Pin Transfer Robot for Chemical Screening Group H

Meet the team!

Yousef Abdelsalam

Dominic Simon

Brenden Morton

Christopher Clifford

Computer Engineering Computer Engineering Computer Engineering Electrical Engineering

Project Overview

Christopher Clifford - Electrical Engineering

Motivation

The motivation of our project is to make an autonomous pin transfer solution that is accessible to smaller labs enabling exploratory drug or small molecule testing that will not be cost prohibitive.

Available pin transfer robotic solutions today

<u>Manual</u>

~\$3000

Time consuming

Inaccurate

Small number of samples

Liquid Handling Conversion Kits

~\$10,000+

Not purpose built

Requires additional robotics to fully automate many plates

Quickly gets more expensive

Commercial Robotics

~\$1,000,000+

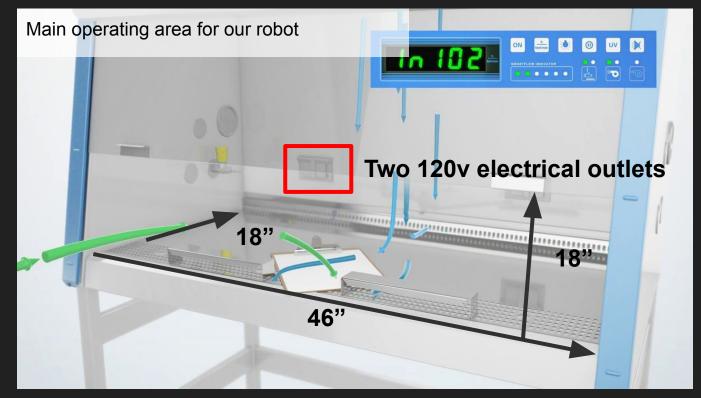
Purpose built for drug discovery

Huge (entire rooms)

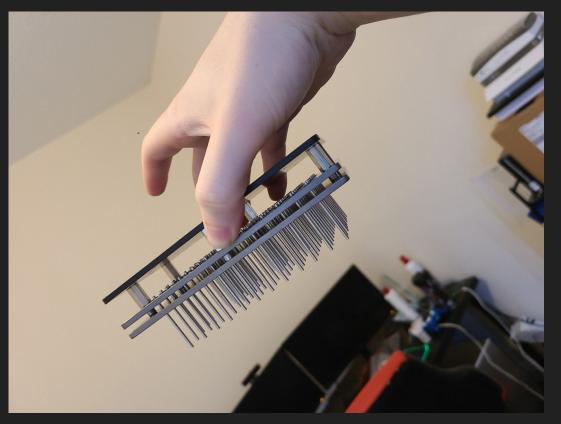
Expensive and therefore inaccessible for small labs with little funding

Manual process used by small biology labs

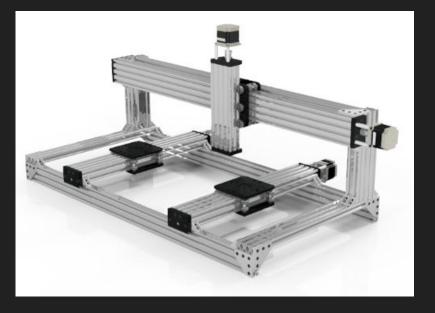
96 Perkin Elmer® Well plate


Washing and Drying the pin tool

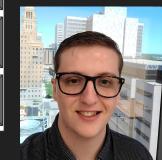
- Can vary from one experiment to another.
- Typical procedure is dipping the pin tool into DMSO and deionized water 3-4 times each, then isopropyl alcohol.
- Once the pin tool has been removed from the cleaning solution, it'd have to dry before it can be used again



Biosafety Cabinet


Robotic Pin Transfer Tool

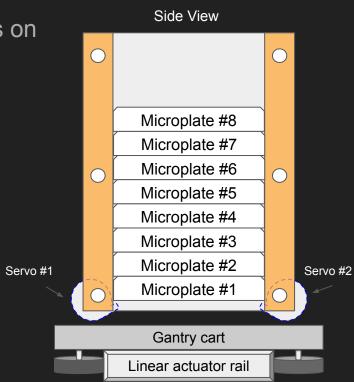
Robotic design


- CNC, 3-axis gantry base
- 2 input and 2 output microplate stacks
- Three X-axis linear rails used for chemical library microplates, cell culture microplates, and up to 3 washing solvents. Each is powered by a linear actuator.
- Pin tool can move vertically(z-axis) and laterally(y-axis) between conveyor rails

