
Greenie: The Smart Irrigator

Department of Electrical Engineering and Computer Science

Dr. Samuel Richie
EEL4915: Senior Design II - Fall 2021

Senior Design 2 Documentation

Group 10
Elliott Gray - Computer Engineering

Patricia Mae Luzano - Computer Engineering
Kevin Rodriguez - Electrical Engineering

Angelica Vargas Martinez - Electrical Engineering

i

Table of Contents

1. Executive Summary Page 1
2. Project Narrative Description Page 2

2.1 Motivation Page 2
2.2 Goals and Objectives Page 3
2.3 Function of Project Page 3
2.4 Requirement Specifications Page 4

2.4.1 Project Hardware Page 4
2.4.2 Project Software Page 5
2.4.3 Specifications Page 5

2.5 House of Quality Page 7
3. Project Constraints and Standards Page 8

3.1 Constraints Page 8
3.1.1 Economic Page 8
3.1.2 Environmental Page 9
3.1.3 Ethical Page 9
3.1.4 Health and Safety Page 10
3.1.5 Manufacturability Page 10
3.1.6 Plant Parameters Page 10
3.1.7 Political Page 11
3.1.8 Product Availability Page 11
3.1.9 Social Page 11
3.1.10 Sustainability and Reliability Page 12
3.1.11 Scale and Time Page 12

3.2 Standards Page 13
3.2.1 Wireless Communication Page 13
3.2.2 Communication Protocol Page 14
3.2.3 Programming Standards Page 15
3.2.4 Software Testing Standards Page 16

4. Research Page 17
4.1 Existing Projects and Products Page 17

4.1.1 EasyHerb Page 17
4.1.2 Smart Garden Controller Page 18
4.1.3 Orbit B-Hyve 57950 Page 19
4.1.4 Rachio 3 Smart Sprinkler Controller Page 20

4.2 Project Hardware Page 20
4.2.1 LCD Page 21
4.2.2 Microcontroller Page 22
4.2.3 Power Supply Page 25
4.2.4 Sensors Page 27
4.2.5 Relay Module Page 30
4.2.6 Water Pump Page 31
4.2.7 Nutrient Pump Page 31

ii

4.2.8 Voltage Regulator Page 31
4.2.8.1 AC/DC Power Conversion Page 32
4.2.8.2 DC/DC Power Conversion Page 33
4.2.8.3 Older Regulator Technology Page 34
4.2.8.4 Newer Regulator Technology Page 35

4.2.9 Smart Speaker Page 37
4.2.10 Solenoid Valve Page 39

4.3 Project Software Page 40
4.3.1 Communication Page 41
4.3.2 Database Page 42
4.3.3 Interface Page 45
4.3.4 Wi-Fi Module Page 46
4.3.5 Web Service Page 47
4.3.6 Weather Integration Page 49
4.3.7 Repository Management Page 50

5. Design Page 51
5.1 Overview Page 51
5.2 Technology Page 52

5.2.1 Communication Page 52
5.2.2 Database Page 54
5.2.3 Interface Page 54
5.2.4 Wi-Fi Module Page 56
5.2.5 Web Service Page 56
5.2.6 Weather Integration Page 57
5.2.7 Repository Management Page 58

5.3 Architecture Content Page 59
5.3.1 LCD Page 59
5.3.2 Microcontroller Page 60
5.3.3 Power Supply Page 61
5.3.4 Sensors Page 62
5.3.5 Relay Module Page 63
5.3.6 Water Pump Page 64
5.3.7 Nutrient Pump Page 64
5.3.8 Voltage Regulators Page 65
5.3.9 Smart Speaker Page 65
5.3.10 Solenoid Valve Page 67

5.4 Parts Acquired Page 67
5.5 Potential Product Design Page 69

5.5.1 Herb and Soil Compartment Page 71
5.5.2 Electronics Compartment Page 72
5.5.3 Water Compartment Page 73

5.5.3.1 Water Drainage Page 74
5.5.3.2 Water Detection Page 75
5.5.3.3 Water pH Maintenance Page 75

5.5.4 Build Material Page 76
5.6 Potential Scalability Page 78

iii

6. Prototype Page 79
6.1 Facilities and Equipment Page 79
6.2 Printed Circuit Board (PCB) Page 80

6.2.1 Software Utilized Page 80
6.2.2 Design Page 81
6.2.3 Layout Page 82
6.2.4 Manufacturing Page 85

6.2.4.1 Potential Vendors Page 85
6.3 Build Page 86

6.3.1 Hardware Page 86
6.3.2 Component Mounting Page 86
6.3.3 Arduino Integrated Development Environment Page 87
6.3.4 Software Page 87

