
TrashPorter –
Autonomous Trash Robot

Dhanesh Singh, AnnaBelinda Zhou,
Jourdan Callahan, Andy Kuang

Dept. of Computer Science and Electrical
Engineering, University of Central Florida,

Orlando, Florida, 32816-2450

Abstract — Autonomous robots are a growing asset in
people’s daily lives to make essential duties more
convenient. This paper will focus on the methodology on the
mechanics of the components that contribute to the system
integration. The robot consists of multiple DC motors that
run on a 12 V 2A power source. These components are
managed through our printed circuit board which acts as
one of many powerful microcontrollers. The intelligent
mounted camera on the robot processes the data it visualizes
using computer vision that takes in different colors and
shapes to identify and learn objects through a machine
learning algorithm.
Index Terms —  DC motors, Autonomous robots, System

Integration, Microcontrollers, computer vision

I. INTRODUCTION

The goal of the autonomous robot is to move from one
stationary area to another when directed so as to collect
trash from a desired location. This can be achieved in
two ways, the first being manually controlled, and the
other through an autonomous mode, both methods are
done through a mobile application that connects to the
WI-FI module on the microcontroller.

Starting off with the idea of the project, it can be easily
inferred that this project was inspired by other devices
that are currently popular on the market as within the
recent decade there has been an increase of autonomous
robots within people’s homes. This brought up different
variations of that idea and seemed like a robot to collect
trash from rooms is quite unique. Combining the building
of an autonomous vehicle as well as the collection of
disposable items makes this project a good challenge for
the knowledge the team has gathered throughout the
years.

Determining the correct motor to use for this project is
crucial for the success of getting the robot to function and
traverse correctly. The load of the robot would have to be
calculated and be able to handle the max capacity, as well
as having enough power to each motor to operate in all
conditions. Next, the motor drivers will have to be picked

to handle the amount of current drawn from the power
supply as well as managing the heat that is generated
from the motors. The motors mounted on the device will
control the wheels, which are made from wood that have
been laser cut, these wheels will be covered in an
insulated material to increase the amount of traction for
it. This is all mounted on a base plate that gives the main
body more stability as well as more volume to mount
other components like motors and circuitry.

For a device as sensitive as this, many precautions need
to be installed and monitored so it can know when it has
reached its limit on capacity. For this issue there will be a
weight sensor to determine when the maximum load has
been reached. The scale will be installed at the bottom of
the bin where it will take a zeroed-out value, and once
the max capacity weight has been reached it will flag that
it cannot carry any more items.

For the robot to determine where objects are there will
be a mounted camera that reads in the input of its
surroundings and learns what targets are considered
important. This camera uses a machine learning
algorithm that looks for the shape, size, and color to
distinct one object from another. The camera can learn
and remember multiple objects, and once learned, it can
recognize the object from a long distance away. The most
important trait that makes these processes as successful
as possible is the distinct color, similar colored and sized
objects can possibly be mistaken for what it thinks is the
learned object, which could confuse the computer vision
device. Using the information gathered by the camera,
we can have it work with the microcontroller and motor
to have the robot start moving towards the desired target
being the trash it needs to collect.

The microcontroller is the foundation of the operations
for this robot. It processes all the data that it receives
from the environment to determine what it should do,
then communicates to the other components to execute
the task at hand. A printed circuit board was produced to
take the place of the microcontroller and has the
components that are quite similar to one, it has the motor
drivers, heat sink, processor, WI-FI module, and many
more connective components to make this run smoothly.

II. STANDARDS AND CONSTRAINTS

There were specific standards and constraints that were
needed to be followed to determine that our goal was
reached for this project.

A. Standards

The motor drivers that were installed use a different
standardized library on our IDE because of the use of
multiple motors functioning concurrently. This new
library needed to be learned from the standard library for



motors as the logic will be the same, but the method of
the functionality is slightly different. The motors will
communicate with the circuit board through SPI
communication.

B. Constraints

Some of the constraints that are needed to be
considered are supply shortages within the current
market, this will increase price and delays as parts are not
readily available. These delays are difficult on the project
because there is a limited amount that this needs to be
completed by. Referring to the project, a factor that needs
to be considered is the total weight that the robot can
carry as there is a threshold it can physically hold for
capacity as well as the limitations of how much weight it
can hold.

