
Automated Ventilation Controller

UCF Senior Design 2021

Group 15

Wendy Dominguez - Computer Engineering
Gisela Griesheimer - Electrical Engineering

Angelica Longo - Computer Engineering
David Munyon - Electrical Engineering

Sponsored By Chris Neiger

Table of Contents
1. Executive Summary …………………………………….………………..….…1
2. Project Narrative ………………………………………………..……….…..… 2

2.1 Motivations ……………………...…………………...……….…… 2
2.2 Goals ……………………………………………....………….…… 2
2.3 Features …………………………………...……………….……… 3
2.4 Requirement Specifications ……………………..……….……….4
2.5 Marketing and Engineering Requirements …………….…..……5
2.6 Key Engineering Specifications…………………………….……..7
2.7 Block Diagrams ……………………………………………….……8
2.8 Physical Requirements …...………………………………….…. 10

3. Research ………………....……………………………………………………16
3.1 Existing Products ……………………………………………...… 16
3.2 Bluetooth vs Wifi vs Custom EM Band ………………….……. 17

3.2.1 Bluetooth 2.0 vs Bluetooth 4.0 BLE……...………..….20
3.3 Website ………………………………………………………..…..21
3.4 Web Scraping ……………………………………………….….....23
3.5 Natural Air Flow ………………………………………….…….....26
3.6 Extensibility ……………………………………………….……….27
3.7 API Testing Software …………………………………….……….30
3.8 Wireframe Technology…………………………………….…….. 32
3.9 Core Technology Selection …………………………….………..34

4. Part Selection …………………………………………………....……………36
4.1 Sensor Unit …………………………………………………….….36

4.1.1 Bluetooth Connection ………………………….…....…36
4.1.2 Temperature and Humidity Module ……………....…..38
4.1.3 Microcontroller …………………………………....….…40
4.1.4 Battery and Battery Housing …………………….........41
4.1.5 Casing for PCB ………………………………...……….43
4.1.6 Sensor Placement …………………………………...…43

4.2 Main Control Unit ………………………………………....……...44
4.2.1 Wi-Fi Module ……………………………………...…….44
4.2.2 Bluetooth Module …………………………………….…45
4.2.3 CPU Module ……………………………………….…... 46
4.2.4 Display Interface ………………………………....….…49

5. Design Constraints and Standards .……………..….……………..………. 50
5.1 Remote Constraints ……………………………….………….… 50
5.2 Environmental Constraints ………………………………….…..51
5.3 Sustainability Constraints ……………..……………….………..51
5.4 ISO/IEC/IEEE 29148-2011 Standards .…………….…………..51

2

6. Hardware Design Details ………………………………….……….……….53
6.1 Main Control Unit Design ……………………………...……….53

6.1.1 Wi-Fi Module Wiring ………………………….……….53
6.1.2 Bluetooth Module Wiring ……………………...…...…54
6.1.3 Relay Module Wiring ………………………....……….56
6.1.4 Touch Display Wiring ………………………...………..58
6.1.5 Main Control Unit Housing …………………...……….59
6.1.6 Power Supply ……………………………....………..…60

6.2 Sensor Unit Design …………………………………....…………61
7. Software Design Details ……………..………………………….…………...64

7.1 Wi-Fi Module Connection ………………………………….…….64
7.2 Bluetooth Module Setup ………………………………………....66

7.2.1 Master and Slave Module Configurations ……….…..68
7.3 Unified Modeling Language ……………………………….…….69

7.3.1 Use Case Diagram …………………………………….69
7.3.2 Entity Relationship Diagram …………………….……70

7.4 TFT Touch Screen Design Concept ………………....………...72
7.5 Web Application Wireframes ………………………………....…73
7.6 Server Setup ………………………………………….…………..75
7.7 Website Files Setup ……………………………………….……..76
7.8 Database Setup and Connection ……………………….………77
7.9 Arduino Code Setup …………………………………....………..77
7.10 Design Methodologies ……………………………….……..….78
7.11 Version Control ……….………………………….……………...79
7.12 Integrated Development Environment ….…….……….….…..80
7.13 UART ………………….……………………………….………..82

8. Hardware Testing ……………...……………………………………….….….83
8.1 Relay Testing .…………………..……..….………….…….....….84

8.1.1 Continuity Testing ...…..……..….…………....….…….89
8.1.2 Current Load Testing ...…..……..….…………….....…89
8.1.3 Operational Testing……………………………………..90

8.2 Power Supply Testing ……………………....………………...….91
8.2.1 Voltage Testing …………………………………....……94
8.2.2 Current Testing ………………………………...……….94

8.3 Wi-Fi Module Testing …………………………………...….…….95
8.4 DHT22 Sensor Testing ……………………………………..……96
8.5 Bluetooth Module Testing ……………………………...………..99

8.5.1 Testing Setback ….……………………………..………99
8.5.2 Wiring and Voltage Testing ……………………...…….99
8.5.3 Stable Connection Testing (Pairing) ….....................101
8.5.4 Data Communication Testing (Code Logic) ……......101
8.5.5 Multiple Communication Testing …………..………...103

3

8.5.6 Distance Testing ………………………………...…….103
8.6 TFT Touch Screen Configuration Testing ……………..……...103

8.6.1 Display Testing ………………………………..……....104
8.6.2 Touch Screen Testing …………………………..…….106

9. Software Testing ………………………………………………………..……108
9.1 API Endpoints ………………………………………....…..…....108
9.2 TFT Touch Screen GUI Implementation ………………..…….110

10.PCB Design ……………………………………………………………..……111
10.1 PCB for Main Controller Unit …………………………..….....112
10.2 PCB for Sensor Unit ……………………………………..….…115

11. Administrative Content …………………………………….…….…….……118
11.1 Budget …………………………..……..….……………...…….118
11.2 Finance …………………..….………………………….....……119
11.3 Current Spending …..…………………..………………...……120
11.4 Milestone Discussion …………………..…………………...…121

11.4.1 Project Milestones Summer …………………...…..121
11.4.2 Project Milestones Fall ……………………….……..122

11.5 Completed and In-Progress Work ……………………...……122
12.Online Sources …………………………………………………………...….123

12.1 Research Sources ………………………………………...…..123
12.2 Datasheets …………………………………………...…..……125

List of Figures
Figure 2.1: Hardware Block Diagram……………………………………..…………. 9
Figure 2.2: Software Block Diagram……………………………………….………... 9
Figure 2.3: Warehouse Space…………………………………………….………… 10
Figure 2.4: Warehouse Vent – Open………………………………………….……. 11
Figure 2.5: Warehouse Vent – Closed………………………………………….……11
Figure 2.6: Warehouse Floor Plan………………………………………….………. 12
Figure 2.7: Current Vent Controller (Exterior)... 13
Figure 2.8: Current Vent Controller (Interior).. 14
Figure 4.1: HM10 Pinout………………………………………………...………..…..37
Figure 4.2: Position of Voltage Regulator for HC06………………..…………….. 37
Figure 4.3: DHT22 Pinout…………….…………………………………….……….. 39
Figure 4.4: Arduino Nano Every Pinout…………….……………………….……... 40
Figure 4.5: ATmega328P Pinout Diagram…………….……………….………….. 47
Figure 4.6: ATmega2560 Pinout Diagram…………….……………………..…….. 48
Figure 6.1: Wiring for Wi-fi Module…………….………………………………..….. 54
Figure 6.2: Double Pole Throw (DPDT) Switch Wiring…………….…………..….56
Figure 6.3: Relay Wiring To Convert DPDT…………….………………….….…... 56

4

Figure 6.4: 5V DC Power Supply Designed On T.I. Webench…………….….…. 61
Figure 6.5: Schematic of DHT22 Arduino Nano Connections………….…………62
Figure 6.6: Schematic of HM10 – Arduino Connections…………….…….………62
Figure 6.7: Assembled Breadboard for a Sensor Circuit…………….………...… 64
Figure 7.1: Use Case Diagram of Web Application…………….…………….……70
Figure 7.2: Entity Relationship Diagram…………….…………………....….….….71
Figure 7.3: Concept Design of Display’s Main Screen…………….………..…….72
Figure 7.4: Early Wireframe for Web Application………………...….…....……….74
Figure 7.5: Serial Pin Comparison of Arduino Boards…………….……………….82
Figure 8.1: Testing the Relay for Circuit Continuity…………….………………….86
Figure 8.2: Testing the current draw for 2 relays at a time……………….……….86
Figure 8.3: Relay Terminal Diagram…………….……………………....….……….88
Figure 8.4: Relay Module Diagram………………………….…………...………….88
Figure 8.5: Current Simulation for 100Ω load…………….…………….…….…….93
Figure 8.6: Current Simulation for 20.5Ω load…………….………………....…….93
Figure 8.7: Current Simulation for 10.25Ω load…………….………….…….…….93
Figure 8.8: Wiring Diagram for DHT22 to Arduino Mega……………..….………. 96
Figure 8.9: DHT22 Connected to Arduino Mega…………….….…….………..….97
Figure 8.10: Screenshot of Sensor Results…………….…………….………...…..98
Figure 8.11: Arduino Mega Connected to HM10…………….…………….……..100
Figure 8.12: Modifying the Display Driver…………………………...……..…….. 105
Figure 8.13: Successful Execution of the Test Code…………….……….…..… 105
Figure 8.14: Successful Operation of the Touchscreen…………….…….…….. 107
Figure 9.1: Successful Testing of the Login Endpoint…………….……….……. 109
Figure 10.1: Eagle PCB design schematic…………………………..…….…….. 113
Figure 10.2: Initial PCB layout…………………….…………….…….…….…...…114
Figure 10.3: Altium Design Schematic…………….…………………........………116
Figure 10.4: Altium Design Schematic…………….……………………….…...... 117
Figure 12.1 Main Control Unit final PCB design…………………………………. 135
Figure 12.2 Main Control Unit Housing…………………………………………... 136

List of Tables
Table 2.1: Requirement Specifications ………………………………....……...…….5
Table 2.2: House of Quality ..…………………………………………....……….……6
Table 2.3: Key Engineering Specifications ….………………………………….……7
Table 2.4: Voltages For Each Vent’s Position …....…………………...………...…15
Table 3.1: Existing Product Comparison ……………………………....…………...17
Table 3.2: Comparison of Bluetooth and Wi-Fi …………………………...…….….20
Table 3.3: Comparison of Bluetooth 2.0 and 4.0 ……..…………………….…..….21
Table 3.4 Core Technology Comparison Chart….………………………….…..….35
Table 4.1: Comparison of Arduino Bluetooth Module………………….……..……38

5

Table 4.2: Comparison of DHT11 and DHT22 Sensors ...……………...…….…..39
Table 4.3: Comparison of Microcontrollers………………………………………….41
Table 4.4: Battery Comparison Table……………………………………...……….. 42
Table 4.5: ESP-01 Wi-fi Module……………………………………………...………45
Table 4.6: HM-10 Bluetooth Module…………………………………………………46
Table 4.7: Comparison of ATmega328 and ATmega2560……………....……….. 49
Table 4.8: Touch Screen Display Summary……………………………………….. 50
Table 6.1: Relay Pinout Connections………………………………………….…….57
Table 6.2: Display Pinout Connections………………………………………………58
Table 6.3: Sensor Breadboard Connections……………………....………………. 63
Table 7.1: Basic AT Commands ………………...………..............……………….. 65
Table 8.1 Measuring the resistance of the relays when open and closed …..… 85
Table 8.2 Measuring the current draw for each relay…………....……………..… 87
Table 8.3: Power Supply Testing ………..………………….……………………….92
Table 8.4: Wi-fi Module Wiring …...………………………………………………….95
Table 8.5: Connections for DHT22 to Mega ……..……………………………….. 96
Table 8.6: HM10 Connections to Arduino ……..………………………………… 100
Table 11.1 Chart of Current Spending ……...…………………………………..…120
Table 11.2: Summer Semester Milestones …………...……………………….… 121
Table 11.3: Spring Semester Milestones ……………….……………………...… 122
Table 11.4: Testing Status ………………………………………...……………...…123

6

1. Executive Summary
Home automation has become a vital part of our lives, from embedded smart
technology in coffee makers, to programming door locks. As technology keeps
advancing, so do the new things we are able to automate to make our lives
easier. During our first team meeting, we discussed the different types of home
automation project we could do that might benefit our sponsor, as well as meet
the requirements for senior design. One of these ideas we had was creating a
smart lock system. However, as we spoke to our sponsor and discussed what the
environment for our project would be, we realized that it would come to a much
greater benefit to create a system to control the warehouse vents. Our sponsor
owns a warehouse full of machining tools used to make robotic equipment, and
during the school year, also sees a lot of people coming in and out to work on
projects. The warehouse air conditioning system in place is used in conjunction
with ceiling vents that control the temperature of the warehouse. This system is
not only used for the comfort of the guest utilizing the warehouse, but also for the
machines that are available there. Keeping these machines cool and reducing
the humidity in the air is key for them to run at their optimal capacity. The air
conditioning and the vents available are controlled by two different systems. Prior
to installing our project, the vents had an analog control system which controlled
each of the four vents. Each vent has three available configurations, they can be
closed, open in an upward direction, or open downwards. Thus, we concluded on
creating an automatic air ventilation system for our sponsor. We aimed for a
cheaper, greener and more efficient alternative that wouldn’t require manually
opening and closing outlets. This custom system contains features specifically
requested to satisfy our sponsor and his warehouse needs. Along with being
cheaper than the alternative smart home thermostats available in the market, it
will also include features that will assist and inform the user in real-time. The
system also includes features such as multiple indoor sensors throughout the
warehouse that will read environmental data, relay modules for each vent to
adjust the orientation for the vents, and a touch LCD display on the Main Control
Unit to interact with the data from the warehouse. Along with this, our project also
has its own web application that will implement the same functionalities as the
Main Unit, but gives the user access to the Control Unit remotely. One of the
most important tasks of our controller is not only to be able to read and display
information given by the Sensor Units, but to also regulate the warehouse
ventilation based on the data automatically. Our designed system takes things
into account like the temperature, humidity, time schedules and other factors to
control the vent motors so that the user doesn’t have to, and to ultimately
minimize the amount of energy being used.

1

2. Project Narrative
This project narrative is a description of our group’s project, and all the goals that
we have achieved. This narrative section covers each proposed objective in
detail, laying out all our planned methods used and our reasons as to why we
chose them. Here, we have examined all anticipated challenges, solutions,
expected results, a timeline, and each of our individual responsibilities to meet
our ambitions. We have included our motivations for the project, its features, and
our brief plan of action to make a clear connection from our need statement, to
our capacity to solve the problem.

2.1 Motivations

Each ceiling vent in our sponsor’s warehouse previously had a manual
double-pole, double-throw switch that controls the vent’s motor. The switch has
three positions: the up position, down position, and the neutral position. When in
the up position, the roof vents would open. When in the down position the roof
vents would shut. Lastly, the neutral position was used to stop the vents part way.
The previous setup required the user to manually control the ventilation when it
was desired. This process becomes laborious and is prone to error since the
warehouse has multiple workstations and machinery laid out throughout its floor
plan. This process also leads to instability and inefficiency since it can only work
while someone is present at the warehouse. This is where our team’s
programmable ventilation controller takes charge.

2.2 Goals

The data provided by the multiple indoor Sensor Units are used to calculate the
average indoor temperature and humidity. This average is then displayed on the
Home Screen of the Main Unit, along with outdoor data taken via web scraping.
Both the indoor and outdoor information is used to determine how we automate
the ventilation. The vent dampers change orientation automatically based on
multiple conditions such as, a threshold temperature, an “ideal indoor
temperature” set by the user, or changes in humidity. We accomplished not only
automating ventilation, but also optimizing this ability in order to use the lowest
amount of energy from the AC unit as possible. Our idea of optimizing energy
usage is mainly done by implementing multiple case scenarios for the vents to be
opened or closed during automation. The user can also set all vents (or individual
vents) to be opened for only a specific duration of time, or set the vent dampers
to automatically change orientation based on the environment conditions in the

2

warehouse. We chose to pursue this project because it is a benefit to our
sponsor. This project allows us to get more experience working with
microcontroller hardware, embedded programming, air circulation, as well as
both the front and back end of web development. Our project utilizes Arduino
parts mainly because of the high level C/C++ programming language and simple
Arduino IDE. This commonly allows for more focus on the programming logic
instead of worrying about the operation complexity of other microcontrollers. It's
straightforward enough for beginners if all you wanna do is control electronic
components (like motors, sensors, and wireless bluetooth modules) and nothing
else.

We believe that our programmable ventilation controller differs from all the other
smart home products like Nest, because it is to better aid the needs of our
sponsor and the personnel that utilizes the warehouse. Additionally, it therefore
takes into account more personalized energy saving approaches. It also has a
simpler user interface to make the user experience easy and intuitive. Some
smart home technologies require the user to be connected to the same WI-FI
network to be able to configure anything for that device, whereas our controller
allows the user to be anywhere with any WI-FI network and be able to make
changes.

2.3 Features

Our project’s main objective is to automatically control the roof ventilation system
of the sponsor’s warehouse. Previously, there were four, double pole double
throw switches used to operate the ventilation motors with forward polarity to
make the roof vents open and with reverse polarity to make the roof vents shut.
In order to automate this, each switch was replaced with a relay module that
contains four relays. These relays act in pairs to align the motor’s wiring for both
forward and reverse operation. For the roof vents to open, the ‘closing’ relay pair
opens first, then the ‘open’ relay pair shuts. For the roof vents to close, the ‘open’
relay pair opens first, then the ‘closing’ pair shuts. In the sequence of the first
relay pair opening, prior to the next relay pair shutting, is required to prevent
shorting the wires and causing damage to the system.

Our team has built a programmable unit (“controller”) that automates air
ventilation previously mentioned in the sponsor’s warehouse, as well as monitor
other environmental factors. The controller’s wireless communication parts
include a Bluetooth module set as master, where the Bluetooth module connects
to multiple slave Bluetooth modules inside the warehouse (one attached to each
Sensor Unit). These slave modules on each of our Sensor Units are used to
communicate both temperature and humidity to the Main Unit. The controller also

3

includes a Wi-Fi module, where the Wi-Fi module is used to send and receive
data from our web application to the controller via a hosted server. This web
application is utilized as an alternative way to monitor and alter the vents and
temperature whenever the user is not physically near the controller at the
warehouse, this allows them to change it from anywhere, as long as they have a
Wi-Fi connection.

Thus, the Main Unit has a local touch screen LCD display with a minimalistic
interface, so that the user can easily monitor information and navigate through
multiple features. The display shows the average indoor temperature and
humidity percentage read by the multiple indoor Sensor Units, as well as the
temperature and humidity percentage taken via web scraping for comparison.
Additionally, the user is able to manually set an ideal indoor temperature, as well
as manage the orientation of the connected air vents (open or close) from the
touch LCD (this can also be done through the web application, since both will
have the same functionalities and interface). There is also an information icon
button at the top right of the display, which informs the user of things like the
automation status, the set ideal temperature, the current climate data at each
Sensor Unit, and a reset button if the user ever needs to restart the Bluetooth
communication loop.

2.4 Requirement Specifications

The requirement specifications for this project are listed in the type below. The
purpose of these specifications is to describe in detail the different components
of this project without going into detail of the technology that will be used to
implement them. These specifications can be seen as a rough outline of the
project's goals. These specifications were finalized as the technology behind
them were researched and implemented. The following updated specifications
are due to finding a better, more cost effective way of implementing the same
goal without sacrificing the quality or the constraints given by the sponsor. The
table below is an assessment of how we reached our sponsor’s goals for this
project. The requirement specifications were also a brief outline that was used
while researching to ensure that this project meets or exceeds the expectations
of the sponsor. At the end of our project this table was referenced to ensure
most, if not all, the requirement specifications have been met.

4

Table 2.1: Requirement Specifications

Requirements Specifications

Sensor Units ● 5 total Sensor Units
● Will be able to transmit a distance of 75 meters
● Will transmit data via bluetooth 4.0 (BLE)

Wireless ● Bluetooth module will run off a 3.3 volt regulator
● Will connect each Sensor Unit to Main Unit
● 6 in total to get a good coverage of the entire warehouse
● Maximum Bluetooth range is around 100 meters

Main Control Unit ● Unit will run off the power supply of the A/C controller
● Will run off a 5 volt regulator
● Will sense when A/C is running
● A/C controller is already installed at the location

Display ● Will have touch screen capabilities for local control
● Will have an easy-to-read graphics
● Larger LCD displays require more ports and can have lag

when driven by an 8-bit module
● LCD Module has pre-written drivers to ensure proper

execution

Website ● Will utilize a database and an API for functionality
● Will have a similar layout as LCD Display for controlling

remotely
● Will allow the user to control the Main Unit from anywhere, as

long, as they have Wi-Fi
● Will have to have enough security that it cannot be easily

hacked

Ventilation Relays ● Position the ventilation ports
● Wiring will need to be able to operate the motors in both

forward and reverse
● To prevent short circuits the relays will need to be normally

open
● Motors are already installed at location

Power Supply ● Must have a reasonably small footprint
● Has to be capable of powering the display, and other

accessories

2.5 Marketing and Engineering Requirements

The marketing and engineering requirements table is a table that compares
different aspects of our project's goals. This table looks at the fact that optimizing
a certain area or goal of this project may have an unexpected impact on other
areas of this project.

5

Table 2.2: House of Quality

6

2.6 Key Engineering Specifications

The key engineering specifications is a table that was used to prove that we have
met the design requirements of this project. All goals of this table have been met.

Table 2.3: Key Engineering Specifications

Specifications Description Demonstrable

Wireless
Communication

The main control unit will be
able to communicate wirelessly
with the sensors to obtain the
temperature and humidity data

Can connect and get data from a
minimum of 5 Sensor Units

Remote Control The main control unit will have
the ability to share its data and
be controlled wirelessly

The ability to access the control unit
remotely will be via a website with
the same functionalities as local
control and should allow the user to
change the ventilation orientation
from at least 10 feet away.

Local Control The main control unit will have
the ability to see the status and
receive commands locally

A vent can be opened or closed with
1 touch of the screen

Display The main control unit will have
an integrated touch display that
reads out vent status and
temperature and humidity data
from the wireless sensors.

The data from the wireless sensors
and vent status will be updated a
minimum of 1 time per minute

Website Information from the database
will be reflected on the webpage
as received values from sensors

Can receive commands from at least
1 remote device chosen by the
sponsor

Accuracy The readings from the wireless
sensors will be compared to a
known standard ensure the
requirement will be met

The temperature from the wireless
sensors will be within ± .5 degrees
celsius. The humidity from the
wireless sensors will be within ±2%

Automated Vent
Control

Vents will have an automated
mode that takes control of the
vents without any user input

The vent will be monitored for a 24
hour period to ensure proper
automatic cycling.

7

2.7 Block Diagrams

The below block diagrams illustrate the high-level overview of both the hardware
and software systems of our project. Our ventilation controller’s main parts and
functions are represented with blocks connected by lines that show the important
working relationships.

For the high-level hardware diagram, our Main Control Unit consists of 5 major
components: a Wi-Fi module, a Bluetooth module, a touch display, a
microcontroller, and 4 connected relay modules. Each of these components give
support to a different functionality in order to support our project. The Wi-Fi
module provides an internet connection to our website, the display supports our
user interface, the microcontroller sustains all the serial programming, the relays
replace the manual switches to control the vent motors, and the Bluetooth
module provides a way to get information from all the Sensor Units placed
around the warehouse.

Each of the Sensor Units consist of their own major components too. They each
have a Bluetooth module, a temperature/humidity sensor, and a microcontroller.
The sensor will grab temperature and humidity data from the warehouse, the
microcontroller will sustain all the serial programming, and the Bluetooth module
will be the means of sending the climate data to the other Bluetooth module on
the Main Controller Unit.

For the high-level software diagram, the microcontroller's code is the backbone to
establish connections to 4 critical components. These connections include our
server, internet, the database, and wireless communication. The server and
database is provided by a free hosting service that we picked, the internet is
supplied by the connected Wi-Fi module, and the wireless communication is
supplied by the connected Bluetooth module. Each of these connections come
together to build the user interface seen on both the website and controller
display.

This user interface is the same on the website and controller display. Both
contain a home screen that shows the average indoor temperature and humidity,
the outdoor climate, the current status for each vent, and additional information
such as the automation status, the set ability to set the ideal temperature, and
the current climate data at each Sensor Unit.

8

Figure 2.1: Hardware Block Diagram

Figure 2.2: Software Block Diagram

9

2.8 Physical Requirements

Our project has been designed and tested for our sponsor’s warehouse. To
accurately incorporate our design into this space, we had to account for the
dimensions of the warehouse and the vents’ placement for optimal cooling of the
space.

Figure 2.3: Warehouse Space

The Warehouse dimensions are 60 feet x 100 feet, with the ceiling height ranging
from 18 feet by the walls to 24 feet in the lofted center. The four vents that we
aim to autonomously control run down the center of the warehouse at the 24 foot
center. They can each be opened and closed independently of each other.

10

Figure 2.4: Warehouse Vent - Open

Figure 2.5: Warehouse Vent - Closed

11

The warehouse also contains a “control room” space, which is 25x14 feet. The
control center uses a completely separate air conditioning system from the rest of
the warehouse. Therefore, the space we designed for is not exactly rectangular,
as depicted in the diagram below.