6.3.4.1 Software Connecting to Hardware Overview Page 87
6.3.4.2 MERN Inspiration Page 89
6.3.4.3 Sensor Checking Page 91
6.3.4.4 LCD (Software to Hardware) Page 94
6.3.4.5 Relay Module (Software to Hardware) Page 96
6.3.4.6 Wi-Fi Module (Software to Hardware) Page 96

6.4 Web Application Prototype Page 97
7. Testing Page 102

7.1 Hardware Page 102
7.1.1 Hardware Test Environment Page 102
7.1.2 Sensor Testing Page 103

7.1.2.1 Soil Sensor Page 103
7.1.2.1.1 Preliminary Page 103
7.1.2.1.2 Additional Page 104

7.1.2.2 Rain Sensor Page 104
7.1.2.2.1 Preliminary Page 104
7.1.2.2.2 Additional Page 105

7.1.2.3 Humidity and Temperature Sensor Page 105
7.1.2.3.1 Preliminary Page 105
7.1.2.3.2 Additional Page 105

7.1.2.4 pH Sensor Page 106
7.1.2.4.1 Preliminary Page 106
7.1.2.4.2 Additional Page 106

7.1.2.5 Piezoelectric Sensor Page 106
7.1.2.5.1 Preliminary Page 106
7.1.2.5.2 Additional Page 107

7.1.3 LCD Testing Page 107
7.1.3.1 Preliminary Page 107
7.1.3.2 Additional Page 108

7.1.4 Microcontroller Testing Page 109
7.1.4.1 Preliminary Page 109
7.1.4.2 Additional Page 110

7.1.5 Power Supply Testing Page 110

iii

7.1.5.1 Preliminary Page 110
7.1.5.2 Additional Page 111

7.1.6 Relay Module Testing Page 111
7.1.6.1 Preliminary Page 111
7.1.6.2 Additional Page 112

7.1.7 Water Pump Testing Page 112
7.1.7.1 Preliminary Page 112
7.1.7.2 Additional Page 112

7.1.8 Voltage Regulator Testing Page 113
7.1.8.1 Preliminary Page 113
7.1.8.2 Additional Page 113

7.1.9 Continuity Testing Page 113
7.1.9.1 Preliminary Page 113
7.1.9.2 Additional Page 114

7.2 Software Page 114
7.2.1 Software Test Environment Page 114
7.2.2 Wi-Fi Module Testing Page 116

7.2.2.1 Preliminary Page 116
7.2.2.2 Additional Page 117

7.2.3 Alexa Integration Page 117
7.2.3.1 Preliminary Page 117
7.2.3.2 Additional Page 117

7.2.4 Web Application Testing Page 118
7.2.5 Weather Integration Testing Page 119
7.2.6 Database Testing Page 119

7.2.6.1 Preliminary Page 119
7.2.6.2 Additional Page 120

7.2.7 Web Service Testing Page 120
7.2.7.1 Preliminary Page 120
7.2.7.2 Additional Page 121

8. Administrative Content Page 121
8.1 Budget and Financing Page 121
8.2 Bill of Materials (BOM) Page 123
8.3 Senior Design 1 Milestones Page 124
8.4 Senior Design 2 Milestones Page 125
8.5 Content Distribution Page 126

9. Appendices Page 127
9.1 Appendix A: References Page 127
9.2 Appendix B: Purchase Links Page 127

iii

1. Executive Summary
Today, water scarcity is becoming one of the biggest global issues. Just as water is a
universal right and a necessity for humans and animals, it is also for plants. Agriculture
is recognized for the great demand for water that it entails, where the waste of the
limited resource is a significant problem, especially when using traditional mass
irrigation techniques such as manually operated sprinklers and/or water channels. The
unnecessary use of water is a notable problem in worldwide agricultural activity since
many times the irrigation systems used by farmers supply inadequate amounts of water
to crops. Therefore, the agricultural sector is one of the main stakeholders in developing
methods that help with water conservation. This has motivated the development of
automated irrigation systems that facilitate the adequate automatic supply of water and
thus optimize the use of water in the food production process.

