
GameFrame
Group 16
Allen Chion
Frank Weeks
Israel Soria
Levi Masters

Motivation

● Each of our members wanted to implement certain skills and gain experience
to put down on our résumé, such as AI

● Most projects are about something being useful, so we wanted to build
something fun

● Help inspire future generations about STEM
● Provide a mobile arcade style experience

Goals and Objectives

● Create a small and portable board game device
● Lightweight
● Relatively easy to use
● Long battery life

Specifications
Weight Less than 2lb

Dimensions Box: 15.925in by 10.125in by 5.55in

Battery life 2-4hrs

Speed Less than 5ms response time

Monetary Should not exceed $400

Software Should be able to at least play chess

Design Diagram

● Cut costs
● Sustainability
● Button satisfaction
● Functional controller systems

Approach

● We wanted this to be portable
● Use a 8x8 button layout for the user to interact with it
● Similar to how players interact with Jubeat, but all of the UI elements will also

be done through these buttons
● For example, the chess pieces will appear on each block and pressing the

button will select that piece
● The screen will be under the button layout

Software

Tools

● Python
○ Keep everything the

same
○ Assortment of libraries

● Github
○ Keep track of our code

● Discord
○ Communication

Class Diagram

User Interface

Game Example

Game Engine Testing

● Human testing to validate automated testing
○ Script of input games
○ GUI to test games

● Human testing on physical board to ensure proper usage of
input and output

● Automated testing on physical board to ensure output is
working correctly

Game Engine Design

● Games are created in
“select game” function

● AI is activated for solo play
● Save game is available for

one game at a time
● Game engine gives

“check_win()” function call
after each move

Game Engine Design

● Each tile is given a state, including
what piece is present

● Each piece tells the tile valid moves
● The game engine presents the

player with possible moves
● Invalid moves are ignored (no action

taken, remains player’s turn)
● State of pieces stored in array with

attributes

AI (Player vs. Computer)

● Python/PyCuda is the main language used to program the
Jetson nano

● backtracking/minimax hybrid is used for most AI computer
gaming applications

● Different levels of depth are given at each stage of difficulty
○ This emulates human playing experience fairly similarly

● Monitored throughout development to gage difficulty levels

AI Backtracking Algorithm

● Backtracking
● Try a bunch of

simulated games
● Choose best outcome

probability
● Simulates AI and

Player moves

B1 -> C3

C3 -> D5 C3 -> B5

B5 -> C7B5 -> A7D5 -> C7D5 -> E7

Hardware

Hardware - Overview

Block Diagram

Microcontroller

Switches

LCD

Power

PCB

Hardware - Block Diagram

Hardware - Microcontroller

MSP 430

Functions:

Communicating with Jetson Nano

Controlling and decoding switches

Hardware - Microcontroller

MSP 430 - G2ET

Reasons:

Simple and familiar to use

Cheap ($10-15)

Low power (1.3-400𝜇A)

DIP-Socket compatible chip is available

Hardware - Shift Registers

64 buttons means 64 wires

Solution:

74HC595 (8-bit shift register IC)

One output line

Shift register require clocks

Use a pin to output from MSP 430

Two pins output for switch decoding

Hardware - Buttons/Switches

Custom Buttons

Copper Wire Grid

Switch contacts

Rubber actuators

Hardware - Switches - Debounce

Switching states can create bounce

Originally thought more important

Implemented RC spot into PCB

Ended up being useful

Hardware - LCD

Features:

HDMI compatible

Built in sound

15”

Hardware - Power

Battery

12 VDC, 3 A max, 66Wh

About 3-4.5 hour life

Voltage regulation

LM2576 x 3

Heatsinks

Hardware - PCB

PCB:

Main

MSP430, Regulators, Shift register

Hardware - Testing

Power testing

Temperature Testing

Battery Life testing

RS232-USB MSP430 Testing (UART)
Nano Python Script Testing (UART)

Jetson Nano

● We decided to go with the 2GB version because we reasoned that we would
not need more than that to run simple board-style games since the 4GB
version costs a lot more

● Built for AI, so this will be running our software
● Hardware can be controlled directly using the Linux terminal or running a script
● Python wrapper built in makes coding it a lot easier.

Housing

● PLA
● Box: 15.925in by 10.125in by 5.25in
● Top Frame: 15.925in by 10.125in by 5.25in by 0.3in
● Split into four cross sections due to 3D printing limitations

Buttons

● 1.6 in. by 0.94 in. by 0.08 in.
● Top tile piece is 1 in. by 0.94 in.
● Custom cut from PETG with CNC router

Initial Design Final design

Design Constraints

● Economic
○ Since this project is not financed, all the funding is coming from ourselves.
○ Ideally spend the least amount of money possible, but we do not plan on cutting too many

corners.

● Political/Ethical
○ We have to limit the games that are public domain and do not breach any copyright.
○ No rhythm games that use music since we do not want to deal with licensing.
○ We don’t want to just copy someone else’s game.

● Health and Safety
○ Ensuring the device does not heat up too much.
○ No exposed electronics.

Challenges

Screen limitations

● We originally wanted a big square LCD panel, but it was hard to find one and
they were super expensive

● We had to drop the square design of most board games as a result:
○ Each button had their sides increased by 0.3in to accommodate the 0.3in actuators for button

activation to avoid obstructing the middle viewing area, which was already a small 1in by 1in.
○ The display board for playing games is now unconventionally rectangular.

● The case design had to be relatively huge to house all our electronics, so a lot
of the portability was sacrificed.

Hardware Challenges

Flipped PCB

ICs on bottom

Feedback on wrong node

Resistors on bottom

Lesson:

1-Layer PCBs are great!

Software Challenges

● Integration with hardware
● Debugging
● Multiple code iterations
● Neural network for AI was above skill level

○ Switched to using backtracking instead

● AI backtracking difficulties
○ Cloning boards
○ Opposition moves prediction
○ Quantifying moves

● Changing inputs

Budget and Financing
Item Cost

NVIDIA Jetson Nano 2GB Developer Kit
DC 5V cooling fans (2 pack)

$77.79

3D printing material $24

Copper Wire $9

Fan $4

MSP430g2553 $15

4”x6” PETG Sheets $14/10

Budget and Financing (Cables and Connectors)

Name Price

Breakout to USB-C connector $8

RS232 Breakout connector x 2
+ Female-female RS232 connector

$16

Breakout to USB-A connector $8/2

Dupont Cables $14

Battery Connector $9.50

Mini-hdmi to HDMI cable $9

USB-RS232 (For initial testing) $11

Budget and Financing (PCB Etching)

Name Price

Ferris Chloride (from radio shack) $13

4”x6” Copper Plate $18/10

Name Price

Rubber actuators $3.6/20

Super glue $3

Epoxy $18

Drill bits for cnc milling $16/10

Budget and Financing (BOM)

Name Price

Misc RLC/Diode/heat sink/cheaper ICs/etc ~$20-30

Misc mechanical hardware components (ie
screws/washers etc)

~$30

Acrylic Sheets $13

15” LCD (with cables) $136

Battery $38

Budget and Financing (BOM)

Name Price

Liquid tape $8

Vector boards for alignment $18/6

Plexiglass tiles $12.50/20

Total $568.39

Work Distribution:

● Levi Masters:
○ Game engine and AI
○ Backend

● Israel Soria:
○ UI elements
○ Front end

● Frank Weeks
○ Hardware
○ Hardware and software integration

● Allen Chion
○ CAD Design
○ Debugging