Figure 2.6: Warehouse Floor Plan

In Figure 2.6 above, the Sensor Unit placements are shown. All our Sensor Units
are wall mounted, approximately 20 feet above the ground so that they are both
out of the way and can detect any rising hot air since heat rises. Ideally, our
Sensor Units never need to be interacted with for battery replacement, since our
user will be able to obtain all the data needed to check the system from either the
Main Unit within the warehouse, or by logging into the website we design from
anywhere they have Wi-Fi connection. Each of the four vents in the warehouse
was previously controlled by a flip switch which had to be hand-toggled to
instigate vent movement. That system had four switches, one per vent, each of
which could have been set to three modes: vent open up (switch flipped high),
vent travel paused (switch neutral), and vent closed (switch flipped down). This
gave the option of only opening certain vents, or having some vents open fully
while others open partially. While the best way to allow natural air ventilation may
be opening all vents fully to allow the most warm air to escape, this meant we
had to research airflow to determine if other configurations would allow us to
potentially integrate windflow to better cool the space.

12

Figure 2.7: Current Vent Controller (Exterior)

After talking to our sponsor, we were informed that the previous system used a
12V AC to DC converter to power the vents, with 12V being vent open, 0V being
motion paused, and -12V being vent closed. To account for any error, we
measured the system for each vent using a voltmeter.

13

Figure 8: Current Vent Controller (Interior)

The above image shows what was inside of the control box. The orange wire
coming in through the bottom of the box is connected to the wall power, and goes
into the AC to DC converter. The black wire coming out of the AC/DC converter is
ground, 0V, and the red wire is Vcc, measuring at -12.01 V. Each vent had four
input wires, in two pairs of two, and two output wires, sleeved in a brown coating
that leaves out the top of the control box and connects to the vents.

14

For each vent, we measured the following voltages for various positions:

Table 2.4: Voltages For Each Vent’s Position

Vent 1 (V) Vent 2 (V) Vent 3 (V) Vent 4 (V)

Vent Closed 12.01 -12.01 -12.01 -12.01

Vent Hold (after
~20 Seconds)

.006 -.006 -.004 -.003

Vent Open -12.01 12.01 12.01 12.01

Vent Closing 11.98 -11.98 -11.98 -11.98

Vent Opening -11.97 11.98 11.98 11.98

From these numbers, we see the values are as expected but that the polarity of
vent 1 is consistently reversed compared to the expected polarity. This is due to
assumed installation errors, and have been taken into account when coding for
vent 1.

We also noticed that the voltage of the “vent hold” did not immediately go to 0.
Rather, it disconnected both pairs of inputs, and let the voltage decrease to 0V.
While flipping the switch did stop vent movement immediately, we noticed that
the voltage would not go to exactly 0V very quickly. The voltage measurements
would very quickly drop to +/- 0.16 V, but it took about 20 seconds to get a value
that was less than .005 V.

Additionally, we can see that there is a voltage drop of approximately .03 V when
the vent is moving vs when the vent is in position. This was true for both moving
from open to closed and moving from closed to open. This is low enough that it
does not have a significant effect on the operation of the vent controller.

In summary,
● The warehouse space we implemented our design in is about 60’ x100’
● The warehouse has 4 vents that can either be open, closed, or paused

between states independently of each other
● We use multiple Sensor Units to account for the space since it has varying

temperature from machine usage
● The vents previously needed to be toggled from a physical switch in the

warehouse

15

● The vents run on a 12 V system, where +12 V is vent open, 0 V is vent
paused, and -12 V is vent closed

○ Due to and issue in the warehouse’s wiring, vent 1 has reverse
voltage values (open is -12 V; closed is 12 V)

3. Research
The purpose for this section of the paper is to introduce the research conducted
for this project. The research conducted in this paper starts with a look into
current products that are available on the market. Some of the items that were
considered were the price point of the current products and the features that
these products brought to the table. Next we looked into current technologies.
This section was broken up into many parts because this project combines the
use of several different technologies. First we weigh the pros and cons of several
different wireless communications technologies. Then we weigh the pros and
cons of different components that use the technology that we have chosen. This
section then ends in component selection based on the research conducted.

3.1 Existing Products

While doing research for the design of our vent control systems, some similar
products were seen, but none of them were designed to accomplish what our
project has accomplished. The first similar product was an add-on to a traditional
home air conditioning system. This add-on named “ecovent”, opened and closed
the vents in a forced air flow air conditioning system. The price for a standard
1500 square foot house was around $2,750. What makes our project different is
first the price. Our budget comes in at less than half the price of the smallest
ecovent package. Secondly, Our project does not deal with forced air flow. When
our vents open, the thermal gradient moves the hotter air outside. The warm air
at the top of the warehouse will try to rise and naturally leave through the vents at
the top of the roof. Other similar products are found in the greenhouse
automation industry.

There are several greenhouse controllers on the market that can be bought on
amazon. One such controller is made by a company called autopilot and costs
around $180 dollars. This controller just reads the temperature and humidity of
the greenhouse and turns on and off outlets that are located on the side of the
unit. These outlets can open and close vents if limit switches are installed to
control the motors. These outlets can also turn on and off heaters and fans to
control the temperature of the greenhouse. There are several features that
separate our project from this competitor. First, our project contains wireless

16

Sensor Units that can read the temperature and humidity of different areas
remotely and are not limited to just the area around the Main Control Unit.
Secondly, our project wirelessly connects to the internet to allow remote control
of the Main Control Unit’s settings and to see the current status of the vents.
However, this product highlights further applications of our project. Moisture
sensors can be added to the input data of the Main Control Unit. Additional relays
can be added to control fans and solenoid valves. These additions would make
an extremely robust and cost effective solution to control almost every aspect of
an entry level greenhouse.

Table 3.1: Existing Product Comparison

Ecovent Autopilot

Price Point $2750 and up $180

Sensor Communication Bluetooth Hardwired

Sensor ● Temperature
● Humidity
● Vent Pressure
● Battery life

● Temperature
● Humidity

Method of Air Flow Forced Air Flow Natural or Forced Air
Flow

Method of Control wirelessly open and close
vents

Turn on and off outlets

Number of Vents
Controlled

Not listed, but greater than
10

4 Outlets*

*Outlets can be used to control vents, but cannot be used to control other components

3.2 Bluetooth vs Wi-Fi vs Custom EM Band

When it came to choosing a method of wireless communication between the
Sensor Units and the Main Control Unit, there were many aspects to consider.
First is range. No matter how many benefits a wireless communication system
has, if the range is not far enough to communicate across the sponsor’s
warehouse, then it is not going to be suitable for our applications. Second is
power consumption. The wireless sensor modules need to have a long battery
life to minimize maintenance on the sensor modules. If the battery life is too short
then the maintenance schedule will be an annoyance to the sponsor. The shorter
battery life will also significantly increase the running cost of the system with

17

frequent battery changes. The third aspect we considered was the ability to
communicate with multiple devices. When considering this factor, it was ideal for
the Main Unit to maintain a line of communication with the Sensor Units.
However, it is not entirely necessary. The master Bluetooth module can only
connect to one device at a time to receive the data then move on to the next
device. The last aspect we considered is the ease of use. When considering the
ease of use, the main factors to consider are the reliability of the connection and
the difficulty of programming and implementing our system. For this project, the
wireless system was very reliable and easy to implement.

The first wireless communication system in consideration was Bluetooth.
Bluetooth was the first to be considered due to its popularity over the past
decade and the vast amounts of information available on the subject. The range
for a reliable Bluetooth connection is around 50 meters which is more than
enough to meet the design requirements for use in the sponsor’s warehouse.
Bluetooth also consumes a very small amount of power which is ideal if we were
to run off battery power.

Additionally, Bluetooth is known to be easy to implement since it uses UART
communication. However, the biggest drawback is that in a Bluetooth network
there is one master and one slave communication at a time. To connect to
multiple devices, either the PCB would need to have several transfer and
receiving pins each connected to their own Bluetooth module, or we would need
to control the Bluetooth module with software. The software algorithm would
need to connect to one module, transfer and receive the data, and disconnect
from the module. This process would have to be repeated for each Bluetooth
sensor.

The second method of wireless communication to consider is Wi-Fi. Wi-Fi has
become the most popular option with the recent wave of Internet of Things
devices (IoT) which our project falls under. However, we do not use Wi-Fi to
connect the Sensor Units to the internet, we use it to connect the Main Units to
the internet. The first thing to consider with Wi-Fi is the range it will reach. Wi-Fi
has a range of around 75 meters which is better than Bluetooth and will more
than suit the needs of supplying wireless communication within the warehouse.
The second item to consider with Wi-Fi is its power consumption. This is where
Wi-Fi falls short. The power consumption of Wi-Fi can be up to ten times the
amount of the power consumed by Bluetooth. This would have increased the
power consumption of each Sensor Unit and increased maintenance frequency
and running cost. The third item we considered with Wi-Fi is its ability to
communicate with multiple devices. Wi-Fi was designed to be able to
communicate with multiple devices using multiple channels. This benefit of Wi-Fi

18

would allow the sensors to be in constant communication with the Main Control
Unit. Lastly, we considered the ease of implementation. The ease of
implementation of Wi-Fi is similar to that of Bluetooth. Most of the implementation
would be handled on the software level. Since both Bluetooth and Wi-fi will use
UART interface to communicate with the Main Control Unit.

The third method we considered is creating a custom method of wireless
communication between the Sensor Units and the Main Control Unit. The first
three items we considered are very similar because when creating a custom
method of communication, the designer can create it to accomplish all the
necessary requirements for the project. Various design features can be used to
decrease the power consumption, increase the range, and increase the number
of communication channels needed for the multiple Sensor Units. The biggest
drawback to this method would be the time required to create, test, and
implement a custom method of wireless communication. To accomplish the
design requirements of the project, a custom method of wireless communication
may go past the deadline of the final deliverable. Another negative to consider in
designing a custom method of wireless communication is all the interference
coming from the flood of EM bands already used such as AM and FM Radio,
Bluetooth, Wi-Fi, and a host of other sources.

Other design criteria we considered in the decision is the price of components.
When researching which method of wireless communication to use for this
project the price of Bluetooth modules and Wi-fi modules seemed to be very
similar and would have very little impact on the final decision. Another
consideration for this project is the warehouse itself. The sponsor’s warehouse
where this would be implemented, is a metal building which will have a significant
impact on the wireless signals if trying to send a signal across them. For this
reason, all outdoor sensors would have needed to be hardwired into the Main
Control Unit to prevent any communication issues. Indoor sensors would not feel
an impact from the metal building when transmitting signals inside the building.

The final decision on the method of wireless communication for the project was
to use Bluetooth communication between the Sensor Units and the Main Control
Unit. This decision was reached because of the lower power consumption of the
Bluetooth modules which will have a significant impact on the functionality of the
Sensor Units. The biggest drawback to utilizing Bluetooth is the communication
of one device at a time. However, this ended up being easy to overcome by
controlling the Bluetooth module connections within the software. The software
has the ability to automatically connect and disconnect from the different
bluetooth modules. If this didn't end up working, then another implementation
would have been used that implements multiple bluetooth devices.

19

Table 3.2: Comparison of Bluetooth and Wi-Fi

Bluetooth Wi-fi

Price Point $11 $16

Current Draw 8 mA 80mA

Ease of use Simple Mater/follower
communication

More complex

Connection Stability Very Stable Very Stable

Wireless Range 50 meters 50 meters

Size 1.2” x .6” x .1” 2” x .9” x .28”

Number of Connections at
a single time

1 > 6

3.2.1 Bluetooth 2.0 vs Bluetooth 4.0 (BLE)

While researching which bluetooth module to use for the wireless communication
between the Main Control Unit and each of the Sensor Units, the main difference
of the modules came down to which bluetooth protocol each module used. The
two main protocols available on the most popular bluetooth modules are
Bluetooth 2.0 and Bluetooth 4.0. Both of these protocols have their unique
benefits as well as some drawbacks associated with their use.

The first consideration was Bluetooth 2.0, which is an older version of bluetooth
protocol. Despite its age, it still has many potential applications for its use today.
First, the range of bluetooth 2.0 is around 50 meters, which will be more than
adequate for use in the warehouse. Second, it has a very high rate of data
transfer. Its speed can be used to transmit large amounts of data such as music
and pictures and will be more than sufficient for the application of transferring
temperature and humidity data. A Bluetooth 2.0 module also consumes a small
amount of power, with an average current draw of 30mA. Bluetooth 2.0 also uses
a master/slave communication system which is only meant to connect to transfer
data to one device at a time.

The second protocol we considered was Bluetooth 4.0 also known as Bluetooth
Low Energy (BLE). This newer protocol has the same range as a traditional

20

bluetooth module which is around 50 meters. This newer protocol can also
transfer a large amount of data quickly, and will be more than enough to transfer
the temperature and humidity data needed for our project. The biggest
advancement for this bluetooth protocol is the introduction of sleep modes.
These sleep modes allow the module to draw as little as 50µA when not
transferring data. This new technology also only consumes 8.5mA when actively
transmitting data. This newer protocol also transmits data in a master/slave
communication network. However, Bluetooth 4.0 introduced a new feature called
iBeacon, which has many potential applications in the IoT realm.

Thus, for this project we decided to use the Bluetooth 4.0 technology. This
decision was based on the reduced power consumption of the BLE modules.
While transmitting, the BLE technology reduces the power consumption by 3.5
times that of a conventional bluetooth module. While in sleep mode, the power
consumption is reduced by more than 100 times that of a conventional bluetooth
module. This lower energy consumption would greatly increase the lifespan of
the batteries and potentially allow for the use of a smaller battery back than
would be needed for the bluetooth 2.0 technology.

Table 3.3: Comparison of Bluetooth 2.0 and 4.0

Bluetooth 2.0 Bluetooth 4.0

Range 50 meters 50 meters

Power Consumption 30 mA 8 mA

Ease of Use Simple Simple

Sleep Mode Capable No Yes

Designed for Iot Use No Yes

3.3 Website

We had many available options for creating the front-end and back-end of our
web application. This is where the full stacks come in. These stacks allow the
software developer to develop both the client and server software. Each stack
has different languages and softwares that they are utilizing, however there are
some overlaps, but the advantages and disadvantages are the main deciding
factors.

21

One of the options we were considering was the LAMP stack. Which utilizes the
following technologies, Linux, Apache, MySQL and PHP. Each of these softwares
are open sourced which is one of the biggest advantages. In this stack, the
application is hosted in a linux server, with an Apache HTTP server running on
top. The database utilized to keep the information stored is MySQL. The front
end of the application is connected to the back end via the PHP script, which
allows the web app to run smoothly, sending the appropriate request to the
database, and returning it as appropriate. Another advantage of this stack is that
it is easy to interchange a component for another open source software, for
example, instead of using PHP as our script we can instead use Python. This is
one of the most popular stacks today.

The other contender was the MERN stack, which utilizes mongoDB, ExpressJS,
ReactJS, and NodeJS as its main components. Here the database does not use
an entity relationship like the MySQL does, it is more document oriented
containing key-value pairs, and utilizes Javascript. This stack uses more
Javascript than the LAMP stack. After the database in the stack we have NodeJs
which is used to run Javascript on a machine instead of in a browser. After this, is
where ExpressJS comes in, it is used to build the back end of the website using
NodeJS. And finally we have ReactJS, which is used to build the UI components.
In comparison to the LAMP stack which usually uses a mixture of HTML,
Javascript and CSS. Like the LAMP stack, its technologies are also open
sourced. One of the biggest advantages of this stack is that all the technologies
involved in it are utilizing Javascript, unlike the LAMP stack which is using
different languages for each technology.

The MERN is a variation of the MEAN stack, and has surpassed it in popularity.
However, the MEAN also has its own advantages. The software used in the
MEAN is very similar to the MERN except for the client side framework, where
Angular replaces ReactJS. Like the MERN the MEAN is also composed of
software that uses Javascript. The MEAN has an operating system
independence that the LAMP stack lacks, as it is restricted to using Linux.

Along with choosing the correct technologies for the website, we had to look into
proper security for it, as we had to avoid just anyone from accessing it and
making changes to the vent configurations. For password security, we looked into
available password hashing options. We looked into having MD5 hash
implementation via javascript as one of our options. The MD5 hash takes any
string of any length and encodes it into a 128-bit value. This is useful because it
returns the string as random values/characters.

22

We also enforced a strong password policy, requiring certain characters to be in
the password. Along with the hashing of the users credentials, we also looked
into implementing SSL certification, which will give us an extra level of
encryption. Following these requirements and needs, for the best UI experience,
we also looked into making the site as responsive as possible, so that the air
vent configurations can also be done via a mobile browser, that will not have it
showing as a desktop view but rather be mobile friendly.

In summary,
● There are many full stacks available to create the website, each with its

own advantage.
● The three we considered were the LAMP, MERN and MEAN stack. Each

of which is composed of open source software.
● We also looked into adding some security, to the password and to the

website as a whole.
● The MD5 algorithm was selected for basic password security and we

looked into SSL certification.

3.4 Web Scraping

In the beginning of our research process we had originally decided on adding
modules to each Sensor Unit to detect the weather outside of the warehouse,
and based on the readings, the ventilation controller would decide on opening or
closing the vents. However, after researching the parts we realized that it could
be much easier to utilize web scraping, which is a term used to call the process
of gathering information from the internet. Thus we get data from a weather site
and then communicate that through the ventilation controller. And so, this steered
us into having to figure out what type of services or languages are available to do
this. Ideally, it was another functionality to the website which will then be able to
transfer this information to the physical ventilation controller.

One of the key things we had to do was decide which of the many available
weather sites we would be using, to be able to study the HTML structure. Along
with this, there are many different ways to go about building a web scraping
script, it just depends on the languages we choose to utilize to implement it.
However, before even going into which languages are up for the task, we also
had to take into consideration some of the potential challenges that would arise
once we implement it, like how each website is different and if we were pulling
data from more than one. The implementation would have to be different based
on how each of those websites are set up. There could also be updates to those
websites that might utilize a different format or utilize different technologies

23

altogether. These were all things we had to keep in mind when researching and
coming to a conclusion on how to implement it.

The first language that came to mind as well as a result in the search engine was
Python. Python is a high-level language that can be used to automate simple
things, it is also used by data scientists to create machine learning algorithms.
For the purpose of this project though, there are some available libraries that can
be utilized to complete this, such as beautiful soup. As described in the
documentation, it sits atop an HTML or XML parse, and provides Python with
keywords to iterate, search and modify the parse tree. Parse in this context refers
to taking the HTML code or XML code, and extracting the relevant information. In
our case that would mean the weather information for the area of Niceville.
Beautiful soup lets the user get information about the title of the page, as well as
getting all of the available URLs found within the HTML hyperlink tags. It can also
find tags by their ID. From experience looking at the HTML code of some
websites, the IDs or classNames look like random characters string together, but
they usually have one and this API also allows for finding the next child in the
parse tree or parent so it will be possible to get the information needed with this
library. In the standard Python library there is a tool available to work with URLs,
called urllib, one of the methods we found when researching this was to extract
the HTML from the page by using the HTTPResponse’s read method available,
to be able to get the HTML code and then go through the process of getting the
individual information, which will require a multi step approach to be able to get
the string because it will require us to set where the appropriate tag is and then
slice the string from it. While this method would be tedious it would still allow us
to get the data we want. Some notable mentions that also crossed our research
path were XPath, which utilizes path expressions to select node(s) sets in a
HTML or XML document. Scrapy which allows the user to download the web
pages, processes them and saves them, and then web scrape from them.
RoboBrowser which utilizes a mixture of BeautifulSoup and requests, however, it
would require a lot more research since neither of our software individuals have
had any experience with web scraping as of the time that this research section is
being written.

Another open sourced technology is the use of NodeJS, like Python, there are
tools available that are already in use for web scraping. One of the most widely
used libraries, Axios, used to make HTTP requests from the Node.js
environment, and provides its users with the functionality to download data
removing the middleman, the json method, when getting the HTTP request
result. Nightmare is another library that can also be used to get files from a
website and data. It is useful for interacting with a web page or collecting the
information that may only be available after the Javascript on the page is run. A

24

downside of it is that it could take up a big amount of resources, it is also limited
to visiting one URL at a time, which wouldn’t be much of an issue in our case.
Though it will store cookies and cache until the process is terminated with an end
command. Another library we stumbled upon was Cheerio, which utilizes a
subset of jQuery to get the needed information. We could have also used a
combination of Cheerio and Axios to create the web scraper, using Axios to get
the HTML from the website and Cheerio to get the content from the Axios result.
Selenium was another library that, like Nightmare, creates a HTTP request by
completing actions, so it allows the programmers to interact with the page, and
like some of the other tools can locate the items based on ID, Name, or
hyperlink. This library is also available in Python.

Python and Node.Js were the top results that showed up in our journey of
researching the web scraping technology available. They were the ones to have
more documentation available for the majority of the libraries available to do web
scraping. There were also some nods into Go, which is one of the newer
languages available and C/C++. However, the API available for it isn't as large
are the ones available for Python and Node.Js. And there were a couple of
disadvantages that were also listed for each one. There was also an example of
using Javascript, jQuery and Regex to be able to get the data. jQuery is
responsible for scraping the data and then Regex is used to filter the data for the
relevant information. There is also an API available called the OpenWeatherMap,
which requires a sign up and will give us a specific API key, which might be the
easier methods as we can probably utilize a regular javascript file and send for a
json package to get a response from the API with a much clearer and cleaner
format that does not contain HTML tags. There are a couple of things we had to
consider before choosing the appropriate API and language for this task, as well
as the site from where we had to do web scraping as some could have security
measures to prevent web scraping, so these are all things we had to keep in
mind.

In summary,
● There were two main technologies that have their own libraries for web

scraping, these were Python and Node.JS
● Each of the two programming languages had more than a handful of

libraries available to complete the task, however, some get much more
difficult to implement and require more than one library to be able to
implement it successfully.

● There was also a third option of potentially using a Javascript file to query
an available API that already has an implementation for getting weather
information neatly.

25

● If we didn't use that API, we would have to choose one site to get the
weather information and study the way they store the weather information
to be able to format the file to get it.

● Since we decided on a version of a LAMP stack, from the available
programs that have libraries, Python was our biggest contender.

3.5 Natural Air Flow

For our project to work effectively, the hot air trapped at the top of the warehouse
has to leave via the roof vents and be replaced with cooler air from the outside.
This needs to occur naturally because there is no fan or air vent to force cooler
air into the warehouse. This natural convection or thermal driving head has been
used in many areas. This natural phenomenon is very powerful and is the reason
for such strong breezes coming on off the ocean. Natural convection has been
utilized by engineers for years to keep large warehouses cool, and even in the
operation of nuclear power plants. Thus, natural convection is used in two
separate ways for our project.

The first way natural convection is used in our project is to let the warm air rise
naturally. The colder air will naturally be pulled down to the bottom of the
warehouse due to its density. This creates a thermal gradient between the top
and bottom of the warehouse. The temperature at the top of the warehouse will
be hotter than the outside air temperature. When the vents open the hotter air at
the top of the warehouse will naturally rise and leave the warehouse. The hot air
leaving the warehouse reduces the pressure inside the warehouse creating a low
pressure vacuum. This vacuum will naturally draw in air from the outside via any
available openings. To maximize the effectiveness of this process, a window,
door, or garage bay should be open to allow the fresh, colder air to come inside.

The second way natural convection aids in the cooling of the warehouse is
through the wind. The warehouse is located within a few miles of Florida’s gulf
coast. Due to the warehouse’s location, naturally colder air coming off of the
ocean will aid in the ventilation of the warehouse. First, the wind will ensure that
there is a natural temperature difference between the hotter air trapped at top of
the warehouse and the outside air. Creating the conditions for natural convection.
The wind will also aid in the ventilation of the warehouse as it will act similar to a
forced air flow. When the wind hits the side of the building with an open window
or door. The air will naturally come into the building and slightly increase the
pressure inside the warehouse. This increased pressure will force air out of the
vents at the top of the warehouse creating airflow.

26

For both of the methods of natural air flow listed above, an open door or window
is required to maximize the airflow through the warehouse. This is due to the
pressure differences created by airflow. However, opening a door or window is
not always safe to do especially when the warehouse is unstaffed during the
night hours. A practical solution for this is to open a garage bay door only three to
four inches and locking it in that slightly open position. This prevents any
unauthorized access to the warehouse while allowing for colder, outside air to
flow in naturally into the building. Another effective solution is to install a vent into
the side wall of the warehouse. The side vent can be easily wired to open when
the roof vents open which would allow for natural air circulation in the warehouse.

In summary,
● This project will use natural convection or thermal driving head to

exchange hot in in the warehouse with cooler air
● Natural Convection will be optimized by leaving a window or door open to

allow cooler air from ground level to enter the warehouse
● The breezes coming off the gulf also assist in the natural convection

process by supplying ocean cooled air.
● Ocean breezes make the hot air leaving the warehouse more effectively

by forcing colder in through a window or door opening
● The addition of a vent located on the wall facing the ocean could open and

close with the roof vents to improve performance of the vent system.

3.6 Extensibility

In this section we cover potential applications for our project outside of the
warehouse. We also cover potential additions that could easily be added to our
project to make it suitable for use in other areas. These additions seek to be
minimally intrusive to the design and easy to implement on top of our completed
project design.

The first potential addition for this project is to increase the efficiency of the
natural circulation by adding a vent to let air from outside into the warehouse
when the vents open. To accomplish this, the additional vent could be installed
on the side of the warehouse where the air would be cooler than on the roof.
When the hot air leaves the vents on the roof, this vent would allow cooler air to
enter the building. This could be implemented easily with the addition of another
relay. The relay can be coded to close the contacts which would open the side
vent when any of the roof vents open. This would ensure that air could easily flow
into the building without the inherent risk of leaving a door or window open. This
would also be a hands-free option that would not require any operator action.