Our project, Greenie: The Smart Irrigator, hopes to assist the irrigation techniques
implemented by worldwide agricultural activity and individuals and their communities.
Greenie focuses on quality and efficiency to grow healthy and sustainable plants while
using less water than traditional mass irrigation techniques. Although Greenie was
designed with water conservation as its primary focus, our project was also directed
towards people who enjoy gardening as a hobby. Since the start of the current
pandemic, individuals have acquired new hobbies to combat the repetitiveness and lack
of social interactions that result from global lockdown restrictions. The most common
hobby adopted was gardening, with a focus on fruits, herbs, and vegetables. Without a
large outdoor garden to alleviate the confinement, the average person resorted to
planting wherever there was space for a planter, whether it was on terraces, inside the
house, or in an apartment. Gardening has enjoyed an increase in popularity due to the
quarantine, and even though lockdown restrictions are currently being lifted in many
countries, individuals continue to practice growing their food.

Greenie was developed to grow and take care of different kinds of commonly used
herbs in a smart manner. The herbs supported are basil, bay leaf, cilantro, chives,
lemongrass, mint, oregano, rosemary, sage, and thyme. Our automatic irrigation system
protects the user’s plant by providing careful maintenance and data that helps the
respective plant stay healthy. The product is controlled by a central microcontroller that
acts as the “brain” of the system. Based on designated programming times that the user
can assign through the use of our web application or by voice commands through
Alexa, the herb will receive the right amount of water that it needs, resulting in water
that is not needed to be saved. Watering requirements for the different herbs supported
are saved in our database. Smart components such as soil moisture sensors, pH
sensors, rain sensors, and humidity and temperature sensors are connected to our
system. Through these, the user can access data regarding their herb at any time they
would like. In addition to the advanced capabilities offered by our sensors, Greenie also
has access to a weather station through which it shows the user the current weather
forecast on our web application. If it is raining, the user can place the system outside,
resulting in greater savings of water. In this document, we will be presenting our project

1

by discussing its administrative and technical content, including its associated specifics,
constraints, standards, and design.

2. Project Narrative Description
In this section, we will be giving a narrative description of our project. The following
subsections are going to serve as the transition statements between our declared
issues and how we plan on helping to solve them. We are going to discuss the
motivation behind designing and building a product that combines smarter irrigation
systems with IoT, our project’s goals and objectives, its function, and the requirement
specifications. In terms of the function and requirements of our project, both hardware
and software are going to be discussed. In addition, we are also going to discuss and
present the House of Quality that we built for our product.

2.1 Motivation
Currently, about a third of the global population lacks access to potable water. As the
global human population continues to increase, the availability of water could become
an alarming situation. Another important fact to highlight is that an outstanding amount
of water and land is consumed by agriculture. In the United States only, agriculture
accounts for about 80 percent of the consumptive water use while in many Western
States it accounts for over 90 percent1. This is where the greatest waste of this resource
occurs, being that a large concentration of the water utilized for irrigation purposes is
constantly lost due to events such as water overflow, evaporation, inefficiency resulting
from the use of outdated tools and/or equipment, etc2.

Irrigated agriculture has become one of the most important and lucrative sectors of U.S.
agricultural production while still being the largest consumer of consumptive water. In
2012, about half of the total value of crops sold on 28 percent of U.S. harvested
cropland was due to irrigated farms1. In the same year, approximately 7.6 percent of all
U.S. cropland was irrigated, maintaining the decline in irrigated U.S. cropland since
2007. This decline has been linked to the scarcity of water as a supply, causing drought
conditions across the farmable regions. Methods of using water smartly have been
looked into because of this.

The future of worldwide irrigated agriculture depends, to a large extent, on the
implementation of smart irrigation systems in both large scales, such as farms, and in
smaller scales, such as home gardens. This allows the most efficient use of water,
energy, and other resources in such a way as to increase the production levels using
fewer, crucial resources. With intelligent irrigation, the profitability of fields is increased,
the cost of human efforts is reduced, and the environmental impact of heavy-scale
agriculture is minimized by reducing both the use of water and the contribution of
polluting elements to the environment2. The implementation of smart irrigation systems
is essential to ensure the sustainability of irrigated agriculture.

2

In hopes of aiding this situation, our team has decided to design a smart irrigation
system using the Internet of Things technology, or IoT, by implementing a network of
sensors and APIs to connect and exchange data over the internet. A smart irrigation
system could be of great help in managing water utilization around the world and
increasing productivity in fields. We have chosen to implement a more local approach
with our project, giving individuals the chance to help their communities and the global
population by growing herbs from the comfort of their homes.

