
The GameFrame: Portable
Gaming Solution

Allen Chion, Frank Weeks, Israel Soria, Levi
Masters

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,

32816-2450

Abstract — The GameFrame is a portable gaming device
designed for those who want something more than tapping a
screen or keyboard in their gaming experience. It provides a
more physical way of interacting with a game, which is
something usually restricted to arcades. This device is a
stand alone gaming board capable of, at minimum, chess. It
can be played with two players against each other or one
player against an AI. The GameFrame is intended to be an
enjoyable on the go experience. This machine utilizes an 8x8
grid of buttons that displays the current status of the game
and also allows the user to make moves by pressing them.
The GameFrame has the versatility for additional games to
enhance the user experience. The additional games only need
to be implemented via software configuration.
Index Terms — Artificial intelligence, Embedded

Software, Lithium Batteries, Neural networks, Regulators.

I. INTRODUCTION

Passing time in the age of the smartphone has become
somewhat simplistic and monotonous; open an app, tap
the screen in a few places to cycle through content, receive
exclusively audio and visual feedback, rinse and repeat.
We seem to find ourselves in these cycles of content
absorption without any real stimulation beyond what is
experienced when awarding a “like” of some kind to a
digital post. Gaming on these flat screened devices can
also lose a lot of its charm, as all one really experiences is
the display of a make-believe game layout and whatever
sound the speakers play when a piece is moved. In the
modern world, not enough attention is given to the smaller
details in gaming and handheld entertainment. Game
hardware neglects details such as haptic feedback from
button pushing and discrete modules for each individual
piece in a game rather than everything blending into one
big screen.

The GameFrame aims to break some of the monotony of
mobile entertainment. With physical buttons that actually
move and respond as they are pressed and real physical
modules corresponding to the movable areas of a game,
the GameFrame has a much more interactive feel as a
device compared to a flat screen. The GameFrame is a
device that can host a game such as chess for multiple
players or even for player versus computer. The device
being portable, lightweight, and with sufficient battery life
can be used as the primary source of entertainment during
travel, or other periods of downtime. The GameFrame also
does not have loose pieces to be lost in transit, and
cleanup is as simple as putting away a book! Being so
simple and robust, the GameFrame hopes to establish
itself as an essential item for those who want a different
gaming experience.

Fig. 1. Jubeat arcade machine.

A game that inspired some of the design of the
GameFrame is a rhythm game called “jubeat.” This game
plays music and displays patterns corresponding to the
music that the player must tap in rhythm. This creates an
experience with immersive and sensational appeal. When
the game was released into a mobile platform, it seemed to
lose most of its charm. The game became dull and the
major factors of physical touch response disappeared. This
is exactly what the GameFrame hopes to add back into the
gaming experience - the enjoyment and stimulation of a
real physical game.

As a portable gaming device, the GameFrame is
lightweight, affordable, and has a long battery life. Using
the Jetson Nano to run the game, GameFrame has enough
computational power to run different games and AI. The
main challenge we faced when designing GameFrame’s
ability was cost. Durable housings, high density batteries,
and lightweight components all tend to cost more as they
move up in performance. Ultimately, the development
model and prototyping means we spent more overall, as
components were bought individually and manufacturing
cannot take place at large scale. That is, we were unable to

acquire many parts at wholesale prices. The end product
could have costs cut substantially as the manufacturing
process is improved and parts are bought in bulk.

As far as environmental impacts, the Game Frame
contains a battery, as well as computer chips utilizing
silicone and electricity. One of the more popular batteries
on the market that are rechargeable are made of
lithium-ion, which can cause fires under stressful heat
conditions. If disposed of properly or if we utilize one
with gel electrolytes instead of liquid, we are able to
alleviate some of the environmental impact. The
GameFrame aims to both eliminate the need for a larger
battery as well as reduce its overall power consumption by
running highly efficient hardware components and
utilizing efficient programming practices. With good
disposal and recycling practices, our portable device’s
environmental footprint can be accounted for.
Environmentally conscious alternatives will always be a
consideration as they present themselves.

