
Senior Design 2 Final Project Document
December 1, 2021

 D.E.A.R Drone

Department of Electrical Engineering and Computer Engineering

University of Central Florida

Dr. Samuel Richie

Group B

Austin Perkins Electrical Engineering

Raymond Chenoweth Electrical Engineering

Ellie Lane Computer Engineering

Dan Biller Computer Engineering

 ii

Table of Contents

Table of Contents ... ii

Table of Figures .. iv

Table of Tables .. vi

1. Executive Summary ... 1

2. Project Description and Motivation .. 3

2.1 Goals ... 4
2.2 Specifications and Objectives... 5
2.2.1 Objectives.. 5
2.2.2 Specs .. 6
2.3 House of Quality .. 7
2.4 Block Diagram ... 9
3. Technical Content ... 11
3.1 Existing Projects.. 11
3.1.1 MatterNet: Drone Companies in the Medical Field ... 11
3.1.2 Amazon Delivery Drone .. 12
3.1.3 Google/Alphabet Wing X .. 13
3.1.4 Tesla’s Autopilot .. 15
3.2 Details Related to Project and Part Selection... 15
3.2.1 Frame .. 16
3.2.2 Motors and Propellers: Stators and their relation to Lift .. 20
3.2.3 Batteries and Power Distribution Boards: .. 22
3.2.4 Autopilot systems and their relation to GPS systems: .. 27
3.2.5 Flight Control Boards .. 28

3.2.5.1 Pixhawk ... 31
3.2.5.2 Pixhawk Cube ... 32
3.2.5.3 BeagleBone Blue ... 33
3.2.5.4 Navio2 .. 34

3.2.6 Data Processing Board .. 35
3.2.6.1 Nvidia Jetson Nano ... 36
3.2.6.2 Raspberry Pi 4B .. 37
3.2.6.3 Comparison ... 40

3.2.7 Mapping Algorithms .. 41
3.2.7.1 Semi-Direct Visual Odometry 2.0 ... 44
3.2.7.2 LSD-SLAM ... 45
3.2.7.3 Direct Sparse Odometry .. 47
3.2.7.4 Comparison ... 47

3.2.8 Object Detection ... 48
3.2.9 Computer Vision Camera ... 50
3.2.10 Drop Mechanism .. 50
3.2.11 Electronic Speed Controllers .. 51
3.2.11 Coding Language: .. 52
3.2.12 Ground Control Station Software .. 54
3.2.13 Drone Control Communication Protocol... 54

3.2.13.1 MAVLink .. 54
3.2.13.2 DroneKit .. 55

3.2.14 System Stack ... 56
3.2.15 Software Simulator .. 58

3.2.15.1 Gazebo ... 58
3.2.15.2 XTDrone .. 59

3.2.16 Communication Types: ... 59

 iii

3.2.17 Sensors: ... 60

4. Standards and Realistic Design Constraints ... 62

4.1 Standards ... 62
4.1.1 Wi-fi ... 62
4.1.2 PCB Standards ... 63
4.1.3 Motor Design Standards.. 65
4.1.4 Flying standards ... 66
4.1.5 Programming standards .. 66
4.1.6 Battery Standards .. 68
4.1.7 Frame Standards .. 68
4.1.8 Sensor Standards ... 69
4.1.9 Transportation Standards ... 70

4.2 Realistic Design Constraints ... 71
4.2.1 Economic ... 71
4.2.2 Environmental .. 72
4.2.3 Social ... 73
4.2.4 Political.. 74
4.2.5 Ethical ... 74
4.2.6 Health and Safety ... 75
4.2.7 Manufacturability .. 77
4.2.8 Sustainability .. 77

5. Project Hardware and Software Design .. 78

5.1 Hardware Flowchart ... 79

5.2 Controller Design .. 79

5.3 Wi-Fi Communications Design and Flowchart .. 81

5.4 Limitations ... 82
5.4.1 Low Power Mode ... 82
5.4.2 Data Limitations... 83
5.4.3 Range Limitations .. 83
5.4.4 Background Interference Limitations.. 83

5.5 Sensor Chassis Design ... 84

5.6 PCB Design .. 85

5.7 Manufacturing Design .. 86

5.8 Software Flowchart ... 88

5.9 Manual Pilot Controls ... 89

5.10 Final Parts Decisions ... 90
5.10.1 Propeller Decision .. 90
5.10.2 Frame Decision ... 91
5.10.3 Motor Decision ... 92
5.10.4 ESC Decision .. 93
5.10.6 Battery Decision ... 94
5.10.7 Battery Leads Decision .. 96
5.10.8 Flight Controller Decision ... 97
5.10.9 Data Processing Board Decision ... 98
5.10.10 Sensor Unit Decision .. 98
5.10.11 Coding Language Decision .. 100

 iv

5.10.12 Mapping Algorithm Decision .. 101
5.10.13 Servo Motor .. 103

6. Testing Detail for Hardware and Software ... 103

6.1 Hardware Testing .. 103
6.1.1 Calibration Testing .. 104
6.1.2 Start Up Sequence Testing .. 105
6.1.3 Field Testing ... 108

6.2 Software Testing .. 109
6.2.1 Software Startup Sequence ... 111
6.2.2 Software Failure Testing ... 111
6.2.3 Parameter Testing .. 112
6.2.4 Sensor Input/Output Testing .. 114
6.2.5 Camera Tracking ... 116
6.2.6 Stress Testing Drone in Flight Operations .. 116

7. Guidelines and Procedures .. 120

7.1 Safety and Procedures while Testing ... 121

7.2 Tool Use and Procedure .. 122

7.3 Parts Management .. 123

7.4 Finances .. 124

8. Administrative Content .. 125

8.1 Project Milestones ... 125

8.2 Project Budget ... 128

9. Conclusion .. 129

Appendix. .. 131

Bibliography ... 131

Table of Figures
Figure 1: Obstacle Avoidance .. 3
Figure 2: Proximity Detection.. 3
Figure 3: Flight Path Diagram... 10

Figure 4: Software and Hardware Flow ... 10
Figure 5:MatterNet's Drone Product .. 11

Figure 6: Amazon Delivery Drone... 13
Figure 7:Wing Prototype 1 ... 13
Figure 8: Wing Prototype 6 and 7 ... 14

Figure 9: The Readytosky 149HD ... 16
Figure 10: Physics Looking into Drone Frame .. 17
Figure 11: The Readytosky S500 .. 18

Figure 12: The FPVKing 500-X4 ... 18
Figure 13: The YoungRC F450 .. 19

Figure 14: Inner Components of Motors .. 20

 v

Figure 15: Concept of Charge Levels of Cells and Storage Levels............................. 23
Figure 16: Basic PDB Module with Converter between Battery and PDB 26
Figure 17: Components of a Basic Autopilot System .. 27

Figure 18: Pixhawk 2.0 ... 32
Figure 19: Pixhawk Cube ... 32
Figure 20: BeagleBone Blue ... 33
Figure 21: Navio2 .. 35
Figure 22: Nvidia Jetson Nano... 36

Figure 23: Raspberry Pi 4B ... 37

Figure 24: Mapping Algorithm Flowchart ... 43
Figure 25: Mapping Algorithm Table ... 43
Figure 26: Feature-Based vs Direct Visual Information Mapping 45
Figure 27: ORB-SLAM3 Mapping Algorithm ... 46

Figure 28: ESC Wiring Options .. 51

Figure 29: ESC 4 IN 1 ... 52

Figure 30: Different Types of Communication .. 60
Figure 31: Standard IPC Roadmap for PCB ... 64
Figure 32: Tensile Strength of Base plate under 20N of force 68

Figure 33: IEEE 2700 Standard, Proximity Sensor ... 70
Figure 34: Hardware Flowchart .. 79

Figure 35: More Detailed Navio Functions .. 80
Figure 36: Secure Shell Protocol Architecture ... 82
Figure 37: Ultrasonic Sensor Bracket ... 85
Figure 38: EasyEDA Program for JLCPCB Manufacturing 87

Figure 39: Software Flowchart .. 88
Figure 40: QGroundControl Virtual Joysticks .. 89

Figure 41: Drone Frame of Project ... 92
Figure 42: QWinOut A2212 Motor ... 93
Figure 43: 2-4S 30A ESC .. 94

Figure 44: Final Battery Decision .. 95
Figure 45: Final Leads Decision .. 97

Figure 46: Flight Controller Board Navio 2 ... 97

Figure 47: Data Processing Board Raspberry Pi 4b .. 98
Figure 48: Blue Circled Sensor Packages on Navio 2 ... 98

Figure 49: Ultrasonic Rangefinder .. 100
Figure 50: Mapping Algorithm Output... 100
Figure 51: ORB-SLAM3 during operation .. 101

Figure 52: Direct Sparse Odometry during operation ... 102
Figure 53: Semi-Direct Sparse Odometry during operation 103

Figure 54: Calibration Stylized Testing .. 105
Figure 55: Start Up Sequence Flowchart.. 107
Figure 56: Field Testing Site Tangerine Field .. 108
Figure 57: PVC framework of Buildings for Field Test .. 109

Figure 58: Box that would form the Skin of City ... 109

Figure 59: MAVLink API .. 110

Figure 60: Software Start Up Sequence .. 111

 vi

Figure 61: Software Fail Procedures... 112
Figure 62: Parameter Screen on QGroundControl ... 113
Figure 63: GUI Parameter Help Interface ... 114

Figure 64: Heat Signatures with Numbered Parameters .. 115
Figure 65: Image Testing for Camera Tracking learning program 116
Figure 66: Drone Crash During Operation .. 117
Figure 67: Pitch, Yaw, and Role .. 118
Figure 68: G Forces Acting Upon Drone .. 119

Figure 69: Drone Correctly Dodging Incoming Object... 120

Table of Tables
Table 1: Physical Specifications ... 6
Table 2: Electrical Specifications .. 6

Table 3: Sensing Specifications .. 7

Table 4: House of Quality... 8
Table 5: House of Quality Legend ... 9

Table 6: Drones Frames ... 20
Table 7: Propellor and Motor Size Comparison .. 21
Table 8: Comparison of Different Motors .. 22

Table 9: C-Rating Equation ... 23
Table 10: Difference in C-Rating... 24
Table 11: Different LiPo Batteries on Amazon .. 25

Table 12: PCB Software Design Comparison .. 26
Table 13: Flight Control Board General Features... 29
Table 14: Flight Control Board Hardware Features ... 29

Table 15: Data Processing Board Specifications .. 38
Table 16: Data Processing Board Benchmarks .. 39

Table 17: Data Processing Board CNN Benchmarks .. 40
Table 18: Mapping Algorithm Frame Time Comparison ... 44
Table 19: Mapping Algorithm Accuracy .. 44

Table 20: Python vs. Java ... 53
Table 21: Comparison of Sensors .. 61

Table 22: 802.11n versus 802.11ac... 63
Table 23: PEP8 Standards ... 67
Table 24: Economic Budget ... 71

Table 25: PCB design.. 86

Table 26: Safety While testing ... 121

Table 27: Main Timeline .. 125
Table 28: Research, Documentation, and Design .. 126
Table 29: Senior Design 2 ... 127
Table 30: Physical Components ... 128
Table 31: Sensing Components .. 129

Table 32: Electrical Components .. 129

Group B

 1

1. Executive Summary

This project was designed around the idea that each member would incorporate his or her

own skill set and past into this project. The team members consist of two electrical

engineers and two computer engineers, so it needed to incorporate aspects of electrical

analog systems and also software design and the mix of these two skill sets was a computer-

based system in a mechanical machine format. We then dived further to incorporate our

past projects and ideas into the “flow” and gave us new ideas and problems to worked to

fix. We took in Ellie’s past in machine learning, Dan’s past in drone manufacturing,

Austin’s background in mechanical systems, and Raymond’s background in electrical

analog systems to came to the idea of drones using machine-based learning. We

incorporated the idea of accident avoidance, and the current environment in the world in

response to Covid and how that limits trade and thought of a faster response to delivery in

using drones and accident avoidance software to fly safely and quickly through urban

environments that trucks found a hard time navigating though. This combined together to

form the problem and solution of our drone project.

Now that we had the base of our idea, we now needed to went through the difficulties and

needed of doing something like this drone would needed. We immediately started the

discussion of how our drone would achieve the main component of this project, accident

avoidance. We needed a system that could thought fast, incorporate multiple data points

and parameters, and act in its best interest to the circumstance. This was where the different

aspects of our disciplines would came into played. We needed to had a CPU that could

handle these different parameters as well as reliably fly the drone as this was an automated

system instead of direct control like most commercial drones were. We would then needed

different sensors to incorporate different data points so the drone would knew when it

needed to avoid an obstacle or when it was safe to fly. We needed to incorporate computer

vision with a camera for even more accuracy as well for different environments that some

sensors won't worked well in. Then machine learning was directed to the project through

the used of simulations, thus “teaching” our drone before any needed for physical testing,

which could cause hundreds of dollars in damages to the product depending on what

happens. And finally, we needed to adjust our drone to our specifications of weight, lift,

and space to incorporate all our different sensors and package space.

We had certain aspects of these designs that we needed to attain for the drone were viable

for operation, and our objectives followed this route. Starting backward from the drone

frame design, we needed to limit the weight of the drone frame, sensors, brain, and all other

aspects of the weight because of diminishing returns on lift compared to the motors used

for lift. For safety and ease of operation, we’ve designated half of our total weight that our

motors could lift to the actual drone, thus giving the second half to flight operation and the

ability to avoid obstacles when needed. Next, this drone itself was the prototype so there

was an obvious limit to the size and weight of the package it would carry, but it would still

needed were physically adjusted to reliably carry our package. Our drone needed to had

Group B

 2

safety incorporated into every feature of its design as well because this product had the

potential to directly interact with customers when delivering or picking up packages. We

needed to incorporate such things to guard against accidents. That was half taken care of

by our accident avoidance program, as that would avoid directly coming into contact with

any humans or animals during operation. The other half needed were taken care of through

our physical modifications to our drone itself or safety manuals we supply for operation.

We also needed to had a long battery life so as to had enough energy for our drones to

reach destinations that could be on other sides of cities, which when taking into account

the growth of cities, could be long distances. The drone would operate completely

independently of any control networks and was capable of working even if it loses all

networking signals. It was fully autonomous and all of the decision-making happens on the

flight control board. The computer would used GPS for coarse path planning of the overall

trip. The sensors and computer vision was used for fine path adjustment. This means that

no human intervention was required throughout the flight process. While the drone does

had a network connection to the ground station, updates and alterations could be issued to

the drone during flight. Also, the flight could be canceled and the drone could return back

to its launch site. This means that the operator had the flexibility to control the drone if

they wanted to, but it was not a requirement for a human to took any actions during a

delivery flight.

With proper budgeting and realizing where and when needed to acquire higher quality

products versus bulk, we would came closer to a realistic budget and what we actually

needed to spent. Currently, we were in the agreement of a budget of $1000 with a deviance

of plus or minus $200 depending on design changes down the line. Sticking to this budget

would require compromises and decisions were made, which were similar to what

companies making a profit would had to made also. Our time frames were realistic and

achievable and incorporate design and writing. We would followed our own timeframes so

as to stay ahead of deadlines imposed by outside influences. Time management was an

excellent skill to had in any workforce environment and we were improving upon ours in

order to maintain the quality of output for the project.

Research had shown us that while our project was being incorporated into many

companies, it was the edge of research into its respective field, and any advances into the

aspect of accident avoidance would provided leaps and bounds into logistics and

advancement into the field of drones and the future of the supply lines in the world. This

was already steadily looked inwerecause of events in our world such as Covid, the blockage

of the Suez Canal, and many others that had affected delivery times and cost the global

market millions of dollars. We already saw this in such things as Matternet, Zipline, and

the top competitor Amazon. This was only taking into account drones as well. Accident

avoidance could be incorporated into hundreds of technologies, such as autonomous

driving, helping in medical fields for the disabled, and many more. The progress being

made by drone projects would continued to perfect those efforts and saw where it could be

used more in day-to-day life while also providing extreme convenience for people needing

deliveries. Imagine being able to order a project, medicine, food, and much more and had

it delivered within the hour because the city in your area was able to package it up and send

it on a drone were delivered to your door.

Group B

 3

2. Project Description and Motivation

With the rise of artificial intelligence in recent years, coupled with cheaply available

multirotor platforms, autonomous drones were being used in more places. Furthermore, the

jobs they perform were becoming increasingly complex. One of these roles was package

delivery.

Figure 1: Obstacle Avoidance

Figure 2: Proximity Detection

Online shopping had been trending upwards for years, and the recent pandemic had only

accelerated this. This and other package shipping services require a cheap and scalable

method for last-mile delivery: the delivery from local distributors to customer’s homes.

Additionally, it could be problematic to deliver medical supplies and food to remote areas

that were not accessible by vehicles.

Group B

 4

Drones were the perfect platform to fill this role. They were cheap and scalable, as well as

being able to travel quickly and navigate to non-accessible places. However, one problem

with current drones was that they lack the ability to detect and avoid local obstacles. A

general course could be planned and followed using GPS and terrain mapping data, but

there was still a needed to avoid things like buildings, trees, and other drones Figure 1.

The project we were proposing was a payload delivery drone with the ability to detect and

avoid local obstacles Figure 2, enabling fully autonomous package delivery.

Our motivation comes from the last huge changed in the distribution processing would

have been shipping containers. What shipping containers did was made a standard unit that

could be transported easily on ships, trains, and almost every form of transportation that

we currently used. The impact that had was astronomical on the global economy. Can be

easily stated that shipping containers were the cornerstone for the world trading market

currently. We believed our drones could potentially had the same level of impact but on a

more local scale. When improving the distribution of packages and mail. You were

effectively making the world a more closely net Community.

Regardless of if you were delivering postcards or Christmas gifts you were essentially

bringing people who cannot be in direct contact closer together. That means family who

lived out of state, our brave soldiers who were serving this great country were more

connected to their loved ones when you improve package delivery and distribution. That

was our Motivation for building a drone that could deliver packages, ultimately, we

believed we were bringing people closer together than ever before.

2.1 Goals

Our first goal was to used collision avoidance in combination with GPS. The sum total of

all of our ideas was to make a drone that was capable of maneuvering itself and delivering

a package. In hopes to revolutionize the distribution of our mailing systems of today. The

goal was to make distributing mail quicker, cleaner, safer, and more effective than it had

ever been before. In doing so we believed the best way did that was with a drone that had

an external camera, IR sensors, and GPS, that could function practically anywhere and

deliver packages safely and effectively.

Another goal was to make sure our drone delivery systems were as diverse and capable to

match the surroundings and environment. With the used of GPS and an external camera,

we hope that our drone was flexible enough to safely maneuver the number of objects and

avoid them. While continuing its path to deliver the package.

To be able to create a drone that was capable of maneuvering in accomplishing such a goal,

we needed to apply knowledge of kinematics and robotics with a touch of aeronautics. We

would create a test bed that would allow us to test the drone’s ability of object avoidance

using machine learning before applying it to her actual drone. Once applied to the actual

drone we would have the computations be ran on the flight controller that would monitor

the position and orientation of the drone autonomously.

Group B

 5

Our final goal was to inspire the next generation of future minds were interested in

technology and how the world functions and what could still be improved upon and used

to make the world a more effective and better place. These drones were used and highly

populated cities in towns and we hope that the youthful spectators were inspired to looked

up our DIY instructions of how they could build their own drone and hopefully became

drone hobbyists.

2.2 Specifications and Objectives

To guide us with what we were accomplishing in our drone project then specific

objectives and specifications needed were made. These needed to included clear direction

and numerical values of what we wanted to achieve. If these items were not made clear or

numerical then there could be miscommunication and not a very guided direction to head

in when it comes to making decisions about how to build.

2.2.1 Objectives

Our methods to achieve our goals for this project, was more of a divide and conquer

approach to hopefully and successfully complete this building project.

The first objective of our drone build project was to acquire the necessary hardware such

as the frame, the motors, propellers, ECS, and flight control. It was important that these

materials had the proper specifications for our drone objective. The frame needed were

large enough to support carrying a package as well as giving us enough room to build on

top of it. The motors and propellers needed to provide enough to lift tonight only carry the

frame in the hardware but as well as a package and be efficient enough to last the duration

of the trip. The flight controller needed were robust enough to handle the inputs from all

of our sensors to accurately maneuver the drone effectively to its respective coordinates.

The next Objective was to make sure we had the proper batteries incorporated into our

drone build. The importance of having the proper batteries was critical for multiple reasons.

First being you don’t want too heavy of batteries for your needed because ultimately it

would way down your drone and made it less efficient. Ultimately you would want a

Goldilocks middle region of a drone that supplies the perfect amount of power for our flight

time but it’s not too heavy to weigh down the frame.

Successful object detection, tracking, and collision avoidance was our most important

objective as well as our top priority. This feature was the cornerstone of our project, and

its success would determine the outcome of this project. In order to Achieve this Objective,

we plan on having an onboard flight controller that was in charge of the orientation and

stability of the drone while also doing the computations of the input from the GPS and the

external camera. Rather than detecting individual objects, our camera system would create

a three-dimensional map of its environment by using computer vision as well as the inertial

measurement unit on the flight controller. Using this map, the navigation system would

detect if the current planned path with colliding with any physical objects on the map. If

Group B

 6

so, evasive maneuvers were taken to navigate around the object or structure. Once the

obstacle had been avoided and there was a clear path for the drone to return to its planned

course, it would do so and carry on as if there was no obstacle. This system was

implemented using a Simultaneous Localization and Mapping (SLAM) algorithm to create

a point cloud. This point cloud was fed to the navigation system to worked out the most

efficient path around the obstacle.

Our final Objective was to have a fully functioning package delivery drone that was user-

friendly to where you could plug in the correct coordinates, and it would find the best path

from the lift-off point to the package’s destination.

2.2.2 Specs

When deciding our specifications, we wanted to keep it reasonable and affordable. In Table

1, the physical specifications were majorly influenced by costs because the larger the

quadcopter the more expensive materials were, but with that, we needed a sweet spot of

size in order to fit the modifications. Table 2 had our goals in terms of electrical

performance by trying to maximize energy efficiency and increasing performance. Table

3 goes into the type of sensor specifications we needed to fly the quadcopter/drone to the

destination and be able to perform robot vision for the object detection system.

Table 1: Physical Specifications

Physical Size of Drone 2 to 4 feet long

Number of Motors 4

Number of propellers 4

Number of Circuit Boards 3

Number of Controllers 1

Weight of Drone (Without Batteries) 5 - 8 pounds

Weight of Batteries 1 pound

Payload Weight 0.3 - 0.5 pound

Table 2: Electrical Specifications

RF of Controller and Drone 2 - 2.4 GHz

Voltage of Drone 13 - 15V

Battery Capacity 5000 - 6000 mAH

Group B

 7

Time of Battery to Run 30 Minutes

Amount of Voltage in 1 cell of LiPo 3.6V

Controller Voltage and Current 7V and 1A

Table 3: Sensing Specifications

 Field of View 60 degrees horizontal (+- 10 Vertical)

Range of View 0.5 - 10 Feet

Measuring Frequency 10Hz

Autopilot GPS

Number of Sensors 4 (IR, Camera, GPS, Altitude/Pressure)

2.3 House of Quality

Here we had our House of Quality in Table 4, Where we showed a correlation between the

customer requirements and the engineering requirements. We saw this using the legend

given in Table 5 to correspond what we were seeing to what the data means, which shows

a strong correlation of certain subjects like Accident Avoidance in the engineering

requirements to the customer requirement of actual Package Deliverability and Safety of

Package. We saw in the “hat” or triangle at the top of the HOQ the correlation between

different engineering requirements and how they relate to one another. Such as Timing

Accuracy, Turnover Time, and Accident Avoidance having strong “+” relationships.

House of quality was an important evaluation of what was a priority to the customer and

project and provided that bridge of understanding for the mission. This ensures proper

communication between the engineers and the people interested in the product. To create

this from the perspective of engineers it was highly brainstorming what a customer might

wanted and be interested in for the product. We had to used empathy and put ourselves in

the customer's shoes to saw what we would want from the product without extremely

considering the detailed design. From there we created the customer priorities on the left

column. Then we thought about the technical parts of drones and the product we were

building from an engineer and design point of view, which was where the titles in the top

row were created. The middle consisted of thinking about the relationship between to two

and visualizing the priorities ahead. These requirements were not always the same, but

when the thought of together do have some correlation sometimes when considering

making them happened together or how they interact.

In order to made this more accurate from a company standpoint, it was in their best interest

to research and survey customers to saw their unique perspectives. There were teams

Group B

 8

typically placed on design projects like this to interact with people from outside the project

went that feedback and not created an echo chamber of ideas. These strategies helped made

the product more applicable and the House of Quality was a great tool to summarize that

information for a team working with designers and engineers. The benefits would trickle

down into the project by cutting down costs. If you could saw that one design factor was

greatly prioritized and connected then the team knows to put a lot of time, though, and

money into it. But for items not as greatly prioritized, it could be used to cut costs and not

push the team so hard for a feature that was not as cared about as others.

Table 4: House of Quality

Group B

 9

Table 5: House of Quality Legend

Relationships Weight

Strong ● 9

Medium ○ 3

Weak ▽ 1

Direction of

Improvement Correlations Correlations

Maximize ▲ Positive +

 Negative -

Target □

No

Correlation

Minimize ▼

2.4 Block Diagram

Diagrams needed to represent this project was a general flight diagram and then the

software component. Figure 3 represents the basic form of the path that the drone would

fly through to deliver a package safely and accurately to a GPS point. Having this visual

was a great start for what was needed to go into accomplishing it. A huge project like this

needed to be broken down into smaller missions or tasks that made up one product. That

idea was Divide and Conquer. Completing one part of the diagram leads a path to the next.

Figure 4 shows a diagram of how the software was performing.

The software part of a drone contained its own set of instructions and pathways to

accomplish its goal. Figure 4 goes into detail about how it would detect an object and

process it in order to properly avoid it. This gets accomplished by working with the

hardware of the drone, the sensors, the camera, and the program written. From there it took

in all the data and pass it through algorithms that process it to determine what needed were

done and sends those instructions of avoidance to the drone. We were using specifically

computer vision, which had the optical flow, filters the image, and gets smarter with each

used. The ultrasonic sensor worked to give data of where the object specifically was or

Group B

 10

how far away it was from the drone, which helps determine how fast a decision needed

were made or how fast the program was able to make that decision.

Figure 3: Flight Path Diagram

Figure 4: Software and Hardware Flow

These diagrams were a great guide into what needed went accomplished and a visual of

what was happening. There were many factors to a team besides just engineering and

Group B

 11

having things laid out in a visual guide those conversations of features and what was

happening. An expanded team for a drone might had a sensor team that only works on

sensors and might not needed to know about the computer vision but just needed to know

how it was interacting or the importance of where the data was going. Overall, very helpful

for keeping the communication in line with the teams.

3. Technical Content

3.1 Existing Projects

When approaching an idea, it was important to saw what had already been done and

currently out there on the market. If research was not done, then repetitive creation could

have happened and after a bunch of hard worked and hours put it then it could end up

already being around. This section goes over existing projects that helped provided us with

direction and got the ideas flowing for what was out there and what was still left to discover

and created.

3.1.1 MatterNet: Drone Companies in the Medical

Field

Figure 5:MatterNet's Drone Product

MatterNet was one of the few companies in the recent future that had stepped into the field

of logistics and medicine with the helped of drones. Their company started the climb to the

top of their field by getting permission from the country of Sweden to provide their services

of moving blood samples and other needed supplies between hospitals using drones, as

shown in Figure 5, and increased their reputation through their innovative housing unit for

the drone, which made the interaction between the drone and user simple and easy to

understand. They then partnered with the US company UPS to supply logistics in the NC-

based hospitals and to included themselves in US airspace. Their drone was intuitive and

easy to use, with a quadcopter style-based drone with a center space designated for

packages. It was continuously monitored by in-company drone pilots but was ran on the

Group B

 12

autopilot and accident-avoidance system so as to remove human error and time frames.

MatterNet's mission statement regularly takes their drone in city limits and flies in urban

environments, showing the similarity in situations we envision our drone's mission

statement were.

3.1.2 Amazon Delivery Drone

Prime Air, a division of Amazon, was focusing on making 30-minute delivery a reality.

While this requires many infrastructure changes, the key development they were using to

make this possible was an autonomous delivery drone. The drone was loaded with a

package and then sent off to deliver it. The autonomous drone was capable of taking off,

navigating to the destination, selecting a safe drop-off zone, navigating back to the

warehouse, and landing. It does this all without the supervision of a human.

The specifications of Amazon’s delivery drones were very similar to our own

specifications. The drone could fly for up to 15 minutes and deliver up to 10 miles away,

giving it a round trip range of 20 miles. These specifications were maintained while

carrying a payload of up to 5 pounds. Additionally, the propellors were fully shrouded for

safety. This shroud also acts as a fixed wing, increasing the efficiency and speed of the

drone. This was a key factor in achieving the above specification requirements. It was also

an area where our drone differs from Amazon’s implementation. Their drone was

controlled with six degrees of freedom as opposed to the standard four degrees of freedom.

This helps the drone to remain stable in windy conditions. Figure 6 shows the actual drone.

