Battlefield Effects
Simulator (BES) Robot

Jared Rymkos, Julia Kemper, Michael Rodriguez,
Nicholas Nachowicz

Department of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,
32816-2450

Abstract— The US Army/Department of Defense has
expressed the need for a Modular Open System
Architecture (MOSA) live fire robotic platform/system to
support the training of the US Army soldiers. This led to
the Battlefield Effects Simulator (BES) Robot. This robot
is intended to be used on live fire training ranges to assist
with pyrotechnic handling. The BES Robot will accurately
travel to a specified location on a training field to fire
pyrotechnics from the Battlefield Effects Simulator,
simulating hostile threat fire and hostile vehicle kill
indications, when the proper safety measures have been
met. This is the first model of the BES Robot and is
intended to be a prototype. The Battlefield Effects
Simulator will be connected to the robot, but will not sit on
the robot due to the scaled down size of this first prototype.

I. INTRODUCTION

Motivation

Currently, the optimal method for the United States
Army to simulate live fire and hostile vehicle kill indications
on a training range is by the use of pyrotechnics in a
Battlefield Effects Simulator (BES). When the pyrotechnics
that are used to simulate explosions have all been activated,
the BES will need to be reloaded with new pyrotechnics. For
this to happen, the training simulation must be stopped and
people have to enter the training environment to reload the
pyrotechnics before the simulation may begin again.
Although this method of training has worked for the army, it
still has its drawbacks: lack of reality, and lack of safety.
Stopping a simulation to reload these pyrotechnics will not
give soldiers an accurate representation of what a constant live
fire field is like. Also, bringing a human element into the
equation by having a person enter the training environment
when the pyrotechnics need to be reloaded can potentially be
very dangerous. Taking these drawbacks into consideration,
our team developed a robotic system that will connect to the
Battlefield Effects Simulator and travel to the desired locations
the pyrotechnics need to fire at. When the pyrotechnic
cartridges have all been used, the robot will then return to a
base where it can be safely reloaded without the training
simulation having to stop. The aim of this project was to
provide a method to activate pyrotechnics in the correct
location without having to stop the training simulation and
improve safety measures by reloading the BES without a

1

human having to enter the training field, therefore, eliminating
the human element. When deciding what factors/requirements
are necessary for this robot to perform to the level needed, we
took into consideration factors that were overlooked when a
human was reloading these pyrotechnics: terrain and safety
features. Because this robot will be traveling across training
fields used to simulate battlefields, the terrain will be
extremely rough. It will include holes, narrow paths, and large
divots that a human would navigate much easier than a robot.
We will ensure the robot is able to safely navigate this rough
terrain while still maintaining the desired speed to make it to
the specified location for the pyrotechnics to go off. As
mentioned earlier, once the robot has reached its desired
destination, it will need to have met safety conditions and
receive a safety signal for the pyrotechnics to fire. The robot
will need to ensure it is at the correct location, it will need to
ensure there are no moving objects within a given vicinity, and
it will need to make sure it is not on an incline greater than a
given degree. These features will continue to enhance safety
measures.

Figure 1: Illustration of the robots functionality on a life fire
training range.

Goals/Objectives

When our team was deciding on goals and objectives,
our main goal was for this robotic system to be utilized on live
fire ranges to support training realism and feedback, threat
representation, and pyrotechnical handling/replacement. This
robot will transport the BES through rough terrain to and from
desired locations to accurately fire pyrotechnics when proper
safety signals are sent. The robot will then return to a
designated base when the pyrotechnic canisters need to be
reloaded. Moving the robot will be done through some kind
of tablet application. The user will be able to select which
zone the robot will travel to and then fire the pyrotechnics.
The robot will interact with the BES to send the safety
conditions for when it is clear to fire the pyrotechnics. The
robot and BES will also need to interact with the current
control center that operates the BES so all three systems are in
communication.

II. SystEm COMPONENTS

The robot utilizes several components in order to be
able to accurately function and complete its objective. Each
component is utilized in order to create the final model of
the robot. This section is a small introduction to each
component that is utilized within the design of the robot.