II. DEVELOPMENT ENVIRONMENT

The software for this project runs on the NVIDIA Jetson
Nano developer kit (series 945-13541-0000-000) - an
especially powerful kit specializing in small AI and
machine learning for embedded development
environments. This kit is specialized for running serial AI
type programs which we utilized in some of our player
versus computer modes for the games run on the
GameFrame. Though it is probably possible to run the
GameFrame on a lower performing chip, we, the
developers, wanted to get some experience with this
particular variety of chip.

The Jetson Nano uses the “Compute Unified Device
Architecture” that we want to get experience with. The
CUDA is NVIDIA’s own proprietary platform and API
model that is used in their devices. So, experience in
CUDA allows for future programming on other NVIDIA
devices and future projects that may make more full use of
the CUDA. CUDA also compiles programs from C, C++,
Fortran, Python, and Matlab with some added commands.
Picking up the language is more about the method of
coding as opposed to learning a whole new language from
scratch. The Jetson Nano comes preloaded with Ubuntu
linux on it, facilitating an accessible programming
environment.

CUDA allows for high optimization of parallel
computation in graphical based processors. This is
especially useful in this particular project, as we
programmed in games that have up to 64 differentiated
sections during play. Lots of parallel computation is useful

for either backtracking or training an AI to play the
games, for example.

III. GAME ENGINE

The game engine generates a new instance of the game
on call of the create game function. This function takes in
what kind of game it will create as a parameter, then it
initializes a blank state of the game that has chosen to be
played. This function is called regardless of if the game is
played in single player against the computer or user versus
user multiplayer mode. From here, the status of each piece
has a value assigned to it and either the graphical interface
or the physical board (depending on the stage in
development) should be able to display the game. Game
squares have attributes such as “is_occupied”, “piece_type
= knight,” “color = black/white,” etc to indicate the current
status and availability of each square. Each square is also
assigned a value according to a matrix, so moves can be
calculated mathematically. For example, (0,0) is for the
top left square with the format of (row,col). The pieces
have an attribute as to what square they are on. Both the
piece and square are updated upon each move.

The game checks for a win status immediately after
every move. Since only one piece is moved at a time for
most games, the checking function only checks pieces
affected by the most recent move. The checker checks the
status of any affected pieces where the piece moved to, as
well as the place where the piece moved from. For player
versus player games, the game becomes usable again for
the next player to make their move after the check is
complete and give the user an indication that a move may
be made. After the next move from the player, the cycle
progresses in the same way until a win, stalemate, or end
game condition is found. For player versus machine
games, the algorithm to determine the next move is run
and executed upon completion of the game win check
function. The check win function is run after player input,
before the AI picks its move. Likewise, it is run after the
AI makes its move, before the player is told to make their
move. The game win function should also check to make
sure the move is legal and does not result in a gridlock
event. In some games, gridlock events are legal to make,
but result in a stalemate. The game win function then
ends the game and sends a signal to send a “stalemate”
call to the interface or board.

The storage of squares is in a two-dimensional array.
This is consistent with the conventions of calling squares
by their column and row. Squares in the array are objects,
and declared to have all their individual components
assigned initially to zero (or None), but are assigned their
true initial value depending on the create game function.

Game squares have attributes related to all games
declared, but only those in relation to the game currently
being played modifies on call of the create game function.
Storage of pieces is within one of multiple different
one-dimensional lists or within individually declared
variables, depending on what game is being played. Like
the squares, pieces are automatically declared zero/None
or default values that are modified according to the create
game function call. Game pieces are treated as objects
with attributes and modifiers.

IV. ARTIFICIAL INTELLIGENCE

One key feature of the GameFrame is that one user can
play a complex game against the computer. We utilize an
algorithm based on backtracking in order to have the
computer solve for its optimal move. Once the machine is
set to one-player mode, this causes the mode of operation
to automatically calculate and execute the next move of a
computer player before allowing the user to place their
next move. Different difficulties are needed for the
computer's move-making algorithm, as not everyone has
fun playing at the same difficulty levels. Different games
may also benefit more from different methods of solving
algorithms, so multiple styles may be used to solve games.
Artificial intelligence and backtracking are the two main
types of game solving algorithms that are used, but others
are available as well.

