
Final Document Group 9 December 6, 2022

LeafIt!
An Autonomous Watering System

University of Central Florida

EEL 4915: Senior Design 2 Fall 2022

Final Document

Group 9

Kyle Eaton: Electrical Engineering

Adam Keller: Computer Engineering

Francis Olearcyzk: Electrical Engineering

Matthew Ongcapin: Computer Engineering

Final Document Group 9 December 6, 2022

Table Of Contents
1.0 Executive Summary 1

2.0 Project Description 2

2.1 Project Objectives 2

2.1.1 Motivation 2

2.1.2 Primary Objective 2

2.2 Discussion of the function of the project 3

2.3 Tiered Goals 3

2.4 House of Quality Diagram 4

2.5 Specifications 5

2.6 Project Block Diagram 6

3.0 Research and Project Selection 8

3.1 Similar Product Research 8

3.1.2 IoT Automatic Irrigation System 11

3.1.3 Project Prototype Illustration 13

3.1.4 System Functionality Software Rapid Prototype 15

3.1.5 “Snip N Drip” Initial Prototypes 17

3.1.6 System Chassis Initial Prototype 20

3.2 Sensor Research 24

3.3 Power Subsystem Research 25

3.3.1 Pump Research 25

3.3.2 Motor Drive Controller Board 26

3.3.3 Tubing 26

3.3.4 Battery 26

3.3.5 Buck Converter 27

3.3.6 Solar Cell 27

3.3.7 Electronic storage 28

3.4 Relevant Technologies Research 28

3.4.1 Mobile Application Technology 28

1

Final Document Group 9 December 6, 2022

3.4.1.1 React Native 29

3.4.1.2 Flutter 29

3.4.1.3 Swift 30

3.4.1.4 Xamarin 30

3.4.1.5 Selection for our mobile application 31

3.4.2 Possible Web Stack Options 31

3.4.2.1 MERN stack 31

3.4.2.2 LAMP Stack 32

3.4.3 Databases 33

3.4.3.1 MongoDB 33

3.4.3.2 Firebase Database 34

3.4.3.3 MySQL 34

3.4.4 Hosting 35

3.4.4.1 Heroku 35

3.4.4.2 Vercel 35

3.4.4.3 Microsoft Azure 36

3.5 MCU Research 37

3.5.1 MSP 430 37

3.5.2 PICmicro 37

3.5.4 Arduino 37

4.0 Standards and Constraints 38

4.1 Wireless and Network Protocols 39

4.1.1 Bluetooth 39

4.1.2 Wi-Fi 802.11 40

4.1.3 TCP 41

4.1.4 IPv4 41

4.2 Hardware Communication Protocols 41

4.2.1 UART 42

4.2.2 I2C 42

4.2.3 SPI 43

2

Final Document Group 9 December 6, 2022

4.2.4 USB 43

4.2.5 JST cable 44

4.2.6 Wire size AWG 44

4.3 Battery/Power Standards 44

4.3.1 Nickel-Metal Hydride Battery Standards 44

4.3.2 Sealed Lead Acid Battery Standards 45

4.4 Software Standards 45

4.4.1 Javascript Language Airbnb Style Standards 45

4.4.2 Software and Systems Engineering - Software Testing Standards 46

4.4.3 Design Impact of Software Testing Standard 48

4.4.4 Programming Languages - Javascript 48

4.5 Other Standards 48

4.5.1 IPXX 48

4.5.2 IPC-2221 49

4.6 Realistic Design Constraints 49

4.6.1 Economic and Time Constraints 49

4.6.2 Environmental and Social Constraints 50

4.6.3 Ethical, Health, and Safety Constraints 50

4.6.4 Manufacturability and Sustainability Constraints 51

5.0 Part Selection 52

5.1 Motor Controllers 52

5.1.1 Icstation 5A 3V-14V Dual DC Motor Drive Controller Board Module
Motor Commutation PWN Speed Regulator Dual H Bridge 52

5.1.2 Qunqi L298N Motor Drive Controller Board Module Dual H Bridge
DC 52

5.1.3 Cytron 13A, 5-30V Single DC Motor Controller 53

5.1.4 Table Comparing Motor Controller 53

5.2 Batteries 53

5.2.1 Tenergy NiMH Battery Pack 12V 2000mAh 53

5.2.2 ExpertPower EXP1250 12V 5Ah 54

3

Final Document Group 9 December 6, 2022

5.2.3 AmazonBasics 9 Volt Performance All-Purpose Alkaline Batteries 54

5.2.3 Battery Comparison 54

5.3 Buck Converters and Voltage Regulators 55

5.3.1 Valefod 6 Pack LM2596 55

5.3.2 HiLetgo 2pcs LM2596 55

5.3.3 eBoot Mini MP1584EN DC-DC Buck Converter (6 pack) 55

5.3.4 LM7805 56

5.3.5 PDSE1-S12-S3-D 56

5.3.6 Table Comparing Buck Converters and Regulators 56

5.4 Temperature Sensors 57

5.4.1 MCP9808 57

5.4.2 TMPXXX 57

5.4.2.1 TMP275 57

5.4.2.2 TMP112X 57

5.4.2.3 TMP126 57

5.4.3 LM92 58

5.4.4 BME280 58

5.4.5 Temperature Sensor Table 58

5.5 Soil Moisture Sensors 59

5.5.1 STEMMA Soil Sensor 59

5.5.2 PR46-7 Soil Sensor 59

5.5.3 Songhe Soil Moisture Sensor 59

5.5.4 Soil Moisture Sensor Table 59

5.6 Light Sensors 60

5.6.1 TSL2591 60

5.6.2 OPT4001 60

5.6.3 XINGYHENG Photosensitive Sensor 60

5.6.4 Light Sensor Table 60

5.7 Wi-Fi and Bluetooth Modules 61

5.7.1 ESP8266 61

4

Final Document Group 9 December 6, 2022

5.7.1.1 ESP-01 61

5.7.1.2 ESP-12E 62

5.7.2 ESP32 62

5.7.3 CYBLE-333074-02 62

5.7.4 NINA-B221-03B 62

5.7.5 BGM220SC22HNA2R 62

5.7.6 Wi-Fi and Bluetooth Table 63

5.8 Pump Selection 63

5.8.1 12V Mini Brushless DC Water Pump 63

5.8.2 Sipytoph 4Pcs DC 3-5V Micro Submersible Mini Water Pump 63

5.8.3 LEDGLE Mini USB Fountain Pump Compact Submersible Pumps
Efficient 5V 64

5.8.4 Table Comparison for Pumps 64

5.9 MCU Options 64

5.9.1 MSP430FR247x 65

5.9.2 MSP430F552x 65

5.9.3 MSP430FR6989 66

5.9.4 PIC24FV16KM204 66

5.9.4 ATMEGA328P-PU 66

5.9.4 MCU Table 67

5.10 67

Wall Power DC Jack Connector 67

6.0 Project Prototype Testing Plan 67

6.1 Hardware Testing Environment 67

6.2 Component Specific Testing and Integration 68

6.3 Water Pump Testing 68

6.4 Moisture Sensor Testing 68

6.5 Temperature Sensor Testing 69

6.6 Power System Testing 70

6.7 Software Testing Environment 71

5

Final Document Group 9 December 6, 2022

6.8 Software Specific Testing 72

7.0 Project Hardware and Software Design Details 75

7.1 Software Design 75

7.1.1 Software Functionality 76

7.1.2 Algorithm Description 76

7.1.3 Moisture Sensor Module/Function 76

7.1.4 Water Pump Control Module/Function 77

7.1.5 User Display Module 77

7.2.1 Potential Software Architectures 77

Structure 1 78

Structure 2 79

7.2.2 Web Stack 79

7.2.3 Database 80

7.2.4 Hosting 81

7.2.5 Website 81

7.2.5.1 Website Mock Pages 82

7.2.5.2 Next.js 84

7.2.6 Mobile Application 86

7.2.6.1 Mockup pages 87

7.2.6.2 React Native 87

7.2.7 Mobile and Website pages breakdown 88

7.3 Final Coding Plan 89

7.4 Hardware Design 89

7.4.1 Hardware Block Diagram 90

7.4.2 Printed Circuit Board (PCB) 90

7.4.3 Part Selection: Power and Pump 94

Power Parts List 95

3V-5V pump 95

12V pump 97

7.4.4 Sensor Integration 99

6

Final Document Group 9 December 6, 2022

Sensor Parts List 99

7.4.5 Soil Moisture Sensor Testing 100

7.4.7 Wi-Fi Module Testing 103

7.4.8 Temperature Sensor Testing 105

8.0 Design Integration 106

8.1 Controls and Power Integration 106

8.2 Data Storage 107

8.3 System Casing 108

8.4 Heat dissipation 109

8.5 Electrical Device Protection 110

8.6 Project Operation 111

8.6.1 Introduction 111

8.6.2 Setup/Placeholder figures of pictures depicting proper setup 111

8.6.4 Control Instructions/Display/Chart of Water Settings 113

8.7 Overall Schematic 115

9.0 Administration 118

9.1 Budget and Finance 120

9.2 Division of Work 122

9.3 Issues to overcome 123

9.3.1 Project Design Problems 123

9.3.2 Initial Design Process Issues 123

9.3.3 Testing Stage Issues 124

10.0 Conclusion and Summary 126

11.0 Appendix 127

7

Final Document Group 9 December 6, 2022

List of Figures

Figure 1: House of quality Diagram

Figure 2: Project Block Diagram

Figure 3: Example Diagram

Figure 4: DIY Examples

Figure 5: Concept Illustration 1

Figure 6: Concept Illustration 2

Figure 7: Power Structure of the system

Figure 8: System Functionality Software Rapid Prototype

Figure 9: UML diagram

Figure 10: “Sip N Drip” Photo 1

Figure 11: “Sip N Drip” Photo 2

Figure 12: System Chassis Proposal

Figure 13: System Chassis Attempt 1

Figure 14: System Chassis Attempt 2

Figure 15: Sensor Overview

Figure 16: Stack MEAN vs MERN vs MEVN

Figure 17: Horizontal Scaling

Figure 18: Heroku

Figure 19: Bluetooth Overview

Figure 20: Wi-Fi Overview

Figure 21: Power System Testing

Figure 22: Software Testing Process

Figure 23: Software Design

Figure 24: Software Controls

Figure 25: Structure 1

Figure 26: Structure 2

8

Final Document Group 9 December 6, 2022

Figure 27: Entity Relationship Diagram

Figure 28: Website Mock Page

Figure 29: Website Mock Page “My Plants”

Figure 30: Website Mock Page “My Profile”

Figure 31: Application Mockup Page

Figure 32: Network Layer

Figure 33: Hardware Block Diagram

Figure 34: First Generation PCB

Figure 35: Second Generation PCB

Figure 36: Third Generation PCB

Figure 37: Fourth Generation PCB

Figure 38: Picture of Parts

Figure 39: Pump Testing Configuration

Figure 40: Temperature, soil, and Wi-Fi testing

Figure 41: Soil Moisture Sensor Testing

Figure 42: % moisture vs mL of water added

Figure 43: Wi-Fi Module Testing

Figure 44: Proof of Connection

Figure 45: First round of temperature sensor testing

Figure 46: Temperature sensor values read

Figure 47: Acrylic Casing Example

Figure 48: Shutdown current VS Temperature for the TMP275

Figure 49: Installation Diagrams

Figure 50: Control Instructions and Display

Figure 51: Schematic Flowchart

Figure 52: Final System

9

Final Document Group 9 December 6, 2022

List of Tables

Table 1: Engineering Specifications

Table 2: System Study

Table 3: Table of Parts

Table 4: Summary of prototypes

Table 5: Summary and Selection of Mobile Application Software

Table 6: Mern Stack vs Lamp Stack

Table 7: Database Comparison

Table 8: Heroku vs Vercel Hosting Platforms

Table 9: MCU Comparison

Table 10: Wi-Fi Protocols

Table 11: Testing Environment

Table 12: Motor Controller Comparison

Table 13: Battery Comparison

Table 14: Buck Converter Comparison

Table 15: Temperature Sensor Comparison

Table 16: Moisture Sensor Comparison

Table 17: Light Sensor Comparison

Table 18: Wi-Fi and BlueTooth Table

Table 19: Pump Comparison

Table 20: MCU Comparison

Table 21: Testing Summary

Table 22: Differences between LAMP stack and MERN stack

Table 23: Next.js Features and Descriptions

10

Final Document Group 9 December 6, 2022

Table 24: Page Descriptions

Table 25: PCB Vendors

Table 26: Power Parts List

Table 27: 3-5V Pump Testing

Table 28: 12V Pump Testing

Table 29: Sensor Part List

Table 30: Moisture Sensor Data

Table 31: Wi-Fi Module Commands

Table 32: Plant Type Watering Settings

Table 33: Chosen Parts for Prototype

Table 34: Project Timeline

Table 35: Software Development Timeline

Table 36: Proposed Budget

Table 37: Bill of Materials

Table 38: Division of Work

11

Final Document Group 9 December 6, 2022

1.0 Executive Summary
The cultivation of plants is arguably one of the primary reasons humans have
been able to grow and evolve from a tribal hunter-gatherer lifestyle, to growing
their own foods. This technological advancement led to the creation of societies,
population growth, and allowed humans to focus on things other than survival.
Modern agricultural practices have advanced to the degree that the average
person no longer needs to grow food to survive. The itch to grow and cultivate
plants still remains for many people, and today anyone with nearly no experience
can attempt to grow flowers, herbs, vegetables, and fruits in their own home.
Although fairly straightforward, growing plants consistently is not always so easy.
In today’s society everyone loves to go on vacation or travel, however if you grow
plants at your house this can be troublesome if you are gone for an extended
period. You either must rely on a neighbor or friend to water your plants or hope
that the rain waters them enough while you are gone. The practice of
overwatering houseplants, destroying herb gardens, and believing you have a
black thumb are over. It is also very easy to just forget to water your plants. Our
project, the autonomous watering system: LeafIt! solves this issue. You no longer
need to worry about your plants while traveling or at home.

According to recent statistics, seven in ten millennials refer to themselves as a
plant parent. The average plant owner has killed seven houseplants, and the
average household spends over $600 a year on gardening goods. With the
recent COVID-19 pandemic, houseplant demand has grown by 18% due to the
fact that more people were forced to work from home and or layed off from their
jobs. Given that the plant and flower industry market size has reached over 15
billion dollars in 2020, it is no wonder that the majority of Americans have
adopted the practice of owning houseplants. It has been proven that having
houseplants improves productivity, reduces stress levels, and house plant
owners take fewer sick days. Along with this practice comes the trial and error of
killing several plants in the process. That does not have to be the case any more.
With our new technology LeafIt! We will be able to suggest and automate better
watering habits, allow the user to understand their plant better, and provide
remote monitoring of soil levels and inform the user when their plant has been
watered. Gone are the days of removing the dead plants from your windowsill.

The only disadvantages with owning houseplants are the worries of how you can
keep your plants alive when you are busy with work, or on vacation, or you are
unable to care for them. Of millennials, 48% of them are afraid of being able to
keep their house plants alive. Being able to have a reliable and consistent
monitor of your house plants will put your mind at ease. This could also be
another use case for elderly or disabled people, where plant care might not be
the easiest thing to do. Our project will water and monitor your plants for you, all
you need to do is the initial setup and refill the water reservoir.

1

Final Document Group 9 December 6, 2022

2.0 Project Description
This section contains discussion on the actual function of the project, a project
block diagram demonstrating the team responsibilities in relation to the full
system, a full list of goals, a house of quality diagram, and a list of engineering
specifications for testing. The overall purpose of this section is to provide a
general overview of this project in order to provide sufficient context for the
reader.

2.1 Project Objectives
The project objectives will make clear the motivation for this project as well as the
main goal. It will answer the reason why this project was chosen and why this
project will be unique when compared to similar systems of the same category.
The system scope will be derived from the ethos described below.

2.1.1 Motivation
The primary motivation for this project and idea is based around showcasing our
skills, knowledge, and critical thinking gained while attending the University of
Central Florida. This project has several parts that allow interdisciplinary work
between computer engineering students, and electrical engineering students.
Given the span of knowledge required this project will allow our group to work
together as a team, to accomplish a goal of building, testing, refining, and
producing a product that has real world application. This will also be a step in
obtaining a bachelors degree in either computer or electrical engineering, based
on ABET accreditation. Another benefit this project entails is allowing group
members to have an informative and interesting story to tell to future employers,
as much of the engineering job market wants to see what you can do rather than
what you know about. The experience is invaluable, as it will grant insight to how
projects are formed and executed as well as reveal common pitfalls in projects
like these, which future employers will appreciate these types of experiences in
their new hires.

2.1.2 Primary Objective
The primary objective of this project is to create a system to monitor/water your
plants while you are away on vacation. The system will use sensors to gather the
temperature, moisture levels, water levels, etc. Any of these sensors can trigger
a notification to be sent to the user. For example, if the water reservoir is low a
notification will be sent to the user to refill the water. To complement the user
experience we plan to develop a phone app with an interface to use the watering
system. The phone app will alert you when the water reservoir is low, a plant
needs more sunlight, the moisture or temperature is off, etc. Two aspects of our
project make it unique. Firstly, during our product research we noticed that most
automatic watering systems were either a manually programmed pipe irrigation
system or a framed hydroponics system controlled from the user’s phone. Our

2

Final Document Group 9 December 6, 2022

project is unique in that it is both a simple pipe irrigation system which can
be applied to already existing gardens and a system that is controlled by
the user’s phone. Secondly, our product research informed us that many of
these systems already on the market do not specify the amount of water based
on the type of plant being watered. Our system is unique in that the users can
optimize the care of their plant based on three types of plants of their
choosing (Tropical, Temperate, and Arid). Each type of plant has specialized
watering programming so that the plant does not get under or overwatered.

2.2 Discussion of the function of the project
The function of this project is to create a system to monitor and take care of
plants autonomously. All the user needs to do is refill the water reservoir. We will
make a phone app for easy user interface and ease of use for when you are
away from your house. If a plant is still not doing well, even with the watering,
the user can check the long term statistics of the plant’s measured environment.
From there, the user can see if the plant does not receive enough sunlight or if
the temperature is outside of the optimal range of the plant’s desired
temperature.

2.3 Tiered Goals
The following puts goals into three categories:basic, stretch and advanced goals.
Basic goals will need to be met, stretch goals will be met if time permits, and
advanced goals will be met when all other systems are fully functional.

1. Basic: The system shall automatically water one outdoor plant using a
water pump with amounts of water based on one of the three possible
types of plants that the user inputs, the temperature, and the moisture
present in the soil of the plant.

2. Basic: The power system shall be capable of delivering at least 12V DC.
3. Basic: The power supply shall be capable of powering the sensors.
4. Basic: The total cost of the system shall not exceed $250.
5. Basic: The system shall have two sensors to monitor soil moisture of the

plant and temperature.
6. Basic: The system shall support a container of water at least 0.5 Gallons

and at most 3-5 Gallons.
7. Basic: The system shall use a water pump to draw water from a reservoir

of water outside of the system i.e., a bucket or pot of water.
8. Basic: The system shall not weigh more than 3 pounds.
9. Basic: The power system shall have current leakage protection.
10. Basic: The microcontroller must be able to produce a PWM signal that

has the amplitude of 1V max and a minimum of 1V.
11. Basic: The frequency that the microcontroller must produce on the PWM

signal must be able to operate on a range of 50Hz up to 100Hz.

3

Final Document Group 9 December 6, 2022

12. Basic: The minimum operation voltage of the microcontroller must be at
least 3.3 volts.

13. Basic: The program of the system must be able to compile and correctly
output the expected actions deemed by the user input.

14. Basic: The system shall have adequate heat sinks for device and user
protection.

15. Stretch: The system shall have an interface for users to choose soil
moisture and temperature settings based on three types of plants.

16. Stretch: The system’s watering and temperature settings shall be based
on three types of plants: Tropical, Temperate, and Cactus/Succulent.

17. Stretch: the system will be able to water multiple different plants with
different settings.

18. Stretch: The system shall have a spray nozzle to better control the
amount of water supplied to each type of plant.

19. Stretch: The system shall have waterproof casing to keep moisture from
damaging the electronics.

20. Advanced: A motorized system designed to switch between watering 3
different plants one at a time.

21. Advanced: The user shall be able to input into the system “vacation
days”, prompting the system to calculate if the water reservoir is passable
given the type of plant and the number of vacation days.

22. Advanced: The system shall alert the user’s Android phone of inclement
weather, unfavorable amounts of moisture in their plant as well as updates
on the plant when it has been watered.

23. Advanced: The system shall alert the user’s Android phone when the
plant suffers from unfavorable climate using the temperature sensor.

24. Advanced: The system shall have a light source to provide light to the
plant when the temperature sensor senses a cooler temperature than
what is optimal for the growth of the plant.

2.4 House of Quality Diagram
The house of quality diagram is a concise conglomeration of engineering and
customer specifications, how they are related, and their level of importance. This
can be used to draw conclusions about the importance of each system and how
they will have a push or pull relationship. This means that improving one system
will have negative consequences on another system. This can be seen below in
Figure 1:

4

Final Document Group 9 December 6, 2022

Figure 1: House of Quality Diagram

2.5 Specifications
Below shown in Table 1 is a list of engineering specifications which will be
guaranteed to be in the project. These were chosen after consulting all of the
group members and doing research on what is feasible to implement.The
specifications highlighted in yellow will have a live demonstration to show our
project and its functionality. These specifications were designed to easily be able
to be demonstrated in at most 5 minutes. Practically, most of these specifications
will happen over a larger time frame to save on water and power, as the scope
and scale of the project does not necessarily require fast acting or fast reporting
components to operate correctly. These engineering specifications can help
verify our project is working as intended and can easily demonstrate the purpose
of it.

5

Final Document Group 9 December 6, 2022

Watering

Pump will provide 5mL-10mL of water in less than

30 seconds

Volume

Product will not be taller than 2ftx3ftx2ft

Cost

Product will not cost more than $250

Power

Product will not use more than 24kWh and be able
to produce 12V, 5V, and 3V

Temp Sensor

Product will accurately measure temperatures

between 0C and 40C with an accuracy of 0.75C

Moisture Sensor

Product can detect a difference of 5mL of water in 7
cm^3 of soil

Web Server: Long Term

statistics

The web server will record values received from the

MCU within 15 seconds

Table 1: Engineering Specifications

2.6 Project Block Diagram
The project block diagram below in Figure 2 details the overall breakdown of the
system and the personnel responsible for a particular part of the system. The
interactions between each main section can be followed with arrows.

Although each person mainly focused on their section of the system, plenty of
coordination took place to integrate all of the systems. The points of integration
that are the most important are the arrows between different people’s systems.
Power and information will have to be able to freely flow to where it needs to go.
Stability is also an important factor to consider when combining the systems.

6

Final Document Group 9 December 6, 2022

Figure 2: Project Block Diagram

7

Final Document Group 9 December 6, 2022

3.0 Research and Project Selection
In this section, we discuss the initial product research that the team underwent in
order to understand the most applicable products currently in the industry, a
project prototype illustration to provide a visual of the overall design, descriptions
of various prototypes that were conducted as research, and a breakdown of the
different researched components chosen to construct the project.

3.1 Similar Product Research
Expanding upon previous iterations of innovation and development has allowed
the growth and changes that are necessary for continued growth in the field of
engineering. We were able to find several DIY kits that are similar to our project
idea, and some more commercialized options. It was important for us to explore
the wider industry of home irrigation kits so that we could have a better
understanding of potential designs for our project. Though we may have a
particular perception for how to solve the problem and subproblems of home
irrigation, it is important for us to consider the solutions already present in the
industry as well as any common and unique features that are present.

Upon further investigation, it appears that most of the solutions available in the
wider industry use simple pressure or gravity based irrigation systems. These
systems work by taking advantage of simple physics: the system forms an air
vacuum with the soil. A certain amount of moisture in the soil, air inside of the
system, and water inside of the system creates a pressure equilibrium that traps
the water inside of the system. When the amount of moisture in the soil
decreases to a certain point, this causes a difference in pressure which forces
water from the system to enter the soil until a pressure equilibrium is created
again. This whole system works without the use of electric parts. Ultimately, we
did not pursue this solution because the skills required to construct such a device
are above our station. It requires advanced knowledge of glassware and
metalworking due to the geometry of the system being integral to creating a
pressure equilibrium necessary for the function of the system. Also, though a
purely pressure based system may lack complexity for the user and lacks the
dangers of mixing moisture with electronic parts, not including electronic parts
creates a huge lack in features that could possibly be useful to the user.

Due to our expertise in electrical engineering, computer engineering, and
computer science, our analysis of the automatic irrigation problem suggested to
us that features enabled by electronic parts such as timed watering, plant specific
watering, and plant monitoring would not only be a relatively easy task to
conceptualize, but also would be of greater use to users than the sheer simplicity
of pressure based automatic irrigation systems. Our methodology of our
investigation basically focused on systems that utilized electronics, sensors and
embedded systems to provide greater functionality and value to their users. The
results of our industry research revealed to us that, other than pressure based
automatic irrigation systems, the automatic irrigation system market consists of

8

Final Document Group 9 December 6, 2022

“Snip n Drip” watering systems as well as numerous 3D printer chassis inspired
Internet of Things DIY watering systems. Through our expertise, we are aware of
the concept of the Internet of Things, which enables greater functionality and
value to users through the use of embedded systems, Internet networks, and
software applications in different appliances. The “Snip n Drip” watering systems
greatest strengths are their ease of use, relatively lower cost, and relatively easy
setup. The DIY watering systems were interesting to us as well because they
integrate the use of the smartphone as a tool to monitor the health of the user
plants, which is a feature that is not present in most automatic irrigation systems
already established in the industry.

