
GameFrame
Group 16
Allen Chion
Frank Weeks
Israel Soria
Levi Masters



Motivation

● Each of our members wanted to implement certain skills and gain experience 
to put down on our résumé, such as AI

● Most projects are about something being useful, so we wanted to build 
something fun

● Help inspire future generations about STEM 
● Provide a mobile arcade style experience



Goals and Objectives

● Create a small and portable board game device
● Lightweight
● Relatively easy to use
● Long battery life



Specifications
Weight Less than 2lb

Dimensions 12in by 12in length and width for the base. The 
height we would like to be no taller than 2 inches

Battery life 2-4hrs

Speed Less than 5ms response time

Monetary Should not exceed $400

Software Should be able to at least play chess



Design Diagram

● Cut costs
● Sustainability
● Button satisfaction
● Functional controller systems



Approach

● We wanted this to be portable so the device should be as convenient to bring 
around as any other board game

● Use a 8x8 button layout for the user to interact with it
● Similar to how players interact with Jubeat, but all of the UI elements will also 

be done through these buttons
● For example, the chess pieces will appear on each block and pressing the 

button will select that piece
● The screen will be under the button layout

 



Software



Tools

● Python
○ Keep everything the 

same
○ Assortment of libraries

● Github
○ Keep track of our code

● Discord
○ Communication



Class Diagram



User Interface Prototype

Menu Example Game Example



Game Engine Testing

● Automated testing to quickly ensure all pieces are movable at all 
locations

● Human testing to validate automated testing
● Human testing on physical board to ensure proper usage of 

input and output
● Automated testing on physical board to ensure output is 

working correctly



AI Testing

● Automated testing to 
ensure AI can complete 
games of different states

● Human interaction to 
ensure AI behaves 
rationally

● Human interaction to 
gauge difficulty level



Automated Testing

● Automation for AI produces logs of 
each move and win status

● Game engine testing moves pieces in 
many scenarios and keeps a log of 
resulting board state

● Pieces moved to new spots displayed 
on physical board

● Flash pieces on screen to test output

E2 -> E4 | D7 -> D5 | E4 -> D5 
[CAPTURE] | C8 -> F5 | … | C6 -> 
C3 [WIN WHITE]

E2- > E4 [P(A2, B2, C2, D2, E4), 
N(C1, F1), Q(D1), K(E1)] | D1 -> 
G4 [P(A2, B2, C2, D2, E4), N(C1, 
F1), Q(G4), K(E1)] | E1 -> E2 
[P(A2, B2, C2, D2, E4), N(C1, 
F1), Q(G4), K(E2)]



Game Engine Design

● Games are created in 
“select game” function

● AI is activated for solo play
● Save game is available for 

one game at a time
● Game engine gives 

“check_win()” function call 
after each move



Game Engine Design

● Each tile is given a state, including 
what piece is present

● Each piece tells the tile valid moves
● The game engine presents the 

player with possible moves
● Invalid moves are ignored (no action 

taken, remains player’s turn)
● State of pieces stored in array with 

attributes 



AI (Player vs. Computer)

● Python/PyCuda is the main language used to program the 
Jetson nano, which is useful for AI/ML programming

● Neural network is used for most AI computer gaming 
applications

● Different levels of training are given at each stage of difficulty
○ This emulates human playing experience fairly similarly

● Monitored throughout training to gage difficulty levels



AI Training

● Reinforcement learning
● Multiple renditions of the AI for each difficulty level, which are 

trained differently
● AI plays against itself many times in order to become more 

difficult
● Add human training as much as possible
● AI plays against its own different renditions of difficulty
● Specific renditions of the AI created only for training



AI Alternate Considerations

● Backtracking
● Try a bunch of 

simulated games
● Choose best outcome 

probability
● Simulates AI and 

Player moves

B1 -> C3

C3 -> D5 C3 -> B5

B5 -> C7B5 -> A7D5 -> C7D5 -> E7



Hardware



Hardware - Overview

Block Diagram

Microcontroller

Switches

LCD

Power

PCB



Hardware - Block Diagram



Hardware - Microcontroller

MSP 430

Functions:

