GameFrame

Group 16
Allen Chion
Frank Weeks
Israel Soria
Levi Masters

Motivation

e Each of our members wanted to implement certain skills and gain experience
to put down on our résumé, such as Al

e Most projects are about something being useful, so we wanted to build
something fun

e Help inspire future generations about STEM

e Provide a mobile arcade style experience

F
s B

‘rl |
\ 3

Goals and Objectives

Create a small and portable board game device
Lightweight

Relatively easy to use

Long battery life

Specifications

Weight Less than 2Ib

Dimensions 12in by 12in length and width for the base. The
height we would like to be no taller than 2 inches

Battery life 2-4hrs

Speed Less than 5ms response time

Monetary Should not exceed $400

Software Should be able to at least play chess

Design Diagram

Cut costs

Sustainability

Button satisfaction
Functional controller systems

Approach

e We wanted this to be portable so the device should be as convenient to bring
around as any other board game

e Use a 8x8 button layout for the user to interact with it

e Similar to how players interact with Jubeat, but all of the Ul elements will also
be done through these buttons

e For example, the chess pieces will appear on each block and pressing the
button will select that piece

e The screen will be under the button layout

Software

Tools

e Python
o Keep everything the
same
o Assortment of libraries
e Github
o Keep track of our code
e Discord

o Communication

Class Diagram

Piece Panel Menu Game
-X: int -text: string -time: date -text: string
-y int -image: PNG -battery: int -panels: Panel []
-ID:int -piece: Piece [] -panels: Panel [] -pieces: Piece []
-sound: MP3 -text: string
-pieceType: int +selected() +save()
+update() +closeGame() +undo()
+getLocation() +displayTime() +reset()
+setX() +scroll() +results()
+setY() +batteryLife() +checkWin()
+loadGameMenu() +returnToGameMenu()
T 3 +options()
\
ChessPiece TicTacToePiece GameMenu Chess
-team: int -difficulty:
{easy, normal,
+changeType() +getOpenSpaces() hard}
+getPossibleMoves() -saveState: file
+tutorial()
+setMode()
+newGame()
+loadGame()
+returnToMenu()|

User Interface Prototype

AHAEAEAR

HEEYE O E

12:36(| PM

Game Example

Menu Example

Game Engine Testing

e Automated testing to quickly ensure all pieces are movable at all
locations

e Human testing to validate automated testing

e Human testing on physical board to ensure proper usage of
input and output

e Automated testing on physical board to ensure output is
working correctly

Al Testing

e Automated testing to
ensure Al can complete
games of different states

e Human interaction to
ensure Al behaves
rationally

e Human interaction to
gauge difficulty level

Testing Effort

Gague Rationality

20.0%

Gague Difficulty

20.0%

Automated

60.0%

Automated lesting

e Automation for Al produces logs of
each move and win status

e Game engine testing moves pieces in
many scenarios and keeps a log of
resulting board state

e Pieces moved to new spots displayed
on physical board

e F[lash pieces on screen to test output

E2 ->E4 | D7 ->D5| E4 ->D5
[CAPTURE]|C8 ->F5]...|C6 ->
C3 [WIN WHITE]

E2- > E4 [P(A2, B2, C2, D2, E4),
N(C1, F1), Q(D1), K(E1)] | D1 ->
G4 [P(A2, B2, C2, D2, E4), N(CT1,
F1), Q(G4), K(E1)] | E1 -> E2
[P(A2, B2, C2, D2, E4), N(C1,
F1), Q(G4), K(E2)]

Game Engine Design

User Interface

e Games are created in
“select game” function
SaveConine e Alis activated for solo play
e Save game is available for
one game at a time

@ @ e (Game engine gives
“check_win()” function call

Ganf® Engine Al TSave

=

Backend

after each move

Save/Continue

Game Engine Design

Invalid move

e Each tile is given a state, including
what piece is present

e FEach piece tells the tile valid moves E“"” T

e The game engine presents the i
player with possible moves

e Invalid moves are ignored (no action
taken, remains player’s turn)

e State of pieces stored in array with e
attributes ¥

Start

Is the move
valid?

‘Show potentia
moves

Yes

Was a piece
taken?