27

The second possible addition to this project would involve installing a duct with a
blower to create forced air circulation. This option would increase the operational
cost due to the additional energy consumed by the blower or fan. However, this
option would maximize the airflow into and out of the warehouse. The
implementation of this would be very similar to that of the side vent. An additional
relay can be installed and coded to close the contacts of the relay when any of
the roof vents open. Most relay options that would be suitable for this project can
handle up to 250V AC with a current of around 10A. These relays would be
more than suitable to drive a single blower or fan installed in a duct.

Another application for this project would be for residential houses. This roof vent
system is a very popular option for residential houses to help remove hot air out
of attics which would aid in keeping the house cooler. The implementation of our
project would be simple since most houses have ridge vents installed on the roof
already, so there is no need to to open and close vents on the roof. Our project
can monitor the attic’s temperature. When the attic becomes hotter than the
outside air temperature the Main Control Unit can use its relays to turn on
ventilation fans to force colder air into the attic which would remove the hotter air.
This implementation would reduce the runtime of the air conditioning system and
reduce the overall energy usage of the house.

The fourth potential application for this project would be for its use in a
greenhouse. Residential greenhouses are becoming more popular due to the
increase in demand for healthy and organic foods. Greenhouses are a popular
option for growing plants for use as food since they provide shelter for the plants
from extreme weather and invasive pests. To implement our project in a
greenhouse there are several key items to consider. First of which is the
environment. Greenhouses tend to be humid and wet, which may create an
environment that is prone to damage sensitive electronics. Due to this, the Main
Control Unit would be changed to be housed in a watertight case. Further
waterproofing can be added to the circuits in the form of a silicone compound
that will repel water away from the printed circuit boards.

Another item to consider when utilizing our project for a greenhouse would be the
power system. Many greenhouses found in residential areas will not have a
dedicated energy source to power the PCB and motors required to open and
close the vents. A great alternative power source would be a marine, deep-cycle
12V battery. This power source is ideal since the Main Control Unit is already
designed to run off 12V DC. Furthermore many parts can be found such as
motors to open and close the vents that already work off 12V DC. The downside
to using a battery to power all automated functions of the greenhouse is its
limited charge. Eventually, the battery will have to be charged back up. This

28

problem can be minimized with the installation of a solar panel. Most consumer
grade solar panels come in a 100W size which would be more than enough to
keep the battery topped off. Along with the solar panel a solar charge controller
can be added to ensure that the battery is being charged safely. This option
should be an almost maintenance free approach to power the greenhouse
automation system.

Another potential add-on to the greenhouse would be to implement a fan to blow
fresh air into the greenhouse while the vents are open to reduce the humidity and
temperature. This fan would be implemented in a similar fashion to the vent fans
listed above. However, the fan should run 12V DC to work with the
battery-powered system. The fan would be controlled through a relay to turn on
when the greenhouse vents open and turn off when the vents shut.

Another potential add-on for this project would be to add different kinds of
sensors to read the soil’s moisture level. This data is crucial to ensure the plants
are not receiving too little or too much water. These sensors could be
programmed to control solenoid valves that would run on 12V DC. These
solenoid valves would be used to control the watering of the plants and to
maintain a soil moisture level to ensure proper hydration of the plants, in the
greenhouse. Additional software features can be added to the system in the form
of calendars and reminders to allow the user to keep track and stay up-to-date on
the maintenance of the greenhouse.

To conclude, this section briefly touched on the potential uses of our project both
inside and outside the warehouse. This project has shown to have many
potential applications for its use and can only be limited by the limits of our own
creative ability. Electrical components can be added by increasing the number of
relays and coded to open and close their contacts based on almost any data
provided to the Main Control Unit. Additional sensors can also be added via
bluetooth connection or hardwired to an input/output pin or ADC pin to transmit
their data to the Main Unit.

In summary,
● Potential additions

○ Vent installed on the wall of the building that faces the ocean to
allow colder air to come inside

■ Vent would open and close with the roof vents and be
controlled by the Main Control Unit

○ Installation of a duct with a blower to create forced air flow
■ Blower would turn on when roof vents open and off when

roof vents shut. Controlled by the Main Control Unit

29

● Potential applications outside of the warehouse
○ Residential use when installed in the attic

■ The Main Control Unit would turn on and off a blower to
move colder air into the attic. Hot air would escape out of
preinstalled ridge vent

■ Cooling the attic could reduce the amount and cost of A/C
○ Greenhouse Control

■ Could be used to automatically control the vents
■ Addition of a blower to create forced air flow

● Controlled with an additional relay
■ Solar Powered

● Can run off a 12 V battery, and be recharged with a
Solar Panel.

■ Addition of a soil moisture sensor to sense when watering is
required.

■ Addition of a 12V solenoid valve to automate the control of
watering.

● Controlled with an additional relay
■ Would need a waterproof and weather resistant casing to

prevent electronic component damage

3.7 API Testing Software

When building our website, there were many components that must be done for it
to function successfully. One of the most important components that is in charge
of the functionality is the API. Which for the LAMP stack, is composed of PHP
files. For organization purposes there is one file for each functionality. These
APIs oversee the establishment of communication between the frontend and the
back end. It enables the frontend to get information from the database as well as
add information to it. It is good practice to test each API out and make sure it is
working as it is supposed to. This way we can use the Agile methodology, since
to test the API we only need to make sure that the database is properly set up,
the frontend and backend can be done at the same time and the only thing they
will have to keep in mind is the name of the components that will be utilized to
get the information. There are various technologies readily available to do this,
some of the most popular are Advanced REST Client, or ARC for short. As well
as Swaggerhub and Postman.

ARC is the simplest and easiest one of the list, as it is only used for testing. It will
send a request to the API, depending on whether it is sending or receiving
information the method will be different. It can be used to get information like a

30

person's name, or it can be used to delete information too. It is really simple to
use, there is only a requirement of the URL, and the header and body of the
payload. For our purposes it will be using a JSON payload, we select that as the
content-type so that the information gets sent the correct way and the API knows
how it should expect it. Like the other testing software, it also provides codes
when something failed or if it was successful. While it is a quick way to check if
the endpoints work, ARC does not provide a way to document them.

Swaggerhub is also an open-source software that has a free tier that can be
more than sufficient for the testing and documentation of our APIs. It also
provides a way to have the whole team see the documentation and see how
everything is working, this provides a good way to make sure we are all on the
same page. To test it we would have to write YAML blocks to describe the
endpoints we wish to test. This includes tags, a summary, the operation ID, a
description, as well as what it consumes and produces. It also has to have the
parameters specified. Each of the endpoints will require this YAML block. For
testing, we will have to write the JSON package the way we decided it to be set
up, so it can test the endpoint from the website. And provide the URL that holds
the PHP file to be tested. When it gets tested, if it is successful, it will provide a
code 200 with a description of it being OK. On the other hand, to let you know
and if it is unsuccessful, it will also give you an error code which will be
represented by a 404 with a URL not found description. In the documentation,
there will also be examples of what each JSON is called and the types that are
used, as well as any examples that are already logged into the system.
Swaggerhubs free tier, comes with the ability to create multiple APIs, however
they are not unlimited. Once you have reached a certain point, it will not allow
you to create any more, however, usually if you delete some of the APIs you can
create some more.

Lastly, we have Postman, which like ARC and Swaggerhub, can test the API
endpoints and determine if they are working as they were intended to. It’s free
tier comes with the ability to have up to three share requests from team
members, which encourages teamwork. It also has unlimited public API
documentation. It has a choice of recovering deleted collections only up to a day
after. It also comes with an unlimited number of allowed API, which is not
something Swaggerhub provides.

Postman has some very good benefits since it provides collaboration apart from
all the other benefits that Swaggerhub has. Thus we tried all three, ARC for quick
testing, and Postman or Swaggerhub for documentation. We compared Postman
and Swaggerhub together in real time to see which one is much simpler to
implement and to document, and hold everything we want it to.

31

In summary,
● API testing is essential to make sure everything is working as

intended
● There are many technologies available that can do this, the main

three we considered were ARC, Postman, and Swaggerhub
● ARC is an easy to use API testing that does not a provide

documentation option
● Postman has a free tier with many benefits that include

documentation and collaboration with up to 3 team members. And
unlimited API documentation option.

● Swaggerhub provides a testing and documentation feature, but there
is a limited number of APIs that a user can make and provides a
read only shared version of the documentation.

3.8 Wireframe Technology

 Wireframes are very beneficial, they can facilitate the frontend process.
They serve to layout the content and functionality on a page keeping in
mind the user's needs. Wireframes are much easier to adapt than a
concept design. These have to get done during the design phase to be of
the most advantage in the project. To get these wireframes done, there is
an abundant amount of free open-source software that is specially built for
wireframing. The technologies we considered were Figma, Lucidchart and
Canva.

Figma provides a great workspace to collaborate within teams, there is a
slack integration for team communication. There is no lag on any changes
made to the design, everything is kept up to real time. It is also free and
can run in any browser available. There is also a desktop app available to
make the design process much easier. It also comes ready with templates
and themes for inspiration and to get started. It can also generate CSS
code to make the design phase much easier. Figma has many features,
however for beginners it is somewhat difficult to understand all the
components and the best way to use them in one go. However, Figma is
one of the best designing softwares currently out there.

Lucidchart has a free tier that restricts users to three designs, along with
having an ability to create wireframes there, it can also help facilitate the

32

design of Entity Relationship Diagrams, Use Cases, and all other UML
diagrams. Lucidchart also has templates to get started on creating the
wireframes but the free tier is limited, it does not include Android, IOS or UI
shape libraries. However, compared to Figma their styling is much more
limited as it tries to just do the simpler design of wireframes, without having
to worry too much about the IU aspect of it. While it does not have a
feature to concurrently update the design, users are allowed to share the
wireframes as view only files.

Canva is a free graphic design platform. It uses drag and drop for its
components. Canva’s free tier is restrictive to its developers. However, for
simple wireframing it works great. Canva is usually used for creative
interactive presentations, which can include video presentations too. It has
great available graphics and it also has collaboration features on projects.
As well as a ton of available templates to use and get inspiration from.
There are video tutorials available as well to get more familiar with the
interface and, while it is not marketed as a wireframing tool, it can be used
as one. For this project, we will be learning how to use Figma, utilizing
everything it has to offer, to be able to use it to create the wireframes for
our web application.

In summary,
● Wireframing is a very beneficial tool for developers, that gets done in

the design phase of any project
● There are many wireframing tools available today. But the main ones

we considered were Figma, Lucidchart and Canva.
● Figma is the tool with the most features available to for free
● Lucidchart has a restrictive access to the amount of graphs,

diagrams, or wireframes available for free to one user.
● Canva has simple tools available for wireframing at no cost to the

user, and has many good graphics available.

3.9 Core Technology Selection

This section describes and compares the key benefits and drawbacks of popular
technologies used for similar projects. These technologies are Raspberry Pi and
Arduino. There were many areas to consider when selecting the brain that
controls all the functions of the vent control system. One of main items we
considered was computing power, and if the selected technology would be able

33

to accomplish the task of controlling the vent system. Another item we
considered was the compatibility of the technology with other components that
were used in this project. The third consideration was the complexity of
programming required to implement the project. The last item we considered was
the ability for the technology to meet the requirements of the Senior Design
project.

Raspberry Pi was considered first due to its massive popularity in recent years
for implementing Iot projects. The Raspberry Pi is a mini computer that utilizes a
microprocessor to complete its tasks. Many of the functions of our project come
standard on a Raspberry Pi such as a Wi-Fi module and Bluetooth module.
Raspberry Pi’s also come standard with a graphics driver that is capable of
driving a large touch screen which will be utilized in this project. The Raspberry
Pi operates at a high frequency of 1.2GH and will be more than capable of
processing the data from the sensors and controlling the vent positions. Most
Raspberry Pi models come with 40 GPIO pins that can be used for additional
sensors and relays. The Raspberry Pi is mainly programmed with linux
commands. However, since it is a computer on its own, additional IDEs can be
downloaded to allow programming in other languages such as Python. The
Biggest drawback to utilizing a Raspberry Pi is it is not friendly to PCB design.
Meeting the design requirements of substantial PCB design for electrical
engineering would have been extremely difficult.

The next technology we considered was the Arduino. An arduino based
microcontroller was selected also due to its popularity for similar IoT projects.
The arduino differs from the Raspberry Pi because the arduino is a
microcontroller not a standalone computer. With arduino being a microcontroller
many of the key features of the Raspberry Pi are not standard such as Wi-Fi,
Bluetooth, and a Graphics Driver. This made the project more difficult because all
of these technologies had to be added on to the PCB design. Also with the lack
of a graphics driver, the arduino was not able to support driving a larger
touchscreen which reduced the overall quality of the project. Arduino offers many
different microcontrollers with various numbers of GPIO pins ranging from 20 to
70 pins. These pins were utilized to integrate the different components needed to
implement the relays, bluetooth, wi-fi, and other functions. The arduino controller
operates off a much slower 16MH crystal oscillator. However, it still has more
than enough computing power to implement the vent controls needed for this
project. The arduino is programmed with the Arduino IDE that was specifically
developed for user friendliness. This IDE simplifies the programming required for
this project. Lastly, since this arduino is a microcontroller, PCB design for it
should be easier to implement than the Raspberry Pi. Tus, the PCB design
requirement for Senior Design can be implemented.

34

Based on the research conducted, the Arduino microcontroller was selected as
the core technology that drives this project. Arduino has more drawbacks when
compared with the Raspberry Pi, but it is still more than sufficient to complete the
task required of this project. The main reason for the selection of the arduino
microcontroller was the requirement for significant PCB design for Senior Design.
The Raspberry Pi would have essentially been plug-and-play, and too easy to
implement for a good project. A Raspberry Pi would not have showcased the
skills and knowledge gained while at UCF.

Table 3.4. Core Technology Comparison Chart

Raspberry Pi Arduino

Core Technology Microprocessor Microcontroller

Wi-fi implementation Standard Needs Wi-fi module

Bluetooth Implementation Standard Needs Bluetooth module

Processor Speed 1.2GH 16MH

GPIO Pins 40 Up to 70

Available Display Size Large Small (up to 4”)

Programming Linux, Python Arduino IDE

Substantial PCB Design No Yes

4. Part Selection
This section covers the parts selection required to implement this project. The
technology that drives the following parts was researched and completed in the
previous Section 3. Further research is conducted in this section, with a basis on
cost and quality of the chosen technologies. This section is split up into two main
categories. The first category looks at the parts required to implement the
Bluetooth Sensors. The second category looks at the parts required to implement
the Main Control Unit. These parts are able to work together as a whole to fully
implement the goals of this project.

35

4.1 Sensor Unit

For completion of this project, we had to aggregate temperature and humidity
data from across the warehouse. This required the use of multiple indoor Sensor
Units. The section below discusses the build for each Sensor Unit, including the
selection of each of the components we used (power supply, temperature sensor,
microcontroller, and wireless communicator), and the technology we used in the
data sending between the Sensor Units and the Main Control Unit.

4.1.1 Bluetooth Connection

Each of our Sensor Units have its own bluetooth connection to the Main Control
Unit. These are able to send data, but do not need to be able to receive data.
When looking at which part to use, we compared the HC 05, HC 06, HC 07 and
the HC 08. All of these would allow our Sensor Units to connect to the Main
Control Unit and support arduinos.

The HC 05 and HC 08 both support leader/follower configuration, which we are
using. Originally, we had anticipated the Sensor Units not needing to have a
master configuration, but upon further research, it was determined that if the
Main Control Unit was able to initiate the connection to each Sensor Unit, the
Sensor Units could turn off for the majority of time when it is not sending data.
This allows for energy savings of approximately 10x vs using a follower Bluetooth
device that would need to be on constantly to wait for the controller to request
data.

We also considered using BLE with the HM10. It has the same pinout as the HC
05, so there would not be any physical ramifications of using one part over the
other for the microcontroller. Additionally, BLE uses significantly less current than
bluetooth and would therefore drain battery power at a much lower rate. It also
uses a standard UART connection which makes integrating this piece into both
our software and hardware designs easier. The HM10 is only bluetooth 4.0, so it
cannot connect to bluetooth 2.0 or 2.1, which the HC 05 and HC 06 use. This
means we needed to be consistent with our bluetooth vs BLE choice between not
only the Sensor Units but also the Main Control Unit. After discussing price
difference vs power drain, our team decided the lower power drain was
preferable for our design, and chose to use BLE with the HM 10. Since the
arduino uses 5V serial and the HM10 uses 3.3V, we had to add a simple voltage
regulator so that they can properly communicate the data. This is displayed in the
pinout figure below, where the left resistor is 1k ohm and the right resistor is
2kohm.

36

Figure 4.1: HM10 Pinout

Figure 4.2: Position of Voltage Regulator for HC 06

Table 4.1: Comparison of Arduino Bluetooth Module

Bluetooth
Module

Configuration Regular Bluetooth
/BLE (Bluetooth 4.0)

Well
Documented?

Price

HC 05 Master/minion Bluetooth yes $7.99

HC 06 Minion only Bluetooth yes $8.49

HM 10 Master/minion BLE (Bluetooth 4.0) yes $10.99

HC 08 Master/minion BLE (Bluetooth 4.0) no $7.99

37

In summary,
● After doing research on Wifi Vs Bluetooth, we decided on Bluetooth
● When looking at Standard Bluetooth vs BLE, we concluded BLE would be

best for lower power consumption, but compared BLE and standard
Bluetooth in case of major price or feature differences

● HC 05 and HM 10 were considered the two best options when looking at
documentation, configuration, and price

● The HM 10 was ultimately selected since power consumption would be
significantly decreased

4.1.2 Temperature and Humidity Module

In looking at which temperature and humidity sensors to use in our design, we
firstly wanted a component that could measure both temperature and humidity so
that we could save space in our PCB design. We also wanted a sensor that
would be compatible with Arduino. Both the DHT11 and DHT22 met these initial
constraints. Upon comparing the two, the DHT22 has higher temperature and
humidity range and a lower margin or error for both readings. The DHT11’s only
advantages are price and its sampling period of one second, while the DHT22
only samples every 2 seconds and is about twice as expensive. Since the upper
limit of the DHT11’s humidity range is 90% humidity, we can expect that the
humidity in and around our sponsor’s warehouse, located on the Florida Coast,
will regularly be above 90%. Since we are only planning on taking one reading
from each sensor per minute, the difference in sampling times doesn’t affect our
project.

Table 4.2: Comparison of DHT11 and DHT22 Sensors

Parameter DHT11 DHT22

Temp Range 0-50(C) -40-80(C)

Temp Accuracy +/-2(C) +/-0.5(C)

Humidity Range 20%-90% 0%-100%

Humidity Accuracy +/-5% +/-2%

Sampling Time 1s 2s

Price ~$5/each ~$10/each

Despite needing multiple sensors and therefore increasing the total difference in
cost, the DHT22’s parameters far exceed those of the DHT11 in all viable areas
of concern for our project. Thus, we ended up using the DHT22 in our design.

38

The DHT22 has four connection pins, but only three of them are actually
connected in our build, as shown in the pinout diagram below.

Figure 4.3: DHT22 Pinout

In summary,
● The DHT11 and the DHT22 were our top choices over other temperature

and humidity sensors since it detects both in one device and is well
stocked and documented

● The DHT11 is better in terms of price and data collection rate
● The DHT22 is better in terms of sample range and accuracy, which is

more significant to our design
● The DHT22 was chosen since the goal is to design for human comfort and

energy efficiency when cooling the warehouse, and since Florida humidity
is regularly over 90%

4.1.3 Microcontroller

Each Sensor Unit requires a microcontroller to be able to read data from the
temperature/humidity sensor, and then forward the information to our Main
Control Unit via wireless communication from the connected Bluetooth module.
Since the Main Control Unit is using an Arduino Mega for the microcontroller, we
also implement an Arduino Nano to make the programming compatibility easier.
Looking at the Arduino library, the Arduino Nano Every is both the cheapest
microcontroller option, and has all the pins needed for the HM 10 and the
DHT22. Since we are using a separate bluetooth device to better connect to the
controller’s bluetooth and avoid software conflicts, we don’t need to worry about
the sensor’s microcontroller having built-in bluetooth.

Between the Nano Every and the Nano every with Pin Headers, all the
specifications are the same. The only difference is that the Nano Every would
need to be soldered to its pin headers and is $2 less per unit. Additionally,

39

Arduino sells the Nano Every in multipacks, so we purchased multiple for a
reduced bundle price. Finally, soldering is an important skill for electrical
engineering, and with only 30 pins per board, the time commitment in soldering
enough for each sensor is not limited. For these reasons we chose the Nano
Every as our board, with the understanding that the Every with Pin headers is
acceptable if needed (eg, the Nano Every is on backorder or soldering supplies
cannot be obtained).

Figure 4.4: Arduino Nano Every Pinout

Table 4.3: Comparison of Microcontrollers

Arduino
Microcontroller

Contains all
Pins
required?

Comes with
pin headers?

Bluetooth
/BLE
embedded

Price

Nano Every yes Not soldered no $10.90

Nano Every with
Headers

yes yes no $12.90

Nano 33 IOT yes Not soldered Bluetooth $14.70

Nano 33 BLE yes Not soldered BLE $20.20

40

In summary,
● As discussed in our research section, Arduino products were the only

microcontrollers considered in our design.
● Looking at the cheapest arduino products, all of them had enough pins for

our sensor design, so all were viable options
● Since we had already chosen HM 10s for the Sensor Units, the Nano 33

IOT and the Nano 33 BLE do not provide any significant advantages.
● Between the Nano Every and the Nano Every with Pin headers, we liked

that our soldering skills can be improved and we can bundle the Nano
Every, so the Nano every was selected.

● If the Nano Every becomes unavailable, the Nano Every with Pin Headers
can be used at a slightly higher price point.

4.1.4 Battery and Battery Housing

Each Sensor Unit requires power. The sensors need to be battery powered so
that they are easy to move around the warehouse. Since we are planning on
taking temperature readings approximately once per minute, we don’t need a
battery meant for a high-drain device. We are instead looking for the longest
lasting battery that will give the required input voltage for the arduino nano every
that the sensors will be using (7-21V).

In looking at batteries, we studied the specifications of Google’s Nest Home
sensor and found that it used CR2 batteries. Looking into these further, we found
that CR2 batteries can hold charge for up to 10 years in storage, and had a
practical life of 800mAh (milliamp hours), which means they should last about
two years with a constant .05mA drain. Since our sensors will be off the majority
of the time and will only be sending data once every minute or so, and the BLE
connection we have picked only uses 9mA when online and .05mA when asleep,
we can expect that our batteries will need to be replaced approximately every
year and a half since the majority of the time they will be in sleep mode.
Unfortunately, CR2 batteries only have a 3 V charge, and the arduino nano every
that we plan on using requires a power input of 7-21V this means that we would
need 3 CR2 batteries in series to provide the needed voltage, and all the
batteries and their housing would require us to have a larger PCB design, making
the overall sensor bigger.

We then looked at using a 9V battery. We know that a single 9V battery would be
within the range of our microcontroller, so our most important factor in choosing a
9V is practical life. Since the practical life of an alkaline 9V battery is about
500mAh, that would be giving us worse battery life than the CR2 batteries.
However, lithium 9 V batteries have a practical life of approximately 1200mAh,

41

making them a better alternative to the CR2 in space and lifetime. Additionally,
since we would have needed 3 CR2 batteries per sensor, the price of the
batteries is about equivalent. We will also need fewer battery housing stations,
which will decrease the price further, by about $4 per sensor.

Table 4.4: Battery Comparison Table

Battery CR2 Lithium 9V

Voltage (V) 3 9

Number needed to meet
Voltage requirement

3 1

Practical life (mAh) 800 1200

System Cost $13.50 $6.89

For our battery casing, our two biggest options were a simple clip connector or a
case to connect into our PCB design. The case option is preferred since our
sensors will be wall mounted, so we cannot rely on gravity to keep the batteries
in place. The cases cost slightly more, at about $2 each, but will allow battery
connection without straining the connection wires.

In summary,
● CR2 Batteries were initially considered since they are used in other low

energy smart home devices
● The voltage requirement for the Arduino Nano Every would necessitate a

minimum of 3 CR2 batteries, which would take of the majority of the space
on our PCB, and would be expensive

● A single lithium 9V battery can be used to produce similar battery life, and
would be smaller and cheaper than using 3 CR2 Batteries

● Ultimately, the 9V battery was the clear choice for our sensor units and
was selected

4.1.5 Casing for PCB

Each Sensor Unit, after being fully assembled, needed a protective casing to
keep the parts from being damaged. The casing for each Sensor Unit is also very
lightweight, sturdy, and subtle to the eye. Additionally, the whole Sensor Unit is
lightweight enough to be wall mounted with a Command Strip, so that our users
can put them wherever they find them to be most useful and have them out of the

42

way. Finally, the DHT22 accurately measures the temperature and humidity
thanks to our design that allows for open airflow. We used our sponsor’s 3D
printer to create a snap-together case with a solid back to mount the PCB on,
and a raised lattice cover, protecting the Sensor Unit from accidental harm and
making the Unit more appealing to look at.