2.2 Goals and Objectives
The goal of this project is to create an easy-to-use and portable smart irrigation system
using IoT. Our product, Greenie, allows users to monitor and irrigate herbs remotely,
making the gardening process hassle-free. Given that the system is compact, it can be
placed anywhere inside a home or an outdoor garden. Once programmed, the system
works independently to optimize irrigation with smart gardening tools, resulting in
savings on water consumption compared to manual watering, as water is only used
when needed and exactly the right amount is applied. Our system is time-saving,
resource-saving, and reduces the workload of the user. Given that our system utilizes
IoT, it must be connected to a Wi-Fi network to successfully perform its duties.

The strategy to accomplish this project is to acquire the necessary equipment to put
together a smart irrigation system using IoT. Parts from different distributors were
compared to obtain the best prices for each component needed. Once the parts were
obtained, the necessary printed circuit board was constructed. A web application that
tracks the plant’s data, such as watering times, soil preference, pH preference, and the
ideal humidity and temperature it requires from the surrounding air was also
constructed. The application, which the user can access comfortably from anywhere, is
available on any mobile device through the use of a link, making our device as easy to
use for any type of user, whether they are beginners, intermediate, or advanced
gardeners. This information will be invaluable to allow the user to make smart decisions
on their plants.

2.3 Function of Project
Using our hardware, the user is able to acquire various information regarding the
watering levels, soil dampness, and humidity through the use of our designed
microcontroller that is displayed on the LCD. This information includes soil moisture,
temperature and humidity, watering by rain, and pH levels. The sensors required for
each were placed in the planter, which sends real-time data to the microcontroller.
Depending on the herb, a soil moisture range is indicated and whenever the values are
outside of the specified range, the microcontroller automatically turns on/off the water
pump. Through the use of an integrated weather monitoring application, our system is
able to inform the user if rainwater is able to irrigate the herb on any specific day of the
week.

3

Using our software, the user can water their plant automatically through their mobile
device or voice, and also present information regarding the plant. Through the use of
our web application, the user is able to tap on their screen to either select automatic
watering or water their plants manually. The user is also able to ask the system to do
either option through the use of their voice thanks to Alexa integration. A Wi-Fi module
and relay module are included for this purpose. Additional Alexa commands also work
with our LCD screen, where the user can observe data such as soil moisture levels,
whether the plant was watered by rain or not, temperature, humidity, and pH
information.

2.4 Requirement Specifications
The following section will discuss the requirement specifications associated with our
project’s hardware and software. Under section 2.4.3 Specifications, a list of attributes
and their specified descriptions can be observed in Table 1. The requirement
specifications will discuss the properties that we determined our project must meet
when we submitted it for final approval. It also discusses how the system interacts with
its environment, both hardware components and software programs, as well as with the
user.

2.4.1 Project Hardware

Our design must utilize a Wi-Fi module, which allows users to develop and create IoT
projects. The module is going to be used to develop a cloud interface for saving
information online that the user can access wirelessly. The Wi-Fi module lets the
hardware connect with the hardware wirelessly. The user is going to be able to send
commands to the Wi-Fi module and transmit data to the cloud interface for analysis.
The Wi-Fi module must be connected with an Atmega328P microcontroller that, once
programmed, is going to take input from the soil moisture measurement sensor, rain
sensor, temperature and humidity sensor, and pH sensor as well as control the other
electrical components of the system that are going to be connected to it.

For our soil sensor, we plan on utilizing the FC-28, while for our rain sensor, we plan on
utilizing the MH-RD. The rain sensor must detect if the plant has been watered by water
droplets, and if it has not been, the soil sensor must communicate to the system, letting
it know to deposit water to the plants. The rain sensor included in our system is also
going to be combined with data supplied by a weather monitoring system. For our
temperature and humidity sensor, we are going to utilize one that is already owned by
one of our team members, the DHT-11. For our pH sensor, we plan on utilizing the
PH0-14. The pH sensor is going to provide real-time data to the user regarding the
current pH in the planter’s soil. We are also utilizing an LCD screen already owned by
one of our team members, the LCD1602. The LCD screen must be connected to the
microcontroller unit and through it, the user is going to be able to cycle through to
observe data on soil moisture, the required range of moisture for the specific plant,
whether the plant was watered by rain or not that day, temperature and humidity

4

information within the air, and if the plant requires watering from the user or not given
that it is going to constantly access data from a weather monitoring application.

2.4.2 Project Software

Our web application must contain the herb’s daily statistics from the soil moisture
sensor, rain sensor, humidity and temperature sensor, pH sensor, and an on/off button
to control the system. The plant’s data must be updated often, preferably once per hour,
such that the user can observe the sensors’ measurements on demand. Through the
use of our database, the user is going to be able to select which plant they currently
have planted and the system is going to decide how much water must be dispersed to
each herb.