In an artificial intelligence design, we have the machine
run many different instances of the game against itself and
reward it based on how well it does. To create different
levels of difficulty, we add randomness into the algorithm
itself, or even reward it differently depending on the
different difficulty levels we hope to achieve. Three
discrete difficulty levels are created for the user to play
against and each of them correspond to the different
difficulty levels of easy, medium, and hard. Though our
hardware supports the python coding language as well as
many different libraries and frameworks, we kept most of
it proprietary both to have control over it and learn more
about AI implementation.

In our backtracking algorithm, numerous different
varieties of solving are implemented in order to determine
the difficulty level. In the higher difficulty levels of the
backtracking algorithm, almost every different path that
can be taken is explored, then the best one is taken. In
order to limit the difficulty of the computer, less paths
might be explored, giving the human player more
opportunity to “trick” the machine into making a bad
move. This also comes with the advantage of resembling
more closely how a human player plays chess - analyzing

numerous different courses a game may follow and
picking the one with the most opportunities of success. By
utilizing backtracking, more possible difficulty levels can
be chosen from than if using an AI implementing Deep-Q
learning, or convolutional neural networks, as a variable
can be declared for how much backtracking the algorithm
does in the decision making process. Thus, backtracking
allows for a slider type of scale instead of a few discrete
levels.

V. FRONT END

The important objective that was carried through the
process of developing the front-end GUI was functionality.
The front-end takes in the button inputs pressed from the
player and correctly directs it to the game engine. This
then results in the game engine to correctly interpret this
message and respond with the appropriate response to be
displayed to the user. The front-end menus we created
provide a simplistic design for the user to be able to safely
navigate through to arrive at their desired destination. :The
front-end GUI was the bridge between the user and the
game engine to ensure proper moves are carried out
throughout the game. The majority of the front-end
aspects are created thanks to one of python’s libraries,
PyGame.

This library is the backbone of much of the functionality
carried out with each command. PyGame helps in creating
many of the shapes and buttons displayed to the user while
adding plenty of customization. We implemented
functions and classes in order to be able to create
reproducibility in our code. For example, each game we
made has a game menu attached to it. Initially we made
game menus for each individual one with their own
functions. However with careful examination, we became
aware that much of the elements are shared between each
game menu. We wrote these functions again to create a
cleaner coding environment and ended up with an easier
environment where buttons or text that need adjusting are
simpler to do so.

Ensuring that the front-end is properly communicating
with the back-end is something we heavily tested. We did
a lot of human testing on the front-end to make sure that
every intended use is correctly shown on the screen.
Buttons that the user needs to see are shown when they
need to be. For example, when a player selects play they
must be presented with the option to play against another
person or the ai. This was done with Flags being thrown in
the code for certain situations.But the most important
element is being able to correctly read the user’s input
commands and carry them to the game engine for process.

An example of the in game GUI that is shown to the
players is shown below.

Fig. 2. GUI interface under the buttons.

VI. OVERVIEW OF ICS

The ICs used include three voltage regulators, a shift
register, and an MSP430 on the main PCB. Additionally,
there are two breakout boards with RS232 connectors.

For the regulators, all three regulators are the LM2576
since we do not need any boost converters as originally
anticipated. For two of the regulators they supply 5V, but
we separated them to isolate noise and to ensure each
sufficiently supplies non-competing current to the proper
device. These 5V regulators power our LCD screen and
our Jetson Nano. The 3.3V regulator powers the MSP430.

The shift register is an SN74HC595 8-bit shift register
that we use to strobe the columns one at a time in our
button decoding process. Doing this allows us to decipher
the contact presses while minimizing the amount of wires
needed to the embedded processor.

The RS232 breakout boards use MAX3232 ICs and a
standard RS232 port. One connects to the MSP430, while
the other connects to the Jetson Nano.