Base

The main factor that will house all the components
of the robot is the base that is utilized in order to hold all the
other components. The base that we obtained was a purchased
pre designed base that was made by the brand DoHome which
was obtained through amazon. The base is a 4 wheel drive
tank chassis which means that each motor utilizes treads
instead of wheels in order to move. The tank chassis made for
a good base to design a small scale prototype for the aspect of
the robotic project.

Motors that came with the base

The motors are the most important component in
terms of movement. The base that we purchased through
amazon came with 4 motors to attach to the base. The motor
used is the 33GB-520 motors which support a voltage of 12V
and has a speed of 170-350 rpm depending on the amount of
voltage used. Since these motors did not come with encoders,
we are utilizing only 2 of the motors and have them connected
to 2 other motors with encoders.

Motors with Encoders

Since the motors that came accompanied with the
base that we purchased did not come with any encoders, we
had to purchase some motors with the appropriate encoders.
To ensure that the other motors work with the encoders, we
wired the back motors which are the motors that came with
the base to the front motors which contain the encoders to
ensure that the motors will work in tandem with each other.
These motors function on 12V and has a speed of 100 RPM.
The motors encoders help with the odometry data that ROS
utilizes to calculate transforms.

Zeee 14.8V Lipo Battery

The battery is the main component that will provide
power to the motors of the robot. The 14.8V Lipo battery is
regularly used for RC equipment which is why we are using it
due to the reliability and the fact that the battery is lighter
weight compared to other types of batteries. The higher
voltage of this Lipo battery does pose a small problem that is
resolved using a buck converter in order for each component
to get the proper amount of energy. The other main feature of
utilizing this Lipo battery is that it will be easier to charge
compared to other types of batteries.

Commercial Battery Pack

This battery is another component that the robot will
be utilizing. This battery is used to power the raspberry pi so
that the robot will have a longer battery life by utilizing 2
batteries instead of 1. A converter does need to be present
because it will be powering it via 5V USB and it has a voltage
regulator inside. This battery has 16.75A hours which gives
the raspberry pi, PCB, encoders, and logic of the motor
controllers much more time than the motors are capable of.

Rocket Switches

The rocket switches will be the component that we
will utilize in order to activate or shut down the robot. The
switch is used for safety reasons so that there are no electrical
problems during recharging or other maintenance being done
to the robot. The switch is connected directly with the battery
so that the battery will not be able to flow any current while
the switch is set to off.

LM2596 Buck Converter

The LM2596 buck converter is utilized to step down
the voltage of the battery to some of the other components
that require a lower voltage. This buck converter is utilized to
provide the motors with 12V instead of 14.8V since the specs
of the motors have the working voltage max out at 12V. The
buck converter had to be utilized since the Lipo battery came
at 14.8V instead of just being a 12V battery.

Raspberry Pi model 4B

This is one of the major technical components of the
robot that is utilized to process the information received from
the camera. This component holds the programming set up in
ROS in order to properly analyze if there is any person in the
vicinity of the robot. This component allows us to meet the
safety requirement for the robot.

360 Lidar

The 360 Lidar is the component that is utilized in
order for the robot to map its environment and detect
obstacles in its path while traveling to a specific location. This
Lidar analyzes all around the robot and is located on top of
the robot. The Lidar scans the surrounding area to identify if
there is an obstacle in the way for the robot to traverse
around. This LIDAR is capable of running indoors easily and
in practice the only place it is difficult to function is under
direct sunlight.

PCB

The PCB is another majorly important technical
component on the robot. The PCB is designed to act as a

microcontroller to handle navigation and driving sending the
safety signal to the esp32 inevitably firing the BES. This
component was designed by the group instead of utilizing a
pre designed microcontroller. The PCB is essentially the
central hub that is connected with most of the other
components on the robot.

BNOO055 IMU

The IMU is used for the various sensor features
located on it for providing better safety operation on the
robot. The main feature that we will utilize on this IMU is the
temperature sensor that it contains so that we can properly
assess the internal temperature of the robot. This component
will help us in preventing the robot from overheating or

having some components get damaged from high
temperature.
BTS7960 Motor Drivers

The motor driver is the component that allows us to
control the motors with higher accuracy than just having
power being directly sent to the motor. The motor drivers
allow for the PCB to control the motors and send the proper
output voltage to the motors to get the robot to its specific
destination.