We planned for our system to integrate a weather application through which the rain
sensor in the device would know in advance if watering is needed for the herb on any
specific day. This weather monitoring system would acquire data from online weather
stations to optimize irrigation needs. By performing data analysis, our system would
have been able to automatically recalculate irrigation needs if, for example, rain is
forecasted for the following day. After acquiring this information, the system would have
informed the user that watering is not needed the following day due to rain through the
use of printed messages on the LCD screen. We were able to integrate weather
prediction into our system, but due to time constraints, we were not able to include all
the features we had planned.

Alexa support must be integrated into the system so that users can water their plant,
access its statistics, and turn on/off the system through voice commands. To accomplish
this, we are going to use a relay module along with a Wi-Fi module and pair it with a
small smart speaker, the Amazon Echo Dot 4th Generation. As it is commonly known,
Alexa will be able to recognize voice input from the user, process the request, and then
allow the system to perform actions as specified. The commands that it will use will be
mostly short and simple ones.

2.4.3 Specifications

In Table 1 (see below), the attributes required for our project can be observed as well
as their numerical description. As seen in the table below, attributes such as the
maximum dimension of our product, its maximum weight, the voltage range needed
from the power supply to successfully power our microcontroller, the minimum quantity
of pins we require from a microcontroller, the LCD dimensions we desire, what and how
many sensors we plan on utilizing, how often we plan on updating sensor
measurements, the response time of our relay module, the specific water source size
and water pump requirements, our interface’s response time, how many plants our
database is going to support, the minimum quantity of Alexa commands our product is
going to have, and the communication protocols we plan on utilizing for our system and
sensors. The numerical description for each attribute can be observed in Table 1 below.

5

Attribute Description

Dimension 20” x 20” x 20” (should not exceed)

Weight 15 lbs. (should not exceed)

Power Supply Range needed for microcontroller: 7 V -
12 V
Duration: At least 12 hours

Microcontroller I/O pins: 10 (min)
Operating voltage: 5 V

LCD 16 Character x 2 Line

Sensors 1 soil moisture sensor
1 rain sensor
1 humidity and temperature sensor
1 pH sensor

Sensor Measurements 1 per hour or on demand by the user

Relay Module Voice Response Time (Alexa) <=
5 seconds

Water Source 24 fl oz water container

Water Pump Pump head: 2.5 M / 8.2 ft (min)
Flow rate: 240L/H 63.4GPH (min)

Interface < 5 seconds response time

Plants Supported 10 herbs total
1 supported at a time

Alexa Commands At least 3 unique commands

Communication Protocol: System Wi-Fi

Communication Protocol: Sensors UART
SPI
I2C

Table 1: Project Specifications

6

2.5 House of Quality
The House of Quality is a type of visual diagram utilized to show the relationship
between the needs of the customer with that of a project’s engineering requirements. In
some areas, the customer's needs will strongly overlap with requirements while in other
areas they will not. What is important to recognize is that the desires of the customer
are getting attention. By creating these types of diagrams, a team of engineers will be
able to determine if their project requirements have a positive/strong positive or
negative/strong negative alignment with the customer’s needs. As seen in Figure 1, the
customer’s needs are represented on the left side while the engineering requirements
are on top. The numbers next to the customer requirement represent the level of priority
the requirement is to the customer and the numbers below the engineering requirement
simply list what was mentioned in Table 1. Lastly, the middle section highlights the
correlations between the customer requirements and engineering requirements, and the
triangle at the top highlights the correlations of the engineering requirements amongst
each other.

Figure 1: House of Quality

7

3. Project Constraints and Standards

3.1 Constraints
In this section, we will be discussing the constraints related to our project. Greenie, like
every other engineering product, is subject to realistic design constraints, including
economic, environmental, ethical, health and safety, manufacturability, political, social,
sustainability, and reliability. Given the nature of our project and the current pandemic,
constraints such as plant parameters, product availability, scalability, and time are also
valid. All previously mentioned constraints will be reviewed in detail in this section.

3.1.1 Economic

The investment cost of systems dealing with irrigation varies highly given that operating
and maintenance costs must be taken into account. Irrigation factors such as the water
supply, the water pump head, the types of materials and technologies used, the market
availability and condition of equipment and materials, as well as the distance between
the irrigation sites and the irrigation equipment are all decisive aspects that must be
taken into consideration whenever developing a new agriculture-based project. Even
though our project is a small-scale, individual-based product, large-scale factors like the
ones previously mentioned largely impacted our design for Greenie.