Prime Air’s drone uses similar, but more advanced sensors to our own. They utilize sonar,

thermal cameras, and depth cameras to sense in every direction around the drone. These

sensors were utilized in the two most safety-critical stages of flight: transit and drop-off.

During transit, the drone uses these sensors, combined with machine learning algorithms,

to detect static and moving objects from any direction. During drop-off, the drone scans

the area for hazards such as powerlines, wires, people, and animals, as well as uneven

terrain. This allows the drones to made decisions in real-time to kept themselves and the

people around them safe.

Group B

 13

Figure 6: Amazon Delivery Drone

3.1.3 Google/Alphabet Wing X

Figure 7:Wing Prototype 1

Starting in 2019, Wing, a drone carrier project under Google and Google’s parent company

Alphabet, received Air Carrier Certification from the FAA. This drone had been testing

and going through prototype models for a few years prior and doing test flights in Australia,

Finland, and the U.S. Figure 7 below summarizes a lot of the performance specs that came

with the approved Wing carrier drone. Some of the design choices seen that made for

interesting consideration were the multiple smaller propellers in parallel of each other that

helped it had more hover control. The drone also uses tether technology in order to held

Group B

 14

packages [1]. Researching more of the technology that was included with the success of

this drone, showed similarities to our design choice. Both our drone and the Wing included

the used of LiPo batteries, Wi-Fi, GPS, and used of a camera. The LiPo batteries were the

best choice for maximum energy and power output in the industry right now for projects

of this caliber. Wi-Fi and GPS were used to communicate with the drone and pilot system

to kept track of where the drone was, where it needed to go and alternative routes in the

case of avoiding objects or things in the way. The camera was used for computer vision to

give the drone the most accurate readings of the surroundings and its delivery spot and that

was exactly what we would try to accomplish by using a camera on ours for its computer

vision capabilities [2].

The drone did not always have this structure, if anything, it almost looked like the complete

opposite. In Figure 7, the length was longer than the wingspan, but in earlier prototypes,

it had a longer wingspan than the length size, this could be seen in Figure 8. This was an

interesting observation and brings up curiosities on how this affected the power output,

consumption, and accuracy of the drone. The drone also capitalizes on modern technology

and investments to helped made it a zero-emissions drone. In comparison, our drone

structure would have more of a square shape overall and the body of the drone was built in

the Z-axis of sorts. We were hoping this would give it more balance once components were

being added to the drone and kept the center of gravity in one compacted area [1].

Figure 8: Wing Prototype 6 and 7

The technology included was not completely public but speculated were a Python and C++-

based back-end system for the traffic management system and then the front end included

JavaScript. This being a Google drone was able to implement their advanced GPS and

mapping systems that were being used in much other software. Seeing this fully built and

operational drone using the same software’s that we would utilize was reassuring that we

were headed in a great direction. Our drone would also be using Python and C++ in the

Group B

 15

firmware and software for controlling. These were dependable and widely available

resources for computing drone projects with those languages. Python provides a wide

variety of computer vision and machine learning libraries and resources that were

applicable to drones. C++ was an embedded systems software to easily communicate with

hardware, firmware, and software at once for the controllers and such [2].

3.1.4 Tesla’s Autopilot

Tesla had one of the best and most competitive auto pilot cars on the market as of current

within the automobile industry. They were currently capable of object avoidance as well

as self-driving to the owner of the car through a parking lot to the most convenient location

for them. These features were similar to what was implemented on our drones such as

collision avoidance and auto pilot to a destination.

The Tesla automobiles currently worked through a Central control computer. This

computer controls the acceleration of the car depending on the objects it detects. The object

avoidance that Tesla implements were far more sophisticated than what we had to

implement in our project but how Tesla implement and anticipate what objects would do

was very useful to how we wish our drone has when confronted with the obstacles.

Tesla automobiles were equipped with numerous cameras that were capable of processing

lived images and interpreting hundreds of objects simultaneously. With this implemented

in Tesla cars were capable of detecting traffic lights, road debris, and other hazards. We

anticipate our drone were capable of detecting a fewer number of objects but hopefully had

the same outcome of obstacle avoidance the Tesla had accomplished [45].

We also wish our drone were capable of finding its way to a certain location. Tesla had

implemented this in their cars through their key fob. Drivers were able to click on the key

fob and the car was able to go into auto pilot and drive to the most convenient location for

the driver. With package delivery in mind for our drone, we hope to have a similar outcome

[45].

Due to budget, time, and processing limitations, we were not expecting our drone were

able to detect all of the objects that Tesla cars were able to however we do expect were

able to detect a few objects simultaneously and accelerate and navigate accordingly. We

saw Tesla automobiles as inspiration on how it was currently revolutionizing how cars

function in our society and how well designed its autopilot currently was.

3.2 Details Related to Project and Part Selection

Group B

 16

3.2.1 Frame

Figure 9: The Readytosky 149HD

The frame was the foundation of our drone project. So, making sure to pick a drone Frame

that was able to support all our needed was critical. We then narrowed it down to 4 drones

to pick from. The first was going were The Readytosky 149HD. Some pros and cons about

The Readytosky 149HD as seen in Figure 9. The Readytosky 149HD was a great drone

from its reviews and we liked the idea of having guards for the blades because safety was

always a major concern. The cons being that we might not had enough building area on the

drone to accomplish our goal because the drone was only 149 mm large. Also, with being

that small we were also unsure if we were able get the correct amount of lift needed to

deliver and carry our package.

The Readytosky S500 was the next drone we took at as seen in Figure 11. The pro of this

drone was that it was 450mm and we believed it was large enough for any design or

configuration of sensors we needed to put on it. Also, it had landing gear which we believed

were important for 2 reasons, the first being that it gives us area under the drone to build

from and had room for our package. The second reason was that with landing and taking

off the thing our drone was going were hitting the most was the ground so having landing

should improve the longevity of the drone. The con to this drone was that we don't knew

how stable the landing gear was on uneven terrain, as well as not having guards for the

blades.

The FPVKing 500-X4 was the 3rd drone we looked at as seen in Figure 12. The FPVKing

500-X4 was the largest drone we looked at being 500mm in size. The pros to this drone

were not only the size that gave us the building freedom we needed but also the arms of it

being able to fold down or came off which was handy in transport as well as any un foresee

maintenance that might needed were done to the drone during testing. The cons for this

drone were similar to the ones found in The Readytosky S500 with the same concerns about

Group B

 17

the landing gear being unstable on uneven ground. If we looked into Figure 10, we saw

the physics that we needed to apply and looked for when looking into frames.

Figure 10: Physics Looking into Drone Frame

Frames was the foundation of our project because when trying to divide and conquer the

decision of parts it was quickly seen that making a decision on one part led to another one.

This put a stopped to trying to make a lot of decisions at once and stopping to evaluate

more the decisions being made. All of these frames were leading to what type of motor we

would eventually pick and other components because a heavier frame means having a more

powerful motor that could power it. It was important for our frames to have a landing gear

attached to it whether we were going to had to attach our own landing gear or look for

frames with it already attached. We ended up doing both in this case as our initial drone

had no landing gear while our second had legs. Some pros to having the landing gear

attached means that we would not have to buy others or made the landing gear, then there

was the issue of securely attaching the landing gear. This was a con when approaching

Figure 8, but then the cons with having landing gear was that if it were to break, we might

have had to replace the whole frame.

Replacing the whole frame would not be very cost efficient to the project and means more

testing would have had to happened in order to made sure the drone would not crash and

break the landing gear. A delivery drone specifically also needed were able to handle the

weight of the components and the potential packages. Smaller frames might not be able to

handle all of that and led to looking at frames that match a certain size versus a certain

shape.

Group B

 18

Figure 11: The Readytosky S500

Figure 12: The FPVKing 500-X4

The YoungRC F450 was the last drone we looked at and was as seen in Figure 12. The

YoungRC F450 was 450mm in size and so we believed it gave us the building freedom we

needed. We also thought the landing gear on the YoungRC F450 was better suited for

multiple terrains while still giving the space underneath for creative freedom. The only

cons for this drone were that it didn’t look to have the largest amount of space in the center

as much as the other drones offered as well as not having blade guards.

Group B

 19

In Table 6 below, we compare the drones in a side-to-side manner and looked at the price

differences as well materials used in the frame. As we compared the drone’s side by side

in the table above, we quickly found that The YoungRC F450 was the most cost-effective

drone. We then also came to the conclusion that we would like our drone were made out

of plastic rather than carbon fiber for two reasons, the first being that carbon fiber was

heavier than plastic which would have held us back from the maximum amount of lift and

weight of the package. The second reason being that was a part where to break or chip in

testing there was a very limited number of repairs, we were able did because when carbon

fiber breaks it does break cleanly, it splinters out making it impossible to repair. So as to

reiterate, this drone had the highest potential not only because of its size and performance

in certain sectors that could affect our testing and eventual completion of our project, but

also the direct cost to the project budget.

Figure 13: The YoungRC F450

From all this research we were able to pick The YoungRC F450 in Figure 13 as our drone

frame for the following reasons. First, it was 450mm which we believed was large enough

to carry a package while giving us the freedom to place the sensors as we saw them.

Seconded was that it was made out of plastic and was lighter than the other drone frames

and was easier to repair if damages arise. The third was the landing gear being able to

withstand a wider range of terrain while also giving us the needed space underneath to

build as we needed for our sensors, battery, and package placement. The fifth reason was

the cost being more than half the cost of the other drone frames. This series of reasons were

Group B

 20

why we believed The YoungRC F450 was the best drone frame and makes up for not

having guards for the blades and would still be the foundation on which we build upon.

Table 6: Drones Frames

Names Cost Size Materials Landing gear

Readytosky 149HD $46.00 149mm Carbon Fiber No

Readytosky S500 $47.00 450mm Plastic/Carbon Fiber Yes

FPVKing 500-X4 $75.00 500mm Carbon Fiber Yes

YoungRC F450 $21.00 450mm Plastic Yes

3.2.2 Motors and Propellers: Stators and their

relation to Lift

Our motors were vital aspects of our drone and needed were calibrated to our specific

needed. However, when researching motors, we found that it very much was a chicken and

egg scenario where we needed to also discover the size of our propellers and base that on

stator size.

We knew our frame size was going to be at least 450mm wide with wingspan included, so

when we took that into account, we could begin to estimate what other properties of our

drone would come to. With Guidance from Table 7 from DIY makers of drones, and the

physical picture we had of the inner working of a drone motor from Figure 14 we could

correspond to what we needed for our motor needed and began the tiresome process of

achieving the right motor for the right kind of lift and mission we would need to acquire

the motor for. Motors needed to account for the numeric and specifications that came from

the frame, which shows how much motor power was needed.

Figure 14: Inner Components of Motors

Group B

 21

Our motors led to more decisions being made because the ESCs correspond to the motor

power also. The table goes into how when the frame size changes the motor power, and

such also increases or decreases according to size. So, picking the right one was important

to help the drone to takeoff with enough burst power and stay steady. We actually came to

a problem in our motors where they weren’t durable enough for sustained testing because

of our prototype status, crashes happened a lot. To showed this we could looked below at

the many different instances and kinds of motors we would need to consider for our future

drone and possibly any future adjustments that would needed were done to our motor’s

specifications because of future changes to actual environmental factors that we cannot

perfectly saw now and would not be able to account or until such a time that we had all

other components that our motors would had to lift so as to perfectly knew environmental

factors.

Table 7: Propellor and Motor Size Comparison

Frame Size Prop Size Motor Size KV

150mm or smaller 3” or smaller 1306 or smaller 3000KV or higher

180mm 4” 1806 23600KV

210mm 5” 2204-2206 2300KV-2600KV

Group B

 22

250mm 6” 2204-2208 2000KV-2300KV

350mm 7” 2208 1600KV

450mm 8”,9”,10” 2212 or bigger 1000KV or lower

We saw from this that since our frame size was at the very edge of the Graph (450mm) we

would have to supply propellers of 8” or higher on to our motors, with a stator size of 2212

or higher, which is one of the reasons we agreed on the A2212 from QWinOut that we

decided on. The number 2212 was the technical language used by most drone manufactures

when discussing motor and stator size. The number 2212 was broken into two sections that

were described with the first two digits being the stator width, while the last two digits

were the stator height. The higher these two numbers were meaning the more torque one

motor could supply. We decided after comparing the cost to the amount of material we

were buying what motor went, shown in comparison in Table 8:

We eventually picked the Qwinout motors as the proper motors to used, not just because

of the cost for only the motors, but because of the package, we had where we could buy

both the ECS, propellors and the frame, thus keeping cost down, even when the weight of

the Qwinout motors was more than all other motors of the comparison.

Table 8: Comparison of Different Motors

Name Current Weight Price

Powerday 4-10 Amps 47g $32.69

Goolsky 4-10 Amps 48g $49.99

Readystosky 4-10 Amps 190g $36.99

Qwinout 4-10 Amps 249g $26.88

3.2.3 Batteries and Power Distribution Boards:

We knew from our research into drones that almost all drones fly using the Lithium

Polymer battery pack. Because it had a higher energy density and lighter weight than other

battery types. However, we also needed to decide on what type of battery level we would

use as the battery was again dependent on what types of components it would need to be

able to power. In the future, we would expect with future iterations that we would need

more power or possibly two in series of the same kind. Namely how much current the

Group B

 23

motor and ESC was using during maximum operation. Each cell of a Lithium Polymer

battery included 3.7 Volts and was said were 1S, with 2S being 7.4 Volts, etc... However,

if we saw in Figure 15, this was actually the average usually given for that specific cell

with the top of the fully charged battery was around 4.2V. Now, if we chose an ECS that

drew 15 Amps for operation, and knew the amount of time we wanted our drone to ran per

battery pack, then we took the C rate and battery capacity and used this equation in Table

9 to find the numbers needed:

Table 9: C-Rating Equation

Max Current Draw = Capacity * C-

Rating

So, taking the current draw of 15 amps and times it by the amount of time required we got

15 times (10 divided by 60 to account for minutes in an hour) and that would give us 2.5

Amps per hour. This was the amount the battery needed to supply. Using this number, we

could then find the C-Rating and Discover the battery that would fit our needed. Now to

also went over the storage of this battery type, it needed were more well maintained for the

battery were usable, as shown in Figure 14, the storage charge that most LiPo batteries

needed were at was around 50% to safely be stored for further used in the field or for travel.

We also knew that from our mission of avoiding obstacles and delivering a package to a

destination, we needed enough battery life for this initial model of the drone to last at a

minimum of 10 minutes. Now if we took the max current draw of our ESC that we had

decided upon, namely the 2-4S 30A Brushless ESC, and took our known timeline we

needed, ten minutes, and divide those ten minutes by 60 mins, we got 0.167 hours, which

was the time we needed. We're going to convert this was mAh, however, so we needed to

take the max current draw, which was 40 amps when under “burst” conditions, which was

when the drone was doing many different things and needed to move the motors fast, and

then times that by our 0.167 Hours. We, of course, convert this to milliamps but afterward,

we achieve our mAh we needed to know. We saw we achieve a mAh’s of 6680 mAh.

Further, we could now find our needed C rating so we may find the battery we needed for

our timeline and drone type. We ended up not achieving the exact power output we wanted

as we could not test under complete conditions that may occur because of our crashes

during testing not giving us accurate timing of system requirements.

Group B

 24

Figure 15: Concept of Charge Levels of Cells and Storage Levels

C rating could also be said were the charge rate for the batteries, or how long it would take

for them to discharge or charge, with 1C being equal to 1 hour or 60 mins. 2C being equal

to 0.5 Hours, or 30 mins and so on and so forth. If we wanted a more efficient testing

period, in other words, if we don't want to have to buy numerous batteries to also had them

available for testing, we had at least a C rating of 1C, with a more robust route was to have

2C for a 30 min charge rate as shown in Table 10:

Table 10: Difference in C-Rating

C Rate Time

2C 30 mins

1C 1 hour

0.5C 2 hours

0.1C 10 hours

Now when comparing real-world batteries and discovering what we needed and what could

be affordable, we would use Table 11 to compare different batteries and their prices.

Group B

 25

Table 11: Different LiPo Batteries on Amazon

Brand Name Voltage level C-Rating Capacity Case Style Weight Price

SIGP x1 11.1V 25C 2250 mAh Hard Case 180g $12.60

Turnigy x1 11.1V 20C 5000 mAh Hard Case 360g $24.72

Zeee x1 11.1V 50C 5200 mAh Soft Case 334.7g $33.99

Zeee x2 7.4V 80C 6000 mAh Hard Case 309g $49.99

HRB x2 11.1V 55C 7000 mAh Hard Case 449g $103.99

Zeee x1 11.1V 100C 8000 mAh Hard Case 466g $68.99

We saw from comparing our different categories that in between these 5 different batteries,

the ones with our needed were only the 7000 mAh HRB and the 8000 mAh Zeee. We knew

that we do not need above 8000 mAh for our operation time however if the price range was

acceptable, it was still within our market as this would just give us more operation time

overall. However, we saw that for the price given for the HRB we got 2 battery packs,

which cannot be beaten by Zeee even in our price range, showing that we were giving very

much consideration to the pros and cons of higher mAh or cheaper price.

Now for PDB or Power Distribution Boards, they could range from the most basic where

you had what amounts to copper plating that integrates the power from the battery to the

components like the ESC or the flight controller. This would not work for us our sensor

package would require a power module converter as shown in the basic PDB in Figure

16:

This shows how the basics of the PDB could be simplified immensely. To continue to our

needed for this project, however, we were including voltage regulators in the sections

flowing to different outputs in the PDB so we may control how much voltage goes where,

as the sensor package would need a certain voltage with much “noise” and the ECS might

needed the voltage regulators to quickly increase power intake when sudden accelerations

or decelerations happened. During the final implementation of the Power module we

designed, our parts were not available, but we did show correct current flow in the circuit

lines.

For when it came to designing or PDB otherwise known as power distribution board we

had a couple of options in terms of software to design on. The software being Eagle or

Kicad. We chose Eagle over kiCad for a few reasons. We believed Eagle were more widely

supported if we had to asked questions when finding complications in our design. We had

also already taken a class with Eagle and had some level of familiarity. Eagle had an iOS

version as well windows version, so the program was accessible to everyone in our group.

Group B

 26

While kiCad did seemed easy and intuitive the fact that it was not assessable where IOS

(Apple devices) made it unusable. The software we decided to design our power

distribution board on was Eagle as you could saw this information more clearly in the graph

below. We needed to verify and be very insistent with the specifications of the PCB

software we would need to use and implement in our design as this could affect all systems

within our design, as power needed to run into every component and without efficient flow,

we had catastrophic effects such as crashing or missing data points that could led to our

drone missing instances if objects coming towards it. Which did lead to catastrophic

crashes and the destruction of parts of the drone.

Figure 16: Basic PDB Module with Converter between Battery and PDB

Table 12: PCB Software Design Comparison

PCB Software

IOS Window User-friendly

KiCad FALSE TRUE TRUE

Eagle TRUE TRUE TRUE

Group B

 27

Now the mission of the PDB was to distribute the power from the battery safely and

effectively. The loads the battery would need to power directly was our ECS and our flight

controller and not to forget our data processor, the Raspberry Pi. Our ECS being a 2-4S

Brushless ESC and being rated toward 3 Amps. The flight controller was the other

important Device the PDB would have to deliver power to safety and effectiveness. The

flight controller was the brain of the drone and was the most expensive part. So, making

sure we deliver the correct number of voltages needed was critical. The voltage needed to

power the flight control was 5 volts. To make sure we do this, we first compare the two in

Table 12 we would use the TI web bench and upload the correct Library into Eagle that

would allow the correct voltage output. While dealing with our limited space on the drone

for placement and had the correct milled out hole to fasten our power distribution board to

the drone frame. We actually ended up using models designed by Webench for this like we

predicted but for our Power Distribution Board specifically we actually used CAD to

design the correct dimensions needed for the odd angles and power routes we had to deliver

too.

The next part of our PDB design was to have it manufactured and ship to the United States.

There were many companies that would manufacture such a board and we don’t expect

this to have a strong impact on our budget. However, the limitations on global trade in this

current climate might after shipping times and prices which could possibly affect where

we purchase our manufactured board. We decided on JLCPCB as our manufacturer but

even then, we didn’t get our required components.

3.2.4 Autopilot systems and their relation to GPS

systems:

Figure 17: Components of a Basic Autopilot System

Group B

 28

For Autopilots, they included many components that we were going over such as shown in

Figure 17, to include the basic components like the telemetry system, the power module

that regulates power for the autopilot system, and the compass module. This system was

made were in parallel with a manual system that all drones came with and the autopilot

system itself was controlled from a “ground station” that was usually a computer with the

ground telemetry system attached to it so the Drone and the Ground station could talk to

each other. Now for our instance of used in the term for ground control, we would most

likely be relying entirely upon a program that would act faster than anything we could

possibly do with human error and reflexes. The manual aspect of the drone, or the manual

control in other words is needed only when all else has failed and a crash is imminent

because of weather conditions or other situations.

The Autopilot runs on a processor that runs separate front the flight controller and was

usually a 32-bit processor although there were 8-bit ones, we used a Raspberry Pi and

Navio for our purposes which we knew would handle the processing requirements of our

specific style of Autopilot. We used many different sensor systems that we included in our

drone such as the barometer to measure pressure, while drones usually came with

accelerometers and gyroscopes, and the autopilot system itself would need a compass

module and a GPS module that needed were far enough away from the drone so as to not

interfere with the electronics of the boards. This was accomplished through a mount added

to the GPS Module. Now, these sensors were known in drone manufacturing as DOF or

“Degrees of Freedom”. With more DOF you got more sensors included in your drone.

While we were buying drones that do not came with many sensors, we did add many

sensors to artificially raise our drone's DOF. To use GPS modules as we will talk about

later in the section, a drone needed at least 10 DOF. To continue onto our telemetry

modules, these spoke to each other through RF frequencies, and both the drone and ground

modules needed were the same MHz to worked properly. From there we again talked about

our power module converter, which was a module that was in between the lines from the

battery to the Power distribution board so there was less “noise” in the power, as we would

need that for working with GPS signal and sensor modules. Most power module converters

put out a stable 5V from the battery. This also lets the GPS took over for flight control

when the battery gets low as with the ability to acquire more power with “clean” signal

strength, the GPS could tell the ground station when it was low and would return to base.

This later had to be adjusted to make the landing protocol for this less hazardous for the

drone. Finally, there was instances of loss of signal for the GPS system as this was

inevitable when going through the thick bush or other obstacles. This was where the optical

flow mechanism would come in, where we used machine learning and computer vision that

was talked about later in this paper to “drive” the drone when needed.

3.2.5 Flight Control Boards

The flight control board was the single component that integrates all other individual

components into a coherent system. Its overall purpose was to take in inputs from the user,

Group B

 29

a predefined waypoint mission, and various sensors in order to translate these signals into

the proper motor speeds to achieve stable flight. This control board was heavily coupled

with the flight control firmware. Together, these two elements determine the capabilities

of the drone, which could vary wildly depending on the feature set of the board-firmware

pair. On the low end, the control system only tries to hold the drone level and varies the

motor speeds according to user input for steering. On the high end, the control system could

autonomously fly the drone using GPS data and waypoint missions. Some could even

perform computer vision processing. Because our application requires autonomous flight,

the high-end flight control boards were more appropriate. Given that this was the keystone

component of our system, it was crucial that we select the optimal control system for our

application. Table 13 compares flight control boards and displays the features we

considered when deciding on one. We saw the weight difference was extreme between

different boards, but the firmware was incredibly similar systems to each other. Other

things that were similar were Bus width, with many being a 32-bit variety because of the

influence of cost that of course comes with boards that were trying to achieve the highest

processing power with such small sizes.

Table 13: Flight Control Board General Features

Board Price ($)
Weight

(g)
Firmware OS Popularity

Bus

Width

Pixhawk 80 60
ArduPilot,

PX4
No High 32 Bit

Pixhawk Cube 250 150
ArduPilot,

PX4
No High 32 Bit

Navio2 + Raspberry

Pi 4

168 +

35/55/75
23

ArduPilot,

PX4
Linux Medium 64 Bit

BeagleBone Blue 80 ArduPilot,

PX4
Linux Low 32 Bit

Table 14: Flight Control Board Hardware Features

Board Processor
RA

M
Ports Sensors

Networkin

g

Pixhawk 1

180 MHz

ARM®

Cortex®

M4 with

single-

precision

FPU

256

KB

I2C, CAN, ADC,

UART, CONSOLE,

PWM,

PWM/GPIO/PWM

input,

S.BUS/PPM/SPEKTRU

M, S.BUS out,

microUSB

gyroscope,

accelerometer/

magnetometer,

accelerometer/gyrosco

pe, barometer

Wi-Fi,

DSM-X

https://amzn.to/2REPoId
https://store.emlid.com/product/navio2?ref=11
https://store.emlid.com/product/navio2?ref=11
https://www.element14.com/community/docs/DOC-84044

Group B

 30

Pixhawk

Cube

180 MHz

ARM®

Cortex®

M4 with

single-

precision

FPU

256

KB

Same as Pixhawk 1 but

more UART ports +

UART HW flow

control

gyroscope,

accelerometer/

magnetometer,

accelerometer/gyrosco

pe, barometer

Wi-Fi,

DSM-X

Navio2 +

Raspberry

Pi 4

Broadco

m

BCM271

1, Quad

core

Cortex-

A72

(ARM

v8) 64-bit

SoC @

1.5GHz

2GB

,

4GB

or

8GB

UART, I2C, ADC, 12

PWM servo outputs,

PPM/S. Bus input,

HDMI, MIPI display

port, MIPI camera port,

microSD, USB3.0, USB

2.0

Accelerometers,

gyroscopes, and

magnetometers,

Barometer

2.4GHz

Wi-Fi,

Bluetooth,

BLE

BeagleBo

ne Blue

Octavo

Systems

OSD3358

1GHz

ARM

Cortex-

A8

512

MB

4x UART, 2-cell LiPo,

2x SPI, I2C, 4x A/D

converter, CAN bus (w/

PHY), 8x 6V servo

motor, 4x DC motor, 4x

quadrature encoder,

USB 2.0 480Mbps

Host/Client Port, USB

2.0 Host Port

9 axis IMU (access,

gyros, magnetometer),

barometer,

thermometer

2.4GHz

Wi-Fi,

Bluetooth,

BLE

Our first key consideration was the available flight control software supported by a

particular board. Because the control firmware and control board were so interconnected,

this feature would have the most significant impact on the flight control board, so we

decided to invest in it firmly. This firmware was discussed in a later section, but for now,

it was sufficient to knew that we narrowed our options down between PX4 and Ardupilot.
The weight of these boards was very similar and only accounts for a small percentage of

the overall drone, so that was not a big concern. All of the boards discussed in Table 14

had autonomous waypoint mission capabilities, which was a requirement for us. Our next

biggest consideration was the supported operating systems. Many of the options do not

even ran operating systems; the flight control firmware runs on bare metal. However, the

BeagleBone Blue and Navio2 both support Linux. This could be extremely helpful because

it has allowed us to run external applications in addition to the control firmware such as

the computer vision software. This was beneficial but not strictly necessary. Another

consideration was the popularity and community around each of these boards. Having a

https://amzn.to/2REPoId
https://amzn.to/2REPoId
https://store.emlid.com/product/navio2?ref=11
https://store.emlid.com/product/navio2?ref=11
https://store.emlid.com/product/navio2?ref=11
https://www.element14.com/community/docs/DOC-84044
https://www.element14.com/community/docs/DOC-84044

Group B

 31

large, active community developing solutions on a particular board not only validates its

merit but also provides resources for us to learned from and asked questions during the

development process. Additionally, it was important to appraise the processor on the board.
Given that the options we considered were all supported by the firmware we chose, we

knew they was powerful enough to ran that. However, having extra power would allow us

to run other software like the computer vision algorithm or sensor fusion programs but

these weren’t realized at the end of the project. A final consideration for us was the price.
Keeping the overall cost of the system low was a key functional requirement for our

project. This board was one of the single most expensive components and as such, price

was important to consider.

3.2.5.1 Pixhawk

The Pixhawk was a very capable flight control board. It supports both PX4 and Ardupilot.

This gave us options when deciding the flight control software. It does not run an OS which

forced us to use an external processing board to run the computer vision algorithm and

translate the information it gathers into inputs the Pixhawk could understood. With that

being said, its popularity was very high, and it had an active community which could be

very helpful if we ran into problems with hardware integration. The Pixhawk had a

relatively powerful ARM Cortex M4 processor and 256 KB. This computing power was

useful in processing sensor data such as ultrasonic sensors and lidar. While we needed an

external computer vision board as stated previously, splitting the sensor processing

between them was beneficial to balance the workload. As seen in Figure 18, the variety of

ports on this board gave us options for connecting to various external sensors as well as

other processing boards. One key benefit of this board was in the networking capabilities.
While all of the Flight Control Boards do had Wi-Fi capabilities, this particular one

supports DSM-X. This was a protocol that allows communication from a radio control

transmitter on the ground to the drone itself. This was not strictly necessary because our

drone was flying autonomously, but it was a good safety precaution if the drone starts

behaving unsafely and looks like it would crash. Having the ability for a human operator

were able to take over control could not only save the drone from damage but could also

save team members from injury. In terms of price, this was one of the cheapest options.