III. HARDWARE IMPLEMENTATION

A. Stepper Motors

Under max load (<= 15 lbs), the Trashporter should
move at a speed of 4 inches per sec, which is about 0.10
m/s. To achieve this the necessary calculations were
performed.

1. Desired Speed: v = 4 in/sec = 0.10 m/s
2. Max Weight Under Load: M = 15 lbs = 6.8kg
3. Wheel Radius: r = 0.05m
4. Wheel Speed: = vr = 0.10 m/s2(0.05m) = 0.32

rps = 19 rpm
5. Thrust Force: F = M * g = (6.8kg)(9.81 m/s2)

=  66 N
6. Torque: T  =  F * r  =  (66N)(0.05m)  =  3.3Nm
7. Power: P = ⍵T/9550 = (19

rpm)(3.3Nm)/(9550) = 0.0065KW = 6.5 watts

The wheels radius should be about 0.05m (3) and under
full load (2) the speed of the robot should be about 0.10
m/s (1). To achieve this speed, the wheels must complete
about 19 rotations per minute (4). To overcome the thrust
force/weight of the robot, which is about 66 Newtons (5),
a torque of 3.3 Newton-meters must be applied on the
drive wheels (6). To apply the 3.3 Nm torque on the
wheels at a sufficient speed of 0.10m/s, a stepper motor
rated at a minimum of 6.5 watts (7) should be used. The
STEPPERONLINE stepper motors used to move the
Trashporter is rated for 2 amps running at 12 Volts
totaling 24 watts of power, which is enough to move the
Trashporter.

B. The Battery

A robot tethered to a wall for power is quite
inconvenient, and therefore a portable power source is
required. A 12 volt battery source will provide enough

power for the Trashporter. The SPARKOLE 12 volt
battery pack is a battery pack that utilizes small
cylindrical battery cells wired in series to create 12 volts.
The SPARKOLE battery pack also comes with a BMS,
which manages important features for batteries, such as
overcharge protection, over discharge protection, cell
balancing, and short circuit protection. Without these
features the battery may fail and can cause catastrophic
damage. The Trashporter draws about 2.2 amps of current
under max load, and with the 5200 mAh capacity the
device should have about 2.3 hours of uptime before the
battery needs to recharge.

C. Wheels

We chose to use wood for the wheels as they can be
expensive to purchase. We laser cut out many prototype
versions ranging between three inches to fives and a
quarter inches in diameter as we had to see how they fit
with the base of our robot and made sure they are in
balance with the two free back wheels that are purchased.
We also had people cut out thick wheels using a metal
split saw. However, their size is not the desired size as
they can only be as big as three inches. A few of the
prototypes can be seen in the pictures below. They vary in
diameter and thickness. Since the laser cutting machine
can only work with materials under the thickness of a
quarter inch, we decided to laser cut out four of the five
and a quarter inch wheels as the final two front wheels of
the robot. Two of the wheels are screwed together to act
as one wheel. In this way, it will be strong to hold more
weight and accelerate in the correct manner rather than
having the wheels slant outward with heavy weights.

Figure 1: Laser Cut Wheels

Figure 2: Metal Split Saw Cut Wheels



D. Weight Sensors

Weight sensor is a weight transducer that converts the
mechanical input such as load, weight, tension,
compression, force, torque, or pressure into electrical
output signals (Futek). There are ten types of weight
sensors. They are photoelectric, hydraulic,
electromagnetic force, capacitive, magnetic pole variation
form, vibration, gyro, resistance strain, annular plate, and
digital weight sensors (R, 2020). To select the right
weight sensor for this robotic design, we had to consider
how we are measuring the weight of the trash on the
robot, the way of mounting the sensors, the minimum and
maximum weight capacity, the size and weight of the
sensors, and the output type of the sensors. First of all, the
weight sensor has to be mounted at a fixed position on the
robot. The weight capacity of the weight sensor should be
ranging from zero to approximately fifty pounds. The
dimensions and the weight of the weight sensors have to
be small so they can be easily placed on the chassis of the
robot. In this robotic project, resistance strain weight
sensors, also known as load cells, are used. They are
selected because they are commonly used, their price is
cheap, and the considerations mentioned above are met.

