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            Abstract— ‘Soft’ robotics can be defined as 
designing, controlling, and fabricating soft, flexible bodies, 
as opposed to using conventional rigid materials, thus 
mimicking both land and aquatic animals such as worms, 
fishes, and octopi. This field of study has numerous benefits 
and applications. It can be applied in areas ranging from 
medicine to archaeology. The main goal of our project is to 
create a soft robot using flexible materials such as poly 
tubing that is programmed to navigate its way through an 
obstacle course of rough terrain, narrow spaces, and 
elevations. 
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I. INTRODUCTION 

      Soft robotics is a growing area of research that deals 
with robotics designed with compliant materials, such as 
fabric, poly tubing, or other flexible material, along with 
flexible electronics, instead of the rigid material that is 
conventionally used. Using this material can improve 
safety, allow greater flexibility, and make it easier to 
access hard-to-reach areas. This new technology could 
have a variety of great applications in medicine, 
construction, disaster relief, or archaeology. Moreover, 
our project aims to study and showcase the potential of 
soft robotics by bringing to life a soft robot capable of 
reaching hard-to-reach places. 

 

Fig 1: Design Overview 

       The goal of our project would be to design a soft vine 
robot, pictured above, using flexible materials that would 
be programmed to navigate the obstacle course. Using 
electronically controlled pneumatic valves, the robot 
would attempt to navigate through a series of turns, tight 
areas, sticky surfaces, liquids, rough terrain, and 
elevations to retrieve a small object at the end. To grab 
the object, a gripping system will be implemented on one 
end of the vine robot. We also plan to implement a 
graphical user interface where users can easily operate 

robot using a laptop. In addition, we will be using 
OpenCV, an open-source library for image processing 
platform. It will be used to identify and track any desired 
objects in the camera feed, which provides visual 
feedback on the vine robot’s environment. To move the 
vine robot, we will be using three motor encoders and 
actuators to help guide the robot through the obstacle 
course. An air pump will be used to inflate the robot and 
use solenoid valves, ball valves, and relays to provide 
accurate control based on feedback to correct error 
signals or any degree of randomness when completing 
the obstacle course. In this paper, we would be 
discussing the design approach taken as a group as well 
as the integration of the subsystems involved in building 
the vine robot. 

 II. MECHANICAL DESIGN 

The mechanical design takes into account 
several  components including an air compressor which 
provides the pneumatic pressure to the soft components, 
pneumatic controls (a system of solenoid valves, 
pressure regulator, poly tubing material, and tube 
fittings), a base that will house the spooled vine robot 
body and a motor, the robot body which will be a 
pneumatically controlled rubber tube used for 
elongation, the artificial muscles which will also be 
pneumatically controlled rubber tubes used to steer the 
robot, the internal roller which assists in retracting the 
robot, the cap which will mount on the tip of the robot 
and house some electronics, and the two-finger gripper 
that will mount on the cap of the robot. 

 
Fig 2: Mechanical Block Diagram 

We will need a way to pressurize and store the 
air so that we can use it later. Given that we want our 
robot to function in the field without any outlets we will 
need to find an air compressor that is portable and can 
inflate our robot completely. We plan our robot to be 
around 10 feet long and 5 inches in diameter. If we 
assume that the robot will be a perfect cylinder, then we 
find that our volume will be: 

𝜋𝑟2 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ	 = 	𝜋(5/2)2 ∗ (10 ∗ 12) 	= 	2356.2	𝑖𝑛3 

2356.2 cubic inches comes out to around 1.364 cubic feet 
(10.2 gallons). We also know that we need 20 psi to 
expand our robot and 10 psi to maintain the robot’s 
shape. 

A. Lengthening through Eversion 



The moving parts of the vine robot will be made 
up of the main body tube and several auxiliary tubes 
(artificial muscles) that will assist in steering the robot. 
It is important for these tubes to be made of a polymer 
that is flexible enough to allow the robot to move in any 
direction. Regardless of what material is picked for the 
body and steering chambers, the robot must be 
constructed in a way that preserves the lightweight nature 
of soft robotics.   