3.1.1 Snip N Drip Automatic Irrigation Systems

An example of this automatic irrigation system that we came across in our
product research can be seen in Figure 3. These systems provide great value to
their users through their easy setup and relative low cost. Also, these systems
are often expandable based on the amount of rubber or latex tubes attached to
the system. The functionality of these systems are very similar to a common
suburban garden hose. However, instead of using a faucet to create a difference
in water and air pressure to prompt the creation of a stream of water, the
difference in pressure is created by a water pump submerged in a separate
source of water. When prompted by the system, the water pump creates the
difference in pressure necessary to create a stream of water to irrigate indoor
and outdoor plants. Most of these systems usually do not have embedded
systems capable of advanced programming and complex sensors. Instead, the
system relies on basic electronics to take in basic user commands through the
use of buttons. Once the user has entered the appropriate commands into the
system, the system will automatically water the plant. One downside of this is
overwatering that could be dangerous to the plant due to the system never
“sensing” the actual moisture needs of the plants. Instead, the system operates
on timed intervals entered by the user which prompt the irrigation. Nevertheless,
some of the base designs and features of this system were taken into
consideration in our design.

The chart below is a chart summary of the different systems investigated by the
team. This includes gravity based irrigation systems, pressure based irrigation
systems, Snip N Drip systems, and IOT systems. Each has a differing level of
complexity and effectiveness. The more complex ones will be more expensive
and take more time to develop, while the simple ones will be easy to implement
and cheap, but will most likely be limited in effectiveness and features that the
user might want.

9

Final Document Group 9 December 6, 2022

Types Parts Function Amount
of Plants
Watered

Effectiveness

Gravity
Based

Irrigation
Systems

A large pressurized
metal bin of water,

vinyl tubing

The large
pressurized metal

bin of water is
placed above the
plants, changes in
the soil moisture

creates a change in
pressure prompting

watering

Various Effective but
unable to

control and
customize the

amount of
water

Pressure
Based

Irrigation
Systems

A large pressurized
metal bin of water,

vinyl tubing

The large
pressurized metal

bin of water is
placed above the

plants, vinyl tubing
is “pinched” to

create a vacuum,
changes in the soil
moisture creates a
change in pressure
prompting watering

Various Effective but
unable to

control and
customize the

amount of
water

Snip n Drip
Irrigation
System

Water pump, power
source and

accompanying
electronics,

container for the
source of water,

vinyl tubing

Water pump
provides water to

plants through vinyl
tubing

Various Very effective

IoT
Automatic
Irrigation
System

Water pump,
chassis, power

source and
accompanying

electronics,
container for the
source of water,

vinyl tubing

Water pump
provides water to

plants through vinyl
tubing

Various Very Effective

Table 2: System Study

Figure 3 below shows an example of the Snip N Drip system. It takes water from
one central reservoir and distributes it to multiple different plants. Each plant is
connected to the same watering system, so the system will distribute the same

10

Final Document Group 9 December 6, 2022

amount of water to each plant. This will not be desirable if each plant requires
different amounts of water to use. With this system, each plant would have to at
minimum receive enough water to sustain the most water reliant plant in the
ecosystem. Although simple, this system can lend itself to lots of wasted water
and the potential to drown plants.

Figure 3: Example Diagram

3.1.2 IoT Automatic Irrigation System
An interesting addition to our industry research were DIY projects that utilized
and integrated IoT technology into their design. A downside of the previous
automatic irrigation systems in our research was that they often lacked higher
levels of control that would greatly benefit the user in solving the automatic
irrigation system problem. This is probably due to the addition of features in
these systems being dependent on creating more physical parts that would
increase the overall price of the system for the user. These older designs
probably settled on the features they currently utilize based on the balance
between features and overall cost of the system. However, IoT technology can
increase the amount of useful features through relatively cheap electronic
components and sensors through the use of a network connection; these DIY
projects are a good example of such a solution. The example below uses a frame
and motor to irrigate individual plants. Through the use of their phone and the
software present in a Raspberry Pi microcontroller, individual plants can be
watered in different amounts based on the user preference. Also, different
sensors are utilized to monitor moisture or temperature to prompt automatic
irrigation of these plants. The actual watering of the plants works on the same

11

Final Document Group 9 December 6, 2022

water pump and tube process present in other automatic irrigation systems but
instead, it is controlled by higher level programming on a microcontroller rather
than lower level programming based off of a timer in the previous automatic
irrigation systems.

One potential flaw in this DIY example design is the use of a 3D printer inspired
chassis frame. In an industry view, this construction would probably increase the
overall cost significantly compared to “tube only” irrigation systems. However, this
could also potentially provide aesthetic value to the consumer. Another puzzling
design choice is the use of the 3D printer inspired motorized “arm” to move the
irrigation pipe to multiple different kinds of plants. Again, in the industry, the use
of multiple motors would probably increase the overall cost as well as the strain
on the power source. Also, this seems to be a case of over design. The use of
motors to irrigate individual plants seems to be a very energy expensive solution
to a relatively simple problem. As seen in previous automatic irrigation systems, it
is much easier to irrigate plants through the use of multiple tubes that can water
the plants individually. Nevertheless, the strengths of this design were integrated
into our design as well, particularly the use of IoT concepts and designs. The
Internet of Things provides a balance due to the integration of lower cost
components and increased functionality. The striking differences between the
DIY examples and “Snip n Drip” designs prompted the creation of three
prototypes. The first prototype focuses on implementing a “Snip n Drip” automatic
irrigation system. The second prototype implements a “Snip n Drip”automatic
irrigation system but utilizing a frame similar to what is present in the DIY
systems. The third prototype is a simple class based Python program to describe
the functionality of the irrigation system. The purpose of this is to explore a
potential software based solution to the issues associated with irrigating multiple
plants, avoiding the use of a motorized arm for irrigation, and the use of multiple
pipes to water multiple plants. The diagram below shows an example of the DIY
chassis project found in Instructables:

Figure 4: DIY Examples

12

Final Document Group 9 December 6, 2022

3.1.3 Project Prototype Illustration
Figure 5 below shows all the components working together in the system. After
inputting the user settings, the MCU prompts the water pump, submerged in a
container of water, to water the plant. Sensors check the temperature and soil
moisture in order to prompt continued watering. An Android phone receives
updates on the plant's health from the hardware.

The diagrams below are preliminary depictions of the automatic irrigation system.
The first image is a depiction of the connection between the electronic apparatus,
the plant, and the water supply. A phone is meant to communicate with the
electronic apparatus.

Figure 5: Concept Illustration 1

Figure 6 below illustrates how the system would work with multiple plants. It
would be a centralized system with one water reservoir. The advantages of this
would be the easy maintenance of filling one water reservoir and powering only
one system. The disadvantages would be that if the central system were to fail,
all of the plants will not be able to be watered. This would be solved with a
decentralized system in which if a part fails, a smaller percentage of plants would
go unwatered. The decentralized system would go against one of the project
goals, which is easy setup and maintenance. The user would be responsible for
filling up each reservoir which takes more time to do each cycle and they would
have to make sure that all systems are being powered with five different power

13

Final Document Group 9 December 6, 2022

systems, which increases the batteries necessary to make all of the systems
function.

Figure 6: Concept Illustration 2

This centralized system will run off of a battery power supply as seen in Figure 7.
This means that a 12V battery power supply will be supplying current to the
entire system. Since the MCU and sensors will not require 12V, a step down
module, or buck converter, will need to be implemented to supply the correct
voltage. The diagram below is a description of the different components
comprising the power structure of the system:

Figure 7: Power Structure of the System

14

Final Document Group 9 December 6, 2022

3.1.4 System Functionality Software Rapid Prototype

Objective: The purpose of this prototype was to act as a rapid prototype to gain
experience and insight on the functionality code of this automatic irrigation
system. The Python programming language was used for this prototype due to
the team’s familiarity with it, even though the language for the final design of this
system will more than likely be in Java or a similar language. Therefore, though
Python was used, this prototype was designed using Top Down Development
and Object Oriented Programming in structures that would typically be utilized for
Java. This was possible because of the relative simplicity and flexibility of the
Python language providing a “simulation” of what the Java code would be doing.
The overall purpose of this prototype was to design and test the data structures
and algorithms that will eventually be used for the functionality of this automated
irrigation system.

Environment: This prototype only required software and IDEs already present
on a team member’s laptop so no extra facilities were required for the
construction and testing of this prototype.

Procedure: To test this initial prototype, the following steps were implemented:

1. The chart shown below was constructed to break down the problem. As
part of Top Down Development and Object Oriented Programming, the
problem was broken into different modules. These modules were broken
down into its functional parts. The functional parts were broken down into
their base functions and algorithms so that there is little overlap between
the different modules. Once a basic understanding of the required
algorithms is found, the 23 Design Patterns tool was utilized to cross
reference and potentially streamline any common algorithm designs used
in this design. This chart also required a “data mindset” approach in that
the engineer visualized the movement of data; how the data was received,
transformed, and then output by the code.

Figure 8 which is shown below is a breakdown of the problem logic for Top Down
Development.

15

Final Document Group 9 December 6, 2022

Figure 8: System Functionality Software Rapid Prototype

1. After constructing the chart, a UML diagram of the problem was created
for a clearer understanding of the functions and inheritance of the different
types and classes present in the code.

The next figure, Figure 9, is a UML (Unified Modeling Language) diagram
showing a breakdown of the different classes and types present in the code.
UML is a general purpose development based modeling language used by
software engineers to standardize the visualization of a system. In using this
approach to depict our project, we are attempting to appeal to a simplistic
approach so that anyone who looks at Figure 9 can interpret our project’s
software interface. The different classes and types are very easy to depict when
using this method, and it breaks down the tasks we have to implement in a
memorable way for us to then incorporate into the final project once we present
it.

16

Final Document Group 9 December 6, 2022

Figure 9: UML diagram

1) When constructing the code, each functional part of the code was tested
for basic functionality using basic “user text or numerical input” for the
purpose of finding any broken functions or algorithms present in the code.
Though different modules could be developed at the same time, the
functional parts of those modules are made sequentially so that there is no
confusion as to where certain bugs or errors originated.

Conclusion: This prototype provided valuable insight in the functionality of this
automatic irrigation system. Rapid prototypes are very valuable because designs
like this give the team insight on future bugs and more optimal designs ahead of
time. Since the Python code was used in a way that simulated the function of
Java data structures and code, this prototype allowed the team to be ahead of
schedule since this prototype helped iron out certain kinks and optimize designs
that would often have to be dealt with later in the development process. Later on
in the project development process, the team only had to worry about minor Java
conversion issues when constructing this code as well as the actual integration of
this code into the overall system, which ended up becoming highly dependent on
the MCU and power PCBs final design.

3.1.5 “Snip N Drip” Initial Prototypes
Objective: The purpose of this prototype was to gain experience and insight on
similar automatic irrigation system technologies already present in the industry.
This experience is valuable because it makes the team more aware of the

17

Final Document Group 9 December 6, 2022

established capabilities that these technologies have so that we may improve
and build on them.

Table of Parts

Parts Important Statistics

(4) Crowtail Soil Moisture Sensors Analog

(1)Crowtail Smart Pump Shield Standard

(1)Crowtail Water Pump 12V

(1)12 V Adapter Standard

(1)Four channels water valve Standard

(1)Vinyl water pipe Standard

(1)Arduino Uno 5V

Table 3: Table of Parts

Environment: This prototype was constructed in the home of one of the
members of the team. No electronic components and tools such as multimeters
were required for this prototype due to it being a kit model. This prototype was
constructed with household tools that were readily available.

Procedure:

1. Uploading the required code to the Arduino Board. The attached board is
an Arduino Uno which allows you to interact with the code using Arduino
IDE.

2. After this, the custom hardware “shield” is attached to the Arduino IDE.
This custom hardware shield was created by the kit company as the
interface between the Arduino and the sensors, pumps, valves, and
switch.

3. The appropriate moisture sensors, water pumps, water valves, and
switches are attached to the hardware shield. The four water pumps are
connected to the A0, A1, A2, and A3 pins on the hardware shield.

18

Final Document Group 9 December 6, 2022

4. This system operates on a pump to valve system. A water pump pumps
water from the main water source and passes it to the 4 valves who
distribute the water to 4 different plants. This system design is very
different from the team’s initial design so two different trials were
implemented to test the effectiveness of each design using the prototype
parts: A design that uses the water pump and four valves to water four
plants or a design that uses a water pump and four connected pipes to
water four plants.

5. The figures below depict the initial prototype constructed. Only one plant
is pictured but this model is capable of watering four different kinds of
plants. Figure 10 below shows the configuration of the vinyl tubing and
moisture sensors.

The diagram below shows all of the interconnected components in the initial
prototype:

Figure 10: “Sip N Drip” Photo 1

The diagram below is a close up of the moisture sensor and vinyl tubing
configured in the soil:

19

Final Document Group 9 December 6, 2022

Figure 11: “Sip N Drip” Photo 2

Conclusion: Several lessons were learned from implementing this prototype
design. Firstly, the valve design seems to be more effective than the pump only
design. This is because the valve design provides an extra implementation to
reliably provide water to the different plants. However, the electronics and
accompanying programming needed for this implementation to be functional may
be far ahead of the capabilities of this team. Therefore, a pump only design that
can divert water to different plants will probably work well for the purposes of the
team. The team also learned about the strategy needed to deal with power
supplies and hardware. This particular design deals with the issue of separate
components having different voltage requirements. The water pump requires a
12V input. However, the Arduino can only stand a 5V input. The strategy taken
by this automatic irrigation system is by designing a “sensor shield”. The Arduino
Uno contains the chip and Internet accessibility needed for the functionality of the
system but the “sensor shield” is able to interface directly with the sensors. The
shield then splits the power between the Arduino and the different attached
devices so the Arduino only gets 5V and the pump/switches only gets 12V. The
power supply connects directly to the shield and not to the Arduino. This is
because the shield splits the power between the Arduino and the attached
apparatus. This strategy is analogous to the design of our power PCB and MCU
PCB. However, the team will have to consider the differing power needs required
to run the MCU PCB versus what the sensors and water pump needs.

3.1.6 System Chassis Initial Prototype
Objective: The purpose of this prototype was similar to the “Snip N Drip” initial
prototype in that it was to gain experience and insight on similar automatic
irrigation system technologies already present in the industry. This experience

20

Final Document Group 9 December 6, 2022

was valuable to the team because it tests the viability and usefulness of the
chassis design seen in DIY models of the automatic irrigation system. The DIY
models are usually equipped with a chassis design to support the vinyl pipes.
This takes away from the modular nature of the automatic irrigation system but
provides a support structure and aesthetic value to the user. However, due to the
high value to the user provided by the more modular designs, this prototype was
constructed to test whether there are any other benefits to the chassis apparatus
outside of it being a structure and aesthetically valuable. The working hypothesis
is that such a structure might actually impede the function of the vinyl tubing by
possibly making it more difficult for the pressure based water pump to move
water through the tubing. However, since this takes no additional cost to the team
since it is constructed from the initial “Snip N Drip” prototype and scrap wood
readily found at a team member’s house, a quickly constructed, scaled down
prototype was created to test the viability of such a design.

Environment: This prototype was constructed in the home of one of the
members of the team. No electronic components and tools such as multimeters
were required for this prototype due to it being a kit model. This prototype was
constructed with household tools that were readily available.

Procedure:

1. The setup and implementation for this prototype is essentially the same
except that in this version, the team is testing the effectiveness of the
increased height of the chassis on the strength of the water pump. In a
similar manner to the previous prototype, this will be tested with both a
water pump/valve system versus a water pump with no valves system

2. The prototype was initially conceptualized using a drawing as shown
below. This is a continuation of what was initially designed in the first
conceptual drawing.

3. The other figures below depict the prototype constructed. The functional
parts of this model are the same as the previous prototype. They were
simply repurposed. For the sake of time, cardboard was used as moisture
protection from water that may spill out of the enclosure. Also, the Arduino
and other electronic components utilized are inside of a Ramen container
to simulate the use of protective casing. Figure 12 below also shows a
close up photo of the model, with the vinyl pipe connected to one of the
overhead rafters using zip ties.

Figure 12 below is a depiction of the initial design created for the system chassis.
This will create an overhang over the plants in which the water will be supplied.
This will give structure to the plant enclosure and provide a secure way to fasten
the tubing to the plants. This design will take up a lot of space, and will exclude
certain plants from being used due to their potential growth size.

21

Final Document Group 9 December 6, 2022

Figure 12: System Chassis Proposal

Figure 13 below shows all of the interconnected components in the system
chassis prototype.

Figure 13: System Chassis Attempt 1

22

Final Document Group 9 December 6, 2022

The diagram below is a close up of the vinyl tubing connected to the roof of the
chassis. The tubing can be run below a support beam to stay hidden from the top
view.

Figure 14: System Chassis Attempt 2

Conclusion: Several lessons were learned from implementing this prototype
design. Firstly, the valve pump design definitely proved better than the pipe only
design. However, like the previous prototype, the valve design requires more
electronic expertise so this will most likely not be implemented. This leads to the
second lesson learned from this prototype, that of the chassis design being too
inconvenient to implement. Regardless of the pump design, the mechanism had
trouble pumping water to the plant due to the elevation required to pump water
through the rafters. However, there is some anecdotal evidence of the chassis
design being more convenient and aesthetically pleasing to the user. It could
potentially be used as a modifiable “add in” for this system when the user wishes
to use the automatic irrigation system strictly for indoor plants that can fit within
the chassis. To make this design work properly, it will require a design that
integrates the vinyl piping into the chassis with a method that does not prevent
the water pump from pumping water.

The table below is a visual summary of the constructed prototypes and their
results, all which have varying degrees of success. Special circumstances or
conclusions were also included in this table to help synthesis a final conclusion
on the effectiveness of each of the different prototypes that were tested down
below:

23

Final Document Group 9 December 6, 2022

Initial
Prototype

Parts Function Results Status

“Snip N
Drip”
Initial

Prototype

Water pump,
power source and

accompanying
electronics,

container for the
source of water,

vinyl tubing

Water pump
provides water

to plants
through vinyl

tubing

Adequate
programmed
irrigation of
four plants

Primary model
that will be used
for this project

System
Chassis

Initial
Prototype

Water pump,
chassis, power

source and
accompanying

electronics,
container for the
source of water,

vinyl tubing

Water pump
provides water

to plants
through vinyl
tubing. Vinyl

tubing is hung
from the top of

the chassis

Adequate
programmed
irrigation of

four plants but
some difficulty
due to water

pump strength
and the

elevation of the
tubing

Chassis may be
impractical to
create but will

be considered a
stretch goal.

Elevation based
water pump

issues could be
fixed easily

Software
Functional
ity Rapid
Prototype

Python language
due to familiarity

A python rapid
prototype of

the
functionality

software

No major bugs The data
structures in this
prototype will be
recreated using
the language of

choice

Table 4: Summary of prototypes

3.2 Sensor Research
This system operated with two sensors. There was a temperature sensor, and a
moisture sensor. A stretch goal was to have a pressure sensor and light sensor.
The temperature and moisture sensor provided information to the MCU about the
conditions the plants are in, and the pressure sensor measured how much water
is left in the water reservoir. The diagram below is an overview of the different
sensor components and how they communicate.

Figure 15: Sensor Overview

24

Final Document Group 9 December 6, 2022

The selection of the type of sensor will depend on how many boxes in Figure 15
that sensor includes. Extremely basic sensors will only have the first box, while
advanced expensive sensors will have the first three boxes.

An example of a very basic sensor that only has the sensor box would be a
thermistor which changes resistance based on temperature. This change in
temperature can be observed when a voltage is applied; however, the voltage
change is very small and needs to be amplified to properly be fed into the ADC.
This amplified signal once through the ADC can now be processed by the MCU.
The benefits of this example would be cheap materials cost. This would be
traded off with increased development time, as an amplifying circuit would have
to be designed and tested for this to be feasible. The desired accuracy of the
sensor will most likely not be met if the most basic sensors are used

Most sensors will have a conditioning circuit built in. Using one of these would
ensure a stable amplifying circuit, which is one less issue to worry about. This will
also simplify the powering process, as most sensors just need 3.3V provided for
the conditioning circuit to work. All of the sensors will feed into one ADC if this
level of sensors are used. The input to the ADC will be switched with a
multiplexor. The ADC resolution would have to be carefully chosen to ensure that
the minimum amount of information is lost.

The most advanced sensors that will be considered for this project will include
the first three boxes of Figure 15. These are called digital sensors and they
output digital signals. This will move most of the design complexity to the
software and minimizes potential hardware failures. A communication protocol
such as I2C can be established for efficient communications. The downside to
digital sensors is that they are much more expensive than their analog
counterparts.

These last two types of sensors were considered. It is important to note that they
do not have to be mutually exclusive. If parts are unavailable, it is important to
know the difference in capabilities of sensors and the design requirements that
are necessary to implement them at different levels.

3.3 Power Subsystem Research
All of the systems will require power to operate. How to power these components
correctly and determine the capacity of this system will be discussed in this
section.

3.3.1 Pump Research
In order to ensure we had enough power in the pump unit, the water from the
reservoir was required to flow the entire length of the tubing, we had to determine
what power output the pump had to be able to provide. To determine this we
looked over other similar products, as mentioned above, and we had to think of
the distance constraints outlined on our engineering specifications. Taking into

25

Final Document Group 9 December 6, 2022

account how many plants we would be watering, how far away each plant is from
the pump, and how much tubing we worked with were all taken into
consideration. In looking over different pump sizes, we determined that a micro
pump would be ideal for this project. Some pumps were too large to be used with
our project, so we decided to search for micro-pumps. In researching the different
micro-pump options we had various items to choose, from 3V, 5V, and 12V, as
well as submersible and non-submersible. We talk about testing the different
options for pumps below.

3.3.2 Motor Drive Controller Board
To ensure the chosen pump was able to function and interact well with the MCU,
as well as to allow us to control the pump’s output, we determined we required a
pump controller, also known as a motor drive controller. To determine what could
be used to control the pump, we looked at several of the other designs
mentioned above, and went through our engineering specifications to determine
our requirements. We knew we needed something to control the speed of the
pump’s motor, so this was the logical solution. In searching for a motor drive
controller, we did not find many options, but we found two that were both a DC
Dual H-Bridge, with a datasheet and the necessary pins we required to control
the pump.

3.3.3 Tubing
From our chosen pump, we had to determine what the inlet and outlet size tubes
we would require. From the pump’s data sheet we found the inlet’s (suction)
diameter was 9mm, and the outlet’s diameter was 6.8mm. We determined we
wanted to be able to cut the tubing down to size, in order to ensure we had left
over we wanted to buy both sets of tubing with a 10 foot length. We chose to go
with silicone tubing, as it was readily available in the sizing we needed, and we
did not require a food grade silicone, or aquarium grade tubing. In the pump and
piping combination pack, we received two separate sets of tubing, which were
able to fit into the 3-5 volt pumps, as well as the 12 volt pump, thus allowing us to
proceed without testing other products.

3.3.4 Battery
In the initial design of our project we went back and forth trying to determine if the
power was going to be from a battery, a solar cell, or from a wall outlet. To ensure
the product is able to withstand any challenges it faces, we decided a battery
would be the best course of action, with a wall plug adapter via DC jack as a
secondary power source. If the power were to go out while the customer was on
vacation we would want to ensure they would still come home to a plant that is
alive and well. To determine the ideal battery/battery pack we had to look at our
power requirements. The pump requires a 12V input, and the other components
would require power as well. In searching between 12V batteries, we determined
we would need one with a long battery life as well as being rechargeable. The

26

Final Document Group 9 December 6, 2022

chosen wall adapter was decided when we wanted to implement a DC jack into
our PCB. This wall adapter had an internal inverter to go from 120V AC power to
12V DC power. This led us into looking at the different types of batteries available
on the market. Our options were NiMH (Nickel-metal hydride), LiFePO4 (Lithium
Iron Phosphate), or SLA (sealed lead acid). Of these three options, some of them
were too large to be realistic, namely the SLA was too bulky. Of the three
different types the NiMH seemed the most simplistic, as we did not want a battery
that was too large.