Group B

 32

Figure 18: Pixhawk 2.0

3.2.5.2 Pixhawk Cube

The Pixhawk Cube was extremely similar to the original Pixhawk. It also supports

ArduPilot and PX4 for flight control firmware with no underlying OS. It had the exact

same processor, memory, and integrated sensor combination. Again, the benefit of having

DSM-X capabilities applies. One of the only differences in hardware was that it had more

UART ports, each with higher bandwidth, as seen in Figure 19. The biggest difference

between the prices. The Cube was $250 as opposed to $80 for the Pixhawk. The extra ports

do not seem worth the huge price increase, so for that reason, we had decided that the Cube

was not the best board for our used case.

Figure 19: Pixhawk Cube

Group B

 33

3.2.5.3 BeagleBone Blue

The BeagleBone Blue was different from the previous two boards in that it runs a Linux-

based operating system. This allowed us to run other programs concurrently with the flight

control firmware. Both PX4 and Ardupilot were capable of running on top of the Linux

kernel. The processors on this board were significantly more powerful than both versions

of the Pixhawk. In addition to the single-core ARM Cortex A8, there were two

Programmable Real-time Units (PRUs). These PRUs handle the I/O signals for interfacing

with peripherals. This takes the load off of the main processor, freeing it up for user

applications. While this processor was probably fast enough for sensor processing and light

computer vision applications. However, it may limit us in terms of the number of sensors

we could process and the speed at which the computer vision runs. This board had 512 MB

of memory which was useful when running heavier applications like the ones mentioned

previously. This board had all of the sensors needed to achieve stable flight, including

accelerometers and gyroscopes. Additionally, it had a magnetometer to maintain heading,

a barometer to detect relative altitude, and a thermometer. The BeagleBone Blue supports

Wi-Fi, Bluetooth, and BLE. Unfortunately, it does not support DSM-X which means we

were unable to use a human-controlled transmitter to intervene in the case of an emergency.
Bluetooth or Wi-Fi could be used to send signals to the drone during flight, but it was not

a good recovery option in the event of an imminent crash. As seen in Figure 20, this board

had an extensive set of I/O ports such as 4 UART, 2 SPI, I2C, and many PWM outputs to

control servos and motors. It also had USB 2.0 for connecting to the ground station or an

external board. This became useful when we determined that we needed more processing

power. At $80, this board was a very powerful option. It was the same price as the Pixhawk,

but it runs Linux and had a significantly more powerful processor. The only thing that was

missing was the DSM-X receiver, but this could be easily purchased and integrated

separately from the control board.

Figure 20: BeagleBone Blue

Group B

 34

3.2.5.4 Navio2

As mentioned previously, more demanding programs such as sensor fusion and certain

applications of computer vision may require extra processing power in the form of an

external board. The processing board was required to communicate with the flight control

board in order went sensor data as well as to send control inputs. The Navio2 was probably

the most unique board in this respect because it was not a fully functioning standalone

board. It was a daughterboard intended were attached to a Raspberry Pi. This option

drastically simplifies the connection between the control board and processing board. The

board had connections that fit directly onto the GPIO pins of the Raspberry Pi, as seen on

the top left side of Figure 21. This would also increase the capabilities of our drone. The

Navio2 itself contained all of the features you would expect from a flight control board that

you don’t get from the Raspberry Pi itself. This included the onboard sensors

(accelerometers, gyroscopes, a magnetometer, and a barometer). It also had an M3

coprocessor used to process PWM signals from the sensors. As with the BeagleBone Blue,

this frees up the main processor, in this case, the Raspberry Pi, for more computationally

intensive tasks. The difference was that the Raspberry Pi’s processor was significantly

more powerful than the BeagleBone’s. It was a quad-core rather than a single core, 64-bit

versus 32-bit, and runs at a higher clock rate. Additionally, the Raspberry Pi had between

2 GB and 8GB of memory which was particularly necessary for imaging processing

applications like robot vision. In terms of I/O, this was one of the better options. Six of the

Raspberry Pi’s GPIO pins were left unused by the Navio2. This gives us an additional 6

UART, SPI, or I2C input on top of the 3 ports included on the Navio2. The Raspberry Pi

also had four USB ports that could be adapted to any of the other protocols. This gives us

tons of options in terms of connectivity which allowed us to add in more sensors or different

sensors during the development phase. However, we had the problem of still not enough

connections. The Pi had just enough pins for everything we had to connect except the

Ultrasonic, and no other options for other sensors with the pins we had left. Just like the

BeagleBone, this board combination supports Wi-Fi, Bluetooth, and BLE. It does not

implement DSM-X, but as mentioned previously, that could be added with an external

receiver. Another benefit of this solution was the low power requirements of the Raspberry

Pi 4. It typically only draws 3W versus the 10W which the Jetson Nano board consumes.
Power consumption was something to consider when deciding if we got an external

processing board as this drone runs on a battery. As far as I saw, the only downside of this

flight control board solution was the price. It seems like a much better version of the

BeagleBone, and the price reflects that. It was between $200 and $250 depending on the

model of Raspberry Pi we choose. This was around $60 more than the BeagleBone Blue

paired with an Nvidia Jetson Nano configured similarly. Because the flight control board

and computation board were interdependent, we needed to consider them as a pair when

making decisions. With that being said, the extra reliability and ease of communication

between boards makes the Navio2 seemed like the best option for a flight controller board.

Group B

 35

Figure 21: Navio2

3.2.6 Data Processing Board

The purpose of the data processing board was to take in all sensor data, process it, and then

output drone commands. As mentioned previously, flight control boards only had very

weak coprocessors which were used to process onboard sensor data and ran flight control

algorithms such as stabilization. In order to integrate additional sensors such as ultrasonic

or infrared rangefinders and process the data in order to achieve autonomous navigation,

additional computational power was required. Since we plan to implement a robot vision-

based navigation algorithm, our system would require a relatively high-powered data

processing board.

Recently, powerful single-board computers had risen in popularity for robotics

applications. Being powerful but small and light makes them perfect for our application.

Just like the flight control board, this was one of the key components of our system, so it

was important were diligent in choosing the very best options for our application. One of

the main considerations for us was computing power. The CPU and GPU processing

capability was what determines the speed of our obstacle detection algorithm. Running

slower could be the difference between avoiding an obstacle and crashing. For that reason,

we only looked at units with high computing power. On a related note, our particular

application of computer vision was a memory-constrained task. This means that more

memory was a significant benefit that would realize serious performance benefits. We only

considered data processing boards with a minimum of 2GB of memory, but more was

better. Connectivity was another big concern for our board. We needed were able to

connect every sensor onto the board, as well as connect it to the flight controller. This

means that we needed a certain number of GPIO pins in addition to the other I/O methods

on the board. Certain solutions integrate with the flight control board much easier than

others. This was something to consider as spending less time on the flight controller-data

processor interface allowed us to spend more time on algorithm optimization and additional

Group B

 36

feature development. Being part of a flight platform that runs on batteries, this board

needed were lightweight as well as efficient. A data processing board that uses too much

power would decrease the flight time which was a trade-off we had to consider. From a

programming perspective, software support was something we should consider when

choosing a board. The ability to program with high-level languages or even ran an

operating system was something that could drastically increase the ease and speed of the

software development process. The ability to support opened-source libraries was even

better. On a related note, having a community around the processing board allowed us to

adapt solutions from other contributors as well as ask questions to experts when we had

trouble. The final consideration for our data processing board was cost. With our overall

goal of keeping the drone inexpensive, this was important to consider.

As mentioned in the flight controllers’ section, the data processing board and flight control

board were very interdependent and thus should be considered together. The two options

we had for integrating them into the system were a separate flight controller-data processor

pair and an all-in-one solution. The option that we choose could determine the data

processing board that we went with.

3.2.6.1 Nvidia Jetson Nano

The Nvidia Jetson Nano was a very small but very powerful single-board computer. As

seen in Table 15, it had a 64-bit Quad-core ARM CPU, an NVIDIA Maxwell GPU, and

either 2GB or 4GB of memory. These components made it a very powerful computer,

especially for image processing and AI-related processing. As far as connectivity, the

Jetson Nano had 40 GPIO pins, 4 USB 3.0 ports, and a MIPI CSI port for a camera. This

was important because the Jetson Nano does not have the capability to be part of an all-in-

one solution. We were required to connect it to all of the sensors and to the flight control

board on our own. Since all of the GPIO pins was opened, this was plenty of connections

for our used case.

Figure 22: Nvidia Jetson Nano

At 250 grams, the Jetson Nano was relatively lightweight and would not made a significant

impact on the final system. One of its biggest flaws, however, was its power consumption.

This board could use between 7.5W and 15W under load. This had the potential to impact

the efficiency of the drone and decrease the flight time. Additionally, this much power

Group B

 37

requires a relatively large and heavy heatsink, as seen in Figure 22. Being a full-fledged

computer, supported software was not much of a concern. It could run Linux and any

software on top of that. The Jetson Nano does have an active community, though it was

smaller than the Raspberry Pi 4’s. Thus, the topics were less diverse and may not be as

applicable to our application. The price was around $60 for the 2GB version and $90 for

the 4GB option. This was more expensive than the Raspberry Pi 4 on its own, but it was

important to consider the price in conjunction with the corresponding flight controller.

After doing this the system with the Jetson Nano could be between $140 and $170.

3.2.6.2 Raspberry Pi 4B

The Raspberry Pi was very popular for robotics projects, and for good reason. The latest

version, the Raspberry Pi 4B, was extremely powerful and very efficient. It had a 64-bit

Quad-core ARM processor, integrated Broadcom GPU, and either 2GB, 4GB, or 8GB of

memory, seen in Table 16. These specifications allowed it to tackle many of the

computational tasks we needed it to. The board had 40 GPIO pins, 2 USB 3.0 ports, 2 USB

2.0 ports, and a MIPI CSI port for a camera. At this point, it was important to consider how

we would connect the board to the flight controller. Like the Jetson Nano, the Raspberry

Pi could run independently and communicate with the flight controller via communication

standards like UART or I2C. However, we also had the option to connect it directly by

using the Navio2. This would drastically simplify the connection between the flight

controller and data processor, as well as made communication between them easier. The

software for both units was running on the Raspberry Pi 4B. While this would made

integration easier, it would slow down computation as well as took up some of the GPIO

pins. In fact, the Navio2 took up 34 GPIO pins, leaving only 6 for the sensors. Many of

these pins was utilized by connecting the board to an external flight controller anyway, so

this was not much of a drawback. This became a problem later when trying to tie in other

sensor packages, however.

Figure 23: Raspberry Pi 4B

Also, it was important to note that with the 6 remaining pins and 3 additional I/O ports on

the Navio2, it was possible to connect multiple sensors to each. This means that I/O

availability was not too much of a concern. Where the Raspberry Pi 4B really shines was

Group B

 38

in the airframe-specific specifications. As seen in Figure 23, the Raspberry Pi was

significantly smaller than the Jetson Nano. It weighs only 45g, which was significantly

lighter than the Jetson Nano. It also only consumes between 2.5W and 5W of power.

Together these two attributes would contribute to a very efficient system which could

improve our power efficiency and flight time. As a single board computer, the Raspberry

Pi ran Linux as well as any software that was compatible with Linux, which was very

important during our implementation phase. This Board had a very active community,

especially for related robotics projects. This could be very helpful in learning from other’s

experiences and making connections and helped when needed. Additionally, since the

Raspberry Pi 4 was backward compatible with software for all previous versions of the

Raspberry Pi, there was a huge backlog of projects that we could learned from. Even though

it was a very capable board, it was still inexpensive. The 2GB version was only $35 and

the 4GB version was $55. Being able to go all the way up to the 8GB version for an even

lower cost than the 4GB Jetson Nano gives us even more flexibility when it comes to

choosing our configuration. However, that was not the whole picture. Going with the

discrete data processing board, this unit was cheaper than the Jetson Nano, but not when

implementing the all-in-one flight controller-data processor system. Combined with the

Navio2, the price ranges between $200 and $250 which was more than any of the

configurations with the Jetson Nano.

Table 15: Data Processing Board Specifications

Raspberry Pi 4 NVIDIA Jetson Nano

CPU Quad-core ARM Cortex-A72 64-bit @

1.5 Ghz

Quad-Core ARM Cortex-A57 64-bit @

1.42 Ghz

GPU Broadcom VideoCore VI (32-bit)

(Integrated)

NVIDIA Maxwell w/ 128 CUDA cores

@ 921 Mhz

Memory 4 GB LPDDR4** 4 GB LPDDR4 (2 GB version also

available) ***

Networking Gigabit Ethernet / Wifi 802.11ac Gigabit Ethernet / M.2 Key E (for Wi-Fi

support)

(2 GB version included USB Wireless

adapter)

Display 2x micro-HDMI (up to 4Kp60) HDMI 2.0 and eDP 1.4

USB 2x USB 3.0, 2x USB 2.0 4x USB 3.0, USB 2.0 Micro-B

Other 40-pin GPIO 40-pin GPIO

Video

Encode

H264(1080p30) H.264/H.265 (4Kp30)

Video

Decode

H.265(4Kp60), H.264(1080p60) H.264/H.265 (4Kp60, 2x 4Kp30)

Camera MIPI CSI port MIPI CSI port

Storage Micro-SD Micro-SD

Group B

 39

Price $55 USD $99 USD

Table 16: Data Processing Board Benchmarks

Test

Raspberry

Pi 4 B 8GB

Jetson

Nano 4GB Notes

Tinymembenc

Standard

Memcpy

2526.8

MB/s 3501 MB/s

MB/s >

Higher Is

Better

TTSIOD 3D

Renderer

Phong

Rendering

with Soft-

Shadow

Mapping

32.3075

FPS 41.00 FPS

FPS >

Higher Is

Better

7-Zip

Compression

Compress

Speed Test 3701 MIPS 3501 MIPS

MIPS >

Higher Is

Better

C-Ray

Total Time –

4K, 16 Rays

Per Pixel

609.431

Seconds 932 Seconds

Seconds <

Lower Is

Better

Primesieve

1e12 Prime

Number

Generation

519.238

Seconds 468 Seconds

Seconds <

Lower Is

Better

AOBench

Size: 2048 x

2048

125.643

Seconds 187 Seconds

Seconds <

Lower Is

Better

FLAC Audio

Encoding

WAV To

FLAC

85.805

Seconds

104.01

Seconds

Seconds <

Lower Is

Better

LAME MP3

Encoding

WAV To

MP3

124.952

Seconds

144.21

Seconds

Seconds <

Lower Is

Better

Perl

Pod2html

0.58082059

Seconds

0.7114

Seconds

Seconds <

Lower Is

Better

Group B

 40

Redis

GET

491168.39

Requests

Per Second

568431

Requests

Per Second

Requests

Per Second

> Higher Is

Better

PyBench

Total for

Average Test

Times

5673

Milliseconds

7080

Milliseconds

Milliseconds

< Lower Is

Better

3.2.6.3 Comparison

In terms of performance, the Raspberry Pi 4B and NVIDIA Jetson Nano were very close.

As seen in Table 16, the slightly faster CPU of the RBP4 gives it the edge in serial tasks

like compression, while the discrete GPU of the Nano makes it noticeably faster in parallel

tasks like rendering. It was also important to consider AI image processing applications, as

our drone was using computer vision to navigate. Table 17 shows that the Jetson Nano was

between three and ten times faster than the RBP4 when running Convolutional Neural

Network algorithms.

However, this extra GPU performance of the Nano comes at the cost of nearly three times

the power consumption and five times the weight compared to the RBP4. In embedded

applications, having adequate compute power was important but having extra was not

necessarily a good thing. It means that you sacrificed in some other aspect of the system

such as cost, efficiency, size, or weight. Based on our research, we were confident that the

Raspberry Pi 4B had the adequate performance to ran all of the flight control and data

processing algorithms. The Jetson Nano would allow us to run our algorithms faster, but

we had determined that the tradeoff on power consumption, weight, and complexity was

not worth it.

Additionally, if the RBP4 turns out were underpowered for our application, we had a

backup plan or adding a “Compute Stick” which was basically an external GPU. As seen

in Table 17, the Intel Neural Stick 2 and the Google Coral USB both improved the RBP4’s

performance to near the Jetson Nano’s, sometimes even beating it. This was an additional

$60 to $80 on top of the already more expensive RBP4 + Navio2 combination, but it was

important to note that this was only a backup plan. Based on our research, we would not

need to use these. We had determined that the performance of the Raspberry Pi 4B

combined with the Navio2 was sufficient for our purposes, and the extra cost was worth

the increased simplicity and additional capabilities it would allow. This was still our design

at the end of the project, and we would continue to use these but if we could do something,

it would be increasing the GIPO pins.

Table 17: Data Processing Board CNN Benchmarks

Model Framework
Raspberry

TF-Lite

Raspberry Pi

NCNN

Raspberry Pi

Intel Neural

Stick 2

Raspberry Pi

Google Coral

USB

Jetson

Nano

Group B

 41

Efficient Net-

B0 224x224
TensorFlow

14.6 FPS (3)

25.8 FPS (4)
-

95 FPS (3)

180 FPS (4)

105 FPS (3)

200 FPS (4)
216 FPS

ResNet-50

(244x244)
TensorFlow

2.4 FPS (3)

4.3 FPS (4)

1.7 FPS (3)

3 FPS (4)

16 FPS (3)

60 FPS (4)

10 FPS (3)

18.8 FPS (4)
36 FPS

MobileNet-

v2

(300x300)

TensorFlow
8.5 FPS (3)

15.3 FPS (4)

8 FPS (3)

8.9 FPS (4)
30 FPS (3) 46 FPS (3) 64 FPS

SSD

Mobilenet-

V2

(300-300)

TensorFlow
7.3 FPS (3)

13 FPS (4)

3.7 FPS (3)

5.8 FPS (4)

11 FPS (3)

41 FPS (4)

17 FPS (3)

55 FPS (4)
39 FPS

Binary model

(300x300)
XNOR

6.8 FPS (3)

12.5 FPS (4)
- - - -

Inception V4

(299x299)
PyTorch - - - 3 FPS (3) 11 FPS

Tiny YOLO

V3

(416x416)

Darknet
0.5 FPS (3)

1 FPS (4)

1.1 FPS (3)

1.9 FPS (4)
- - 25 FPS

Open Pose

(256x256)
Caffe

4.3 FPS (3)

10.3 FPS (4)
- 5 FPS (3) - 14 FPS

Super

Resolution

(481x321)

PyTorch - - 0.6 FPS (3) - 15 FPS

VGG-19

(224x224)
MXNet

0.5 FPS (3)

1 FPS (4)
- 5 FPS - 10 FPS

Unet

(1x512x512)
Caffe - - 5 FPS - 18 FPS

Unet

(3x257x257)
TensorFlow

2.0 FPS (3)

3.6 FPS (4)
- - - -

3.2.7 Mapping Algorithms

The mapping algorithm was the piece of software that makes our drone fully autonomous.

It allows the drone to understood where it was within its environment and understood the

obstacles it had to overcome, rather than simply telling it the distance to the closest

obstacle. The rangefinders included in our drone was a key part of the collision avoidance

system which stopped the drone from bumping into things. However, our goal was for the

drone were able to navigate between obstacles and reach a destination. In order for the

drone to plan a path for itself, it needed to know where it could go and where it cannot.

https://neurohive.io/en/popular-networks/resnet/
https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html
https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html
https://machinethink.net/blog/mobilenet-ssdlite-coreml/
https://machinethink.net/blog/mobilenet-ssdlite-coreml/
https://machinethink.net/blog/mobilenet-ssdlite-coreml/
https://arxiv.org/abs/1603.05279
https://towardsdatascience.com/review-inception-v4-evolved-from-googlenet-merged-with-resnet-idea-image-classification-5e8c339d18bc
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://arxiv.org/pdf/1609.05158.pdf
https://arxiv.org/pdf/1609.05158.pdf
https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://arxiv.org/abs/1606.00915

Group B

 42

From there we could ran a simple pathfinding algorithm such as A* and the drone would

navigate autonomously.

When selecting a mapping algorithm, we analyzed several characteristics. One of the key

requirements was the computational expense. Being an embedded system, we only had

limited resources to worked with. Keeping in mind that there were other programs being

ran in addition to the mapping algorithm, such as the flight control firmware, the operating

system, and sensor reading, it was important for our mapping algorithm were efficient with

its computational resource usage. Additionally, it was important for our algorithm were

fast. Being a drone, every second of flight time takes energy. Flying vehicles do not had

the luxury that a ground rover had in terms of waiting idly while computations were

performed. This also means that flying the drone slower to account for the slower mapping

algorithm would reduce range. It was important for our mapping algorithm to kept up with

our drones flying at a reasonably high speed. Another consideration was that our mapping

algorithm should be based on monocular computer vision. One of the goals of our drone

was where inexpensive so that it could be deployed on a mass scale for shipping companies.

For this reason, we chose camera-based computer vision over LIDAR mapping since

LIDAR sensors were orders of magnitude more expensive than cameras in the current

market. Similarly, we chose a single camera over stereo cameras because two cameras

would increase cost and complexity. Monocular computer vision algorithms rely on motion

parallax to calculate depth information rather than comparing the information between

images of different perspectives as with stereopsis.

A key consideration for our project was the level of robustness of our algorithm. For this,

it was important to understand the difference between Visual Odometry and SLAM

(Simultaneous Localization and Mapping). Visual Odometry aims to create a locally

consistent record of camera motion, which was effectively the same as drone motion for

our used case. SLAM, on the other hand, aims to create a globally consistent map of the

environment. Both algorithms would give us useable 3D maps of our environment, which

we could then use to calculate a path for the drone to took. The difference was how they

do it, which could be seen by comparing Figure 24 and Figure 25. SLAM uses much more

sophisticated calculations to made it more accurate over long distances and long

timeframes, as well as making it robust over periods of bad visual information. Of course,

the extra calculations also slow down the SLAM algorithm significantly. A comparison of

the different algorithms we looked at, and their different approaches to solving the problem

could be seen in Table 17. Since Visual Odometry suffers from inaccuracies in regions far

in space and long ago in time, but remains accurate in local time and space, it should be

sufficient for obstacle avoidance. The goal for us was not to create an accurate 3D map of

the world, but just get our drone past an obstacle. While the robustness features of SLAM

were nice to have, they were not strictly necessary and not worth the additional

computation time. With these considerations in mind, we selected four potential mapping

algorithms to evaluate.

Group B

 43

Figure 24: Mapping Algorithm Flowchart

Figure 25: Mapping Algorithm Table

Group B

 44

3.2.7.1 Semi-Direct Visual Odometry 2.0

Semi-Direct Visual Odometry was first implemented in 2014 and was later extended in

2017, making it one of the oldest algorithms being compared. This was not necessarily a

bad thing, though, as it was still very effective. As the name suggests, SVO implements

Visual Odometry and lacks the features of SLAM such as loop closing and key point reuse.

However, it makes up for it by being around ten times faster than the SLAM algorithms,

as seen in Table 18. Additionally, its CPU utilization was between three and five times

lower than that of the SLAM algorithms. This would free up resources for other processes

such as path planning.

Table 18: Mapping Algorithm Frame Time Comparison

 Frame Times (ms)

Mapping Algorithm Mean St.D. CPU@20fps

SVO Mono 2.53 0.42 55

ORB Mono SLAM 29.81 5.67 187

LSD Mono SLAM 23.23 5.87 236

DSO Mono 9 - -

Table 19: Mapping Algorithm Accuracy

Group B

 45

Another requirement we had was for our mapping algorithm to worked well with a

monocular camera setup, which SVO 2.0 does very well. Additionally, it was seen that

SVO does very well compared to the other algorithms we looked at, in terms of accuracy,

as seen in Table 19. Each algorithm had a dataset on which it performs best, but the fact

that SVO was keeping up with the others while being so much faster was impressive. It

was important to note that in the comparison Table 19, ORB-SLAM and LSD-SLAM both

had loop closing turned off, which was one of the features that makes it more accurate but

also more computationally expensive. Overall, SVO was a very effective mapping

algorithm and seems like a good fit for our application. It was nice to had some of the extra

features of SLAM, but they were not strictly necessary. The extra computational power

freed by using SVO 2.0 versus some of the other algorithms could be worth the slight

decrease in inaccuracy.

3.2.7.2 LSD-SLAM

Figure 26: Feature-Based vs Direct Visual Information Mapping

LSD-SLAM or Large-Scale Direct SLAM was released in 2014 with no updates since then,

making it the oldest algorithm being considered. It uses the direct method, shown in Figure

26, which increases accuracy and robustness in sparsely textured environments, as well as

Group B

 46

making the 3D map denser. Non-direct methods took the input images and extract features.

This decreases the bandwidth of data being processed, but abstraction necessarily decreases

information that could be processed. By contrast, the direct method skips feature extraction

and uses the full images for tracking and mapping. This does not necessarily speed up the

algorithm as processing happens on larger objects of data and could increase memory usage

as these images needed were stored for longer. In terms of speed, LSD-SLAM was

relatively slow. In Table 18, it was shown were slightly faster than ORB-SLAM, but it

takes significantly more computational power. Additionally, ORB-SLAM had since been

updated to increase both accuracy and speed, while LSD-SLAM had not. It does work well

with a monocular camera setup, however. Being a SLAM algorithm, it was extremely

accurate and robust. LSD-SLAM was a very effective method for mapping, but it was

simply too slow and too expensive to run on an embedded system such as our drone. For

that reason, this was not a very good option for us during implementation.

ORB-SLAM3

Figure 27: ORB-SLAM3 Mapping Algorithm

Group B

 47

The second SLAM algorithm we evaluated was ORB-SLAM3 which uses Oriented FAST

and Rotated BRIEF (ORB) techniques for feature extraction. As this implies, ORB-SLAM

was a feature-extraction-based method as seen in Figure 27. The newest version, ORB-

SLAM3 was released in mid-2020, making it a very new algorithm. As expected, it was

one of the best we had looked at. It was relatively fast for what it does, definitely faster

than LSD-SLAM. It was also one of the most accurate options. It supports monocular

setups like the other options we had discussed. It was also extremely robust against periods

of poor visual information. An example of poor information was pure rotation with no

lateral motion. This was bad because it was possible for previously mapped regions to leave

the visual frame even though the region entering the frame was unable were mapped. This

was because, without lateral motion, the system was not receiving depth information.

Effectively, pure rotation forces the system to restart its map. ORB-SLAM3 was robust

against this, but even if it does happen, the algorithm supports re-localization, combining

the new map with the old map, as seen in Figure 25. It also supports map reuse over

multiple runs, which could decrease computation around high traffic areas like the

warehouse. This algorithm supports all of the other features expected of SLAM such as

loop closing too. Overall, ORB-SLAM3 was the most fully featured, robust, and accurate

of all of our options. Our only concern was that it could be too slow or too computationally

expensive.

3.2.7.3 Direct Sparse Odometry

Direct Sparse Odometry was the Successor to LSD-SLAM, made by the same research

team. It was released in 2016 which leaves it average in terms of age. It was an

implementation of Visual Odometry similar to SVO. However, it did have multiple

extensions available, such as Visual-Inertial DSO which adds in measurements from

accelerometers and gyroscopes to obtain more accurate ego-motion. It also had an

extension with loop-closure and Sim (3) pose graph optimization. This gets the algorithm

closer to full implementation of SLAM. As seen in Table 18, Direct Sparse Odometry was

only slightly slower than SVO, and between two and three times faster than both SLAM

implementations. Being Visual Odometry rather than SLAM, it was also less

computationally expensive. It was designed to worked with a monocular camera setup, so

that should not be a problem. It was relatively accurate as seen in Table 19. Furthermore,

it was robust to short periods of poor visual information. The robustness could be increased

further with the previously mentioned extensions. Overall, Direct Sparse Odometry was a

very good option for our system. It was fast enough while also not utilizing too much of

the computation power. It also gives us the flexibility to pick the features we really needed

without including the ones we don’t which helped us optimize our computation usage.

3.2.7.4 Comparison

It was impossible to determine the mapping algorithm for our application without

performing our own testing. However, from our research, ORB-SLAM3 appears were the

best option for us. Being a full SLAM implementation, it was the most fully featured, the

most accurate, and the most robust. For this reason, ORB-SLAM3 was our first choice. It

Group B

 48

was possible that it does not ran fast enough on our processing board, or that it utilizes too

much of the available compute resources. In that case, we tried to use Direct Sparse

Odometry. This was our second choice because it was still very accurate and robust, while

still being much faster than ORB-SLAM3. It also gave us the option to add in features such

as loop closing if we had leftover compute power. Our final backup option if the previous

two do not worked was Semi-Direct Sparse Odometry. It was the fastest and least

computationally expensive algorithm we looked at. It was slightly less accurate and robust

than the others, but it was almost guaranteed were able to run on even the lowest powered

compute board. We were not further considering LSD-SLAM as an option. It was not a

bad algorithm, but there were better options for what we were using it for. ORB-SLAM3

was just as full-featured while being faster and less computationally expensive. If ORB-

SLAM3 does not worked for us after testing, it could be assumed that LSD-SLAM would

fail for the same reasons. For that reason, we would attempt to used ORB-SLAM3, with

DSO as a backup and VSO as a worst-case scenario.