The robot should expand in the direction in 
which it wants to navigate and retract when it is time to 
explore a new path. In order to expand and retract, the 
robot will expand from the tip through a process called 
eversion. First, the thin-walled polymer that makes up 
the body of the robot will be inverted and then the vessel 
will evert from the tip and expand when pneumatic 
pressure is introduced. Eversion of this material with 
pneumatic pressure allows for substantial elongation at 
relatively high speeds. The internal pressure forces of the 
pneumatics force the inverted tubing to evert at the tip 
while pulling more material through the middle of the 
tube (see Fig. 3). The robot can continue to pull material 
from the center of its body so long as there is material 
available at its base. Ideally, this material can be stored 
in a spool and dispensed as needed using a motor. A 
benefit of eversion is that since only the tip moves, the 
robot is not sliding through the environment in a way that 
a snake or worm would. This means that the robot is not 
generating any friction, which is important for 
applications in fragile or delicate environments in which 
soft robots often find themselves in.   

 
Fig 3: Polyethylene Tubing Eversion 

B. Reversible vs Non-Reversible Steering 

Vine robot steering can be divided up into two 
types: reversible steering and non-reversible steering. 
Reversible steering refers to the ability to change the 
steered direction of the robot without having to retract 
the robot. Non-reversible steering refers to steering 
mechanisms that do not have the ability to change the 
steered direction of the robot without first retracting the 
robot. The steering chambers can also be positioned in 
one of two ways depending on how much directional 
control the user would like. For creating shapes with the 
vine robot in two dimensions, two chambers are required 
in order to steer the robot in either the left or right 
direction. For creating shapes with the vine robot in three 
dimensions, three chambers are needed in order to steer 
the robot left, right, or up by partially inflating the three 
chambers in different combinations.  

In order to achieve non-reversible steering, 
there must be a mechanism for locking its shape as it 
grows from the tip. This can be achieved in a variety of 
ways. One way includes having a series of latches that 
are embedded into the steering control chambers, with 
each latch crossing pinched material. When the latches 
are released, the steering chamber they belong to 
lengthens and the robot is steered in the opposite non-
reversible releasing of the latches can be activated by 
pressurizing their respected steering chamber as seen in 
Fig 3.  

 
Fig 4: Demonstration of Latch Locking Mechanism 

C. Retraction Device 

The purpose of adding a retraction device on 
vine robots is to allow retraction without undesired 
bending or buckling of the robot body. These devices are 
introduced to the tip of the robot because retracting a 
robot with zero-length (retracting from the tip) results in 
no buckling or bending during the process. There exist 
vine robot versions where the motor that drives the reel 
at the base is not only used to control the release of 
material as the vine robot lengthens, but also reverses its 
motion to allow the vine robot to be retracted. This 
method works well in constrained environments, 
however, vine robots that are in loosely constrained or 
open environments tend to bend and buckle in 
unpredictable ways before shortening. This uncontrolled 
movement can result in damage to the surrounding 
environment or damage to the robot itself. When steering 
chambers, wires, and sensors are introduced to the robot, 
the buckling and bending become more mission-critical, 
as different sections of the robot will be retracted at 
different rates. This will cause the robot to be mangled 
when redeployed and essentially renders it useless. The 
buckling is caused by pulling tension that is not directly 
aligned with the orientation of the tip of the vine robot. 
One fact that can be exploited when creating a solution 
to this problem is that vine robots with very short lengths 
tend not to buckle. Knowing this, a retraction device that 
directs the pulling tension of retraction right at the 
robot’s tip can be devised that works in tandem with the 
motor at the reel to successfully retract the robot without 



having it buckle. The retraction device at the tip of the 
robot serves to usher the robot material back into the 
inverted tubing, and the motor at the reel serves to pull 
the tail of the robot so that the slack generated by the 
retraction device is spooled back up in the base and 
prepared for redeployment. Fig. 4 depicts the retraction 
devices discussed above. The device uses two motors to 
rotate two rollers in opposite directions in order to feed 
the robot tailback to the base.  

