moving to keep the light blob centered.
This is what actively lets the vine robot actually track
objects. To accomplish this, we will calculate if the
amount of the light blob is above the designated
threshold of pixels that are outside of the center radius of
the frame. These parameters are then passed to the
Controller class’ navigate() function. The figure below
showcases how the steering works when tracking a light
bulb.

Fig 19: Steering Diagram

V: CONCLUSION

This project has been a great challenge for us as
a team. We all had to develop a growth mindset by trying
to learn previous research and relevant technology based
on our robot. Our interest in soft robotics gave us the
motivation to build a soft vine robot which is still
currently cutting–edge technology that is slowly finding
its place in industry applications. Our biggest challenge
was trying to make this project feasible and realistic. We
initially wanted to have multiple features such as
incorporating solar panels as an alternative power source
to batteries so we can promote reducing pollution in the
environment and give our robot the ability to work both
day and night even when the battery has been depleted.
We also planned on making the robot autonomous, then
we realized how software-heavy the task will be because
we only had one computer engineer on our team.

THE ENGINEERS

Juan Battaglia is an Electrical
Engineering student who is passionate
about control systems, robotics, and
software development. He has completed
internships at NASA, Lockheed Martin,
and Renesas Electronics, and has also
conducted undergraduate research at
Siemens Digital Grid Lab. He has also
served on the E-board of both IEEE and
IEEE PES student chapters as the Vice
President and founded IEEE UCF’s
Knight’s Open Circuit Podcast.

Muhammad Gudaro is an Electrical
Engineering student who is passionate
about electronics design and firmware
development. He has completed
internships at Tesla, Lockheed Martin,
and Collins Aerospace, and has also
conducted undergraduate research at
Florida Solar Energy Center. He has also
served two consecutive years on the E-
board of the IEEE student chapter as the
Marketing Director.

Kevin Abreu-Aguila is a Computer
Engineering student who is passionate
about software development. He has
completed internships at Apple, Lockheed
Martin, and Autodesk, and has also
conducted undergraduate research within
UCF EXCEL. He has also served two
consecutive years on the E-board of SHPE
student chapter as the Event Coordinator.

Abdul-Malik Mustapha is an Electrical
Engineering student who is passionate
about power and renewable energy. He
has completed an internship at Siemens
and has also worked as an undergraduate
teaching assistant within the college of
ECE. He has also served as the Academic
Excellence Chair and Professional
Development Chair at both the NSBE and
IEEE student chapters.

 REFERENCES
[1] M. M. Coad et al., "Vine Robots: Design, Teleoperation, and

Deployment for Navigation and Exploration," in IEEE
Robotics & Automation Magazine, vol. 27, no. 3, pp. 120-132,
Sept. 2020, doi: 10.1109/MRA.2019.2947538

[2] M. Selvaggio, L. A. Ramirez, N. D. Naclerio, B. Siciliano and
E. W. Hawkes, "An obstacle-interaction planning method for
navigation of actuated vine robots," 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp.
3227-3233, doi: 10.1109/ICRA40945.2020.9196587

[3] Joseph D. Greer, Tania K. Morimoto, Allison M. Okamura, and
Elliot W. Hawkes “Series Pneumatic Artificial Muscles
(sPAMs) and Application to a Soft Continuum Robot,” 2017
IEEE International Conference on Robotics and Automation
(ICRA) Singapore, May 29 - June 3, 2017

[4] Margaret M. Coad, Laura H. Blumenschein, Sadie Cutler, Javier
A. Reyna Zepeda, Nicholas D. Naclerio, Haitham El-Hussieny,
Usman Mehmood, Jee-Hwan Ryu, Elliot W. Hawkes, and
Allison M. Okamura, "Design, Teleoperation, and Deployment
for Navigation and Exploration," Digital Object Identifier
10.1109/MRA.2019.2947538 Date of current version: 28
November 2019

[5] Blumenschein, L.H., Okamura, A.M., Hawkes, E.W. (2017).
Modelling of Bioinspired Apical Extension in a Soft Robot. In:
Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott,
T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living
Machines 2017. Lecture Notes in Computer Science(), vol
10384. Springer, Cham. https://doi.org/10.1007/978-3-319-
63537-8_45