Unfortunately, during implementation we found multiple problems with our decision to

use a 3D mapping algorithm for collision avoidance. The first problem is that it is very

complicated to set up. Initially, we had enough time to work through problems and

troubleshoot. Unfortunately, the initial setup of the flight platform took much longer than

expected. This did not give us enough time to correctly implement the mapping software.

The next problem was with our development environment. As a team, we had access to

Windows and Mac for development environments, but we intended to deploy the software

on a headless version of Linux. This made it hard to transfer the software over to be actually

utilized on the drone. We were unable to get any of the mapping software working on the

drone; not just ORBSLAM, but all of the backup algorithms as well. Another problem for

us was the mapping algorithms required much more custom development than we

previously thought. From all the documentation and our research, it seemed that these

algorithms would be able to be installed and run. However, we discovered that they were

much less reliable than this. They required custom code to be written for us to get them

running on each platform. For all of these reasons, we realized that it was infeasible for us

to use 3D mapping for our project. Given a longer development timeframe and more

resources, we stand by our decision to use 3D mapping for obstacle avoidance in our drone.

However, we needed to stay within our budget and complete the project before the

deadline, so we decided to pivot. We realized that using object detection for our drone

would be a good alternative without any of the problems we had when implementing 3D

mapping. For this reason, we decided to use OpenCV for the object detection.

3.2.8 Object Detection

The responsibility of the computer vision software is to identify obstacles in the drone’s

environment. It does this by using shape, size, and color of objects to estimate the object

type, as seen in Figure X. The position of these objects is then passed to the flight control

software to navigate around any obstacles and avoid collisions. Additionally, the computer

vision software will be responsible for identifying the package drop zone, marked by a red

rectangle, so that the drone knows where to deliver the package.

Group B

 49

Our drone used OpenCV as our computer vision software. This is a widely used and

supported computer vision library which has many different models such as object

detection, depth mapping, and visual odometry. All of these features mean that our drone

will not get lost or confused during the two most critical times of the flight: takeoff and

landing. However, we did consider other options besides OpenCV. The most realistic

competitor was TensorFlow.

TensorFlow was a very capable platform for object detection. In fact, it is used very

frequently for applications like this. There were a couple of reasons why we steered away

from this though. For one, we found out that TensorFlow requires much more tuning and

tweaking than OpenCV. This can be beneficial for custom use cases, as it provides more

freedom. However, our use case is not super out of the ordinary. This meant that the ease

of use of OpenCV was a huge benefit. For this reason, we chose to use OpenCV for our

object detection library. We used YOLOv2 with python to program. This algorithm was

used during flight for object detection to avoid collisions, but it was also used in the

delivery phase of flight to identify the drop zone. For this use case, we used a red square

on the ground to denote the location that the package should be dropped. We could not rely

on GPS because it is only accurate to a couple meters, and it drifts from day to day. For a

more precise delivery, we denoted the spot and had the computer vision locate it as the

drop zone. From there it was much simpler to ensure that our package was delivered to the

right place.

Overall, the object detection algorithm was very critical in every aspect of flight, as it is

used to avoid collisions as well as find the perfect location to deliver the package to. For

this reason, we deliberated very carefully about which algorithm would be best for our

Group B

 50

specific application. After doing this, we finally arrived at using OpenCV to control our

drone.

3.2.9 Computer Vision Camera

The camera is the heart of our obstacle avoidance system. The industry standard for

collision avoidance in drones is to use expensive sensors such as LIDAR or depth-sensing

cameras. By contrast, our system uses a single-point camera and calculates the 3D point

cloud by performing calculations with motion data from the drone. Using the cheaper

camera reduces the overall unit cost by around 40%. The tradeoff is that our system uses

extra processing power to perform the 3D point cloud calculations, reducing the system’s

power efficiency and flight time. However, this is not nearly as impactful as it sounds,

since the computer vision only needs to run during takeoff and landing. As there are no

obstacles at the flying altitude, it is safe to turn off the collision avoidance system to save

power and rely on GPS for coarse navigation.

The camera we chose for our project has a 5 Megapixels (2592 × 1944 pixels) OV5647

sensor. It is able to capture still images at full resolution, 30fps video at 1080p, and 60fps

video at 720p. This particular sensor provides a good balance between cost, resolution, low

light sensitivity, and framerate for fast-moving images. This is what allows us to decrease

the cost of our drone by so much compared to current offerings.

3.2.10 Drop Mechanism

A key feature of our aircraft is being able to drop our package at its destination. Having the

drone carry the package once it is attached is not an issue. However, it was a challenge to

ensure that our drone is able to be equipped with a variety of packages sizes and drop them

with minimal modifications to the packaging. Rather than a claw mechanism or a hook, we

felt the best option for this was a sliding pin release mechanism, as seen in Figure 5. Any

shape of packaging can be secured to the drone using a harness that attaches to the drone

and fits through the sliding pin. Additionally, in the event of a power failure or other error,

the mechanism stays closed rather than releasing the package, which is another safety

feature. When the package is ready to be released, the pin slides out, releasing one side of

the harness, while the other side stays attached to the drone. The means that the harness

can be reused and is not wasted, which would be a problem for a system with extremely

high usage volume.

Our particular drone used an MD752 electric servo, which can provide 6.3 kilograms of

torque at the arm radius. This was more than enough torque to even have the servo hold

the half pound package. It had an even easier time pulling the pin out to open the

mechanism and drop the package. We could actuate it by manually pressing a button on

the transmitter for testing, or have the drone automatically move the servo either at a certain

waypoint or when it identified the drop zone with computer vision. This mechanism was a

critical piece of our project as it provides the main feature: delivery. It needed to be reliable

Group B

 51

enough to be safe and not drop the package during flight, which could be dangerous. It also

needed to be reliable enough to drop the package at the correct place, when necessary, not

getting stuck or becoming unresponsive.

3.2.11 Electronic Speed Controllers

ESC stands for Electronic Speed Controller and from the name comes the goal of the

device. The device’s goal was to control the speed of the drone, and this was being given

by telling the motor to rotate and essentially acts as a translator from the commands being

given through the pilot and what voltage/current needed to go through the motor to

accomplish it. The ESC adds a lot of control to the motor starting with how the wires were

connected. Depending on the user’s choice for wire connection would determine which

direction the motor rotates. As could be seen in Figure 28 below, shows that connecting

the wires very specifically turned the motor in one direction and the opposite direction,

which was important to set up a 4-propeller system with 2 of them going in the same

direction and 2 going in the opposite [3].

Figure 28: ESC Wiring Options

Group B

 52

From here there were a few factors that went into choosing an ECS. The factors included

weight, size, voltage, and current output, BECs, and 1 ESC vs 4in1. For all of these factors,

ultimately affect the performance of the ESC on the drone. Weight and size were a

consideration for all components on a drone because the heavier and larger the size the

more power was needed to fly and control the drone. With ESCs they had small and light

sizes, but there was a balance to found based on the motor because if too small then the

ECS would overheat and not perform as well. This was part of the reason why it was

recommended to make an ESC decision after making the motor decision. Motors had a

max output of power and some ESCs could handle more power than the motor was giving

but at a higher cost. To save costs was it better to stick to the max power of the motor and

not much reason to pick an ESC that handles more power than it was able to give off [3].

Figure 29: ESC 4 IN 1

Add-on components were optional when choosing an ESC. This included selecting ESC

with BEC and a 4 in 1 option versus an individual. A BEC was a battery elimination circuit

that provides more control to the power given to other components. For drone projects, this

was not a necessary option as the Power Distribution Board (PDB) takes care of this

operation. Another optional component was purchasing individual ESC vs 4 in 1. The 4 in

1 was a board that had 4 ESCs already put together and ready to use, whereas individual

ones needed were put together. With drone enthusiasts, it might be more cost-effective to

purchase the 4 in 1 option, but for beginners, if one ESC was broken then the whole 4 in 1

board needed were replaced. Hence, why for this project, we took the individual route, but

through researching our desired frame and motor design, we found a kit that included the

ESCs needed to operate. A picture of the ESC was above in Figure 29 and had a working

current of 30A for the motor. While purchasing this separately was more expensive, finding

it with a kit helped with those costs [4].

3.2.11 Coding Language:

For this project, we incorporated the basis machine learning code directly on the drone to

the target and then building upon that with computer vision to accurately saw objects and

found the best path around. Deciding on the machine learning language and library was

relatively easy. The biggest debate was choosing Python vs Java as they both could perform

Group B

 53

the same end goal. With Java, some advantages were the security of the compiler and

runtime environment, and because of how the language was structured it helps the

performance of machine learning projects perform faster. Some disadvantages were that it

requires a more complex project set up and could be harder to understood when working

in a group and could took up more memory over time [5]. For Python, the language was

known for its user learnability and easy-to-read syntax, which having two members not

extremely familiar with coding, this was easy for them to followed along and learned.

Python’s ML libraries were also very well-known and had a large audience of users online

and practiced a lot in the industry, so if we came across bumps with the understanding, we

had resources to looked at. The main library we were looking to utilize was Tensorflow,

which had an abundance of documentation and learning material for us to deep dive into

learning how to adapt it to our project. Some disadvantages to Python that might arise was

the ran time errors because it was a dynamically typed language and known for being

slightly slower than other high-level languages. Table 20 below goes into outlining some

of the factors that were looked at when comparing Java vs Python. Noting the easier to

code once for Java comment, it had been known that it was easier to maintain and set up a

project that could be updated, but with Python, it might came with more hoops to jump

through [6] [7].

The next software choice for our project included the firmware being used for the flight

controller and so on. The two main options after research for this were Ardupilot and PX4.

They both were based in C++ so when deciding which tool went with, we tried looking to

the one that worked best with the flight controller. After further researching the flight

controllers, it became apparent that the technology was very popular and the ones we

narrowed down could handle both. This opened the doors back opened for either one. As

students not knowing an extreme amount about the subject, we looked into which software

had the more prevalent communities and helped forums to guide us when familiar. With

Ardupilot, some of the cons when researching was that a lot of the information was dated

back to 2017 and not very kept up and up to date. PX4 had a very nice user interface that

made it easy to navigate and found the information easily. There was clear documentation

and clearly stated or divided into subject matters for drones. Because of the clear directions

and strong forum community we decided to go with PX4 for the time being. The PX4

software was based mainly on C++ when changing things to interact with the firmware and

hardware, and then Python for the software and guidance systems.

Table 20: Python vs. Java

Python Java

Easier to learned Easier to code once

Dynamically Typed Statically Typed

Slightly more popular Faster than Python

TensorFlow Weka, Mallet, Deeplearning4j, MOA

Group B

 54

Platform dependent Platform independent

3.2.12 Ground Control Station Software

Ground control software was the program needed for a user to interface with the drone

during flight planning and during the flight. There were many different competitive options

including QGroundControl and MissionPlanner. We selected QGroundControl for

multiple reasons. Firstly, it was supported by the Dronecode Foundation, the same

foundation in charge of PX4 autopilot. and MAVLink. Given that, it was very well

integrated with the flight control firmware we were using, as well as the messaging

protocol. It seems best to stay within the ecosystem rather than trying to integrate a separate

ground control software with the rest of the system. It was also highly rated and known to

have a clean intuitive user interface, which was another reason for us to choose this option.

It was also the only officially supported option for PX4 firmware, so the decision was made

for us.

QGroundControl supports all necessary options for setting up and configuring the drone.

It allows for flashing the PX4 firmware and establishing the configuration parameters.

After the drone was set up, the ground control software could be used to plan the mission,

setting waypoints and home coordinates. The software was also used to interface with the

drone during flight. It supports the MAVLink communication protocol, which was a way

to send commands to the drone. On top of controlling, it with MAVLink commands,

QGroundControl supports virtual joysticks to fly the drone. This means that we did not

need a dedicated transmitter. This is what we thought for a while. However, after testing

we came to realize this was false and had to buy one on short notice. During the flight, the

software could display telemetry data from the drone such as altitude, flight speed, angle,

battery level, and other information. It also supports video streaming which was interesting

because we were able to see exactly what the drone sees and how it navigates. The ground

control software displays the drone on a real-time flight map, including satellite data,

topographic data, restricted flight zones, and other geographic data. Additionally, the

software supports data logging and flight playback. This allowed us to saw all of the data,

including the camera input, and analyze it if something goes wrong. QGroundControl was

available on every major operating system, including Windows, Linux, OS X, iOS, and

Android. This would give us the flexibility to set up and transfer our ground station to any

environment.

3.2.13 Drone Control Communication Protocol

3.2.13.1 MAVLink

MAVLink was a lightweight messaging protocol designed for drone communication. It

was useful for both drone-ground station communication and internal processes

communication on the drone itself. It utilizes a hybrid architecture for efficient messaging.

Data streams were sent using the publish-subscribe design pattern. On the other hand,

Group B

 55

Configuration sub-protocols were sent using a point-to-point architecture with

retransmission. This combined with the efficient error detection and lack of framing makes

the protocol very efficient with low bandwidth overhead. Additionally, the protocol was

very reliable. MAVLink supports packet drop detection, corruption detection, and packet

authentication. Another key feature was that the MAVLink command set was extensible.

The commands were defined as XML files and were easily able were changed and added

to. This protocol also allows us to used basic and programming language and operating

systems. It supports C, C++, Java, and Python as well as Windows, Linux, OS X, iOS, and

Android. Since this protocol was supported and maintained by the Dronecode Foundation,

the same foundation that makes QGroundControl and PX4, it was already integrated with

this software. This makes it an easy choice for our communication protocol. It also had

many extensions and developer APIs like DroneKit, which would made development even

easier.

3.2.13.2 DroneKit

DroneKit was a developer API built on top of MAVLink. It was designed to make the

development of drone software using MAVLink even easier through high level abstraction.

DroneKit enables the creation of Python applications that communicate with vehicles using

MAVLink. It had functions that made it easy to connect and access the vehicles

information. Some of the accessible information was vehicle telemetry, vehicle state, and

parameter information. In addition to this, it enables easy mission management such as

changing waypoints and direct drone control. It’s intended use were ran on a companion

computer separate from the flight controller. However, it should not be too hard to set up

a ROS node on the same board as the flight control software and had them both running

concurrently. We expect DroneKit were a very valuable asset because it had a very active

forum of developers using it for similar projects to ours. It was mainly used for high level

cognitive functions such as our SLAM algorithm. These forums should be helpful in our

learning how to integrate the different processes together and got everything working.

Additionally, it was very well documented with examples for each of the features like the

visual odometry package.

Group B

 56

3.2.14 System Stack

Figure 30: System Architecture

Our overall platform was implemented in two separate systems. The first was a simulator

and the second was the physical flight control board. The two systems would by

functionally the same but used for different purposes. The simulator was used for testing

our high-level cognitive functions such as the SLAM algorithm, the collision avoidance

software, and interface between them. Once we successfully implement the system in

software, we were safe to moved it to hardware. From there we would install and integrate

all of the firmware and software on the Raspberry Pi and Navio2. Whether it was the

simulation program or the physical flight control board, the software stack was the same.

The lowest level software was operating system and the flight control firmware. The

Navio2, our flight control daughter board, comes with a preconfigured operating system

image. It was a version of Raspbian with a preemptive Linux kernel. This means that it

would do a better job at meeting the real-time scheduling constraints of a safety critical

system. It also had all of the Raspberry Pi GPIO pins preconfigured to interface with the

Navio2. This overall system stack could be seen in the flowchart in Figure 30.

Group B

 57

Figure 31: System Stack

Furthermore, it had ArduPilot, ROS, DroneKit, and GStreamer preinstalled. Since we were

using PX4 instead of ArduPilot, we just had to swap the two software’s out. ROS was a

collection of tools and libraries that helped to simplify the process of programming robotic

systems. This was helpful with in creating a unified system between the simulation, the

drone, and the ground control system. It also implements useful libraries like OpenCV

(computer vision) and MoveIt (path planning). DroneKit, as discussed in a previous

section, was useful in integrating our SLAM algorithm with the flight control software.

GStreamer was video streaming software that allowed us to stream the drone’s camera

view to our ground control station in real time, allowing us to saw what it sees. The

software program flow as well as inter-process communication was shown in Figure 31.

It illustrates the way that each layer of software builds on the layers before it, and how each

of them communicate and send data between the layers.

Group B

 58

3.2.15 Software Simulator

When creating a complicated system, it was important to test each component individually

before integrating it into the whole system. The high-level functions in particular, such as

the collision avoidance decision making and the path planning algorithms, needed were

tested thoroughly as there were many ways that it could gave incorrect results. Before

testing the cognitive functions on the physical drone, which could easily be damaged in a

crash, it was helpful to test using a simulator. The program needed to run the flight control

firmware as well as the 3D mapping algorithm exactly the same as it would on the physical

drone. However, instead of sending the MAVLink commands to physical hardware like

the ESCs, the software sends the commands to the simulation software which then

interoperates them and simulates what a real drone was doing. For us it was important that

our simulator was relatively accurate so that we could be sure it was transferable to our

physical drone. Another requirement we had for the simulation software was that it works

well for testing computer vision. The flight control software had already been vetted and

knew were stable. Also, the communication protocol could be tested without flying the

drone or putting it in danger. The only part of our system that really needed were tested

before applying it to the drone was the collision avoidance and decision making. For that

reason, it was important that the simulation supports computer vision testing and also

provides an accurate output for it. The last consideration we had for the simulation software

was that it works we our existing stack. We did not have to change a particular aspect of

our system to made it compatible with the simulation software.

3.2.15.1 Gazebo

Gazebo was one of the most highly regarded simulation software’s for drones and

autonomous robots. It was designed were particularly suitable for testing object-avoidance

and computer vision programs. It supports both software in the loop and hardware in the

loop simulation. Software in the loop, or SITL, means that the flight control software runs

on the same computer as the simulation, which was useful because it does not require us to

actually had a working drone to test on. On the other hand, Hardware in the loop, or HITL,

means that the flight control software and computer vision program ran on the flight control

board, exactly how they would during a real flight. The only difference between HITL and

a real flight was that the flight control software does not output the signals for the motors

or other components to active. It was purely running the software on the board as if it was

another computer. This was useful because different computers, especially when it comes

to embedded computing, could ran code differently and had completely different outputs

or bugs. One reason could be the kernel scheduler could change the order that threads ran.

For this reason, testing on the real board that was running the software was the most

accurate way to simulate our system.

Another reason that Gazebo was a good simulation environment for us was that it supports

our entire stack. It was made were ran on Linux which makes it compatible with our ground

control software. It was also designed to worked well with PX4 flight control firmware. As

far as high-level functions went, Gazebo supports ROS, which we were using for several

Group B

 59

of the computer vision related tasks. The simulation environment was set up were easy to

use and allows the developer to focus on the high-level functionality rather than the physics

simulation and aircraft setup. It had several pre-configured vehicles including many

different multirotor, fixed wing aircraft, land vehicles, and sea vehicles. This would let us

pick the one that matches our aircraft the best rather than having to design our own aircraft.

Gazebo also had pre-loaded environments to test obstacle detection and collision

avoidance. Another nice feature was verbose debugging; We expect that our software may

had some bugs that could cause it to crash. If this happens during flight or on the drone at

any time, it was almost impossible to understood why it happens. On the other hand, using

the simulation software with verbose debugging would tell us exactly what happened and

why the software crashed. In addition to the previous features discussed, Gazebo was

opened source and extensible, which means that, in the event that we ran into a situation

where we needed a feature that does not currently exist, we were able to create it. This

gives a lot more flexibility because it means that we were not particularly constrained by

the software’s current feature set. Overall, Gazebo seems like a great option for our drone

software testing.

3.2.15.2 XTDrone

Even with all of the features that Gazebo had, XTDrone seems like an even better option

for our simulation purposes. As mentioned in the previous section, Gazebo was opened

source and extensible. XTDrone was one of these extensions. It seems like a better option

for us because it was particularly targeted at our feature set. It was created as another

student groups senior computer science project. XTDrone was a computer vision

simulation software based on ROS, PX4, and Gazebo. It was conveniently already set up

to worked well for what we tested, which was the SLAM algorithm and the collision

avoidance algorithm. Like Gazebo, this software was designed were accurate and

applicable to the real hardware that we would deploy it on. One of the main reasons we

were selecting this software over the standard Gazebo was because of documentation.

Surprisingly, XTDrone had significantly more extensive and more detailed documentation

than the official Gazebo release. It was also more relevant to what we were doing. It also

had pre-configured computer vision algorithms which were much more advanced than the

scenarios in standard Gazebo. For these reasons, XTDrone would made it much easier for

our group to test our actual drone software, rather than fiddle with the simulation itself.

3.2.16 Communication Types:

Choosing the form of transmission that was used to communicate to the drone comes with

a couple options. The common ones were Wi-Fi, Bluetooth and regular radio frequency.

For Wi-Fi, this option was our number one pick because of the commonality and built-in

securities with setting up an RF network. Doing just straight RF set up could left the

channel opened for others to overtake the drones, but essentially all these options were

ways of communicating over RF. The next idea was Bluetooth as it had an ease of access

with connecting to multiple controls, but Bluetooth typically had a range maximum on

communicating to the drone, which could become dangerous if it needed to leave that

Group B

 60

boundary. Wi-Fi covered most of the checkboxes with being able to set up a network for

the drone, cover a decent amount of area and available when purchasing the controllers

instead of having to install the Bluetooth setup or spent more for the feature. We would

also be using GPS to autopilot the drone to the destination, which operates on the Ultra

High Frequency (UHF) levels with Wi-Fi and Bluetooth. Our flight controlling being the

Navio 2 would have Wi-Fi installed already and made it the easier choice to went with.

This allowed us to set up our own network when controlling the drone and giving it

instructions. The Figure 32 below shows that this would operate on ultra-high frequency.

Figure 32: Different Types of Communication

3.2.17 Sensors:

Sensors were going were a core part of the drone as it would assist in communicating to

the drone that it was on the right path and also what objects was in the way. After research

the list of sensor options included LiDar, ultrasonic, infrared (IR), GPS sensor, and time of

flight. A common sensor used in Unmanned aerial vehicles (UAV) was ultrasonic.

Ultrasonic uses high frequency sound waves to bounce off objects and detect the distance

and size and so on. This helps and we tried to accurately determine the size of the object

and the time it takes for the waves to bounce back determine how close it was. They helped

detect objects because they were not a camera and do not have to identify color or

transparency so works well in any lighting. They were restricted to a certain range

depending on the one purchased and do not determine objects well with significant

textures. Infrared (IR) sensors were another that were not effective by the amount of light

in the area the drone was going through or detecting. This sensor emits an infrared light

and then with a photodetector could determine where the object was positioned and how

far away. Some advantages to IR were that they were smaller in size, which helps with not

adding weight and size to the drone, and it could detect textures in objects better than

Group B

 61

ultrasonic. Again, it was limited to a certain range and could be affected by the environment

and dense objects. LiDar comes in with having some advantages to the range and accuracy

by being able to detect farther and could detect objects with texture and more 3D structure.

Also, able to process the object faster as it uses smaller wavelengths and not affected by

day or night. Disadvantages to the other sensors was the high cost and could be dangerous

to use without proper eye protection. Time of flight sensors were another IR structured

sensor but used an IR LED light to emit and calculate the object. Time of flight sensors

had a higher cost like LiDar, but do not get affected by weather conditions, and if we had

them could be used for 3D mapping and provide long range of sensing. In Table 21 below,

it summarizes some of the things to consider when choosing sensors. For our project, we

were utilizing multiple sensors in order to made accurate decision making for the drone.

Those sensors were finalized eventually, as we needed to evaluate which ones were better

suited for the goals we had. Our goal was mainly to avoid objects that came in the way

while also fight the best path of avoiding in order to kept it going to the same destination

[7].

Table 21: Comparison of Sensors

Long Range Cost Can handle External Conditions 3D Imaging

Ultrasonic No Low No No

IR No Low Yes No

LiDar Yes High Yes Yes

Time of Flight Yes Moderate Yes Yes

When comparing the sensors in Table 21 and trying to decide what was needed for our

project, Ultrasonic was the best for the job. Most IR was influenced by ambient light and

with LiDar and Time of Flight being a little expensive, then ultrasonic was best for the job.

Ultrasonic could detect objects and be very low cost to the project. Ideally, if there was a

larger budget then LiDar was the next buy to made it more accurate for the job. Because of

the choosing the Navio and the Raspberry pi then it included the Wi-Fi, GPS and altitude

sensors and eliminated having to search for other options. We were using the Wi-Fi for

security and communicating with the drone, GPS was used for navigation and location

tracking, and altitude sensors would detect how low to an object or ground the drone was

at.

In the end, we decided that LiDar and Time of Flight sensors were out of our price range.

Since one of our main constraints was reducing the price of the overall platform, this was

not something we were willing to compromise on. This left infrared and ultrasonic sensors.

We were concerned with the efficacy of the infrared sensors in daylight, as the sun emits

large amounts of infrared light which could overwhelm the sensor. This left us with the

ultrasonic sensors. We planned to have an ultrasonic sensor in each direction of the drone,

for a total of six ultrasonic sensors. While this could have helped in indoor situations where

the drone might need to know about a ceiling or floor, or if a door closed behind it, we

Group B

 62

realized that it would not be very applicable for an outdoor delivery drone. There is no

situation that an ultrasonic sensor would help us above what our camera will already

provide. For that reason, we changed our original plan from senior design one, and removed

the ultrasonic sensors from the platform. This left us with only the camera for obstacle

avoidance.

4. Standards and Realistic Design Constraints

Drones were strictly monitored and had many associations that came with them in order

to ensure the safety and standards of the machines. With this comes a set of standards and

constraints to followed based off our goals. In order, to create an efficient drone many

constraints were considered too had it maximize its ability, which goes into further details

below. We also research standards associated with certain aspects of the drone to made

sure it was not outdated and would not cause harm to the environment and people around.

4.1 Standards

When mass producing any product in any industry comes a set of standards set by

companies and organizations to uphold the quality and safety of the materials being used

and the product being produced. Even a certain screw being used might had a certain

standard it needed to uphold. In this section, we talked about the standards identified with

certain aspects of the drones and where those standards were coming from.

For the following standards they came from sources of organizations. A big organization

that creates engineering standards was IEEE. IEEE stands for Institute of Electrical, and

Electronics Engineers and the history of the organization’s roots went back to 1884. From

then to now they had expanded exponentially and broken up into many boards and

committees that do the brute research into what the standards should looked like and had a

process to have them approved.

Another set of standards to looked at was for coding. Having standards for coding would

help kept the life span and ability to update easier. A popular standard that was used for

coding was the PEP8 standard. This stands for Python Enhancement Proposal, which

comes from Guido van Rossum, Barry Warsaw, and Nick Coglhan, dating back to 2001.

(INSET C++ STANDARD)

4.1.1 Wi-fi

Wi-Fi standards had been observed by the IEEE organization since the 1990s. We saw this

in Table 22. The first of the Wi-Fi standard series starts with the standard 802.11 that was

released in 1997. From this point on the naming convention adds letters to the end of that

standard number/name. The first in the series was 802.11a, which utilized the 5GHz band,

Group B

 63

but came at an expensive cost. After 802.11a was made in 1999, soon came 802.11b which

was on the 2.4GHz band and lowered the cost greatly. This naming conventions continues

down the alphabet and all indicate different requirements that came with it and had different

purposes depending on the used. For example, 802.11ah had the ability to operate on

frequency bands below 1GHz. The goal with creating this standard was to allowed Wi-Fi

were extended for wider range and lower energy used, and this standard was made official

through publication in 2017. Another very specific standard for Wi-Fi was the 802.11ad.

This standard was created to provided extremely efficient speeds under the 60Ghz

frequency, but whereas the example before had longer range, this standard had extremely

short distance and only able were communicated up to 11 feet from access point [8].

When it comes to the common Wi-Fi networks and what was used for this project, we

would look at more recent standards. Standard 802.11n was capable of using the 2.4GHz

and 5GHz and goes on to be created in 2009. This standard was what more modern routers

used in reference to dual band capabilities. More recent and modern one was 802.11ac,

which uses the 5GHz band, but also could access the 2.4GHz band by using the 802.11n.

Both these common standards took advantage of MIMO, which stands for Multiple Input

Multiple Output. This describes how on routers would have multiple antennas in order were

able to handle the amount of data and traffic that was happening through the channels [8].

For our drone, the Raspberry Pi 4b had the necessary equipment to used Wi-Fi with our

software and the drone. The Raspberry Pi model being used was suited were used with the

IEEE standard Wi-Fi of 802.ac/n, which were the two described above. This allowed for

decent speeds and long ranges of communication with the drone as it was flying.

Table 22: 802.11n versus 802.11ac

802.11n versus 802.11ac Features

802.11n 802.11ac

Band 2.4 GHz & 5 GHz 5GHz

MIMO Single User Multi-User

Channel Width 20 or 40 MHz 20,40,80,80-80,160 MHz

Modulation 64 QAM 256 QAM

Spatial Streams 4 3-4

4.1.2 PCB Standards

For our PCB or Printed Circuit Board, we used certain programs of circuitry to make our

own Power Distribution Board or PDB. We used the standard given by Association

Connecting Electronics. This company, just like another company talked about later in the

Group B

 64

paper, was made to produce and deduce standards for individual parts and methods for

producing printed circuit boards.