The differences between Ni-MH batteries and Lithium ion, or lead batteries, are
based on the fact that nickel based batteries do not have a “float charge” voltage.
This means that charging is based on forcing the current through the battery, and
the voltage required to do this is not set in stone like for other batteries. This
makes charging Nickel based batteries harder to charge accurately. This leads to
different practices of charging the Ni-MH battery. There are at least three different
ways to approach the charging of Ni-MH batteries. The first is overnight charging,
where you charge the battery at Capacity/10 or below)10% of the battery's rated
capacity per hour). This fact is demonstrated with our chosen battery, as the
information provided with it recommends standard charging to be 190mA for 16
hours, which is 10% of the batteries rated 2000mAh capacity. Quick charging, or
using Capacity/3.33 (33% of the batteries rated capacity) is another method,
mirrored by our chosen batteries’ specifications sheet at 380mA for 7 hours. And
lastly Fast and or rapid charging. This method uses the batteries capacity at
Capacity/0.5-1 (50%-100% of the batteries rated capacity). This rapid charging
method is more problematic to the batteries’ health and capacity, but it does
allow for much fast charging time allowing anywhere from 1 hour to 2.5 hours for
a full charge.

3.3.5 Buck Converter
In order to power some of our lower powered devices we thought we would need
a buck converter, or a power supply step down module. A buck converter is used
to step down voltage from an input source to an output source. It is based on a
DC-DC power connection. It reduces the average current from the input to the
output side of the converter. From our requirements we know our battery source
will be a 12V battery, and will need to be stepped down to either 5V or 3.3V to
power some of our sensors, or our MCU. In implementing our PCBs we
determined we did not require a Buck Converter but would instead use two
separate linear voltage regulators, one supplying 5 Volts and another supplying
3.3 Volts.

3.3.6 Solar Cell
Another consideration of this project is to be somewhat self sustained, with
regards to the power subsystem. Given the focus of this project is to create an
autonomous self sustaining plant watering system. The photovoltaic (solar cell)
would be used to charge the chosen battery, but the issue surrounding this idea

27

Final Document Group 9 December 6, 2022

would be the unregulated current going into the battery. Given the battery options
mentioned above, the choice of battery would affect the efficacy of using a solar
cell. To fix this issue we could try to find a solar cell with a PWM (Pulse Width
Modulator) sensor which would regulate the input voltage and amperage based
upon the current solar power level. Given the complexity and added cost adding
a solar cell would contribute to the project, and the current budget constraints, we
decided against using a solar cell for this project.

3.3.7 Electronic storage
Given our project is working with water and electronics, a big consideration we
must account for is to ensure our electronics do not get wet from the pump or
external conditions. With the nature of plants, we are considering multiple options
to store our electronics in. Tupperware was initially a simple choice, and would
allow us to route wires through the sides of the container, while maintaining a
water resistant seal. Another option is a glass based tupperware container, in
which we would use the plastic lid to route the wires through, rather than the
sides of the plastic tupperware container. Lastly another option would be using a
battery box, which is something that is used to store larger 12 volt batteries, often
meant for cars. This option would give us too much space, and would more than
likely be too large and bulky for our project. At the end of our implementation
stage we decided to laser cut a wooden box with holes for our wiring to exit the
box. Both the PCB and 12V battery were able to fit in the box, and there was
more than adequate heat sink with the wiring holes on the box.

3.4 Relevant Technologies Research
In this section we talked about relevant and popular technologies for Web and
Mobile Applications. There are so many different frameworks, especially
javascript frameworks for web development coming out every month. With so
many frameworks coming out there are so many options to choose from and are
useful for different applications.

3.4.1 Mobile Application Technology
There are a lot of technologies out there to help create mobile applications for
various operating systems such as IOS and android. There is a lot of debate for
which technology is the best to use. Some technologies allow you to compile one
source code for both android and IOS, while other technologies focus on solely
IOS. Some of the most notable and popular technologies are React Native,
Flutter, and Swift.

Each technology has advantages and disadvantages for certain use cases. We
will analyze all the pros and cons of each technology to see what suits our mobile
app the best. We already know we will need to use a technology that allows for
both android and IOS devices due to the team having different phones. Using the

28

Final Document Group 9 December 6, 2022

same code base for both android and IOS is also another benefit and more
convenient than having two different code bases for both android and IOS.

3.4.1.1 React Native
React Native is an open source framework created by Meta that is used to
develop android and IOS applications. React Native utilizes the React framework
that is used to build web applications. A neat thing about React Native is that it
allows you to build mobile applications for both android and IOS devices using
the same code base. Due to the flexibility, react native is a super popular
framework that was used to develop very successful applications such as
Facebook, Instagram, and Skype.

Some notable features of React Native are compatibility, reusable code, and hot
reloading of code. Compatibility between operating systems is a breeze because
you can use the same code base to release an application for both Android and
IOS devices. Having to keep two code bases for each operating system would be
a hassle and much more time consuming to change the same code in two
different places. React Native also lends itself to a lot of reusable code with
making use of components. React components allow the same code to be used
in as many places as you want in your code base. These components can be
unique in each instance they are used by utilizing props. Props allow you to pass
data to the component, so there is not just static data on each component. Hot
reload of code is beneficial during development because you can change
values/variables on the fly and any changes to the code is shown immediately.
Meaning you do not have to re-compile your code to see the changes.

Let's say we have a React component which is called Comment. We want to
have comments on a blog, but don't want to reuse code when only the author,
text and dates are different. Here is where Props are useful. We can pass unique
authors as a prop to each instance of the component. Then the component can
render for each unique author, while reusing the code you made for the comment
React component. React components are not only good for reusing code but also
beneficial for testing. It is easier to test one react component instead of all the
individual comments you may have in your code.

3.4.1.2 Flutter
Flutter is an open source software development tool created by Google. Just like
React Native flutter can be used to develop applications on both Android and
IOS, using the same code base. Flutter is developed in either C, C++, or Dart
languages. Flutter also provides some nice features such as GPS coordinates,
permission handling and credentials that are easy to use.

Some features of Flutter include hot reload , compatibility, and its own rendering
engine. Hot reload is the same as React native. You do not have to re-compile
your code for changes to appear, changes are done on the fly and the screen is
updated automatically. Flutter also has the same compatibility as React native. It

29

Final Document Group 9 December 6, 2022

supports both android and IOS mobile applications to be developed using the
same code base. Flutter also has its own rendering engine which allows both
android and IOS interfaces to look unique in their own way. Flutter has packages
that contain custom widgets and styles for each operating system. This allows for
your mobile application to look the best it can with whichever operating system it
is running on.

Flutter does have its disadvantages though, such as the lack of third-party
libraries and Dart as the language. The lack of third-party libraries is an
unnecessary roadblock in development. Libraries are great because they are
pre-tested by the community and open source. Libraries speed up the
development process and allow for us to focus more on our specific project.
Rather than wasting time coding up a common widely used feature in mobile
applications. Dart is a decent programming language however our team is much
more familiar with JavaScript so learning an entire new language would not be
time efficient when we have previous experience with javascript already.

3.4.1.3 Swift
Swift is a programming language that was developed by Apple and open source
users. Swift is coded on Xcode, an IDE also developed by Apple. Swift was
meant to be easy to use even for people that are not too comfortable with coding.
It is user friendly with shorter syntax and easier readability of code. Swift is
compatible with all Apple platforms such as IOS, macOS and watchOS.

The huge drawback of Swift is that it only allows for development on the IOS
operating system and Apple devices. To create an android app would require a
completely different code base and technology/language. Due to our team having
both android and IOS devices, this solution does not fit our project well. However,
if we were planning on creating only an IOS mobile application swift is a decent
option to go with.

3.4.1.4 Xamarin
Xamarin is an open source platform for creating IOS and Android devices.
Xamarin uses .NET and C# to develop applications. .NET is a developer platform
that consists of libraries, tools, and an assortment of programming languages to
build mobile applications. .NET features both Lambadas and Asynchronous
programming to help facilitate code logic better for the developer. Lambdas allow
for nameless functions and make the code easier to read at times. Asynchronous
programming is very beneficial with web design due to having to access
databases and hitting API endpoints. Asynchronous code doesn't hang up your
entire code and can accomplish other tasks or events while waiting for the
asynchronous code to complete, such as hitting a database.

30

Final Document Group 9 December 6, 2022

3.4.1.5 Selection for our mobile application
React Native was the best option for this project for multiple reasons. First we all
have a mix of android and IOS devices, so we will need the compatibility for both
operating systems. React Native allows us to have one code base for both IOS
and Android operating systems. Secondly, we are already familiar with React
and javascript which will result in less of a learning curve while developing our
application. Lastly, React Native has a bunch of external libraries which makes
development a lot easier.

Technologies Supported
Operating Systems Features Coding Language Cost

Flutter Android and IOS Hot reload, Open
source, and Rich

widgets.

Dart Free

React Native Android and IOS Reusable
components, Open

source and Hot
reload.

JavaScript Free

Swift IOS Only Open source, Easy
to understand
syntax, and

Multiple return
values.

Swift Free

Xamarin Android and IOS Open Source,
Complete

development
ecosystem, and

compatibility.

C# Free

Table 5: Summary and Selection of Mobile Application Software

3.4.2 Possible Web Stack Options
In this section we will compare and evaluate different Web stacks. There are a lot
of popular web stacks that are used for different reasons or applications.
Typically multiple stacks will work with whatever application you are making, but
personal preference may help you choose which stack you want to go with for
your specific application.

3.4.2.1 MERN stack
The MERN(MongoDb, Express, ReactJS, NodeJS) stack is a variation of the
MEAN(MongoDB, Express, Angular, Node.js) or MEVN(MongoDB, Express,

31

Final Document Group 9 December 6, 2022

Vue.js, Node.js) stack. As shown in Figure 15 below , we can see the front end
technology is chosen from either Angular, React.Js, or Vue.Js. Certain
technologies are favored over others due to the requirements of the project. Or
one technology is preferred due to the team having experience with that
technology.

The MERN stack consists of four technologies. 1) MongoDB is a non-relational
database or sometimes referred to as NoSQL. 2) Express is a node.js web
application framework that provides features for building mobile and web
applications. 3) React is a front-end javascript library that is used to build user
interfaces for websites. For this project we will also use React Native for our
mobile application. 4) Node.js is a back-end JavaScript runtime environment that
allows both the client and server side to use javascript. Instead of having different
languages for server and client side.

The diagram below is an overview of the potential web stack options that could
be taken for this project. It shows the different web stacks being MEAN, MERN,
and MEVN stacks. They all have different use cases and people also have
personal preference as to what technology to use. There is a debate of which
javascript framework is the best for web development, the big frameworks that
are debated are Angular, React.js and Vue.js.

Figure 16: Stack MEAN vs MERN vs MEVN

3.4.2.2 LAMP Stack
The LAMP(Linux, Apache, MySQL, PHP) stack is another commonly used stack
for web applications. Much like the MERN stack, a lot of technologies are
swapped out, for instance you may use Perl or Python instead of PHP. LAMP
stack is flexible and is easy to find support due to the popularity of the
technologies.

32

Final Document Group 9 December 6, 2022

The LAMP stack also consists of four technologies like the MERN or MEAN stack
mentioned above. 1) Linux is the operating system which the LAMP stack is run
on. Linux is a highly favored Operating SYstem due to it being open-source and
compatible with LAMP technologies. 2) Apache is a HTTP server that processes
requests and sends information to and from the user. Apache is also run on linux
OS. 3) MySQL is a relational database which features high performance and the
flexibility of being an open-source software. 4) PHP is used as the programming
language, but it is also swapped out with Perl or Python.

Web Stacks Technologies Programming
Language

Database Operating
System

MERN M - MongoDB
E - Express.js
R - React.js
N - Node.js

Javascript
frontend and
backend

MongoDB Cross-platform
for both windows

and linux.

LAMP L - Linux
A - Apache
M - MySQL
P - PHP or

Python

PHP or Python
can be used.

MySQL Linux

Table 6: Mern Stack vs Lamp Stack

3.4.3 Databases
In this section we will cover different Databases we can choose to store all of the
data for our Mobile and Web Applications. We are going to go over different
types of databases such as SQL and NoSQL databases.

3.4.3.1 MongoDB
MongoDB is a document-oriented NoSQL database. Some notable features
MongoDB has is high performance/speed, simplicity, and horizontal scaling with
sharding. Due to MongoDB being a Non-Structured query language, we do not
need to create tables. Which allows a MongoDB query to be impressively fast.
MongoDB is simple compared to other query syntax such as SQL. MongoDB
carries less of a learning curve compared to MySQL for example. Lastly,
MongoDB makes it easy to scale your database. MongoDB supports horizontal
scaling which uses more nodes to share the load, instead of one node taking the
entire load as shown in Figure 17. MongoDB also utilizes sharding which is
spreading the data across multiple nodes created by horizontal scaling.

The diagram below is a visual representation of horizontal scaling.

33

Final Document Group 9 December 6, 2022

Figure 17: Horizontal Scaling

3.4.3.2 Firebase Database
Firebase is a platform for developers to create mobile and web applications.
Firebase has many services such as hosting, database, authentication, push
notifications and more. Here we are going to talk about the database service
firebase provides. They provide a service called Firebase Realtime Database
which is a cloud-hosted NoSQL database. The Realtime Database allows your
users to see data updating in realtime with little latency. This is a huge bonus for
User Experience not having to refresh the page for new data.

3.4.3.3 MySQL
MySQL is an open-source relational database system. The database is relational
in which the data relates to each other. The data is stored using Tables, which
contains columns and rows. Each table then is connected or related to another
table in a one-to-one or one-to-many relationship. Being an SQL database the
data is structured and has a predefined schema, where NoSQL databases have
dynamic schemas. SQL databases are also vertically scalable where NoSQL
databases are horizontally scalable, as we saw with MongoDB, a NoSQL
database.

Databases Data Storage Key Features SQL or
NoSQL

Data Representation

MySQL Stored as rows in
a table

Supports large
databases and is
easily scalable for

larger applications.

SQL Rows in a table
format

Firebase
database

Documents Realtime database
to change values

on the fly and
Ready-made API.

NoSQL JSON-like
documents

MongoDB Documents Horizontal scaling,
Simple syntax, and
Easy to read JSON

like documents.

NoSQL JSON-like
documents

Table 7: Database Comparison

34

Final Document Group 9 December 6, 2022

3.4.4 Hosting
In this section we will cover different hosting platforms and which one works best
for our project. Having a good hosting platform makes development and
troubleshooting a lot easier when running into issues.

3.4.4.1 Heroku
Heroku is a container-based cloud platform which is used to deploy and manage
software applications. Heroku is filled with features such as supporting multiple
languages/ runtime environments, smart containers, and easy scalability.
Supporting numerous runtime environments / languages such as Node.js, Ruby,
and PHP allows heroku to be flexible and work with many different web stacks.
Heroku utilizes smart containers that provide features such as security, load
balancing and error/message logs. Heroku makes scalability a breeze by having
both manual scaling and auto scaling features. You may set the auto scaling
range based on a minimum and maximum cost that your cloud container will be,
as seen in Figure 18 below.

The diagram below shows the autoscaling capability of Heroku.

Figure 18: Heroku

3.4.4.2 Vercel
Vercel is the official hosting platform for Next.Js applications. Vercel makes it
easy to deploy and manage web applications. Some advantages of using Vercel
are github integration, custom domains, and automatic scaling. You can easily
connect your github repository to Vercel and deploy your website. When any
changes in the github are pushed to the main branch, Vercel will also redeploy
your website to the newest version. Vercel supports custom domains as well as a
free SSL, so encrypted data will be securely sent to and from the server. To top it
all off, Vercel has automatic scaling with no server configuration needed. Making
Vercel a great platform for developers to easily deploy and host web applications.

35

Final Document Group 9 December 6, 2022

3.4.4.3 Microsoft Azure
Microsoft Azure is a cloud computing service that provides many services such
as analytics, storage, networking and cloud services. Azure has amazing
availability with approximately only 4.38 hours of downtime a year. Having a
reliable hosting platform is essential for certain applications and use cases.
Azure also features easy Scalability for an influx in usage. For example if there
are a surge of new users signing up for our application our database will be used
more than normal. If this were to happen Azure makes it simple to scale up our
database to be able to handle the influx of customers or users.

Microsoft Azure has very flexible pricing by only paying for what services you are
using for your application. They offer an estimate where you calculate the hourly
or monthly costs with hosting your website using the Microsoft Azure platform.
They offer paid services such as virtual machines, Azure SQL Database, Azure
Cosmos DB, and Cloud storage. If certain services are unused for one month
then you will not be required to pay for those services. This pricing system
benefits the developer due to paying for what you need to use, rather than a
bundle of services you may not be using but you are still paying for.

Hosting
platforms

Is there a free
tier?

Features Featured
Customers

Cost

Heroku Yes Automatic
scaling and
container

deployment.

ClickMechanic,
ThinkMD, and
HotelEngine

Free tier
1) Production - $25
2) Advanced - $250

3) Enterprise -
Contact Heroku for

custom pricing
Vercel Yes Deploys with

pushes to the
main git branch
and supports

edge functions.

Facebook, Ebay,
and The

Washington Post

1) Free tier
2) Pro - $20 a

month per
member

3) Enterprise -
Contact Vercel

for custom
pricing

Azure Yes Cloud
computing, High
availability, and
Cost Effective.

Verizon, MSI
Computer, and
LG Electronics

1) Free tier
2) Customized

price for different
services utilized
by the customer

Table 8: Heroku vs Vercel Hosting Platforms

In the table above we compare three different hosting platforms, Heroku, Vercel,
and Microsoft Azure. All of these platforms are great choices for hosting and
some work better than others for different applications. Our team has decided to
go with Vercel as it integrates nicely with github and Next.js applications.

36

Final Document Group 9 December 6, 2022

3.5 MCU Research
An important feature that was required when picking a MCU in the scope of this
project. The MCU needs to be relatively low power and be able to support
several communication protocols such as I2C and SPI. To be able to support
these protocols, an internal clock was necessary for synchronous
communications. A second low frequency clock is also important for scheduling
interrupts. Depending on the level of sensors used, an ADC will be required for
purely analog inputs. To remain flexible, the MCU should have multiple extra
GPIO pins and analog inputs to facilitate prototype changes.

3.5.1 MSP 430
The MSP 430 architecture is a line of Texas Instruments embedded processors.
They are low power and interface with embedded protocols. They usually have
an ADC, timers, and GPIO pins. The CPU is 16-bit and has access to some flash
memory. The computer architecture is RISC based, meaning the assembly code
has simple and short commands, which is ideal for embedded systems. These
types of processors will have a difficult time processing graphics or managing lots
of data, but this sort of computing will be unnecessary on the PCB.

3.5.2 PICmicro
The PICmicro architecture is Microchip’s line of embedded processors. This
architecture is also low powered and uses RISC architecture, but it has a few
differences from the MSP430 line. The PICmicro architecture uses Harvard block
architecture, meaning that the program memory and the data memory are
separate. This allows for each word to have a better ratio of data to interfacing. It
also supports pipelining, but it is only two stages, which would be important to
use to test speeds. Like the MSP430 architecture, PICmicro also supports ADCs,
timers and other modules.

3.5.4 Arduino
The arduino architecture is an embedded testing environment that interfaces with
high level coding for quick testing and simple code implementation. Arduino
supports timers, ADCs, and embedded communications protocols. Arduino has a
vast programing library that supports popular sensors and modules. This allows
for rapid prototyping. Arduino boards usually can be directly interfaced with PCs
for quick program uploads. Use of an arduino would be excellent for testing. This
system usually uses ATmega chips, which will use the arduino IDE and does not
need a development board.

37

Final Document Group 9 December 6, 2022

Part Pins Clocks ADC Cost

MSP430FR247x
(MSP430FR2475TRHBT)

40 6 12-bit 6$

MSP430F552x 47 4 12-bit 7$

ATMEGA328P-PU 28 External 10-bit 2.87$

PIC24FV16KM204 44 2 80 bit, 12-bit 4$

Table 9: MCU Comparison

The Arduino architecture is the most used architecture for open source users or
people who like to do side projects. This means there were a lot of supported
libraries that were able to be used in development. The Arduino environment
provides a great testing ground for hardware since the coding is easier and it
usually comes in a complete hardware and software package. This is ideal for
testing. For these reasons, Arduino was chosen as a testing tool and as our final
MCU.

4.0 Standards and Constraints
In this section, there is discussion on the different standards and constraints that
were researched and eventually imposed on this project. These important design
constraints are present in order to make a more functional and usable project.

Standards are necessary in the field of engineering. Given the numerous
different aspects of our project, we have to touch upon standards from several
different governing bodies. Our main source of standards will be from IEEE SA
(Institute of Electrical and Electronics Engineers Standards Association). IEEE
has over 2000 different standards, accepted across more than 150 countries.
Several other standard advisory groups include: IEC (International
Electrotechnical Commission), ANSI (American National Standards Institute),
and NEC (National Electric Code). Each of these governing bodies has a focus.
IEC focuses on international collaboration in order to provide instruction,
guidelines, and rules in the process of designing, manufacturing, installing, and
certifying electrical and electronic devices and systems. ANSI focuses on the
U.S. standardization system to identify standards in support of emerging
technologies and to ensure the U.S. can meet global regulations. Lastly the NEC
is a book of standards made for the U.S. with regards to electrical wiring and
electrical equipment, in order to ensure safe working conditions for electricians
and occupants.

38

Final Document Group 9 December 6, 2022

Oftentimes companies and or governing bodies will adopt more strict standards
than necessary. For example, NASA has a set of standards that supersedes the
NEC code, as it is increasing safety. If doing electrical work at NASA’s Kennedy
Space Center, the minimum conduit allowed on center is designated to be ¾”
conduit, whereas the NEC allows for ½” conduit.

4.1 Wireless and Network Protocols
This system will need to be able to communicate with the phone interface
wirelessly. There are two wireless protocols being considered, Bluetooth and
Wi-Fi. To understand Wi-Fi capabilities, network standards such as TCP and
IPv4 would need to be investigated and explained.

4.1.1 Bluetooth
Bluetooth is a protocol developed for wireless communication. Usually, this form
of communication is for short distances only and is done between two digital
systems. It is also important to note how the communications will be done
between the system, phone interface, and the internet due to the inherent
constraints of the Bluetooth protocol.The diagram below shows the different
components of the system and how they are connected. The arrows between
them show how they communicate with each part and in what direction this is
possible in.

Figure 19: Bluetooth Overview

The bluetooth protocol is considered Peer-to-Peer. It connects the system
directly to the phone interface. The range can be about 50-100m. This will
change the scope by only allowing the system to communicate with the phone
interface when the user is at home as seen in Figure 19. Little information (a few
bytes) will need to be transferred to and from the system, so the limited data
speed of Bluetooth (1Mbps) is not a limiting factor. Bluetooth uses 40-50 times
less power than the standard Wi-Fi protocol. This will reduce the power load of
the PCB system. Since only the phone interface will have network connection to
the internet, as seen in Figure 19, that means that TCP requests will fully be
handled by the phone interface and the system will not have an IP address. This
moves complexity from the system to the phone interface. Another consequence
of Bluetooth is that the system will only update when in range of the phone

39

Final Document Group 9 December 6, 2022

interface, which means that when the user is outside the range for any extended
period, monitoring will have to be predictive since live data is not being used.

4.1.2 Wi-Fi 802.11
The diagram below shows the different components interacting with wifi and how
they are connected:

Figure 20: Wi-Fi Overview

This protocol can be either client-server based or peer-to-peer. It will allow the
device to directly communicate with a server which can provide information from
the internet. This client-server connection can be seen in Figure 20 from the
connection of the system to the router, which will allow it to use a network to
access the server, which can access the phone interface wherever the network
can reach. This greatly extends the operational distance. 802.11 also supports
an Ad Hoc mode, which can be seen in Figure 20 between the system and
phone interface. This will have a definite range but will allow the phone interface
to bypass the server and network to communicate directly with the phone
interface. This means that the system can work without a network which will
extend the operating lifetime of the system past the website’s lifespan. 802.11
has different versions which are denoted by a letter suffix. Each different version
differs in range and data transfer speed:

Standard Bit Rate Frequency Date of Release

802.11b 1-1Mbps 2.4GHz 1999

802.11g 6-54Mbps 2.4GHz 2003

802.11n 72-600Mbps 2.4GHz or 5GHz 2008

802.11ac 433-6933Mbps 5GHz 2014

Table 10: Wi-Fi Protocols

40

Final Document Group 9 December 6, 2022

It is also important to note that the amount of power required for each protocol
increases the newer and faster the protocol is. Since this system is not
transferring lots of data, the faster and newer protocols are not critical to
implement.

4.1.3 TCP

TCP stands for transmission control point and is a protocol for the transport layer
of the internet. This protocol handles initiating and maintaining communications
between two hosts. First, one of the hosts sends a request to the second host.
The second host sends an acknowledgement back, and the first host confirms
the acknowledgement with its own. This completes the three way handshake,
and requests for information can start. The information to complete this is held in
the TCP segment of the packet header. It contains information such as the
source and destination port number and the sequence number, which is
important for maintaining connection. Overall, this protocol is to ensure process
to process communication and is key for effective communication through a
network. In the scope of this project, this protocol will be used between the wifi
module and the website.

4.1.4 IPv4
IPv4 stands for internet protocol version 4. This protocol adds a header to a
packet that gives information so that the packet of information can be routed
through a network. For this version of IP, the router assigns a host a 32 bit
address in the form of four numbers that range between 0 to 255. The first two
numbers on the left (most significant bit) identify the network, and the second half
identifies the host. Both the destination IP and the source IP are in the header of
the packet. The other information in this header communicates information that
helps with routing (such as time to live), what is in the header beneath (TCP or
UDP), and the total size of the packet.