The specific weight sensors we chose are called 50
kilogram half-bridge strain gauge load cells. It is set up
like a bathroom weight scale with four sensors on each
corner of the scale. Thus, we laser cut a rectangular shape
out of an acrylic sheet to use as the platform of the weight
scale like shown in Figure 3.

Figure 3: Weight Scale Layout

To mount the four sensors to the acrylic platform with
bolts and nuts, we created frames for the four sensors as
can be seen in Figure 4. The frames are 3D printed using
Ultimaker 2 printer with the Cura software. Each frame
used approximately one and a half hours to print. Thus, it
took two days to 3D print them.

Figure 4: Weight Sensors with Frames

To connect the weight sensors to ESP32
microcontroller, the HX711 amplifier analog-to-digital
converter is used. The wiring between the weight sensors
and the HX711 amplifier is shown in Figure 5 below. The
wiring from the HX711 amplifier to the ESP32
microcontroller is shown in Figure 6 below.

While working with the weight sensors we noticed that
when calibrating the scale we would get different readings
of the weight in grams. We saved values that gave us the
most accurate reading by using an iPhone 12 pro max.
Since we knew the weight of the device we were able to
use that as a measuring tool to help us with our process of
calibrating the scale. We first placed it on one corner then
calculated the calibration factor. We then repeated this
process with each corner until we got our desired
calibration.

Figure 5: Wiring between Weight Sensors and HX711
Amplifier



Figure 6: Wiring between HX711 Amplifier and ESP32
Microcontroller

E. Object Detection Sensors

In general, there are seven types of technologies to
sense and detect objects. They are electro-mechanical,
pneumatic, magnetic, inductive, capacitive, photoelectric,
and ultrasonic sensors. Electro-mechanical sensors use
mechanical actuators to detect objects by switching the
states [1]. We chose to use the HC-SR04 ultrasonic
distance sensors due to the fact that we have worked with
it before and we already have the sensors. The HC-SR04
distance sensor is used to detect objects or hands less than
50 cm on top of the trash can on the trashporter.
Whenever a hand is detected, the lid of the trash can will
open to throw trash in. We used Arduino Uno to control
the sensor rather than the ESP32 because of the limited
pins left on the ESP32. In this way, we can also have it
constantly checking for objects. The wiring between the
HC-SR04 and Arduino Uno is shown in Figure 7  below.

Figure 7: Wiring between HC-SR04 and Arduino Uno

IV. SOFTWARE IMPLEMENTATION

Our trashporter use the pixy 2 camera to be able to
identify and follow an object (a smaller bin) and create a
mobile application using the Blynk software which will
allow us to move the trashporter manually and send it
commands within a time frame.

A. Autonomous Functionality

The Pixy2 is a smart camera sensor with an onboard
processor that will allow us to use robot vision to identify
any object with a solid color on a specific spectrum.
Pixy2 uses a color-based filtering algorithm called
color-connected components to detect objects. To get a
visual of what the pixy cam sees we use a software called
pixy mon. The Pixy2 calculates the color and saturation in
each pixel to filter out the object from the image. Pixy
Cam shows a square around the object which we can use
in our code as it gives us information such as the x and
y-axis of the upper left corner of the square, the height
and width of it, and an identifier. The identifier is used if
we have multiple objects we want to track at the same
time (up to six). In our demo, we will only be using one.

In our code, we used the x, y, and height to do x-based
tracking. We will track if the x position is in the left field
of view or the right field of view. To do this we
established the range of the field of view of the camera
(0-316). Then we broke this into three segments: left,
right, and center. If the object is to the left of the field of
view, we turn the robot left; if it is right, we turn it right.
If the robot has the object in the center of its view, it will
move forward towards the object and stop until it reaches
a certain height of the square around the object. The x
position will control the speed of the left and right stepper
motors.

Figure 8: Demonstrates how the Pixy2 camera perceives
the X position along with the calculations to determine

whenever to turn the device left, right, or stay out.



B. Mobile Application

We also created a mobile application that will be used to
control the trashporter robot. The app was created in
Blynk, which gives us a platform to create a mobile
application and communicate to our microcontroller via
wifi by using digital or virtual pins. We used this to
control our robot and send commands. We also can track
the capacity of our bin using our weight sensors.