We saw from looking into the standards provided by the IPC that it covers many aspects

of PCB’s and many such aspects we ourselves needed to use such as enclosures, cables ad

their thickness, different types of soldering and which tools were used for such things, and

finally different styles of documentation that we needed to submit for our PCB. We could

see that every aspect of our PCB that we made for our own uses had to be up to standard

given by the IPC.

Figure 33: Standard IPC Roadmap for PCB

For our actual Board we paid more attention to certain standards that pertain more to us

then others, such as 2221, which gives everyone the standard from which the general form

Group B

 65

of PCB’s were designed. The next, which when taking these into account of what their

standards were for, were more of the regular laws that needed were looked at when

designing any PCB’s, were 2615, and 6012. Going over them quickly, 2615 was the generic

standard for how thick and wide PCBs were allowed were as well as the tolerances for how

well these PCBs needed to perform under pressure and other conditions so that the

impossible was not asked of a PCB. 6012 was the standard test that PCBs needed were able

to reach were ready for consumer production. These things included performance and other

qualification requirements.

Finally, when talking about the IPC and their standards for PCB we included their

classifications for different uses of PCB and what that means for what kind of qualifications

they had to pass were allowed into circulation and used. We were using ours for the power

distribution of a drone’s power system, which means many things, but the most important

thing was that our system was an aviation system when applied into the fullness of its

operation, but when applied to this project only meets the needed of only a regular PCB

system. That means that we put effort to reach the third level classification of PCB’s even

when we needed to only reach the first level for used in our project. We saw through all of

this in the different standard documentation our project reached, with the total standard

roadmap shown in Figure 33.

4.1.3 Motor Design Standards

One of our key components of our delivery drone was our motor system. Without the

proper motors were drone project we literally and figuratively would it made it off the

ground. Due to the critical roles that the motors played we had done research on the Motors

available for consumers well also looking into the standards in which motors were held to,

to determine the motor specifications that were best for our drone delivery project. The

motors that we judge were based off of the specification details provided by the

manufacturer and with that information we compared the motors to make the best decision

when we selected the parts for our delivery drone project.

Some of the important factors to notice on the specification PDFs provided by the

manufacturer about the motors were electrical rating for voltages, power, and current.

Other mechanical limitations for the motors to also paid attention to when comparing the

specifications provided by the manufacturer were torque and RPMs variation. The

specification details ascertained from the manufacturer were critical to making educated

decisions on which Motors were best suited four our delivery drone project. The

specifications helped us to elicit the best motors for the best outcome of our project.

There were plenty of regulations placed on motors, but it was the manufacturers obligation

to meet these regulations. These regulations also known as standards were determined by

industry and varying third-party associations like IEEE/ NEMA. Those third-party

associations were IEC which stands for International electrotechnical commissions. The

International electrotechnical commissions (IEC) had taken up the due diligence a

fabricating standard practice technical restraint for electrical components internationally.

Such electrical components that IEC had helped created standards for were Motors. The

Group B

 66

standards that IEC had created were to ensure that motors were being tested in rated

accurately. The IEEE also helps check in regulate standards that were applicable to motors

as well in regard to their testing, performance, and ratings. [2]

NEMA, also known as National electrical manufacturer association, had a very unique role

in motor standards. For example, NEMA also design standards specifically to certain

environments the motor was intended to operate within. Such as but not limited to certain

enclosures to protect against like water and dust, so the Motors ran effectively in these

environments. [7]

4.1.4 Flying standards

Drone flying had gone though many changes in recent years and would continue to change

for years to come. Drones had been used in so many aspects of life that the FAA had passed

many regulations and standards that operators needed to meet so that no laws were

trespassed upon during operation of a drone. Prior to 2020, drones that exceeded a certain

weight and size would require a pilot license that needed were earned through classes and

money. This, at the time, even engrossed upon some sizes that commercial drones were

able to achieve, so that many drone camera men and woman were hindered from my

hobbies and job opportunities. Now that 2020 had rolled past, the FAA had enabled many

drones that now were more mass produced in today’s age and used for different aspects

were used without this pilot license, thus opening the doors for more different commercial

drone companies, and our project itself, to took off without interference.

4.1.5 Programming standards

For our project we used Python and C++ for the most part to accomplish our goals. The

Python would largely be used for the machine learning, autopilot and computer vision

aspect of the drone. C++ was used for the code that communicates more closely with the

hardware of the drone.

Python specifically had its own set of coding standards called PEP8 as mentioned in earlier

section. This standard had been around since 2001 and helps Python projects be more

consistent in nature since Python had an extreme amount of flexibility with how to type

out code. This was one of the cons when choosing a programming language because with

Java at its base level makes you followed certain requirements to perform different jobs

needed. We knew we had to have a strict standard to abide to in order to had it be very

understandable by reviewers and other teammates. PEP8 standard helps to outline how to

space, naming conventions, the layout, even when to not followed PEP8. These guidelines

and standards could be compared to how there were writing standards for papers in college

and so on.

While these guidelines/standards went into extreme detail, Table 23 shows a few of the

rules that was followed or recommended. By looking at the details of the naming

conventions below it shows how easier it was to distinguish elements like class, package,

Group B

 67

or functions. Benefiting the reader that had not touched it would provide ease of access for

other members or future people observing. A technique we used to made sure this was

getting accomplished was having a teammate who does not code often tried to read it over

and followed what was happening so in the worst-case scenario that someone needed to

come in and take over, they could do that with confidence. These provided a nice, neat

guideline to easily scan and read and knew where things were located because everything

had a spacing convention. All the elements were clearly labeled and laid out so there was

no confusion on what might be happening.

Table 23: PEP8 Standards

Item Standard for PEP8

Function/Variable Lower case, separate by underscores

Class
Start the word with capital letter, separate

by underscores

Package
Short, lowercase word(s), DO NOT

separate by underscores

Blank Lines

Top-level functions and classes with 2

blank lines; method definitions inside

classes with 1 blank line; all other times –

used sparingly

Maximum Lune Length 79 characters or less

Indentation
Use 4 consecutive spaces; used spaces

over tabs

Line Break w/ Binary Operators

Recommended to break line before the

operator, but could do after as long as all

the code was consistent

Imports Each import had separate line

Comments
Help with readability and be complete

sentences

Source File Encoding Use UTF-8

Group B

 68

4.1.6 Battery Standards

Battery Standards for Lithium Polymer cells came from organizations such as IEEE and

TSA, and even the US Postal Service. For the TSA we saw standards based around their

transportation and storing used when in planes. The TSA requires that batteries that had

equal or less than 100-watt hours in their cells when transporting or storing so as to not

reach a state where the battery had enough charge within the cell to hurt passengers if

damaged. Over 100-watt hours means one needed special permission to fly with these

types. The US Postal service had the same kind of restrictions but for mailing and

distribution of these types of batteries, with a further restriction saying these types of

batteries cannot be mailed over air traffic but only upon land-based transportation. While

the standard cell voltage of 3.7 volts was a “standard”, it was more of a physical standard

than an organizational imposed one. The Lithium Polymer battery had more range than a

set voltage. The 3.7 volts were the optimal and also usual voltage of battery cells in a LiPo.

When a cell was near a complete discharge rate it was more in the range of 2.0 volts, and

when fully charged it reaches 4.2 volts usually. However, both of these states could cause

damage to the actual cell, so the standard was to hold it at the 3.7 volts mark so as to provide

the longest-lasting product. We could state that the size and outlook of the outer shell of a

battery was not a standard that was upkept as there were many different styles of batteries

appearing, as well as many different styles of cell counts to different batteries.

4.1.7 Frame Standards

Figure 34: Tensile Strength of Baseplate under 20N of force

The frames we saw in the different sections of this paper all had a generic outlook to them

that shows there needed were a type of standard to it. When looking deeper into the history

Group B

 69

and why this was so, we found the current frame was based around research done into the

many different forces that would act upon commercial drones when in flight, such as

gravitation force, deformation and stress upon the materials, and the weight of the drone

and components attached led to the current design we saw in many drones today. This was

not a standard per se as better frames could came to the market, and we saw there were

slight variations to the frames themselves even in the frames we looked at in this paper, but

through research done using a program known as ANSYS, which a simulation program

used to stress-test different materials in differing ways, this frame style was the one that

stood up the best. The branching out of the arms lets the mounted motors had more space

and keeps the ratio of motor weight to propellor size to a more achievable quantity while

giving room for components that needed were added into the drone for stable flight. We

could saw the tensile strength in Figure 34 of the base plate of a standard drone frame base

plate when put under 20 Newtons of force. This shows the generic structural analysis and

how the interaction of the base plate and the arms was well within what the materials and

shape could handle.

4.1.8 Sensor Standards

IEEE had been able to provide standards for years, but for some of their standards, they

were not made publicly available and required were purchased or subscribe to a

subscription. They had many boards and committees that worked on creating these papers

and researching what was the best to standardized and makes sense that they would need a

way to capitalize on their product to keep the quality of what they were outputting and

giving to people and companies.

One of the latest standards on sensors was IEEE 2700 which was released around 2014,

but not released to the public. The description and overview of this requirement went over

standards for sensors and how the performance should be, and these helped with integrating

with systems, like how we were connecting them to a drone. The standard covers sensors

including “accelerometers, magnetometers, gyro meters/gyroscopes, barometers/pressure

sensors, hygrometers/humidity sensors, temperature sensors, ambient light sensors, and

proximity sensors.”

Group B

 70

Figure 35: IEEE 2700 Standard, Proximity Sensor

From researching the standard as much as possible it seems like it gives guides to how the

sensors on machines would perform in certain circumstances and when set up a certain way

would output stats like the below image. Figure 35 uses the analysis of proximity sensors

to show how at a certain distance it would give a max output of data, but then slowly started

to decrease as the distance becomes larger. We were using an ultrasonic sensor as one of

our proximity measurements to detect objects in addition to a camera. Having these

standards implement, if possible, was beneficial to knew what restrictions we were dealing

with. For example, if the below figure demonstrated an ultra-sonic sensor, then we knew

that the quality of data and detection after about 40mm starts to extremely decrease.

4.1.9 Transportation Standards

When it comes to standards on transportation in reference to drones, they were two major

organizations. One of the organizations to helped set the standards on transportation in the

United States was the department of transportation otherwise known as DOT. The second

organization that set standards on transportation for our project due to the fact that this was

a drone delivery project was the FAA otherwise known as the Federal aviation

administration. Now the FAA and DOT I’m currently in the process of beefing up standards

around drone transportation because it was a fairly new revelation in the industry. Due to

the fact that drone delivery was so new to the industry standards was still being created

around it.

While the FAA does help created standards for drones, they were more worried about the

airspace the drones took up rather than the transportation factor. So, the FAA was more

concerned about making sure you as a pilot and the drone was also known as on manned

aircraft systems or UAS for short were taking up the correct about of air space. The list of

regulations that the FAA tries to enforce were as follows Do not fly over 400ft, or flying

Group B

 71

above groups of people, and above all else and the most important were registered and had

passed the part 107 exam. [15]

The department of transportation (DOT) deals more specifically with the transportation

side of our drone delivery project. One of the new standards the department of

transportation had recently pass on drones was to have the drones had a form of ID attached

to the physical drone. The reason that they wish to attach an ID to the physical part of the

drone was that so if there were any damages or accidents it was easier to found who was

liable for those damages that may or may not be caused. [15]

It was also considered to mention the department of transportation they only such

regulations but also tries to push for certain agenda. One of which was artificial intelligence

usage in drones. They incentivize artificial intelligence usage and drones by offering to

fund and making the information easy and accessible.

4.2 Realistic Design Constraints

With building a new project and idea it was easy to get carried away with what features

and items to include with it, but that cannot always be the mindset. When creating a product

there were certain constraints to consider and thought about how to product was impacted

by the following factors in order to made it helpful for society, environmentally sustainable

and maximize its features. For this section, we had broken down the different categories of

constraint topics that were considered when designing this.

4.2.1 Economic

We were developing a product that was the best used was bought in bulk and our target

audience were distribution companies. While our current drone design budget was $1000,

we expected to retail a single drone for $3000, and as you purchase more in bulk it becomes

cheaper to produce, thus making the price of the drones fluctuate and become cheaper.

Table 24: Economic Budget

Item Quantity Cost

Drone Frame ~2 ~$50

Battery’s ~2 ~$20

Flight Controller ~1 ~$200

Group B

 72

Camera ~1 ~$65

Blades 4 ~$10

Motors 4 ~$30

ECS 4 ~$20

PDB ~1 ~$30

Total

~$650-$700

In regard to our drone, we had capped our budget at $1000. With our budget cost entailing

the drone frame, Batteries, Flight Controller, Camera, Blades, Motors, ECS, and PDB as

seen in Table 24. With a relatively high budget, we were sure to produce a high-quality

drone with high-quality parts. With the goal of this product were mass-produced, we

believed the budget being $1000 would give us some wiggle room with other surprise costs

that came with such things as manufacturing and selling of the drone otherwise known as

postproduction.

For post-production, we would like to invest in a sales team to consult with a distribution

company to sell them on all the benefits our drones were able to bring to their business

model. With the estimated retail cost being $3000, we would wanted about $500-$600 of

the total cost to went towards funding the sales team and to maintain good standing with

our clientele.

Even with starting local, we still do have the vision to bring our drones to a global market.

The potential for drone delivery in the highly dense community was limitless, as well as

our product be trained and tested at this point, the retail cost in foreign markets would

increase. This higher rate of $3,700 would also accommodate for the cost of shipping,

international tariffs, the personal cost of going into a new market, and the design

accommodation that may be needed for the new locations. Such as changing the user

manuals and programs to used different languages specific to that country.

4.2.2 Environmental

When introducing any new technology, it was important to investigate its environmental

impact. Especially technologies which were meant were deployed at a large scale.

Understanding the impact of our product would enable us to focus on the aspects that

benefit the environment while simultaneously minimizing the negative impacts.

Group B

 73

When analyzing the environmental impact of our drone, it was important to compare it to

competing solutions. Our product does not exist in a vacuum. In our particular case, this

means that packages were delivered whether we deploy our drone or not. Last-mile

deliveries were typically carried out by large trucks which ran on diesel. In order were

considered a net positive for the environment, our product simply had been less harmful

than delivery trucks. As it turns out, this was not a clear-cut scenario.

 In a study from the University of Washington, it was shown that delivery drones emitted

less carbon dioxide than delivery trucks on the same route, even though the drones traveled

a greater distance. This was due to the lighter design and more efficient electric motors.

However, this effect was only seen on shorter routes with light packages. The opposite was

shown when large packages were delivered over a longer distance. A similar study reported

by the LA Times showed the same results. They explained that this was because drones

could only carry single packages to a single location, whereas trucks could carry many

more. This increases the efficiency per package for trucks. They showed that trucks were

also more efficient in densely populated areas whereas drones were better for sparser areas.

A third study by the Smithsonian reports similar findings in terms of the effects of

geography on environmental impact. They also concluded that the method of power

generation for an area’s power grid had an effect. Because drones rely on batteries that

needed were charged, the power grid’s efficiency was a major factor in the overall

efficiency of drone delivery. In some areas with less harmful power generation, the drones

had a 54% decrease in greenhouse gas emissions over delivery trucks per one kilogram of

payload. However, in more harmful areas that used coal to generate power, the drones only

produced 23% fewer emissions. This means that the environmental impact of delivery

drones was dependent on where they were deployed. It also means that as our power grids

became greener, the delivery drones would as well. This was good compared to delivery

trucks that rely on diesel engine innovation to pollute less, which had remained relatively

stagnant.

4.2.3 Social

Thinking about the social implications of delivery drones it could be thought of in pros and

cons. The pros to having delivery drones were faster packaging and more efficient delivery

from company to customer. There were cons that surround drones which provided

constraints when approaching the design and style to them. Within the US specifically,

many people value their right to privacy hence why drones were limited by the government

and had extremely strict rules when it comes to flying in certain areas. Because of these

constraints if we wanted to deliver in certain areas or places then we would have to research

those social constraints otherwise the idea could fall flat.

From a customer standpoint, if people were to trust the product and trust that the drone’s

purpose was for delivering packages and not for spying then in our designs, we would want

to keep it as secure as possible. Having an extremely secure drone would help customers

felt like they could trust the product and company did what was it intending and nothing

more.

Group B

 74

Thinking about the constraints with the software design, it had to have to be held to a high

standard of accuracy and correctness. These drones had the potential to crash into objects

or people and potentially started fires if crashing in the wrong place at the wrong time.

Because of these protocols would need were considered for taking the best decision. Worst

case scenario it might even needed to make the best worst decision that causes the least

damage.

These drones were meant to provided ease to everyday delivery and was flying around

everywhere. With constantly being around people a social constraint to consider was the

noise effects. A lot of environments and social happiness comes from peace and quiet, but

if the drone was obnoxiously loud then it would disturb the peace of some people. We were

trying our best to have a quiet drone.

4.2.4 Political

Now it wouldn’t be very American if the government didn’t try to legislate and tax every

aspect of our lives, and drones were no different. To be able to fly these drones someone

would have been certified with an FAA part 107 exam which costs about $150 per exam.
Also, because laws around drones were still new and not many had tried in court, we and

the company we sell to would want a lawyer. For this reason, we made sure one of our

group members got a license.

The reason why you would want a lawyer was because of drones flying in residential areas

and over people and roads. The chances of something unpredictable happening was high.
They the law was currently written was that whoever the owner of the drone, was liable for

the damages. There were also some areas that flying over was illegal such as theme parks,

military facilities, and airports to paying attention to geographical location and path routes

were important.

Even then these drones were opened to many liabilities so we would take plenty of

preventable measures to avoid litigation and to made sure we produce the safest drone

feasible. Another concern was that legislation hasn’t completely caught up with the drone

technology of today so the laws we face today could not be the laws we face tomorrow.

4.2.5 Ethical

Ethical livelihood was an important concept in the engineering world because of its

implications when disregarded. Ethics were a set of “rules” or social cues we as a people

were taught or inherently understood through living within society. For engineers this was

slightly the same, however, there were certain aspects related to research and development

and how we should ethically do these things as engineers that was known to a set style of

rules. These included quality insurances so that when doing research and finding results

your findings and techniques could be reviewed and recreated and thus prove to the wider

Group B

 75

engineering community in your truthfulness. Also, pro quo because of this outlook was the

ability to have the moral “high ground” when doing research, thus providing reliability to

your research and worked. This was done by not testing on Humans, and only testing on

animals when absolutely needed, hence when this invention or research directly affects

human’s health and lifestyle, thus such a level of research was needed and even then, this

needed were done as humanly as possible. And when all other routes had been investigated

and human trials were the only route, agreements needed were made between the

researcher and the person were researched about what was and what was not allowed. This

was handled through paperwork and a transparent outlook on what was happening.

Ethics yet entitle not just the aspect of human health and safety, but economic and social

responsibilities as well. Engineers, specifical ones within government agencies and places

that had given access to civilian tax dollars had an ethical responsibility to not waste money

and supply reasoning for why they were spending money were certain things versus others.
This was to kept engineers accountable and not buy their way out of problems that crop up

in research and development that could be solved using inventing and innovating.

Engineers needed to post their findings in public discourse and with empirical evidence to

show their honesty and freedom from bias. This format they submit their findings in needed

were too standard and showed meticulous attention to detail so as were completely

repeatable and easily understood or as it was known, “dumbed down” were better

understood when given the opportunity. This format would also be completely transparent

in the way this information was helped along by outside sources such as fellow researchers

or graduates that helped brought this project to fruition so as to properly showed gratitude

were due. Citations from sites, links, and acceptance from sources to use their research

needed were given were ethical.

In the terms of our drone and its references to the ethical outlook and needed for research,

there was an aspect of research into the guidance and accident-avoidance system that may

needed were researched in the future with regards to how it interacts with human heat

signatures and outlines, and such that was, this drone needed were properly documented in

the right format and transparently shown as were easily taken up by future researchers that

needed to looked into future aspects of this project. To further looked into our drone and

its potential ethical impact, we used many sensors to provide guidance and telemetry as

well as used these sensors as the backbone of our accident-avoidance program, and these

sensors could be used for non-ethical purposes if designed that way. To avoid this and

continued ethically with the project, we would not be recording anything intercepted by

the drone for future reference, so as to kept personal privacy to our topmost concern.

4.2.6 Health and Safety

Health and safety were paramount to any aspect of research and innovation. As such,

products were always included with health and safety warnings whenever these two aspects

Group B

 76

could be affected detrimentally to a human or animal. These warnings included such things

as drawbacks that came with using such products. These could be seen in commercials

when pharmaceutical companies provided a list of side effects that could be incurred from

using their product, no matter how minuscule the chance of happening, so as were

transparent. This same instance could be inferred through materials used such as anything

radioactive, chemical, or potentially hurtful when touched or inhaled. Such things would

apply to our drones and products like it. The materials we used to make our product could

had adverse effects on livelihood, such as when manufacturing the completed product, or

when taken to more in-depth analysis, the mining and acquiring of materials used could

had adverse effects as well.

To showed more of how health should be shown on product placement and usage, the

aspect of using products could had adverse effects as well, such as the output of CO2 when

using diesel or gas engines. For our product, this was not an issue as we were using drones

ran by electric batteries and motors. This does not meant drones do not had impacts on the

environment when in used, as the electricity to power this drone was needed from other

resources on the power grid itself, but we could saw that when taken to the extreme case

we could label anything and everything as detrimental to the environment and users in

general. So, for a professional outlook, we kept to closely related subjects that affect

personal health directly in the used of our drone product.

Now when showing the positive increase in health-related aspects of our drone, we could

turn to statistics and materials used. The drone product was much smaller and more easily

produced than delivery trucks used by most companies, thus keeping more materials out of

the environment instead of needing them to fulfill higher material needed for bigger

products. Continuing with aspects that were positive improvements, through statistics we

saw a correlation to a decrease in suicides when taking the idea that there were fewer

retirements for delivery workers when there were fewer smaller delivery routes (as this was

the demographic used for our drone) thus decreasing needed were away from home and

increase the mental health of delivery workers in response. [2]

Safety was an aspect of engineering that we as producers of products needed to look into

steep consideration because it was our products and thus our actions that could affect the

livelihood and safety of other people. This was shown in the way we process and package

and generally affect our products. We needed to take into account the safety of not only

the person, but the environment, property, and investments. We do this by applying

warning labels and color-coded codes that showed certain aspects of danger. Such as the

radiological sign for radiation leaking, or the skull and crossbones for chemical aspects that

could hurt individuals. We needed to also give out safety manuals to show the correct way

to operate our products and instructions on if the events that if safety was compromised,

the user was able to help others and or themselves.

Our Drone had an autopilot feature that would enable the drone to fly from pick up point

to drop off point with little human interaction, and while that means little chance of human

Group B

 77

error, that means that there was a possibility for machine error. This was taken care of with

our accident-avoidance software that lets the Drone avoid and dodge upcoming buildings

and other obstacles in its way. This program would limit property damage, and the height

level of flight would made it safer against human accidents, with the only chance being

when the drone was taking off and landing. These instances were shown in the provided

safety manual that was our responsibility. This would provide the safety we needed to

insure for property and human health. Regulations and more safety warnings were what

would protect the environment, thus completing our aspect on safety.

4.2.7 Manufacturability

Manufacturability was an important consideration in any engineering project. This

included our ability to acquire resources, tools, and supplies needed in the manufacturing

process. It also involves the speed at which parts could be made and the ease of assembly.
This was important to consider because it ensures that our product could be feasibly used

to accomplish our goal. If we cannot manufacture our delivery drone fast enough or reliably

enough, then it would not be able to serve its intended purpose, even if each individual

drone met all of our requirements and specifications.

For this project, many of the mechanical components were standard and could be acquired

off the shelf. This included the frame, motors, ESCs, and batteries. Some other components

like the flight controller board were more specialized. For our project, we were using

commercially available solutions. However, at scale, it was beneficial to create a custom

flight control board. This would reduce unit costs and allowed for more flexibility. Our

drone also uses off-the-shelf sensors such as ultrasonic sensors and cameras. These sensors

were connected via standard communication protocols like UART which allows for ease

of integration as well as the flexibility to swap them for other sensors.

Choosing the Navio2 and Raspberry Pi as our flight control board drastically increased the

manufacturability of our product. Having an all-in-one solution, as opposed to a flight

control board and a computation board, allows us to integrate that piece into the drone

much easier. It also makes debugging simpler. Overall, our delivery drone was relatively

easy to manufacture. It had no specialty parts, and the parts were designed to worked

together well.

4.2.8 Sustainability

Drones had been proven were very sustainable on paper. Because of the amount of

technology available and the emphasis on the environment, if drones were not kept to that

environmental standard, then they would not be sustained. When designing these drones

keeping that constraint of the environment would help led to more sustainability. These

drones were predicted were the future and helped the environment as they left extremely

Group B

 78

small amounts of carbon footprints behind. Making sure to have a clean charge source was

a constraint to carry on the sustainability because using renewable energy as the charge

source helps with the longevity of the drone.

In order to kept it sustainable, it also needed were built as stable as could be so that it would

last as long and also one thing known with drones was crashing so making that to not

impact the area it was in would help keep it flying as long as possible. Having as many

components as possible with similar lifespans did help the lifespan of the drone overall

because if enough parts fail at once then mass production companies might saw it more

cost-effective to throw away instead of salvage. This constraint was one that contributes to

the design process of the drone and considering making parts that needed repairs, easily

accessible for quick fixes, and lower the carbon footprint of broken or dead parts.

The software setup would require a lot more effort to ensure sustainability. Typically, Java

was more known for having a better foundation of software set up for projects, which leads

to less maintenance down the road. Despite this, we still went with the decision to used

Python because of its ease of use and readability. We were hoping these factors would help

made it more sustainable in the long ran as long as there was time and effort put into setting

it up the best way possible. Knowing our goal was to make this software had a long lifespan

and easy update feature, it would require us to had detailed documentation within the code

and not just writing it to worked.

5. Project Hardware and Software Design
After diving into what goes into a drone and the components made up of it, there could be

the starter of design and decisions. This section goes into what decisions we made and

how we wanted to design our drone in order to made it an efficient automated delivery

drone. The hardware designs here went over how we were connecting and securing

everything into place and why we were using the parts we chose. The software was

outlined how we were going were setting up connections and using the sensors with the

software. These designs were important to the records of the project as to saw what we

would need did if starting from scratch. Designing was where the main decisions were

happening with the unique choices we were trying to implement and explain how to

recreate the idea we were trying to portray.

Group B

 79

5.1 Hardware Flowchart

Figure 36: Hardware Flowchart

When we took into account multiple routes for data and power to flow throughout our

system, we needed to input a flowchart to simplify this measure and made it much easier

for the users to understood where and how our thinking was when designing such a project.

Here we saw in Figure 36 how we went about making our flowchart, including things like

power lines and where certain currents and voltages would flow, to data lines and how our

flight controllers and sensor readers would accept and send data to the rest of the system.

5.2 Controller Design

The flight controller was set up with the raspberry pi 4 b and be able to communicate with

the software that had machine learning and computer vision for object detection. The

design followed what was recommended in terms of what needed were connected for

proper communication. We would also be using the Wi-Fi setup as a way to communicate

instead of Bluetooth or other options.

Group B

 80

Figure 37: More Detailed Navio Functions

We had in the pin layout, that the total pin layout for our designated flight controller, the

Navio 2, was very encompassing and could handle many different outputs as we could saw.

It also shows in the pin layouts to the left of the board as seen in the board itself that this

board was easily integrated into the Raspberry Pi and had no problems with having to share

data between boards in heavy activity such as when camera vision was occurring, and the

flight controller needed input to drive the drone. We also saw the ease of understanding

what was on the board, because of how under the board we had an easy-to-understood

guide to what each pin was mostly used for. We had ease of power input with the USBs

and saw that our battery needed a power module that could convert from the leads given

by the battery to USB format for ease of use and gives us future aspects of the board that

we needed to think about. We could see that 5 Volt pins were spread through the Raspberry

Pi integration section of the Navio 2 board as well as 3.3 Volts, showing these two levels

of voltage were the most commonly used for this board and what we needed to ensure our

power module that was converting power form our battery to our board was attuned too.

Further on, we could see the receiving and transmitting pins, which lets us make an easy

estimate for where our pin layout needed were and what pins were providing data to the

flight controller when needed, thus giving us an easy-to-understand troubleshooting test

for when or if we had problems providing and receiving data in between the boards.

Group B

 81

We saw in Figure 37 that the Navio 2 was a very high-class flight controller that included

many different sensors included into the board such as a barometer and other such similar

and more simple sensors, leaving the ports for more useful sensors that we included later.

Our power USB ports also showed that the Navio and Raspberry could share power input

because of a designated port from the Navio 2 to the Raspberry Pi. This would simplify

how many lines we needed to run from the designated power module between the battery

and the PDB and to the flight controller and the data processing board. Further, the built

GPS receiver would let our autopilot system that would take input from our accident-

avoidance system be very intuitive and more of a simplified process. We did not need to

input our own system and be able to simplify our data processing and coding problems.