4.2 Hardware Communication Protocols
Three hardware communication protocols are being considered for the digital
communications of this system. This includes UART, I2C, and SPI. Each of these
protocols uses serial transfer, which means that each transfers one bit at a time.
These protocols will be used between PCBs. This information is binary, which
means it can be transferred through GPIO pins which only read high or low.
These protocols do not have to be mutually exclusive as long as the MCU
supports more than one.

41

Final Document Group 9 December 6, 2022

4.2.1 UART
UART stands for universal asynchronous receiver/transceiver. UART allows for
the clocks of the transceiver and receiver to be asynchronous, meaning they do
not have to have the same clock edges. Depending on the type of MCU chosen,
this protocol can be implemented without a communication module. It starts its
communication with a specific start signal and ends it with a specific end signal.
This transfer of information is usually done at a specific Baud rate, which would
be chosen when configuring the UART. When configuring UART, several
parameters need to be set. The first parameter that is set is the rate of
communication, or Baud rate. A popular Baud rate for these types of systems is
9600 baud, which should not be too taxing for this system. The next parameter is
parity, which reserves one of the bits of the byte transferred as a means to check
if there was an error in transmission. This is to ensure that the correct signals are
being sent, but due to the low noise environment of this communication, parity
will not be needed for this system. The amount of stop bits will also be chosen
between one or two bits. For this system, one bit would be considered. These
past two parameters, the parity and the stop bits can be changed if the
communications are faulty. There is a parameter that can control the flow of
information, which would be used if the receiver is much slower than the
transceiver and needs time to process information. The least significant bit is
usually transferred first in this protocol. This way of communication can be half
duplex or full duplex. Half duplex means only one wire is used, which means
communications can only happen in one direction at a time. Full duplex means
that there are two wires used in communication which allows bits to travel in both
directions at the same time. Either way, this means that if multiple devices are
using the same bus, collision will occur.

4.2.2 I2C
I2C stands for inter-integrated circuit. This protocol comprises of at least one
master device connected to slave devices by two buses. One of the buses is
called the serial data line (SDA) and the other one is called the serial clock line
(SCL). The SCL transmits the clock signal which originates from the master
device, and the SDA transfers the data. In this protocol, only the master can
initiate a request and it can only make a request to one slave device at a time
because the information is transferred with half duplex. To prevent information
collisions, the voltage is either pulled up or pulled down on a bus. Usually, when
the voltage is pulled up, that means the bus is unused. When communication
starts, the line is pulled to low, which lets all the other devices know that another
device is transferring data. This communication starts when the master device
sends a start signal and ends when it sends a stop signal. Each slave device has
its own address so that the master can accurately send requests. This protocol
would work well between the MCU and the sensors. The sensors will have to be
digital sensors, and the master device will read their registers for the sensor
input. This would skip the need for designing an ADC. I2C has a standard, fast,

42

Final Document Group 9 December 6, 2022

and high speed mode. This experiment does not need very fast communications,
so standard mode will be used as a default.

4.2.3 SPI
SPI stands for serial peripheral interface. This protocol has a master system and
a device it connects to. The communications are full duplex, so two wires are
used for communications, and it is synchronous, so the master drives the clock. It
is important to note that SPI can also be half duplex, with only a serial in out
(SIO) bus for information. There is also another bus that is called the chip select
which the master can use to select which device to transfer bits to or from. This
comes out to a total of 4 buses. The two communication buses are called master
out serial in (MOSI) and master in serial out (MISO). The master will select a
device with the chip select and start communications with MOSI to give the
device information or MISO to receive information. To have multiple SPI devices,
the easiest way would be to daisy chain the devices together by having the
master connect its MOSI bus to one of the devices, and have the devices
connect their MISO buses to each other while having the last one in the
sequence connect its MISO bus back to the master. This means to get
information from the first device, it will have to go through all the other devices in
the daisy chain first before making its way to the master. The disadvantage of
this would be the loss of data privacy, but in the scope of this project the data
being transferred does not need to be secret to the other devices in the system.
The only other way to avoid daisy chaining the devices together would be to have
the master have multiple chip select buses, which quickly does not scale. Ideally,
this system should have no more than 2 SPI devices.

4.2.4 USB
USB stands for universal serial bus. In USB communications, there is a master
device with a slave device. Information between the two devices are sent in
packets. Each packet contains sections that relay certain information, and
different sections are used for different interactions. First, a token packet is sent
to start transmitting information. This information includes SYNC information,
which is used to match the clock speeds of the devices, the PID information
which describes the type of data being transferred, the ADDR field which
contains the address of the receiver device, the ENDP which contains the
endpoint number, the CRC field which has ensures the validity of the bits, and
finally the EOP which signifies the end of the packet. Once this is complete, data
packets can start to be sent, which replace the ADDR and ENDP with the data
information. There is also a handshake packet and a start of frame packet. The
handshake packet is for acknowledgement or sending error messages while the
start of frame packet is for scheduling. Other important standards that govern
USB is the form factor of the connection and the data transfer speed.

The form factor of USBs come in different sizes. The most popular ones are
USB-A, USB-Micro, USB-Mini, and USB-C. Currently, the most widely used size

43

Final Document Group 9 December 6, 2022

is USB-A, but USB-C is becoming more popular. USB-C is the newest USB form
factor to be adopted, and is much faster and smaller than USB-A. Another thing
to consider is the USB version. USB version 1.0 has a transfer rate of 1.5Mbps,
USB version 2.0 has a transfer speed of 480Mbps, and USB version 3.0 can
support speeds up to 5Gbps. Newer versions of the form factor have been made
to support newer versions. This is done by adding more connector pins inside the
USB. This allows USB-A to have some versions that are 3.0 compatible.

Another aspect to consider is that USB transfers power as well. In the scope of
this project, this will not be relied on, but it is important to know that interfacing
with USB has the possibility of sending too much power.

4.2.5 JST cable
JST stands for Japanese solderless terminal. Each connection can be part of a
different series which are denoted by two letters (Ex: VH, RE, GH). Each series
differs by pin to pin pitch, which is the distance between pins, by wire size, and
by locking mechanism. JST cables are always one row wide of pins. Considering
the scope of this project, it is safe to assume that at most JST series ZH, GH, or
SH would be used if the mobile sensors require it. The mobile sensors include
the sensors that cannot be soldered onto the PCB so that they can be
appropriately positioned for proper measuring. The moisture sensor would be an
example of a sensor that needs to be mobile.

4.2.6 Wire size AWG
In the United States, the standard for wire size is AWG, which stands for
American wire gauge. For the largest gauges, wire AWG is standardized to
0/4-0/3 with 0/4 being the largest, and then for smaller AWG is numbered
between 1-40, with 40 being the smallest. Each AWG has specifications for max
current, and also standard resistance which depends on the wire material.

4.3 Battery/Power Standards
Batteries are often overlooked regarding the standards around them. In order to
accurately include battery standard information you must take into account each
aspect of the chosen battery. The more common batteries have more standards
written around their use, disposal, and installation.

4.3.1 Nickel-Metal Hydride Battery Standards
In looking through the IEEE battery standards, there is not one that pertains
specifically to the chosen Ni-MH (Nickel Metal Hydride) battery type. In
researching other standards, we were able to find reference to IEC (International
Electrotechnical Commission) 1441 97/204158 DC, a standard which “Gives
marking, dimensions, tests and requirements for secondary batteries containing
more than one sealed nickel-metal hydride rechargeable cell in series and
incorporating a standardized interconnecting system to the device.” This

44

Final Document Group 9 December 6, 2022

standard has since been withdrawn. To determine best practices with this type of
battery I have referenced several sources. To understand Ni-MH batteries you
have to understand both Nickel-Cadmium and Nickel-Hydrogen batteries. These
were similar configurations in that they both use the nickel-hydroxide positive
electrode and KOH electrolyte [31]. The difference between these two batteries
was that the nickel-hydrogen battery uses hydrogen gas to replace the cadmium
in the negative electrodes. These two batteries paved the way for the Ni-MH
battery we know today.

4.3.2 Sealed Lead Acid Battery Standards
In looking through IEC standards, section 60896-11 is applicable to lead-acid
cells and batteries which are designed for service in fixed locations. Given that
this project will revolve around a plant that will be stationary I believe that this
part of IEC standards will be applicable if we choose to use a sealed lead acid
battery. Another standard would be IEC 62485-2 which references stationary
secondary batteries with a maximum voltage of 1500 Volts. This standard goes
into detail regarding electricity, gas emissions, and electrolytes. This international
standard provides safety requirements associated with the inspection,
maintenance, disposal, and use of either lead-acid or NiCd/NiMH batteries. IEEE
485 references methods for defining DC loads and sizing lead-acid batteries for
stationary applications. This IEEE standard is only suitable for lead-acid battery
types, and references Installation, maintenance, qualification, and testing
procedures.

4.4 Software Standards
In this section we will go over the Software Standards we will follow in our
project. Our mobile application and both the frontend and backend of our website
application are built on javascript. We will also cover Software Testing standards
and the frameworks we will use for testing. We will use Jest and Enzyme to
thoroughly test our application.

4.4.1 Javascript Language Airbnb Style Standards
In this section we will go over the standards set by the Javascript Airbnb Style
Standards, which is the style that is used in our linter, EsLint. These Airbnb style
standards are used by many organizations such as General Electric, reddit,
Zillow, and many more! These standards allow Javascript code on each platform
to follow the same coding style to make the code as easy to read as possible.
There are many areas of javascript which are standardized so we will not cover
every single one. Instead we are going to focus on the main standards.

4.4.1.1 Objects
In Javascript objects are containers for a collection of key-value pairs. Each
key-value pair is known as a property. In Javascript objects can be made by

45

Final Document Group 9 December 6, 2022

either creating a new object with the “new” keyword or the literal syntax such as
“const item = {};”. Airbnb style standards say to use the literal syntax for object
creation and refrain from using the new keyword.

4.4.1.2 Variables
When declaring variables, always use “const” or “let”. When we just declare a
variable without them a global variable is made and is unnecessary for a global
variable. Another standard is to group all “const” and “let” variables together. The
last standard we will cover for variables is to not allow unused variables. Any
unused variables should be removed due to them taking up unnecessary space
and are confusing to anyone reading the code.

4.4.1.3 Comments
For single line comments it is standard to use the “//” syntax and for multi line
comments the standard is to use “/** …. */”. It is also standard to start all
comments with a single space so it is easier to read that comment. Lastly it is
standard to prefix comments with either FIXME: to annotate problems and code
that needs fixed. Or a TODO: prefix to annotate solutions that need to be
completed.

4.4.1.4 WhiteSpace
We use 2 spaces to indent code inside functions and 1 space before the leading
brace. The standard is to place one space before the opening parenthesis in
control statements such as if and while statements. Operators should also have
spaces in between them such as “y = x + 2”. All of these whitespace standards
make code a lot easier to read and manage.

4.4.1.5 Naming Conventions
The standard for naming variables, functions, etc. Avoid using single characters
for naming such as a function named x. Use camelCase when naming objects,
instances, and functions. Use PascalCase when naming constructors or classes.
Lastly do not use trailing or leading underscores.

4.4.2 Software and Systems Engineering - Software Testing
Standards
In this section we will lay out Software Testing Standards and different Software
Testing frameworks to thoroughly test our application. Following testing
standards is pertinent to ensuring our application works properly.

4.4.2.1 Jest
Jest is a popular JavaScript testing framework that is typically used to test React
applications. Jest is widely used in industry for popular applications such as

46

Final Document Group 9 December 6, 2022

Facebook, Twitter, Spotify, Instagram and more. Jest can also be used to test
React Native applications. Jest focuses on simplicity and easy setup on your
applications/projects. You can use Jest right out of the box with little to know
configuration on your JavaScript projects.

We will use Jest as one of our Software Testing Standards due to its great
features and it being widely utilized in the JavaScript application testing world.
Jest has code coverage which shows which files are being tested and which are
not in your project folder. It goes further in detail to show what percentage of your
individual pages are covered by unit tests.

4.4.2.2 Enzyme
Enzyme is a JavaScript testing library that makes it easier to test your JavaScript
application. Enzyme is paired with the above framework, jest, to fully test our
application. Enzyme allows for shallow and full rendering of React Components
to thoroughly unit test our code base. Enzyme was created and is used by Airbnb
as a standard for testing which our team will adopt and use in this project as well.

Enzyme Shallow and full rendering are powerful tools that make testing a lot
easier. Enzyme Shallow Rendering allows for a single react component to be
rendered, only that component. So we can easily unit test that component. Then
we can render in full that will render all components that are using a specific
component to fully test our application and make sure everything works smoothly
together.

Testing
Environment

Core Function Key Features

Jest Jest is a testing framework
which ensures our tests run

properly. Jest ultimately
handles the configuration,
execution, and output of all

tests for our application.

1. Jest is a task runner
allowing tests to run
properly in a testing

environment.
2. Built in mocking

features that work but
are typically paired with

Enzyme.

Enzyme Enzyme is a testing library
which is an add-on to Jest.
Enzyme makes it easy to

render and test components
in our application.

1. Shallow Rendering of
components to test a

single component
2. Mounting of

components to test the
integration of each one.

Table 11: Testing Environment

47

Final Document Group 9 December 6, 2022

4.4.3 Design Impact of Software Testing Standard

ISO/IEC/IEEE 29119 standard was considered for this design. The group will try
to adhere exactly to these standards and demonstrate the fulfillment of the
necessary requirements in order to claim full conformity to the standard. That
being said, some of the techniques in the ISO/IEC/IEEE 29119 standard are not
required or necessary for the function of this automatic irrigation system’s design.
Therefore, the team will adhere to tailored conformance of the ISO/IEC/IEEE
29119 standard. This means that the team will conform and demonstrate met
requirements chosen by the team itself.

The organizational test processes will have a design impact on the software. Unit
tests, possibly automated unit tests, will be created so that the code performs
satisfactorily and to the expected standards. Computer Engineering members of
the team will be expected to do more involved tests for this design but all
members of the team will participate in user functionality type tests. This
organizational test policy and the different strategies developed will be
implemented by the team. All of the test techniques will adhere to requirements
and standards and will be specified.

4.4.4 Programming Languages - Javascript

JavaScript is a popular coding language used to build various different
applications. Most of our website and mobile application code base will be
Javascript with the exception of HTML, CSS, and JSX. Developers use different
coding styles and syntax however certain syntax is typically universal for the
purpose of easier reading and understanding of the code. For example it's
standard to have spaces between operators, operands and parameters. Without
spaces between operators it makes the code very hard to read even though it will
compile no problem.

4.5 Other Standards
This section includes standards that do not relate to wireless communication,
wired communication, power standards, or software standards.

4.5.1 IPXX
IPXX is an international standard for waterproofing and protection. The amount of
protection guaranteed is denoted by two digits after IP. The first digit rates how
well the casing protects against non-moisture particles. The number zero
denotes unrated, the number 1 denotes protection from objects no smaller than
50mm, two denotes protection from 12mm objects, three denotes protection from

48

Final Document Group 9 December 6, 2022

2.5mm objects, 4 denotes 1mm objects, and 5 and 6 is protection against dust
with and without a vacuum seal. The second digit determines how well the device
is protected from water. This number can be 0-9K. A few notable numbers
include zero which is unrated, one which is protection from vertically falling
droplets, four which needs to survive splashing from multiple angles, and seven,
which is full immersion for thirty minutes between 15cm and 1m. Due to time
constraints, our project will most likely not get properly rated, but this standard
will be considered when designing and prototyping the protective casing.

4.5.2 IPC-2221
The ICP-2221 is a set of standards for generic PCB design. This group includes
IPC-2223, which includes standards for flexible PCBs (PCBs that can bend).
There is IPC2225, which covers standards for PCBs with organic substrates
called MCM-L PCBs. It also has IPC-2226, which goes over PCBs with 120-160
pins per square inch called HDI PCBs. Finally, IPC-2221 includes IPC-2222
which is for rigid PCB design, which is the style of PCB to be used in this system.
All of these standards cover ways to make the PCB more reliable and easy to
manufacture. An example of this would be the standards on clearance, which is
the space between the tops of PCB traces. This standard is implemented to
prevent electricity from arcing from one trace to the other. The clearance
between two components depends on the specific components. For example, it
is recommended to keep the clearance of leads to be 0.13mm. If a mask is
applied to the traces, which means the metal is covered in an insulator, the
clearance can be much smaller. The width of the traces need to be the proper
size for the right current. If it is too small, the trace would heat up and melt. There
are equations that can be used to ensure that the traces are the proper size. For
higher voltages, the clearance and thickness need to be increased.

4.6 Realistic Design Constraints
These realistic design constraints are imposed on the design so that
implementation can go smoothly. The team considered the various constraints
shown below in relation to the design of this automatic irrigation system.

4.6.1 Economic and Time Constraints
There are economic constraints imposed on this design because it is a student
funded prototype project. Also, after some brainstorming, the team came to the
conclusion that the problem being solved (automatic irrigation for indoor and
outdoor plants), is a relatively simple problem and therefore, it would be hard to
justify a higher overall price for this project, especially a price that is higher than
the required funds needed for its constituent parts. In short, the most advanced
and expensive technology should not be required to solve a problem that is
relatively simple. As seen in our industry research, some related automatic
irrigation systems run into issues due to added features needing a higher overall
cost in order to fund these features. Therefore, many of the desirable features of

49

Final Document Group 9 December 6, 2022

this design are software based, so they do not require a significant amount of
funding to add more value to the user. Avoiding an overdesign or
overcomplicated design with added value due to software should be able to
alleviate some of the economic constraints overall.

In terms of time constraints, the design, prototyping, and construction of this
system should not exceed the deadlines established in the timeline portion of this
report. Also, due to supply chain issues and the coronavirus pandemic, time
constraints should be considered conservatively due to the possibility of delayed
or subpar electronic parts required for the construction of this system. Time
constraints must be imposed because ordered electronic parts have an
estimated delivery time of multiple weeks or even months. To deal with this,
prototype design is going ahead of schedule and parts are being ordered ahead
of time from multiple vendors to deal with potential delivery delays and potential
subpar quality in parts.

4.6.2 Environmental and Social Constraints
The design of this automatic irrigation system takes into consideration certain
environmental, social, and political constraints. In a social sense, automatic
irrigation systems on the market are currently typically pretty accessible at this
point in time, so our design tries to remain close to the financial constraints
imposed by other systems on the market. Also, this system is inherently a
relatively accessible member of the Internet of Things in that its setup and
required parts from the user are pretty accessible. Increased custom irrigation to
separate plants is typically easy to accomplish with household scissors and the
user usually only needs to provide a source of water and any plants that they
wish to be irrigated. This system is not a “Do it Yourself” kit, so therefore, the user
should be able to set up this system without much hassle. Environmentally, this
automatic irrigation system is inherently valuable because its design is based
around the idea of wasting less water. Timed irrigation can help the user promote
better health for their plants as well as help prevent runoff, which could provide
dangers to the electrical equipment, create a mess or danger for the user, or
move unneeded nutrients to locations outside of the irrigated plant’s soil. Though
this system requires the use of an electric outlet to charge the battery that
maintains power, a considered design for this project uses solar panels as the
main source of energy to charge the attached battery to maintain its own
function.

4.6.3 Ethical, Health, and Safety Constraints
Several precautions have been taken due to the dangers associated with water
and electronic parts. Much of the value of the system is reliant on the proper
function of electronic parts, which unfortunately brings into consideration the
possibility of water damage that will cause short circuiting or electrocution. In
order to deal with this, electric contact points, batteries, and other components
are insulated and properly grounded. Proper components to disperse heat and

50

Final Document Group 9 December 6, 2022

protect against moisture are implemented into the design of the electronic
boards. Electronic parts necessary for the implementation of the design are
purposefully separate or farther away from parts of the system that are
associated with the movement of water and moisture.

4.6.4 Manufacturability and Sustainability Constraints
Manufacturability constraints are mostly imposed by following the designs of
automatic irrigation systems already on the market. Though manufacturing
facilities for students are limited to university facilities, this should not be too
much of a problem due to the design being easily implemented with household
tool kits. Whether the design implemented is the “Snip N Drip” system or the one
that requires a structured chassis, one important customer value for the
automatic irrigation system is its relative modularity and ease of setup. This
prompts a more “stripped down” or “minimalistic” approach to the design, which
luckily for us, will simplify the manufacturability of our automatic irrigation system.
Also, the actual problem that automatic irrigation systems solve is not overly
complex, so this should prompt a relatively easy to implement design, which
usually means an easily manufacturable product. The only real issue (and main
issue overall) for manufacturability, other than the actual design of the PCBs, are
the networking and connectability of the boards. The implementation of this
system is dependent on the constituent parts connecting and operating together
properly, so the key will be to manufacture a system that connects together
smoothly.

In terms of sustainability, working with electronic parts for a system that can
potentially support both indoor and outdoor plants leads to the potential problem
of water’s corrosive and damaging nature to electronic parts. Much consideration
is necessary for electronics intended to be used outdoors or intended to interact
with water in any way. Failure to do so will lead to overall failure of the system
that cannot be diagnosable and repairable with simple household appliances.
Proper insulation and weather proof structures are implemented into the design
to deal with potential moisture damage. Also, the design, though possessing
electronic components connected to water pump components, is purposefully
designed in a way so that the moisture being pumped can be set farther away
from the delicate electronic components. The user manual will advise the user to,
if possible, extend the provided wires on the design to full length so that this
separation can take place. It is possible that the important electronic parts could
be placed in a user’s porch or outdoor seating area, while the water pump and
water source rests in another area, with both of these components being a
couple feet away from the different plants actually being watered. This strategy
will be detailed and pictured in the user’s manual for advised and intended use of
the automatic irrigation system.

51

Final Document Group 9 December 6, 2022

5.0 Part Selection
In this section, we discuss the parts selected to comprise the project. These parts
were chosen based on the previous selection and standards discussed in the
previous sections. The main components chosen are motor controllers, batteries,
buck converters, temperature sensors, soil moisture sensors, light sensors, wi-fi
modules, bluetooth modules, pumps, and MCU modules.

5.1 Motor Controllers
Given that this project heavily relies upon controlling a pump (motor) we have to
take the controller of that device into consideration. There were a lot of different
factors to take into account when deciding what motor controller should be
chosen, such as voltage, amperage, wattage, if it can handle more than one
motor at a time, and how it can interface with our chosen MCU.

5.1.1 Icstation 5A 3V-14V Dual DC Motor Drive Controller Board
Module Motor Commutation PWN Speed Regulator Dual H
Bridge
One of our options for a pump controller was the Icstation, boasting that it was
“better and more stable than the L298N”. The main difference between the two
boards was centered around the current the board can withstand without heating
up. The Icstation can independently control two DC motors, or in our case
pumps, and can also control one 4 wire two-phase stepper motor. Each channel
can output 5 Amperes with a peak of 9 Amperes and the standby current is only
10 micro-amperes. The board provides a 3.3 volt, 100 mili-ampere power supply
to the control system, and allows for interface with an arduino board. The power
supply ranges from an input of 3 volts to 14 volts, and an output of 2.2 volts to 6
volts. This board has Pulse Width Modulation (PWM) control, which is necessary
for our pump, in order to control the speed at which our pump will disperse water.
In reading the datasheet this Motor drive controller board is meant for connecting
to a remote control module, which is not necessary or ideal for our project.

5.1.2 Qunqi L298N Motor Drive Controller Board Module
Dual H Bridge DC
Similarly to the Icstation option, the Qunqi L298N Motor Drive board is a dual
channel H bridge driver allowing the control of two separate DC motors. The
Qunqi board uses large capacity filter capacitors in order to provide freewheeling
protection and increase the reliability of the board. The current can reach 3
amperes peak, and continuous current is around 2 amperes. The maximum
output power is 25 watts, which would allow us plenty of power for the pump we
have chosen. Similarly to the other board, the Qunqi has Pulse Width Modulation
control. The Qunqi L298N is the better of the two options for the motor drive
board.

52

Final Document Group 9 December 6, 2022

5.1.3 Cytron 13A, 5-30V Single DC Motor Controller
Another motor controller is the Cytron 13A Single DC Motor controller. This is
designed to drive high current brushed DC motors up to 13 Amps continuously. It
supports a single motor with bi-directional control, and allows for motor voltage
ranges from 5 to 25 Volts. It comes with a full NMOS (N-type Metal Oxide
Semiconductor Field Effect Transistor) H-Bridge, which boasts high speed, low
heat dissipation, and overall increased efficiency over BJT (Bi-polar Junction
Transistor) H-Bridges. [Demonstrating Motor Control Using Nmos…]

5.1.4 Table Comparing Motor Controller
Below is a table comparing each motor controller, with our chosen motor
controller highlighted.

Feature Icstation L298N Cytron

Input Voltage (Volts) 2.2-5 5-25 5-25

Motor Current (Amps) 5 2 13

Temperature Range (Celsius) -20 - 135 -20 - 85 NA

Dual Motor Yes Yes No

Table 12: Motor Controller Comparison

5.2 Batteries
The battery we choose must be capable of supplying our pump and electronics
with enough power, as well as being able to keep them powered for long
durations. Ideally the battery would be rechargeable, and would not be too heavy
as our design is meant to be compact.