To set up the Blynk application, we had to set up our
wifi connection with the microcontroller. In our case, we
decided to use the esp32, a microcontroller with wifi
capability. On our computer, we established this
connection by using an authentication key generated by
the Blynk website and inputting our wifi credentials.
Once this was done we were able to set up our “data
stream”. The data stream is data that we will be sending
back and forth to our microcontroller. Using these
streams, we are able to create widgets such as buttons,
sliders, displays, and more to give us complete control of
our robot. In our case, we utilized multiple buttons, a
joystick widget, and a “gauge” widget similar to a fuel
gauge to monitor the capacity of our bin.

Once we establish these ports, we define the virtual pins
we established on the back end in the code. To utilize the
digital pins we set the variable by using a defined function
in Blynk. This function will be different depending on the
data type (int, string, Boolean). Then we can use these
variables to send data to our components and receive data
from our sensors. However, for receiving data we simply
have to send a variable back by setting it to a Blynk
function. We used this function to be able to use the gauge
widget in our application. For the joystick, the output of
the widget would be a string that we parsed in the code to
get an X-ray and y-axis. The x and y axis are the
coordinates of the position of the joystick based on where
the user moves it. With this information, we were able to
move our robot forward, backward, left, and right. To
move the robot forward, we had both stepped motors
move forward, to move the trashporter backward we
moved both stopper motors backward by having a
negative speed. To move left and right we would have one
motor have a negative speed and one motor have a
positive speed. These Blynk functions come from an
Arduino library made by the company.

For the overall app, we used a state machine in our code
in order to have different “modes'' for the trashporter. The
modes for the trashporter will be manual mode,
autonomous mode using the pixy camera, and sleep/off
mode. The manual mode can be activated by pressing a
button on the application and the same is true for the
autonomous mode. For the “sleep” mode, there will be
two options. One will simply press a button so it stops
moving, and another will detect if the bin capacity is full.
We decided to do this as a way for the user to tell them

that the trash bin is full and needs to be changed. You will
have to do this to collect more trash as there is a weight
limit for the trashporter device.

Figure 9:  Graphic to show how the trashporter interprets
data from the Blynk cloud. This includes data from the

widgets being sent to the ESP and data that we will send
on the back end via the cloud.

C. Stepper Motor Development

For our device we will be using 2 Bipolar Stepper
motors to be able to drive the movement of our robot.
We decided to use a stepper motor as it is a motor that has
a very high torque, and we can move into positions with
high accuracy.

A stepper motor moves in steps. After each step the
motor holds itself in position. Internally a stepper motor
consists of a magnetized geared shaft that is surrounded
by electromagnets. Controlling the current of the
electromagnets allows us to step the motor. We will
control the stepper motor by applying current to the coils.
Since we are using a bipolar stepper motor it consists of
two coils which each has two wires attached to it.

Stepper motors are commonly used in robotics but are
also used in a wide variety of areas. Most commonly
stepper motors are used in 3-D printers, zooming a
camera, and even can be used in an analog clock. In this
case we wanted to have the stepper motors continuously
spin so we can move our robotic device around on the
floor. This became an issue for use as we would need the
stepper motors to rotate continuously like a motor moving



a wheel on a vehicle. The stepper motor moves in steps
and stops multiple times before it completes a full rotation
which is great for getting high torque and accuracy but
not so much for our desired application.

We originally tried micro stepping. Most stepper motors
you can easily get online or on amazon are called 200
steps per revolution steppers. This means that the shaft
takes 200 full steps for one revolution. Micro stepping lets
us multiply those number of steps and makes the rotation
a lot more precise and smoother. However, there is a
tradeoff of using this method. After trying to resolve our
issue and testing we discovered the big tradeoff is that the
overall max speed of the stepper motor reduces
significantly, and the torque of the stepper motor also
dramatically decreases as well. Although we found that
off the floor the motors moved much smoother than
before with less steps, the motor was much slower. Also,
we tried moving the device on the floor and the motor
was not strong enough to move itself even without any
bin or load.