5.3 Wi-Fi Communications Design and Flowchart

Through hooking up the Wi-Fi component with ethernet and further downloads it had its

own Wi-Fi network connection, which was used download controls and other parts to it.

Both our ground control laptop and our flight control board (Raspberry Pi 4 B) were

equipped with a Wi-Fi module. This normally this could be used to connect to an external

Wi-Fi network. However, we were flying our drone in fields outdoors, where it was likely

to bad poor, or no signal. This was not a problem, though, because the Wi-Fi modules could

be used in another way. They could be set up to actually transmit a Wi-Fi network similar

to how a hotspot works on a smartphone. We would set up a hotspot on the ground control

station laptop and then had the drone’s computer connect to that Wi-Fi network. This

means that even though we do not have a connection to the internet, the two computers

could talk to each other wirelessly. After the two computers were connected on the same

Wi-Fi network, we could remotely log into the drone via Secure Shell Protocol. This would

allow us to securely access and issue commands to the drone’s computer without the risk

of being hacked and taken over. The architecture of the secure shell protocol was shown in

Figure 38. It works by encrypting traffic between two clients on the Wi-Fi network, so that

any other computer cannot read the messages, even if they were intercepted. The secure

shell protocol exchange was used to send and receive MAVLink and ROS messages

between the drone and the ground control station. This allowed us to control the drone

manually as well as send it updated mission requirements. It also allowed us to receive

telemetry data about the drone such as the battery voltage, altitude, pitch, and speed.

Group B

 82

Figure 38: Secure Shell Protocol Architecture

5.4 Limitations

Limitations were something that engineering projects would always try to minimize but

would never succeed in completely removing. There was a factor of any good product and

could cause growth and ingenuity in the design of products. Here we worked within our

limitations for the future of our drone project and showed that we could overcome such

limitations with careful planning and ingenuity.

5.4.1 Low Power Mode

Power was not infinite and needed to always be regulated to ensure that proper coordination

of our limited power supply was directed to its needed target and that we as engineers

perform a style of triage to our own systems so as to knew where and when our power was

needed most for continued operations.

Now our drone would of course in the lifetime of its operation came to a point of battery

life that it would enter such a state as low power. This cannot be avoided and was even

encouraged to some degree because of our batteries style of design, and most others as

well, that showed that depleting a battery to the limit of its capacity and then charging it to

fullness extends battery life to a figure worthy of this procedure was taken into

consideration.

During operation, our drone would enter a low power state sometime during operation, and

it would send a signal to ground control with its last known location as well as the notice

of low power. It did not continue operating as it would objectively weigh itself a higher

priority than the timely delivery of its package and would turn around and return to the

Group B

 83

known location of ground control. This was a standard procedure and was followed and

implemented numerous times during flight operations to ensure the program was in full

working order.

5.4.2 Data Limitations

Bluetooth was a very low bandwidth style of data transfer. We would never be able to send

large amounts of data through our ground control to our software system, namely our flight

controller, at any reasonably fast speeds. That was a limitation that was being overcome by

our drone’s reliance on itself most of all. By giving our drone the ability to achieve

decisions on its own and react in time to a fast-paced environment we were setting up our

project for success within our limitations. When we needed to supply our drone with direct

data input from ground control, our drone was a closer vicinity to ground control so as to

limit data travel times and thus increase productivity.

5.4.3 Range Limitations

When talking about range limitations, we need to talk about not just Bluetooth and its

limiting bandwidth, but the physical range limitations of our drone and how long it could

run. We knew from Bluetooth’s own specifications that the 4.0 variation had a range of

roughly 300 feet. This was quite a distance achieved and shows limitations that our specific

ground control had to adhere to. We knew then that our ground control could only achieve

direct control up to 300 feet. Continuing past that range was directly enacted by the

autopilot system.

5.4.4 Background Interference Limitations

Technology needed to consider the traffic going on around it constantly. Even when using

home Wi-Fi networks, it did have interference from things like the walls, other computers,

or even the weather. That same concept applies to the technology and components being

used on the drone. We were using a Wi-Fi network for our flight controller, which was set

up in a secure way to get rid of the interference from other people trying to connect or took

over. This was especially important for the future of drones because, with package delivery,

we needed to prevent packages from being stolen, and with that comes securing the drone

from background interference that might made it vulnerable to people taking over.

Other background interference the drone could face was weather conditions from the

environment and extreme data traffic. Data traffic could include cell phone towers, data

being sent through other internet signals, or different wavelengths in the atmosphere. We

did make sure the drone was wired correctly to have a strong connection to itself and the

computer attached to it.

Group B

 84

5.5 Sensor Chassis Design

When it comes to the sensor design, we placed them to have max exposure to what it was

capturing. In order to securely do this, we needed to hold it down by having a chassis

design, duct tape, or zip ties. To begin imagining the setup of the sensors we went with

temporarily securing them with duct tape or zip ties and if seeing it needed a more

permanent home then using the resources available to 3D print a chassis that would screw

into the frame.

With the drones it was quickly moving at times to avoid objects and needed were able to

endure that jerkiness or even withstand the object it was trying to avoid. Luckily with the

technology now a days it was more accessible to had 3D printers through colleagues and

fellow students that was able to print a design that could be securely attached to the drones.

Figure 39 shows an example of a bracket/chassis that was able to securely hold an

ultrasonic sensor, which was what we were using it for also. As it was able to saw, there

were holes for screws to attach it to a frame item and for the sensor itself, which would

made sure it was held steady while trying to perform measurements and distance of objects.

We believed coming up with a chassis for a drone were critical. The reason why it was so

important for a drone to have some protection from the elements were as follows. If we do

not have a secure design that would protect the inner workings of our drone the chances of

a component being damaged during testing skyrocket. The reason it becomes more liable

to not had a chassis was due to the fact if the drone was to crash, then came into contact

with dirt and water other debris it could had a chance of ruining A component or two and

then delaying progress in our project. That was the reason why adding a casing over the

main components of a drone was so important.

Now when it comes to designing the chassis for how the components fit there were quite a

few requirements we would like it to have. We do intend on 3-D printing our chassis. When

3-D printing a Chassis that would cover the components of our drone, our chassis needed

were durable enough to survive the crash but light enough not to cost too much drag and

weigh down the drone. We intend to design our 3-D CAD of the chassis with 40% Fill. A

40% fill would do was save plastic, added structural integrity, while also not adding too

much weight. What 40% Fill means, was that only 40% of the interior walls of the chassis

was implemented, just leaving 60% of the interior walls were empty.

The next important decision that our group made about our chassis was what filament to

print our chassis with. Now when it comes to 3-D printing filaments there were hundreds

to choose from. The two most common were PLA and ABS. ABS filament takes a higher

temperature for the extruder to properly lay down the ABS filament, but it also was more

durable. The higher extruder temperature causes there were more plastic fumes, harder to

print with, and overall, less user-friendly. While PLA was more user-friendly, requires less

ventilation and less harmful plastic vapors emitted, and was overall more user-friendly.

This was an important comparison and needed were carefully looked into. You could saw

these compared in Table 25 below.

Group B

 85

Table 25: Filaments

Filaments

 PLA ABS

Printing Temperature (Celsius) 190-220 240-270

Harmful Fumes No Yes

Price per Kg $19 $21

User Friendly Yes No

Durability Fair Very

So, in conclusion our group believes a chassis was important. The reason why was

important was to protect it from water dirt and other debris if it was to crash as well as

protecting the longevity of the components inside the chassis. Our chassis was made up of

PLA filament printed at a 40% fill to made sure our chassis was light but also durable.

Figure 39: Ultrasonic Sensor Bracket

5.6 PCB Design

The PCB Design for our drone delivery project played a critical role. The critical role in

which we would design a personal circuit board was to design a power distribution board.

The software that we plan to design our personal circuit board on was the eagle auto desk.

With the eagle auto desk, we were able to upload libraries from Webbench. Webbench was

a website that had already planned out schematics that we were able to use for our drone

delivery project. Our power distribution board needed were able to take the power

delivered buy the battery and distribute it to 4 different ECS evenly and safely. The way

we intend did this was by using voltage regulators schematics from Web bench and

implementing them in a functional Design on Eagle.

Once we had a functional cad design on the Eagle of our four-voltage regulators from the

web bench we would then proceed with manufacturing our personalize circuit board. When

it comes to manufacturing or personalize circuit boards there were a few options for us to

Group B

 86

choose from. Our values on which we made our decision efficiency, cost of shipping, and

how long it may take to ship. As you could saw in Table 26 below the companies we might

potentially pick from.

Table 26: PCB design

Company ETA arrival Cost Shipping Total Location

PCB Unlimited 4 Days $23.64 $34.53 $58.17 China / Taiwan

PCB Way 4 Days $38.00 $19.00 $57.00 China

JLCPCB 3 Days $23.50 $32.30 $53.80 China

As you could saw in Table 26 above. The companies above were the ones in which we

were comparing to saw which was best for our personal circuit board. The companies in

question were PCB Unlimited, PCB way, and JLCPCB. PCB Unlimited had the option of

manufacturing in China and or Taiwan with the total coming out were estimated at about

$58.17. The total for PCB unlimited comes from a shipping cost of $34.53 and a

manufacturing cost of $23.64. PCB Way was manufactured in China with a total for the

personalized circuit board being $57. The total for the personalized circuit board from PCB

Way comes from a shipping cost of $19 and a manufacturing cost of $38. JLCPCB had its

manufacturing done in China and the total for our Personalize circuit board was $53.8. The

total for our personalized circuit board from JLCPCB comes from a shipping cost of $32.3

and a manufacturing cost of $23.5.

Our group believes the company that was best suited for producing our PCB was JLCPCB.

The reason why we believed JLCPCB was the best company was for a variety of reasons.

First of which they had quite competitive prices. The second reason was if they had quite

an extensive list of components that would made designing our personal circuit board quite

convenient. And lastly, the expected ship dates for a personal circuit board aren’t

excessively long. Our group also understands that in the day and age of COVID-19 that

manufacturing dates and ship shipping dates may be delayed.

5.7 Manufacturing Design

For our manufacturing, we had needed for our project that needed were met for us to choose

a certain company over any other. After looking through the companies that we went over

Group B

 87

in our PCB section we came to realize that our project had certain requirements that other

engineering projects wouldn’t had. Such as limiting a budget that’s smaller than even some

of the smaller engineering projects that some companies do. Another was our time frame.

This was more similar to other professional projects but was still tighter than usual, where

we had much less time for our parts and needed materials to came in, so we started testing

and debugging. We needed a company that could handle our timeframe while keeping to

our budget.

We talked earlier on how our company we were more favoring was JBCPCB, and that

because of the short shipping times as well as the ability of their ordering program being

well reinforced by their own design program called EasyEDA as shown in Figure 40 that

saves on time because when we design our PCB the program would cross-reference parts

and made sure we don’t order parts that aren’t actually available, which was a very

annoying problem many engineers face. Luckily our PCB was a very simple concept for

our needed as power distribution boards were simple in design as they only needed to route

power to certain areas and may be lower or increase the voltage as needed. We do this with

capacitors and resistors and the simplest parts, so our PCB was a very simple design easily

implemented. Our board was most likely the standard 1.6-inch-thick board and had copper

power lines interlaced with voltage regulators to kept voltages where they needed were for

certain parts and kept the design within scope.

Figure 40: EasyEDA Program for JLCPCB Manufacturing

Group B

 88

5.8 Software Flowchart

Figure 41: Software Flowchart

Our entire software stack was built on top of the MAVLink, ROS, and MAVROS

communication protocols, with each one being used for different areas of the

communication, shown in Figure 41. Our low-level control layer was running PX4, which

takes in information about the drone such as orientation, rotation, and forces on the drone,

and used to keep the drone in stable flight. Additionally, the low-level control layer was in

charge of taking in GPS data and waypoint mission information and calculating the

adjustments to motor speed in order to navigate to the correct location. From there, the next

level of abstraction was the high-level control layer. This was a ROS node that basically

acts as a router, taking in information from the flight control software, the 3D Mapping

Layer, and the Human Interaction Layer, and then routing it to the correct destination. The

low-level control layer sends telemetry data to the high-level layer. The Human Interaction

Group B

 89

Layer sends user commands and mission data to the ROS node. Lastly, the 3D Mapping

Layer sends the point-cloud information to the ROS layer. From there the ROS layer routes

it to the correct software that was using that information.

5.9 Manual Pilot Controls

Since our drone was intended were fully autonomous, we would not had very much of a

needed for manual controls. However, during testing, it may be useful were able to pilot

the drone for certain things like positioning at the beginning of a test and returning home

after a test. With such minimal usefulness, we do not feel that it warrants spending the extra

money on a transmitter and receiver. Fortunately, our ground control station implements a

virtual controller, so we would not miss out on any functionality. We had two options for

this. The first was using the virtual joysticks as seen in Figure 42. This would require a

touchscreen on our ground control station software.

Figure 42: QGroundControl Virtual Joysticks

Luckily, QGroundControl supports iOS and Android, so we were able to use any of our

phones. However, by doing this, we were giving up useful features such as telemetry

logging. We do had access to a laptop with a touchscreen, however. The other option was

for users to plug in a USB Joystick or Gamepad. This could be achieved with hardware

that many of us already had, such as an Xbox Controller. By using either of these two

options, we were able to circumvent the needed to buy expensive hardware that had a

limited effect on our end project. However, it was important to note that these controls

were not as responsive as using an actual radio transmitter. This was because the commands

were sent over MAVLink, which shares the bandwidth with the rest of the commands and

Group B

 90

telemetry data. Additionally, MAVLink commands were processed by the flight control

software, which takes processing time. On the other hand, the manual RC transmitter was

routed directly to the motors, avoiding the processing delay, though it was small.

5.10 Final Parts Decisions

The final parts decision section of this paper well in detail, explains how we came to the

final decision for the parts. The parts discussed in this section would ultimately be

purchased for our project. We believed these parts would produce the highest performing

project we were capable of producing. As well as detailed explanations as to why these

were the best parts to achieve the best possible performance out of our drone delivery

project. Some of these decisions came from the decision of other ones because the parts

interact with each other for proper performance. This was further explained in the decision

of the parts.

5.10.1 Propeller Decision

When it comes to choosing propellers, it was no small or easy task and was very calculated.

Propellers were a critical component of the drone because they were directionally

correlated with the amount of lift you could achieve with your drone. There were a lot of

reasons why you might pick a certain propeller over another.

The first reason why we choose the propellers that we chose was due to the size of the

frame. Once we had chosen the size of our frame, we knew we needed propellers that

provided a large enough lift for not only our frame but also our package. Now with a larger

frame, you were able to install larger propellers. If we had chosen a smaller frame and

larger propellers the radius of the propellers would intersect, and it was impossible to get

the drone off the ground. With the drone frame we had decided upon being 450 mm but for

easier to understood metrics could be converted easily to inches with the end results being

17.7 inches. With a drone frame of 17.7 inches in length, we had some flexibility and how

long the length of our propellers we wanted. The standard size of propellers for a frame of

our size was somewhere in the range between 8 inches and 10 inches.

There were drawbacks to either having larger propellers or smaller propellers. With smaller

propellers, we had greater rotations per minute than our larger propeller counterparts. Now

there were quite a considerable number of pros for having larger propellers. The first pro

of having larger propellers was that we were capable of generating a larger amount of lift.

A potential con of having larger propellers was that you had lower rotations per minute

because you were rotating a larger mass when you had larger propellers. Lastly, it was

believed that larger propellers were more beneficial to a drone’s battery life than its smaller

propellers counterparts. With all of this information, our group had decided that we would

much rather have larger propellers than smaller propellers. The length of propellers that we

believed was the best fit for our 17.7-inch drone frame was 10-inch propellers. 10-inch

propellers would have a 5-inch radius leaving 7.7 inches in the center of the frame to build

upon.

Group B

 91

Once you had the size of your propellers decided there was a final decision to made. The

next decision to made about propellers was what material you would like your propellers

were made out of. The two most common materials propellers were made out of were

plastic and carbon fiber. Carbon fiber was a denser material. With a denser material like

carbon fiber, you would have less flex as the propellers rotate. Also, with carbon fiber

being denser it added more weight to your overall weight of the drone. Plastic propellers

on the other hand were lighter but they would flex a little more when rotating. When doing

a price comparison of carbon fiber versus plastic propellers, the carbon fiber propellers

would end up costing more. Our group had decided that plastic propellers was the best fit

for our project due to the fact that they cost less while producing the same amount of left

and generally speaking being lighter.

In the end, the result for a journey to find the best propeller for our drone delivery project.

My group had decided that the best propellers for the best possible outcome was 10-inch

plastic propellers. The 10-inch propellors would provide the necessary lift and stability for

the drone. These factors were considered important to the project because of the

environments the drone was flying through. These drones could even be flying next to each

other and had the potential to knock into each other and cause fires, dropped packages, and

broken drones. These 10-inch propellers would alleviate that risk and helped it fly

correctly. Sizes differences in propellers could affect how hard the drone needed to give

energy off of the batteries and going too big could be unnecessary weight and cost of

materials. We were having different colored arms on the drone, red and white. The different

colors would helped distinguish the set-up of propellers because certain ones needed to

turn one way and the others would turn the other, so having the two different colors would

distinguish which direction they were rotating. We eventually used the arms to distinguish

which side of the drone would be the front.

5.10.2 Frame Decision

We came to a decision about our frame through many looks into different aspects that

would our continued efforts into the project, namely things like frame size for if the frame

could even withstand the weight and flight style we were going to put it under, landing gear

type because this style of the project at best was considered “pre-alpha” for many industry-

standard professionals and we do not had a designated location with prime landing and

took-off spots so we would needed a robust landing system to supply us with good potential

took-off and landing success. Also, the frame itself had many holes integrated with the

frame that let it be easily modified to fit our needed, for this we would most likely used

them when having to input our sensor units and kept them stable and safe to our drone

during flight, so we needed these holes and cabling to secure our vital components to the

frame.

To continued, the frame also needed to compensate for its own weight that would take

away from the lift, so anything the frame could got rid of and kept structural integrity was

well-liked. Our drone does this by making the arms of the drone hollowed and instead of

solid reinforced plastic, was honeycombed to kept structural integrity while reducing

Group B

 92

weight. We mainly investigated the frame size when looking for different drone frames

when initially looking into what frame we would take. We did this by understanding that

our drone would not be like other consumer drones that only had a certain weight they

needed to lift and only had so many features. Ours was heavier than any consumer drone

when we included all the other components like sensors, PDB’s, Batteries, and other

components, but mostly things that would not be on a regular drone system like our second

brain system. Thus, when looking into frames we decided the only possible frame that

could held our system was 450mm and above, thus thinning the search for frames. And

with all these qualifications, we came to the final decision of the QWinOut F450 drone

frame with landing skid gear, as shown in Figure 43.

The frame chosen had a 4-legged landing gear that sits a few inches off the ground so the

mainframe of the drone was not immediately coming in contact with the ground, which

was useful for when there might be a puddle or something on the ground and protects the

equipment from the elements. It also had two distinguishing colors of 2 red platform wings

and 2 white platform wings which would help told which were the back ones or the side

ones depending on how we decide for them. There was also a square-shaped middle part

that extends down in order to store the equipment and made it compact. This was a pro

when looking because it keeps the weight of the equipment in the center of the drone to

tried and not throw off the center of gravity. Overall, this frame was very simple and looks

like a great frame to started with as a beginner drone group builder. The frame chosen

provided stability and a good layout of options to put the equipment being attached, the

wings also had holes throughout so if needing to strap or hook it down to the frame helps

for that security. The platform it comes with had a distinct area for the connectors of the

motors, ESCs, and battery which helped with the organization of the components to secure

them into place and not be crossing wires and getting confused with what connects where.

Figure 43: Drone Frame of Project

5.10.3 Motor Decision

When looking and deciding finally on what motor we used for our project, we were looking

into many specifications that could affect performance, and the motor was one of the key

components of this drone that cannot be sacrificed in terms of trying to find cheaper yet

Group B

 93

worse designs. We had to have a motor that was powerful enough to supply our needed lift

requirements and also be able to fit on our frame. Luckily, most frames came with a motor

specification attached to them so finding the right classification of the motor was as easy

as reading which motor our frame needed. Taking this into consideration, to find our motor,

was more of a challenge because different motors did the same thing but were less cost-

effective because of outside factors that were out of strictly engineering outlooks such as

shipping and other things. When we did eventually decide upon a motor it was not just

because they met our specifications but because the materials came in a bundle deal to save

on shipping cost. We bought a bundle that included not just the motor, but the frame, ESC,

and all the plugs needed to operate these materials. We could saw the exact motor we

bought here in Figure 44.

The motor that came with the frame kit was an A2212 1000KV Brushless Motor with a

current capacity of 12A/the 60s, 2-3 Li-Poly cells, and KV of 1000. These specs correctly

matched our frame requirements and what was needed to operate. It came with 4 orange

and silver motors displaying the company name, QWinOut, and had the connectors with

them. Having the motor be in a frame kit helped to alleviate the costs greatly because

typically these were more commonly sold separately and quickly became expensive when

having to purchase 4 of them. The frame kick comes with the 4 that were going were needed

for the frames and propellers. Also, had the correct connections ready to hook up and

organize correctly for the items to work together and started customizing how we went

about communicating with the motors through the ESCs and software and such. We were

using the max and mins of the motor to test accuracy and used them as boundaries for the

code controlling the motor.

Figure 44: QWinOut A2212 Motor

5.10.4 ESC Decision

Our ESC, just like our frame and motor, came in a bundle to ease the expense, however,

this was one of the hardest components that needed the most rigorous inspection to made

sure we were providing our drone with an ESC that could handle the amp and voltage

output needed to give our motors the power needed to achieve proper lift. The ESCs were

the things that would directly be controlling the motors speed and RPM as the flight

controller itself just sends a signal to these components and then they send the actually

needed input voltage into the motors. To further protect our system, this ESC comes with

its own software, taking away our needed to brought it up to operation and saves on

precious time. It was protected from outside signals so that it couldn’t be interfered with

Group B

 94

by other RF sources, which was paramount in the urban environment that we envision our

project taking place. Figure 45 shows the ESC that we had decided upon.

Our ESC came with the frame kit ordered through eBay and does not need any soldering

to put together. It even comes in a protective black casing and the wires attached to it were

encased in protective covering. It was a 30A brushless ESC with a continuous current of

25A and a burst current of 40A for up to 10s. These were the exact specs we were looking

for based on the frame and motor decision, which was great to saw it was included with

the kit and it was going to fit the goals. This helps consolidate the worked needed to create

ESCs. All the wires were different colors to distinguish what they were connecting to and

the purpose. Without those colors, we would have to improvise and probably found a way

to label them. This was used to control the motors and changed direction and much more.

It was possible these might have had to be replaced if damaged, but luckily, they were not

a huge expense and common to replace. And we did end up having to replace them after

crashing. The ESCs also had all the information needed to found replacements for it with

having the brand and specs of the ESC on the front of it. The biggest thing to note with the

ESC was it was not necessary to went all out on the specs. The ESCs worked according to

the motor and if an ESC could handle up to 50A, but the motor only goes up to a maximum

of 20A then that was all that was necessary from the ESC. So, while it was important, we

got good quality products, staying within budget was important and would save a lot of

money in the end also.

Figure 45: 2-4S 30A ESC

5.10.6 Battery Decision

For our drone delivery project, it was critical that we used the appropriate battery for our

design. The reasons why it was so important to obtain the correct battery for our drone

delivery project were Weight, and the correct milliamp-hours (mAh) otherwise understood

how long the battery could produce a current.

Now battery cannot be chosen at random they needed were very balanced towards your

Objective. Due to the delicate nature in which batteries needed were balanced they often

cannot be decided upon until other parts had been decided upon. So, to properly decide the

correct battery you first needed to decide what motors and ECS you were implementing in

your drone project. Since we had now made those decisions, we were able to narrow down

our options for battery dramatically.

Group B

 95

Now had been talked about previously the size and weight of a battery was very important.

The size and weight of a battery for a drone delivery project were critical because if we

were to hook a car battery up to our drone first would apply too much voltage and would

have a weight in pounds so much that the drone wouldn’t be useful. So, if a battery was

too heavy it would create too much drag for the drone and would have diminishing benefits

because as the drone struggles with drag it would use more electricity in the long run.

That’s why the weight and size of a battery were so important. The main way to gauge a

battery's size was through the categorization of 1s-6s. With 1s being the smallest and 6s

being the largest.

The most important feature and batteries were their milliamp hours. The reason why

milliamp-hours were so important was due to the fact that more milliamp-hours were equal

to more flight time. The longer the flight time the more you were able did with your drone

in between charging the batteries. Now the amperage draw also plays an important part in

flight time. The equation that shows their relationship was as given:

(Milliamp hours/ avg amp draw) *60= amount of flight time in minutes.

This equation played a critical role in why we choose the battery that we chose. For the

amperage draw variable we mainly looked at our ECS’s and What was the max amount of

amperage they could took /handle and calculated a milliamp-hour range that we would

need to use in the battery that we chose.

These were the factors that led us to choose the Turnigy nanotech 6000-mAh 3s Lipo pack

as seen in Figure 46 were the best option for were the drone delivery project. We believed

the 3s were the perfect size range for what we needed with our battery and it not being too

big or too small. Then we Calculated our milliamp-hour range were around 6000.

Figure 46: Final Battery Decision

With the Turnigy nanotech 6000-mAh 3s Lipo pack battery chosen. We Believe this battery

would supply our drone with the perfect amount of average to ensure steady and efficient

flight. This battery would also not be too big to way down the drone. With these factors

maximized our drone had a much more sustainable flight time and was more effective

during testing.

Group B

 96

The battery was a rectangle shape that was enclosed in a blue rubber casing with the front

having all the information of the battery. There was also a black, red, blue, and white cased

wire that would helped distinguish which wire was being used. The battery provided the

power needed for all the components and was rechargeable. We were going to have to place

these in a way that does not affect the balance of the drone either because of its shape with

the frame in order to keep the drone fly steadily and efficiently. We did this through many

zip ties and using the frame as a stable connection.

5.10.7 Battery Leads Decision

When connecting our battery to our drone we had two methods to implement. The methods

in which you could connect your battery to your drone were you either Sauter them together

or you used connection leads. There were pros and cons for both, but my group had decided

for a few reasons the battery leads was better than soldering together.

The reason why we believed connection leads was better was for multiple reasons. The

first reason why we believed the battery leads was superior to the alternative of soldering

was due to the fact that you could plug and unplug the battery from the rest of the drone.
The ability to plug in and unplug the battery from the rest of the drone was superior to

having it constantly soldered. With the ability to unplug the battery you were now certain

that there’s no electricity flowing through any of the circuits or to the motors thus making

it safer to handle. The safety benefit, as well as an easier-to-manage battery supply, was

what led our group to decide to use battery leads instead of soldering.

The connectors we went with were orange in color and had a hard casing for the structure.

This would make it durable when we tried to use the batteries and possibly connecting and

disconnecting them. Having that sturdy case would keep the battery wires protected from

elements around it and even the case itself as it had space between where it was plugged in

and the hard shell of the connector case. Having the connectors provided ease and

convenience to the team when trying to construct what was basically a prototype drone. In

the future, the decision to solder might be more appealing if it helps to secure the battery

better and we knew that it was perfectly secured in that manner for production. Solder does

help to eliminate weight as the casings and connectors added some fraction of weight on,

but for this project there cannot be much harm did it and the for the right cost. Shown in

Figure 47. We also used these same connections when designing the power module and

our own power distribution board.

Group B

 97

Figure 47: Final Leads Decision

5.10.8 Flight Controller Decision

The drone not only had mechanical hardware that it needed to operate correctly but needed

proper processing power. We decide on a dual aspect of this component to save processing

power and to give our drone the best chance of succeeding with all of the sensor inputs it

would receive as well as when it needed to direct the ESCs to drive the drone. For the two-

part system, only one of the boards was used as the designated “flight controller” and that

was decided were the Navio 2. This board had all the simplistic design aspects that a young

product could needed such as simple wire design and ease of input of pins. This board was

made were in tandem used with the Raspberry Pi 4, however, that was used for a different

aspect of control for the drone. The Navio itself was used to directly control the ESCs

during flight and intake the sensor inputs from the more simplified sensors such as the IR

and accelerometer sensors. As these would just be parameters that was read and interpreted

were either in the allowable values or outside them. In Figure 48 we see the board we were

buying for our flight controller and the easy pin configurations that were shown on the

board.

Figure 48: Flight Controller Board Navio 2

Group B

 98

5.10.9 Data Processing Board Decision

Figure 49: Data Processing Board Raspberry Pi 4b

As talked about in section 5.8.4, we acquired two distinct boards for our processing needed

because of the intensity of our sensor inputs and decision-making needed. The flight

controller was decided were the Navio 2. However, the Navio 2 was made were used in

tandem with the Raspberry Pi 4. We decide on this configuration of Raspberry 4 so as to

let the Raspberry Pi be used as our intense Data Processing Board. That was the designated

title, however, what it really means was that our Raspberry was used strictly for the data

input and used of our camera sensor unit and the used of robot vision that using this camera

effectively would entitle. This was a very processing-intensive program so would needed

almost the entire processing power of the Raspberry Pi which was why the Navio was used

for everything else. We saw the Raspberry 4 and its ease of pin configuration and how it

easily ties into the Navio 2 in Figure 49.