VII. VOLTAGE REGULATION/BATTERY

The current sinking devices needing power are an LCD
panel that needs 5V, a Jetson Nano needing 5V and the
MSP430 which needs 3.3V. The approximate power draw
is as follows:

TABLE I. Power Draw of each component

Device: Voltage Current Power

MSP430 3.3 V .350 mA 1.155 mW

Jetson Nano 5 V 1-2 A 10 W

LCD 5 V 1-3 A 5 W

Battery 12 V 3 A 36 W

More amperage can be afforded after step-down
conversion and the actual power that our devices draw is
less than the expected. The battery has a listed Wh life of
66.6. Assuming maximum current draw from our devices
this gives us roughly 2.5 hours of use. In actual use while
developing on the Nano or running our game engine, we
saw a typical lifespan of 3-4.5 hours of life before battery
depletion. At least, to a threshold where the voltage was
too low. This is thought to be caused by the devices not
always running at max load. The Jetson Nano and display
showed only 1 A drawn via a current clamp at multiple
different times.

The amount of voltage output from the LM2576 is
decided by tying the output voltage to the feedback with
positive feedback oriented resistors. There is an additional
factor of multiplying by 1.23 V. That is to say the voltage
was determined by 1.23 * 1+(R2/R1). With this in mind,
the regulators were set to the needed voltages. The Nano
was highly sensitive to the input voltage it was receiving,
so the resistors were changed to be even more precise than
the others, while we also supplied a tad higher voltage to
account for the voltage drop on the way to the device.

VIII. HEATSINKS

The power dissipation across the 3.3V regulator is
extremely low and there are no thermal issues with
operating as is. Both of the 5V regulators have a little
lower voltage drop across the regulator, but a much higher
current draw. Since the LM2576 has a thermal-ambient
resistance of about 41℃/W, a power efficiency of about
75%, and a maximum operating temperature of 125℃, we
needed a heat sink to help with heat dissipation.

Voltage drop across regulator:
(1) (1 − 0. 75) * 12 = 3 𝑉

Power dissipation across regulator (LCD):
(2)3 𝑉 * 3 𝐴 = 9 𝑊

Power dissipation across regulator (Nano):
(3)3 𝑉 * 2 𝐴 = 6 𝑊

Temperature increase (LCD):
(4)9 𝑊 * 41 ℃/𝑊 = 369 ℃

Temperature increase (Nano):
(5)(𝑁𝑎𝑛𝑜): 6 𝑊 * 41℃/𝑊 = 246 ℃

The heatsinks used to counteract these large temperature
increases dissipate around 16.7 ℃/W. Additionally, in
order to ensure a more preferred airflow for the heatsinks a
small fan was mounted to pull ambient air away.

IX. EMBEDDED CODE

With the MSP430 having a main function of decoding
our buttons, most of our embedded code deals with this
task. The controller outputs a serial and clk to the shift
register to strobe the columns. It then has pin setup as
inputs to see if the rows have been pressed.

The other task dealt with by the embedded code is to
relay information between the controllers. The detail
between transmission can be found under the following
Controller Integration section.

X. CONTROLLER INTEGRATION

In order to connect the MSP430 to the Jetson Nano
serial communication was used. Both devices had UART
ports that could be setup for serial communication. The
Nano operates on 3.3 V UART communication, while the
MSP430 operates with 3.3 V or 5 V. Though both
controllers can communicate directly on 3.3 V, we decided
to continue using the breakout boards with MAX3232 on
them. These ICs and ports added extra error resilience and
component protection through voltage regulation and the
use of the RS232 standard.

Communication errors still exist every so often on the
serial lines, but they are few and far between enough that
they could be handled through software. To do this the
software only registers a button press once a certain
threshold of press transmissions are received. Any
transmission that is outside of our range of 0 to 63 is
entirely thrown out by the Jetson Nano.

The range decided for transmission was the
aforementioned 0 to 63 which fits into 7 out of the 8 bits
allotted for a single transmission across UART. Other
considerations for reducing error were to use the leading
bit as a transmit flag bit or to send multiple transmissions
for every one registered press. We decided against these
because the occasional communication errors have no

consequences on our current implementation with the
current error handling.

XI. PCB

The goal of our main PCB is to deal with decoding the
physical buttons and relaying that information offboard to
the Jetson Nano. It also is what manages and distributes
the power from our battery. Most of the details of the ICs
and functionality are covered in other sections in this
document. The PCB was designed in Eagle.