However, we did find a solution. In the IDE, since we
are using stepper motors, we will include the stepper
motor library in the code. For stepper motors, it is
required to define a variable which is the number of steps
per revolution. Then in the loop function, we simply have
the stepper motor rotate for each one of the stepper
motors. For our particular use, we decided to use a library
called Continuous Stepper. This library was created for
anyone who wanted to use the stepper motor in a
continuous rotation. This is a third-party library created
by an Arduino forum user as they wanted to rotate a
stepper motor continuously for a personal project that
they were working on and wanted to share with other
users. To create the desired effect of running the stepper
motor as a “wheel”, we simplified the innate programmed
features and functions in our stepper motor libraries. To
achieve this he tweaked with the number of steps and also
got rid of delays that existed in many stepper motor driver
libraries. When we tried this new library, we found that
the wheels moved continuously and smoothly as we
wanted it to be in the first place. For our application, this
was perfect as we were able to use our stepper motors as
“DC motors' ' to be able to move our trashporter robotic
device with no steps or “stuttering”.

V. MOTHERBOARD

The motherboard for the Trashporter has several
components. The motherboard contains a 12V to 5V buck
converter, a 3.3V linear voltage regulator, the ESP32, 4
motor drivers, a UART-USB communications chip, and
pinouts for every pin on the ESP32. Each component on
the motherboard works in harmony to provide power and
communication between each other as well as the external

components of the Trashporter such as the motors, sonar
sensor, PixyCam, and weight sensor.

A. Buck Converter

Figure 10: Schematic design for the LM2673 Buck
Converter

The buck converter was designed using the LM2673 by
Texas Instruments, and following the recommended
design on the datasheet [4], and shown above is the buck
converter designed for the Trashporter. Since the stepper
motors need 12 volts to function, the power source needs
to have a minimum of 12 volts. The sonar sensor, the pixy
cam, and the weight sensors all require 5 volts to operate;
anything over 5 volts will damage the components. To get
the required 5 volts, a buck converter was used. The buck
converter was used over other DC to DC topologies
because a buck converter converts DC to DC voltages
more efficiently, and it also increases the output current
which can be beneficial to the Trashporter.

The figures below demonstrate that the buck converter
works as intended even under load. Figure ??
demonstrates that underload, with an input voltage of 9
volts (blue), the output of the buck converter holds a
stable 5 volts. Figure ?? demonstrates that underload,
with an input voltage of 12 volts (blue), the output of the
buck converter stabilizes at 5 volts as well.

Figure 11: volt input voltage (Blue) and 5 volt output
voltage (Yellow) of the buck converter.



Figure 12: volt input voltage (Blue) and 5 volt output
voltage (Yellow) of the buck converter.

B. 3.3 Volt Linear Voltage Regulator

The ESP32 operates at 3.3 volts and has an absolute max
voltage rating of 3.9 volts. The UART-USB
communications chip also operates using 3.3 volts,
therefore a 3.3 voltage source is required. The
TLV76733DGNR by Texas Instruments is used as the
3.3V voltage regulator for the Trashporter. The
TLV76733DGNR is a linear voltage regulator, and a
linear voltage regulator was chosen because the
conversion from 5 volts to 3.3 volts produces minimal
excess heat. If a buck converter was used, more parts
would be required which would increase the overall cost
of the Trashporter. Also, converting from 12V to 3.3V
would produce a lot of excess heat with a linear voltage
regulator, therefore the regulator receives its input voltage
from the 5 volt source. Using the recommended design
given by the TLV76733DGNR datasheet [5], a 3.3V
regulator was designed below.

Figure 13: Design schematic of the 3.3V linear voltage
regulator

C. The ESP32

The micro processing unit (MCU) is the heart of the
Trashporter. It handles the inputs coming from the sensors
and PixyCam and then processes this information to send

the output signals to the motors. The ESP32 was
developed by Espressif based in Shanghai. Although the
ESP32 isn’t an Arduino product, the open source and
open documentation availability of the ESP32 allowed the
Arduino community to program the ESP32 with the
Arduino IDE. This version of the ESP32 is the
ESP32-WROOM-32E that is equipped with 448 KB of
ROM, 520 KB of SRAM, 16 KB of SRAM for the
Real-Time Clock. This board contains the dual-core
Xtensa 32-bit LX6 microcontroller, which should run up
to 240 Mhz. The team also decided to work with the
ESP32 because several team members already have
experience with the Arduino IDE. The Trashporter can
utilize the ESP32 dual core processor to handle the IoT
specifications while processing the inputs and outputs of
the robot. The ESP32 has been soldered onto the board
and the necessary connections have been designed to
connect to all the other components on the motherboard.