 
Fig 5: Internal Roller Assembly 

D. Pneumatic control and Gripper Design 

In order to actuate the body and steering 
chambers, vine robots use compressed air to pressurize 
and depressurize their pneumatic actuators. When the 
body chamber is pressurized, it will cause the vine robot 
to lengthen/grow. This growth can be controlled by 
balancing the body chamber pressure with the base reel 
motor turning speed and direction. In order to lengthen 
the robot, the reel motor must move in a direction that 
releases the body chamber material and maintains 
tension on the robot body while the body chamber itself 
is pressurized in a range large enough to trigger eversion, 
but small enough as to not cause the chamber to burst. 
On the other hand, to make the robot retract the pressure 
must be low enough for the chamber not to burst as the 
motor shrinks its volume, and the motor must spin the 
reel in a direction that spools the robot back into the base. 
In order to accurately control the motion of the reel 
motor, an encoder can be attached to the motor to read 
its positioning. If the motor spins faster than the robot is 
growing, the robot will become limp and the speed of 
growth will not be controlled. 10 cm per second of 
growth speed seems to be a good top speed for most vine 
robots.  

In order to make most vine robots lengthen the 
air pressure must be at least 10 kPa, and most of the 
common materials tend to burst at close to 20 kPa. As the 
pressure inside the chambers increases, the velocity of 
the body lengthening increases as well. The air pressure 
to lengthening velocity relationship seems to be 
monotonic and is described in Fig. 4. One of the most 
common materials used for vine robot pneumatic 
chambers is polyethylene, and Fig.4, 80 µm, 2.3 cm 
radius polyethylene tubing was used to record values. 
Although different vine robots will have different 

radiuses, the relationship between pressure and 
expansion rate follows a very similar relationship. 

 

Fig 6: Robot lengthening vs air pressure 

The gripper designed in Fig. 5 uses a sliding 
mechanism and two levers to slide the two fingers of the 
gripper away from each other when the micro servo turns 
in the clockwise direction, and towards each other when 
the micro servo turns in the counterclockwise direction.  

 
Fig 7: Gripper Assembly 

 
III. ELECTRONICS DESIGN 

The electronics design comprises the major 
electronic components that were used to build the soft 
vine robot, as seen in the diagram below. Our soft robot 
includes several pieces of hardware such as pneumatics, 
a temperature sensor, accelerometer, pressure sensors, 
and much more. A robust microcontroller is essential to 
be able to control all the hardware components and low-
level movements effectively. The MCU will assist with 
communicating to all the hardware devices, allowing the 
vine to expand, retract, navigate autonomously, and read 
all sensor values. 

 



Fig 8: Hardware Block Diagram 

A. Microcontroller 

For this project, we selected an ATmega2560, 
as it has excellent processing power with multiple digital 
and analog pins. This microcontroller includes a 16Mhz 
clock, 256KB flash memory, and 8KB of RAM, along 
with multiple GPIO ports. The Arduino supports 
communication protocols such as UART, SPI, and I2C, 
which would allow us to communicate with our various 
analog and digital sensors. Fig. 6 below showcases our 
Atmega2560 microcontroller design on Autodesk 
EagleCAD. The design includes the MCU, a 16 MHz 
resonator, bypass capacitors used for filtering, an LED 
indicator for power and UART, and USB serial header. 
The design also includes pins for ICSP programming. 
The PCB also includes headers for the digital and analog 
pins.  

 
Fig 9: ATMega2560 Schematic 

 

 

B. Motors 

The vine robot will include a single 12V DC 
gearmotor motor at the base. This motor will require an 
encoder, which provides closed-loop feedback signals by 
tracking the speed and position of the motor shaft with a 
hall sensor. The direction of spin of the motor is very 
important in the design of robotics. Clockwise spinning 
allows the spool, which contains the plastic material of 
the robot to expand. This rotation allows the robot’s body 
to grow and expand. The counterclockwise spinning 
causes the spool to shift the plastic material backward, 
forcing the body to retract. This motor allows for the 
motion of expanding and retracting. The figure below 
showcases how the motor direction influences the 
expansion and retraction of the spool material. The robot 

will also include two roller motors at the cap of the robot, 
which will be used to pull the material back in at the tip 
to prevent buckling, as seen in the motor diagram below.  