4.1.6 Sensor Placement

In order for our Sensor Units to be most efficient, they have been placed in such
a way where they can accurately detect the temperature and humidity of the
area. The warehouse space we are adjusting the temperature of is approximately
5,500 square feet. Thus, we have placed a total of 5 indoor Sensor Units. This
provides us with a better temperature and humidity spectrum reading of the full
warehouse space as opposed to only getting one indoor reading for the entire
warehouse.

Wall placement for the Sensor Units is our preferred option, since a large portion
of the warehouse’s floor space is in use for local robotics practice zones and
therefore is sectioned off. Wall placement keeps the Sensor Units out of the way
and also at a height that easily measures the effective temperature of the space
from a human perspective. Since heat rises, placing the Sensor Units on the
ceiling near the vent would give a reading a few degrees warmer than the
warehouse floor.

Additionally, various machinery is in use in the warehouse and creates heat
pockets. Because of this, our team has made sure we account for both general
floor temperature and pockets of heat from machine use. Sensor Units are thus
fully placed around the warehouse, far enough apart that they can account for
the full space. One Sensor Unit is placed in the corner where the machinery is to
detect if it is currently creating a pocket of heat. Another Sensor Unit is placed on
the outermost wall of the command room. Since that location is the closest to the
center of the warehouse, we have placed a Sensor Unit there while still wall
mounting it.

The remaining Sensor Units are placed evenly between these points on the wall.
Both the front and back of the warehouse have entrance points that could
influence data such as, a human door in the front for regular entrance, and a
garage door in the back to allow the transfer of machinery. We could not place
our Sensor Units on the doors, and placing them too near would give off data
influenced by outside temperatures. For the front door, we expect entrances and
exits to be quick, while we expect that the garage door will be open for longer
periods of time, but opened less frequently overall. The garage door is very close

43

to the machinery corner, and having it open would help cool the space even more
due to a chimney effect.

In summary,
● Five total temperature and humidity sensors are used to allow data

collections from multiple areas
● Sensor Units are evenly spaced throughout the warehouse.
● Wall placement is used to keep the Sensor Units out of the way
● Sensors are placed above human height

○ Gives temperature readings where hotter air will be located

4.2 Main Control Unit

This section covers research directly related to the Main Control Unit and the
parts selection based on our research. This section begins with the easier and
more generic parts researched such as the bluetooth and wi-fi modules. This
section then moves on to cover our research on more complex components such
as the central processing unit.

4.2.1 Wi-Fi Module

The Main Control Unit connects to the internet to allow for remote control of the
unit while the sponsor is not inside the warehouse. In order to accomplish this,
the Main Control Unit uses a Wi-Fi module. Due to its popularity among Arduino
users, an integrated ESP8266 ESP-01 Wi-Fi Module chip will be the link between
our main control unit and the internet using Wi-Fi radio signals. One of the key
benefits of the ESP-01 is the plethora of information available for its use and
programming which will make it a very useful tool to make the main control unit
part of the Internet of Things.

The biggest drawback to this Wi-fi module is its power consumption. During
normal operation this module draws around 80mA. However, since the main
control unit will draw its power from a hard wired line and not from a battery, the
power consumption will have a minimal effect. The ESP-01 is powered up using
a 3.3V power source, and an Arduino Mega will be able to power up the ESP
through its regulated 3.3V power pin.

44

Table 4.5: ESP-01 Wi-fi Module

ESP-01 Wifi Module

Price $16

Power Consumption 80 mA

Ability to connect to the internet Yes

Operating Voltage 5 V

Data Transfer Voltage 3.3 V

Data Transfer UART

4.2.2 Bluetooth Module

The Main Control Unit communicates with our multiple Sensor Units by using its
own bluetooth module. The bluetooth module that was selected for each of the
Sensor Units was the HM10 due to the power saving benefits of the module. The
HM10 is a serial BLE module (Bluetooth-Low-Energy) which is intended to be
used for the low power consumption applications and can last long even with a
coin-sized battery. The HM10 is a popular Bluetooth 4.0 based module that
comes with a serial/UART layer which makes the device able to interface with
different microcontrollers. Like the Wi-Fi module, the HM10 can also be
programmed using AT commands sent over the serial UART connection, which
makes the HM10 ideal for creating simple connections.

The HM10 module can be set in both master and slave mode. In order to
wirelessly communicate with the Sensor Unit’s the slave modules, the Main
Control Unit uses its own bluetooth module set as master to initiate and control
communications. For this reason, the HM10 bluetooth module was also selected
for the Main Control Unit. The HM10 placed in the Main Control Unit uses the
same bluetooth protocol that the Sensor Unit’s bluetooth module uses. The
HM10 bluetooth module also draws a minimal amount of current with a normal
value of 8.5mA. The reduced power consumption makes a nice opportunity for
future expansion if the reliability of the power supply needs to be increased with a
battery backup option. The only downside to using the HM10 bluetooth module is
the fact that it uses Bluetooth 4.0 protocol to send and receive data. Bluetooth
4.0 is not compatible with earlier versions of Bluetooth and all future bluetooth

45

connections for any additional add-ons will need to also use the HM10 bluetooth
module.

Table 4.6: HM-10 Bluetooth Module

HM-10 Bluetooth Module

Price $11

Range 50 meters

Power Consumption 8 mA

Bluetooth 4.0 compatible yes

Sleep Mode Compatible yes

Data Transfer UART

Wireless Connection Modes Master/Follower

4.2.3 CPU Module

The brains behind the Main Control Unit comes down to the CPUs inside
arduinos 2 most popular Circuit Boards, the ATmega328P and the ATmega2560.
These two microcontrollers have gained popularity over the years due to their
lower cost and easy to use integrated development environment (IDE). Arduino
microcontrollers were chosen for this project due to their increase in use by
popular tech companies, and due to their huge library of projects that will aid in
the completion of this project. Arduino also has a massive host of third party
companies that can supply parts cheaply and come with the necessary drivers to
interface with an arduino board.

The first microprocessor we considered was the ATmega328P CPU which is
featured in the Arduino Uno series. The ATmega328P is a small CPU that
features 32 pins. It's first in consideration due to its popularity among circuit
designers and is great for simple tasks with IoT devices. However, the limited
number of pins was a huge barrier when it came to the ability to drive the larger
touch display along with the Wi-fi and Bluetooth Modules. The limited number of
pins also created difficulty when trying to connect the four, four channel relays
needed to control the vent motors.

The second CPU we considered was the ATmega2560. The ATmega2560 has
100 pins. This robust chip is well suited for driving the larger touch display along

46

with having four transfer and receiving pins that simplifies the UART
communication needed for the bluetooth and wi-fi modules. The extra
input/output pins are also ideal for driving the four, four channel relays, and leave
extra room for future extensibility if needed by the sponsor. For these reasons the
ATmega2560 was chosen as the CPU for this project.

Figure 4.5: ATmega328P Pinout Diagram

As seen in the figure of the pinout diagram for the ATmega328P. This is a very
popular microchip due to its more simple design, and is great for the execution of
simple tasks. However, this microchip only has thirty two pins. Of those thirty two
pins, only twenty three pins are designed for Input/Output operations. The twenty

47

three pins are not enough to drive the larger touchscreen display as well as
receive inputs from Bluetooth and Wi-Fi modules. For this reason the
ATmega328P was not selected for use in our project.

Figure 4.6: ATmega2560 Pinout Diagram

Above is the figure of the pinout diagram for the ATmega2560. From first glance
this CPU clearly is more robust and offers one hundred pins. Of these one
hundred pins, eighty six of them can be used for input/output operations. These
eighty six pins are more than enough for driving the large touch display for this
project as well as sending signals to open and close the relays, and receive data
through the wi-fi and bluetooth modules. This microchip offers four USART
connections which allows for the addition of another bluetooth module in the

48

future if it is needed. It is for these reasons the chosen microchip for the project
will be the ATmega 2560.

Table 4.7: Comparison of ATmega328 and ATmega2560

ATmega328 ATmega2560

Number of Pins 32 Pins 100 Pins

Operating Voltage 5 V 5 V

Arduino IDE Compatible Yes Yes

Number of RX/TX pins 1 4

Satisfy Design
Requirements?

No, not enough pins Yes

4.2.4 Display Interface

The concept of a GUI is essential to not only present results from the indoor
Sensor Units to our display, but to also allow the user to manage some controls
in a user-friendly way. We decided to practice software design on an Arduino
Mega 2560 in conjunction with an Adafruit TFT 3.5" Color Touch Screen Display.
Evidently, we took advantage of the Arduino IDE to work on controlling our
Arduino. The TFT display screens utilize the Adafruit_TFTLCD and Adafruit_GFX
libraries. The Adafruit_GFX always works together with an additional library
unique to each specific display type. This allows Arduino sketches to easily be
adapted between many different display types with minimal fuss.

Additionally, these libraries work with many different TFT screens sizes, shields
and controllers, and thus provide the easiest use of programming the user
interface. These libraries can be installed directly from the Arduino Library
Manager within the Arduino IDE. Also, many setup tutorials, demo examples and
detailed documentation of how to use them can be found on Adafruit’s website.
After including the libraries, an Adafruit_TFTLCD object is created along with
parameters that depend on the model of the TFT Screen and Shield and these
details can be also found in the documentation of the libraries.

Fonts and variables are defined with the program’s setup section for the display.
This is where we ultimately initiate all graphics for the screen, the touch, define
the pin modes for the connected sensors, and some custom functions to create

49

the drawings of the program’s home and information screen for the Main Control
Unit’s user interface.

Table 4.8: Touch Screen Display Summary

3.5” TFT Touch Screen Display

Size 3.5”

Screen Type TFT

Touch Compatible Yes

Touch Type Resistive

Operating Voltage 5 V

Data Transfer Method 8-bit

Backlight Control Method Pulse Width Modulation

5. Design Constraints and Standards
For successfully implementing our design, this section describes technical and
logistical challenges presented to our group, and considers constraints that were
associated with the design and production of the ventilation controller. This
section also describes any standards we had to consider that gave an impact on
this project.

5.1 Remote Constraints

The warehouse that we implemented in our design for is in Niceville, Florida.
However, our team members were still living in Orlando during the Fall 2021
semester, which is when we planned on building and installing the system for
automating the vents. Thus, this required the team to make at least one trip to
Niceville during Fall 2021 to install the system, though the team was aware that
more trips may be required. Additionally, Covid-19 has given us a logistical
challenge in that we could not physically meet to work on this project until Fall
2021. We addressed this by ordering our selected parts early so that we could
individually familiarize ourselves with the coding and assembly process as early
as possible.

50

5.2 Environmental Constraints

We faced the challenge of the warehouse being made of metal. This causes
some difficulty when it comes to working with Bluetooth connectivity from the
indoor controller to the outdoor sensor. In order to account for this, we decided to
web scrape local weather data instead of our original intention to hardwire the
outdoor Sensor Unit into the building.

5.3 Sustainability Constraints

Regarding software, we had predicted to encounter complexities dealing with the
implementation of Wi-Fi and Bluetooth connectivity. Thus, we began familiarizing
ourselves with the application of both modules as early as possible to avoid any
bottlenecks during the fall semester. In addition, we also had to have an
automated programmed system that tells the connected vent dampers when to
open, when to close, and what orientation they should adjust to. This ultimately
requires an understanding of thermodynamics and air circulation. Consequently,
we expected to do a significant amount of investigation to be able to program the
most efficient logic commands for the vents.

Another sustainability constraint we faced during this project was due to
semiconductor shortage that the world is facing. Recent news reports have
shown that many industries are facing a shortage of silicon based parts due to a
production shortage caused by the COVID-19 pandemic. These shortages had
an impact on the testing of our project. While designing the power supply for this
project texas instruments has sold out of all buck converters that can be used to
reduce the 12V supply voltage to a usable 5 volts. If the shortages had
continued, the DC voltage reduction may not have been possible for
implementation in this project. Thus, a back up method of using 120 V AC as the
supply voltage was necessary to keep this project on time.

5.4 ISO/IEC/IEEE 29148-2011 Standards

The Institute of Electrical and Electronics Engineers (IEEE) is a professional
association responsible for developing standards in a broad range of
technologies. The ISO/IEC/IEEE 29148-2011, known as Systems and software
engineering - Life cycle processes - Requirements engineering, which specifies
the required processes that are to be implemented for the engineering of

51

requirements for systems software products throughout the life cycle. In use of
this standard, we have to acknowledge and gather the appropriate requirements
as well as document them, validate them and provide a basis of verifying designs
and accepting solutions.

This standard provided us with a guideline to define well formed requirements for
our software requirements, which allows us to coherently provide a way to
distinguish between the requirement and its attributes. It also provides a list of
characteristics that each individual requirement should have, like it being
necessary, which means that if this particular requirement is removed, then there
will be a deficiency that will exist. It also provides a list of characteristics to
consider when evaluating a set of requirements, like it being consistent, meaning
that there are no duplicates, and the same terminology is used for the same item
throughout all the requirements. After gathering all the requirements and
distinguishing between actual requirements and requirement attributes, the
standard also provides an iterative application of processes, which is a way to
apply and check to see if there were any other requirements that were missed
and be able to transform the requirements into a technical view of the product,
that will be able to fulfill all the requirements. We made sure that our sponsor was
involved in making sure all of his requirements were met in a similar format as
the ones detailed in this standard.

After defining the analysis requirement process, we were introduced to the
requirements in architectural design, which gave us guidelines on how to analyze
and evaluate the architecture and additionally defined our project’s architecture.
In regards to this project, there are two architectures, the PCB and the website
framework. Following this, the standard defines what a good verification method
consists of, and what it addresses, it also specifies four standard verification
methods used to obtain evidence that the requirements have been met. These
four methods are: inspection, analysis (including modelling and simulation),
demonstration, and test. Inspection examines the architecture using sight,
hearing, smell, touch, and taste. It is more of a visual compare and contrast on
what was designed as a requirement and what it ended up being. Analysis
utilizes simulation and analytical data as a verification method. Demonstration
deals with the functional performance and what it is able to accomplish, so in
regards to our project, this is seen as the testing of our website’s functionalities
and then testing the hardware to be able to do the same functionality as the
website based on the touch of the user on the user interface attached to the
PCB. Finally, the last method, testing. This is checking the performance capability
of an item in controlled conditions that are simulated and real world conditions
too. Which are all good methods that our team implemented once our design was
created and completed.

52

Finally, in the standard there are different outlines provided to bring the document
all together, with the example outline for the software requirement specification
being at the end. And also provides examples of organizational approaches to
the requirements in the software requirement specification. These were all great
outlines for us to utilize after we developed the system and documented it.

6. Hardware Design Details
This section covers the design methodology and wiring requirements of the
hardware components on both the Main Control Unit and Sensor Units. This
section was crucial in deciding the requirements for each component, since many
of these components needed different voltage levels for different pins. In this
section, we layed out the basic connections needed for each component, and
how they are laid out to form a cohesive unit that works in unison with one
another.

6.1 Main Control Unit Design

The Main Control Unit is responsible for collecting all the data from each of the
Sensor Units, as well as sending commands from the local display and receiving
data from our website. The Main Control Unit then processes all the data to
adjust the relays on or off which in turn opens and closes the roof vents. The
Main Control Unit has the benefit of getting its power supplied from a hard wired
line. The hardwired line comes from the 12V DC power supply that is used to
drive the vent motors that are already installed at the location. This line was
chosen to reduce the overall number of components needed for the Main Control
Unit. Since the voltage source is already 12V, no full bridge rectifier or any other
frequency correcting components is required. The 12V only had to be reduced to
5V to make it usable for the main power source of the Main Control Unit.

6.1.1 Wi-Fi Module Wiring

The ESP8266 can't connect to the Arduino through TXD, RXD, GND, and the
VCC pins to the RX, TX, GND and 3.3 V pins, respectively. The RXD of the
ESP-01 needs to receive a signal of 3.3V logic and not 5V. If this were to happen,
the ESP-01 received signal will malfunction. Thus, the TX received from the
Arduino can be connected to a voltage divider. The voltage divider will produce
an output voltage that is a fraction of the input voltage. We will use the voltage
divider between the TX of the Arduino and RXD of the ESP-01 to produce an
output voltage of 3.3 V. THe ESP8266 can draw a lot of current during its normal

53

operation. To supply the power required for this module the 3.3V will come
directly from the power supply via a voltage divider to drop its voltage to the
required 3.3V.

In summary,
● The ESP8266 transmits and receives its data via the TX and RX pins.
● The ESP8266 requires a 3.3V logic level therefore it will need a voltage

divider to reduce the voltage on its RX pin.
● The ESP8266 requires 3.3V for power.

○ During prototype testing it will get its power from a 3.3V pin
○ Final design will power it straight from the power supply via a

voltage divider
● Prototype testing still continues, Once it is completed the final pin layout

will be decided

Figure 6.1: Wiring for Wi-fi Module

6.1.2 Bluetooth Module Wiring

One of the main drawbacks to all of the Bluetooth modules we researched is their
logic voltage of 3.3 V. Directly plugging them into the arduino board may cause
serious damage to the bluetooth module itself due to the five volts the arduino
board puts out. This damage could burn out the board completely making the
bluetooth communication impossible. To ensure that this would not happen, a
voltage divider was implemented to reduce the input voltage to the board. The
voltage divider consisted of a one kilo-ohm resistor placed between the five volt
power supply and the board and a two kilo-ohm resistor placed between the

54

board and a ground pin. This reduced the voltage supplied to the bluetooth
module to 3.3V allowing for safe operation of the bluetooth module. However, the
voltage divider was not required for all connections. The only connections that
required a reduced voltage were the receiving pins of the UART data
communication and the VCC pin.

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 · 𝑅2
𝑅1+𝑅2 ⇒ 5𝑉 2𝑘Ω

1𝑘Ω+2𝑘Ω = 3. 33𝑉

Another potential method for connecting the bluetooth module to the Main
Control Unit was through input/output pins. This could have been necessary due
to the fact that the bluetooth connections are one to one. This connection makes
it difficult when trying to read data from multiple sensors. To establish a bluetooth
connection to a different module, the current connection must first be severed
before any new connection can be established. The only way to get a bluetooth
module to connect to a new device is through AT commands. To get the
bluetooth module into AT command mode the themaster device must be shut off
completely and restarted. Once the device is restarted, the code can send AT
commands to the bluetooth module to get it to pair with another module.
However, If the bluetooth module is connected to a 5V VCC connection then the
power cannot be shut off to the module and the new connection cannot be
established. This is where the input/output pins come into play. Instead of
connecting the bluetooth module to a VCC pin we connected it to a I/O pin to
supply its power. Since we chose to use a module that utilizes bluetooth low
energy protocol, an input/output pin was more than enough to supply its power.
When the bluetooth module needs to turn on we simply drive the pin high to
VCC. Whenever the bluetooth module needs to be turned off we simply drive the
pin low to ground. This can also be done to the transfer pin on the printed circuit
board to completely electrically isolate the bluetooth module. The wiring for these
pins will still contain the voltage divider required to reduce the voltage to a usable
level for the bluetooth module.

In summary,
● This bluetooth module draws a small amount of power, and are powered

off a normal pin during prototyping and final design.
● A 3.3V logic level is required when transmitting data to its RX pin. A

voltage divider is implemented to reduce that voltage.
● The bluetooth module needs to be cleared prior to establishing new

connections with the different modules.
○ This is accomplished by driving the digital pin low to ground.

● Once the bluetooth module has been shut off and turned back on, it
responds to AT commands to establish a new connection.

55

6.1.3 Relay Module Wiring

The backbone of our Main Control Unit is the bank of relays. These are wired to
control the 12V DC vent motors that were already previously installed inside the
warehouse. The relays were wired in a way that allows the DC motor to run
forward and reverse. The relays chosen for this are the Elegoo 4-channels relay
units. These relays were chosen due to their popularity and price point. The 4
channels run in pairs and each pair controls the direction of travel for the DC
motor. The warehouse already contains four vents each with their own motors. A
four-channel relay module is thus required for each motor, making a total of 16
relays. Each four-channel relay module requires six wires, one for 5V VCC, one
for ground, and four wires to be connected to input/output pins which then
controls the operation of the relays.

Figure 6.2: Double Pole Double Throw (DPDT) Switch Wiring

Figure 6.3: Relay Wiring To Convert DPDT switches

56

In summary,
● Relay modules replace the double pole double throw (DPDT) switches

that were previously installed.
● The relay modules isolate the Main Control Unit from the 12V source

required to drive the vent motors.
● Four relays replace a single DPDT switch.
● Our implementation requires 16 relay modules to replace all four DPDT

switches.

Table 6.1: Relay Pinout Connections

Relay Pin Prototype Pin CPU Pin

Relay
module 1

IN1 30 60 (PC7)

IN2 31 59 (PC6)

IN3 32 58 (PC5)

IN4 33 57 (PC4)

Relay
module 2

IN1 34 56 (PC3)

IN2 35 55 (PC2)

IN3 36 54 (PC10

IN4 37 53 (PC0)

Relay
module 3

IN1 38 50 (PD7)

IN2 39 70 (PG2)

IN3 40 52 (PG1)

IN4 41 51 (PG0)

Relay
module 4

IN1 42 42 (PL7)

IN2 43 41 (PL6)

IN3 44 40 (PL5)

IN4 45 39 (PL4)

57

6.1.4 Touch Display Wiring

The touch display is connected to the Main Control Unit via wires. This was done
due to the fact that the touch display needs to be mounted to the cover of the
electrical box. The touch display thus requires sixteen wires to transfer the data,
receive power, and receive signals from the touch screen. These sixteen wires
have a disconnect in them which allows the cover to be removed without any
strain in the wires or pins. The screen transfers and receives its signal via a SPI
connection or eight bit connection. The eight bit connection was chosen due to
the faster transfer speeds. The faster transfer speeds thus enable the screen to
have a faster response time than with the SPI connection. The downside of using
the eight-bit connection is the increased number of input/output ports required to
transfer data to the touch screen. However, this issue has been resolved due to
the selection of the ATmega2560 CPU which has more than enough pins to
make all the necessary connections.

Table 6.2: Display Pinout Connections

TFT Screen Pins Prototype Pins CPU Pins

3-5V 5 V 5 V

GND GND GND

D0 22 78 (PA0)

D1 23 77 (PA1)

D2 24 76 (PA2)

D3 25 75 (PA3)

D4 26 74 (PA4)

D5 27 73 (PA5)

D6 28 72 (PA6)

D7 29 71 (PA7)

CS A3 94 (PF3)

C/D A2 95 (PF2)

58

WR A1 96 (PF1)

RD A0 97 (PF0)

RST RESET 30 (RST)

Y- A7 90 (PF7)

Y+ A5 92 (PF5)

X- A6 91 (PF6)

X+ A4 93 (PF4)

In Summary,
● The connection between the Main Control Unit and the touch screen are

made with wires.
○ This was done to facilitate removing the box cover when required.

● The connection for the screen are 8-bit data transfer.
○ This was done due the increased data rates for the 8-bit

connection.

6.1.5 Main Control Unit Housing

The Main Control Unit is housed in another Cantex box next to the one that is
already installed onsite at the warehouse. The current box has 120V AC coming
into it through the bottom port hole. Inside the box a 12V DC converter is already
installed. The 12V DC electrical cables then connect to the double pole, double
throw switches which are mounted to the box cover. The 12V DC power lines that
control supply power for the vent motors leave the cantex box out of the top port
holes.

During our installation, the 12V DC power converter remained in place.
Additionally, the front cover was removed and replaced with a new front cover.
This was done because of the holes from the double pole, double throw
switches. Those holes would not have been electrically safe and would have
created an eyesore that would detract from the overall project. The relay modules
were then mounted on an acrylic plate and mounted inside this box

A second cantex was added to the left of the current box. This box is serving as
the housing for the PCB, Wi-fi Module, Bluetooth Module, and Touch screen. A
rectangular hole was cut in the center of our new cantex cover to allow for the

59

touch screen to be surface mounted to the cover of the cantex box. The printed
circuit board of the Main Control Unit was mounted behind the touch screen
display. There are wires, with a disconnect, that connect the PCB to the touch
screen display to allow for the cover to be removed and replaced with ease.

In summary,
● The housing for the main control unit will be the Cantex box that is located

on site
○ This was done because of the permanent connections and power

source that are located inside the box
● The location of the power supply inside the box will remain unchanged
● A new front cover will be used due the holes from the double pole double

throw switches.
● A square hole will be cut in the new cover and the screen will be mounted

to the front cover
● The PCB of the main control unit and the relay modules will be mounted

inside the box.

6.1.6 Power Supply

The power for the Main Control Unit is provided from the power source for the
motors. This was decided in order to reduce the cost, and the plug availability for
the area. The switch box that was previously installed in the warehouse was
plugged into a standard north american 120V AC plug. The AC was stepped
down to 12V then converted to DC using a basic full bridge rectifier. This 12V DC
source that is provided in the box provides a perfect power source. To make this
power source usable, the 12V DC had to be stepped down to 5V DC which was
accomplished with the Texas Instrument TPS562202 and by using a voltage
divider circuit to achieve the required voltage. The power supply runs on voltages
varying from 7V to 17V which accounts for any power drops that may occur
during the motor operation. Capacitors are also located at the input to reduce any
noise from the power supply and filter out any voltage spikes or drops that may
occur. Likewise, the output has a capacitor to filter out any noise along with an
inductor to reduce any sudden changes in the current.

The main power supply may possibly need to be revised in the future due to
supply chain shortages. Currently, all Texas Instrument buck converters are sold
out due to the semiconductor shortage. However, there are many alternative
options to the buck converter. One such option is using a linear voltage regulator
to power reduce the voltage to a usable 5V. The linear voltage regulator is not as
efficient as the buck converter, and requires an additional heat sink to ensure that
it does not fail prematurely.