washing solvent rail

chemical microplate rail

cell culture microplate rail

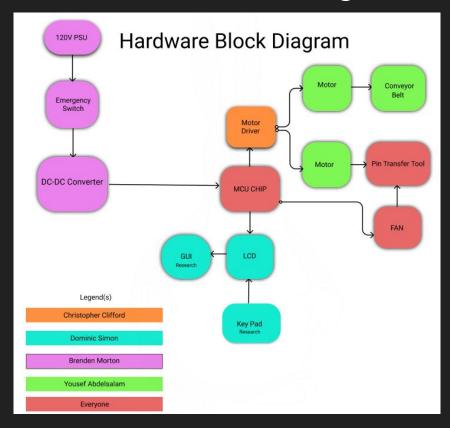


Stacking Design Concepts

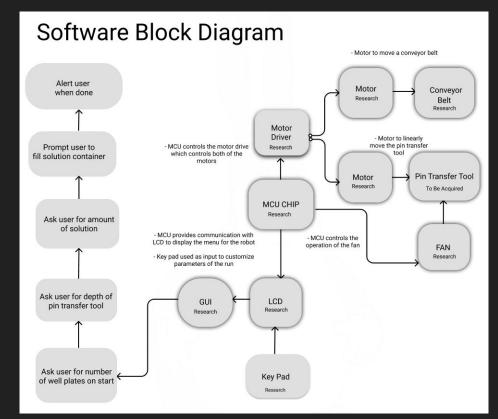
Servo motors will deliver microplates to/from gantry carts on the linear rail.

Non-backdrivable servo motor.

 Image: constraint of the second se



Technical Specifications


- Should be within 18" x 46" x 18" to fit within a biosafety cabinet
- Should be less than 50 lbs
- Should be sanitizable with 70% isopropyl alcohol
- Should have a failure rate of <1%
 - Any error that results in a failed pin transfer constitutes a failure.
- Robot work status can be sent to phones or PCs wirelessly
- Emergency shut off button
- Input stacks can take 8 microplates at a time

Hardware Block Diagram

Software Block Diagram

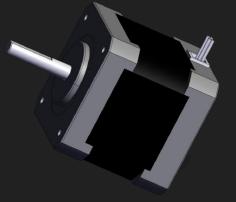
Budget Analysis

Part	Description	Quantity	Unit Cost	Total Cost
-	Pin Transfer tool	1	\$0 - \$200	\$0 - \$200
Arduino Atmega 2560	MCU	1	\$0 - \$20	\$0 - \$20
OpenBuild	workspace rails	1	\$100 - \$130	\$500
TI	12V Fan	1	\$10	\$10
Youngneer	12V Relay (8 pc)	1	\$11.99	\$11.99
MEANWELL 24V	Power Supply Unit	1	~\$100	~\$100
TI	DC-DC	1	\$3	\$6
JLCPCB	PCB	5	\$20	\$20
BIQU A4988	Motor Driver	2	\$9.50	\$19.00

Budget Analysis

Usongshin e 17HS4401 S	Motor	2	\$9.97	\$19.94
Any LCD	LCD (16x4)	1	~\$15	~\$15
COM-1466	Key pad	1	\$4.50	\$4.50

Hardware


Brenden Morton - Computer Engineering

Motors

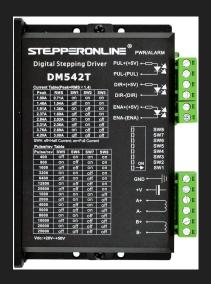
NEMA 17 and NEMA 23 stepper motors

Stepper motors

- Used in similar applications
 - CNC machines
 - 3D printers
- Inexpensive (~\$15)
- Compatible with many different motor drivers
- Accuracy
 - Configurable steps

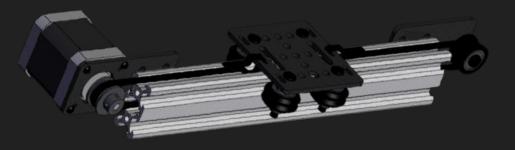
NEMA 17

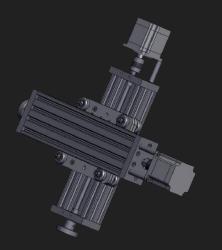
- 76 oz*in of torque
- 1.7 in diagonal
- Used for X-axis actuator

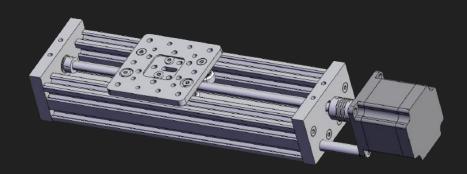

NEMA 23

- 175 oz*in of torque
- 2.3 in diagonal
- Used for Z and Y axes

Motor Drivers


DM542T Driver


- Compatible with NEMA-17 and NEMA-23 stepper motors
- Configurable steps
 - Dip-switches for changing steps and current draw
- Works well with the AccelStepper library which is used for interfacing the motor drivers through C++ software
- Simple wiring and set-up