 

Fig 10: Motor Block Diagram 

C. Motor Drivers 

Furthermore, the motors will be driven by a motor 
driver that will be controlled by the GUI for growth and 
retraction. The motor is a key element in the design of 
the base. The size, speed, torque, power, performance, 
cost, and compatibility are all factors that need to be 
considered when selecting the appropriate gear motor. 
We will have to select a gear motor that has enough 
speed to grow and retract the soft material with the 
spool. The motor must also have a viable size to hold 
the spool and material without collapsing. Furthermore, 
it must also meet the power requirements of our project 
and must not exceed the power supply voltage of 12V. 
The figure below illustrates the microcontroller 
interaction with the Motors.   

 
Fig 11: MCU-Motor Interaction 

We selected an L293 motor driver, which is a 
quadruple high current half-H driver. It provides 
bidirectional drive currents of up to 1A at voltages from 
4.5V to 36V. We will be supplying it with 12V, as our 
motors are rated at this voltage. The L293 can be used to 
drive inductive loads, such as solenoids, relays, DC 
motors, and stepper motors. The motor driver IC has two 
power input pins ‘Vcc1’ and ‘Vcc2.’ Vcc1 is used for 
driving the internal logic circuitry, which should have a 
5V input and Vcc2 is the power input for the internal H-
bridge, which can range from 4.5V to 36V. They are both 
grounded to a common ground. The IC has four output 
terminals that supply power to two motors. 1Y and +                                                                                                                                                                                                                                                
2Y, along with 3Y and 3Y, are used to drive two motors. 
As our project will utilize three motors, we will use two 
L293 motor drivers within our design. The motor driver 
IC also has two control pins used to control the speed and 
to control the direction of the Dc motor. 1A and 2A 



control spinning directions of motor A, while 3A and 4A 
control motor B. A logic high or low needs to be applied 
to either pin to control the motor. The spinning direction 
is controlled by changing the polarity of the input 
voltage, which can be accomplished by implementing an 
H-bridge circuit, which contains four switches with the 
motor at the center, which creates an H-like arrangement. 
When selecting two particular switches in the H-bridge 
circuit, it can reverse the polarity. The L293 has an 
integrated H-bridge circuit within the chip itself, so 
external H-bridge circuitry is not needed for this design. 
The full motor circuitry for the robot can be seen in the 
figure below.  

 

Fig 12: Motor Driver Design 

D. Sensors 

The vine robot includes a temperature sensor, 
pressure sensors, and an accelerometer. The purpose of 
the temperature sensor will be sent temperature data at 
the tip of the robot back to the user. The accelerometer 
will return the speed of the robot. The pressure sensors 
will be located at the pneumatic harness to send back 
pressure data in PSI to the user. This will allow the user 
to monitor PSI levels of the body and three steering tubes 
of the robot. The pressure sensors will be directly 
connected to the analog inputs of the Atmega2560 and 
powered with 5V. The temperature and accelerometer 
sensors will require 3.3V to 5V logical level conversion 
to read the I2C data. To accomplish this, a logic level 
conversion circuit was design using BSS138 N-channnel 
FETs, as seen in the schematic below.  

 

Fig 13: Logic-level Conversion 

E. Phototransistors 

The soft vine robot will also be autonomously 
navigating toward the nearest light. This can be achieved 
with OpenCV and phototransistors. Phototransistors are 
sensors that allow you to detect light. These are small, 
low-power, and inexpensive devices. They are referred 
to as CdS cells, as they are made from Cadmium-Sulfide, 
light-dependent resistors (LDR), and phototransistors. 
The resistive value of a transistor changes depending on 
how much light is shining onto the surface of the cell. 
Furthermore, when exposed to no light, the resistance 
increases greatly, and when exposed to light, the 
resistance drops. The transistor that we will be utilizing 
for our soft vine robot will be a 161 phototransistor from 
the Adafruit industries, as seen in the image below. The 
phototransistor requires a 3.3V - 5V input and a 10k ohm 
resistor. One end is connected to power and the other end 
connects to a pull-down resistor to the ground. The other 
end of the resistor is then connected to the analog input 
of a microcontroller.  