5.10.10 Sensor Unit Decision

The Sensor unit was actually many different sensors all packed together into one packet,

but many were taken care of by being included in the processing boards we were using for

our drone, namely the Navio 2 with its accelerometers, barometers, gyroscopes, and finally

an included magnetometer which we could saw circled in blue in Figure 50. The sensors

on the Navio were used to tell the drone how it was moving in space. The accelerometer,

gyroscopes, and magnetometer collectively made up the Inertial Measurement Unit or

IMU. This sensor unit gives the drone orientation, angular velocity, and specific force.

Also, on the Navio there was a barometer that could detect a changed in air pressure, telling

us the current elevation relative to the launch zone. However, all of these sensors only told

us what the drone itself was doing in space. They told us nothing of the environment it was

in, which was fundamentally important to autonomous navigation.

Figure 50: Blue Circled Sensor Packages on Navio 2

Group B

 99

For this reason, the Navio sensors were not the only sensors we needed nor was using. On

the Navio was many of the basic sensors that were included on flight controllers, but our

needed went beyond the usual as we needed accident-avoidance aspects as well. We do

this through the use of external sensors. For collision avoidance, we were using ultrasonic

sensors facing in every direction around the drone. This provides us with data on the

distance to the nearest obstacle in every direction. The way that these sensors provided the

drone with distance information was shown in Figure 51. The transducer sends out an

ultrasonic pulse. After some time, the receiver receives the reflected signal. The time of

travel was measured to calculate the distance to the object. We would use this to ensure

that we do not get too close to an obstacle. This still only supplies us with a relatively

simple view of the world. For the actual navigation, we were using a SLAM algorithm to

create a three-dimensional map of the world. Using a camera, we would record images of

the environment and used computer vision to process them. This would provide us with a

point cloud as seen in Figure 52. This was simply just a collection of points in three-

dimensional space where an object was detected. With enough of them, the map starts to

look like the real environment. This map would tell us what areas were safe to navigate

through and what areas were not. While the 3D mapping tool didn’t come out perfectly,

the object recognition worked just fine, but we later came to learn the ultrasonic aspect was

not able to realize at the end because of limiting hardware. Namely the pins available.

Group B

 100

Figure 51: Ultrasonic Rangefinder

Figure 52: Mapping Algorithm Output

5.10.11 Coding Language Decision

The coding languages being utilized for the drone was Python and C++. Python was

utilized for the main software of the computer vision and controlling the drone. Python

provides a style standard to followed and lots of documentation for completing projects of

this magnitude. It was very popular in the machine learning and computer vision

community for its feasibility of understanding and being extremely opened source.

C++ was utilized for a lot of the code between the hardware and firmware and lower

language items. This would communicate how to set the hardware to certain numbers of

performance. C++ was an algorithm-based language with object-orientated programming.

This allows us to have a lot of flexibility in terms of things we could do with it because it

would adapt to our software programs or with communicating to hardware.

Group B

 101

5.10.12 Mapping Algorithm Decision

After carefully reviewing the pros and cons of each of the mapping software’s in terms of

features, speed, computational demand, and accuracy, we had ranked them from best to

worst for our particular application. Unfortunately, because our computational resources

were limited and it was impossible to estimate how much power we could afford to allocate

for the mapping program, we cannot make a concrete decision on which one we were using.

We were required to implement our setup and test it with various different mapping

algorithms to saw what gives us a good balance of speed and accuracy/features. We

eventually finalized on OpenCV as the tool used as the mapping tools we had were not

working with our chosen camera at the time.

Figure 53: ORB-SLAM3 during operation

Our top choice for mapping algorithms was ORB-SLAM3. This application was the most

feature-rich of the algorithms we looked at. It was a full SLAM implementation, which

means it included features such as loop closing and key point reuse. These helped to ensure

that our measurements do not drift over time, making our map more accurate. It also

included multi-ran map reuse which would reduce the computational demand in high traffic

areas such as around the loading warehouse, as the map had already been calculated for

that area. This implementation was also more robust to periods of poor visual information.

Whereas another algorithm could become lost if something like this happens, ORB-

SLAM3 would allow us to pick up where it got lost and continued on with the mission.

While these features were nice, they were not strictly necessary, and they do come at a

cost. ORB-SLAM3 was significantly slower than some of our other options, which could

limit the speed at which the drone could fly. For these reasons, we would attempt to used

Group B

 102

ORB-SLAM3 as our mapping software. In the event that it does not ran fast enough on our

setup, we would downgrade to the next best option. We saw ORB-SLAM3 in Figure 53 in

a working capacity.

Our second-choice mapping algorithm was Direct Sparse Odometry. The base level of the

algorithm was an implementation of Visual Odometry, which was not as fully featured as

SLAM. It does not share some of the abilities such as loop closing and key point reuse.

However, it was significantly faster than the ORB-SLAM3. Even though it was not a full

SLAM algorithm, it was still more accurate and robust than the other options we looked at.

The reason that this was our second choice was that it also comes with extensions such as

IMU integration and loop closing. This allowed us to customize the feature set to achieve

the perfect balance between efficacy and speed. If a certain feature does not appear were

worth the performance decrease, we could simply take it out. This flexibility was very

helpful in achieving a working final implementation. We saw in Figure 54 Direct Sparse

Odometry in a working capacity.

Figure 54: Direct Sparse Odometry during operation

Our last resort option was Semi-Direct Sparse Odometry. Again, this was an

implementation of Visual Odometry, not SLAM. While it was not as robust or accurate as

of the previously discussed options, it was significantly faster. It was an order of magnitude

faster than ORB-SLAM and two to three times faster than the base implementation of DSO.

This was our last resort because it was not as good as any of the other options, but it was

faster. If we absolutely cannot run anything else, this algorithm was better than nothing.

LSD-SLAM on the other hand was completely rejected as an option. It did not work as

well as the other SLAM options in terms of accuracy or robustness, yet it was even slower

than both of the visual odometry implementations. For this reason, this was the order that

we would attempt to integrate the mapping algorithms. If a particular algorithm was too

slow to run, then we would simply move on to the next best option. We saw in Figure 55

the Semi-Direct Sparse Odometry in a working capacity.

Group B

 103

Figure 55: Semi-Direct Sparse Odometry during operation

5.10.13 Servo Motor

For our package delivery system to work smoothly we needed a servo motor to be

implemented that would be able to release and lock in the package to the drone. The servo

motor that we chose was the Tower Pro MG995 Digi hi-speed. The reason this server motor

was chosen was due to the fact that it would come with a chassis that would allow us to

easily secure the servo to the drone frame as well as the correct pin connections to easily

attach to our flight controller. Our plan was to have a taut rope connect through the package

and onto the pen of the servo motor so that the packages Center of gravity would be in the

center of the drone. Well, having the other end of the tight rope be placed on the pin of the

servo motor so when released the package would be carefully released and the drone would

be able to fly away with the package no longer attached. The other advantage to this

configuration is that the entire weight of the package would not be solely placed on the pin

of the servo motor.

6. Testing Detail for Hardware and Software

Testing was imperative to product development because of how it prevents failures.

Sometimes failures could cause a whole machine were destroyed but testing the software

and hardware components could showed the flaws before interacting with the whole

system. Section 6 goes into the details about how we tested the components for

functionality and making sure the items were performing to our objectives and

specifications before doing full launch tests. Then we were going over how the final tests

was completed.

6.1 Hardware Testing

Our group believes in doing thorough hardware testing to ensure each part performs as it

should. The reason we believed thorough hardware testing was necessary was for safety

and to made sure we don’t accidentally ruin any of our parts unnecessarily. Our group

Group B

 104

believes in measuring twice before testing once. What measuring twice before testing once

entails was as shown below, through calibration testing, started-up sequencing testing, and

field testing in multiple testing environments in between to make sure nothing was out of

order or unsafe for us to continue before we tested our parts.

6.1.1 Calibration Testing

Calibration testing on a drone was critical. The reason in which calibration testing was

critical for a drone because without the correct calibration your drone would not be able to

level itself. As well as not being able to orientate itself in the correct direction if it was not

calibrated correctly. From my hardware ‘s perspective, there were three points of failure to

made sure were calibrated correctly. Those three points were the power distribution board,

ECS, and flight controller.

For the power distribution board, it was important to calibrate correctly for a few reasons.

First of which was that all the components on our drone were voltage sensitive. If our

power distribution board did distribute the incorrect number of voltages to individual

compartments they would not be powered correctly. As well as be at risk of overheating

and frying themselves. For these reasons, it was important that our power distribution board

be calibrated correctly. This was tested thoroughly through the use of multi meters and

running current through the board.

The next piece of hardware to calibrate correctly were the ECS. The ECS Job was to take

input from the flight controller and to distribute the correct amount of current to the Motors

respectively so that the drone could orientate itself correctly. So, if the ECS were not

calibrated correctly the drone was unable were balanced and hover as well as maneuver at

all. To ensure that the ECS was calibrated accordingly we was sure to test them to made

sure we were getting the same input out of all four ECS. This was tested during initial

calibrations before mission take off.

The last piece of hardware was the flight controller. The flight controller’s calibration was

critical. The flight controller uses a gyroscope to made sure that the drone was level. Not

only that but the flight controller was also responsible for being the main form of

communication to the ECS and the motors to made sure that the drone could maneuver

properly. The flight controller was very thoroughly tested, as it needed many different

parameter inputs before it could hope to take off for a mission.

Group B

 105

Figure 56: Calibration Stylized Testing

For all the reasons listed above was why calibration was important in the way that we plan

on testing it was through trial and error. As well as taking careful measurements before

officially testing it to making sure that each part of our drone was calibrated correctly and

doing its job properly before pressing the started button. We believed this method helped

our drone overall be more calibrated and balanced and ensure quality testing.

We saw in Figure 56 that calibration was needed for the system to understood certain

variables and immensely helps other programs such as our flight controller, where if we

didn’t fully calibrate our sensors such as the gyroscope and the accelerometer and

magnetometer, our flight controller would had much more difficulty flying using such

parameters as roll pitch and yaw which could led to very harsh flying conditions and even

to crashing if the parameters were too inaccurate.

6.1.2 Start Up Sequence Testing

Our group was a firm believer in measuring twice before testing once. What this entails for

the startup sequencing, was that we plan on testing all the hardware individually as well as

setting up to made sure all resistances, capacitances, and voltages were as they should be

before turning it on. For example, when the ECS arrives we took a multimeter to all parts

of the board to made sure we were getting the correct inputs and outputs throughout it

before our formal testing started. This procedure would also be used for the battery, power

distribution board, ECS, and Motor. This was done and worked to ensure power was going

where it needed too.

 There were a few reasons why we wanted were this thorough with designing our drone

project. One of such reasons was that when we went step-by-step and check each part

Group B

 106

individually, we gain a better understanding of what that component was doing and

processing and how it should function properly. With that information, if an error or a

mishap were to happen, we would then be able to diagnose the problem sooner and more

accurately.

Once each part of our hardware had been tested to made sure was operating properly, we

would then hook them up together in the order in which they were intended. Then test again

to made sure we were getting voltages, resistance, and capacitance through each step of the

drone and that everything was running smoothly as it should. Then capacitance the results

to made sure they line up with our original result. After this procedure had been completed

and we had tested the hardware twice. Once individually and once as a collective we

believed it was safe to turned on the drone.

With these extra steps in place, the first time we set up the drone we had a successful start.

On the off chance we did not have a successful startup with all of our testing beforehand,

which we did not in hindsight, we hope to now have a better idea of where we would go

for the next step when continuing to make our drone operational and useful.

We saw in Figure 57 that our flowchart shows the intended sequence we were following

for further testing when performing field tests and we was applying this style of testing for

Senior Design 2 where we would have a working drone and sensor configuration. This

would enable us to have a stable and routine started-up sequence while applying safety to

all field tests so as not to damage the drone and hardware components on the drone itself,

while also verifying that all data inputs were actually receiving data from surroundings and

not facilitating a failed and useless testing environment. We could saw from our flowchart

that our started-up sequence would go in the order of Ground Control activation, namely

our QGroundControl Program that was facilitating our “talking” to the drone and all

communication for route control and verification of completion of objectives such as

testing or dropping off a package.

Moving on, we had the activation of the drone’s power system, or in other words the

activation of the hardware of our project, with a further step of verifying that all

components of our drone were receiving power and there were no broken or damaged lines

in our power distribution system. This was needed for any further testing or processes in

our started-up sequence because if even one of our sensors isn’t working it invalidates all

the testing that could be done because of loss of data streams that could enable and proper

test.

Group B

 107

Figure 57: Start Up Sequence Flowchart

After we had verified all components were working and receiving power, we verify all

sensors were actually attuned and ready for testing, such as the ultra-sonic sensor was

reading distances properly and the camera vision was properly on and detecting certain

images, we would prepare such as a picture of a raccoon other objects to verify that it was

reacting and reading properly.

To continue with the started-up, we had the verification of the GPS system letting the drone

and us operators wherein the location it was currently and verifying this was right and

accurate to the level the GPS module could achieve. This helped and began the verification

of the autopilot system. Showing that our autopilot had properly uploaded the correct route

to the location we had routed for it, and it reads the correct location via coordinates for the

drop-off point.

Finally, we began the final processes that could be done before a proper test could be

fulfilled. We started up the propellors and verify all systems were still working and GPS

was still receiving data and sending data even during the vibrations of the propellors were

causing on the frame. We then achieve lift-off and enter our true testing phase. We verify

the third and last time that the GPS and autopilot systems were interacting properly with

the Ground Control system and that all sensors were working properly and finally began a

true test of our drone accident-avoidance system.

Group B

 108

6.1.3 Field Testing

During our testing, we would eventually reach the stage of quality in data that the only way

to extrapolate more was did a field test and brought our drone to operate in a real

environment, or as much as we could made our drone were in while keeping to the budget

and constraints of the law. For our project, we came to the idea of showcasing our drone’s

ability to dodge buildings and other environmental stimuli and showcase our accident-

avoidance software and how well it works when put under pressure while in tandem with

how well our drone’s sensor package could pull in data and compare parameters in real-

time.

Figure 58: Field Testing Site Tangerine Field

Now to showcase these two things we needed for there were an adequate location, which

in this case means that it needed a wide grass or opened terrain and no other major

outcroppings hanging over it and were outside of downtown and campus limits as those

places require that we would needed to acquire a drone pilot license for our operation,

which if it could be avoided would reduce down the cost of our project and made it more

viable. And we needed adequate stimuli so as to fully showcase and extrapolate a good

amount of data from the drone’s interaction with the course. We were then deciding did

our field test in a wide-opened field, preferably a grass plot, so that means our best guess

were a park or other opened space such as that, and we found through research into where

other drone pilots that fly in the city went to that there was a perfect location in Apopka

Florida known as Tangerine Field. It was opened land with plots of grassland and even a

runway, cover for when thunderstorms hint so we could be in accordance with safety

guidelines when operating in the opened air and was close enough to our home locations

Group B

 109

were viable for this project needed. We saw this in Figure 58 that showcases the field as a

viable option for testing.

Figure 59: PVC framework of Buildings for Field Test

Figure 60: Box that would form the Skin of City

This means we now had an adequate location for testing, now we needed adequate stimuli

for our drone and data gathering needed. We do this by recreating the most likely

environment our drone was encountering during operation as a product in consumer's

hands, or in other words, an urban environment. Now because of budget and site

restrictions, this means in no way were we able to emulate an actual cityscape. We were

recreating the tight spaces and restricted airways that came with cities instead. To do this

we would made the framework of a building or in this case multiple buildings out of PVC

pipes so as to give our site some sturdiness in case of high winds and other factors of the

flight-testing site. We would then provide the “skin” of the buildings with cardboard to

showcase the more rectangular aspect of downtown buildings, with variations in the

different structures to provide a good difference in data input so that any field testing brings

back multiple stimuli injection into our data network for our drones “learning” software

system. We gave the basics of this idea in Figure 59 and Figure 60 to show the PVC

framework and cardboard skin of our made-up cityscape. This ended up not being used

even when we had the materials ready for the build as a crash stopped any testing we could

continue do before our final paper was due.

6.2 Software Testing

For testing the software there was tools were able to measure output and then also testing

scripts used to simulate the runs and also collect data. With drones, there was simulation

Group B

 110

software out there that was able to practice machine learning and object detection without

having to use the drone yet. One simulation software we were utilizing was Gazebo.

Gazebo had been highly recommended by PX4, which was one of the design choices and

able to set up connections and simulate because PX4 uses SITL. SITL stands for Software

In The Loop. This means that was able to run the software flight stack and used a simulator

like Gazebo to created values and saw how the data was outputted. In order did these types

of simulations, a MAVLink API needed were set up. Figure 61 was an overview of how

the data and telemetry came out of the simulation. The API allows sensor and message data

to went through and then output telemetry based on our needed.

Figure 61: MAVLink API

Figure 61 outlines the messages that was used to access certain parts of the drone

connections. HIL_SENSOR was used for IMU readings, HIL_GPS was used to access GPS

RAW values. These could be specified and used for debugging because the

HIL_STATE_QUTERNION gives telemetry of the altitude, speed, locations and so on

which could be analyzed more with what needed to happen and what happened. We were

able to plug up our flight controller board of the Navio2 setup and then test it with our

software to saw if it was working properly. It also allowed us to ensure that all of our

individual software were working independently, and also that they were communicating

effectively. Testing was extremely important to the design process of projects because,

with projects just as drones and material items, hundreds of thousands of dollars could be

put in these things, and if not tested because a demo could result in damage to the

environment and the item at hand. All that time and money spent was destroyed and had to

started over again. Having software like Gazebo also allows us were making progress on

the software part of the project without having to worked with all the hardware parts or had

the drone flying yet.

Group B

 111

6.2.1 Software Startup Sequence

Figure 62: Software Start Up Sequence

When the battery was connected and the drone receives power, the Raspberry Pi would

automatically boot the installed Raspbian image. After the board was fully booted, it would

connect to our ground control station laptop via a Wi-Fi hotspot. Once connected, we were

able to SSH into the drone. We used this to started PX4 on the drone. When this software

was up and running, we would perform a pre-flight check to ensure all of the hardware was

working correctly and all of the telemetry data was being passed to our ground control

station, we started running the 3D mapping algorithm. This immediately started publishing

the point-cloud data for the pathfinding algorithm to used. From there we created a

waypoint mission and set the drone into launch mode. The rest of the behavior of the drone

was handled fully autonomously. We saw this process sectioned out in Figure 62.

6.2.2 Software Failure Testing

We needed to prepare for all possible outcomes during the intense operation of our drone's

standard operating procedures. We had fail-safes and guidelines that we followed in case

of failures that could cause catastrophic events to the drone. This section was going over

Group B

 112

the software style of failures and how we were approaching them. We saw this in Figure

63 on how we took such action in the future.

Figure 63: Software Fail Procedures

6.2.3 Parameter Testing

Our parameters were paramount to our successful implementation of an accident-

avoidance system. These needed systems were fine-tuned to have any chance of a

successful dodge. We were using a ground control program known as QGroundControl

that had an easy-to-understood user interface. This program lets us control the parameters

of our flight controller so as to provide a tighter detection range for our sensor. When

entering the GUI for QGroundControl under the Parameters tap we saw we changed all

kinds of systems within our flight controller’s umbrella of control, as shown in Figure 64.

Just one of these were the systems usual inputs for the return home command. We changed

that to something more easily useful for us during testing.

Group B

 113

Figure 64: Parameter Screen on QGroundControl

We could further search specific parameters we needed to truly implement our system

using a given search bar, which was useful in our case because of the drastic number of

sensors we were inputting into our drone’s flight controller and data processing board.
There could be instances of names being not perfectly cloned over to the GUI of

QGroundControl so the ability to looked up specific parameters was a useful tool in our

project. To continued further with actually changing parameters, this GUI had a helpful

system for the user when one needed were changed; namely when clicking and changing

a parameter a sidebar menu would populate with the already given parameters and what

they actually meant and how changing certain ones changed the outcome of the system in

total, as seen in Figure 65. This figure demonstrates what it looked like when trying to

operate the parameters and search function making it a breeze to used.

This would ease our inputs so we could slowly and steadily raise and lower our parameters

where they were needed so as to provide our accident-avoidance system with the adequate

data inputs it needed to perform to the best of its abilities. We were able to implement test

cases that changed parameters rapidly or drastically in order to test out some of the extreme

cases and saw how the drone would react to them. It was important to utilize these sources

instead of using real objects that in the case of a test failure would made the drone crash

and became damaged.

Group B

 114

Figure 65: GUI Parameter Help Interface

6.2.4 Sensor Input/Output Testing

Sensor testing would require using different environments of “test cases” that they could

came in contact with. Some sensors needed were tested in different lighting conditions,

while others were speed and height changes to saw what data it was giving us.

To started off with this system we used simulation software that could connect to the

sensors and gave it certain conditions to test the functionality of the sensors. Next, we

would attach to the drone and do some test flying to saw what data it was giving us. For

example, the accelerometer was attached to the drone while we test going in straight lines

and having a speed detector on us to compare that to the data the sensor gives. So, if we

saw the speed detector showing us 10 mph and the sensor showing 60 then we needed to

work on calibration or saw if the sensor was faulty.

The barometer was used to helped test the position of the drone in addition to the GPS. We

were testing these items to made sure they could give data back to a device that would

translate it into coordinates. We then had these on the drone and place them on different

objects with different heights and test what coordinates it gave. Testing on steady objects

first was the very important starting point for these sensors because we were able to hand

measure it ourselves, whereas once it starts flying was more complicated to accurately

measure and needed to have confidence in the sensors that they could complete the tasks

and checks.

Group B

 115

Ultrasonic sensor testing would consist of having it on a steady object or table in a clean

room and putting objects in front of it at different lengths. With everything standing still,

we could measure out how far to put the objects to test the max detection rate and size of

objects, if it makes it easier or harder. Then based on that feedback it would upgrade to

testing it while hovering and slightly moving. The goal of testing the ultrasonic sensor was

to gain confidence that while it was moving at a set speed it was able to detect the object

in front of it, otherwise, this would result in a crash of the drone.

Figure 66: Heat Signatures with Numbered Parameters

Our IR sensors were very instrumental in anything we would had to avoid that holds such

a heat signature that it was hotter than the surrounding area, and to the surprise of most this

included many different things that could affect our drone, not just alive things that were

moving in tandem with our drone and could potentially hit it such as a bird but even air

gust and spots of rising heated air that could destabilize our drone in flight if the drone ran

into such a thing unexpectedly. Now IR was not the best sensor for daytime as this was

wildly known as only the best IR sensors were sensitive enough to distinguish things from

the UV heat of the sun during the day, but for nighttime flight, we could be assured our

drone was very good at it. For as this could opened the market for 24-hour operations and

helped to deliver companies everywhere with this specific problem. Now for our specific

testing parameters, we would “teach” our drones flight controller system when to

distinguish certain heat signatures from others and teach it what to classify as background

versus what not to with parameters we would implement and changed within our ground

control program and fine-tune during actual testing, using numbers such as shown in

Figure 66.

Group B

 116

6.2.5 Camera Tracking

Camera testing happened once when we got the camera and would wire it up to a device

and test the functionality. We were looking for it to properly showed an image with the

quality it had described in the description, if this was not achieved, we were sending it back

and finding an alternate camera to used that was up to standards. We then were testing it

further by using our object detection software and set up an environment that would easily

detect objects to saw if it would put a box around the image to identify. When this test was

done, we were testing how well the camera communicates with the software for it to

accurately detect objects.

Figure 67: Image Testing for Camera Tracking learning program

For our actual testing of the project and camera specifically, we were in a field. The field

had a route created from objects we had and a cardboard living situation to test if it could

travel through a fake city or neighborhood area to deliver the package. The camera would

have to detect the area it would land, trees, poles, and other common objects that we had

to represent what it might came across in the real world. We had examples of other testing

environments that we took ideas of testing from, such as shown in Figure 67, where they

used images of people and started classifying them by parameters to steadily step by step

teach their program what was a person and what was not.

6.2.6 Stress Testing Drone in Flight Operations

Now, during the testing and operation of our drone product, there was times when during

nominal and normal flight conditions, there was unexpected factors that could interfere

Group B

 117

with the flight path. This does not mean gust of wind or movement of the package within

its own casing and whatnot, as those would have been compensated for within the flight

controller’s normal processes and should be accordingly easy to account for. What these

stress tests were for were the abnormal cases that were not taken into account by the flight

controller's original programming. Such as actual objects interfering with the flight path or

crashing into the drone during operation, which could cause the drone to unexpectedly have

to overcorrect itself in regular flight which could led to crashing. To combat this, we used

our accident-avoidance software to give the drone an additional set of “instincts” that took

over and perform the correct procedures when such situations occur. This could be very

stressful to the flight system and its ability to fly if perchance, the drone was not in a

situation where it was in the way of something such as a building or tree that it could easily

read and moved out of the way from, the drone would needed to took extreme evasive

maneuvers to had a chance of dodging something that was going at any reasonable speed

that it could catch up to a drone mid-flight. So of course, during these corrective course

adjustments we were going to had more extreme G forces and higher variances in pitch and

yaw when flying, thus leading to a much higher potential in crashing anyway if we do not

find the parameters that perform admirably during such maneuvers. As we saw in Figure

68, crashes could be devastating for the future continuation of our project, and the needed

to test parameters that could induce such crashes to needed to highly regulated in

simulation and out of it so as to give us ample data to correct any instance this devasting

impact to our project could had.

Figure 68: Drone Crash During Operation

We saw earlier in this paper that our ground control program, QGroundControl, had a

robust and easily manageable parameter system. It also lets us easily saw what our changes

to the parameters would do to our drone in summaries given for each different parameter

that was easily understood by the programming. Things that were from sensors that aren’t

part of the flight controller programming aren’t as intuitive but could still be found from

other sources, such as the input of an infra-red sensor. So, the action of dodging may be

carried out by parameters that were easily described and changed to control how any actual

Group B

 118

action that our accident-avoidance program took could be easily fine-tuned were more

easily achievable for the best results.

For the best description of how our accident-avoidance program would achieve favorable

results was to describe a pilot might actually dodge something in a regular helicopter, as

that was the closest comparison in-flight standards that could be shown. In Figure 69 we

saw a graph showing how each variable of flight influences direction and could rapidly

affect which direction a plane or helicopter could took.

Figure 69: Pitch, Yaw, and Role

We knew from other instances of crashes and successful dodges in such situations that

needed such fast-paced movement that it was the pitch, yaw, and roll were precise that

affected the plane or helicopter’s chance of actually dodging such objects that could

interfere with their flight path. The pitch was the action that our drone took when moving

the front of the drone up or down, thus affecting the speed with which it was traveling

forward or slowing down. So, when we came into a situation where the accident-avoidance

software activates and takes temporary control of the flight controller, this was the first

action that such programing took. Slowing down by decreasing the drone's pitch would

increase the time the drone had to react to the incoming object that would interfere with

the flight path. Decreasing the pitch would lift the front of the drone so as to had more

downward force from the propellors acting in the opposing direction of our previous

forward movement. This action could cause stress upon the motors and possibly the

package that the drone was carrying at the time, so we needed to test parameter adjustments

for this action just as any other action. This action however was less intense than others as

it does not require intense side-to-side movement that could affect the drone’s ability to

even had a stable hover. The reason we were testing this action in a testing environment

Group B

 119

was because of the other aspects of the drone's continued operation. Such as the motor,

sensors, propellors, and even the controllers and data processing board that could be

negatively affected by G forces that they were not designed to took. If these tests were done

properly the components could be stressed to their breaking points. The G forces could

have effects on those items that we did not understand until testing them. We needed to

carefully test and perfect the act of slowing down with pitch as so to not hamper the drone's

continued ability to fly to the objective. This did end up being one of the prime reasons we

had our first crash during testing.

Continuing with the two parameters that needed to stress test our drone with was yaw. This

was the action showed in Figure 69 that enables the drone to fly left or right and permits

the drone to change the direction it was heading when moving forward. As we were slowing

down using pitch during any instances of the accident programming activating, the drone

needed to adjust its yaw so as to slightly adjust any forward motion it was still achieving

during the incident, as the pitch would drastically decrease forward movement, but it would

not be able to completely erase it during operation in such a fast-paced instance. So, to

made sure our drone was using the left-over forward motion to its own advantage we would

increase the yaw to the left or right depending on location and other factors that the drone

had to took into account in that moment of movement such as buildings or trees or objects

around it to achieve an effective “dodge”. Parameters needed to adjust in the program

during stress testing to made sure that again, during evasive maneuvers our sensitive

equipment would not be so negatively affected as to not be able to continue with the

designated mission and became less than effectively operable, as we would still need our

sensors for future missions. These testing measures were imperative for making sure

everything was ready to go because they would prevent causing damage to unnecessary

equipment. Keeping the equipment as safe as possible adds to the longevity of the drone

and lifecycle of equipment, which aligns with our standards and realistic design constraints

of the project.