End Game
ondition met?,

>

Al (Player vs. Compuiter)

Python/PyCuda is the main language used to program the
Jetson nano, which is useful for Al/ML programming
Neural network is used for most Al computer gaming
applications

Different levels of training are given at each stage of difficulty
o This emulates human playing experience fairly similarly

Monitored throughout training to gage difficulty levels

Al Training

e Reinforcement learning

e Multiple renditions of the Al for each difficulty level, which are
trained differently

e Al plays against itself many times in order to become more
difficult

e Add human training as much as possible

e Al plays against its own different renditions of difficulty

e Specific renditions of the Al created only for training

Al Alternate Considerations

B1->C3

C3

->D5

C3

->BS

D5->E7

D5->C7

B5-> A7

B5->C7

Backtracking

Try a bunch of
simulated games
Choose best outcome
probability

Simulates Al and
Player moves

Hardware

Hardware - Qverview

Block Diagram
Microcontroller
Switches

LCD

Power

PCB

Hardware - Block Diagram

@

Hardware - Microcontroller

MSP 430
Functions:
Communicating with Jetson Nano

Controlling switches

Hardware - Microcontroller

MSP 430 - G2ET

Reasons:

Simple and familiar to use
Cheap ($10-15)
Low power (1.3-400uA)

DIP-Socket compatible chip is available

Hardware - Shift Registers

64 buttons means 64 wires
Solution:
74HC595 (8-bit shift register IC) x 2

One input line, one output line

Shift registers require clocks

Input

Clock
l Output Clock

Use two output lines from MSP 430

[74H0595] [74H0595]

Output (x8) Input (x8)

Hardware - Switches

Main method of human interfacing and control
Array of 64 buttons (8x8)

4 Switches/Contacts per button

s2
»—o/c

S1
1 e 2
0—0’50—0
0—0’40—0
40/0— 54 }0—4

Hardware - Switches - Debounce

Switching states can create bounce
Solutions:
Software - While iterating

Hardware - Filters

Hardware - Switches - Debounce

While lterating:

Track how long a switch is in switched state

Useable outside of debounce To
Contact switches might have worse debounce s

Use hardware solution ‘M’”—L

RC spot factored into first PCB

1 while (programLoop)

2 addToCountervVariables //RAdd to each that reads high
3 resetCounterVariables //Reset each that reads low

4 for each countervVariable({

5 if (threshold)

6 SendAsPressed

7

}

Hardware - LCD

Features:
HDMI compatible

Built in sound

Hardware - Power

Battery
Voltage regulation
LT3694 (Switching regulator)
2.6A max output

3 output lines

LCD
Display

LCD
Backlight

A

' ~0.11A

| ~0.24A

Battery
12V

Hardware - PCB

Two PCBs:
Main
MSP430, Regulators, Shift registers, Hardware Debounce
Switches
Similar idea to jubeat
Jetson Nano separate

LCD connected to Nano

Hardware - PCB

OUR HARDWARE GUY IS BEHIND

Hardware - PCB

OUR HARDWARE GUY IS BEHIND

(but is using Eagle)

Hardware - Testing

Switch debounce

Amperage
Truly under 2.6A?

Ability to run in low power mode
To extend battery life

Temperature Testing

Jetson Nano

e We decided to go with the 2GB version because we reasoned that we would
not need more than that to run simple board-style games since the 4GB
version costs a lot more

e Built for Al, so this will be running our software
e Hardware can be controlled directly using the Linux terminal or running a script
e Python wrapper built in makes coding it a lot easier.

Design Constraints

e [Economic
o Since this project is not financed, all the funding is coming from ourselves.
o lIdeally spend the least amount of money possible, but we do not plan on cutting too many
corners.

e Political/Ethical

o We have to limit the games that are public domain and do not breach any copyright.
o No rhythm games that use music since we do not want to deal with licensing.
o We don’t want to just copy someone else’s game.

e Health and Safety
o Ensuring the device does not heat up too much.
o No exposed electronics.
o Making sure the device is not too heavy.

Budget and Financing

Item Cost
NVIDIA Jetson Nano 2GB Developer Kit $77.79
DC 5V cooling fans (2 pack)

MSP-EXP430G2ET $21.28
Switch Regulator $10

Shift registers $1

LCD Display (have not chosen yet) ~$60-100

Work Distribution:

e |evi Masters:
o Game engine and Al
o Backend

e |[srael Soria:

o Ul elements
o Frontend

e Frank Weeks
o Hardware
e Allen Chion

o Hardware and software integration
o embedded programming

Issues and Possible fixes

e We haven'’t picked an LCD panel yet and depending on what we end up

choosing, the housing will have to be adjusted to fit it

o Due to size variations, some of the LCD screen space will be “wasted” since we plan on having
the interface be a square
o The pixels on the edges will be wasted space hidden under the buttons and housing

e Cooling
o The Jetson nano so far has been the hottest component
o Probably will mount the Jetson nano in a way that the CPU fan exhausting out of the housing

Things we need to work on

Wait for our PCB to arrive

Picking an LCD screen

Design the housing

Divide up different sections of the big LCD screen into their own 8x8 sections
Figure out how to circulate the air to cool the jetson nano

Building our first prototype

Percent Completed

Research
Parts
Software

Hardware

Prototyping

Overall

0 25 50 75 100