5.2.1 Tenergy NiMH Battery Pack 12V 2000mAh
Once we determined a Nickel-metal hydride battery would be ideal, one of the
most compact options was the Tenergy NiMH battery pack. This fulfilled our

53

Final Document Group 9 December 6, 2022

criteria of being 12V, rechargeable, cost effective, compact, and minimal weight.
Another benefit was the fact that the battery would come with bare leads,
allowing us to choose how we would prefer to wire our devices.

5.2.2 ExpertPower EXP1250 12V 5Ah
The ExpertPower EXP1250 12V battery boasts 5 Amp hours of battery life, which
is estimated to last 20 hours of continual use. This is a sealed lead-acid (SLA)
battery, which has significantly more standards than the NiMh battery listed
above. These standards would give us a lot of information as to the best
practices if we chose to use this battery. Given that this battery is significantly
larger, weighs more, and would not allow us to store it given the dimensions we
have specified in the engineering specification table, it is not a good option for
this project.

5.2.3 Amazon Basics 9 Volt Performance All-Purpose
Alkaline Batteries
The Amazon Basics 9 Volt battery is another option. It was tested for its
performance by rightbattery.com, and was shown to produce a charge of 481
mAh at 50 milli-Amp load. If used in parallel to extend battery charge this battery
would still be less cost effective, as it would take more than 4 batteries in parallel
to equal 2000 mAh. Given that this charge is quite low compared to our other
options for batteries, and that this battery is not rechargeable, this battery would
not be an ideal candidate for this project.

5.2.3 Battery Comparison
Below is a table comparing the different battery options we looked at.

Feature ExpertPower 12V Tenergy 12V Amazon 9V

Voltage (Volts) 12 12 9

Electric Charge 5 000 2 000 481

Rechargable
(Y/N)

Yes Yes No

Table 13: Battery Comparison

54

Final Document Group 9 December 6, 2022

5.3 Buck Converters and Voltage Regulators
Rather than implementing resistors and other devices to make a buck converter,
or voltage regulator from scratch, it initially thought it would be easier and more
cost effective to order a buck converter. The goal of having a stand alone buck
converter would allow us to regulate the voltage from 12 Volts down to a voltage
the MCU and sensors would need which would be anywhere from 3.3 Volts to 5
Volts. In the final implementation we did not use the buck converter but instead
used two linear voltage regulators.

5.3.1 Valefod 6 Pack LM2596
This buck converter gave us a large range of input voltage as well as output
voltage to work from, as well as coming in a pack with multiple units so we can
perform testing on them. Input voltage ranges from 3 Volts to 40 Volts, and an
output voltage range of 1.5 Volts to 35 Volts, this would allow us many options as
to how we would prefer to power our different devices. In the table below, we see
that the input voltage range is the largest, and the price per unit is the smallest,
so this is the most economical choice for our project.

To test this module, I connected two pumps, to a breadboard, with input power
from the Tenergy 12 volt 2000 mAh battery, and I was able to have both the 12
volt pump on, as well as the 5 volt pump on, and I was able to adjust the 5 volt
pump in using this buck converter, and a screwdriver to lower and raise the
voltage as I required.

5.3.2 HiLetgo 2pcs LM2596
This buck converter would give us slightly less input options while allowing us
more output options, but only a two pack. The added benefit of having a
voltmeter display could be beneficial though as we could adjust voltage as
necessary rather than requiring an external voltmeter.

5.3.3 eBoot Mini MP1584EN DC-DC Buck Converter (6
pack)
The eBoot mini buck converter allows input voltage from 4.5 Volts to 28 Volts and
would allow an output voltage from 0.8 Volts to 20 Volts. Boasting a 92%
conversion efficiency rate that is within our ideal range of 12 Volt input voltage
and 3-10 Volt output voltage, that makes this a good candidate for our project.
This component is usually inexpensive and will cost about 2$ before added
shipping costs. The voltage will have to be changed with a screwdriver with the
guidance of a multimeter that will act as the calibration component of this buck
converter.

55

Final Document Group 9 December 6, 2022

5.3.4 LM7805
The LM7805 is a voltage regulator that outputs 5V. It has three terminals and is a
through hole component. It can output up to 1.5A and has an input voltage range
of 7V to 25V. It is inexpensive and widely available.

5.3.5 PDSE1-S12-S3-D
The PDSE1 is a voltage regulator that outputs 3.3V. It has four terminals and is a
through hole component. It can output up to 303mV and has an input voltage of
10.8V to 13.2V. It is widely available but has a variance of up to 20%.

5.3.6 Table Comparing Buck Converters and Regulators

Feature Valefod HiLetgo eBoot Mini LM7805 PDSE1

Input
Voltage
Range
(Volts)

3 - 40 4 - 40 4.5 to 28 7 to 25 10.8 to
13.2

Output
Voltage
Range
(Volts)

1.5 - 35 1.25 - 37 0.8 - 20 5 3.3

Price Per
Unit ($)

1.83 5.25 2.83 0.69 3.12

Maximum
Output
Current
(Amps)

3 3 3 1.5 .303

Operating
Temperatur
e (Degrees

Celsius)

-45 to 85 Not Listed -45 to 85 0 to 125 -40 to 105

Table 14: Buck Converter Comparison

56

Final Document Group 9 December 6, 2022

5.4 Temperature Sensors
Given that there are several different types of temperature sensors on the
market, this section will go into the details about each specific sensor and what
each one would benefit our project. We took input voltage, amperage, accuracy,
and compatibility with our MCU into consideration.

5.4.1 MCP9808
The MCP9808 is a digital temperature sensor. This means that it outputs a digital
signal and is I2C compatible. This sensor is advertised to be able to read
temperatures between -20C and 100C with a typical error rate of plus or minus
0.25C. It has an operational voltage range of 2.7-5.5V and a max voltage of 6V.
This device has two pins for power, two pins for I2C and an alert pin that can
notify the user when a certain temperature is reached. Before taxes and
shipping, this sensor costs about 5 USD.

5.4.2 TMPXXX
The TMP family of temperature sensors is Texas Instrument’s temperature
sensor selection. The following were chosen based off of if the parts were still
actively being produced and if they were appropriate for this system:

5.4.2.1 TMP275
The TMP275 outputs a 9-12bit digital signal and is I2C compatible. This sensor
can read temperatures between -20C and 100C with an error rate of plus or
minus 0.5C. It has an operating voltage of 2.7V-5.5V and a max voltage of 7V.
This sensor has 2 pins for I2C, 2 pins for power, and 1 pin for alert. Before taxes
and shipping, this sensor costs around $3 USD.

5.4.2.2 TMP112X
The TMP112X comes in a few variants in which the TMP112A and the TMP112B
will be considered. They both read temperatures between 0C and 65C with an
error rate of pulse or minus 0.5C. Where they differ is the operating voltage. The
TMP112A best operates at 3.3V while the TMP112B best operatues at 1.8V.
They both have the voltage range of 1.4V to 3.6V with a max voltage of 4V. This
sensor has 2 pins for I2C, 2 pins for power, 1 pin for an alert, and one pin for
address select. These sensors are NIST traceable.

5.4.2.3 TMP126
The TMP126 outputs a 14-bit digital signal and is SPI compatible. This sensor
has an error rate of plus or minus 0.3C for temperatures between -20C to 85C.
This sensor has an operational voltage of 1.62V to 5.5V with a max voltage of 6V.

57

Final Document Group 9 December 6, 2022

This sensor has 6 pins, two pins for power, one pin for clock input, one pin for
chip select, one pin for SIO communications, and one alert pin.

5.4.3 LM92
The LM92 is a digital sensor that outputs a 12-bit signal and is I2C compatible.
This sensor can measure temperatures between -10C and 85C with an accuracy
of plus or minus 1C. It has a better accuracy of plus or minus 0.5C for
temperatures between 10C to 50C. This sensor has an operational voltage of
2.7V to 5.5V with a maximum voltage of 6.5V. It has 8 pins, two for SDA and
SCL, two for power, two for address select, one for critical temperature alert, and
one pin for interrupt output drain output.

5.4.4 BME280
The Adafruit BME280 is a digital temperature, humidity, and baramic pressure
sensor that is I2C or SPI compatible. This sensor can measure temperatures
between -40C and 85C with an accuracy of plus or minus 1C, can measure
atmospheric pressures of 300hPa to 1100hPa with an accuracy of plus or minus
1hPa, and can measure the humidity as a percentage between 0%-100% with a
plus or minus 3% accuracy. This sensor has an operating voltage of between
1.71V and 3.6V and the digital interface has an operating voltage of 1.2V to 3.6V.
This sensor has 7 pins. Three pins are for power, one is ground, one is the
supply voltage for the sensors, and the last is the supply voltage for the digital
interface. The remaining four pins are used for communications which includes a
serial clock pin, a chip select pin, a serial data out pin, and a serial data in pin.
I2C mode is achieved by tieing the chip select to the voltage pin for the digital
interface. This sensor costs about 15USD.

5.4.5 Temperature Sensor Table
Part Interface Accuracy Special Function Cost

MCP9808 I2C 0.25C alert pin 5$
TMP275 I2C 0.5C alert pin 3$

TMP112X I2C 0.5C Alert pin 3$
TMP126 SPI 1C alert pin 2$

LM92 I2C 1C alert pin 6$
BME280 I2C

OR
SPI

1C
1hPa

3%humidity

Measures
Pressure and

Humidity

15$

Table 15: Temperature Sensor Comparison

58

Final Document Group 9 December 6, 2022

5.5 Soil Moisture Sensors
There are not as many different soil moisture sensors available as there are
temperature sensors. This section describes the differences between each soil
sensor and a rough depiction of how they sense the moisture level of the soil
they are placed into.

5.5.1 STEMMA Soil Sensor
The STEMMA soil sensor is a capacitive digital moisture sensor that is I2C
compatible. It outputs 200 for very dry and 2000 for very wet. Since it is
capacitive, there is only one prong. This sensor also comes with a temperature
sensor with an accuracy of plus or minus 2C. This sensor requires a 4PH JST
connector. The four pins include a ground, a Vin, SDA, and SCL (last two for
I2C). The operational voltage is 3V-5V. This component costs about 8USD.

5.5.2 PR46-7 Soil Sensor
This soil moisture sensor is a resistive digital moisture sensor that is I2C
compatible. It has 12 bits of resolution and outputs values between 0-4095. This
sensor has an operating voltage of 5V. This sensor has two sets of 4 pins. The
four pins include a ground, Vin, SDA and SCL for I2C. The second set is to chain
other sensors to itself. The major downside to this sensor is that it costs $30
USD.

5.5.3 Songhe Soil Moisture Sensor
This soil moisture sensor is a capacitive analog sensor. It has an operational
voltage of 3.3V to 5.5V. This sensor has 3 pins, two for power, and one for analog
out. The output voltage of this sensor is between 0V-3V. The pins support JST
cables. These sensors are cheap compared to the other soil sensors costing only
2.3USD.

5.5.4 Soil Moisture Sensor Table
Part Interface Type Special Function Cost

STEMMA I2C Capacitive Temperature
Sensor

8$

PR46-7 I2C Resistive - 30$
Songhe Analog Capacitive - 2$

Table 16: Moisture Sensor Comparison

59

Final Document Group 9 December 6, 2022

5.6 Light Sensors
Light sensors are a part of our stretch goals, but it is a consideration we must
account for as it would be beneficial in our project. Each light sensor has slightly
different characteristics which are outlined below.

5.6.1 TSL2591
The TSL2591 is a light sensor that outputs digital signals and is I2C compatible.
It can detect light ranges between 188uLux and 88,000Lux. The input voltage is
from 3.3V to 5V. This sensor has 5 pins, two for power, two for I2C and an
interrupt open drain output pin. This sensor is also JST compatible. This
component costs about 7USD.

5.6.2 OPT4001
The OPT4001 light sensor that interfaces with I2C. It can detect and output
digital signals for light levels between 312.5uLux and 83kLux. This module has
an operational voltage of -0.5V and 6V. This sensor has 4 pins, two for power
and two for I2C communications. These lines need to be pulled up to Vcc. It is
recommended to do this with a 10K ohm resistor connected to the voltage
source.

5.6.3 XINGYHENG Photosensitive Sensor
The XINGYHENG Photosensitive Sensor Module Digital Light Intensity Detection
uses a sensitive photoresistor sensor. This sensor uses a comparator output to
determine if it will produce a 0 or 1. The operation voltage ranges from 3.3 Volts
to 5 Volts and uses a LM393 comparator. The only application for this light
sensor would be to detect if the light hitting the plant and or electronics
(depending on where the sensor is located) is sufficient enough to send a 1
output, which could either tell the MCU it is day time or night time. Given these
design constraints this is not an ideal candidate for our project.

5.6.4 Light Sensor Table
The table below looks at several different aspects of each of the light sensors
listed above and compares them. The chosen sensor is highlighted. It was
ordered but never implemented due to time constraints.

60

Final Document Group 9 December 6, 2022

Part Interface Accuracy
(Lux)

Special
Function

Cost per unit
($)

TSL2591 I2C 188u - 88,000 JST
compatible

7.00

OPT4001 I2C 312.5u -
83,000

Small 1.26

XINGYHENG Hardware Not
applicable

Simple 1.20

Table 17: Light Sensor Comparison

5.7 Wi-Fi and Bluetooth Modules
In this section we discuss the different issues with choosing either a Wi-Fi
module or a Bluetooth Module. Ideally, with the engineering specifications and
the objective listed above, we would prefer a Wi-Fi module as we want the user
to

5.7.1 ESP8266
The ESP8266 is a collection of different Wi-Fi modules, each with their own set of
features. Some of these parts might not be available for testing, and will affect
which one will be selected in the end. All of these Wi-Fi modules will support peer
to peer connection. The major differences between the modules will be size,
supported input/output pins and interfaces, such as SPI, UART, and I2C, and the
amount of memory and processing power available to use. These modules will
most likely only be used for their Wi-Fi capabilities and will most likely fall under
the main MCU.

5.7.1.1 ESP-01
The ESP-01 is a relatively simple module. It supports Wi-Fi protocols 802.11
b/g/n, and its peripheral bus supports UART. The network protocol it supports is
IPv4. The operating voltage is 3V to 3.6V. Its size is 14.3mm X 24.8mm X 3mm.
There are 8 pins, two for power, two for transceiving and receiving, a reset pin, a
chip enable pin, a reset pin, and two other GPIO pins. There is an external 1MB
flash that uses SPI. This module contains its own MCU and clock. It also
supports three different low powered modes.

61

Final Document Group 9 December 6, 2022

5.7.1.2 ESP-12E
The ESP-12E is a more advanced chip with a multitude of features. It can host
an application on the board from an external 4MB flash that communicates with
SPI. It supports SPI, UART, and I2C and has a 10-bit analog to digital converter.
The Wi-Fi protocol it supports is 802.11 b/g/n and the network protocol it supports
is IPv4. Its operating voltage is 3V to 3.6V. It has a 32 bit processor and a crystal
clock. This module supports three different low powered modes. This device can
use 11 GPIO pins. There is a version of this that comes with an advanced
development environment, which can be used to test out the module before
choosing it to be fully integrated into the final PCB. Just the basic chip is also
available.

5.7.2 ESP32
The ESP32 is the successor to the ESP8266 line of Wi-Fi modules. It offers both
Wi-Fi 802.11 b/g/n support and Bluetooth v4.2 support. Its MCU can come with a
1 or two core processor and supports pipelining and floating point integers. It
comes with two crystal oscillators and two RC oscillators. It has 34 GPIO pins
that can support I2C, SPI, and UART. It has a supply voltage of 2.3V to 3.6V. The
dual support of Bluetooth and Wi-Fi makes this module sit outside the scope of
this project.

5.7.3 CYBLE-333074-02
The CYBLE-333074-02 is a bluetooth module that interfaces through SPI or I2C.
Its operational voltage is between 2.5V and 3.6V. It uses Bluetooth 3.0 and has a
max data transfer rate of 1Mb/s. This module costs approximately $11 USD.

5.7.4 NINA-B221-03B
The NINA-B221-03B is a bluetooth module that interfaces with UART. It operates
between 3V and 3.6V. With a max data transfer rate of 1Mb/s, this module uses
Bluetooth 4.2. It costs around $13 USD per module.

5.7.5 BGM220SC22HNA2R
The BGM220SC22HNA2R is a bluetooth module that interfaces with SPI, I2C,
and UART. Its operational voltage range is between 1.8V to 3.8V. This module
uses Bluetooth 5.2 and supports data speeds of up to 2Mb/s.

62

Final Document Group 9 December 6, 2022

5.7.6 Wi-Fi and Bluetooth Table
Part Interface Protocol Special Feature Cost

ESP-01 SPI, UART, I2C b/g/n Simple 3$

ESP-12F SPI, UART, I2C b/g/n Easy to interface 2$

ESP-32 SPI, UART, I2C b/g/n Advanced processor,
Bluetooth

4$

CYBLE-3330 74-02 SPI, I2C 4.2 1Mbps $11

NINA-B221-0 3B UART 4.2 1Mbps $13

BGM220SC22HNA2R SPI, I2C, UART 5.2 2Mbps $10

Table 18: Wi-Fi and BlueTooth Table

5.8 Pump Selection
We dive more into pump selection in the testing phase of the project. Picking a
good pump will be crucial to ensure every plant gets a sufficient amount of water.

5.8.1 12V Mini Brushless DC Water Pump
The 12V Mini Brushless water pump comes in either 6 Watt or 7 Watt options.
The maximal input current is 600mA, the pump is able to handle fluid
temperatures from 0 degrees Celsius to 65 degrees Celsius, and the pump
capacity is stated as being 2.2L a minute. This is a submersible type pump,
where it will sit in the chosen water container, and we will only require a tube
going out to the plant. The suction caliber is estimated to be 9mm, and the
discharge caliber is estimated to be 6.8mm.

5.8.2 Sipytoph 4Pcs DC 3-5V Micro Submersible Mini Water
Pump
The Sipytoph DC 3-5 Volt Submersible Mini Water Pump comes in a 4 pack with
two sets of tubing. We chose this pump in the selection process as it would allow
us to test multiple voltage levels and allow testing of the pump’s throughput, or
capacity. The load rated current is 180 milliAmps, the flow rate is 2 liters a minute
(120L/H), and is only suitable for experiments not recommended for continuous
use. The diameter of the water outlet is 4.5mm and the inlet diameter is 5mm.

63

Final Document Group 9 December 6, 2022

5.8.3 LEDGLE Mini USB Fountain Pump Compact
Submersible Pumps Efficient 5V
The LEDGLE Mini USB 5V Submersible Pump was chosen as a backup option if
we thought we would require a USB pump. This pump can be powered by any
USB capable device, from a power bank, solar charger, or a USB wall socket.
This pump runs off 5 volt DC power, and boasts an estimated 3 Liters per minute
(180 Liters per hour). Given the USB requirements we felt it was not the ideal
candidate for this project.

5.8.4 Table Comparison for Pumps
The table below shows a comparison of the pumps listed above, and the
selected device is highlighted in the table. The choice was determined based on
performance, availability and compatibility with the rest of the system that will be
based off of a 12V battery source. This pump will have to perform well in the
demonstration.

Feature 12V Mini Brushless Sipytoph LEDGLE Mini USB

Voltage (Volts) 12 3-5 5

Amps(Milli-Amps) 600 180 300

Price Per Unit ($) 15.96 2.85 11.58

Estimated Throughput
(Liters/minute)

2.2 2 3

Table 19: Pump Comparison

5.9 MCU Options
A microcontroller was picked from the team’s selection process. This section
focuses on the different development boards that were considered. Numerous
types of chips and development boards could be considered for this project. For
example, though they did not make it through the initial selection process and
were no longer considered, the team did actually consider using an Arduino Uno
or a NVIDIA development board of some kind. However, it was eventually
decided that the team’s familiarity with the MSP 430 family of boards would be
the best microcontroller option for the project.

This family of microcontrollers are beneficial for the team due to the team’s
previous use of them in the Junior Design lab class. The MSP430 has relatively
easy to use software with an IDE that could make programming easier. There are

64

Final Document Group 9 December 6, 2022

large amounts of beneficial tutorials online to deal with any simple
troubleshooting for this MCU. Similar to other boards for development such as
Arduino, Raspberry Pi, NVIDIA, Beaglebone, and Samsung, MSP430 and its
family has appropriate software libraries to access important functions. These
functions are important for the actual functional software for this automatic
irrigation system.

Lastly, the MSP430 family’s extensive software library also means that it is highly
compatible with various sensors that will be required for the function of this
automatic irrigation system. System integration will be the hardest aspect of the
project for the team. However, this can be alleviated by the different components
that are already compatible with the MSP430 for the automatic irrigation system
being designed.

Overall, the MSP430 is the best fit for the team’s uses and design of the
automatic irrigation system. Though other boards and chips such as the Arduino,
Raspberry Pi, NVIDIA, Beaglebone, and Samsung family of products could
probably achieve or even surpass the abilities and functionality of the MSP430
board, given the time constraints and the team’s familiarity, the MSP430 will be
utilized for this project.

5.9.1 MSP430FR247x
The MSP430FR247x is a 16 bit microcontroller that is designed by Texas
Instruments. It operates between 1.8V and 3.6V. This model includes several
clocks, including a 32kHz RC oscillator, a 16MHz oscillator, a 10kHz oscillator,
VLO, MODOSC, and a 32kHz crystal oscillator. This module also includes a 12
bit ADC with an input voltage of 0V-3V and 12 channels that can be switched
between for multiple analog inputs. This version of the MSP430 chip also has
40+ GPIO pins for digital input and interrupts. This microcontroller supports I2C,
SPI, and UART. It can operate in many low powered modes, making it ideal for
embedded systems. This version comes in different packages, which differ
between 48 pins to 32 pins.

5.9.2 MSP430F552x
The MSP430F552x is a 16 bit microcontroller that has similar features to the
MSP430FR247x. The differences lie in how many clocks it has, low powered
modes, and ADC input channels. The F552x only has one ADC input, so it
requires an external MUX if multiple analog devices need to be used. There are
much fewer oscillators on this chip, which include VLO, REFO, a 32kHz crystal
oscillator, and a 32MHz crystal oscillator. The feature that this chip has over the
FR247x is USB support.

65

Final Document Group 9 December 6, 2022

5.9.3 MSP430FR6989
The MSP430FR6989 is a board that was not considered for the final product but
rather for prototype testing since it is very similar to the current choices. It is a
Texas Instruments Incorporated product that is well respected in development
and electronics circles. This specific board type is used in several classes at the
University of Central Florida. This is beneficial to the team because due to this,
most of our teammates have this board already on hand and therefore, the
familiarity lets us rapid prototype with breadboards fairly well. In the Embedded
Systems class at the University of Central Florida, this development board was
studied in depth. Its components, datasheets, and programming were all
discussed in class.

The MSP430FR6989 uses the same MSP430 microcontroller as other models
mentioned. In terms of its statistics, it requires 3V with a power consumption of
210 to 1845 microamps. It has 83 I/O ports that will be useful for attaching
sensors. It has a clock rate of 16MHz with 128KB of flash memory and 2KB of
SRAM. However, this board has no wifi module, which could lead to issues with
testing, especially when dealing with the website and mobile application aspects
of this automatic irrigation system.

However, there is lower risk for the team because as mentioned, most of the
team has this board already on hand and if there are major damages or if the
team decides to discard this model, the model only costs $20. Also, this
microcontroller board has benefits in that it has very low power consumption,
which leads to an overall longer battery and overall product life span.

5.9.4 PIC24FV16KM204
The PIC24FV16KM204 is a 16-bit MCU made by Microchip. The operational
voltage is from 1.8V to 3.6V. This family of chips can have up to 4 ADCs, three of
which are 8-bit and one which is 12-bit. It has a 8MHz oscillator which is RC and
a 32kHz oscillator as well. This chip has a built in temperature sensor that has its
own A/D conversion. SPI, I2C, and UART are supported in this chip. This MCU
has an overabundance of ADC options and not a lot of timers.

5.9.4 ATMEGA328P-PU
The ATMEGA328P-PU is an 8 bit microcontroller which supports the Arduino
environment. It operates between 1.8V and 5.5V and supports SPI, I2C, and
UART. It has two 10-bit ADCs. It requires an external 16Mhz crystal to operate
which needs two 22pF capacitors.

66

Final Document Group 9 December 6, 2022

5.9.4 MCU Table
Part Pins Clocks ADC Cost

MSP430FR247x
(MSP430FR2475TRHBT

)

40 6 12-bit $6

MSP430F552x 47 4 12-bit $7

ATMEGA328P-PU 28 External 10-bit $2.87
PIC24FV16KM204 44 2 80-bit, 12-bit $4
MSP430FR6989 83 6 12-bit $20

Table 20: MCU Comparison

5.10

Wall Power DC Jack Connector
During testing we implemented a new power connector for added functionality for
the end user. This was decided due to small issues with the battery. This wall
adapter used a standard plug with no ground, and would provide a stable 12 volt
input and connected via a DC jack male connection into our PCB’s DC female
port.