An economic constraint that always comes into play when getting any project realized is
cost. Having unreasonably high expenses can often lead to projects not being
completed at all. In the case of our project, due to it being self-funded, we looked into
several different sources to find the most affordable materials possible. In doing so, we
recognized that there were some components where the most affordable option was not
always the best option. From source to source we noticed that while some products
were more affordable than others, not all fell in line with what we outlined in our
requirement specifications. So, to try and alleviate this issue, we decided to outline key
features in our project where we could focus on quality and be more flexible in our
budget. Therefore, we could have areas in our budget where some items may not be
the most affordable, but the tradeoff is that all requirement specifications are met. In
addition to finding the most affordable materials available, we also decided to utilize
materials that we already owned. In doing this, we were able to limit this constraint by
reducing the number of items that we would otherwise be paying out-of-pocket.

Another economic constraint that our project was under was its competitive price when
compared to other similar products that already exist in the market. Because our project
includes many components that have been donated by our team members to keep our
costs low, we do not have an exact number of what the price for our product would be
and how it could compete with other technologies that are low cost.

8

3.1.2 Environmental

The most common environmental constraints that products today are being restricted by
are water, humidity, and temperature. Given that our project is intended to be a
resource-saving product, water is going to be smartly utilized. Combined with our
software, Greenie provides the user with water consumption reduction by performing
irrigation at the optimal time for the plant. Even though we have this design in mind, if it
is not implemented properly, Greenie can become as resource wasting as traditional
mass irrigation techniques. If the included water pump is not installed properly or if it
becomes damaged throughout the testing and prototyping stages, water could easily
leak from the tubing. Issues could also arise with our database. If our database is not
built properly and the watering requirements for each herb are not correctly saved, the
water pump could disperse incorrect amounts of water. This scenario would result in the
unfortunate misuse of water and the health of the plant being compromised.

Humidity and temperature, too, are environmental factors that do not necessarily affect
our project unless our design incorrectly implements the use of our sensors. Greenie is
going to include a humidity and temperature sensor, a rain sensor, a pH sensor, and
three soil moisture sensors. These sensors are going to collect environmental data like
soil humidity, air humidity and temperature, and pH levels to effectively plan irrigation
cycles. If used incorrectly, the sensors could provide the system and the user with
inaccurate data readings, which could result in the wrong use of resources and again, in
the health of the plant being compromised.

An environmental constraint that our project is under is the limitation on crop
productivity. Because we chose to go for a compact and low-cost smart irrigator option,
we had to place some limits on our product. The main limitation is that Greenie will only
provide support for ten herbs, these being basil, bay leaf, cilantro, chives, lemongrass,
mint, oregano, rosemary, sage, and thyme. This means that any other plants not
mentioned above will not be supported, which restricts what kind of crops the user can
grow.

3.1.3 Ethical

There are some ethical considerations to take into account when discussing a smart
irrigation system. We need to make sure that none of our components and the way that
they are set up, can bring harm to any of the plants we are working with and bring harm
to any animals or insects that could potentially interact with our system. To ensure that
no harm comes to the environment, we made sure that the system we make follows the
Toxic Substances Control Act of 1976. None of our materials have any toxic substances
to them, which makes Greenie environmentally friendly and up to the standards set forth
by the EPA. We also need to make sure that our product would not discriminate through
time, meaning that we took care so that it can always be affordable to everyone. Finally,
we were aware of how our product can make our target consumers feel, we also made
sure that how it looks and how it is made will not offend any person and we shall make
sure that our irrigation system is within the norms of society.

9

3.1.4 Health and Safety

These constraints are intended for use by all those responsible for preventing risks that
technologies could create for health, safety, and security. To build a product that is safe
to use for users, we must take into account the health and safety constraints that it
entails. As a team, we must understand the possible health hazards that our product
could cause to make sure that it does not compromise the health of the future user.
Because our product combines electrical components and water, there is potential for
fatal accidents to occur. Given this possibility, care must be taken to minimize the
likelihood of this occurring. As a precaution, the water pump in our system will be placed
as far away as possible from the electric parts. To add more protection for users, we
attempted to shield the electrical components from moisture as well. This could be
accomplished by adding a conformal coating. This conformal coating would cover the
PCB of our project, ensuring that our components are safe not only from humidity but
also from dust, chemicals, and extreme temperature changes. To keep our team from
harm, the members assigned with this task will make sure to apply the coating in a
well-ventilated area while avoiding as much external contamination as possible. The
team member will also be wearing the necessary protective gear. Due to time
constraints, our wish to include the conformal coating on our components was not
completed.