Of note, our PCB was chemically etched at home (with
proper waste management afterwards of course). The
process let us turn out a PCB prototype in the course of an
afternoon after the design was completed. As a problem
during the process we did not realize that the image had to
be mirrored both vertically and horizontally. Luckily we
were able to salvage the prototype by soldering the ICs to
the bottom. After this, everything worked. Even though
our intention was just to prototype, we decided to leave it
that way because it worked. Improvements to the vertical
profile of the device is able to be made if the PCB were
populated from a house with surface mount type
components.

Fig. 3. Fresh PCB after it finished etching

XII. SCREEN

One of the most influential and challenging components
we had to work with was the screen. Originally, we
wanted a perfectly square screen since most, if not all, of
the games we wanted to implement were square in design.
However, as we browsed for our screen, it became clear
that finding a screen that fit our budget and the size that
we wanted was impossible. We decided to go with a
screen that was 14in. by 8.5in.

XIII. BUTTONS

At first, we still wanted to do a square design by only
displaying an 8.5in by 8.5in board on the screen and not
use the rest of the screen. But when we were designing the
buttons, we realized that the buttons would be too small to
see the pieces displayed once we added the conductive
actuators. So we decided to expand the left and right sides
of each button to add space for the actuators since we had
plenty of horizontal space but lacked vertical space.

Fig. 4. Shape of new button design to accommodate the
actuators without reducing visibility.

When creating the buttons, we used a CNC router to cut
out two custom pieces for each button from PETG: the 1.6
in. by 0.94 in. base of the button and the 1 in. by 0.94 in.
tile that goes on top of the rectangular base. The vertical
height needed to be reduced a tiny bit more from 1 in. by 1
in. due to the vertical screen limitations. When
assembling, epoxy glue was used to adhere the square tile
to the rectangular tile. A clamp locate system was used to
ensure proper alignment as the epoxy was applied and
during its initial curing phase (about 15 min). Finally, the
four conductive actuators were inserted into the four
corners of the rectangular base which were custom cut for
fitting them as they were milled.

Fig. 5. Depiction of the alignment system gluing four at
a time (left) and each of the finished buttons drying (right)

The main benefits to this new shape and design are that
we still have a square viewing area for the pieces of our
games, and we directly utilize the horizontal screen space.
Some other benefits to this new design was that the
distribution of force is better, and the buttons were easier
to press. Of course the drawbacks are now that all our
games will need to be resized and expanded horizontally.
This makes all of the games look unconventional in shape.

XIV. HOUSING

There are two main parts of the housing: the base box
and the lid. It was designed to hold the PCB, the Jetson
Nano, power supply, the screen, and the buttons. Inside the
box, there are shelves that were designed to have the
screen sit flush to the top of the box with all the other
components underneath the screen. There is also a hole cut
out for access to the power switch and charging port.

Fig. 6. Model of the box

The lid was designed to enclose the whole housing and
also to make sure the buttons stay in place on top of the
panel. Due to the fact that the buttons have almost no
vertical gaps and essentially touch each other, there were
no horizontal divides for the buttons. The vertical gaps
were molded to fit within the lower parts of the button so
only the square top of the button is shown and interacted
with.

Fig. 7. Model and view of under the lid

XV. CONCLUSION

GameFrame was designed to provide a unique
experience while also being simple to understand. While
not the most conventional way to play board games, it is
definitely something that will catch some attention.

Throughout the two semesters working on this project,
we ran into a bunch of challenges, but we overcame them
through communication and collaboration. This project
has provided us with invaluable experience which will
help us when we have to work with new and different
projects within our field. There is clearly a lot more room
to learn and improve.

ACKNOWLEDGEMENT

Allen Chion is a computer
engineering student at the University
of Central Florida. He specializes in
embedded systems hardware and
programming.
Allen is a member of the development
team who is the primary embedded
programmer. He is responsible for the

main bridge between the hardware and the software, as
well as integration testing between the two main
components. He is also responsible for designing the
housing for the project.

Israel Soria is a computer engineering
student at the University of Central
Florida. He specializes in
programming frontend applications,
machine learning, and web
development.
Israel is a member of the development
team who is primarily responsible for
the frontend development and user

interface and user experience of the device. Additionally,
he helps with the backend development and testing, as
well as prototyping and creating automated tests.