6.0 Project Prototype Testing Plan
This section details the plan for the testing phase of this project. This
methodology will be utilized to determine the effectiveness of our design as well
as the functionality of the different components present in the design. The tests
are separated into hardware and software sections. As the building of the official
design and final project progresses, these tests will change and will be modified
based on any issues that may occur while implementing the design.

6.1 Hardware Testing Environment
The environment that was used for initial breadboard testing will be the labs
available at University of Central Florida, mainly those designed for the Senior
design course. The Senior Design lab on the fourth floor of the engineering
building was one of the more important environments utilized. The Texas
Instrument Innovation lab will also be useful. Located on the first floor of the
same engineering building, this lab will be utilized for breadboard testing,
multimeter, soldering, and oscilloscope measurements. Also, the new
makerspace in the University of Central Florida library will be useful due to the
vinyl laser cutters and 3D printers which were used to make our electronics box.
Due to this area being a relatively new space, this will be less known by other

67

Final Document Group 9 December 6, 2022

students, which will allow us to have more time in the lab to construct our
automatic irrigation system. This area will particularly be helpful when
constructing the water resistant container for the hardware and PCBs.

6.2 Component Specific Testing and Integration
In order to ensure the correct function of each component, each will be tested
individually utilizing a breadboard and power supply. The individual plans to test
these different requirements are shown below. The verification process includes
testing the part on a stable power supply and establishing communications. Once
a communication link was established, the data received was investigated for its
accuracy. Once the individual function of these components was verified, the
team began integration to find if these components functioned correctly once
combined. This meant making sure the parts worked at the same time and did
not conflict with each other. All of the techniques to complete these tests were
updated through the progression of the project.

6.3 Water Pump Testing
The water pump is integral to the function of the automatic irrigation system. It is
imperative to properly test the functionality of the chosen water pump. It is
important because it is the only feature of the project that is directly responsible
for the health of the plants and therefore, the success of the project with solving
the main user problem. The water pump must be able to not only function but
also be controlled to meet the three different settings of our automatic irrigation
system: Temperate, Tropical, and Cactus/Succulent.

The actual testing of this system will consist of the following:

1. Appropriately connect the water pump to a power source and vinyl tubing
to a source of water

2. When connected to the power source, the objective of the test was to test
whether the flow rate of the water pump remains consistent given different
volumes of water from the water source and what threshold that this
consistency holds up to. This can be easily measured by measuring the
amount of water, in mL, coming out of the pump under a controlled
amount of time given different volumes of water in the water source.

3. The ideal result of this test will be the water pump consistently dispensing
the same volume of water under a certain time period regardless of the
amount of water in the water source.

6.4 Moisture Sensor Testing
The moisture sensor is important because the overall moisture of the soil is the
main indicator of plant health that we are measuring. The system as a whole
would not work properly if it could not detect moisture levels in the soil. The water
pump and moisture sensor create a “closed loop” of functionality in this sense.

68

Final Document Group 9 December 6, 2022

The following steps were required to test the moisture sensor:

1. Record the digital value of the ADC connected to the soil moisture sensor
when the sensor is dry and only touching air. This value will be the
“completely dry” or 0% soil saturation.

2. Place the soil moisture sensor in a cup of water. Record the digital value
of the ADC. This will be the “completely soaked” value, or 100% soil
saturation.

3. Place the soil moisture sensor into a known amount of soil. Record the
digital value of the ADC. Start adding known amounts of water to the soil,
and continue recording the ADC’s value for each amount of water. Make
sure to wait a few minutes between each recording to let the water reach
equilibrium in the soil. Continue this process until the soil is at maximum
saturation and water starts leaking outside of the pot.

There were a few issues with this method of testing. The first issue comes in the
first step. When recording the value of the moisture floor, it is not actually 0%
moisture since the sensor is being affected by the humidity of the air. This does
decrease the accuracy only a little bit, since the soil moisture sensor is not super
sensitive. Due to the climate of Florida, which on average has 74% humidity
outside, this needs to be considered. It is recommended to calibrate the soil
moisture sensor inside to avoid issues like this.

The second issue comes in the last step and has to do with test result accuracy.
The amount of soil has to be measured with its volume and not its mass. This is
because in Florida, it is very hard to find soil that is completely dry. This means
that when weighing the soil, the water that is already in the soil will bias results a
lot due to it being heavy. This means the soil should be measured volumetrically.
It is important to note that this means that the type/consistency of the soil is not
taken into account. This will produce different graphs, as some soil will not be
able to retain much water as other types of soil. The retention rate and maximum
amount of water allowed is not as important, as it does not play a role in
calibration.

6.5 Temperature Sensor Testing
The temperature sensor testing required a very simple test. This test included us
making sure that the I2C protocol is working and that the temperature sensor
was returning valid results. If the temperature sensor is returning junk values,
that means the proper connections have not been made, and the contacts need
to be fixed. Once the proper connections have been made, the ambient
temperature will be measured and compared to the thermostat. Next, the
temperature sensor will be taken outside and measured against the reported
weather. Finally, the temperature sensor will be touched and measured against
the average human temperature. This is the simplest way to do basic testing
without extensive equipment or setups.

69

Final Document Group 9 December 6, 2022

6.6 Power System Testing

Figure 21: Power System Testing

In order to ensure our hardware components work well together a full power
system test was conducted. In order to perform this testing we required everyone
to meet up in order to work on the wifi module subsystem and the pump
subsystem. In testing these subsystems separately we were successful in
ensuring wifi connectivity from the wifi module to the computer. We were also
successful in testing the pump (motor) controller. This motor controller testing is
vital to the efficacy of our project as if we have no way to regulate the pump
output into the plant our system will not function as we intend it to. To test the
pump controller we experimented with the MSP430FR6989 board, as well as an
Arduino Leonardo. The MSP board was problematic as we could not find or
create functioning code for the board, whereas the Arduino had many more user
friendly libraries and implementation help. We were able to test the pump
controller by flashing a simple RC car demonstration code to the Arduino, and
plugging in the 12V battery to the controller and the pump. We were able to
successfully run the pump on a 5 second off and 3 second on loop, with the
pump pushing water through our chosen tubing. In continuing to test the pump
controller we were able to adjust the duration and speed at which the pump
expelled water. In attempting to interface the pump subsystem and the wifi
module subsystem, we were unable to implement them together due to the size
restraints of the wifi module and in housing the wifi module on styrofoam not a

70

Final Document Group 9 December 6, 2022

breadboard. In between semesters we plan to test everything together to ensure
cohesion between the subsystems.

6.7 Software Testing Environment

The software components are integral for the function of the system. The system
software will be divided into different sections and levels to make testing easier.
Also, basic unit tests and procedures will be applied during actual development
so that the least amount of bugs can occur. This method will be a combination of
Top Down development and Incremental Development with Unit Testing.

The actual testing will take place on the personal computers of the team
members. Members of the team with Android devices will use their devices to
test the Android application. After actual debugging and deployment, fine tuning
will have to occur on the actual user devices in order to better tailor the web and
mobile applications. Due to testing occurring on the team’s personal computers
and devices, software testing will not have to actually occur in a specific area.
However, when software integration into the wifi and microcontroller modules
begins, this software testing will take place in one of the University of Central
Florida engineering labs.

The chart below is a visual detailing the software testing process for the
automatic irrigation system.

71

Final Document Group 9 December 6, 2022

Figure 22:Software Testing Process

6.8 Software Specific Testing
This software system consists of web and mobile applications, database, and
server. Testing will technically take place during development, in which each
sub-module will be tested for basic functionality as each function is created.
Then, the separate components will be tested for functionality. The more difficult
test will be getting all of these components to integrate and interconnect together.
As a total system, the software will be initially tested for basic functionality to see
if it can at least accomplish its intended purpose. Then, different, more extreme
cases will be introduced in order to see if there are lingering holes in the code
that could potentially damage the system.

The testing chart below details a summary of the different testing modules, their
methods, and the prospective amount of time.

72

Final Document Group 9 December 6, 2022

Testing
Module

Location Consists Of Methods Time
Required

Hardware
Testing

Texas
Instrument
Innovation
Lab and

Senior Design
Lab

Hardware,
PCB, Power
board, MCU,
Wifi module

Breadboard
testing

1-2 sessions

Water Pump
Testing

Senior Design
Lab

Water Pump Breadboard
testing and
functional

testing

1 session

Moisture
Sensor
Testing

Senior Design
Lab

Moisture
Sensor

Breadboard
testing and
functional

testing

1 session

Temperature
Sensor
Testing

Senior Design
Lab

Temp Sensor Breadboard
testing and
functional

testing

1 session

Power
System
Testing

Texas
Instrument
Innovation
Lab and

Senior Design
Lab

Power PCB Breadboard
testing

1-2 sessions

Software
Testing

Environment

n/a Software
sub-system

Module and
whole system

testing

throughout
development

and 1-2
sessions
officially

Table 21: Testing Summary

Another factor to consider is the Wi-Fi module which needs to be tested into two
parts. First, the communications between the MCU and the module need to be
tested, and then the communications between the Wi-Fi module and the website

73

Final Document Group 9 December 6, 2022

need to be tested. Setting up the MCU to WiFi module to network connection can
be done with a testing board. A UART connection can be made between the
board and wifi modules, and a few commands can be sent to the Wi-Fi module.
Among these commands include one that requests access to a network, which
requires the network ID and password. Once connected to the network, the next
phase of testing can begin.

The IP address of the server needs to be known by the Wi-Fi module, which can
be implemented through code. A TCP request can be made to the website, and if
it is configured correctly, the website will allow the Wi-Fi module to start sending
data. For basic testing, predetermined messages will be sent, but in the future
the data transfer from the MCU to the Wi-Fi module will have to be constructed
and tested during device integration.

74

Final Document Group 9 December 6, 2022

7.0 Project Hardware and Software Design Details
In this section, there is discussion on the components comprising the design of
the hardware and software. The software design section focuses on the
functionality, algorithms, function and modules definitions, software architectures,
web stack, database, hosting, website prototypes, and mobile application
components. The hardware design section focuses on test results of different
chosen hardware components.

7.1 Software Design
The software portion of the automatic irrigation system will be implemented on
the ATmega microprocessor. This MCU will utilize the input data received from
the sensors to produce a required data output using the code implementation.
The code has three main functionalities: taking in moisture sensor input from the
moisture sensor embedded in the soil to calculate moisture, triggering the water
pump to pump water when directed, and taking in user input preferences based
on the type of plant.

The diagram below shows a more detailed breakdown of the software design,
consisting of user interface on the left and software control functionality on the
right of the diagram.

Figure 23: Software Design

75

Final Document Group 9 December 6, 2022

7.1.1 Software Functionality
The functionality of the software is made up of a user interface required to
display information to the user, controlling the water pump when directed, and
any software needed for the soil moisture sensor. This can be accomplished
through the functions present in the ATmega microprocessor. An IDE will be used
to compile and transfer the code as well.

The diagram below shows the system integration of the two main software
components. The main software components are the UI Software and the Control
Software. The integration diagram shown below demonstrates how these
separate components actually function. The actual connection between these
two components will be achieved with wifi Internet connection. The control
software is already present and uploaded to the microcontroller. The UI software
exists on the mobile/web applications, server, and database.

Figure 24: Software Controls

7.1.2 Algorithm Description
The implemented code will be using three different modules in order to
implement the three main tasks required for functionality. all variables and
constant integers are defined within each sub-module. At the beginning of the
implemented code, the required libraries and headers will be initialized as per the
requirements of the code. Also, appropriate comments will be utilized to break
down and explain the function of the code and its procedure.

7.1.3 Moisture Sensor Module/Function
Purpose: This module has the purpose of reading the moisture level of the soil it
is embedded in continuously.

- START

76

Final Document Group 9 December 6, 2022

- Read in moisture based off a signal utilized by the actual moisture sensor
embedded in the soil

- If there is a voltage reading detected by the moisture sensor

- If the value is equal to 0, reset and continue. This is based off of a
value set by the user base on their plant type moisture preference

- Else, proceed

- END

7.1.4 Water Pump Control Module/Function
Purpose: This module has the purpose of turning on the motor of the water pump
when prompted under certain conditions

- START

- Read in the moisture sensor value from the previous module

- If there is a moisture sensor value from the previous module

- If the value is based off of a value set by the user base, then
prompt the motor ON. Enable the required digital output pin to HI

- Else, do not turn on the water pump control module

7.1.5 User Display Module
Purpose: This module has the purpose of taking in the user input. However, this
is merely a rough approximation of the actual function of this code because this
code is tied to the mobile application

- START

- Take in user input preference for plant type based off of “Tropical Plant”,
“Temperate Plant”, “Cactus/Succulent Plant”

- Print the appropriate description for each plant type and confirmation
message to determine if this is the user’s preference

- Allow the user to choose the type of plant and print a confirmation
message

- END (this data is used in the previous two modules)

7.2.1 Potential Software Architectures
The structures, pictured below, show two possibilities for the overall structure of
the software. Structure 1 as seen in Figure 25 shows the three types of plants

77

Final Document Group 9 December 6, 2022

that could be inputted (Tropical, Temperate, and Cactus/Succulent), as three
separate classes made possible by a “Plant” prototype class. The second
potential structure as seen in Figure 26 shows a more stripped-down approach,
with one “Plant” class with three methods for Tropical, Temperate, and
Cactus/Succulent. The movement of the data in each approach is relatively the
same, in that the user inputs user data which is interpreted by the programming
to prompt the system to do work, as well as prompt the system to display status
updates to the user’s Android phone.

We will utilize techniques such as tight cohesion/low coupling, the 23 software
design patterns, clean code philosophy, and Top-Down development with
incremental refinement to insure code optimization and cleanliness. Development
will take place on a development board and IDE, to create an application
interface to interface with the system using an Android phone. Decisions made
by the system, based on the temperature sensor will be aided by a weather API.
The system will be able to connect to the Internet to connect to the interface with
the phone.

Structure 1
The diagram below depicts the initial prototype structure for the functional
software.

Figure 25: Structure 1

78

Final Document Group 9 December 6, 2022

Structure 2
The diagram below depicts the secondary prototype structure for the functional
software.

Figure 26: Structure 2

7.2.2 Web Stack
We decided to go with the MERN(MongoDB, Express, React.js, Node.js) stack.
Instead of React we are going with Next.Js due to its optimization and speed.
Next.Js Makes routing between pages way easier than vanilla React, making
development that much easier. We chose the MERN stack over the LAMP stack
for a few reasons. Our team is more familiar with javascript and the MERN stack
is basically 100% javascript, while the LAMP stack can be a mix of a few
languages, PHP being one of them that we are unfamiliar with. Node.js also
requires little to no setup while Apache web server in the LAMP stack has some
initial setup you need to go through to get it running properly. Table 22 shows
some of the differences between the LAMP and the MERN web stack.

79

Final Document Group 9 December 6, 2022

Differences between LAMP stack and MERN stack

MERN LAMP

Development
Time

Very little setup to get node.js server
setup and working. Hot reloading
also speeds up development time

significantly.

Requires a bit more setup
to get an apache web

server setup and running
properly

Cost NoSQL databases are much more
cost efficient when it comes to

scaling, adding capacity horizontally
is typically cheaper.

SQL databases are more
expensive to scale up
because they scale

vertically.

Performance Express.js allows for high-performing
web applications and great user

experience.

Performance can compare
with MERN if Nginx is

used, however some more
setup is required.

Support and
Documentation

MERN is a newer stack so less
support and documentation, but in

recent years this has improved
significantly.

LAMP has been out longer
and has a lot of community
support and documentation

available.

Table 22: Differences between LAMP stack and MERN stack

7.2.3 Database
We used MongoDB for our database. The main reasons we have chosen to go
with MongoDB is ease of scaling, familiarity, cost effective, and flexible schemas.
MongoDB easily scales horizontally to lessen the data load on one node onto
multiple nodes or shards. Each shard can be seen as an individual database,
and they can all cluster together as one logical database. Our team is also
familiar with MongoDB so we will not have a learning curve of getting another
database setup.

MongoDB is cost effective compared to other database systems. If we ever
needed to scale up to hold more data, MongoDB can automatically scale when
needed. Keeping costs at an absolute minimum. MongoDB also features flexible
schemas so that data can be manipulated with ease. Data is also stored as
BSON format, which is a binary-encoded serialization of JSON, allowing the data
to be traversed, decoded, and encoded faster than plain JSON. BSON allows
objects in our MongoDB cluster to have different sets of fields. This lets our
objects be unique and only have the necessary fields that they need. For
instance we may have two user objects in a users cluster. One user object may

80

Final Document Group 9 December 6, 2022

have a middle name so they would have a middle name field for that specific
object. The second user object may not have a middle name, so the middle
name field will not be included.

A simple Entity Relationship Diagram of our database is shown in Figure 27. This
ERD shows how our data will be organized and stored in our MongoDB
database.

Figure 27: Entity Relationship Diagram

7.2.4 Hosting
Vercel was the service we used for hosting our website. We are using Next.js as
our frontend framework which was created by the same team as Vercel, making
Vercel the most compatible service to deploy our Application. Vercel features
three pricing tiers, Hobby (free), Pro ($20 a month), and Enterprise(Contact
Vercel for a quote). As of right now our application will run smoothly on the
Hobby version, however if this project were ever to be public and on the market
we would use either Pro or Enterprise to deploy our Application.

Vercel also features Integration which allows a database, code repository,
monitoring, or even logging tools to be connected to our application with ease. A
database such as MongoDB is easy to connect and utilize on our web
application. Several Git repositories such as github can be configured to auto
deploy our application when any changes to main occur in our codebase.
Monitoring services such as Checkly can be used to ensure a working build is
deployed, any faulty builds will be blocked from being deployed. Lastly, logging
tools can be added to check Web vitals and insights for our website.

7.2.5 Website
In this section we will cover our Web Application and what framework we decide
to use. We will also show some mockup pages for the website as a general idea

81

Final Document Group 9 December 6, 2022

of how our pages will look. Website design is important to the user experience.
When using a product, consumers look at all aspects of that product. Sometimes
a well designed website is the first thing that a potential customer will look at. To
use this first impression to our advantage, creating a welcoming and good
looking landing page is the first step.

7.2.5.1 Website Mock Pages

Figure 28: Website Mock Page

Our Website is one of two ways the user can interact with LeafIt. A user can
register for an account and login to view their plants on either the website or
mobile application. We are aiming for the website to be intuitive yet have a
modern and simple design to make the User Interface as least intrusive as
possible.

To separate ourselves from other similar products, we leaned heavily on the
website and app side of LeafIt! This separation will provide us with novelty in this
market unseen in other products. Given that “50% of consumers believe that
website design is crucial to a business’s overall brand.” (Top Design Firms,
2021). The ability to store and keep track of your plants via website or phone app
is something that many consumers will admire.

82

Final Document Group 9 December 6, 2022

Figure 29: Website Mock Page “My Plants”

In the figure above, we see a user logged into their account, and the webpage
shows them their plants. We see the different types of plants, as well as having
more than one cactus plant.

83

Final Document Group 9 December 6, 2022

Figure 30: Website Mock Page “My Profile”

In the figure above, we see the account section of the webpage. This will allow
users to change their name, email, and username and or adjust their password.
Keeping the design simple is the goal, as overly complicated websites and
applications will add to the complexity of our design and confusion for the user.

7.2.5.2 Next.js
Next.js is a react framework that is built on top of Node.js. Next.js features
file-system routing which makes development a lot easier. Every component in
the pages directory becomes a route automatically. In vanilla react you have to
add it to a router file and do a bunch of extra steps. Another great feature of
Next.js is image optimization which allows for improved performance and faster
page loads for our website. The main reason we went with next.js is because we
have previous experience with it and are comfortable using this framework.
Next.js is built on the React.js framework which brings a ton of features in it of
itself. React features JSX, Components, and Simplicity. JSX allows for javascript
code to co-exist with HTML code. This allows for conditional rendering and a lot
of neat tricks that can be done with rendering HTML. React components allow for
a lot of code reuse and cleans up the code tremendously. For example we can
have a button component if we are going to be using the same style and
functionality for each button on our website. Instead of making a new HTML

84

Final Document Group 9 December 6, 2022

button each time and styling each one, we can make a React Button Component
to reuse everywhere and save a lot of time and code while developing our
application. Lastly, Reat has simple syntax that is easy to work with even if
React.js is foreign to you. The intuitive syntax and code styles makes it a breeze
to develop web applications.
Additionally, of all those features Next.js also excels in SEO (Search Engine
Optimization) which is not a priority for this project at this time. However, if this
product were to be available to consumers it is wonderful to have the option of
SEO to draw more eyes onto our product. Next.js incorporated two ways to make
SEO easy for websites by providing SSR(Server-Side Rendering) as well as
SSG(Static Site Generation).
SSR(Server-Side Rendering) allows for the JavaScript code on our page to be
rendered on the server rather than the client side. Therefore it is generated at
runtime allowing it to reach search engines and users at the same time. Next.js
makes it very easy to incorporate SSR into our application, abstracting a lot of
issues that arose with SSR before Next.js such as on-demand content and load
on the server itself.
SSG(Static Site Generation) on the other hand builds all the HTML on build time.
With static sites we can compile the HTML on build time because the data is
static. This allows certain static pages on our website to load very fast and is a
great user experience with little to no wait time. The user-friendly application
about Next.js is that you can pick and choose what individual pages have either
SSR,SSG or neither. This allows a lot of flexibility with our application having
both static and dynamically rendered pages. For example our “About” page will
be static, that info will not change much unless we push an update to the text on
that page. We may also have a dynamic page that will update when a plant is
watered. This capability will allow us to customize the experience and adapt to
situations as they arise, which will lead to a better user experience overall.
In the table below we summarize the key features and their descriptions to show
why Next.js is a perfect framework for our web application.

85

Final Document Group 9 December 6, 2022

Next.js Key Features and Descriptions

Key Features Description

Hot Reloading Next.js quickly reloads the page when any
code is changed and saved in the project

directory.

Reusable code components React and Next.js feature that allows for code
reuse when using the same component in

different areas.

Automatic Routing Any files in the “pages” directory will be
automatically routed with no configuration

needed.

JSX Allow HTML and Javascript to co-exist
allowing for conditional rendering of our

HTML.

Server-Side Rendering Javascript is rendered on the server which
makes web scraping easier for bots.

Static Site Generation HTML is ready to serve as it is compiled
during build time, great user experience.

Team has prior experience with React and
Next.js

Having prior experience makes development
much easier.

Table 23: Next.js Features and Descriptions

7.2.6 Mobile Application
This section will cover the mobile application design details and some mockup
pictures for what the mobile application looks like. As development goes on we
will update the UI to try and make the User's experience the best possible. This
will come with some trial and error to see what works well and what buttons or
components are necessary to have on each page.

Furthermore, we cover the mobile application framework we chose to go with due
to the constraints of our project. Having a framework that allows for one code
base for both android and IOS devices would be preferred due to the team

86

Final Document Group 9 December 6, 2022

having a mix of devices for testing. Also having more compatibility never hurts,
with not having to take care of a separate code base for both IOS and Android
platforms.

7.2.6.1 Mockup pages
In this section we see some sample mockup pages that our mobile application
will somewhat look like. The UI is bound to change a little, for the users
experience sake to make our application as intuitive as possible. Application
design is very important to making our product stand out compared to similar
products. Ensuring that user’s have a good experience using the app will bring
them back for more. Being able to easily see each of your saved plants will give
consumers peace of mind towards their houseplants, and will allow them to focus
on their task at hand, be that vacation or traveling for work.

Figure 31: Application Mockup Page

7.2.6.2 React Native
We decided to go with React Native to build our Mobile Application. React Native
is very similar to React, which will allow our codebase for both mobile and web
design to be very similar. This will prove beneficial as any changes that may
need to be done will be similar on both platforms or code bases. Due to our team
having both IOS and Android devices, React native makes it easy to develop for
both Systems using the same codebase.

87

Final Document Group 9 December 6, 2022

React Native is very similar to React in that the syntax and coding style are very
similar. The main difference between React Native and React is that React uses
HTML such as <h1> or <p> tags, while React Native renders components such
as <view> or <text>. All of the logic and data flow will be very similar, resulting in
a small learning curve for the development of our mobile application.

React Native was a perfect choice for our project due to a multitude of reasons.
React Native

7.2.7 Mobile and Website pages breakdown
Our mobile application and website have some of the same pages, while also
having unique pages for just the website or just the mobile app. These pages
with short descriptions are shown in Table 24.

Pages Page Description

Landing Page Exclusively for the desktop version. The first
page the user sees when they visit our

website’s URL.

About Page Informational page about our project.

Login Users will have to provide a username/email
and a password to be granted access.

Register A new user can register for an account and
provide a name, username/email, and

password.

Plant Dashboard Users can view all their plants that are being
monitored/watered.

Individual Plant Page Once a specific plant is clicked on the
dashboard you can see in detail humidity

levels, when the plant was last watered etc.

Settings A user can edit different settings such as their
name.

Table 24: Page Descriptions

88

Final Document Group 9 December 6, 2022

7.3 Final Coding Plan
This final coding plan is intended to give an overall breakdown of the important
sub-modules and subsystems that connect the hydroponics system together.
These sub-modules and subsystems include the web and mobile applications,
microcontroller, database, and sensors.