3.1.5 Manufacturability

This constraint is based on having the right components for the project. Important
components are needed for this to work right. We need to make sure that the soil, rain,
pH, and humidity and temperature sensors work well and correctly to make sure that the
project works properly. The biggest thing that we need to make sure works is the PCB.
The PCB is one of the most important parts so it must not have defects that will cause
trouble. We must have this made a reasonable amount of time in advance to ensure
that it works as intended and so that it does not produce more difficulties in later parts of
the design. Another thing that we need to make sure works well is the Wi-Fi capability of
the parts going in the system.

3.1.6 Plant Parameters

When designing the ideal software for the project, we originally intended on having input
from the user to identify the plant being watered. Through further research, we
acknowledged that allowing user input could lead to more problems than benefits. In the
case where the user inputs the wrong information on the plant, the outcome could lead
to the entire irrigation system being flawed. Additionally, we noticed that allowing user
input adds complexity to the user experience where it is not needed. It was decided that
it would be better to add complexity to functions like Alexa integration to enhance the
user experience. This is why we decided to have preset herbs built into the design so
users can select the appropriate plant for watering.

10

When it comes to the pre-set design, we noticed that there is still a small possibility for
error in the cases of selecting the wrong herb or picking one randomly. However, in
these cases, we acknowledge that while having minor user errors may not be
preferable, it is still better than the alternative where a system failure is possible.

3.1.7 Political

There are no restrictions when installing an irrigation system for personal use at home.
However, there are policies concerning irrigation systems on large areas such as farms.
Irrigation is a major component of sustainable agricultural development. It accounts for
about 80 percent of water usage in the United States which led to concerns by the
government regarding irrigation efficiencies and water conservation. This is why
irrigation and water policies are implemented for more efficient water management. A
permit from the government is also required when planning to use an irrigation system
in large, public areas. Since our project focuses on personal use, there is no need to
acquire permission from the government. Our group aims to execute a more efficient
and more effective irrigation system to decrease unnecessary water consumption.

3.1.8 Product Availability

Due to the current pandemic, finding the proper materials is becoming more and more
of a constraint. Manufacturers are experiencing supply shortages and long delivery
times have become the new normal. As a result, we have to ensure our project is as
thoroughly planned as possible before placing orders. Should an error occur, it is very
likely that replacement materials may not be available and/or will not arrive in time for
the expected project demonstration. Furthermore, not thoroughly planning before
placing orders can lead to a final product with several missing features.

With this type of constraint, we understand that while it is something we have no control
over, it is still something that still requires initiative on our part. So, when deciding on
parts to select, we will also be considering the ones with the earliest arrival dates.

3.1.9 Social

Social constraints are social behaviors that influence the effectiveness of a project
within a community. These constraints are mostly directed to the users that are making
use of our project. One of the goals of our project is to provide users a portable, smart
gardening system that is user-friendly. Some of the social constraints that we are
considering during the development of Greenie include language, accessibility, and
ease of use.

Language is an important part of culture. It is a way to communicate thoughts and ideas
to one another. To communicate the goals of our project to the users, the language that
we used on the web app and the CSS system is understandable by a lot of users

11

around the world. We decided to use Northern American English to convey information
and data to the users. This language is used throughout the web app, the system, and
the user’s manual. The words are simple and easy to understand so that the users will
not struggle in installing and controlling the system. As we progress, other languages
like Spanish and Chinese will be considered to accommodate a wider range of users.

Since our project is accessible through a web application, an internet connection is
required to access the data of the plants and to control the system without having to
interact with the controller physically. Without an internet connection, the user won’t be
able to turn on or off the system manually by pressing the button on the controller.
Additionally, the users will not have access to the daily statistics of the plants and will
not be able to control the system remotely.

Greenie caters to all kinds of users from plant enthusiasts to hobbyists to individuals
who just want to grow herbs at home. This means that we need to make sure that our
project is functional while maintaining its simplicity. It is important that we consider the
level of usability of our project so that more users will be able to utilize and benefit from
using the system. To maintain its simplicity, we decided to minimize the buttons both on
the plant enclosure and on the web app. The initial set-up of the system and the web
app is easy to follow and easy to navigate. As mentioned above, the words that are
used on the entire system are simple and understandable. By keeping all these factors
in mind, we are able to provide a simple to use product at the end.

3.1.10 Sustainability and Reliability

Sustainability is about how long the product is going to last. The irrigation system should
be made so that the farmers do not need to replace parts constantly. The idea is that
they would need to spend less money on parts and maintenance or at least make it so
that the farmers can do it themselves. By doing this, we can make it so that the irrigation
system is more self-sufficient and more appealing to use. By making a long-lasting
product, we can ensure that our irrigation system would be seen as trustworthy to
anyone that would want to use it for their lands.