ESP32

The ESP32 component is utilized to provide the
robot with communication functionality. This functionality
will allow the robot to communicate with the user to
coordinate the location the robot will go and allow the robot
to send the safety signal to allow the BES to be activated.
This component is the main method of communication with
the robot.

GI-U7 GPS module

The GPS module is the component that will allow
the robot to identify the location that it is currently in and
allow the robot to know the location of the destination that it
is being sent to. This module allows us to know where the
robot is and allows the robot to move to a destination based
on the map data it has and the location due to the module.

Figure 2: This is an image of the robot with most of the
components attached.

III. SysTEmM CONCEPT
Power System

The power system includes all components that are
controlling voltages and supplying power to devices
throughout the robot. All components will be running off of a
2 battery system. The largest battery (Zeee 14.8V lipo battery)
will be directly connected to a rocker switch via hard wiring
and controlling whether the motors will be able to receive
power. This batter will then be attached to 2 separate LM2596
buck converters. These buck converters control the voltage
and reduce the battery's voltage to 12V. The 12V buck
converter then gets hard wired directly to the BTS7960 motor
drivers inevitably powering the motors themselves.

The second battery is a commercial power bank that
will be powering the raspberry pi and devices that are
connected to it. This power bank will be powering the single
board computer using USB-C. The components that are
powered by this battery through the raspberry pi include: PCB,
360 LIDAR, ESP32, BNOO055, GI-U7, Encoders on motors.

The BES will be powered outside of the system
because our robot cannot hold its weight and size. The robots
main purpose is a proof of concept in creating a working
system.

Our team decided to create a 2 battery system in
order to sustain a decent battery life. Our initial requirement
was 10 hours with the BES being on top of the robot. Due to
the need of a very large budget in order to fulfill this
requirement with various reasons including, the robot needing
to be much larger and able to carry a much heavier weight, we
have reduced this requirement. Our team decided we would
like to be able to have a battery life of a minimum 1 hour.

With a 2 battery system we are well above the battery life of 1
hour with the robots battery life ranging between 2 and 4
hours. The main crunch on our battery life is actually their
large Zeee battery. The maximum battery life of the
commercial battery we are using is 16.75A hours which is
much larger than the battery life of the battery powering the
motors. While the motors won't be taking 12V at all times the
battery life of the robot is dependent on how long the motors
will run simply because the commercial battery bank is so
large.

Drive system

The drive system consists of all the components that
involve robot propulsion or controlling motors. The base is
included in this system because of the treads the robot is
running on. There are 4 separate tread tracks on the base each
attached to its own motor. Each pair of motors is connected to
its own motor driver. The motor drivers and encoders are
connected to PCB.

The back 2 motors are motors that came with the base
that we purchased. These motors do not have encoders and
therefore do not control any of the actual steering or transform
calculations in order to determine the robots position in the
ROS navigation stack. These back motors are then connected
via hard wiring directly to the front motors that are on the
tread track inline with it. The front motors are motors that do
have encoders and therefore are involved with calculating the
transform of the robot's current position using motor rotation
ticks. These motors did not directly come with the robot's base
so in order to attach these to the base we had to do extensive
modifications to the frame. The specific pinout for power to
the motors are PINO(red wire) for motor positive power and
PINS(white wire) for motor negative power. These are not
specifically labeled as PINO-5 on the encoder which is why
there is a color next to the pin names. These pins are directly
connected to the motor driver along with the back motors
mentioned previously.

The motor encoders have 4 other pins that are
attached to the PCB. The encoder's positive power pins are
PIN4(blue wire) and negative power PIN1(black wire). These
pins on the motor encoders are connected to 5V and GND on
the PCB. The last 2 pins on the motor encoders are interrupt
pins. PIN2(yellow wire) and PIN3(green wire) on the left
motor encoder will be connected to PWM7 and PWM3. The
right motor encoder pins will be attached to PWM4 and
PWMS.