Linear Actuators

- V-slot belt-driven linear actuators
 - Used for X-axis linear actuators
- C-beam
 - Used for Z/Y configuration

Limit Switches

- On the ends of each linear actuator
- Used for determining the bounds
 - As gantry card activates the switch, interrupt service routine (ISR) is executed to stop motor
- Safety precaution for motors, motor drivers, belts, etc.
- Used as interrupts
 - **Problem**:
 - 10 limit switches (2 for each of the 5 motors)
 - 6 Interrupt pins
 - Solution: Tie control pins together on switches on a single actuator & figure out ISR based on last direction motor was spinning.

Power Supply

Meanwell 24V PSU

- 24V / 14.6 A power delivery

 ~350 W Output
- Built-in fan for cooling
- 3 DC outputs
 - Sufficient for 5 motor drivers
- Suitable PSU for driving an array of NEMA-23 and NEMA-17 motors

Microcontroller Selection

ATmega 2560

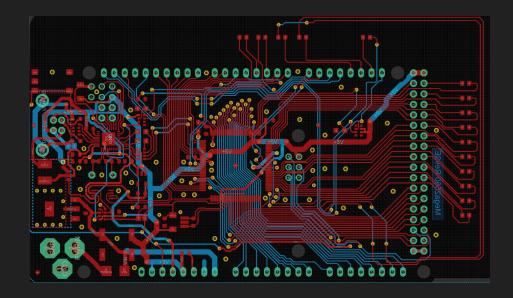
AT91SAM3X8E

- Number of GPIOs
- Pins to be configured as interrupts
- Memory size
- Pin operating voltage
- Additional components needed for operation

- Availability (chip shortage)
 - Lead times (etc.)
- Cost
- Package type

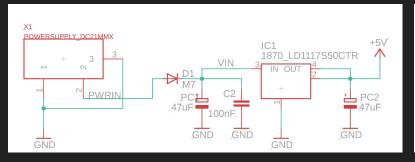
ATmega2560 vs AT91SAM3X8E

ATmega2560

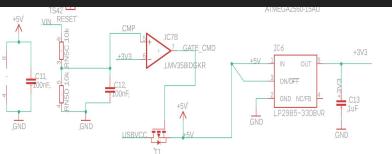

- 5v operating voltage
- 54 GPIO
 - 6 interrupts
 - 16 analog
- 256kB memory
- Does not require as much additional hardware components for operation

AT91SAM3X8E

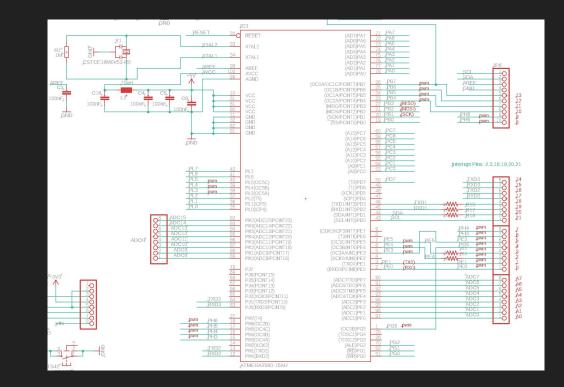
- 3.3v operating voltage
 - Requires logic level shifters
- 54 GPIO
 - All can be interrupts
 - 12 analog
- 512kB memory
- Requires more electrical components
- 32-bit ARM core

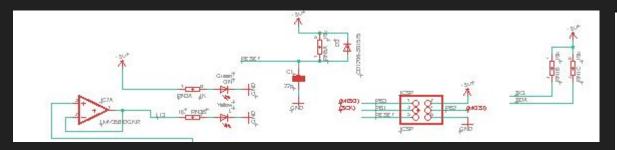

Schematic and PCB

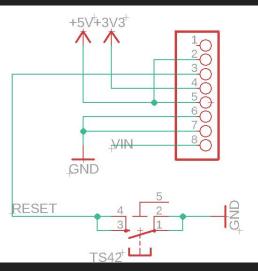
- References:
 - Open-source designs
 - Routing
 - Component selection
 - Forums
 - Component selection
 - ATmel Datasheets
 - Peripheral circuitry
 - Typical applications
- 2-Layer board
 - Majority SMD components
 - Some through-hole