The robot will include six phototransistors 
located around the cap of the robot. These 
phototransistors will be used to return data on how much 
light is located around the field of view of the camera, so 
whatever the light the camera is unable to detect, the 
phototransistor will pick up that value, assisting in the 
autonomous navigation toward a light source. The 
resistors and analog connections will all be placed on the 
sensor printed circuit board, which connects to the base 
control board. The figure below showcases the 
phototransistor alignment on the robot cap board.  

 

Fig 14: Robot Cap with Phototransistors depicted in blue 

F. Control Module 

A control module is also needed to control the 
pneumatic solenoid valves used to inflate and deflate the 
soft vine robot. A total of four solenoid valves will be 
used to inflate the robot for steering and base inflation 
and deflation, as illustrated in Section 5.2.3. The joystick 
from the controller board in section 6.7 will be used to 
control the three solenoid valves. Moreover, this would 
require three ways to drive current to the 12V inputs of 
the solenoid valves. To achieve this, we will plan to use 
Darlington transistors to drive current and switch the 
solenoid valves on and off. The TIP120 from ON 
Semiconductor is an NPN epitaxial Darlington transistor. 
The table below showcases its electrical characteristics. 
This transistor will be utilized like a switch to control the 
solenoids.  



Solenoid coils also have a very high inductance. 
When switching them off, a high voltage spike is 
generated as the magnetic field collapses, which can 
potentially kill the transistor. To prevent this from 
occurring, we will be incorporating a diode across the 
solenoid, with the cathode of the diode connecting to the 
positive terminal of the solenoid. A 1N4933RLG general 
purpose 50V 1A diode from the semiconductor will be 
used to accomplish this. Furthermore, a 2.2k ohm resistor 
will be added between the base of the transistor and the 
digital pin of the Atmega2560. 

 
Fig 15: Solenoid Valve Control Circuit Schematic 
To control the pressure coming from the air 

compressor, 4 motorized ball valves controlled by an 8-
channel relay board will be used. The relay board will be 
connected to the 8 digital pins on the PCB. 2 relays 
control a single ball valve by switching the 12V between 
the open and close wires. Taking away 12V from both 
wires allows the ball valve to pause and control the flow 
of the air.  

G. Power Conversion 

Our electronic design also includes a power conversion 
circuit that can step down 12V to 5V to 3.3V, as seen in 
the schematic below. A PJ-002A power jack is used for 
the 12V power input. The 12V input is then stepped 
down to 5V with a R-78E5 switching regulator, which is 
then stepped down 3.3V using ADP160 linear regulator. 
The design includes bypass capacitors to reduce voltage 
noise. The 12V is used to power the pneumatics, motors, 
and ball valves. The 5V is used to power the MCU and 
pressure sensors, while the 3.3V is used to power the 
temperature and accelerometer sensors.  

 

Fig 16: Power Conversion Design 

H. Microcontroller Firmware 

The Atmega2560 firmware, developed on the 
Arduino IDE, controls the motor direction, speed, and 
receives encoder data. The code also control the ball 
valves with active low switching and controls the 
pneumatics with active high switching. 10 analog pins 
are used as inputs to read phototransistor and pressure 
sensor data. The temperature and accelerometer data are 
also read over I2C communication. The robot 
components can be controlled by writing bytes over 
serial. The firmware expects certain bytes that are used 
to control the components. The firmware also returns the 
sensor values over USB serial at a 115200 baud rate. The 
GUI developed in Python is used to read and write data 
to the MCU, which allows for robot control.   