Each BTS7960 motor controller has 6 pins that are
connected to the PCB. The GND pin will be connected to the
GND pin on the PCB. On each motor controller the VCC,
R _EN and L_EN will be attached to the 5V pin on the PCB.
Lastly the left motor controller RPWM and LPWM pins will
be attached to PWMI1 and PWM2. On the right motor
controller the RPWM and LPWM pins will be attached to
PWM6 and PWMO on the PCB. These pins are all interrupt
pins in order to stop the motor's process when ROS
understands that the robot is in the position that is desired.

Sensory System

4

The sensory system of our robot helps the robot
understand and evaluate the world around it. This system will
be able to detect obstacles, understand the level of the robot,
understand its speed and also let the world know where it is
exactly.

The 360 LIDAR is directly connected to the
raspberry pi via USB to TTL serial converter. This is
connected to the raspberry pi for easy data transfer from the
LIDAR to raspberry pi. The power draw from the LIDAR is
also too much for the PCB.

The BNOO55 IMU will be attached to 2 devices in
order for easy information delivery. It will be connected to
both the PCB and Raspberry Pi. This will allow the PCB to
transfer information to the esp much easier while having ROS
directly connected to the IMU for transformation calculations.
The IMU is connected via 12C with SDA and SCL going to
both SDA and SCL respectively on the only 12C pins on the
PCB and raspberry pi on GPIO pins 8 and 9 respectively.
While Vin and GND on the IMU going to 3.3V and GND on
just the raspberry pi. This only needs power from one device
and will be sending data to both devices.

Lastly is the GI-U7 GPS will be able to tell the map
where exactly the robot is in correlation with the robots safe
zones on the GUI’s map. This will be connected to the esp32
so that data transfer does not have to go through several
devices to get to the GUI. This will be connected via serial
connection. TX and RX pins on the GPS will go to TX0 and
RXO0 on the esp32. The GND and VCC pins will go to GND
and 5V on the esp32.

Misc. Connections

There are 3 Miscellaneous connections that can fit
into multiple groups. These connections are very important but
more of just connections between the brains of the operation.
The raspberry pi will be connected to the PCB via micro USB.
The esp32 will be connected to the PCB via serial connection.

Inside of Robot

Outside of Robot

Motor Controlers:

[—
BTS7960 sP32

| | L °

SerialUART

Figure 3: Robot connectivity block diagram.

Communication/Software

The arduino is connected to the ESP32 and will send
the information through serial communication. The
programming language is C++ which allows us to have a
deeper control of the hardware compared to other languages.
We transmit information from the ESP32 to the windows
tablet by connecting to the same network and communicating
through sockets. We decided to connect the tablet to the
ESP32 over the raspberry pi in order to reduce the strain on

the raspberry pi from running ROS. This is a client-server type
architecture and we decided to make the ESP32 be the server
so it can be looking for clients while it is turned on. The tablet
is the client and it will search for the server when the
connection button is pressed in the GUI. Once a connection is
established the ESP32 will send updated information about the
sensor data every 2 seconds to the tablet. This will be done by
having an identifier byte which signals the type of data (X
coordinate, Y coordinate, etc) followed by the data and then a
new line symbol representing the end of the data. Through the
tablet by pressing the travel button a byte will be sent to the
ESP32 signaling which site to travel to or to stop. The
Windows tablet was selected because we were developing the
GUI code in a windows environment which would allow us to
easily transfer the code. In the future it may be possible to run
the client code on android devices instead of a windows tablet
because it was written in Java. The BES is connected to the
ESP32 through wifi utilizing a router. Originally we were
planning on having the BES attached to the robot, however,
due to budgeting constraints the BES would be too heavy for
the smaller scale version of our robot. There are three main
safety checks that must be met in order for the fire signal to be
given to the BES. These checks include the robot’s GPS
coordinates being within the respective sites coordinate
bounds, no objects being within 2-meters, and the robot’s IMU
reading is within 10 degrees from being flat. The lidar will be
used to scan if any movement is detected around the robot.
The checks are important to make sure the robot is in a safe
position to fire. If all the conditions are satisfied the BES will
be fired and the result of the safety checks will be sent to the
GUL