Frank Weeks is an electrical
engineering and computer science
student at the University of Central
Florida. He specializes in the
hardware for this project, but also has
extensive experience with high level
software development due to his
computer science background.

Frank is a member of the development team who is
primarily responsible for the hardware and electrical
engineering aspects of the projects. Much of the choice in
batteries, voltage regulators, displays, switches, and
input/output devices are chosen or designed by Frank. He
is largely the designer for the logistics of the hardware and
physical challenges of an 8x8 grid with both input buttons
and output displays. Additionally, he is largely responsible
for the hardware system testing and the development of
the PCB and board layout. He had a large part in the
manufacturing of the PCB and Switches and added to the
embedded software.

Levi Masters is a computer
engineering student at the
University of Central Florida. He
specializes in logic systems design,
artificial intelligence, programming
backend applications, and software
architecture. He is a member of the
development team who is primarily

responsible for the backend application that the
GameFrame runs games on. The logic system of the game
as well as the AI that plays against the user in single
player mode are also delegated to him.

REFERENCES

[1] Team Member. (2020, October 28). How to Castle in
Chess? Chess.com.
https://www.chess.com/article/view/how-to-castle-in-chess.

[2] How the Chess Pieces Move: The Definitive Guide to
Learning Chess Fast. iChess.net. (2021, July 14).
https://www.ichess.net/blog/chess-pieces-moves/.

[3] Hasbro. (2003). Checkers Instructions. f.g.bradley's.
https://www.fgbradleys.com/rules/Checkers.pdf.

[3] Mott, V. (n.d.). Introduction to Chemistry. Lumen.
https://courses.lumenlearning.com/introchem/chapter/other-
rechargeable-batteries/.

[4] 3D Printer Filament – The Ultimate Guide. All3DP. (2021,
July 19).
https://all3dp.com/1/3d-printer-filament-types-3d-printing-3
d-filament/.

[5] Language Solutions. NVIDIA Developer. (2021, April 21).
https://developer.nvidia.com/language-solutions.

[6] What is Switch Bouncing and How to prevent it using
Debounce Circuit. Circuit Digest. (2019, June 7).
https://circuitdigest.com/electronic-circuits/what-is-switch-
bouncing-and-how-to-prevent-it-using-debounce-circuit.

[7] Arduino Playground - SoftwareDebounce. (n.d.).
https://playground.arduino.cc/Learning/SoftwareDebounce/.

[8] Knight, D. (2021, May 19). Introduction to Linear Voltage
Regulators. DigiKey Electronics - Electronic Components
Distributor.
https://www.digikey.com/en/maker/blogs/introduction-to-lin
ear-voltage-regulators.

[9] Person. (n.d.). Which ADC Architecture Is Right for Your
Application? Which ADC Architecture Is Right for Your
Application? | Analog Devices.
https://www.analog.com/en/analog-dialogue/articles/the-rig
ht-adc-architecture.html.

[10] Air vs Liquid: Advancements in Thermal Management.
Boyd Corporation. (n.d.).
https://www.boydcorp.com/resources/resource-center/techni
cal-papers/air-vs-liquid-cooling-advancements-in-thermal-
management.html.

[11] Everything You Need to Know About Heat Pipes. Advance
Cooling Technologies. (n.d.).
https://www.1-act.com/innovations/heat-pipes/#benefits.

[12] Encyclopædia Britannica, inc. (n.d.). Checkers.
Encyclopædia Britannica.
https://www.britannica.com/topic/checkers.

[13] Encyclopædia Britannica, inc. (n.d.). Pong. Encyclopædia
Britannica. https://www.britannica.com/topic/Pong.

[14] LCD-Keys. www.lcd-keys.com. (n.d.).
https://www.lcd-keys.com/.

[15] Buttons – lcd pushbuttons. SUZOHAPP OEM. (n.d.).
https://oem.suzohapp.com/products/buttons-decks-and-dps/
buttons/lcd-pushbuttons/.

[16] Dc-96f. DC-96F Heavy Duty Plastic Electronics Enclosures
| DC Series. (n.d.). https://www.polycase.com/dc-96f.