Communicating with Jetson Nano

Controlling switches



Hardware - Microcontroller

MSP 430 - G2ET

Reasons:

Simple and familiar to use

Cheap ($10-15)

Low power (1.3-400𝜇A)

DIP-Socket compatible chip is available



Hardware - Shift Registers

64 buttons means 64 wires

Solution:

74HC595 (8-bit shift register IC) x 2

One input line, one output line

Shift registers require clocks

Use two output lines from MSP 430



Hardware - Switches

Main method of human interfacing and control

Array of 64 buttons (8x8)

4 Switches/Contacts per button



Hardware - Switches - Debounce

Switching states can create bounce

Solutions:

Software - While iterating

Hardware - Filters



Hardware - Switches - Debounce

While Iterating:

Track how long a switch is in switched state

Useable outside of debounce

Contact switches might have worse debounce

Use hardware solution

RC spot factored into first PCB



Hardware - LCD

Features:

HDMI compatible

Built in sound



Hardware - Power

Battery

Voltage regulation

LT3694 (Switching regulator)

2.6A max output

3 output lines



Hardware - PCB

Two PCBs:

Main

MSP430, Regulators, Shift registers, Hardware Debounce

Switches

Similar idea to jubeat

Jetson Nano separate

LCD connected to Nano



Hardware - PCB

OUR HARDWARE GUY IS BEHIND



Hardware - PCB

OUR HARDWARE GUY IS BEHIND

(but is using Eagle)



Hardware - Testing

Switch debounce

Amperage 

Truly under 2.6A?

Ability to run in low power mode

To extend battery life

Temperature Testing



Jetson Nano

● We decided to go with the 2GB version because we reasoned that we would 
not need more than that to run simple board-style games since the 4GB 
version costs a lot more

● Built for AI, so this will be running our software
● Hardware can be controlled directly using the Linux terminal or running a script
● Python wrapper built in makes coding it a lot easier.



Design Constraints

● Economic
○ Since this project is not financed, all the funding is coming from ourselves.
○ Ideally spend the least amount of money possible, but we do not plan on cutting too many 

corners.

● Political/Ethical
○ We have to limit the games that are public domain and do not breach any copyright.
○ No rhythm games that use music since we do not want to deal with licensing.
○ We don’t want to just copy someone else’s game.

● Health and Safety
○ Ensuring the device does not heat up too much.
○ No exposed electronics.
○ Making sure the device is not too heavy.



Budget and Financing
Item Cost

NVIDIA Jetson Nano 2GB Developer Kit
DC 5V cooling fans (2 pack)

$77.79

MSP-EXP430G2ET $21.28

Switch Regulator $10

Shift registers $1

LCD Display (have not chosen yet) ~$60-100



Work Distribution:

● Levi Masters:
○ Game engine and AI
○ Backend

● Israel Soria:
○ UI elements
○ Front end

● Frank Weeks
○ Hardware

● Allen Chion
○ Hardware and software integration
○ embedded programming



Issues and Possible fixes

● We haven’t picked an LCD panel yet and depending on what we end up 
choosing, the housing will have to be adjusted to fit it

○ Due to size variations, some of the LCD screen space will be “wasted” since we plan on having 
the interface be a square

○ The pixels on the edges will be wasted space hidden under the buttons and housing

● Cooling
○ The Jetson nano so far has been the hottest component
○ Probably will mount the Jetson nano in a way that the CPU fan exhausting out of the housing 



Things we need to work on

● Wait for our PCB to arrive
● Picking an LCD screen
● Design the housing
● Divide up different sections of the big LCD screen into their own 8x8 sections
● Figure out how to circulate the air to cool the jetson nano
● Building our first prototype