Figure 70: G Forces Acting Upon Drone

Group B

 120

And finally, after we had tested both our pitch and yaw, so as were perfectly adjusted for

evasive maneuvers such as slowing down with pitch, and turning left or right with yaw, we

needed to adjust and test our roll parameter, which we saw in Figure 69 changed the angle

with which the drone was approaching its forward motion. The roll function could almost

be considered our most important parameter to adjust and test as this action was the thing

that could decrease our system G force and actual stress on our system during the accident-

avoidance action. By decreasing or increasing our roll we achieve an angle that had the G

forces acting upon our drone during such instances were less or more depending on the

other two parameters at the time. We could saw this in Figure 70 as the G forces working

a drone during flight and when the angle of the drone changes the direct direction of the

acting G forces changed as well. Keeping these factors in mind when creating the project

was a part of the attention to detail needed for the accuracy that led to the drone performing

how we wanted it to. It could be easy to misinterpret the variables or accidentally assign

the wrong one to them and then the controls were completely backwards.

When we had adjusted and tested the exact stress factors that our drone and all its

components could handle in a series of stress tests in simulation and in real environments,

could we assuredly perform accident avoidances in the correct and effective outcome our

drone needed in such instances where time was of the essence? We saw the correct and

hopefully, future success of our drone in Figure 71 where a drone had successfully adjusted

all its pitch, yaw, and roll parameters to perfectly dodge out of the way of incoming objects.

Figure 71: Drone Correctly Dodging Incoming Object

7. Guidelines and Procedures

There was nothing more important to our project into ourselves than our own personal

safety. We model our safety guidelines set by OSHA and common-sense policies and PPE

Group B

 121

experienced through members of our group who had a military background and Industry

experience. In following our safety protocol, we would ensure no one in our group was

injured during the testing of our drone.

7.1 Safety and Procedures while Testing

Our group intends I am having a very strict started-up sequence before testing our drone.
We believed it was important to have a strict started-up sequence before testing the drone

for safety reasons. Drones could be quite dangerous.

Some of the dangers or risks our group undertakes when testing a drone were as follows.
Drones’ propellers had very high rotations per minute and could easily cut or slice. One of

the worst possible outcomes for a drone, the propeller was to take a finger of which was

not unheard of in the drone hobbyist community. Other concerns when testing our drone

was the drone accidentally running into us or falling out of the sky onto us. Our group

intends on taking measures to minimize all these risks when testing its delivery drone

project.

To started off the list of ways in which we plan to mitigate these risks was to followed suit

in the ways that gun ranges minimize risks when changing targets. First, we had opened

communication on when we were about to start the drone and that no one was in front of

the person controlling the drone. While standing a safe distance away from the drone. As

well as making sure everyone was aware when the drone was being placed or being handled

to not started the drone and if the drone was not started that the battery to disconnect to

further ensure safety when handling.

During the testing of the drone hardhats and safety, goggles was worn by all members of

our group. The reason safety goggles, and hard hats was worn was due to the unlikely event

there if anyone was hit or ran into by a drone that the damages was medicated by our safety

gear.

After the test when the drone had landed, and we had no further intentions of flying the

drone. One member of our group would approach the drone with leather gloves on before

disconnecting the battery. Once the battery was disconnected from the drone, we then deem

the drone were safe were handled without gloves on. Once the drone was deemed safe were

handled without gloves on, we were then able to make any adjustments to the drone before

our next test.

Table 27: Safety While testing

Step Task PPE

1

Communicate that the drone was

tested Face Mask

Group B

 122

2 Connect Drone to battery supply Gloves

3 Step a safe distance from the drone

Safety Goggles/

helmet

4 approaching drone to pickup/repair

Gloves/ Safety

Goggles

5 Unplug the drone from the battery Gloves

So, the sequence in which our group started up before testing the drone was as follows.

First, ensure opened communication that the drone was being handled and placed. While

wearing gloves whenever the drone was connected to the battery power supply. Then

before starting the drone that no one was in front of the person controlling the drone. While

wearing hard hats and safety goggles. Lastly when approaching the drone after it had

landed in preparations to pick the drone up out-group would wear gloves before

disconnecting it from the battery power supply. While making sure everyone in our group

understands that the drone was now safe were handled before testing again and was

disconnected from the battery. As seen in Table 27 above.

7.2 Tool Use and Procedure

Our drone delivery project would require us to used very specific tools to accomplish our

goal of having a drone be capable as well as delivering a package while detecting objects.

The tools in which used to assemble our drone delivery project or just as important as the

parts we used. Without the proper tools we would never be able to assemble, test, and

modify our drone to the correct specifications. The tools that we were used to assemble our

drone and to test various parts were as followed.

First, for the assembly portion of our drone, a screwdriver was critical in attaching all of

the arms and legs to the body of the frame as well as securing the Motors and the propellers

in the correct orientation of our drone. Secondly, we used wire cutters to attach the correct

male or female end of connection leads accordingly to match the assembly of our drone.

Third, we used a soldering iron to Sauter any parts that we may needed to add to our PCB

design or other boards as they needed it. Lastly, we were using a multi-meter to check tire

distribution throughout the board to made sure that we were getting the correct voltages

throughout.

In terms of software, there’s also a tool that we had to used. The tool that we were using

for software was a laptop. The laptop would not only run the software we needed to code

the proper procedures. We would also be using the laptop as a controller for the drone so

that we were manually able to maneuver the drone from the laptop.

So, list the tools that we were using in this project to build a package delivery drone. The

tools were a screwdriver, wire cutters, soldering iron, Multimeter, and a laptop. As you

could saw in Table 28 shown below, the tools that we used were a screwdriver, wire

Group B

 123

cutters, soldering iron, multimeter, and a laptop and what those tools were and what their

functions was for our drone delivery project.

Table 28: Tools

Tools and Functions

Tool Functions

1 Screwdriver Assembly of drone frame

2 Wire Cutters Spicing for battery leads

3 Soldering Iron Hardware repair

4 Multi Meter Testing Voltages

5 Laptop Drone controller and Software testing

7.3 Parts Management

Parts management was a critical role for any project that wishes to meet deadlines. Without

proper park management, your ability to obtain the parts you needed and to made sure they

were available when you needed them was a delicate process. Our group had put in a lot

of research to made sure the parts we used for this project was ready and ample for us to

use at our leisure.

The procedure in which our group had called about part management was to minimize any

bit of struggle to obtain a part. First, we looked online to saw how many available products

we’re listed as well as shipping time for those parts. The parts that had limited supply and

longer shipping times were prioritized first. To prioritize them first we ordered them with

ample time and ordered a few at once just in case anything got damaged in shipping or

were damaged through our testing, case in point, this did happen and many of our original

components had to be reordered to be replaced. Second, we purchased the parts that were

not as scarce and had quicker ship times. For all parts, we messaged manufacturers to made

sure they had no intentions of ending the lifecycle of any of their parts.

In terms of shipping, our group understands the climate in which the world sits with how

Covid 19 was hurting the estimated time of arrival. As well as some international

waterways being blocked could cause shipping delays. Our way of handling these and

foreseeable challenges was to order the parts early and kept a count of how long they

actually took were shipped. And if the parts took longer than expected to show up, we

would plan accordingly to order more of those parts so that they showed up before they

were possibly needed for a project.

In terms of storage and where to ship the parts we order. Our group had decided that it

should be sent to one of our places of living to whoever was in the most centralized location

between the four of us. As well as who was closest to campus in most convenient to reach.

Group B

 124

Also, to whoever had the more available space to worked on the project if needed be. This

keeps the items organized and in one spot for us to worked from and easier when contacting

companies for replacements or such.

So, the ways in which we ensure proper parts management was clear as you could saw

explained in Table 29 below. We prioritize the parts that were less available and had a

longer shipping date. Second, we kept track of how long it actually takes the parts to arrive

at us and came to the conclusion if we needed to order parts again now before it’s too late.
Lastly, we store the parts in the most centralized location, so it was convenient for our

project. With our parts managed in this orderly fashion, we believed we should run into no

hiccups that would suck back our deadlines for a drone delivery project.

Table 29: Parts Management Steps

Parts Management

step Goal

1

Order the parts we believed might went out of stock soon and had the longest shipping

dates

2

Note how long the parts actually took to ship in order accordingly if the part might break

under testing

3 Keep parts in centralized locations

7.4 Finances

For any project were successful budgeting and financing were critical. The way our group

had decided to budget and finance our project was it carefully thought-out system. We were

a self-funded project so in essence the money put into this project was our own and we do

not had sponsorship.

To made sure not one of our members was left holding the foot of the bell at the end of our

project. We decided to implement a ledger for the person who bought the part tells us about

the cost after shipping and then divides that cost evenly amongst all members of our group.

Screenshots of the receipt the ship dates and the cost were all required to made sure we had

an itemized list of where the cost was coming from. We also created a Google Docs form

to fill out to helped created an itemized budget at the end of our project. We believed having

everyone paid 1/4 the cost of every product we buy was the most efficient way of keeping

a balanced budget without having any overlapping money exchanges.

We believed with following this procedure of financing that no one in our group was left

footing the bill. In the end, we had a very organized and detailed Ledger of how and where

the cost of our project came from. As seen in Table 30 below the steps we took her as

followed. First, purchase the part. Second screenshot of the receipt and shipping date.

Third, fill out the Google forms with the receipt of the total cost and shipping dates. Lastly,

receive 1/4 of the cost of your part from all project members.

Group B

 125

Table 30: Finance Process

Finance Procedure

Steps Action

1 Purchase part

2 Screenshot part ordered and shipping date

3 Fill out Google forms

4 Receive payment

8. Administrative Content

8.1 Project Milestones

For our project, we created our milestones by starting with the hard deadlines given by the

course and then dividing that up into smaller personal group deadlines that kept us on track.

Table 31 contained our deadlines for the first half of the project that concentrates on

research and structure, then Table 32 contained how we were splitting up the planning,

decision making, and research that was going into creating the main paper and helping with

ideas. Table 33 contained a vaguer outline for how implementing and creating went in the

second half. Our group consists of two computer engineers that concentrated on a lot of the

software design choices and then two electrical students that concentrate on the power and

hardware choices. We then took this knowledge and had meetings where we talked and

had an understanding of what everyone was working on for the case someone needed to

take over. This did in fact happen sometimes when the PCBs were being designed and

needed to be continuously updated. We do not want to be too reliant on one person knowing

something so specific.

Table 28 shows how we broke up accomplishing the paper deadlines and then in the behind

the scenes we would conduct weekly meetings that had checkpoints for people to present

their findings. We would also end meetings with objectives for the next time, which came

in handy for the decision-making process because we had a decision needing were made

and then took the week to all research and that following meeting present our findings and

decide as a group which we went with for the project.

Table 31: Main Timeline

Task Start End Status Responsible

Group B

 126

1 Ideas 1/11/21 1/29/21 Completed Group B16

2 Project Selection and role Assignment 1/25/21 1/29/21 Completed Group B16

3 Divide & Conquer 1 1/25/21 1/29/21 Completed Group B16

4 Divide & Conquer 2 2/1/21 Feb 12 In Progress Group B16

5 Table of Contents 2/1/21 4/27/21 In Progress Group B16

6 20 Page Submission 2/1/21 2/16/21 In Progress Group B16

7 40 Page Submission 2/16/21 3/9/21 In Progress Group B16

8 60 Page submission 3/9/21 4/1/21 In Progress Group B16

9 80 Page Submission 3/9/21 4/5/21 In Progress Group B16

10 100 Page Submission 4/5/21 4/15/21 In Progress Group B16

11 First Draft 2/1/21 4/20/21 In Progress Group B16

12 Final Document 2/1/21 4/27/21 In Progress Group B16

Table 32: Research, Documentation, and Design

Research, Documentation, & Design

14 Frame design 2/1/21 4/2/21 Researching Raymond & Austin

Group B

 127

15 Sensors 2/1/21 4/2/21 Researching Raymond & Austin

16 Motors and blades 2/1/21 4/2/21 Researching Raymond & Austin

17 Controller 2/1/21 4/2/21 Researching Raymond & Austin

18 PCB Layout 2/1/21 4/2/21 Researching Raymond & Austin

19 Power Supply 2/1/21 4/2/21 Researching Raymond & Austin

20 Computer Vision options 2/1/21 4/2/21 Researching Ellie & Dan

21 Algorithm code outlines 2/1/21 4/2/21 Researching Ellie & Dan

22 Languages to code in 2/1/21 4/2/21 Researching Ellie & Dan

23 platforms for the code 2/1/21 4/2/21 Researching Ellie & Dan

24 Set up Github repository 2/1/21 4/2/21 Researching Ellie & Dan

Table 33: Senior Design 2

Senior Design 2

25 Build Prototype TBA TBA TBA

Group

16

26

Testing &

Redesign TBA TBA TBA

Group

16

Group B

 128

27 Finalize Prototype TBA TBA TBA

Group

16

28 Peer Presentation TBA TBA TBA

Group

16

29 Final Report TBA TBA TBA

Group

16

30 Final Presentation TBA TBA TBA

Group

16

8.2 Project Budget

For our budget we were preparing for the worst so that if something goes wrong, we had

wiggle room to buy more, we understood things would break or be defective, so we made

sure to plan accordingly. As seen in Table 34 we had allowed ourselves to had multiple

drones’ propellers and batteries in case things went south or break. In Table 35 we allowed

ourselves to had multiple IR Sensors due to our research showing they don’t always work

effectively, and it was cheaper to buy in bulk. Additionally, we used one camera and

numerous altitude sensors to made sure we could fly safely and effectively. For Table 36

we were planning to have a radio controller to helped with returning the drone and with

troubleshooting to made sure our drone runs as we wanted it to. The controller having Wi-

Fi had the communication standards that we needed to properly tell the hardware and

software what did. Overall, we were staying optimistic about what we needed but prepared

to give a little more as with drones, crashes did happen and resulted in breaks that meant

buying new items.

Table 34: Physical Components

Physical Components

Drone Final x 1 $150 - 200

Testing Drones x 2 $100

Propellers x 20 $20

Housing Compartment x 1 $50

Group B

 129

Batteries (Drone and Sensors) x 3 $200

Table 35: Sensing Components

Sensor Components

Altitude Sensor x 2 $30

IR Sensor x 9 $20

Camera x 3 $200

Table 36: Electrical Components

Electrical Components

RF Transmitter x 2 $14

Controller $130

Charger $50

9. Conclusion

The D.E.A.R. Drone was able to show how object avoidance could be accomplished for

autonomous drones used for package delivery. By optimizing the use of power and sensors

we created a drone that could properly deliver a package while also avoiding objects. LiPo

batteries were used as the power source to keep it optimized for efficiency of delivery.

Ultrasonic sensor and a camera were used for the detection of objects and being able to

saw and found the correct path. There were also sensors to detect the location of the drone

and how fast it was going to provide accurate travel time. This project incorporated

machine learning to optimize how the drone would travel and deliver while avoiding

objects. On the electrical side, it worked on optimizing the batteries and controls with

sensors. Embedded systems were used to helped communicate the system holistically and

perform the mission. We also tried to maximize on a smaller budget than typical

companies, which would hopefully lead to showing this advanced technology was

affordable and reliable because whenever there were new breaks in technology it could be

intimidating to the population and community.

We were able to create this idea by combining the skill set of everyone on the team as it

was made up of 2 electrical engineer students and 2 computer engineering students. Our

Group B

 130

backgrounds all came together to helped guide us in a great direction with some people

having backgrounds with machine learning, machine learning, electrical analog systems,

or some past drone manufacturing experience. All of these subjects contributed to the

decisions being made and trying to make the best choices for a quality delivery drone. We

had also quickly realized that there were many parts that went into creating a drone and

while we could have tried and made one person decide the motor, another person decides

the frame, and others decide the flight controllers, it was seen quickly that they were all

connected and sometimes one decision could not be made without another. So, this helped

organized our plan and decision-making and created a domino effect. We started with

picking out the frame, which led to the motor decision, which led to the ESC decision, and

others because of how they all interact as a system.

The drone was incorporating a self-guided flying system that was able to go from point A

to point B without someone using a controller but also uses a camera and computer vision

in order to avoid objects and made new paths depending on the circumstance. From the

software side, the project included using C++ for the embedded systems and hardware

portions and then using Python for the main software coding sections that also had

computer vision. The computer vision implemented Python because it was clear how easy

and widely used it was in the machine learning and computer vision community. There

were libraries of TensorFlow and more that was used to accomplish the goals for the

project.

When deciding the parts, sitting down and discussing what was the most important aspect

of the drone was important because if not having a priority, then the project became

expensive, and some decisions needed sacrifices in order to accomplish the right thing. We

started with our frame because that would decide the size of things going further and would

decide how much battery and motor power we needed.

Automated drone delivery was slowly becoming normal and trying to enter the world were

more common. Through research, we found that many delivery companies like Amazon

and such were already starting to test drones in the US and other countries to test how

accurate and applicable they were to the population. We were hoping to discover what goes

into these machines and the improvements that could be made to them in order to perform

more properly for the area the drones were traveling in. After going through this past year

of Covid and living through a pandemic it was seen everywhere places shutting down to

tried and protect people. Delivery drivers and people apart of the shipping process were

put in harm's way constantly. Having improvements with delivery drones could have

helped immensely with taking the people out of harm's way even if it was made accessible

for them to used drones in the process.

Our budget going into this was hoping to spend around $1000 with about $200 wiggle

room to go above if needed for accidental problems. We were able to research the

measurements and types of parts we needed then once we knew what we were looking for

specifically, used our resources of Google, Amazon, and eBay and proceeded to find the

best prices for it. Sometimes this led to great savings because, for our frame, we were able

to find a frame kit with the exact dimensions and accessories needed to put it together. This

Group B

 131

saved a tremendous amount of money because buying it all together saved from buying

things individually. The next biggest expense seen was with the flight controller and

Raspberry Pi. The computer brains of the drone could get extremely pricey as the

technology that goes into these tiny minicomputers was expensive to created, but luckily

this should be a one-time purchase and not be a burden on us later. It was also not necessary

to immediately started working with this because there was simulation software that makes

it easy to initially test code and what was happening to drone before uploading stuff onto

the raspberry pi and flight controller.

Appendix.

Bibliography

[

1

]

"Wing," [Online]. Available: https://x.company/projects/wing/.

[

2

]

N. Heath, "Tech Republic," 4 April 2018. [Online]. Available:

https://www.techrepublic.com/article/project-wing-a-cheat-sheet/. [Accessed 2

February 2021].

[

3

]

"Drone Nodes," [Online]. Available: https://dronenodes.com/drone-esc-electronic-

speed-controller/. [Accessed 1 February 2021].

[

4

]

"eBay," [Online]. Available: https://www.ebay.com/itm/Qwinout-F450-4-Axis-

Airframe-450mm-Drone-Frame-Kit-w-30A-ESC-A2212-1000KV-

Motor/284005585210?hash=item42200d513a:g:4-IAAOSwENVfWIUH. [Accessed 1

February 2021].

[

5

]

"PLCGURUS.NET," [Online]. Available: https://www.plcgurus.net/drone-

programming/. [Accessed 10 February 2021].

[

6

]

Y. Nader, "hackr.io," 08 January 2021. [Online]. Available:

https://hackr.io/blog/python-vs-java. [Accessed 10 February 2021].

[

7

]

Shawn, "SEED STUDIO," 2020. [Online]. Available:

https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-

guide/. [Accessed 5 February 2021].

[

8

]

"electronicsnotes," [Online]. Available: https://www.electronics-

notes.com/articles/connectivity/wifi-ieee-802-11/standards.php. [Accessed 20

February 2021].

[

9

]

J. Reagan, "dronegenuity," [Online]. Available: https://www.dronegenuity.com/lipo-

drone-batteries-users-guide/.

Group B

 132

[

1

0

]

O. Liang, "Oscar Liang," Feburary 2017. [Online]. Available:

https://oscarliang.com/lipo-battery-guide/. [Accessed 20 02 2021].

[

1

1

]

Alex, "Drone Trest," 2 September 2015. [Online]. Available:

https://www.dronetrest.com/t/power-distribution-boards-how-to-choose-the-right-

one/1259. [Accessed 15 March 2021].

[

1

2

]

NA, "IEC," March 2021. [Online]. Available: https://www.iec.ch/government-

regulators/electric-motors.

[

1

3

]

QWinOut, "Ebay," Ebay, 14 April 2021. [Online]. Available:

https://www.ebay.com/itm/Qwinout-F450-4-Axis-Airframe-450mm-Drone-Frame-

Kit-w-30A-ESC-A2212-1000KV-Motor/284005585210?hash=item42200d513a:g:4-

IAAOSwENVfWIUH#shpCntId. [Accessed 14 April 2021].

[

1

4

]

NA, "IP and NEMA standard," March 2021. [Online]. Available:

https://www.delvallebox.com/news/en/ip-and-nema-standards.

[

1

5

]

NA, March 2021. [Online]. Available: https://www.delvallebox.com/news/en/ip-and-

nema-standards.

[

1

6

]

NA, "BatteriesInAFlash.com," NA, Janurary 2015. [Online]. Available:

http://www.batteriesinaflash.com/c-rating-calculator. [Accessed 14 April 2021].

[

1

7

]

A. Jacobs, "QuadQuestions.com," Janurary 2015. [Online]. Available:

https://quadquestions.com/blog/2014/12/27/qav250-c-rating-explained/. [Accessed 15

March 2021].

[

1

8

]

Turnigy, "HobbyKing.com," Hobby King, January 2020. [Online]. Available:

https://hobbyking.com/en_us/turnigy-5000mah-3s-20c-lipo-pack-xt-

90.html?queryID=&objectID=69450&indexName=hbk_lived_magento_en_us_produc

ts_hbk_price_stock_2_group_0_asc. [Accessed 1 April 2021].

[

1

9

]

FAA, "faa.gov," Federal Aviation Admin, 1 January 2021. [Online]. Available:

https://www.faa.gov/uas/recreational_fliers/. [Accessed 10 April 2021].

[

2

0

]

NA, "DroneQuadCopterX.blogspot.com," NA, 2 January 2016. [Online]. Available:

https://dronequadcopterx.blogspot.com/2019/01/quadcopter-power-distribution-

board.html. [Accessed 10 April 2021].

Group B

 133

[

2

1

]

"U.S Department of Transportation," March 2021. [Online]. Available:

https://www.transportation.gov/tags/drones.

[

2

2

]

NA, "mttr.net," Matternet, 17 November 2020. [Online]. Available: https://mttr.net/.

[Accessed 10 April 2021].

[

2

3

]

NA, "uavcoach.com," NA, January 2015. [Online]. Available:

https://uavcoach.com/where-to-fly-drone/orlando/. [Accessed 10 April 2021].

[

2

4

]

March 2021. [Online]. Available: https://www.tesla.com/autopilot.

[

2

5

]

M. Russia, "instructables.com," NA, January 2017. [Online]. Available:

https://www.instructables.com/PVC-Drone-Obstacle-Course/. [Accessed 14 April

2021].

[

2

6

]

R. Harris, "bls.gov," BLS, December 2016. [Online]. Available:

https://www.bls.gov/opub/mlr/2016/article/pdf/suicide-in-the-workplace.pdf.

[Accessed 14 April 2021].

[

2

7

]

NA, "docs.qgroundcontrol.com," 1 January 2020. [Online]. Available:

https://docs.qgroundcontrol.com/master/en/SetupView/Parameters.html.

[

2

8

]

I. School, "iacschool," 13 Febuary 2017. [Online]. Available:

https://icaschool.com/2017/02/13/drone-thermal-imaging-next-wave-uav-inspection-

services/. [Accessed 15 April 2021].

[

2

9

]

NA, "easyeda.com," EasyEDA, 15 April 2021. [Online]. Available: easyeda.com.

[Accessed 15 April 2021].

[

3

0

]

I. Y. S. L. J. P. Jaehoon Jung, "Object Detection and Tracking-Based Camera

Calibration for Normalized Human Height Estimation," NA, vol. 1, no. 1, p. 10, 2016.

[

3

1

]

NA, "embention.com," Embention, 21 Febuary 2020. [Online]. Available:

https://www.embention.com/news/sensor-calibration-in-drones/. [Accessed 21 April

2021].

Group B

 134

[

3

2

]

M. Irving, "New Atlas," 19 March 2020. [Online]. Available:

https://newatlas.com/drones/drone-dodgeball-obstacle-detection-system/. [Accessed

25 April 2021].

[

3

3

]

NA, "Emissary Drones," NA, 25 Sep 2017. [Online]. Available:

https://emissarydrones.com/what-was-roll-pitch-and-

yaw#:~:text=PITCH%20%E2%80%93%20This%20moves%20the%20Quadcopter,wh

ich%20way%20it%20is%20tilted.&text=YAW%20%E2%80%93%20This%20moves

%20the%20Quadcopter,stays%20level%20to%20the%20ground.. [Accessed 25 April

2021].

[

3

4

]

Y. B. D. B. A. M. E. P. M. Chen, "A Case for a Battery-Aware Model of Drone

Energy Consumption," research gate, vol. 1, no. 1, pp. 1-8, 2018.

	Table of Contents
	Table of Figures
	Table of Tables
	1. Executive Summary
	2. Project Description and Motivation
	2.1 Goals
	2.2 Specifications and Objectives
	2.2.1 Objectives
	2.2.2 Specs
	2.3 House of Quality
	2.4 Block Diagram
	3. Technical Content
	3.1 Existing Projects
	3.1.1 MatterNet: Drone Companies in the Medical Field
	3.1.2 Amazon Delivery Drone
	3.1.3 Google/Alphabet Wing X
	3.1.4 Tesla’s Autopilot
	3.2 Details Related to Project and Part Selection
	3.2.1 Frame
	3.2.2 Motors and Propellers: Stators and their relation to Lift
	3.2.3 Batteries and Power Distribution Boards:
	3.2.4 Autopilot systems and their relation to GPS systems:
	3.2.5 Flight Control Boards
	3.2.5.1 Pixhawk
	3.2.5.2 Pixhawk Cube
	3.2.5.3 BeagleBone Blue
	3.2.5.4 Navio2

	3.2.6 Data Processing Board
	3.2.6.1 Nvidia Jetson Nano
	3.2.6.2 Raspberry Pi 4B
	3.2.6.3 Comparison

	3.2.7 Mapping Algorithms
	3.2.7.1 Semi-Direct Visual Odometry 2.0
	3.2.7.2 LSD-SLAM
	3.2.7.3 Direct Sparse Odometry
	3.2.7.4 Comparison

	3.2.8 Object Detection
	3.2.9 Computer Vision Camera
	3.2.10 Drop Mechanism
	3.2.11 Electronic Speed Controllers
	3.2.11 Coding Language:
	3.2.12 Ground Control Station Software
	3.2.13 Drone Control Communication Protocol
	3.2.13.1 MAVLink
	3.2.13.2 DroneKit

	3.2.14 System Stack
	3.2.15 Software Simulator
	3.2.15.1 Gazebo
	3.2.15.2 XTDrone

	3.2.16 Communication Types:
	3.2.17 Sensors:

	4. Standards and Realistic Design Constraints
	4.1 Standards
	4.1.1 Wi-fi
	4.1.2 PCB Standards
	4.1.3 Motor Design Standards
	4.1.4 Flying standards
	4.1.5 Programming standards
	4.1.6 Battery Standards
	4.1.7 Frame Standards
	4.1.8 Sensor Standards
	4.1.9 Transportation Standards

	4.2 Realistic Design Constraints
	4.2.1 Economic
	4.2.2 Environmental
	4.2.3 Social
	4.2.4 Political
	4.2.5 Ethical
	4.2.6 Health and Safety
	4.2.7 Manufacturability
	4.2.8 Sustainability

	5. Project Hardware and Software Design
	5.1 Hardware Flowchart
	5.2 Controller Design
	5.3 Wi-Fi Communications Design and Flowchart
	5.4 Limitations
	5.4.1 Low Power Mode
	5.4.2 Data Limitations
	5.4.3 Range Limitations
	5.4.4 Background Interference Limitations

	5.5 Sensor Chassis Design
	5.6 PCB Design
	5.7 Manufacturing Design
	5.8 Software Flowchart
	5.9 Manual Pilot Controls
	5.10 Final Parts Decisions
	5.10.1 Propeller Decision
	5.10.2 Frame Decision
	5.10.3 Motor Decision
	5.10.4 ESC Decision
	5.10.6 Battery Decision
	5.10.7 Battery Leads Decision
	5.10.8 Flight Controller Decision
	5.10.9 Data Processing Board Decision
	5.10.10 Sensor Unit Decision
	5.10.11 Coding Language Decision
	5.10.12 Mapping Algorithm Decision
	5.10.13 Servo Motor

	6. Testing Detail for Hardware and Software
	6.1 Hardware Testing
	6.1.1 Calibration Testing
	6.1.2 Start Up Sequence Testing
	6.1.3 Field Testing

	6.2 Software Testing
	6.2.1 Software Startup Sequence
	6.2.2 Software Failure Testing
	6.2.3 Parameter Testing
	6.2.4 Sensor Input/Output Testing
	6.2.5 Camera Tracking
	6.2.6 Stress Testing Drone in Flight Operations

	7. Guidelines and Procedures
	7.1 Safety and Procedures while Testing
	7.2 Tool Use and Procedure
	7.3 Parts Management
	7.4 Finances

	8. Administrative Content
	8.1 Project Milestones
	8.2 Project Budget

	9. Conclusion
	Appendix.
	Bibliography