The flowchart depicted below is a visualization intended to show the flow of data
from user input to the microcontroller and other subsystems.

Figure 32: Network Layer

7.4 Hardware Design
This section covers the description of the hardware design for the automatic
irrigation system. Each sub-section will either cover a particular module or layer
of functionality for the hardware, prototypes, or parts selection. Hardware choices
and design are important and significant because the physical interaction
between each component will affect the overall performance and function of the
automatic irrigation system.

89

Final Document Group 9 December 6, 2022

7.4.1 Hardware Block Diagram
This figure shows the intended function of the project in relation to the separate
hardware components comprising it. Vertical lines demonstrate a power
connection. This figure is a simplified approach to problem solving.

Figure 33: Hardware Block Diagram

7.4.2 Printed Circuit Board (PCB)
This section will focus on a discussion of the PCB design. This PCB will use the
ATmega as the microcontroller. A wi-fi module will be attached as well as the
necessary components needed for the sensors. Different types of pins are
required for the design of this PCB. The microcontroller is connected to voltage
and ground and has some I/O pins.

When the PCB design is ready, the gerber file is required using the design
software. The main design software utilized is Eagle, which enables 2-layer
design. This software design tool is the most useful to the team because this is
the tool utilized by Junior Design class.

The first step when designing the PCB is to model all of the important circuitry
involved. Then, use airtraces to connect the components together that are

90

Final Document Group 9 December 6, 2022

important for the circuits. Then, it is important to detangle the wires in Eagle to
make sure that the PCB operates correctly. This will put the wires in their optimal
positions in order to have the best functioning PCB given the design. Then, it is
important for the engineer to manually inspect the PCB design. The engineer is
mainly looking for the distance between the traces and wires to make sure that
short circuiting does not occur. After designing, printing the PCB may take
several weeks. It is important to check different vendors in order to get good
financial deals as well as get the PCB in a timely manner.

The table below shows a short investigation into PCB vendors.

Vendor Minimum Order Cost per PCB

allpcb 5 $5

jlcpcb 1 $2

pcbastore 1 $5

pcbgogo 5 $5

pcbway 1 $5

7pcb 3 $55

Table 25: PCB Vendors

It took four generations of PCB design to get a fully integrated circuit up and
running.

91

Final Document Group 9 December 6, 2022

Schematic Picture

Figure 34: First Generation PCB

Generation 1 was created with the MSP430 chip in mind . The software was
developed with the Energia IDE. We were having issues with software
development on the board. To save on development time, we decided to switch
microarchitectures. There were also several issues with supply. The 3.3V
regulator in this design was out of stock, and the manufacturer did not have the
MSP430 chip, so we would have to solder it on ourselves. There were also a few
issues with component libraries, which led to a several week delay. Before this
PCB came in, The second generation was ordered.

Schematic Picture

Figure 35: Second Generation PCB

92

Final Document Group 9 December 6, 2022

For the second generation, we changed the MCU, and the 3.3V regulator that
was in stock. Unfortunately, this regulator was a surface mounted component that
was too small to solder. There were also a few issues with the setup of the
ATMEGA and ESP-12. The ATMEGA was missing a crystal oscillator and the
ESP-12 was missing a trace for a GPIO pin.

Schematic Picture

Figure 36: Third Generation PCB

We were able to do extensive testing with our third generation PCB. We were
able to identify a small issue with the 3.3V regulator, which required it to have the
traces rotated. With this change, the power system is able to supply the correct
voltages. The ESP-12 was able to operate correctly. We were also able to
identify an integration error with the 5V to motor controller connection. These
changes were all included with our fourth generation PCB.

93

Final Document Group 9 December 6, 2022

Schematic Picture

Figure 37: Fourth Generation PCB

For software testing, the system was divided into different parts and then
integrated into the hardware testing. During development, the system was
divided into its “functional control” software and the user/application software.
The control software was tested by running print statements connected to various
functions that related to different hardware components. For example, when the
function to trigger the water pump was triggered, the test prints out a statement
to the console to ensure data transfer as well as actually turning on the water
pump. The wifi capability subcomponent was unique in that it was tested by
connecting the ESP-wifi chip and printing two statements between two different
consoles to make sure that communication could occur over Wifi. The second
component of the software, the user/application software, was tested by
integrating it into the already functioning wifi capability test. However, this time,
user information was entered through the application and either passed through
the hardware to trigger the performance of a particular hardware component or
gathered information either from the user or the sensor was verified to be stored
in the database.

7.4.3 Part Selection: Power and Pump
To understand the power subsystem, testing and trial and error were necessary.
This section goes into the testing used to compare the 3-5 Volt pump, and the 12
Volt pump. We also touch upon implementing the buck converter to allow use of
both pumps at the same time.

94

Final Document Group 9 December 6, 2022

Figure 38: Picture of Parts

Power Parts List

Number Part Name

1 Aquarium Tubing

2 12V Pump

3 3-5 Volt Pump

4 Motor Controller

5 12 Volt 2000 mAh Battery

6 L298N Buck Converter

Table 26: Power Parts List

3V-5V pump
The first set of tests were done with AA batteries (double A), and we wanted to
test the various voltage levels of the pumps. We started with one double A
battery, and allowed the pump to pump water from a bowl to a tupperware

95

Final Document Group 9 December 6, 2022

container sitting on a food scale, in which we measured the ml (milli-Liters) of
water the pump was able to move from the bowl to the tupperware in a 1 minute
time span. This test was run several times at each voltage level, 1.5 volts, 3
volts, and 4.5 volts. To obtain these voltage levels we connected several double
A batteries in series and attached the leads of the motor to the positive and
negative ends. The table below shows our findings.

Voltage (V) Time (m) Water moved
(mL)

battery
configuration

1.5 volts 1 minute 40 red - black +

1.5 volts 1 minute 54 red + black -

1.5 volts 1 minute 48 red + black -

1.5 volts 1 minute 55 red - black +

3 volts 1 minute 406 red + black -

3 volts 1 minute 321 red - black +

3 volts 1 minute 368 red + black -

3 volts 1 minute 291 red + black -

4.5 volts 1 minute 332 red - black +

4.5 volts 1 minute 427 red - black +

4.5 volts 1 minute 750 red + black -

4.5 volts 1 minute 404 red + black -

Table 27: 3-5V Pump Testing

96

Final Document Group 9 December 6, 2022

12V pump
We wanted to test a pump that had more voltage due to the possibility that we
would be watering multiple plants spread out over a few feet of distance through
tubing. To test this pump we used the Tenergy 12 volt 2000mAh battery we chose
below, and connected the battery, once it was fully charged, to the breadboard,
and attached jumper wires into the pump’s connector. This configuration and
testing is shown below in Table 28. To test the pump's output we followed a
similar experiment as described above. The results of our experiment are shown
in the table below. This pump only allowed power to flow through in one
configuration, so we did not have to test using the different methods as seen
above.

Voltage Time Water Moved (in
mL)

Estimated water
moved per minute

(in L/m)

12V 30 seconds 721 1.442

12V 30 seconds 531 1.062

12V 30 seconds 815 1.630

12V 30 seconds 902 1.804

Table 28: 12V Pump Testing

Given that our testing concluded that the 12 volt pump was significantly more
efficient, albeit more power hungry, we chose the 12 volt pump. Given that it
could disperse the amount of water we will require to water the plant in a more
efficient manner, thus requiring less time on power needs than the 3 volt and 4.5
volt options.
In the final week of implementing our project we determined the motor controller
and the 12V pump were one big issue. The motor controller would provide a
large inrush of current to power the 12V pump. This large inrush of current fried
our crystal oscillator which is necessary for the ATMEGA chip and the
temperature sensor to work. In switching from the 12V pump to a 5V Sipytoph
pump we were able to rectify this problem. We then replaced the crystal oscillator
and this was our final design on our PCB.

97

Final Document Group 9 December 6, 2022

We have several options for how we want the pump to disperse the water
necessary for the plant. Using the soil sensor we can use a simple approach in
which when the soil sensor determines the moisture level of the plant’s dirt is too
low (less than 50% soil moisture) the MCU would send out half pre-designated
amount of water such as 250ml. Alternatively we could use this percentage given
by the soil sensor to send out either half or a quarter of the pre-designated
amount of water. For instance if the soil sensor is reading 50% we could have
the pump, through the pump controller, distribute 125ml of water rather than
250ml.

Figure 39: Pump Testing Configuration

98

Final Document Group 9 December 6, 2022

7.4.4 Sensor Integration

Figure 40: Temperature, soil, and Wi-Fi testing

Sensor Parts List

Number Part

1 Soil Moisture Sensor

2 Temperature Sensor

3 WiFi Module

Table 29: Sensor Part List

This was the first attempt at sensor integration. The issue was identified to be
connections of the temperature sensor. On the second attempt, all the sensors
were able to output data.

99

Final Document Group 9 December 6, 2022

7.4.5 Soil Moisture Sensor Testing
In order to determine the ideal way to implement our soil moisture sensor, we
must first conduct controlled testing to understand how the sensor works without
the added complexity of the whole system.

Figure 41: Soil Moisture Sensor Testing

First, the soil moisture sensor was connected to the arduino’s analog input pin,
3.3V power pin, and the ground pin. Testing code was used to return the analog
output of the sensor. Since unitless values are returned from the analog output,
the moisture sensor will be used as a percentage. This means that the ambient
air will be measured as 0%, and being fully submerged in water will be 100%. To
calibrate for the air, the analog input of 586 was set as 0%, and for the total
submerged, the analog value of 305 was set as 100%. To test, a potted plant as
seen in Figure 38 will be used, and 1 tsp or 4.93mL of water will be added at
each step. The values will be put into a table and graphed below:

100

Final Document Group 9 December 6, 2022

of tsp analog value %

Ambient Air 586 0

Ambient Soil 519 24

1 tsp 509 27

2 tsp 499 31

3 tsp 479 38

4 tsp 415 61

5 tsp 392 70

6 tsp 384 73

7 tsp 370 77

8 tsp 360 81

9 tsp 351 85

10 tsp 347 86

11 tsp 344 87

submerged in water 305 100

Table 30: Moisture Sensor Data

This was done in about 738 mm^3 worth of soil. This soil had a plant in it, and it
was bought in a store in south Florida. This is important to note as different soils
will have different consistencies. These changes will affect the curve of water
saturation, as different soils will be able to hold different amounts of moisture
(More clay= less water, more sand= more water)

101

Final Document Group 9 December 6, 2022

Figure 42: % moisture vs mL of water added

From Figure 39, it is clear that the analog output of the soil moisture sensor is
non-linear. The known values are the outputs of when the SMS is out of the soil,
when it is submerged in water, and the values of the SMS when water is added
to the soil. The initial amount of water in the soil is unknown, but can be
estimated to be about 5mL of water, or 20% saturation. This makes sense as this
soil was outside and rain has been quite frequent. It has been estimated that
most plants like to have a soil saturation of around 20%-60%, in which this
sensor is the most sensitive. Once the soil reaches about 70% saturation, a
reduction in the increase in saturation becomes apparent, and by 50mL of water
added, excess water starts to leak out. For a healthy plant, the saturation levels
should be kept no lower than 20%, and no higher than 60%. These bounds
should not be exceeded to prevent the plant from drowning/soil degradation or
from drying out. This means that the software should recognize the analog input
values of 519-415 as the bounds to keep the water level stable. More specific
values per plant type can be determined through more testing or can be a
decision that the user of the software can make when observing their plants.

102

Final Document Group 9 December 6, 2022

7.4.7 Wi-Fi Module Testing

Figure 43:Wi-Fi Module Testing

The ESP-12F was tested using basic circuitry and an arduino. The wiring was
based off of an online tutorial which can be found in the appendix. This circuitry
was created to make resetting and flashing the module easy. The module was
supplied with 3.3V from the arduino. It is important to note that the arduino
cannot supply enough current for the module to operate at max efficiency, in this
test the Wi-Fi module will not be used to transmit any information to any web
server. The RX and TX of the module and the arduino were connected to enable
communications. The reset and flash pins of the Wi-Fi module were connected to
pins for easy resetting and flashing. The baud rate of the arduino was set to
115200, which is what the Wi-Fi module communicates without changing any of
its settings. The arduino and Wi-Fi module are communicating using SPI. The
communications between the Arduino and the Wi-Fi module will be done through
the serial monitor, which does not require uploading any code. Several
commands were used to ensure that the module worked and to record several
parameters of the Wi-Fi module. These were all typed out through the use of the
serial monitor, which does not require transmission code to be written. The
information gathered includes the MAC address, IP address, and other system
settings such as firmware version and Wi-Fi mode. Open networks can also be
searched for.

103

Final Document Group 9 December 6, 2022

Command Result

AT Checks to see proper working conditions,
responds “OK”

AT+CMODE=1 Sets the Wi-Fi mode to station mode, can
now connect to access points

AT+CWJAP="SSID","PASSWORD" Connects to an access point with it’s
network name and password

AT+CIFSR Returns the IP address and MAC address

Table 31: Wi-Fi Module Commands

The IP address was assigned to be “192.168.191.35” by the network and the
MAC address was discovered to be “58:bf:25:da:61:ac”. Every computer has a
mac address, which can be used for certain communications in certain networks.
The fact that the network assigned the Wi-Fi module an IP address means that it
was connected to a network. Since the network recognises the Wi-Fi module,
that means the module will be able to reach out to servers. This proves that the
hardware works and can send TCP requests to web pages. The connection to
the network is shown in Figure 41 from both perspectives. The top picture is from
the perspective of the network, and the bottom picture is the perspective of the
Wi-Fi module. This will allow for further testing of communication between the
Wi-Fi module and the website, which can be implemented with code and further
integrated with an API. This will fully establish a link between the PCB system
and the website which is vital for the communications with the phone interface
and data storage.

Figure 44: Proof of Connection

104

Final Document Group 9 December 6, 2022

7.4.8 Temperature Sensor Testing

Figure 45: First round of temperature sensor testing

The TMP275 is a digital sensor that uses I2C to relay sensor values. An arduino
was used with the LM75 library to read the outputs of the sensor. As seen in
Figure 42, the temperature sensor is too small for a breadboard. A piece of sticky
material was used to hold the sensor in place, and the wires that connected into
the arduino were pierced through the material. The wires had to be carefully
placed, and the sensor had to be head down by another wire. The connections
included a ground wire, a 3.3V power line, an SDL line, and a SDA line. When all
the connections were correctly implemented, the arduino was successfully able
to receive values from the sensor:

Figure 46: Temperature sensor values read

This comes out to around 80F, which is about the temperature of the room. In
order for more thorough testing to be done, a better way of securing the sensor’s
connections will have to be implemented. A suggestion would be to solder
connections to the temperature sensor which will bypass the foam all together.
This method worked in the second test, and the heat produced from the fingers
of the tester did not affect the temperature sensor.

105

Final Document Group 9 December 6, 2022

8.0 Design Integration
In this section, there is discussion on the design integration of the automatic
irrigation system project. Design integration proceeds to show an overall system
overview of this system. The sections present are controls and power integration,
data storage, system casing, and heat dissipation.

8.1 Controls and Power Integration
The MCU, sensors, the power system, the Wi-Fi module and the web server will
need to transfer information and make requests with each other. The MCU will
operate at 5V. First to be considered is the communications between the MCU
and the sensors.

The light sensor and the temperature sensor will use I2C for communications and
will operate at 3.3V. With proper setup, these sensors will send digital readings to
the MCU with two information lines, SDA and SCL. SDA will need to be able to
be pulled up to Vcc, which is 3.3V in this case. The soil moisture sensor will
operate at 3.3V and will send an analog signal to the MCU’s ADC. The soil
moisture sensor outputs a voltage of 0V-3V, and the 12 bit ADC on the MCU has
a 0V-5V input voltage. This means the analog range will not be fully mapped to
the 10-bit ADC, and will lose sensitivity. Also, data loss will occur due to noise
and quantization error information loss. Further amplification of the input signal
would fix the issue for the soil moisture sensor, which is currently the only analog
sensor.

The Wi-Fi module will operate at 3.3V. The Wi-Fi module to MCU data
connection will be through UART. This means that digital data will be transferred
between the MCU and Wi-Fi module. The Wi-Fi module will use protocol b, g, or
n to send TCP requests to the server. The system will be able to send live
information to a server, and the user can access this information whenever and
wherever they are through the phone interface, which will connect to the server
through a network. The watering system would send information to the server
through Wi-Fi every 15 seconds, and the user can check at any time and send
requests to the server, which will communicate with the PCB system. Further
experimentation will be required to bypass the PCB to server to phone interface
connection and just have the PCB and phone interface communicate. The Wi-Fi
protocol does support this measure; however, the experimentation will be done to
enable a TCP request to the embedded system to turn on the rest of its
functionality. This means of communication is to prevent the PCB system from
becoming inaccessible if the server shuts down.

The pump controller will have digital inputs to choose which pump to run (up to
two pumps can be implemented). The controller takes an analog input to
determine the power consumption of the pump. This can be a static value in the
case of this system.

106

Final Document Group 9 December 6, 2022

8.2 Data Storage
There are three places that data can be stored in this system. The first place
would be on the PCB in a memory module, the second place would be the phone
interface, and the third place would be the web server. Although each of these
pieces should have access to some memory, there are a few aspects to consider
when choosing where to store the data long term. The advantage of storing it on
the PCB would be the lack of dependance of the internet. For example, say if the
internet goes out, if there was no memory module for storing data, the
information gathered would be lost. The locality of the data is a trade off: on one
hand it does not require paying a monthly fee to have a server store the data, but
on the other hand there would be no backup. If the PCB gets fried, all of the data
would be lost. A disadvantage would be solving the data analytics question, as
analyzing the data on the PCB would have power drawbacks. A compromise to
balance out the pros and cons would be to have enough memory on the PCB to
store enough information to prevent a lapse in the internet resulting in loss of
data. By looking at the digital sensors of section 3, a good assumption would be
that a total of 4 sensors would be used and each of them output 12 bits. This will
make for 48 bits, or 6 Bytes. The MCU will be set to collect data every 15
minutes, which equates to 96 times a day. This will result in about 576 Bytes of
data that will be collected in a day. A 4 kilobyte memory module will be able to
hold a little more than 7 days worth of data. This amount of storage on the PCB
for data should suffice for emergencies. In the end, we decided to have the PCB
system only remember the last set of values, so storage was not an issue.

Next, the storing of data was considered on the phone application. On the cell
phone, power consumption is less of an issue than on the PCB. It also contains
the computational power to do data analysis. The PCB part of the system and the
phone interface could become independent of the web server using the ad hoc
feature of Wi-Fi. These reasons make it a better long term storage than the PCB,
but there are still some drawbacks. The application would have to be running in
order to execute commands and to request data. This would mean the alert
system would have to be located on the PCB to warn the user about certain
conditions. These communications between the phone interface and the PCB
would be unpredictable due to the runtime of both. The third option of storing the
data long term is to store the data on a server. Data servers have very high
uptime, so the PCB system and the phone interface would be able to access it
any time. The calculations and storage can be done on the server, which will
have the most real time data of the three methods discussed. It also minimizes
the computations the PCB system will need to use, which will decrease the
amount of power it needs to use. The phone interface can also be simpler and
more compact; taking up less of the phone’s storage. This would also make it
easier to update the commands to the PCB. The request to change settings
would go from the phone to the server, and the next time the PCB system
initiates a TCP request, the server can send the command update during that
communication. The system would at most have to wait 15 minutes for an
update, but the scale of the project, the time to update does not pose any

107

Final Document Group 9 December 6, 2022

significant threat to the health of the plants. In conclusion, the best way to
integrate the data storage of these systems would be to have long term storage
on a webserver and to have at least 4 KiloBytes of storage. This was achieved
with a database.

8.3 System Casing
This system has a casing to protect the electrical components from physical
abrasions and potential water contact. A few constraints will have to be
considered first before choosing the materials for the casing. First is the
placement of the sensors. If a light, temperature, and moisture sensor are
implemented, the placement of these sensors will affect casing design. The
moisture sensor needs to be in the soil to operate, so this sensor will not be in
the casing. This means that there will have to be an opening in the case that
allows the moisture sensor wire to still be connected to the PCB, which will
reduce the waterproofing. The temperature and the light sensor will most likely
be implemented on the PCB. This means that both sensors will be measuring the
microclimate of inside the casing and a few adjustments will have to be made to
ensure that the climate inside and outside the casing is equivalent. At least the
top of the casing will need to be clear to reduce the amount of light distortion.
The case will also have to be breathable to allow the temperature inside the case
and outside the case to equalize. With these constraints in mind,

Figure 47: Final Container

The casing materials we considered would be 3D printed plastic, laser cut acrylic,
or laser cut wood as seen in Figure 44. A 3D printed casing will allow for total
control of design and cheap printing cost, but it is also not waterproof and is not
translucent. This would have to be fixed by treating the case with some
waterproofing material The second option would be to use laser cut acrylic, which
would only need to be waterproofed at the seams and has translucent sheets.
The disadvantage is that the casing will have to be designed with the limitation
that acrylic comes in sheets, which will limit cutting to basic shapes. This does
have the added benefit of being able to make clean side panels as seen in Figure

108

Final Document Group 9 December 6, 2022

43, which is much harder to do while 3D printing. The advantage of using wood
would be the cheap material costs, but the issue with wood is that it would be
damaged by long term contact with water.

The battery will have to be accounted for as it makes sense to allow for the PCB
and battery to fit in the same water resistant container to allow for overall
implementation simplicity.

8.4 Heat dissipation
Heat dissipation is a key issue with electronics. “According to Newton’s law of
cooling, the heat dissipation rate is proportional to the temperature difference
between the body (electronic device) and the surroundings.” (Heat Dissipation in
Electronic Devices, Cadence System Analysis) The parts of this project that will
consume power need to have their heat dissipation considered. The main parts
include the power system, sensors, MCU, and Wi-Fi module.

The MCU’s power draw will come from its high frequency oscillators which are
required for I2C and SPI communications as well as timing 15 seconds between
sending data to the server in a non testing environment. The current draw will
increase 135uA/Mhz. These communications do not have to be particularly fast
or accurate, so the RC clock (which uses a lot less power) can be used for the 15
minute timer while the more powerful oscillator can be used for communications,
which should last less than a minute. Generally, the MCU will not need to operate
continuously, and will not have to use a lot of computing power to solve
complicated issues. The maximum operating temperature of the MCU is 105C,
which is well above any ambient temperatures. If some features remain unused
or are designed around, low power modes can be utilized for the entire runtime
or switched to when necessary.

The sensors ended up drawing less than 100uA. Since they only operate for a
short time and with so little power, the heat produced by them should dissipate
naturally without any additional heat sinks. The sensors chosen all operate under
ambient temperatures, so a really hot day will not cause acute damage to the
sensors.

The Wi-Fi module that was selected for heat analysis was the ESP-12F. This
module will operate at a voltage of 3.3V and depending on the Wi-Fi protocol, will
draw different amounts of current. At most, to transmit with protocol 802.11b, will
typically take 170mA of current, and at the least to transmit with protocol 802.11n
will typically take 120mA of current. This means at most this module will
consume 0.56W of power at most. The use of this module needs to be
considered. This module will communicate with the server every 15 minutes, so
according to the data sheet, most of the time, the module should be in
“Deep-Sleep”, which typically draws 1uA. The module will only transmit for
maybe 0-3 seconds since the system will typically only transfer a few bytes
during the interval. Also, the operating temperature of this module is 125C, which
is way above ambient temperatures, so the environmental temperatures should

109

Final Document Group 9 December 6, 2022

not be an issue. With these considerations in mind, the Wi-Fi module will not
need any additional heat dissipation.

The wires connecting mobile components should have the appropriate AWG to
prevent overheating from the cable being too small. If the AWG is up to
standards, then the wires should not overheat. In the event of a short circuit,
unwanted current can find its way through the circuit and start heating up
components.

Figure 48: Shutdown current VS Temperature for the TMP275

Some of the components, like the TMP275 as seen in Figure 45 will actually shut
off when approaching their maximum operating temperature. For this component,
the damage caused by the increase in temperature will be minimized by these
safety features, but the PCB connections have little to no protection from heat
caused by a short circuit. The addition of small current limiting fuses will limit
damage from too much current to just the fuses. This will not only prevent
damaging short circuits, but also from overheating due to a malfunction.

8.5 Electrical Device Protection
There was an issue with connecting the sensor system with the power system.
All of the sensors and the Wi-Fi module were tested with power from the Arduino
Uno’s 3.3V power pin. This was able to provide just enough current for the
system to work. Once this system was connected to the power system, which
consisted of the 12V battery and a buck converter that converted the 12V to 3.3V,
the connections to and internal components of the Wi-Fi module were fried.
These were traced back to the Vcc+ of the module. The Buck converter steadily
read 3.3V, so the issue was most likely caused by excess current due to
improper grounding. To prevent vital parts of the system from being fried,
protective devices will be used on the PCB to prevent damage. The devices that
are needed to be protected are DC and low voltage. These include the Wi-Fi
module and the MCU. The Wi-Fi module at the most will operate at no more than
500mA and the MCU will at most operate at 2mA. If required, that means a 250V
500mA fuse can be implemented for the Wi-Fi module and a 125V 2mA fuse can

110

Final Document Group 9 December 6, 2022

be implemented for the MCU. These are usually expensive and should be used
as a last resort. Most fuses are more expensive than the components that need
to be replaced, so financially fuses do not make much sense. Another good way
to protect devices would be to ensure proper grounding, which should be
implemented in the PCB design phase. Spare parts are required for testing and
making sure there are back ups when faults do happen.