Power


5 V


3.3 V


ATmega2560 Schematic

Schematic

Indicator LEDs

Voltage lines and RESET logic for ATmega2560

Solder pads

PB0 PB2 PL0 PL2 PL4

PL6

(SS) (MOSI)

PC6

Ŏ33

Õ23

0²¹

Õ19

 O^{13}

OB

 \tilde{O}^3

O

(SCK) (MISO)

> PC1 PC3

> PC5 PC7

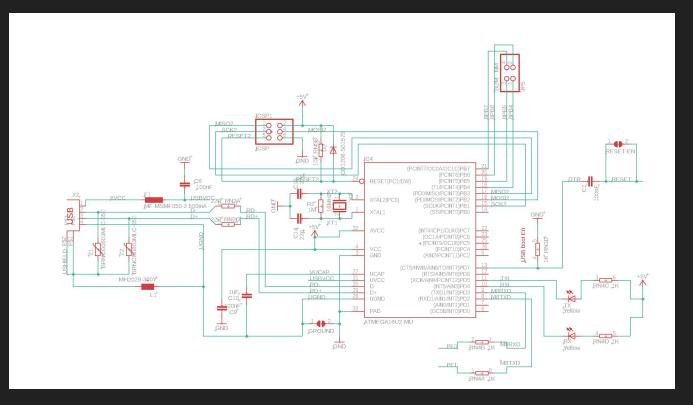
PA6

PA4

PL3

PL5

PL7


PG1

PD7

+51

木

ATmega16U2-MU Schematic

User Interface

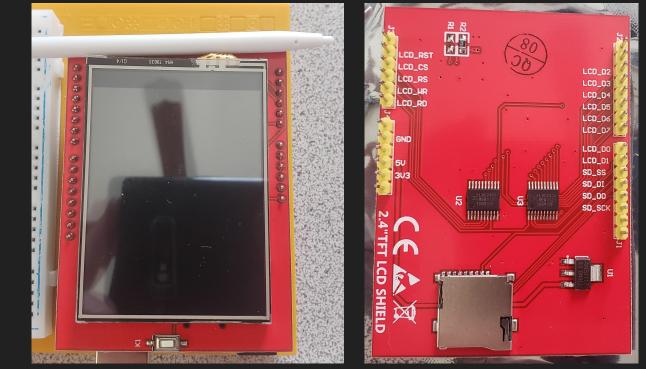
Dominic Simon - Computer Engineering

Initial User Interface - LCD and Keypad

Keypad vs Touchscreen

Keypad

- + Low user error due to large keys
- Not aesthetically pleasing


Touch Screen

- + Looks sleek
- Compact
- Smaller keys require users to be more precise

Current User Interface - Touchscreen

- 2.4" display
- 3.3V and 5V compatible
- 18 bits for color
- 9 digital pins
- 4 analog pins

HiLetgo 2.4" ILI9341 240X320 TFT LCD Display

Progress Monitor App

- Keep track of how many plates are still queued
- Send notification when plates are completed
- Provides an ETA for completion of the pin transfer process

	9:48 🖬 🖬			
Pin Transfer in Progress				
Pin Transfer Progress				
# of plates in queue: 4	ETA: 0 minutes 40 seconds			

Bluetooth Module

- 5V VCC
- Configurable via AT commands that allow for setting the baud rate, # of stop bits, etc...
- Half duplex communication via master slave communication model
- Up to 1 Mbps data transfer
- Up to 10 meter range

Hc-05 bluetooth 2.0 module

Software

Display Software

#include <Adafruit_TFTLCD.h> #include <TouchScreen.h>

Touchscreen Software

Adafruit_TFTLCD.h

- Move to different points on the screen
- Write characters
- Create virtual keypad keys
- Reset screen on screen change

// Area where the inputted numbers will show up
tft.drawLine(85, 115, 115, 115, WHITE);
tft.drawLine(125, 115, 155, 115, WHITE);

```
// Buttons
tft.drawRect(70, 135, 30, 30, WHITE);
tft.setCursor(80,143);
tft.println("1");
```

Touchscreen.h

- Determine if the screen is being touched
- Determine where the screen is being

touched

```
TSPoint point = ts.getPoint();
if (point.z >= 200 && point.z <= 1500)
{
    int x = map(point.x, 78, 951, 0, 320);
    int y = map(point.y, 96, 921, 0, 240);
    Serial.println(x);
```

AccelStepper and MultiStepper

- Simple, easy to use APIs for controlling the DM542T steppers
- Allows for manual setting of speed and max acceleration
- Allows for both synchronous(blocking) and asynchronous(non-blocking) behavior for controlling the motors
- If necessary, MultiStepper can make multiple motors reach their destination at the exact same time, regardless of individual distance to travel or step distance.