IV:  SOFTWARE DESIGN 

A. Overview 

The software components for this project allow for all the 
hardware components to communicate with one another, 
and more importantly, it allows the user to be in the loop. 
The robot has its own User Interface (UI) developed in 
PyQT6 that allows the software to interface with the PCB 
via USB serial. The GUI allows COM port selection 
along with the ability of having the user choose which 
mode the robot will be set to. When in autonomous 
mode, computer vision and image processing will be 
used to interpret the environment the robot will be 
navigating in order to identify and track a light bulb. We 
will be using a USB camera connected back to the PC to 
give live video feed to the user, a video feed that will be 
processed using OpenCV. The UI will also be the host to 
all the different values that we will be receiving from the 
sensors as well as the live video of the robot’s path. All 
the sensors will be connected to a PC that will act as a 
mediator for the pneumatics, ball valves, motors, and 
sensor data. The software GUI also includes a debug 
window, which allows each individual pneumatic, ball 
valve, and motor to be tested on its own. This is the main 
method of testing that will be used before integrating all 
the components. It allows us to test both the component 
and PCB, as well as their relation with the GUI. 



B. Manual vs. Autonomous 

The vine robot includes two different modes, which are 
autonomous and manual mode. The software design 
details the autonomous mode in great detail as opposed 
to the manual design which relies more on hardware 
components. However, some of these components need 
to interact with the MCU to convert those inputs into 
commands for the pneumatic controls. In manual mode, 
the MCU will receive the commands from the user, 
which will be sent over wire from a physical controller. 
When in autonomous mode, the robot will rely on the 
camera to recognize a light bulb and track it. In this 
mode, the camera and the sensors will report back data 
to the user on the UI but the user will not need to send 
any commands. In the diagram below, we can see how 
the components interact in each different mode. 

 

Fig 17: Manual vs. Autonomous Mode 

C. Computer Vision 

Computer vision is one of the main components 
of this project that allows the robot to navigate 
autonomously and recognize the light bulb. Initially, we 
wanted to use a real-sense camera that allows the robot 
to map out its surroundings and give it a better 
understanding of its environment. The image processing 
is done using the OpenCV library which will allow us to 
identify a parametric object. Furthermore, we are going 
to use the CSRT tracking algorithm since it seems more 
applicable to the project. Our object will not be moving 
at a fast speed if at all. The motion will come from the 
everting vine robot. One issue that we do have to account 
for is object occlusion since the light bulb might be 
located behind walls in the obstacle course, so we are 
choosing an algorithm that can account for that. The 
figure below depicts the computer vision software 
diagram.  

 

Fig 18: Tracking Algorithm  Diagram 

The vision software sets up the object tracker 
and then starts capturing the video input. Then, we 
import the library cv2 for accomplishing all of the video 
capture and processing. We then proceed to create the 
bounding box that will surround the light blob as it 
identifies them. The purpose of the boxes is for the 
tracking itself; once the box is around a blob of light, the 
software will continue to track this blob. From there, we 
will implement an infinite loop that will process every 
frame and use the tracking algorithm to focus on the light 
blob. This loop can be broken out by pressing a key 
which we will set to another button on the controller. 
However, the loop will not be broken when an object is 
not identified or gone into occlusion. The algorithm we 
use is able to recover from partial occlusion and should 
has no problems reporting failures as well. 

Furthermore, the Image processing module also 
interacts with the hardware. The OpenCV software maps 
out the video frames and calculates the angles in which 
the vine robot is moving to keep the light blob centered. 
This is what actively lets the vine robot actually track 
objects. To accomplish this, we will calculate if the 
amount of the light blob is above the designated 
threshold of pixels that are outside of the center radius of 
the frame. These parameters are then passed to the 
Controller class’ navigate() function. The figure below 
showcases how the steering works when tracking a light 
bulb. 

 



Fig 19: Steering Diagram 

V:  CONCLUSION 

This project has been a great challenge for us as 
a team. We all had to develop a growth mindset by trying 
to learn previous research and relevant technology based 
on our robot. Our interest in soft robotics gave us the 
motivation to build a soft vine robot which is still 
currently cutting–edge technology that is slowly finding 
its place in industry applications. Our biggest challenge 
was trying to make this project feasible and realistic. We 
initially wanted to have multiple features such as 
incorporating solar panels as an alternative power source 
to batteries so we can promote reducing pollution in the 
environment and give our robot the ability to work both 
day and night even when the battery has been depleted. 
We also planned on making the robot autonomous, then 
we realized how software-heavy the task will be because 
we only had one computer engineer on our team.  
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