60

In summary,
● The source of power to the power supply will be 12V DC supplied from the

vent motor power supply.
○ This was chosen to reduce the number of parts since there is no

need for rectification.
● The power supply was designed using Texas Instrument Webench.
● The previous power supply uses a buck converter to reduce the 12V DC

to 5V DC.
● An alternate power Supply was designed due to supply constraints of buck

converters.
○ Alternate supply uses a linear voltage regulator to reduce the 12V

DC to 5V DC.

Figure 6.4: 5V DC Power Supply Designed On T.I. Webench

6.2 Sensor Unit Design

For us to complete the wiring for each Sensor Unit, multiple connections were
needed to connect the DHT22, the HM 10, and the power supply to the arduino
nano. These are the only major components of the Sensor Unit design.

Firstly, we began connecting the DHT22, which only has four pins, and
connected three of them to the arduino. Pin 1 is connected to Vcc. Pin 2 goes to
D2, a digital data pin. Pin 2 also has a 10k ohm resistor connecting to the 3V3 on
the arduino. This acts as a pull-up resistor for when the pins switch form output to
input. Pin 3 is unused, and pin 4 is connected to ground.

61

Figure 6.5: Schematic of DHT22 - Arduino Nano Connections

The HM 10 Bluetooth Low Energy also has four pins, but unlike the DHT22 all
four pins are connected. Pin 1 goes to the 5V output pin on the arduino. Pin 2 is
grounded, and Pin 3 was connected to D8, since it’s a digital input. Finally pin 4
goes to D9, but had to be split by a 1k ohm and 2k ohm resistor, with the 1k ohm
resistor connecting to D9 and the 2k ohm resistor going to ground, since the
serial connection of the arduino expects 5V and the HM 10 expects 3.3 V. A
schematic of the HM 10’s connection to the Arduino is shown in the figure below.

Figure 6.6: Schematic of HM 10 - Arduino Connections

62

Our arduino nano every microcontroller came with the header pins unattached.
After they were soldered to the board, it was connected to the HM 10, DHT22,
and battery. Since multiple components used ground and Vin, the arduino was
only connected at a few pins: Ground, 5V out, Vin, 3v3, D8, D9, and D2. This
meant that if we were to later amend our design to add more sensors (e.g. wind
speed) we would likely have plenty of pins available. The image below shows a
close up of the fully assembled Sensor Unit, without the battery installed. Since
the circuit was entirely on the breadboard for testing, no casing was needed at
this stage.

The breadboard connections for testing are as follows:

Table 6.3: Sensor Breadboard connections

Module Pin Connection Resistor

DHT22 1 3v3 (arduino, 2nd from top left) N/a

2 D2 (arduino, 5th from bottom
right)

10k Ohm resistor
to 3v3

3 Unused N/a

4 Ground (arduino, 2nd from
bottom left)

N/a

HM-10 1 5V out (arduino, 4th from bottom
left)

N/a

2 Ground (arduino, 2nd from
bottom left)

N/a

3 D8 (arduino, 5th from bottom
right)

N/a

4 D9 via 1k Ohm resistor
Ground via 2 k Ohm resistor

1k ohm to D9
2k Ohm to
Ground

Battery Red Vin N/a

Black Ground N/a

63

Figure 6.7: Assembled Breadboard for a Sensor Unit

In summary,
● A Sensor Unit was built on the breadboard for testing, using all of the

components selected during part selection
● The DHT22 has a 10k pull up resistor
● The HM 10 uses a 1k and a 2k resistor to split voltage
● From this point, our next step was moving to a PCB design

7. Software Design Details
In this section we discuss what we have utilized to complete the software aspect
of this project. Additionally, this consists of our design methodology, as well as
the software we have used to code the different components we proposed in the
hardware design details.

7.1 Wi-Fi Module Connection

Once the connection of the Wi-Fi module to the Arduino was set up, the code
had to be uploaded to the Arduino to enable serial communication between the
serial monitor and the ESP-01 through the Arduino. As a result, when a
command is entered into the Arduino’s Serial Monitor on the computer, the
Arduino will relay it to the ESP-01. The following AT commands can be written in
the Arduino’s Serial Monitor to connect the ESP-01 to a Wi-Fi network:

64

Table 7.1: Basic AT Commands

Command Function & Response

AT This will check if the module is connected properly and its
working, the module will reply with an OK acknowledgment.

AT+RST This will reset the Wi-Fi module since it is good practice to reset it
before or after being programmed, the module will reply with a
system ready acknowledgment.

AT+GMR This command is good practice to declare the firmware version
installed on the ESP8266, however, it is an optional command.

AT+CWLAP This will list the Access Points (available networks) and their
available signal strengths, in which the module will reply with an
OK acknowledgment.

AT+CWJAP =”SSID”,
”PASSWORD”

This will join an Access Point (available network) by connecting
the ESP8266 to the specified Wi-Fi SSID and PASSWORD.

AT+CWJAP=
“”,””

Contrary from the previous command, this will disconnect from
any Access Points.

AT+CIFSR This obtains and displays the ESP8266’s IP address.

AT+CWMODE=? This sets the Wi-Fi mode. It should be set to Mode 1 if the
module is going to be used in station mode (client), or 2 to be
used as a Wi-Fi router (host), or 3 to be used as both

AT+CIPMUX=? This enables the multiplex mode. It should be set to 1 for multiple
connections and 0 for single connection.

AT+CIPSERVER
=1,port_number

This configures the ESP8266 as a Wi-Fi server. Here ‘1’ is used
to create the server and ‘0’ to delete the server.

Alternatively, it is possible to program the ESP8266 using Arduino IDE which is a
lot easier. You no longer need to learn instruction documentation of the ESP
module or have to program it using AT commands. This is done by pasting the
link:
“http://arduino.esp8266.com/stable/package_esp8266com_index.json” into the
Additional Board managers URL and then installing the “esp8266 by ESP8266
Community” from Board Managers within the Arduino’s IDE. Note that after this, if
you try to use the AT commands of the module it will not work. you will have to
flash the ESP8266 module with the firmware so that we can get it back to
working with AT commands again.

65

In summary,
● The first step is to connect the wi-fi module to the arduino based on the

wiring diagram.
● For the next step we will establish a connection between the wi-fi module

and serial communication port through the arduino.
○ The serial monitor enables communication between the computer

and ESP8266.
○ An example code provided in the Arduino IDE to aid in establishing

the connection.
● Next, use the serial monitor to ensure a connection is established with the

ESP8266.
● Next setup the wi-fi module to enable wireless communications

○ This can be done using the AT commands that are listed in the
table above.

● Finally, test the wireless connection for the ESP8266.
○ This can be accomplished with a phone or computer.

7.2 Bluetooth Module Setup

Bluetooth networks use a master/slave model to control when and where devices
can send data. The master device must run an inquiry to try to discover a slave
device. The sent inquiry request, and any slave listening for such a request, will
respond with its address, and possibly its name and other information. Once a
master device knows the address of a slave device, a connection between the
two Bluetooth devices is formed through a process called paging. A single
master device can be connected to several different slave devices, but any slave
device in the network can only be connected to a single master.

After a slave has completed the paging process, it enters the connection state.
While connected, a slave can be in regular active mode, it is actively transmitting
or receiving data. Likewise, a slave can also be put into different low power
modes while connected. These include a power-saving mode, where the slave is
less active and only listens for transmissions at a set interval (e.g., every 100ms).
A temporary hold mode, where the slave sleeps and returns to active mode when
that defined period has passed (the master can command a slave device to
hold). And lastly, a park mode where a master can command a slave to become
inactive until the master tells it to wake back up.

Mainly, the master coordinates communication throughout the network, it can
send and request data to any of its slaves. However, slaves cannot talk to other
slaves in the network, they are only allowed to transmit to and receive from their
master. Thus, Bluetooth can only have bi-directional communication. In Bluetooth

66

Point-to-Point protocols, the slave device is the one with data from sensor
readings and the master device is the one that connects to the slave to gather
that data.

When multiple modules are set to slave, they are waiting for a connection, and
the one module operating as master initiates the connection with the other
devices. Thus, we essentially use a loop to instigate a bi-directional
communication with each of our slave module’s IP addresses. Since we know all
the IP addresses for each of the slave modules, we break communications with
one slave by cutting off power, restore power and go into AT mode to configure
the next slave, then cut off power, and then connect with the other slave, all in a
trip round the loop. Alternatively, it is possible to put the slave modules into one
of the low-power modes mentioned previously to allow the preservation of more
power while they are waiting for a connection.

In summary,
● Bluetooth networks use a master/slave relationship for communication.
● The master runs an inquiry to establish a connection with the slave device.

○ The slave responds with its address and other information required
for the connection.

● The connection is established through a process known as paging.
● A master can be connected to several slaves, but a slave can only be

connected to one master.
● After the paging process is completed the slave can enter the connection

mode.
○ When in connection mode the slave can actively send and receive

data.
● A slave module can be put into power saving mode where it only listens

for requests for short time intervals.
○ Power saving mode is useful when running off a battery.

● The slave can also be put into park mode.
○ The slave sleeps until it receives a command from the master

module to wake back up.
● Point to point protocol is used where the slave will send the data and the

master receives the data.
● Communication is established with multiple slave modules by cutting

power to the current slave and sending AT commands to connect it with a
different salve module.

67

7.2.1 Master and Slave Module Configurations

There are multiple Arduino Nanos around the warehouse that measure
temperature and humidity using a DHT22 sensor. The data from these sensors
will be sent through Bluetooth via an HM10 to another HM10 on an Arduino
Mega, which is the Main Control Unit that shows the average data on a TFT
display. The HM10 connected to the Arduino Mega is set as master, and the
other HM10s connected to Arduino Nanos are set as slaves.

Configuring the Bluetooth modules were done by entering some AT commands
into the Arduino’s Serial Monitor. Usually, setting up a slave device is done before
the master. Thus, for each slave module, the command AT+UART? returns the
baud rate of the module, the command AT+ROLE=0 sets the module as slave,
and lastly, every single HM10 has a unique address so the command
AT+ADDR? returns the IP address of the module (which is needed later during
testing).

After arranging all the slave modules, the master module was then configured
using the same steps. The master’s baud rate needed be the same as the
slaves, and the command AT+ROLE=1 sets the module to master. After that,
AT+CMODE=0 was used to set the master’s connection mode to a fixed
address. This allows us to set the IP address of a specific slave module by doing
AT+BIND=someAddress since our project is dealing with multiple modules set
as slave.

The Bluetooth modules can also have user-friendly names given to them. These
are usually presented to the user in place of the address to help identify which
device it is. Using AT commands, setting a module name is done by the
command AT+NAME=modulename, where modulename will be the newly set
name.

In summary,
● There are multiple slave modules spread throughout the warehouse to

collect data from multiple points.
● The data collected is sent via a bluetooth connection provided by the

HM-10 modules.
● The HM-10 module connected to the Main Control Unit is set as master.
● The HM-10 module connected to the Sensor Units are set as slaves.
● Setting the mode for the modules is achieved by using AT commands.

○ These commands are typed into the serial monitor inside the
Arduino IDE.

68

● The bluetooth modules can also be connected to each other using AT
commands directed through the serial monitor

● Finally, user-friendly names can be given to the bluetooth modules to
distinguish them from one another.

7.3 Unified Modeling Language

Unified Modeling Language, also referred to as UML, is utilized by software
engineers to provide a way to visualize the design of the system. It is used to
model object-oriented software engineering, but it can also be used to model the
structure of an application as well as its behavior. The UML documents provide
an excellent way of organizing thoughts during the planning stages of
development as well as potentially preventing delays caused by
miscommunication. There are many available UML documentation options, and
in this section we describe two of them, Use Case diagram and the Entity
Relationship Diagram. Both of them have been essential in the development of
our web application.

7.3.1 Use Case Diagram

Use case diagrams were used to map out the different ways that a user, or also
referred to as actors, interact with the system. It was used to represent the
different scenarios that the system uses to interact with users. And it also maps
out the goals that the system is able to do at a high-level. Therefore, it does not
contain many specific events, but instead only shows the general flow.

As displayed in the diagram below, there are 5 primary choices that the user is
able to make. First and foremost, they are able to Login into the site and thye are
able to change any of the ventilation configurations. When they log in, the API
checks that the credentials exist to give them access to the dashboard. We
thought it would be wise to include a sign-up process, since there can be other
users apart from our sponsor who would also need access to the website. Along
with these two, we can see that the user can change the ventilation settings,
there are two options, open or close. And there are 4 vents that have this same
configuration. Lastly, the user has the option of checking the weather forecast for
the city, which is stored in the database too, because this is communicated to the
board, so that the user also has access to it there.

69

Figure 7.1: Use Case Diagram of Web Application

In summary,
● A use case diagram is used to visualize the applications the software has,

as well as show the end user (or in this case sponsor) what the
functionalities are for the software.

● Each available choice is broken down into a bubble, which contains a high
level description on what the user is able to do.

● For this project, there are five different options that the user is able to do,
which is then sent to the database to make the appropriate changes.

7.3.2 Entity Relationship Diagram

An Entity Relationship Diagram, or most commonly referred to as an ERD, is
used to demonstrate relationships that exist between the major entities in a
database. An entity is usually a person, or role, but it can also be objects, like
products. Each entity has its own attributes, like a person’s first name and has
what type of attribute it is, for a person’s first name we would have a varchar type
and specify the limit of characters that can be used. Along with attributes, the

70

most important attribute in an entity will be the primary key, which uniquely
defines each data in the database table. When we connect the entities, we utilize
a foreign key which is a reference to a primary in another table, and this is how
we connect each entity. However, in the diagrams, we specify the foreign keys
and use special connectors to specify the sort of relationship that they have. The
available relationships are one-to-one, one-to-many, and many-to-many. For the
purposes of our database, we will not be using a many-to-many relationship,
instead we will be doing a one-to-many relationship. Which happens when one
record in a table has a relationship with many records in another database.

Figure 7.2: Entity Relationship Diagram

As we can see from this diagram, the modifications to the vents installed in the
warehouse will have a one-to-many relationship with each user. Since there is
only one system that can be modified and there can be many users that can
have access to the system. The system will have the following attributes that will
be in charge of deciding what changes will be made to the physical interface in
the warehouse as well as to the vents. Since each vent has three available
configurations, each will get its own attribute labeled after it, and the weather
data collected from the web scraping will also get stored.

In summary,
● The entity relationship diagram is a common Unified Markup Language

diagram used to visualize the relationships between MySQL tables.
● For this project, there will be two tables, with a one-to-many relationship.

Where the first one will be the table to control the board, and to where the
website data will be sent to, and the second table or entity, will be the
users that will be able to access the website and make changes as they
choose to the ventilations or check for the temperature, both indoor and
outdoor.

71

7.4 TFT Touch Screen Design Concept

The conceptual design of the home screen shown in the below Figure 7.3, has
toggling buttons for each of the four vents. Even though the system can adjust
the vents automatically, these buttons are implemented to give the user the
ability to override the automation whenever they choose to. When the user
toggles these buttons, they alter the orientation of the vents to either be open or
closed. Additionally, there is an information icon placed in the top right of the
screen which takes the user to an information screen when pressed. This screen
displays additional data to the user such as the automation status, the ideal
temperature set by the user, a reset button to restart the Bluetooth
communication loop, and the current climate data at each Sensor Unit. Below is
an illustration of our display’s Home Screen, and the yellow box indicates where
the pushable buttons are located on the screen. However, these yellow boxes
are not shown in our final design, they are only a reference.

Figure 7.3: Concept Design of Display’s Main Screen

The user interface for the controller’s display contains only two pages. One page
being the display’s main Home Screen, and the second page being the
Information Screen accessed by the information button at the top right corner of
the home screen. Regarding the code logic, by having an integer representing
the current page, we can indicate what page/screen the user is on. For example,
this is done by checking whether the user is currently on the home screen (0) or
the information screen (1). The appropriate screen for the user is then displayed
depending on which condition is met.

72

In summary,
● The display has toggle buttons that utilize the touch screen system.
● These toggle buttons allow for manual control of the vent system.

○ Manual controls override the automation commands
● The display shows the current indoor and outdoor temperatures.
● An informational screen is displayed when the “information” button is

pushed.
○ This information page shows additional device information and

controls such as the automation status, the ideal temperature set
by the user, a reset button to restart the Bluetooth communication
loop, and the current climate data at each Sensor Unit

● The display contains two screens that the user can toggled between.
○ A Home Screen and an Information Screen

7.5 Web Application Wireframes

In this section we discuss the web application’s wireframe for the dashboard.
Created using Figma, which is mentioned in section 3.8, is a very good design
software. This wireframe facilitates the design process for the dashboard. Like
this one, there is also a simple wireframe for the login page too, and account
page, so that we may be able to utilize most of our time creating and
implementing the APIs, as well as potentially adding more features in the future.
To make the most of using Figma, we had to take a dive into UI/UX design, which
helped prioritize the needed functionalities as well as optimize the layout and
look of our website. The UI design, or user interface design, focuses on making
the interface attractive. While the UX design, or user experience design, focuses
on making the interface useful to the user.

Since the UX design focuses on enhancing the user satisfaction with the product
or interface, by improving its usability, accessibility, and pleasure provided in
each interaction between the user and the product. This is where our focus was
before moving to the UI design, so all of the early preliminary wireframe designs
for the web application are focused on utilizing UX for the most optimal design.
To get started on our UX design, we had to take into account the existing
principles. The main ones we focused on was making sure that the interface was
usable, meaning that it is able to fulfill the users needs. We also had to make the
interface self-explanatory, meaning that as the user makes their way through our
application they can learn what each and every button does and won’t be
confused or think the application is complicated. UX design also considers how
to be able to successfully combine the UI design with any other visual design that
are dded with no issues. There were other principles that emphasized keeping

73

the interface as simple as possible. Along with these principles, there were also
others that we kept at the back of our minds like accessibility, and memorability.

Figure 7.4: Early Wireframe for Web Application

Our first dashboard concept design is shown in the image above. It has
drop-down menus for each vent available in the warehouse. Since at the time we
assumed that we would use three configurations for each vent, each vent’s
drop-down menu has three options: Downward, Upward, and Closed. There is
also an estimated temperature inside the warehouse. The outdoor temperature is
determined by the web scraping feature that we implemented, and the
functionality for this feature is to refresh and reload via a click of a button to be
able to get any changes to the temperature.

For our other pages, the steps to creating the wireframes are similar to the ones
utilized in this dashboard, however they are much simpler than the ones here as
they are mostly forms. Additionally, there is an account page, where the user has
the ability to be able to update their password and email associated with their
profile. Once these preliminary wireframes were completed, we shifted our focus
to the UI design. Similarly to UX design, the UI design also has a couple of
principles that are used in the industry, these of course vary depending on the
source, but the main ones we encountered and considered were four principles.
The first principle states that the user should be placed in control, in simple terms

74

this refers to letting the user be able to gain a fast sense of mastery. This could
mean including reversibility for actions, like if something is deleted on accident,
providing an undo action, or a popup that asks the user if they truly want to
delete a record or data before actually deleting it. We have to have some sort of
response to be able to show the user which action they are performing, so they
aren't stuck in limbo waiting for a sign that an action is truly being completed. We
also accounted for users of many different skill levels. The second principle
states that we have to make sure we give the user comfortability whenever they
use the interface, this is done by getting rid of any of the elements that are not
helping the user, items that are irrelevant or rarely used. The right terminology
would also have to be used and be clear to any user interacting with the
interface. We would account for any errors that could occur, like forgetting the
password and having an action to either send it to the user or reset it. Another
golden principle stated that we made sure of, was to reduce cognitive load,
meaning we had to reduce things like the number of actions to complete a task,
or add visual aids like tooltips to be able to support users in recognizing
information. This also applied to using symbols or icons that are already
recognizable to users from everyday exposure. The last main principle expressed
is making the user interface consistent. This refers to things like the style, and
things like colors, fonts and icons are being used throughout the interface. The
behavior also has to be consistent throughout it. This is referring to having
consistent buttons and menu items that do not change throughout the navigation
of the interface. Along with these principles, we also consider good color
schemes to apply that which complies with our existing UI design principles.

In summary,
● The wireframes we have created are done using Figma, and facilitate the

process of bringing this product to life.
● Some of the tools we considered using to make the best user-friendly

interface are UI/UX design.
● UI design and UX design each have their own principles that are followed

by industry professionals and these are also followed by us.
● We firstly focused on the UX design aspect to create the first wireframes,

and then considered the UI design aspect to make sure we had everything
we truly needed, and that it makes sense to the user.

7.6 Server Setup

By using a web hosting provider, we are given a place on a web server to store
all of our website’s files, which is then delivered as soon as a browser makes a
request by typing in the domain name or our created website. With a free hosting
service, we are able to utilize the opportunity to publish our own website and

75

share them with the world completely free. We originally considered using
000webhost as our free hosting platform because it provides 300MB of disk
space, 3GB of bandwidth, and the support of the latest PHP and MySQL
versions. Additionally, we are able to own dedicated resources, separate FTP
details, and use any tool provided within the Web Host Manger’s control panel.

If we ever outgrow the limits of free web hosting and need something more
powerful, we can always consider upgrading to premium web hosting options for
more resources and extra features. These extra features would include
larger/unlimited bandwidth, frequent backups, extra disk space, additional
MySQL databases, and more for $1.39 to $3.99 a month depending on the
premium plan chosen.

After signing up for a free hosting account, we were able to begin working with
this platform by uploading our existing website’s code to FTP via the built-in File
Manager where we upload our application’s PHP scripts. For easier
development, however, we also had the ability to use a CMS such as WordPress,
or use the provided Website Builder Tool which has drag and drop features to
streamline the entire process. These options allow for a “Mobile Ready”
application which is flexible for screens of all shapes and sizes. However, for the
purpose of this project, we provide our own files that already have everything
enclosed.

In summary,
● Our web hosting provider allows us a place to store our files, as well as

personalize our domain name, though we have the webhostings name
attached to it as well unless we pay for a domain name.

● The free hosting already comes with storage that should work and be
enough for our web application, however if there were ever to be any
issues that would require us to upgrade, our web hosting provider has
some very affordable options.

● 000webhost has its own file manager that facilitates storing each of our
files.

7.7 Website Files Setup

The front end of our website consists of a mixture of HTML and CSS, each page
to our website has its own HTML file, in order to keep everything organized. The
CSS is utilized to stylize the website, as well as make it responsive to different
screen sizes, we also utilize libraries like bootstrap to make the responsiveness
even smoother. There are at least 4 HTML files utilized, these are the login and
sign up pages, as well as the dashboard where the user has the ability to see the

76

status of the vents as well as the temperature outside of the warehouse. There is
also an account page in case any of the user's information needs to be
configured. Following the HTML and CSS files, the functionality is contained in
JavaScript files. Each of which are in charge of one functionality to make it more
organized as well. These JavaScript files get the information inputted by the user
and format it into JSON packages. Then they are sent by referencing the PHP
files, which connects the database with the frontend. It is the API of the system.
There is also a file per request, and they are in charge of translating the request,
and returning anything back to the user that might be required. In between, there
is a space for the API to do the web scraping, and collect our desired data of the
weather outside the warehouse.

7.8 Database Setup and Connection

It’s important to have our information saved to a website’s database in order to
control our system from anywhere via internet connection. Thus, we utilize the
Database Manager Tool supplied by the web host to create a new SQL database
by providing a database name, username, and password. The new database is
then managed by using PhpMyAdmin which is one of the most popular MySQL
administration tools for web hosting services. Through this service, we manually
create a new table to store values from our website, and we also import an
already existing SQL file which creates objects such as tables and indexes
automatically. The PHP files for our project’s website specify the same
information that was used when establishing the new database. This includes the
created username, password, database name, and the server name. By doing
this, our website now has a connection to a database so that our application can
store received values.

7.9 Arduino Code Setup

To tie it all together, the code that is uploaded to our Arduino Mega includes a file
that connects it to our Adafruit HUZZAH Wi-Fi module. It specifies a domain in
order to fully make a connection with both the website and database. The
Arduino code that is uploaded to our Wi-Fi module states the user’s exact Wi-Fi
name, Wi-Fi password, the name of our hosted website, the database
identification, and the database password. Ultimately, the information from the
Sensor Units that are connected to the Arduino are stored in the database, and
then we use the website’s connection to the internet to read (and update) that
information anywhere and anytime. The decision to create our project’s web
application using the building blocks of HTML, CSS, and PHP was reached due

77

to the team’s interest in learning a deeper understanding of web development
and wanting to gain more appreciation of the basics.

7.10 Design Methodologies

When creating any project, it is helpful to have a good software design
methodology in place to make sure that the tasks that need to get done are done
on time and are functioning correctly. Which is why the software team is taking
advantage of the agile methodology, while developing the website and
programming the PCB.

Before agile was developed, the way projects were completed was hectic to say
the least. This traditional method consisted of a staircase approach, called the
waterfall development process. While in theory it looked like a good way to
develop software and general development things, in actual practice it proved to
be inefficient. Going through this waterfall process was also very time consuming,
even more so whenever any errors and issues were discovered. Sometimes it
would even require starting from the beginning which would lead to a late
delivery of the project or not even being delivered at all. And this is where agile
really came in.