IV. HARDWARE DETAIL
PCB

As we have stated in the previous section the PCB is
one of the pinnacle points in our project. Our team decided to
make a microcontroller PCB that can run arduino IDE code.
Our team not only wanted something easily programmable
but also something that can have an abundance of pins
because there are several components it will be controlling
and talking to. Our team decided on the ATmega2560
micro-chip which has been used previously in the Arduino
mega2560. This also makes things easy for testing because of
our easy access to the Arduino board itself and start testing
without the PCB being finished. This board has a total of 8
PWM pins, 7 digital GPIO pins, 8 analog GPIO pins, 4 serial
communication bus, 1 I12C. Some of these pins aren't being
used at this time however in future the company hopes to
bring in new senior design teams to expand on what we have.
This board also has 3.3V and 5V capability. In the future the
plan for the PCB is to have an IMU built into the board itself.
While building the PCB some errors were found and
corrected. The original PCB had some footprint issues, 2
fewer PWM pins and the usb chip was not implemented into
the default serial port on the atmega2560. Our solution for the

first two was creating a new board and ordering it. The
solution for the serial lines was jumping our serial port the
usb chip was connected to onto the serial port the atmega
2560 uses as a default port. After this connection was made
the only thing that needed to be made sure of is that the
original serial port was never activated to prevent any damage
to the board.

ATmega2560 serial header

power LED

u1
ATMEGA2560-16AU SD4 1

vee
Re
1

5

LEDT----
2 [E0-0503

KEY1 e }
sxaxiﬂ| T .T
) T e
AREF|2E e
Sy £ i T 1 TRTHTRTH.
- e

Figure 4: The ATmega2560 Chip and its connections in the
center. This image also includes the Jtag that will help in
programming the chip in the bottom right, the power LED
that turns on when receiving 5V in the top left, the serial
header in the top right, and the clock and reset buttons in the
bottom left.

=
D
1
z
3
2
:
7
2
)

Figure 5: In the center of this image is the usb connection
circuit. In the bottom half of the Schematic is the power
regulation circuit. In the top half of the schematic is all the
headers other than serial that were displayed in the previous
image.

V. SOFTWARE DETAIL

ROS

Our team chose to use the Robot Operating System,
or ROS, as the operating system for the BES robot. ROS is a
set of libraries and tools used to help build robot systems. This
includes drivers, algorithms, and development tools. ROS
served many purposes in this project. The overall purpose it
served was to make the BES robot navigate accurately from
point A to B. ROS has what’s called a Navigation Stack
Package. This is a set of packages and libraries that are
installed to ROS with Ubuntu on the Raspberry Pi. This is a
2D navigation stack that takes in odometry information, sensor
information, and a goal pose for the robot to end at, and it
outputs velocity commands that get sent to the mobile base to
move the robot safely. I began by installing this navigation
stack to the Raspberry Pi. Next, I worked on the transform
configuration. For the Navigation Stack to work properly, the
information about the coordinate frames of the robot has to be
published.

After this information was published using a ROS
Transform Package, the sensor needed to be connected to
ROS. Our team used the RPLidar to help the robot map and
detect its environment and avoid any obstacles by publishing
the sensor data and sending the data over ROS. The lidar is
connected to the Raspberry Pi via USB port. I cloned the
RPLidar package from Github that had the necessary packages
for the lidar to run. After the lidar was spinning, I was able to
output the data to a terminal window. Next, I installed Rviz,
which is a ROS 3D visualization software program. I

6

connected the lidar to Rviz and was then able to visualize the
laser data on the screen.

After the lidar data was being visualized, I began
working on the odometry information. I began by installing
the necessary software that enables ROS to speak with the
Arudino. It was crucial these two components were able to
speak because the motor controllers/encoders were hooked up
to the Arduino (and eventually the PCB after initial testing).
Next, I needed to be able to control the robot's velocity
remotely from my computer using ROS. I first needed to
create a file in the Arduino IDE that would act as a ROS node
to publish the ticks of each wheel of the robot and subscribes
to the velocity commands to the robot so it will drive correctly.
After this code was written and published from the Arduino
IDE and onto the Arduino, it was then time to launch the
motor controllers. I used the ROS robot steering interface
which publishes Twist messages, or linear/angular velocity
commands, to the appropriate robot topic. The robot can be
manually moved forward/backward and left/right using the
slide bars.