D. The Motor Drivers

The motherboard contains four motor drivers, one for
each stepper motor. The DRV8434APWPR manufactured
by Texas Instruments was used in the design of the
Trashporter. This stepper motor driver comes with
integrated sense current, 1/256 microstepping, smart tune
and stall detection. For the purpose of this project, the
integrated sense current, and stall detection wasn’t
utilized for the Trashporter as it wasn’t necessary features
for the robot. Due to chip shortage, this was one of the
few stepper motor drivers available and was the only one
in stock that had microstepping. It was important for the
Trashporter to have microstepping integrated within its
design because there will be times in which precise
movements may be needed when maneuvering towards
objects. Microstepping decreases the step angle for a
stepper motor, which increases accuracy in its
movements. The current sense was not an original design
specification, however, it was an advantageous feature to
implement in the Trashporter as it adjusted the current of
the stepper motor according to what it needed to operate
properly, which saved on power draw. Using the
datasheet, the motor drivers were designed below, and
implemented on the motherboard.



Figure 14: Design schematic of the Motor Drivers for the
Trashporter.

VI. THE ENGINEERS

Jourdan Callahan is a 23-year old
graduating Computer Engineering
student who is taking a job with SAIC
in Orlando, FL as a Software
Engineer, specializing in Automation
and RPA.

AnnaBelinda Zhou is a 22 year-old
studying electrical and computer
engineering. She is planning to get
her Master’s in electrical engineering.

Dhanesh Singh is a 22 year-old
graduating Computer Engineering
student. Dhanesh’s career goals are to
work for a tech company focused on
designing, testing, prototyping, and
implementing electric circuits that
will enhance society.

Andy Kuang is a 23 year-old studying
computer engineering. He is interested
in learning more about electronics as
well as programming these devices.
Andy has worked on personal projects
that focused on these concepts and
wants to work for companies that
contribute greatly to society through
new innovative technologies.

REFERENCES

[1] polepositionmarketing@kellertechnology.com.
(2021, December 6). 7 Types of Sensors for Object
Detection. Keller Technology Corporation. Retrieved
from
https://www.kellertechnology.com/blog/7-types-of-se
nsors-for-object-detection/

[2] R. (2020, July 27). What are Weight Sensors? Utmel.
Retrieved from
https://www.utmel.com/blog/categories/sensors/what-
are-weight-sensors

[3] What is a weight sensor, what are the different types
of sensors and how do they work? Futek. Retrieved
from https://www.futek.com/weight-sensor

[4] (June, 2016). LM2673 Simple Switcher 3-A
Step-Down Voltage Regulator with Adjustable
Current Limit. Texas Instruments. Retrieved from
https://www.ti.com/lit/ds/symlink/lm2673.pdf?ts=166
8097706525&ref_url=https%253A%252F%252Fww
w.ti.com%252Fproduct%252FLM2673

[5] (July, 2021). TLV767 1-A, 16-V Precision Linear
Voltage Regulator. Texas Instruments. Retrieved from
https://www.ti.com/general/docs/suppproductinfo.tsp
?distId=26&gotoUrl=https://www.ti.com/lit/gpn/tlv7
67

https://www.kellertechnology.com/blog/7-types-of-sensors-for-object-detection/
https://www.kellertechnology.com/blog/7-types-of-sensors-for-object-detection/
https://www.kellertechnology.com/blog/7-types-of-sensors-for-object-detection/
https://www.utmel.com/blog/categories/sensors/what-are-weight-sensors
https://www.utmel.com/blog/categories/sensors/what-are-weight-sensors
https://www.utmel.com/blog/categories/sensors/what-are-weight-sensors
https://www.futek.com/weight-sensor
https://www.ti.com/lit/ds/symlink/lm2673.pdf?ts=1668097706525&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM2673
https://www.ti.com/lit/ds/symlink/lm2673.pdf?ts=1668097706525&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM2673
https://www.ti.com/lit/ds/symlink/lm2673.pdf?ts=1668097706525&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FLM2673
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=26&gotoUrl=https://www.ti.com/lit/gpn/tlv767
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=26&gotoUrl=https://www.ti.com/lit/gpn/tlv767
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=26&gotoUrl=https://www.ti.com/lit/gpn/tlv767