The term agile refers to the methods and best practices for organizing projects. It
involves discovering requirements and developing solutions through collaborative
efforts and involving the end user. The values and principles are documented in
the Agile Manifesto. Agile really emphasizes four major principles in its project
management, and these are: Individuals and interactions over processes and
tools, working software over comprehensive documentation, customer
collaboration over contract negotiation, and responding to change over following
a plan. Agile uses a circular schedule, rather than a waterfall, where the testing
leads right back to the beginning, requirements. And this process is repeated
over and over until it is ready for deployment. This scheduling process allows the
developers to discover any potential issues early as well as be able to release
some features early. It also gives room for requirement changes, something the
waterfall approach wouldn’t be able to handle without starting over from the
beginning.

To be able to implement agile into our project, we had to utilize the scrum
framework. Under this framework, the process of implementing agile is based on
15 to 30 day sprints. For the website and the PCBs, these sprints were smaller,
something ranging between one to two weeks. These sprints are fundamental
development periods in which the team was able to produce a part of the product
that can be ready to deploy. Something like the functionality of a login page.

78

There were also daily scrums that were less than 30 minutes and served as a
meeting to check that progress is being made and to voice any problems that
may have occurred. We were not always able to do a daily scrum based on the
availability of the team members, but we implemented some sort of variation of
this daily scrum often.

In summary,
● Agile is a methodology widely used in software development.
● It is used to manage projects, time-saving and keeps the end-user

involved.
● Agile uses scrum for implementing it into projects.
● Scrum helps teams work together and allows for good communication.

7.11 Version Control

For this project, we had more than one person working on the software aspect.
There are many situations we had to consider to make sure that the software
production went smoothly. This is where version control came in, version control
allows developers to track and manage changes in software code. It also
provides a space for multiple people to be able to work on the same project
together. It also provides a way to get a previous version back. Nowadays there
are many options available that implement version control like Git, Apache
Subversion, and Mercurial. However, the one we truly considered was Git.

Git, like the other version control softwares, can keep track of any and all
changes made to the repository. A repository is stored in a cloud and contains all
of the files of the software. With Git, the only way to have these files locally is to
clone them. Any changes made to a local file will then have to go through a
process of being added to be tracked and then committed. And even then Git has
a feature called branches, that lets developers make changes to small parts of
the software and still have a working copy, called the master. These branches
can be created to test the software, make changes and test them out, as well as
fixing any errors and testing out the solution. Another advantage of these
branches is that it allows multiple people to work on different features at the
same time without it leading to errors. And once the feature is at a point where it
is tested and error free it can be merged into the main branch or master, to have
it ready for production. After any changes are made to any of the files the
changes have to be added to be tracked which gives developers another chance
to review and check that the changes are what they want and contain no typos or
errors.

79

Git also has its own version tracking system set up, that allows developers to go
back to any of the versions that require a commit like merging a branch or
creating one. Making any change to the master branch can also get tracked. And
developers can go back to any of these if they choose. Or they can look at the
changes that were made. Git does not only provide many resources to utilize for
project version control but also has resources to be able to learn it and utilize it to
its full potential. Git is open source software like the rest of the software we
considered for this project. This tool is going to be extremely beneficial for our
project, it will also provide us with experience in using it.

One of the most used tools for implementing Git is Github, which not only
provides a student pack to college students, but is also free and for the purposes
of this project also allows the usage of keeping projects private. Github is a
repository and has a copy of your work that you can clone to any machine. It also
makes it easy to add other contributors to the project, and keep anyone that isn't
a contributor from making any changes. For private repositories however, only
the people that are invited as contributors are the only ones that can make any
changes. This is why we chose to use Github to implement version control on our
software.

In summary,
● Version control is important when working in teams, it also provides a way

to return to a previous working version if anything goes wrong.
● Git is one of the most widely used version control technologies and it is

free and opened sourced
● Git also has branches as an advantage over other version control

softwares.
● Github, which is a place to store the files and have access to previous

versions or commits, it also allows users to collaborate on projects and
even has a student pack with credits to technologies like web hosting and
domain names.

7.12 Integrated Development Environment

When developing software, one of the most important tools before getting started
is to have the right workspace to be able to comfortably and efficiently be able to
code. This is even more important for large projects, and are solved by
Integrated Development Environments, these are software’s that provide an
environment with tools, like a text editor with debuggers and sometimes even has
automation. Our Automated Ventilation Controller is utilizing an Arduino board
that will also be accessing a database to be able to communicate with the web
application and get information about the weather outside of the warehouse. For

80

this reason, our team is using at least two IDE’s, one of which will be the Arduino
IDE 1.8.15 and VSCode. Both of which are open sourced.

The Arduino products have their own built-in support for programming it, it has
both online and offline support available, with their own language that is similar to
C/C++. This support is achieved by simply connecting the board to the
appropriate PC, which can support Windows, MacOS, and Linux operating
systems. And since one of our teammates is working on MacOS, this is
extremely helpful. Connecting the board to the PC has allowed us to program it
but it also served as its power source. For this IDE, the files are referred to as
sketches. And it comes ready with example files that will give you not only a look
to the format but will also allow you to check that certain parts of the board work,
like it comes with an LED blink example. Since this IDE is used for all of the
boards manufactured by Arduino, whenever creating a sketch, we will have to
select the board type and port. After this is selected and the code is complete, we
can upload the program to the board. Which is the only way to be able to upload
programs to the Arduino boards. One of the advantages of this software is that,
as previously mentioned, it is open-sourced, which means that there will be many
free and available resources whenever we run into a problem.

The other software used to complete this project was Visual Studio Code or
VSCode, which is a widely used code editor. It comes with built-in Git, as well as
has settings for running and debugging code. Not only that but it also comes with
a tool called IntelliSense that will provide useful autocompletion of function
definition types, variable types and imported modules. And one of its biggest
advantages is its extensibility and customizability. There are countless extensions
available to facilitate the development of this project, especially when it comes to
the web application. There are extensions that can auto rename HTML/XML tags
when any changes are being made to it, even some to keep comments in code
even more organized. In cases where there might be a spelling error when
naming a variable or making a comment, there are extensions that will check for
spelling errors too. There is also an extension called CSS Peek, which gives a
look in html files to the CSS references for IDs and class strings, without having
to look into or open the CSS file. Apart from the ones mentioned there are also
many more that will be utilized to successfully complete this project. Its
customizability will also come in handy to make an even better user experience
and will be useful to add colors that can be looked at for multiple hours.

In summary,
● IDEs are important tools when developing software, they can

facilitate the process of programming as well as testing the code.

81

● The software for the hardware of this project will utilize the Arduino
IDE which will use C++ as its primary language.

● For the website, VScode will be used to create each file of the LAMP
stack, since it has extensions to support each of those languages.

7.13 UART

The UART protocol, which stands for Universal Asynchronous
Receiver/Transmitter, is widely used for device-to-device communication. The
signals used to communicate are Transmitter (Tx) and Receiver (Rx), which are
used to transmit and receive serial data. UART transmits this data in a form of a
packet that consists of a start bit, data frame, a parity bit and stop bits. This
technology will be utilized for both the Bluetooth and Wi-Fi modules on this
project. For our project, serial communication is used between the Arduino
board, computer, and other devices. All Arduino boards have at least one
hardware serial port (also known as a UART), and some such as our Arduino
Mega, have several.

Figure 7.5: Serial Pin Comparison of Arduino Boards

On Uno, Nano, Mini, and Mega, pins 0 and 1 are used for communication with
the computer. Connecting anything to these pins can interfere with that
communication, including causing failed uploads to the board. The ATmega2560
on the Arduino Mega provides four hardware UARTs in order to receive (RX) and
transmit (TX) TTL (5V) serial data communication.
These serial pins are listed as the following:
Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16
(TX); Serial 3: 15 (RX) and 14 (TX). Note that pins 0 and 1 are also connected to
the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.

Additionally, the ATmega8U2 on the Arduino Mega board channels one of the
four UARTs over USB and provides a virtual COM port to software on the
computer. (Windows machines will need a .inf file, but OSX and Linux machines
will recognize the board as a COM port automatically). The Arduino’s software
environment includes a built-in Serial Monitor which allows simple textual data to

82

be sent to and from the board in order to communicate with an Arduino board.
This is done by clicking the serial monitor button in the toolbar and selecting the
same baud rate used in the call to begin(). The RX and TX LEDs on the board
will flash when data is being transmitted through the ATmega8U2 chip via USB
connection to the computer (but not for serial communication on pins 0 and 1).

8. Hardware Testing
This section discusses the methods of testing the hardware parts and validating
their selected purpose as discussed in the research section. This section covers
many different tests for the different components. These tests will ensure first that
the hardware component is working within its design parameters, and to ensure
that it will work as intended with the other selected parts. The tests that require
software to complete will be done with a pre manufactured arduino board. This
was done to ensure that parts are arduino friendly, and to establish a baseline of
proper operation. This baseline allowed us to troubleshoot and verify proper
operation for the final PCB design of the main control unit. The use of the
pre-manufactured arduino board also allowed code to be written and tested well
before the final printed circuit board was designed which aided in streamlining all
areas of the project development.

The prototype chosen for this project is the Arduino Mega2560. Building a
prototype from this pre-manufactured board was essential for the testing phase
of this project. Prototyping based on this design enabled us to verify that specific
parts worked with the processor that was chosen for this project. It also allowed
us to select the pins that the specific components will use. This enabled us to
design the printed circuit board throughout the testing phase of the project.
Prototyping with a pre-manufactured board also has some other advantages.
First, it has its own independent power supply. This power supply allowed us to
run tests on the prototype board without the need to build a dedicated power
supply, since most of the power supply parts were in short supply.

Similarly, the Mega2560 board has a dedicated USB connection. This USB
connection allowed for quick uploading of sketches from the arduino IDE. This
enabled the project testing to run smoother since programming was done quickly,
and small changes to the code were accommodated faster. Lastly, The Arduino
Mega2560 allowed us to run a full prototype test with all components connected
to it. This ensured that the goals of this project can be met prior to completing the
final PCB design.

83

8.1 Relay Testing

The first component to test for this project was the relays. The test for these
relays was simplified since the relays did not need a program and printed circuit
board to ensure they operated properly. The initial test of the relays ensured that
all relays on a module worked properly. To accomplish this test the 5V VCC line
was connected to a 5V DC voltage source. The ground of the relay module was
connected to the ground of the voltage source. Next a multimeter was used to
test the resistance across the relays. The first resistance to measure was taken
between the normally closed contact and the neutral.

The resistance across these contacts was very low since it is normally closed.
The next resistance measured was between the normally open contact and the
neutral contact. The resistance across these terminals was extremely high since
the contacts were open. Next, to ensure proper operation of the relay module the
control pin was driven low to ground. Once the pins were connected to ground
the associated relay opened and the associated LED turned on.

To accomplish this, a wire was connected to the control pin of the relay under test
to ground. A multimeter was again used to measure the resistance between the
contacts. The resistance between the normally closed contact and ground was
high since these contacts were open since control power was applied. Next the
resistance between the normally open contacts and neutral were measured. This
resistance should be very low since the contacts were closed due to control
power being applied.

For this test the most important measurements were between the normally open
contacts and neutral since these were the contacts that are being used to control
the vent motors. All resistance measurements of the normally open contacts are
recorded in the table below. Resistance values do not need to be measured to
the decimal place since this test is just to verify continuity of the relay.

84

Table 8.1 Measuring the resistance of the relays when open and closed

Relay Number NO contact without
control power (Ω)

NO contact with
control power (MΩ)

Relay
Module 1

1 <1 Ω >1MΩ

2 <1 Ω >1MΩ

3 <1 Ω >1MΩ

4 <1 Ω >1MΩ

Relay
Module 2

1 <1 Ω >1MΩ

2 <1 Ω >1MΩ

3 <1 Ω >1MΩ

4 <1 Ω >1MΩ

Relay
Module 3

1 <1 Ω >1MΩ

2 <1 Ω >1MΩ

3 <1 Ω >1MΩ

4 <1 Ω >1MΩ

Relay
Module 4

1 <1 Ω >1MΩ

2 <1 Ω >1MΩ

3 <1 Ω >1MΩ

4 <1 Ω >1MΩ

85

Figure 8.1: Testing the relay for circuit continuity

After the relay modules were found to work properly, next was a test on how
much current each relay draws. This is an important test because it determined
how much current the main control unit was supplied with. The relays were the
largest current drains for this project. The relays act in pairs so it is important to
note how much current is drawn for two relays at a time. This can be done by
measuring each relay's current draw and adding the two relays together that will
work in a pair.

Figure 8.2 Testing the current draw for 2 relays at a time

86

This testing is done more precisely than the continuity test to ensure the proper
values are found. The current draw for each relay will be recorded in the table
below.

Table 8.2 Measuring the current draw for each relay

Relay Number Current Draw (mA)

Relay Module 1 1 62.1

2 61.9

3 62.5

4 62.4

Relay Module 2 1 62.3

2 62.0

3 61.8

4 60.8

Relay Module 3 1 63.3

2 64.2

3 63.6

4 62.8

Relay Module 4 1 63.8

2 63.3

3 63.3

4 63.6

Further relay testing was conducted with the use of the Arduino Mega to ensure
the relay modules performance when controlled by software. To complete this
testing, the relay modules were connected to the prototype board. Next, a code
was uploaded that drove a control pin low for a period of ten seconds. Next, the

87

test code drove that pin high and moved to the next control pin where it again
drove that pin low for a period of ten seconds. This was repeated for each relay
on the relay module. When the pins were driven low a loud click sound was
heard from the board. A continuity test can also be performed to ensure that the
switch closes and opens properly for each relay. Next, the DHT22 temperature
sensor was connected to the prototype board. A code was uploaded to the
arduino to shut a relay switch when a temperature above 70 degrees was sensed
and open the relay switch when a temperature below 70 degrees was sensed.
Once the code was uploaded to the prototype the test began. Initially, the relays
were shut since the ambient room temperature was greater than 70 degrees.
Next, we used a frozen cup, by placing the frozen cup over the sensor. Within a
few seconds the DHT22 sensed the temperature drop and opened the relay
switch. While performing this test, we ensured that condensation did not drop
onto the like electronic components. A continuity test was also performed when
the switch was opened and closed to ensure proper operation. This test was the
first test to integrate two of the chosen components for this project. This test was
also very similar to the operational principle of our project, and as such it proved
to be the basis for our proof of concept testing that was performed once all
component testing was completed.

Figure 8.3: Relay Terminal Diagram

Figure 8.4 Relay Module Diagram

Lol

88

8.1.1 Continuity Testing

Below is the test procedure for the continuity testing. The purpose of this test was
to verify that the relays opened and closed as they should when their control
lines were driven low to ground. The testing for this procedure was done with a
handheld multimeter connected to the relay that was being tested. Precise ohm
values were not required since the test is only to verify proper operation.

1. Connect the VCC terminal on the relay module to the positive wire of a 5V
DC source.

2. Connect the GND terminal of the relay module to the negative wire of the
same 5V DC source.

3. Connect the terminal IN1 to the positive side of the 5V DC source to
simulate driving the pin to HIGH. No light or clicking sound should be
heard.

4. Place the multimeter in “Ω” mode
5. Connect the probes of the multimeter to the NC and Neutral terminal of

the first relay. Record the resistance value between these terminals. The
resistance should be very high since these are open.

6. Repeat Step 3 and 4 for the other relays on this module. Ensure to move
the “simulated HIGH pin” for each relay.

7. Connect the terminal IN1 to the negative side of the 5V DC source to
simulate driving the pin LOW. The corresponding relay light should turn on
and a clicking sound should be heard from the relay.

8. Connect the probes of the multimeter to the NC and Neutral terminals of
the first relay. Record the resistance value between these terminals. The
resistance should be very low since these terminals are now closed.

9. Repeat steps 6 and 7 for the other relays on this module. Ensure to move
the “simulated LOW pin” for each relay.

8.1.2 Current Load Testing

Below is a step by step procedure for measuring the current each relay will
require. The purpose of this test is to measure the current draw for each relay.
This is an important test because the relay modules will be the largest load on
the power supply. The values that are measured were used to ensure the power
supply that was designed for this project was able to supply the required current.
This test used a handheld multimeter connected between a 5V DC source and
the VCC pin of the relay module. Precise measurements were required here to
ensure accurate current draw calculations. In this project, relay modules operate

89

in pairs. In order to get an accurate estimate, the current draw of the paired
relays were added together.

1. Connect the negative terminal of the 5V DC power supply to the GND pin
on the relay module

2. Connect the VCC pin to the negative terminal of the multimeter
3. Place the multimeter in “DC mA” mode.
4. Connect the positive terminal of the multimeter to the positive terminal of

the 5V power supply.
5. Connect pin IN1 to the negative terminal of the 5V power supply to

simulate driving the pin to LOW.
6. Read and record the current displayed on the multimeter.
7. Move the “Simulated Low Pin” to the other control pins located on the

relay module. Repeat steps 5 and 6 for each relay.

8.1.3 Operational Testing

Below is a step by step procedure for the operational test of the relay modules.
This test was used to ensure that the relay modules responded to inputs from the
microcontroller. This was the final test for the relay modules apart from the final
prototype testing. While we performed this testing, we ensured that only one
relay switch was operated at a time. This is necessary due to the large amount of
current that the relay modules draw. Failure to do this would have resulted in a
faulty test due to overloading the prototype microcontroller.

1. Connect the pins of the relay module to the microcontroller in accordance
with the wiring table provided in section 6.1.3.

2. Connect the Arduino Mega2560 to the computer using the USB
connection.

3. Open the arduino IDE and upload the first test code that cycles through
the relay switched by periodically opening and closing the switches.

4. When a switch is open perform a continuity test in accordance with section
8.1.1 to ensure proper operation of the relay switch, repeat for other
switches.

5. Once this test has been properly completed unplug the arduino from the
USB connection.

6. Connect the DHT22 Sensor to the Arduino Mega2560 in accordance with
Table 8.5.

7. Reconnect the Arduino Mega2560 to the computer using the USB
connection.

8. Upload the second test code to the Arduino Mega 2560. Once it is
uploaded the selected relay switch should shut.

90

9. Perform a continuity test on the selected relay switch to verify proper
operation.

10.Using a frozen cup, place the cup over the DHT22 sensor. The sensor
should sense the colder temperature and open the relay switch.

11. Verify proper operation of the relay using a continuity test.

8.2 Power Supply Testing

The power supply testing was one of the most difficult tests to perform and was
also one of the most important. The power supply needed to be able to provide a
constant 5V DC to the main control unit, and be able to supply a current that can
power all the necessary components. Some of these components draw a
significant amount of power especially when run simultaneously. It is important
that the voltage during these periods of high current does not drop excessively or
the main control unit could shut off in mid operation. It is also important that when
a component that draws a lot of current turns off there is not a large voltage
transient that occurs which could burn out the main control unit.

To test the power supply from figure 16, a 12V DC was used as a power source
for the power supply, to mimic what was used for final installation. To accomplish
this the power supply was connected to a deep cycle battery to simulate the 12V
DC provided at the warehouse. The deep cycle battery was chosen due to its
voltage level and ability to supply a large amount of current. After connecting the
power supply to a voltage source, we connected various loads to it to measure
the current and voltage drop. The loads were resistors of various values to
simulate various loads placed on the power supply. The first test was a 100Ω
resistor to draw 50 mA of current. Next five 100Ω resistors were placed in parallel
to simulate a larger load that would draw 250mA.

The final test consisted of placing ten 100Ω resistors in parallel to simulate a
load that draws .5 amps. The resistors were placed in parallel to limit the current
going through any single resistor. Drawing too much current through a resistor
would result in overheating and cause premature failure. The resistors that were
used are rated for use up to one quarter watts. These load tests drove these
resistors to their limits, so caution was taken during these tests. During the power
supply testing the voltage was monitored to ensure the voltage stays constant
with different loading. Current was also tested to ensure that the power supply is
providing adequate current for testing. All values were recorded in the table
below.

91

Table 8.3: Power Supply Testing

Loads Voltage (V) Expected
Voltage (V)

Current
(mA)

Expected Current
(mA)

100 Ω 5 V 50 mA

20 Ω 5 V 250 mA

10 Ω 5 V 500 mA

The data collected on the above table was used to verify the ability of the power
supply to fully power the main control unit and all of the accessories connected to
it. The data collected from testing the power supply was used in conjunction with
the data collected from the relay module testing. These tables were compared
since the relay modules are the biggest source of power consumption for the
main control unit. If the power supply can deliver a .5 amps of current then it
should be more than sufficient to power the system as a whole. An oversized
buck converter was chosen for this job. From the data sheet of the buck
converter it can handle up to 2 amps. This is important because our project
should not draw much more than 25% of the rated current for this design. This
leaves a large margin of error. Which will lead to a longer lasting power supply,
and prevent premature failure.

An alternate design for the power supply has also been made due to the supply
constraints of the buck converters. Currently, all buck converters are sold out
from many online stores. The alternate design uses a linear voltage regulator that
is rated for two amps. The two amp margin for a linear voltage regulator is very
important due to the nature of these regulators heating up which can lead to
premature failure. If needed a heat sink can be added to the linear voltage
regulator to aid in heat dissipation. The location of the power supply will be inside
the main control unit casing which will not be ventilated. The dissipation of heat
will be important. A larger heat sink may be necessary due to limited cooling
available inside the main control unit casing. Also linear voltage regulators are
sensitive to reverse polarization. To prevent failure of the voltage regulator due to
this, a diode will be used to bypass the voltage regulator. The cathode of the
diode will be connected to the input side of the voltage regulator. The anode will
be connected to the output of the voltage regulator. If the power supply output
receives a higher voltage than the input, the diode will direct current around the
voltage regulator, saving it from the damaging reverse current

92

Figure 8.5: Current Simulation for 100 Ω load

Figure 8.6: Current Simulation for 20.5 Ω load

Figure 8.7: Current Simulation for 10.25 Ω load

93

8.2.1 Voltage Testing

Below is the procedure used to test the voltage output of the power supply. This
test is important to ensure that the power supply will maintain a steady 5V DC
output voltage for the different loads that will be placed on it. The loads were
designed to simulate the different operational loading requirements of the main
control unit. This test can be performed with either a handheld or bench top
multimeter. The voltage levels should not fluctuate more than 5% (5V ± .25V).

1. Build the Power Supply based on the design proposed in figure 16.
2. Replace Iout with a 100 Ω resistor
3. Connect the positive terminal of the 12V battery to the positive side of Vin.
4. Connect the negative terminal to the ground side of Vin
5. Connect other grounds to the negative terminal of Vin
6. Place the multimeter in “DCV” mode
7. Read the voltage across the 100 Ω resistor.
8. Unplug the positive terminal of Vin from the 12V Battery
9. Repeat steps 2 through 8 for the simulated 20 Ω load and 10 Ω load

8.2.2 Current Testing

Below is the procedure used to test the current output of the power supply. This
test is important to ensure the output current of the power supply was suitable for
use in this project. The original design of the power supply uses a buck
converter. A back up design may also be used that is centered around a linear
voltage regulator. If the linear voltage regulator is used, periodically check the
temperature. If the temperature increases drastically, stop the test and install a
heatsink on the linear voltage regulator before resuming.

1. Build the Power Supply based on the design proposed in figure 16.
2. Connect the positive terminal of the multimeter to the positive terminal of

Iout
3. Connect the negative terminal of the multimeter to the 100 Ω resistor
4. Connect the other side of the resistor to ground. At this stage, the

multimeter should be in series with resistor and replacing Iout.
5. Connect the positive terminal of the 12V battery to the positive side of Vin.
6. Connect the negative terminal to the ground side of Vin
7. Connect other grounds to the negative terminal of Vin
8. Place the multimeter in “DC mA” mode. Read and record the output

current of the power supply
9. Repeat steps 2 through 8 for the simulated 20 Ω load and 10 Ω load

94

8.3 Wi-fi Module Testing

To test the connection of the Wi-Fi module, we configured the ESP8266 using AT
commands. The AT commands were sent from the Arduino IDE, not the
microcontroller, thus the Arduino microcontroller used for testing should be in
reset mode.

Below are the connections to place the microcontroller in reset mode:
1. The ESP8266 RX pin to the Arduino RX (0) pin.
2. The ESP8266 TX pin to the Arduino TX (1) pin.
3. The ESP8266 ground pin to the Arduino ground pin.
4. The ESP8266 3V3 and EN pin to the Arduino 3.3v pin.

● Note: A breadboard was used to connect the two wires of the 3V3
and EN pin to the 3.3v pin on the Arduino for testing. Additionally,
the Adruino’s RESET pin and GROUND need to be connected.

Table 8.4: Wi-fi Module Wiring

Wi-fi Module Pins MCU Pins

EN 3.3v

GND GND

TX TX (1)

RX RX (0)

3V3 3.3v

*Figure 8.8: ESP8266 E-01 Wiring to Arduino

95

Now connect Arduino to PC through USB cable. Open Arduino IDE software >
File > New (blank sketch). Before uploading the blank sketch to the Arduino,
unplug the TX, RX, and REST wires from Arduino. Once uploaded, reconnect the
wires. Open the Serial Monitor within the Arduino IDE, set the baud rate to
115200, and begin using AT commands to communicate with the Wi-Fi module.

Below are the AT commands to configure the module:
1. “AT” - Enter into AT command mode; receive OK response
2. “AT+RST” - resetting the module
3. “AT+GMR” - lists version of module
4. “AT+CIFSR”- shows the IP address of module
5. “AT+CWMODE=2” - sets the module’s mode; OK response

● 1 is client, can request URL from server
● 2 is a host, in which other devices can connect to
● 3 is both

6. “AT+CWSAP?” - displays module’s default name and password
7. “AT+CWSAP=”SOME_NAME”,”SOME_PASSWORD”” – will set a

custom ssid and password to the module
● Note that password must be 8 or more characters long

*Figure 8.9: Serial Monitor of AT Command Setup

96

Now test the Wi-Fi module by using a phone or another compatible device to
search for the name of the module and connect to it using the set password.