Next, I needed to use ROS and Rviz to create an
initial pose and goal pose of the robot publisher. This will
allow for the robot to navigate to a specified location, or goal
pose. The initial pose button allows the user to set the pose of
the robot on a given map and initialize the localization system.
The navigation goal button sets the goal for the desired
location of the robot. Once the code for these has been written,
we can see the coordinates in a terminal for the initial/goal
pose of the robot when they are selected in Rviz. After this, I
needed to publish the wheel odometry information over ROS.
This includes data from the wheel encoders and is used to
estimate how much the robot's position/orientation has moved
over time in regard to a given map. I had to create an
odometry publisher that would take in the ticks of the wheels
and the initial positioning of the robot and publish it to the
correct topics for the robot to later access. When this code was
added in, we could then see the relationship between the
initial/goal publishers and the actual location of the robot
when they are set.

After the odometry information was correctly set up,
it was time to get the IMU running. The data from the IMU
needed to be published using ROS. After hooking the IMU up
to the Raspberry Pi, it was time to set up the serial
communication protocol. The BNOO055 IMU used 12C serial
communication protocol. I registered the IMU to our robot and
then checked that the bus of the IMU was at the correct
address. When this was confirmed, I then installed and built
the required IMU package that would allow for the BNOO055
and ROS to communicate. Next, I installed the Rviz plugin
that would allow me to see the IMU data. From there, when I
launched the IMU, I was able to see the data in the terminal
and visually in Rviz changing live.

Next it was time to fuse the wheel encoder data and
IMU data together. This was done by using an extended
Kalman filter. This allows for a more accurate estimate of the
location and orientation of the robot on a map. This was a
simple set that just involved creating a file that would fuse the
odometry and IMU data, but it was very crucial to getting the
robot to run smoothly.

After the odometry and IMU data was fused
correctly, I could then create a map of the environment the
robot would be moving in. This allows me to set an initial and
goal pose for the robot to move between. This map was
created using our lidar and the ROS Hector-SLAM
(Simultaneous Localization and Mapping) package. This is a
package that can map an unknown environment using lidar
while also keeping track of where the lidar is in the map. To
start the mapping, I launched the lidar and then Rviz. I then
slowly moved the lidar around the environment until I was
satisfied with the visual of the map in Rviz. Next, I saved the
map as an image so I could later pull it up to set the current
position of my robot and then the goal pose for it to travel to.

Next, it was time to set up the costmap configurations
for the robot. The global and local costmaps store information
about obstacles in the robots environment. The code for these
configurations was stored in .yaml files to be accessed by the
robot during its navigation. In addition to the costmap
configurations, the base local planner needed to be configured
as well. The planner computes the velocity commands that get
sent to the base controller of the robot. After all the
configurations were set up, it was time to set up the move base
node with ROS. That is the node responsible for the path
planning of the robot. It will create a path that is collision free.
The piece of code for that was added to the robots launch file.

Next, the localization system AMCL, Adaptive
Monte Carlo Localization, had to be set up. This system tracks
the robots position using the map created, the scans from the
lidar, and the transform configuration readings and estimates
where the robots output position will be. This just required a
block of code being added to the launch file.

Finally, it was time to launch the robot to move with
all the moving pieces. This is done by starting the launch file
that contains all the blocks of code from the previous steps.
Then, in Rviz I determine the current position and desired
position of the robot. And finally, the robot uses its
configurations to map a collision free path to its destination.

GUI

For the user interface, our team decided to use Java in
order to make use of the swing library. The swing library
allows us to implement components like text boxes, buttons,
drop down menus, and different frames into an application that
will run on the Windows tablet. The four main tabs that the
user can navigate to in the GUI are the Home, Sensors,
Console, and Map. The Home tab is the initial starting tab and
is where the connection status and BES firing status are
displayed. If there is no connection to the robot it will be
indicated by the status being false. The BES firing status will
be red if it's unsafe to fire and will turn green when the safety
conditions are met. There are also two buttons that allow the
user to connect and disconnect the wifi connection with the
robot. Next, we have the sensor tab which relays sensor
information from the ESP32 to the tablet. This information
includes the number of people found from the OAK-D, the
applied voltage to the motors, the degree offset from the IMU,
and the current velocity of the robot. This tab will be
implemented in the future with the following senior design
team. Next, we have the console tab which displays
information about what is currently going in the code. This is