8.6 Project Operation
This section will give users an in-depth look into their autonomous plant watering
system. From describing ideal water pump placement, tube placement, and
software layout the consumers will have everything they need to operate LeafIt!

8.6.1 Introduction
This automatic irrigation system should contain all of the necessary apparatus to
water various amounts of indoor and outdoor plants. No programming, electrical
work such as soldering, or construction is required for the function of this
automatic irrigation system. The only preparation required for use of this
automatic irrigation system is adjusting the length of the vinyl tubing to the
desired length of the user as well as downloading and operating the required
application for control of this system through their Android phone. This automatic
irrigation system contains 15 meters of vinyl tubing, a power and control box
containing electronics necessary for the function of this system, moisture and
temperature sensors necessary to gather data about the health of the user’s
plants, and a water pump to submerge into an independent source of water for
the user’s plants.
Note that the automatic irrigation system will not function properly unless the
water pump is submerged in an adequate amount of water; most failures in the
system will be due to inadequate amounts of water from the water source.
Failures in the system are most likely due to low power or compromised power
electronic components or input lag due to a faulty Internet connection slowing
down the transfer of control signals between the user’s Android phone and the
automatic irrigation system. Less likely but more catastrophic failures in the
system will mostly likely be due to moisture damage in the compromised power
and control box or damaged sensors and water pump.

8.6.2 Setup/Placeholder figures of pictures depicting proper
setup

1. Fill a container with water that can adequately submerge the system’s
water pump. The wire connections between the power and control box,
the sensors, and the water pump are purposefully long. Though the power

111

Final Document Group 9 December 6, 2022

and control box has adequate insulation and moisture protection, it is
advised for the user to use the longer wire connections to prudently place
the water pump, power and control box, and plants with submerged
sensors a fair distance away from each other to minimize the risk of
moisture and environmental factors damaging the system.

2. After determining the desired number of irrigated plants, use scissors to
cut the adequate lengths of vinyl tubing needed to irrigate these plants.
One end of the tubing will be secured to the water pump while another end
will be aimed at the user’s plants for irrigation. Take adequate precaution
to secure one end of the vinyl tubing to the desired plant. Note that though
this system is designed to support a large number of the user’s plants, the
strength of the flow of the water will be affected by the length of the vinyl
tubing used for irrigation. If the chosen length of the vinyl tubing is too
long, this may negatively affect the strength of the flow of water required
for the function of this system.

112

Final Document Group 9 December 6, 2022

Figure 49: Installation Example

8.6.4 Control Instructions/Display/Chart of Water Settings
1. After completing the previous setup steps, plugging the power control box

into a wall outlet, and downloading the necessary app to control the
system, the next step necessary for function is to actually control the
automatic irrigation system through the user’s phone. The system’s phone
application will give three different options with customized care settings
for three different types of indoor or outdoor plants. The three different
options and their function are depicted in the chart below. Controls and
preferences can easily be canceled and changed by the user through the
onscreen prompts. However, to avoid software issues, the user is advised
to not change the user preferences for their plant’s irrigation when the

113

Final Document Group 9 December 6, 2022

system is in the process of watering the plants. Please wait for the system
to finish its current process before changing the control preferences.

2. During ideal functionality of the system, the system will automatically
irrigate the user’s plants when the sensor finds less than ideal moisture
levels required for the health of the type of plant entered by the user. The
system will also alert the user of less than adequate temperature levels
required for the health of their plant.

Figure 50: User Dashboard Example

114

Final Document Group 9 December 6, 2022

User Water Control Moisture and
Temperature Settings
Dependent on Type

Watering
Frequency

Sample Types of
Plants

Tropical Plant High moisture and high
temperature

Frequent Palms, Elephants Ear,
Bromeliad, Arthurium

Temperate Plant Middle moisture and
middle temperature

Less frequent Ferns, Snake Plants,
Orchids, Evergreens

Cactus/Succulent Low moisture and high
temperature

Infrequent Jade plants, Aloe,
Cactus

Table 32: Plant Type Watering Settings

8.7 Overall Schematic
This section details a flowchart of the overall schematic detailing the operation of
this prototype automatic irrigation system. It also serves as a summary of the
overall system.

The table below details the parts chosen for the prototype.

Selected Part or Function Purpose

MERN Cross platform development stack

Vercel Hosting platform

ATmega MCU

L298N Motor controller

Tenergy 12V Battery

Valefod Buck Converters Manage voltage

TMP275 Temperature sensor

Songhe Sensor Soil moisture sensor

ESP-12F Wi-Fi Module

6V Mini Brushless Pump Water Pump
Table 33: Chosen Parts for Prototype

115

Final Document Group 9 December 6, 2022

The figure below is the flowchart representing our overall schematic of every
component present in our design. The three main modules are the Control
Software and Hardware, UI Software and Communication Hardware, and Power
Module. The first module is functionally responsible for the control of the actual
function of the automatic irrigation system. The second module is responsible for
the communications and initial transfer of data between the user and the system
itself. The last module is required for actually powering the unit as a whole.

Figure 51: Schematic Flowchart

Each of these sub modules are responsible for fulfilling the basic requirements
that we set out in the beginning of this project.

Control Software and Hardware

- The system has two sensors to monitor soil moisture of the plant and
temperature.

- The system used a water pump to draw water from a reservoir of water
outside of the system i.e., a bucket or pot of water.

UI Software and Communication Hardware

- The system automatically waters one plant using a water pump with
amounts of water based on one of the three possible types of plants that
the user inputs, the temperature, and the moisture present in the soil of
the plant.

116

Final Document Group 9 December 6, 2022

- The program of the system was able to compile and correctly output the
expected actions deemed by the user input.

Power Module

- The power system was capable of delivering at least 12V DC.
- The power supply was capable of powering the sensors.
- The power system has current leakage protection.

117

Final Document Group 9 December 6, 2022

9.0 Administration
The concluding section details administrative sections needed for the
understanding of this project. This section contains project development
timelines, budget and finance tables, division of work tables, and an explanation
to important project design issues.

Below is the tentative timeline of the project:

Task Start Due

Senior Design
1

Initial Divide and
Conquer

May 18, 2022 June 3, 2022

Updated Divide and
Conquer

June 8, 2022 June 17, 2022

60 Page Draft June 15, 2022 July 8, 2022

100 Page Report
Submission

July 9, 2022 July 22, 2022

Final Document July 23 2022 August 2, 2022

Senior
Design 2

Assemble Prototype 9-29 11-21

Testing and
Redesign

9-29 11-21

Finalize Prototype 10-31 11-21

Peer Report 11-30 12-6

Final Documentation 11-30 12-6

Final Presentation 11-3 11-30

Table 34: Project Timeline

118

Final Document Group 9 December 6, 2022

Below is a tentative timeline of the software development of the project:

Software Development Timeline

Task Start Date Finish Date

Deploy basic website to
ensure hosting is
working properly

July 9, 2022 July 15, 2022

Design/mockup website
and mobile pages

July 5, 2022 July 31 , 2022

Set up database on
MongoDB

August 3, 2022 August 10, 2022

Code core pages of the
website

August 10, 2022 August 30, 2022

Code core pages for
the mobile application

August 20, 2022 September 5, 2022

Refine pages for both
web and mobile

September 5, 2022 September 15, 2022

Thoroughly test and
ensure all code is

covered

September 15,2022 September 25, 2022

UI update / UI touch up September 26, 2022 October 5, 2022

Finalize web and
mobile application

October 6, 2022 October 21, 2022

Table 35: Software Development Timeline

119

Final Document Group 9 December 6, 2022

9.1 Budget and Finance
Below is an estimate of the budget of this project:

Subsystem Item Quantit
y

Vendor Estimated Cost

Power
Subsystem

12V
rechargeable

Battery

1 Amazon $22

MCU
Subsystem

TBD TBD TBD TBD

Water
Reservoir

Tupperware 1 Walmart $10

Tubing Aquarium tubing 1 Amazon $2

Temp
Sensor

Temp sensor
probe

1 GikFun $3

Moisture
Sensor

Soil Sensor 1 Almocn $3

Water Pump 12V DC Motor 1 Amazon $16

Voltage
Step down

Buck Converter 6 Amazon $11

Pump
Control

Pump Controller 1 Qunqi $7

Pump and
tube combo

pump and tube
combo

4 Amazon $12

Table 36: Proposed Budget

120

Final Document Group 9 December 6, 2022

Below is the actual bill of material, which keeps track of spending:

Part Name Description Order Date Receive Date Cost

LM2596 Buck Converter 6/26/2022 6/28/2022 $10.99

L298N Motor Drive Controller Board 6/26/2022 6/28/2022 $6.99

Tubing Penn-Plax Standard tubing 6/26/2022 6/28/2022 $1.73

Tenergy NiMH Battery Battery: 12V 2000mAh 6/26/2022 6/28/2022 $21.99

Pump

12V Mini Brushless AC Water

Pump 6/26/2022 6/28/2022 $15.96

ATMEGA328P-PU Microcontroller Chips 10/24/2022 11/1/2022 $19.50

Pump and Tubing

Combo pump and tubing kit (3-5V

pump) (4 Pumps) 6/26/2022 6/28/2022 $11.39

12V Power Supply 9/21/2022 9/22/2022 $8.89

Switch 10/16/2022 10/17/2022 $7.99

Songhe Camp MS Soil Moisture Sensor 7/6/2022 7/7/2022 $10.99

ESP8266-12F Wifi Module 7/6/2022 7/7/2022 $8.99

TMP275AIDRG4 Temperature sensor 7/11/2022 7/14/20-22 $11.84

OPT4001YMNR Light sensor 7/11/2022 7/14/2022 $11.14

MSP430FR2475TRHA MCU 7/12/2022 7/15/2022 $17.93

TPS561201DDCR 3.3V voltage regulator 9/28/2022 10/3/2022 $2.07

NLCV32T-3R3M-EFR Inductor 9/28/2022 10/3/2022 $1.08

CON-SOCJ-2155 Power Jack 9/28/2022 10/3/2022 $1.00

1N4007RLG Diodes 9/28/2022 10/3/2022 $4.44

shipping $7.99

L7805CV 5V voltage regulator 10/24/2022 10/27/2022 $3.45

PJ-102A Power Jack 10/24/2022 10/27/2022 $3.50

TB002-500-02BE Fixed Terminal Blocks 10/24/2022 10/27/2022 $3.90

shipping $7.99

PDSE1-S12-S3-D 3.3V voltage regulator 10/31/2022 11/3/2022 $15.60

shipping $7.99

121

Final Document Group 9 December 6, 2022

Pin Header 10/24/2022 10/26/2022 $5.00

ESP Dev Board 10/23/2022 10/25/2022 $28.00

Capacitors 11/3/2022 11/5/2022 $6.00

Crystals 11/3/2022 11/5/2022 $5.50

TMP275AIDRG4 Temperature sensor 10/7/2022 10/12/2022 $25.74

PCB 1 9/15/2022 9/29/2022 $40.02

PCB 2 10/10/2022 10/17/2022 $11.05

PCB 3 10/23/2022 10/30/2022 $40.09

PCB 4 11/3/2022 11/10/2022 $56.10

Total Cost $442.83

Table 37: Bill of Materials

9.2 Division of Work
The table below breaks up the project into different tasks and lists a Lead
Designer, and an Integrator. The Lead Designer is responsible for the overall
design, and the Integrator looks past just the design and takes other systems and
or subsystems into consideration and will recommend adjustments to the lead
designer’s work, in order to ensure proper implementation with the system as a
whole.

Task Lead Designer Integrator

Power Supply Kyle Francis

Designing Applications Adam Adam

PCB Design Matthew Matthew, Adam

Sensor integration Francis Kyle

MCU logic design Matthew Matthew, Adam

Coding Applications Adam Adam, Matthew

Power distribution Kyle Francis

Hardware Testing Kyle, Francis Matthew

Code Unit Testing Adam Adam, Matthew

PCB to Website
Communications

Francis Adam

Table 38: Division of Work

122

Final Document Group 9 December 6, 2022

9.3 Issues to overcome
This section will go in-depth with any issues we have as we go through the
implementation stages. It will touch upon software issues, hardware issues, and
or unforeseen constraints that were not taken into consideration earlier on in the
project design.

9.3.1 Project Design Problems
All design processes will experience several problems, may it be in the initial
design process itself, the implementation stage, or the testing stage. The
problems below have been documented as a record of process for the project as
well as to demonstrate an understanding of issues that may have been created
and how the team learned from them.

9.3.2 Initial Design Process Issues
Due to irrigation being a relatively simple problem, one of the main issues dealt
with was the potential issue of over design. As engineers, it is very easy to
approach this with a “cool feature” mindset, or focusing the design of our system
on a wish list of features that we as a team may find enjoyable to implement.
However, through market and industry research, we began to understand the
danger of potentially over designing a concept for a problem that is relatively
simple. The complexity of the design should really only be proportional to the
complexity of the problem because over design can lead to issues like difficulty in
implementation in comparison to the complexity of the problem as well as an
unreasonable increase in overall cost.

Another potential issue is the implementation of the chassis design. Though the
use of a chassis containment unit was utilized in the DIY models presented in the
industry research, the actual implementation of a prototype unit demonstrated
how a chassis design may not be preferable functionally, though it enhances the
aesthetic value of the overall automatic irrigation system. This is because it
greatly weakens the strength of the stream coming from the water pump since
the vinyl tubing is hung from the rafters of the chassis containment unit.
Therefore, the more modular “Snip N Drip” design will be used for this automatic
irrigation system. However, if the implementation of the current system is on time
and if the implementation is not too difficult, a chassis containment unit could
possibly be created for this design in order to add more aesthetic value to the
automatic irrigation system as an optional add on to the system. However, the
vinyl tubing will have to be placed in such a way so that it does not disrupt the
function of the water pump. Another DIY model prototype related issue is the
potential issues between the voltage needs of the water pump and the voltage
requirements of the MCU PCB. The DIY model prototype that was utilized
acknowledged the vast differences in these two component’s voltage
requirements. The water pump needed a voltage of about 12V but the Arduino
could only tolerate 5V. Therefore, the kit company provided a “shield” to attach to

123

Final Document Group 9 December 6, 2022

the Arduino that could bridge the gap between these two components. By
acknowledging the solution that the kit company implemented in their design, our
team will have to overcome this obstacle through a design of our own. Similar to
the Arduino which is essentially both a power and MCU PCB, our design utilized
one single PCB with a power sub-system and MCU sub-system.

Another issue that arose in designing our project was the possibility of water from
the pump getting on to the PCB. This was fixed with the implementation of our
storage box, laser cut in the UCF TI workshop. This allowed us to ensure all
sensitive electronics were kept in a container that would minimize the exposure
to water from the pump. This box was designed with holes in every side to
ensure adequate heat sink, as well as for sensor and pump connections to exit
from the PCB.

9.3.3 Testing Stage Issues
A common issue when testing was dealing with components that are too small to
use a breadboard with. The proper way to deal with this would be to buy a board
that lets the user solder the piece onto it, and then it has leads that connect it to
breadboard compatible testing sites. This would require soldering tools and the
part to pcb converting piece to operate. A work around was devised that was
cheap and simple for testing parts. The way to test small parts, such as the Wi-Fi
module, was to take a piece of insulation foam and place the module on top. The
connection wires would then be fed through the connection leads of the Wi-Fi
module and into the foam to keep them in place. This method was successful
when testing out the Wi-Fi module, but had limited success when testing out the
temperature sensor. The temperature sensor was smaller, had little surface
contact with the foam, and did not have holes to put the wires in. An additional
piece of sticky adhesive was added to keep the temperature sensor in place and
the wires were placed inside the foam touching the leads of the sensor. This
method was not consistent, but eventually it worked enough to establish
communications with the sensor. The light sensor is too small for this method and
it will be a requirement to develop another method of testing.

Another issue when testing was short circuits, which caused massive amounts of
current to pass through a device which melted the internal parts, rendering the
part inoperable. This was caused by the solutions presented in the previous
paragraph. This happened with the Wi-Fi module when connecting the power
system to the sensor system. The short existed before when testing with the
Arduino, but it could not supply enough power, so the short went undetected.
This issue did not result in any setbacks, as there are three additional spare
Wi-Fi modules that could be used. This affects our design process by making
sure that the communications and sensor part of the PCB will have limited power
going to it as to prevent device failure. New testing methods will need to be
implemented, which include soldering connections to the part and bypassing any
foam testing structures.

124

Final Document Group 9 December 6, 2022

The first major design change occurred when we switched from the MSP430 chip
to the ATMega chip. This was done to save large amounts of development time.
The ATMega and the ESP-12E were developed on the same platform which
allowed for quick integration. This freed up time to work on feature creation.
Another issue with the MSP430 chip was it was too small to solder by hand,
which we would have had to do with our PCB manufacturer. The bootloader and
software uploading technique was also untested, but was done with the ATMega
chip already. Another design aspect that changed several times was the
numerous changes to the 3.3V system. Our first design had a part that was out of
stock until late December. Our second design had a voltage regulator that was
too small. With size and availability as important specifications, we switched to
our final 3.3V regulator.

In the last week of our project we received our final iteration of our PCB. This 4th
generation PCB was the final possible PCB design and we were confident it
would work. We soldered all of our components to the PCB and plugged all of the
sensors in. We connected power and heard the pump run initially. Soon after this
trial run, the PCB stopped working and we thought we had wrong traces or
connections. We learned that the motor controller was supplying too much
current due to the current inrush when the motor would turn on. This caused our
Crystal oscillator to be fried, and thus our ATMEGA chip would not function
properly. Once we switched to a good Crystal oscillator and from a 12 volt pump
to a 5 volt pump our PCB worked flawlessly.

125

Final Document Group 9 December 6, 2022

10.0 Conclusion and Summary
Our project provides amateur gardeners with an easy to install watering system
to their already existing garden to automate the watering process and to record
the climate the plants are in as well as control how much water their plants get.
This will allow the user to take extended vacations and not have to worry about
forgetting to water their favorite plant. The analysis tools that will be provided can
be used to troubleshoot potential issues with the plant, such as them not
receiving enough sunlight or water.

This project contains an apparatus that waters plants and senses the
environment, with an included website and phone app that focuses on long term
health of the plants. A record of the environment as well as actions taken by the
system are logged and analyzed. The user can adjust the type of plant they are
using with our system. Below is the completed system:

Figure 52: Final System

All basic goals were able to be reached. The PCB can successfully measure the
soil moisture and temperature. This data was able to be processed by the MCU
and was able to be sent and stored on the website. The user was able to create
a new account and create and add plants on the website or mobile application.
The data was successfully sent to the right user and plant.

126

Final Document Group 9 December 6, 2022

11.0 Appendix

References
1. Angular, https://angular.io/docs.

2. Author Cadence System Analysis, et al. “Heat Dissipation in Electronic
Devices.” Cadence, 3 Feb. 2022,
https://resources.system-analysis.cadence.com/blog/msa2022-heat-dissip
ation-in-electronic-devices.

3. “Different Wi-Fi Protocols and Data Rates.” Intel,
https://www.intel.com/content/www/us/en/support/articles/000005725/wirel
ess/legacy-intel-wireless-products.html.

4. “Getting Started.” React, https://reactjs.org/docs/getting-started.html.

5. “I2C Temperature Sensors Derived from the LM75.” I2C Temperature
Sensors Derived from the LM75 - Arduino Reference,
https://www.arduino.cc/reference/en/libraries/i2c-temperature-sensors-deri
ved-from-the-lm75/.

6. “Introduction: Vue.js.” Introduction | Vue.js,
https://vuejs.org/guide/introduction.html.

7. “IP Ratings.” IEC,
https://www.iec.ch/ip-ratings#:~:text=Electric%20and%20electronic%20eq
uipment%20deteriorate,are%20widely%20used%20throughout%20industr
y.

8. “Microcontrollers - MCU.” Mouser,
https://www.mouser.com/c/semiconductors/embedded-processors-controll
ers/microcontrollers-mcu.

9. “New Products.” Analog | Embedded Processing | Semiconductor
Company | TI.com, https://www.ti.com/.

10. “Next.js.” Getting Started, https://nextjs.org/docs/getting-started.

11. Rolyon. “Azure Documentation.” Microsoft Docs,
https://docs.microsoft.com/en-us/azure/?product=popular.

12.Santos, Rui, et al. “Best ESP8266 Wi-Fi Development Board - Buying
Guide 2020.” Maker Advisor, 31 May 2021,
https://makeradvisor.com/best-esp8266-wi-fi-development-board/.

13.Tstef, and Instructables. “ESP-12E (ESP8266) with Arduino Uno: Getting
Connected.” Instructables, Instructables, 25 Mar. 2019,
https://www.instructables.com/ESP-12E-ESP8266-With-Arduino-Uno-Getti
ng-Connected/.

127

https://www.ti.com/

Final Document Group 9 December 6, 2022

14.Website Redesign Checklist: 5 Trends to Consider,
https://topdesignfirms.com/web-design/blog/website-redesign-checklist.

15. “Xamarin: Open-Source Mobile App Platform for .NET.” Microsoft,
https://dotnet.microsoft.com/en-us/apps/xamarin.

16. “Components and Props.” React,
https://reactjs.org/docs/components-and-props.html.

17. “The Developer Data Platform.” MongoDB, https://www.mongodb.com/.

18. “Firebase Documentation.” Google, Google,
https://firebase.google.com/docs.

19. “Flutter (Software).” Wikipedia, Wikimedia Foundation, 19 July 2022,
https://en.wikipedia.org/wiki/Flutter_(software).

20. “Flutter Documentation.” Flutter, https://docs.flutter.dev/.

21. Inc., Apple. Swift.org, https://www.swift.org/documentation/.

22. Ipřiro,
https://www.ipriro.com/products/sPlant-Big-Power-Automatic-Drip-Irrigatio
n-Kit-Indoor-Plants-Self-Watering-System%40Tex%20Watson%20%EF%B
F%BC%20you%20dont%20get%20this.

23.Jacobs, David. “Compare Low-Power Wi-Fi Protocols and Their Roles in
IOT.” SearchNetworking, TechTarget, 16 Oct. 2020,
https://www.techtarget.com/searchnetworking/tip/Compare-low-power-Wi-
Fi-protocols-and-their-roles-in-IoT.

24.Maker, Orion, and Instructables. “IOT Automatic Plant Watering System.”
Instructables, Instructables, 5 Nov. 2017,
https://www.instructables.com/IoT-Automatic-Plant-Watering-System.

25.“MySQL Documentation.” MySQL, https://dev.mysql.com/doc/.

26.R, Kamal. “Bluetooth vs. WIFI - Which Is Better for Connectivity for IOT
Development?” Top Mobile App Development Company,
https://www.intuz.com/blog/bluetooth-vs-wifi-connectivity-for-iot-developm
ent.

27. “React Native.” Wikipedia, Wikimedia Foundation, 29 July 2022,
https://en.wikipedia.org/wiki/React_Native.

28.Vercel. “Introduction to Vercel.” Vercel Documentation, Vercel,
https://vercel.com/docs.

29. “What Is Mysql? & Why It Is the World's Most Popular Open Source
Database.” MySQL Tutorial, 11 Apr. 2020,
https://www.mysqltutorial.org/what-is-mysql/.

128

Final Document Group 9 December 6, 2022

30.“What Is React Native? Complex Guide for 2022.” What Is React Native?
Complex Guide for 2022, https://www.netguru.com/glossary/react-native.

31. “NiMH Battery Charging Basics.” NiMH Battery Technology, How to
Charge Nickel Metal Hydride Batteries Tutorial for Design Engineers, as
Well as NiMH Chargers., 6 June 2022,
https://www.powerstream.com/NiMH.htm.

32.“Houseplant Statistics in 2022 (Incl.. Covid & Millennials).” Garden Pals, 9
May 2022, https://gardenpals.com/houseplant-statistics/.

33. “97/204158 DC : Draft Apr 1997.” SAI Global Store, 23 Nov. 2012,
https://infostore.saiglobal.com/en-us/standards/97-204158-dc-draft-apr-19
97-253987_saig_bsi_bsi_589595/.

34. “IEC.” IEC 60896-11:2002 | IEC Webstore | Battery, Energy Efficiency,
Smart City, 4 Dec. 2002, https://webstore.iec.ch/publication/3849.

35. “IEC.” IEC 62485-2:2010 | IEC Webstore | Rural Electrification, Energy
Storage, Battery, Energy Efficiency, Smart City, 16 June 2010,
https://webstore.iec.ch/publication/7091.

36. “IEEE SA - IEEE Recommended Practice for Sizing Lead-Acid Batteries
for Stationary Applications.” IEEE Standards Association, 5 June 2020,
https://standards.ieee.org/ieee/485/6726/.

129

https://webstore.iec.ch/publication/3849