*Figure 8.10: Connecting iPhone to Wi-Fi Module

8.4 DHT22 Sensor Testing

The connected DHT22 sensors have four pins, VCC, GND, data pin and a not
connected pin which has no usage. To test the communication between the
sensor and the Arduino Board, a pull-up resistor from 5K-10K Ohms was
required to keep the data line high. We used the DHT library which takes care of
the precise timing and the timing diagrams for getting the data from the sensors.

97

Figure 8.8: Wiring Diagram for DHT22 to Arduino Mega

Table 8.5: Connections for DHT22 to Mega

DHT22 Arduino Mega

Pin 1 (VCC) 5v

Pin 2 (Data) Digital pin 2 and 5v via 10k resistor

Pin 3 (NC) Not Connected

Pin 4 (GND) Ground

Once the sensor was connected to the Arduino Mega 2560 the test code was
uploaded to the board. Some adjustments to the driver was necessary to
establish proper communication between the prototype board and the sensor.
Once the driver had been adjusted, the test code was uploaded to the
Mega2560. Once uploaded, the sensor temperature and humidity reading were
read through the serial port interface that is provided in the Arduino IDE. To
ensure the sensor was taking proper measurements, the displayed temperature
and humidity data was compared to a known standard. Since the temperature
readings were correct, no further correction was necessary. Likewise, if the
readings had been incorrect, a calibration algorithm would have been necessary
to bring the readings into an acceptable range. For our purposes, the
temperature was within ±1 degree fahrenheit of the standard. Additionally,
humidity was within ± 2% of the standard.

98

Figure 8.9: DHT22 Connected to Arduino Mega

Regarding the source code that was uploaded to test the DHT22, we first
included the mentioned DHT library which can be found on Arduino’s official
website, defined the pin number to which our sensor is connected (in this case, it
was digital pin 7), and created a DHT object. Within the setup section of the
code, we had to initiate the serial communication in order to use the Arduino’s
IDE Serial Monitor to read the results. Within the continuously looping section of
the code, we created floating point variables in order to hold the temperature and
humidity values separately:

float temp = DHT.temperature;
float hum = DHT.humidity;

Once the data was gathered, we printed this test data on the Serial Monitor like
so:

Serial.print(temp);
Serial.print(hum);

Lastly, we included a delay so our looping code grabs data and displays the
results every 2 seconds:

delay(2000);

99

Once the code was uploaded to the Arduino board, the temperature and humidity
results from the sensor were seen on the Serial Monitor:

Figure 8.10: Screenshot of Sensor Results

8.5 Bluetooth Module Testing

The Bluetooth module is a key component to the Main Control Unit, and it is what
enables communication between the Main Control Unit and the various Sensor
Units around the warehouse. This component had substantial testing to ensure
its reliability in receiving the required data from the sensors.

8.5.1 Testing Setback

Our initial testing did not go as planned since the HM10 we ordered turned out to
be a clone of the original module. Thus, we were left with the following options:
use another module, or try the painful process to flash a different working

100

available firmware. Attempting to “fix” the cloned module by re-flashing to the
HM-10 original firmware, comes with some advantages and disadvantages.

The advantage of flashing the HM-10 original firmware to our clone device would
mean we wouldn’t have to buy a different module; we would be able to move on
with our testing rather than wait a few days for shipping. The disadvantages
would be that we would need to solder and flash each of our 5 modules which
would be very tedious and complex to do. Since our attempt to first flash one of
our clone modules didn’t seem to work anyway, we decided that the
disadvantages outweigh the advantages, and we would place an order for the
original HM-10 modules.

8.5.2 Wiring and Voltage Testing

The first test we had to perform ensured that the voltage of the receiving line was
dropped to 3.3V. The RX and TX pins of the HM10 use 3.3V logic levels, so we
had to use a simple voltage divider at the RX pin of the module, and we did not
connect it directly to the Arduino board. This was done because the Arduino
Mega outputs 5V DC to its transfer line. The HM10 needs that voltage dropped to
3.3V in order to prevent burning out the Bluetooth module. Also, we noted that
the RX pin of the module goes to the RX Pin of the Arduino and the TX Pin of the
module goes to the TX pin of the Arduino. Once the wiring was set up, we were
ready to power up the Arduino, and test a successful connection of the Bluetooth
module to the Arduino Mega. Power was supplied to the HM10 to guarantee that
the module would power on as it should. Before plugging in the USB cable, we
have to press the button on the Bluetooth module to enter it into the command
mode. The LED on the Bluetooth module was then monitored, this is because the
flashing status ensures that it is working correctly. When the LEDs on the module
start flashing slowly, that means that we have entered the command mode
successfully.

Figure 8.11: Arduino Mega Connected To HM10

101

Once the wiring was set up, we were then ready to power up the Arduino, and
test a successful connection of the Bluetooth module to the Arduino Mega.
Power was supplied to the HM10 in order to guarantee that the module powers
on as it should. Before plugging in the USB cable, we pressed the button on the
Bluetooth module to enter it into the command mode. The LED on the Bluetooth
module was then monitored, since the flashing status ensures that it is working
correctly. When the LEDs on the module start flashing slowly, that means that we
have entered the command mode successfully. Afterwards, all we had to do was
upload an empty sketch to the Arduino board. Before pressing upload, we
removed the wires from the serial port of the Arduino board and connected them
again after the sketch had been uploaded. The next step was then to open the
Serial monitor to send some AT commands to the Bluetooth module.

Table 8.6: HM10 Connections to Arduino

Bluetooth Module Pins MCU pins

VCC 5V

GND GND

TX RX2

RX TX2

8.5.3 Stable Connection Testing (Pairing)

To test the pairing of two Bluetooth modules, we established one Arduino Nano
to have an HM10 module set as master (to receive data), and another Nano to
have a DHT22 sensor and an HM10 module set as slave (to send data). This
was done by plugging both of the Arduinos into a computer and configuring the
HM10s to the correct mode. We then set up the slave module first, then followed
by the master module using AT commands within the Arduino’s Serial Monitor.

While setting up the master, we established a connection to the other module by
providing it with the IP address of the slave. Once this was done, the two
Bluetooth modules were able to be paired together, and they were ready to begin
transferring data to each other.

102

Figure 8.11.1: Successful Master Connction To Slave

8.5.4 Data Communication Testing (Code Logic)

To get data wirelessly from each of the Sensor Units within the Arduino code, we
considered using the EasyTransfer library which would allow for sending data
structures to the serial port. By utilizing this, we would be able to send structured
data that contains both temperature and humidity via the connected Bluetooth
modules. Two EasyTransfer objects would be necessary to achieve bi-directional
communication. One would be used for sending data, and the other for receiving
data. Additionally, an Arduino library for the DHT series of low-cost
temperature/humidity sensors would be needed to be able to read the data from
the sensors. For example:

struct EX_DATA_STRUCT {
float temperature;
float humidity;

};
EX_DATA_STRUCT data;

DHT dht(DHTPIN,DHTTYPE); //Sensor object
EasyTransfer ETin, ETout; //2 EasyTransfer objects

// Save readings from sensors to struct variables
data.temperature = dht.readTemperature();
data.humidity = dht.readHumidity();

//then send structure to Bluetooth module
ETout.sendData();

103

The code logic we originally considered to upload to each Nano goes as follows:

The slave Bluetooth modules would have had two data structures, one to contain
temperature and humidity data, and the other to contain a boolean
acknowledgement for when the data has been received (initially declared as
false). There would have been a counter to ensure that data was being sent to
the master module every 2 seconds, a DHT type object to read data from the
sensor, and two EasyTransfer objects (ETin and ETout) to send and receive data
to the other Bluetooth module.

Within the initial set-up section of the code, the baud rate would be set to the
same rate listed from the AT command for serial data transmission. Additionally,
we would begin the serial data transmission for the DHT sensor object and
establish the two EasyTransfer objects (ETin and ETout). ETin would be for
receiving data regarding the acknowledgement data structure, and ETout would
be for sending data regarding the temperature and humidity data structure.

Within the continuously looping section of the code, we would have to check if
the ETin EasyTransfer object has received any acknowledgement data from the
master module, as well as if the acknowledgement boolean returned true from
the master module. If both conditions ended up being true, we would then
assume that the data from the Sensor Unit had been sent to the master module
successfully. Otherwise, if no acknowledgement data had been received from the
master module, we would then increment the counter. Once the counter reaches
about 2 seconds, we would read from the DHT sensor data pin (temperature and
humidity) and send the structure via ETout to the master module. Immediately
after sending sensor data to the master module, the counter would be set back to
zero, and the acknowledgement boolean would get set to false.

Using similar logic, the master module would also have the same two data
structures, one to contain temperature and humidity data (weather), and the
other to contain a boolean acknowledgement for when data had been received
(initially declared as false). Like the slave, there would also have be two
EasyTransfer objects (ETin and ETout) in order to send and receive data to the
slave module.

Within the initial set-up section of the code, the baud rate would have been set to
the same rate listed from the AT command for serial data transmission.
Additionally, we would have had to establish the two EasyTransfer objects (ETin
and ETout). ETin would be for receiving data regarding the weather (temperature
and humidity) data structure, and ETout would be for sending data regarding the
acknowledgement data structure.

104

Within the continuously looping section of the code, we would have had to check
if the ETin EasyTransfer object had received any sensor data from the slave
module. If this condition had been true, we would have set the boolean
acknowledgement to true, and send the structure via ETout to the slave module.
Otherwise, if no sensor data had been received from the slave module, we would
have set the boolean acknowledgement to false.

In summary,
● We considered Including the EasyTransfer library and creating two

EasyTransfer objects
● We would have created one data structure to send temperature and

humidity data, and another data structure to receive boolean
acknowledgments

● Code for each slave module would have read data from the DHT22 sensor
every 2 seconds, and if the data acknowledgement received from the
master module returnde false, then we would have assumed that no
EasyTransfer object was received from master

● To send a boolean acknowledgement to the slave modules, the code for
the master module woul dhave to continuously check if an EasyTransfer
object was received from any slave module

8.5.5 Multiple Communication Testing

To test that one Bluetooth module is able to connect to several other Bluetooth
modules, we used a looping algorithm. The logic for the algorithm basically
continuously loops the communication of one master module to our multiple test
slave modules by first connecting to one test slave module, retrieving data from
the connected DHT22 sensor, disconnecting, and then repeating the process
with the next test slave module. Once the algorithm had proved to establish a
stable connection between one test master module and multiple test slave
modules, then the communication range of the Bluetooth modules was
subsequently be tested.

8.5.6 Distance Testing

To test the required long-distance communication between the Bluetooth
modules, we measured out a distance that is similar to the warehouse conditions.
This was done by placing each HM10 with a DHT22 sensor in various locations
that have atmosphere differences such as a garage and an air-conditioned room.
Each tested wireless module with a sensor was moved to a specified distance,

105

and the communication quality was assessed by reading the temperature and
humidity data from each module’s sensor.

8.6 TFT Touch Screen Configuration Testing

This is the section that discusses the TFT display and the touch screen testing.
These sections are split apart because the display and touch screen are two
separate components that were brought together in one package. The display is
a 3.5” color display with 320x480 pixels. This information is mostly important for
the display testing since the drivers for the screen use the pixel information to
control the height and width of the display window, and also determine where to
place the objects on the screen. The touch screen uses resistive touch
technology. The resistive touch technology is used in conjunction with the screen
to allow for local control of the Main Control Unit. The resistive touch technology
is accurate enough to sense when a small area of the screen is touched and
uses that signal to control what the overall system is doing.

8.6.1 Display Testing

The first part of testing the screen was soldering the pins that would be used for
data transfer, control, and touch screen signals. This was done by counting the
number of pins and cutting the pin header to fit all the holes. Since 8-bit data
transfer was used, soldering was only required on the side that uses 8-bit. The
side that used SPI data transfer was left alone. Thus, we placed the pins to be
soldered in the selected holes with the long side of the pins facing down. Once
this was completed, the soldering was accomplished in the Senior Design lab at
the provided soldering stations.

After the soldering was completed, the display testing for the screen began. The
display was connected to the arduino mega. This display uses 8-bit data transfer
to send the display data to the screen. There are four other wires connected that
send control signals to the screen and power the backlight of the screen. The last
wire for the display is the reset wire which is used to reset the screen. Once all
the wires were connected successfully, the arduino was plugged into the
computer, and the programming could begin.

To begin programming, the Arduino IDE should be opened. Once opened, the
drivers for the 3.5” TFT display should be downloaded. Once downloaded, the
drivers need to be modified since the provided drivers are for both a 2.8” display
and a 3.5” display. To change the drivers to work with the 3.5” screen size, the
driver needs to be modified by changing the values entered in to TFTWIDTH and

106

TFTHEIGHT field. Once this is completed, the test code provided for this screen
was uploaded onto the arduino board. Once successfully uploaded onto the
arduino, the screen runs through the test code and the screen displays various
shapes and words.

Figure 8.12:. Modifying the Display Driver

Figure 8.13: Successful Execution of the Test Code

107

In summary,
● For data transfer, this screen uses 8-bit data communication.
● The first step was soldering the pins to the 8-bit data transfer points,

screen control points, and touch screen control points.
● The next step was to connect the screen to the arduino in accordance with

the wiring table.
● Next, we downloaded the provided drivers for the display.

○ THe driver had to be modified for the 3.5” display
● Finally, we uploaded the test code to the arduino. The display runs

through the test code by displaying different shapes and words.

8.6.2 Touch Screen Testing

Once the screen has been tested successfully, testing the touch screen
functionality could begin. The touch screen testing was completed after the initial
display testing because the drivers for the touch screen utilize the drivers for the
display to know screen size and locations on the screen. To begin the touch
screen testing, the wires for the touchscreen were connected to the Arduino.
These wires used the analog inputs on the Arduino to send an analog signal that
is generated by the resistive touch screen. Once the wires were connected the
programming of the touch screen could begin.

The first step of programming the touchscreen began with opening the Arduino
IDE, and writing a code to test the use of buttons on a screen. The screen will
have four buttons (one at each corner of the screen) labeled a different color:
red, blue, green, and yellow. Whenever a button was pressed, the center of the
screen changed to the selected color, and a respective LED of that color turned
on.

Some adjustments needed to be made for programming the touch screen
functionality. The source code for the touch screen included the following
libraries: Adafruit_TFTLCD, Adafruit_GFX, and TouchScreen. We then define the
CS, CD, WR, RD and RESET pins used by the LCD display. In order to activate
the touch screen, we identified the YP, XM, YM, XP pins that these ports were
plugged in to (note that the wiring is different from the code). We then needed to
define the minimum and maximum X and Y values, which is done by calibrating
the screen. So, keeping this code aside for now, we uploaded the
“touchscreendemo” example within the Arduino IDE that comes with the library
for calibration (File -> Examples -> TouchScreen -> touchscreendemo). After
uploading, we open the Serial Monitor from the IDE and began calibration. We
calibrated the screen by touching the top left corner of the display and got the X
and Y values displayed on the Serial Monitor. These values were then entered as

108

the maximum X and Y variables in the original testing source code. The same
process was done to get the minimum X and Y values by touching the bottom
right corner of the display. Once the minimum and maximum X and Y values
were entered, the testing program was uploaded to the Arduino.

To further explain the source code for testing buttons, a variable “currentcolor”
represented is in a 16-bit color value in order to keep track of which colored
button the user has pressed. Pin modes for the four LEDs needed to be
initialized as output. The pins 40, 41, 42, and 43 map to the colors blue, green,
red, and yellow respectively through a relay. We initially set these pins as “HIGH”
in order to make them as initially turned off until the user presses a button.

A custom function called “drawTestScreen” was made to draw all of the square
buttons at each of the screen’s corners with the appropriate color label name.
This function was called at the end of the setup function after all the pins had
been initialized to start up the screen’s display.

Within the continuously looping section of the code, the map() function converts
the values we get from the TouchScreen library into pixels, and this is the
resolution of the screen we use in pixels. Thus, we can use these X and Y values
of the touch point in pixels to make clickable buttons. We used an if-statement
that checks whether or not the screen has been pressed within specific
coordinates assigned on top of a button. If so, another nested if-statement
determines whether or not the location being pressed was one of the four
buttons. If any of the buttons have been pressed, then “currentcolor” will be set to
the selected color, and that corresponding colored LED will be turned on. After
the nested if-statement, drawTestScreen is then called again to refresh the
screen’s drawing display. Lastly, a nested if-statement is used to determine the
value of “currentcolor”, in order to place a white outline around the appropriately
selected button to indicate that it has been pressed.

Figure 8.14: Successful operation of the Touchscreen

109

In summary,
● Connect the wires that control the touch screen to the arduino using the

displays wiring table as a reference
● Download the provided drivers for the touchscreen.

○ The touchscreen drivers are based on the drivers for the display.
■ Display testing should be completed prior to testing the

touchscreen.
● Modify the drivers to use the analog pins that the touch screen is

connected to.
● Upload the test code for the touch screen onto the arduino.

○ The test code allows you to draw images on the screen.
● The screen may require calibration to ensure the accurate touch positions.

9. Software Testing
This section goes over the various methods that we utilized to test the web
application. These tests ensured that the website components were working
within its design parameters, and that all the parts of our development stack were
communicating with each other.

9.1 API Endpoints

In this section we test the API endpoints that are used to login a user, and make
sure that they already exist in our database before letting them access the rest of
the information available. We also test that the endpoints for the API are scraping
the weather data. To test these endpoints, we first write the PHP files, these files
connect the front end, which is what the user sees, with the back end, and we
make this communication as smooth as possible. Once the PHP files are written
we use ARC for some quick tests. To use and test these APIs, we used JSON,
which stands for JavaScript Object Notation, and it was used to send formatted
data from a server to a web page. This data was formatted in key/value pairs,
each pair was separated by commas. A key is only of one type, a string,
enclosed in quotation marks, on the other side, the value can be any of the
common types. The JSON syntax is obtained from JavaScript object notation
syntax, because of this JavaScript programs are able to easily convert JSON
data into native JavaScript objects. Each JSON object is written inside curly
braces, and can contain many key/value pairs. While the syntax was made
similar to JavaScript objects, any of the available popular programming
languages can write JSON objects.

110

Figure 9.1. Successful Testing of the Login Endpoint

The first endpoint that was tested was the login API, which is in charge of giving
the user access to the dashboard. When testing this out there were a couple of
issues we ran into. First and foremost, since 000webhost is new to us, we were
not too sure about how the URL would work to reach each of the API endpoints,
so there were many trials and errors to get the right one working. Once we were
finally able to pin down the correct URL, the next task was defining the JSON
package.

Since the login requires its users to use the email and password that was
provided in the sign up form, we had to send that formatted with the existing
users we inserted at the beginning, during our database set up. This JSON
package contains the email and password, as seen in the grey, before sending it
though we had to define the header to JSON to be able to send it and properly
test it. Once all three fields were defined, we were able to send the package to
our API, and as seen in the screenshot, because it was successful we got a 200
‘OK’ code, and in the response and request header tabs we can see the users
information. For this test, the user is “Jane Doe”, and they are the second person
in our users table, which is pointed out by their user ID in the response. For the
other endpoints, the testing format is the same. The only difference is the method
utilized for the request.

111

In summary,
● To test the API endpoints we have to actually know where the file is in the

server to be able to write the correct URL to send the JSON package.
● The testing steps for each API is similarly formatted, the only difference is

the method used to test it and whether or not it has a JSON response.
● The first endpoint tested was the Login endpoint, which required a POST

method and returned the users information.

9.2 TFT Touch Screen GUI Implementation

The Adafruit_TFTLCD and the Adafruit_GFX libraries enable easy use for TFT
screens. After including these libraries in the Arduino code, an TFTLCD object
was created. The parameters of this object defines the model of the TFT screen
and shield, which can be found in the documentation of the libraries. Next, fonts
contained in the libraries had to be defined, along with any variables needed for
the programming of the graphical user interface.

Within the setup section of the code, we had to initiate the screen and the touch
capabilities, as well as define pin modes for any input and output. Afterwards, a
custom function (such as drawHomeScreen) was created in order to initialize the
home screen for the controller. The Adafruit_GFX library offers a couple of very
useful functions such as. setBackColor(), .setColor(), .setFont(), .print(),
.drawLine(), and .fillRoundRect(), which are important for creating a graphical
user interface. These functions are used within the drawHomeScreen custom
function, for example, to begin constructing the layout design and touch buttons
on the home screen.

Within the loop section of the code, we made the buttons on the home screen
functional. Using the .read(), .getX(), and .getY() functions from the
Adafruit_TFTLCD library, we get the x and y coordinates of where the screen has
been pressed by the user. We then check if the coordinates are in a certain area
of the screen or fall on top of a button. If that condition is met, it then makes the
button useful to do whatever we need, like call other custom functions or change
some data.

Another custom function, drawInfoScreen, is called when the user presses the
information button on the top right corner of the screen. In this function, we draw
all the graphics on the screen in a similar way in which we did for the home
screen. Additionally, each screen repeatedly needs to call other methods that
grab information from other modules in order to display their data.

112

In summary,
● There are libraries available to use for the touchscreen lcd screen that we

use, this includes commands like setting color, etc.
● There are commands for getting the coordinates where the user touches

the display to have it do what they need it to do.

10. PCB Design
For the PCB, or Printed circuit board, our project used a software called Eagle
which is made by Autodesk. This software allows users to import the selected
parts for their printed circuit board design and lay them out in a logical format.
The software then allows the users to connect the different components with
wires to give a general schematic of how everything on the printed circuit board
is connected.

After all the components are layed down and all of the necessary connections
are made the software takes your inputs and lays them into a PCB. The wires
can then be turned into traces to connect all the components on the printed
circuit board to complete the design.

In our PCB design, we used both Altium and Eagle software. Both allow us to
import individual parts and connect them within the schematic, and then to import
them to the PCB. Both also have an autorouting feature that allows The
subsequent PCB to become cleanly wired very quickly. While the group had
experience with Eagle, Altium had not been used prior by our group, and was
suggested as by our mentor Chris Neiger.

Since both Eagle and Altium provided free student licenses, price was not an
issue, and we decided to expand our knowledge base and use Altium for our
sensor unit PCB design and Eagle for our control unit PCB design. Each of the
two platforms provides the positives listed below:

Altium Notable Features:
● Cloud-based collaborative working, so multiple team members can update

and edit designs
● Advanced routing features including walk around, differential pairs,

obstacle ignore, and hug
● Design simplification converting multi-channel designs into stepwise

designs
● Easy to create real time Bill of Materials

113

Eagle Notable Features:
● Backward/Forward annotation between PCB and Schematic
● More powerful simulation tools with spice integrated
● Group has some experience and familiarity with Eagle

10.1 PCB for Main Controller Unit

The design of the main control unit started with the ATmega2560 which will be
centrally located on the board. One of the sides of the board consisted of the
components for the voltage regulator that will reduce the voltage to make it
usable for the CPU. On the opposite side of the board a header of male pins was
connected to various input/output pins on the CPU. This header was used to
connect and drive the touch screen display to the main control unit. On one of the
adjacent sides there are holes to through mount both the bluetooth module and
wi-fi module. These through hole connections are connected to two of the four
USART connections on the CPU. These connections contain the voltage dividing
circuit to obtain the 3.3V power level required for the communication modules.
On the side of the board opposite to the communication modules there is a
double row of pin headers to connect the relay modules to the main control unit.
Six male pins are required for each relay module. Of these six pins, one pin is
connected to 5V VCC, one pin to ground, and the other four pins are connected
to input/output pins on the CPU. There are four relay modules to connect, which
will create a total of 24 male pins. Male pins were added to allow the unit to be
expanded for future use. All male pins, through hole connections, and surface
mounted components are soldered to the board to ensure permanent
connections was created. For our design, we expect each of our sensors to be
able to utilize identical PCB designs.

114

Figure 10.1: Eagle PCB design schematic

This initial design was created using the eagle software. Many of these parts
were selected from the research conducted earlier in this paper. The schematics
for many of these parts had to be downloaded to ensure the right foot print and
layout of the PCB would match the parts that are planned on being ordered. The
pin selection for many of these parts came directly from component testing. The
testing for many components such as the wifi and bluetooth module have not
been completed at the time of design. When successful testing of the parts was
completed, the pins for these components were added to the Eagle schematic to
complete the design. Currently the initial design of the power supply for the PCB
was based upon a buck converter that was designed using Texas Instruments
Webench. The buck converter design is still the main plan for powering our PCB,
but semiconductor shortages have limited the ability to purchase any of the buck
converters from Texas Instruments.

A back up design was implemented in this Eagle schematic that consists of a 5V
linear voltage regulator. This linear voltage regulator is rated for 2A which is more
than enough power for the PCB. However, The Linear voltage regulator is in a
7805 format. This design will require a heatsink to be attached to the linear
voltage regulator to prevent it from overheating. During normal operation the
power demands for this PCB will be low, but when the relays open to turn the
vents on, the power demand will increase drastically. The increase in demand will
require the heatsink to prevent overheating and premature failure of the PCB.

115

Basic pins have been used to implement the screen and relay modules. This was
done to help decrease the footprint of the PCB to allow for more flexibility of the
installation.