7

useful for troubleshooting as it indicates what the Robot is
attempting to do. For example, if the user presses the connect
button from the Home tab it will be displayed in the console
that the tablet is searching for a connection. After 5 seconds if
the Robot is not found it will display that in the console or say
that the connection was successful. Additionally the result of
the safety checks will be displayed in the console, it will
indicate which of the three conditions were satisfied and if the
BES launched. There is a button to clear the console which
will erase all of the history. Finally, there is the Map tab which
is where the robots location is displayed with respect to the
site locations. The coordinates are found using the GI-U7 and
are translated into being displayed on the map. We used the
jxmapviewer2 library in order to integrate map tiles into the
GUI. The map tiles are found using Bing Maps satellite
images and they are accessed from the server live which
means there may be a delay in loading the tiles. The robot's
location is indicated by a blue marker and the sites are
indicated by a gray house with the designated letter (A, B, C).
Currently we have three sites to demonstrate the path finding
logic, however, this can easily be scaled up when applied to
the field training. By selecting a site from the drop down menu
and hitting the travel button it will highlight the respective site
by turning the color red and drawing a line to the site from the
robot's current position. The robot's marker is updated in real
time and if connection with the robot is lost the marker will
disappear and the highlighted sites will return to gray. There is
also an option to stop the travel sequence by pressing the stop
button. Stopping the sequence will cause the robot to stay in
place and await further instructions from the GUI.

Site A v

Travel

Stop

Figure 6: The Robot currently traveling to Site A displayed on
the map in the GUL

VI. CoNCLUSION

The Battlefield Effects Simulator (BES) Robot design
concept was derived from the US Army/Department of
Defense’s expressed need for a Modular Open System
Architecture (MOSA) life fire robotic platform/system to
support the training of US Army soldiers. During the
development process, we created a design for a system that is
intended to be used as a proof of concept for a robot that
would later be used on live fire training ranges to improve the
overall training experience, increase training throughput and
improve safety measures by removing the human element.
Main components of this project consisted of designing the
robot base/platform that holds components such as the PCB,
Raspberry Pi, Lidar, and motor controllers and can navigate
through rough terrain, the connection between the BES, robot,
PCB, Raspberry Pi, and GUI, creating the Ul, implementing
safety conditions and signals, and designing and implementing
the operating system using ROS. As we designed and
developed the Battlefield Effects Simulator Robot throughout
the course of two semesters, our team encountered many
changes and obstacles. Our team was able to work with any
new requirements given to us by our Sponsor and continue
development on schedule by constantly communicating,
working together with each other and our mentors, and staying
flexible. We were constantly changing hardware and software
components being used when our team found better solutions
to our problems. Although this project has been difficult, we
chose this project to not only push ourselves as engineers, but
to be able to give back to our country in any way we can.
Overall, we want the end product of this project to provide the
army with a better, safer, and more realistic training
environment.

THE ENGINEERS

Jared Rymkos is a 20-year old graduating Computer
Engineering student who is currently seeking Software
Engineering positions.

8

Julia Kemper is a 22-year old graduating Computer
Engineering Student. Kemper recently accepted a job with The
MITRE Corporation as a Software and Simulation Engineer.
She will continue to work as an engineering contractor for the
US Army.

Michael Rodrigues is a 24-year old graduating Electrical
Engineering student who is currently seeking Electrical
Engineering positions.

—

Nicholas Nachowics is a 24-year old graduating Computer
Engineering student who recently accepted a position with
Northrop Grumman as a Software Engineer.

V.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and support of
Sponsors: Jeremy Lanman and James Todd, Mentors: Tom
Waligoria and David Howard, and Professor: Dr. Samuel
Richie.

VII. REFERENCES

[1] Sears-Collins, A. (2021, June 27). How to set up the Ros
Navigation Stack on a robot. Automatic Addison.
Retrieved July 10, 2022, from
https://automaticaddison.com/how-to-set-up-the-ros-
navigation-stack-on-a-robot/