Figure 10.2: Initial PCB layout

Above is the initial footprint of the PCB. The locations for the various pins and
components were chosen to minimize crossover of the air wires. This will aid in
the trace routing process for the final design. The component locations are likely
to change as the Bluetooth and Wi-fi module testing continues.

In summary,
● Eagle has been chosen as the design software for the controller PCB.
● The ATmega2560 is centrally located due to the large number of

connections made to it.
● The PCB sides are divided up to group similar components for ease of

understanding the layout.

116

● The sides were chosen to minimize the number of crossover connections
for the PCB.

● Due to supply constraints a linear voltage regulator was implemented as a
back up design instead of the buck converter.

● Bluetooth and WI-fi module testing is the limiting factor for finalizing the
first draft of the PCB design.

10.2 PCB for Sensor Unit

For the Sensor Unit’s PCB design, we discussed software options with our
sponsor Chris Neiger and decided to use Altium. He recommended this software
so that we could learn a new system and use him as a support resource as
needed. Altium also has a resources and support page that provide help and
tutorials on things like creating a PCB layout from a schematic. After looking into
Altium, we saw that there was a free student license that lasts through the
project’s duration, and that Altium has a schematic wizard that allows us to easily
move between Eagle and Altium, so that going between the two software options
would be possible. Altium’s PCB design software is used from automotive and
aerospace designs to consumer electronics and medical devices design. There
also exists Altium 365 that allows designers to collaborate in the design process
for the entire PCB, this software also has the ability of embedding the PCB
design into a website along with being able to share it, there is also no CAD tools
or experience required in using it. There is also a free ECAD software called
circuitmaker that is used to create PCB designs however it does have some
limitations and won't be very helpful for us. During the design process, schematic
components were needed for the Arduino Nano Every, DHT22, HM 10, Battery,
and 1k, 2k, and 10k resistors, as selected earlier.

While the schematics for the resistors were included, everything else needed to
be downloaded and imported. The DHT22 was imported, while the battery was
set as a 2 pin header, with pin 1 being Vin and pin 2 being ground. Ample space
was left on the PCB so that the battery casing can be attached to the board
securely. One side of the battery casing has the on/off toggle, while the other has
the screw that allows battery replacement. Since both will need to be accessed,
the battery was placed on the edge of the board, so that the on/off toggle is
slightly off the edge of the board and can be accessed.

Due to the testing issues with the HM 10, a 6 pin header was used as a
placeholder. While the HM 10 module we originally purchased has 4 pins, other
modules use 6, with pins 1 and 6 not connected. In case switching parts is
needed, we decided to use the 6 pin so that the PCB design would not need to

117

be altered later on if a 6 pin HM 10 is purchased. Space was left around the 6 pin
header to allow for the size difference of the HM 10.
Figure 10.3 Altium Design Schematic

The figure above shows the wiring that was created for the Schematic in Altium.
All of the sensor components are wired as they were on the breadboard during
testing, since the only issues with testing were from the HM 10 part not working
correctly, as opposed to connection issues.

The schematic was then imported to the PCB. Autorouting was used to give a
clean schematic, the 2 pin header representing the battery was placed in the
space the battery casing is expected to sit for picture reference, and will be
moved closer to the edge of the board before printing.

118

Figure 10.4 Altium Design Schematic

As shown above, the excess room for when the HM 10 module is added and the
battery compartment. Care was also taken to have the battery and the Arduino
Nano Every on corners, so that any heat they produce affects the other
components less. This also lets us plug into the Nano Every to alter code if
needed. Additionally, the battery needs to be placed so that it is slightly over the
edge of the PCB so that the on/ off switch can be toggled. Overall the size of the
PCB is much smaller than the maximum acceptable size of 4” x 6” that had been
discussed in planning the sensor. This means that even with the casing that will
protect the final sensor PCBs, it will still allow the sensor to be within size
restraints.

In summary,
● Altium has been chosen as the design software for the Sensor PCB.
● Altium has an import wizard that lets us import from Eagle, which may be

necessary for later PCB designing/printing
● The Arduino Nano Every is located on the edge of the board to avoid heat

affecting other components and to allow the nano to be reprogrammed
even when on the board.

● The battery casing is modeled with a 2 pin header on the edge of the
board to allow for both battery on/off toggle and battery replacement.

119

● A 6 pin header is being used for the HM 10 until we can find a brand of
HM 10 that works.

11. Administrative Content
This section of the document shows how well our team managed their time and
budget on this project. The administrative portion of our responsibilities includes
finances and timeline management. The budget was decided by our sponsor and
is listed to show each expense that makes up our ventilation controller.

11.1 Budget

For this project we were being financed by Chris Neiger, the estimated Budget
being $1,588.60.

Budget Break Down
Description Price Quantity Total

Arduino Mega 2560 40.3 2 80.6

Breakout Board, ESP8266 Wifi module 7.93 2 15.86

HM-10 Wireless Bluetooth Transmitter 7.99 4 31.96

Jbtek 4 Channel DC 5V Relay Module 9.59 4 19.18

TFT 3.5" Color Touch Screen Display- ILI9341 26.98 1 26.98

DHT22 Temperature and humidity Sensor 9.95 4 39.8

Breadboard jumper wires, 120 piece 5.99 1 5.99

Breadboard- 4 piece 5.99 1 5.99

Software-Price per month 30 6 180

Assorted discrete electronic component kit 70 1 70

Final PCB build 50 1 50

Travel to/from Niceville, FL- 419 miles- 16
cents/mile

67.04 6 402.24

Hotel in Niceville, FL- $110/room/night 110 6 660

Total 1588.6

120

11.2 Finance

Our Sponsor provided us with a lump-sum of two thousand dollars to complete
this project. In using these funds, our group was responsible for opening a bank
account and keeping track of our budget and spending. Any unused money was
returned to our sponsor at the end of this project.

We looked into the creation of a corporate account, but after talking with the
bank, we found that this type of account would require us to incorporate or form
an LLC, get tax numbers, and would in general be more time consuming and
complicated than our group and our sponsor felt necessary.

A personal account would allow us to use money under one member’s name,
and would not require us to do anything special legally. Gisela Griesheimer was
chosen since she is our sponsor connection, physically closest to the sponsor’s
location, and our sponsor was most comfortable with this arrangement. We will
be keeping track of purchases as a team, though Gisela Griesheimer will be in
charge of keeping up with receipts and online ordering for the group.

Account statements are checked regularly and shared with our sponsor on a
monthly basis, and whenever requested. Most purchases are made online, so we
did not anticipate any issues with having the account tied to a single person. Our
only anticipated costs that will not be purchased online are gas and
accommodations for when the team travels to Niceville to install the system in the
sponsor’s warehouse. Since the entire team will be traveling together, this should
also not be an issue.

At our sponsor’s recommendation, we decided to open an account with Synovus
Bank. This bank provides us with a free account and a debit card, so that
purchases can be made by Gisela without any service fees. During the summer
semester while the group members are communicating virtually, any parts
needed can be shipped directly to the group member who needs them. In the fall,
all members will reside in the Orlando area, and parts can be shipped to one
location and distributed in person. Any large purchases outside of our initially
proposed budget will be discussed with our sponsor before purchase. Fluctuation
in part prices will be discussed with the sponsor if they are significantly different
than anticipated in the budget report, but small changes in price are expected
and acceptable.

121

11.3 Current Spending

The current funds that have been expended are shown in the chart below:

Table 11.1 Chart of Current Spending

Item(s) Website Date Shipped to Order
Price

Shipping &
Tax Price

Total

Arduino Mega Arduino 7.15.21 David /Orlando $40.30 $13.82 $54.12

Arduino Nano
Every

Arduino 7.15.21 Gisela /Niceville $10.90 $13.82 $24.72

HXD8357D (LCD
Screen), DHT22
(Temp Sensor),
ESP8266 (Wifi)

Adafruit 7.15.21 David /Orlando $59.85 $15.75 $75.60

DHT22 (Temp
Sensor) x4

Adafruit 7.15.21 Gisela /Niceville $39.80 $14.72 $54.52

Relay, HM 10
(BLE)

Amazon 7.15.21 David /Orlando $18.98 $1.33 $20.31

HM 10 (BLE),
Lithium 9V Battery,
Battery Case
3pack

Amazon 7.15.21 Gisela /Niceville $24.87 $1.74 $26.61

Relay x3 Amazon 7.20.21 David /Orlando $23.49 $1.65 $25.14

Ship Sensor for
Testing

USPS 7.23.21 Angelica
/Orlando

N/a $8.45 $8.45

Lithium 9V Battery Amazon 7.25.21 Angelica
/Orlando

$6.89 $0.45 $7.34

Wifi Module Amazon 7.28.21 David /Orlando $10.99 $0.77 $11.76

HM 10 Amazon 7.28.21 David /Orlando $10.99 $0.77 $11.76

Return Both
Broken
HM 10s

Amazon 7.28.21 David /Orlando -$21.98 -$1.54 -$23.52

122

Running Total $296.81

11.4 Milestone Discussion

The project milestones is a brief summary of the submission deadlines for this
project, and the goals of when each section should be completed. This section
covers both the submissions for senior design 1 and senior design 2. Many of the
deadlines chosen are hard dates that cannot be violated in order to complete this
project in a timely manner.

11.4.1 Project Milestones Summer

Below is a table of the submissions and the deadlines for the first part of this
project which covers the first semester of Senior Design 1. The deadlines in this
semester are tighter due it being a summer semester which is the shortest
semester of the academic school year. With this tight schedule there is little room
for missing deadlines.

Table 11.2: Summer Semester Milestones

Summer Semester 2021

June 2 Begin writing document and researching parts

June 11 Submission Due for D&C 1.0

June 14 Project Set and approved - Meeting with Dr. Wei

June 25 Submission Due for D&C 2.0

July 9 At least half of the final document written

July 23 Submission Due for 100 Page Draft

July 31 Individual document portions complete

August 1 Edit, format, and assemble document

August 3 Submit Final Paper

123

11.4.2 Project Milestones Fall

Below is a brief table that summarizes the milestones that cover Senior Design 2.
The fall semester is the longest semester of the academic calendar and will
provide more room for prototyping and building this project. However, The
schedule will still be tight and have little room for error. The below schedule is
likely to be edited once Senior Design 2 begins and the submission schedule for
each part of the project is released.

Table 11.3: Spring Semester Milestones

Fall Semester 2021

August 8 Order parts

September 6 Begin building design and writing software

October 18 Begin integrating software and hardware

November 1 Project fully built

November 8 Begin Practicing Presentation

December 3 Final Presentation

11.5 Completed and In-Progress Work

This section contains an up-to-date checklist of the work completed along with
the in-progress work that is being done. The section containing research has
been removed because it is completely finished, any further research for this
project will be in prompt to research which by definition cannot be foreseen, and
therefore cannot go into this section that is used for planning work. Any work
beyond testing is also not in this section because that work is neither in-progress
nor completed as of this date.

124

Table 11.4: Testing Status

Status Work Description Notes

✔ Bluetooth Testing Faulty Bluetooth Module- New
module just recieved

✔ Wi-fi Testing Wrong module ordered- New
Module just recieved

✔ Relay Module Testing No Issues

✔ Display Testing No Issues

✔ Touchscreen Testing Needs Calibration

✔ DHT-22 Testing No Issues

✔ Power Supply Testing All Buck Converters sold out-
changing design to LVR

✔ Main Control Unit PCB
Design

Waiting on pin selection for
Bluetooth and Wi-fi modules

✔ Sensor PCB Design Waiting for confirmation of bluetooth
pins

✔ API Design No Issues

✔ API Testing Issues with accessing API files
✔ - Completed

NS - Not Started
IP - In Progress

12. Installation and Further Work
In the following section, we present the work completed during the Fall 2021
semester that was done to finish and install the automatic vent controller system
in the sponsor’s warehouse. This includes the printing of controller and sensor
PCBs, the casing for all hardware, the software and testing completed on all our
hardware, the web application, and the web scraping of outdoor temperature
information.

125

12.1 Hardware

While initial designs for our PCBs were completed during the Summer 2021
semester, they were improved, printed and manufactured during the fall.
Additionally, casing was designed for the controller unit and each of the sensor
units. An acrylic mounting piece was designed for the relays to keep them upright
in the control box. Finally, additional changes had to be made during the install in
order to accommodate the physical restrictions of the warehouse that were
unaware of due to our distance from the space.

12.1.1 PCB Development

While initial PCB designs had been completed over the summer semester, as our
designs furthered we decided to add failsafes to the controller’s PCB design.
Some of these fail safes were redundant bluetooth connections that are
connected to separate hardware serial ports that had been unused in the project
so far. The wifi was connected to hardware serial port one. This was done
because initial testing proved it to be the most reliable for the higher baud rates
of the wifi module. Additional connections and components were added for
auxiliary components such as the reference voltage pin, extra output capacitors,
and reset pin. All of the components were then laid out on the board to create an
efficient layout that still grouped similar components together for ease of final
assembly.

Figure 12.1 Main Control Unit final PCB design

126

12.1.2 Casing for Control Unit

In order to house the controller unit, a casing structure needed to be produced.
Since, unlike the sensor, there are no temperature or humidity readings being
taken from the controller, there is no need to have an open airflow box. However,
the BLE module and the WiFi module both need to be able to easily
communicate without being hindered by the casing. Also, the touchscreen needs
to be able to be connected to the controller while also able to be manipulated by
the user. The solution to this was to buy a new electrical box, identical to the
current box for the double-pole double-throw switches. The Cantex box proved to
be large enough to house all components, Rigid enough to protect them, and
easy to work. The PCB was mounted to the back of the box using Velcro tape
which enables it to be removed and replaced if needed. The Wifi Module was
mounted on the left side of the box using female pin headers. This allows the Wifi
module to be connected and disconnected with ease for additional programming
if needed. A USB port was also added to the left side of the project housing to
facilitate uploading code to the PCB. This allows for making quick adjustments to
the automation algorithm while at the warehouse without the need to open the
box every time. The Bluetooth Module was mounted at the end of a 10 foot wire
which allowed it to be placed above machinery that may have potentially blocked
it from connecting to all of the indoor sensors. The screen was mounted to the
front cover of the box to allow for easy viewing and control of the indoor data and
vent positions. A large hole was drilled on the right side of the box to give the
relay module connection a path to be installed in the existing box at the
warehouse.

127

Figure 12.2 Main Control Unit Housing

12.1.3 Casing for Sensor Units

The sensor unit casing needs to allow for air to easily pass through to the DHT22
so that both temperature and humidity can be read. The concerns when
designing the casing were firstly to protect the unit and the integrity of the data
collected, but also to look professional and not draw too much attention in the
warehouse. Since the sensor unit’s size already fell well within our initial
requirements, we knew that the casing for the unit would not be overly bulky if
well designed.

For our design, we looked at both premade boxes, such as thermostat covers,
that have ventilation holes already in them, and into a 3D printed casing solution.
The main points of comparison between these two options were security, stability
and price. While the thermostat boxes came with a lock and key feature, the 3D
printed solution would at best be able to have two pieces that can snap together.
Regarding size and stability, premade thermostat boxes were all larger than
needed to house the sensor unit PCB. This would make them slightly above our
ideal size goal. When designing a casing, we can make it fit exactly the size of
our components, which would make the box approximately a 2.5 inch cube. This
is more aligned with sizing goals and would naturally prevent the PCB from
rattling around in the casing without having to glue or otherwise adhere the PCB
to the casing. Finally, we looked at the price. Each of the thermostat boxes cost
$18, bringing the total cost to $96 after shipping. The 3D printed designs,
however, can be printed using the UCF innovation lab and our sponsor’s 3D
printer, so there would be no cost to us for the casing.

128

Since the 3D printed solution would be more stable and cost effective, we chose
to design and 3D print our own casing.

Table 12.1: Sensor casing comparison

Casing Solution Security Price Size

Premade
Thermostat Box

Lock and key $96 for 5 6.06 x 2.63 x 5.06
inches

3D printed
custom design

Snap-in design
which can be
glued together

Free (utilizing 3D
printing services
at UCF and
sponsor’s
warehouse)

2.5 x 2.25 x 2.313
inches

When designing, Solidworks was utilized at no cost to the group. The design was
made with numerous holes to allow for airflow, a solid back with a single
mounting hole to sit stabally against the wall, and two stability brackets that could
hold the battery unit while allowing the casing to slide out for battery
replacement. The final sensor casing prototype used this design but omitted the
stability brackets, as the batteries were replaced with a 12V AC to DC converter
when installed.

Figure 12.3: Sensor casing prototype

Figure 12.4: Actual sensor casing

129

12.1.4 Acrylic Relay Mount

To efficiently house the relays within the control unit’s casing, an acrylic mount
was prototyped. Each of the four relays was mounted to the unit via screws and a
rubber backing for stability, and the acrylic had holes cut through for both the
screws and wires. This was needed as the box the relays were being installed in
was very close in size to the relays, and with the wiring that box would quickly
look chaotic and tangled.

Figure 12.5: Relay units tightly mounted into the acrylic mount

130

12.1.5 Wi-fi Module Design Changes

After further testing, it was decided to switch from the ESP8266 Wifi module to
the Adafruit HUZZAH. This change was made due to the ESP8266 having an
unreliable connection during testing, and a lack of documentation to aid in its
use. The Adafruit HUZZAH requires an extra FTDI cable to program but proved
to be much more reliable and well worth the extra cost.

12.1.6 Installation Design Changes

131

Due to the warehouse in Niceville, Florida being so far away from the team in
Orlando, the installation for the entire project needed to be completed over a
single weekend. This meant that the majority of the team had never seen the
space in person before the installation weekend of November 19th-21st 2021.

While most of the major components of our design remained unchanged, we did
come across some features of the warehouse that made our design
implementation change from what we had expected to produce. One example
was in the sensor units’ power supply. Though we had anticipated using one 9V
battery per sensor unit, when we got to the warehouse it became apparent that
the sensor units would not need to be frequently moved. Because of this it was
decided that it would be easier and more reliable to connect them to power via an
AC to DC power converter. Additionally, our sponsor no longer needed to worry
about buying and replacing batteries.

13. Online Sources
In the following section, we share the sources that we used for researching our
paper. We also include several references to the datasheets of components that
were used.

13.1 Research Sources

Below is a list of resources that were used while researching the project. These
resources provided valuable information that aided in the implementation of the
project goals, and gave us direction in the selection of the components that are
being tested to implement the project.

3.1 Existing Products
https://www.veluxusa.com/products/smart-home#Getasmarthome
https://www.energy.gov/energysaver/natural-ventilation

3.2.2 Bluetooth Connection for Sensors
https://www.aranacorp.com/fr/arduino-et-le-module-bluetooth-hc-06/

3.2.3 Temperature and Humidity Sensors
https://randomnerdtutorials.com/9-arduino-compatible-temperature-sensors-for-y
our-electronics-projects/

132

https://www.veluxusa.com/products/smart-home#Getasmarthome
https://www.energy.gov/energysaver/natural-ventilation
https://www.aranacorp.com/fr/arduino-et-le-module-bluetooth-hc-06/
https://randomnerdtutorials.com/9-arduino-compatible-temperature-sensors-for-your-electronics-projects/
https://randomnerdtutorials.com/9-arduino-compatible-temperature-sensors-for-your-electronics-projects/

https://randomnerdtutorials.com/dht11-vs-dht22-vs-lm35-vs-ds18b20-vs-bme280-
vs-bmp180/

3.2.5 Battery
http://techlib.com/reference/batteries.html
https://www.panasonicbatteryproducts.com/wp-content/uploads/2017/05/Battery-
Cross-Reference-Chart-5.22.17.pdf
https://store.google.com/us/product/nest_temperature_sensor_specs?hl=en-US
https://www.batteryequivalents.com/

3.2.6 Casing for PCB
https://www.thingiverse.com/thing:3103773

5.3 Sensor Design
https://raspberrypi.stackexchange.com/questions/12161/do-i-have-to-connect-a-r
esistor-to-my-dht22-humidity-sensor

6.1 Wi-Fi Module Connection
https://www.instructables.com/Get-Started-With-ESP8266-Using-AT-Commands-
Via-Ard/
http://woodsgood.ca/projects/wp-content/uploads/ESP8266ATCommandsSet.pdf

6.2.2 Code Setup and Logic
https://forum.arduino.cc/t/can-1-bluetooth-master-have-multiple-slaves/431055
https://www.saibatudomt.com.br/2018/01/conectando-3-dispositivos-arduino-utiliz
ando-o-modulo-bluetooth-hc-05/
https://learn.sparkfun.com/tutorials/bluetooth-basics/how-bluetooth-works
http://educ8s.tv/arduino-two-way-bluetooth-communication/

6.9 UART
http://www.farnell.com/datasheets/810077.pdf
https://www.arduino.cc/reference/en/language/functions/communication/serial/
7.4 DHT22 Sensor Testing
https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperatur
e-and-humidity-tutorial-using-arduino/

7.6 TFT Touch Screen Configuration Testing
http://educ8s.tv/arduino-3-5-color-tft-display-ili9481-arduino-uno-mega-tutorial/
https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout/8-b
it-wiring-and-test

8.2 TFT Touch Screen GUI Implementation

133

https://randomnerdtutorials.com/dht11-vs-dht22-vs-lm35-vs-ds18b20-vs-bme280-vs-bmp180/
https://randomnerdtutorials.com/dht11-vs-dht22-vs-lm35-vs-ds18b20-vs-bme280-vs-bmp180/
http://techlib.com/reference/batteries.html
https://www.panasonicbatteryproducts.com/wp-content/uploads/2017/05/Battery-Cross-Reference-Chart-5.22.17.pdf
https://www.panasonicbatteryproducts.com/wp-content/uploads/2017/05/Battery-Cross-Reference-Chart-5.22.17.pdf
https://store.google.com/us/product/nest_temperature_sensor_specs?hl=en-US
https://www.batteryequivalents.com/
https://www.thingiverse.com/thing:3103773
https://www.instructables.com/Get-Started-With-ESP8266-Using-AT-Commands-Via-Ard/
https://www.instructables.com/Get-Started-With-ESP8266-Using-AT-Commands-Via-Ard/
http://woodsgood.ca/projects/wp-content/uploads/ESP8266ATCommandsSet.pdf
https://forum.arduino.cc/t/can-1-bluetooth-master-have-multiple-slaves/431055
https://www.saibatudomt.com.br/2018/01/conectando-3-dispositivos-arduino-utilizando-o-modulo-bluetooth-hc-05/
https://www.saibatudomt.com.br/2018/01/conectando-3-dispositivos-arduino-utilizando-o-modulo-bluetooth-hc-05/
https://learn.sparkfun.com/tutorials/bluetooth-basics/how-bluetooth-works
http://educ8s.tv/arduino-two-way-bluetooth-communication/
http://www.farnell.com/datasheets/810077.pdf
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperature-and-humidity-tutorial-using-arduino/
https://howtomechatronics.com/tutorials/arduino/dht11-dht22-sensors-temperature-and-humidity-tutorial-using-arduino/
http://educ8s.tv/arduino-3-5-color-tft-display-ili9481-arduino-uno-mega-tutorial/
https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout/8-bit-wiring-and-test
https://learn.adafruit.com/adafruit-3-5-color-320x480-tft-touchscreen-breakout/8-bit-wiring-and-test

https://howtomechatronics.com/tutorials/arduino/arduino-tft-lcd-touch-screen-tuto
rial/
https://www.youtube.com/watch?v=9Ms59ofSJIY&list=PLr46zQhJdqMulhmitZh1
FqT2BqjKtLKJh&index=8

10. PCB Design
https://www.softwareradius.com/altium-designer-vs-eagle/

13.2 Datasheets

Below are the data sheets used for reference when wiring our hardwardware for
testing.

ATmega48A
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-16
8A-PA-328-P-DS-DS40002061B.pdf

ATmega640
https://www.mouser.com/datasheet/2/268/Atmel-2549-8-bit-AVR-Microcontroller-
ATmega640-128-1315286.pdf

ATmega2560
https://www.microchip.com/en-us/product/ATmega2560

Arduino Nano Every
https://store.arduino.cc/usa/nano-every

HM 10
https://www.rhydolabz.com/documents/37/datasheet%20HM-10.pdf
https://wiki.keyestudio.com/KS0455_keyestudio_HM-10_Bluetooth-4.0_V3_Com
patible_with_HC-06_Pins

134

https://howtomechatronics.com/tutorials/arduino/arduino-tft-lcd-touch-screen-tutorial/
https://howtomechatronics.com/tutorials/arduino/arduino-tft-lcd-touch-screen-tutorial/
https://www.youtube.com/watch?v=9Ms59ofSJIY&list=PLr46zQhJdqMulhmitZh1FqT2BqjKtLKJh&index=8
https://www.youtube.com/watch?v=9Ms59ofSJIY&list=PLr46zQhJdqMulhmitZh1FqT2BqjKtLKJh&index=8
https://www.softwareradius.com/altium-designer-vs-eagle/
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061B.pdf
https://www.mouser.com/datasheet/2/268/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-128-1315286.pdf
https://www.mouser.com/datasheet/2/268/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-128-1315286.pdf
https://www.microchip.com/en-us/product/ATmega2560
https://store.arduino.cc/usa/nano-every
https://www.rhydolabz.com/documents/37/datasheet%20HM-10.pdf
https://wiki.keyestudio.com/KS0455_keyestudio_HM-10_Bluetooth-4.0_V3_Compatible_with_HC-06_Pins
https://wiki.keyestudio.com/KS0455_keyestudio_HM-10_Bluetooth-4.0_V3_Compatible_with_HC-06_Pins