The project must also have a certain level of reliability. It needs to work as intended and
do what it is supposed to do, which is to irrigate plants with little to no user input. To
accomplish this, we have to look at every part while comparing and contrasting with
similar products to see which one performs the best, in terms of their strengths and
weaknesses.

3.1.11 Scale and Time

One of the constraints of the project is its scale. The project is being made with the idea
that it can irrigate large amounts of land for farmers. In practice, however, we cannot
match the scale of this because of factors like cost and the amount of time it would take
to test a large area. Instead, we constrained ourselves to a smaller plot with the idea
that we could implement a larger area if needed. Thus, if we focus on making a smaller

12

plot, making sure that it works as intended, and creating the project around that idea,
we will know that it can be expanded upon to accommodate farmers with different plot
sizes.

Time is a big factor in how a project can progress. There are only about five months
worth of time where we can physically work on the project, including the time it takes to
order parts from different areas of the world. Since we do not have a lot of time to work
on this, we need to be careful about how we spend our time on the project. Many
features can be included in the design of a smart irrigation system, but we need to make
the project fairly quickly while also being mindful that many of the group members are
taking other classes. For this reason, some of the features will have to be left out or
scoped down to accommodate how much time each person can put into the project.
This can be mitigated as much as possible by trying to create a flexible deadline for the
project and allowing room for error, in case the unexpected happens and we cannot
reach certain milestones. Doing this will allow us to make the most out of the time that
we have available. Finally, we need to be sure that the project works well before the due
date. We need to make sure that testing is done and completed well in advance of the
due date to confirm that our project performs as intended.

3.2 Standards
In this section, we will be discussing the standards related to our project. Greenie, like
every other engineering product, must meet realistic design standards. Our product
must meet various standards such as wireless communication, communication protocol,
and programming standards. All previously mentioned standards will be reviewed in
detail in this section.

3.2.1 Wireless Communication

The microcontroller sends the data collected from the sensors to the cloud server via
wireless communication. The communication between the system and the user is
wireless. The type of wireless communication that we utilized is Wi-Fi. IEEE 802.11,
which is more commonly known as Wi-Fi, is the set of standards established by the
Institute of Electrical and Electronics Engineers (IEEE) that specifies communication for
wireless local area networks. To ensure that our subsystems are able to communicate
with each other accordingly so that data can be passed from the device to more suitable
avenues, the following wireless standards were considered throughout the development
of our project.

802.11b
802.11b is the extension of the original standard 802.11, therefore it uses the same
frequency band as the original which is 2.4 GHz. It supports a maximum rate of 11 Mbps
and has a range of up to 150 feet. This standard may be cheaper and the most popular
in the consumer market, however, it also has the slowest maximum rate out of all the
Wi-Fi standards. Devices using 802.11b may encounter interference from other devices
operating in 2.4 GHz such as microwave ovens, cordless phones, and other home

13

appliances.

802.11a
This standard operates in the 5 GHz band and has a maximum rate of 54 Mbps. Since it
operates in a high-frequency band, it is less prone to signal interference from other
devices. Having a higher frequency also shortens the range of 802.11a networks. In
addition, the signals have more difficulty in penetrating walls. This type of standard was
commonly used in business applications.

802.11g
The 802.11g standard is a combination of the two previous standards as it operates in
2.4 GHz while having a maximum rate of 54 Mbps. This standard is backward
compatible with 802.11b which means 802.11b devices can connect to 802.11g access
points but at a slower data rate that matches 802.11b. Like 802.11b, devices using
802.11g may also experience interference from other devices that operate in 2.4 GHz
so other options should be explored.

802.11n
The 802.11n standard supports MIMO (Multiple Input Multiple Output) and operates on
both 2.4 GHz and 5 GHz. The maximum data rate that could be reached is up to 600
Mbps. Compared to the previous standards that were described, 802.11n has a better
range due to the increased signal intensity. This standard is also backward compatible
with 802.11a/b/g.

802.11ac
The 802.11ac is the most used Wi-Fi standard today. Most home routers are compliant
with this standard. It operates in the 5 GHz band and could support up to eight antennas
compared to 802.11n which can only support 4. 802.11ac is backward compatible with
802.11a/b/g/n. Since it works in the 5GHz, some vendors include 2.4 GHz technologies
to support devices operating in 2.4 GHz.

802.11ax
This standard will probably replace the 802.11ac standard in the future. 802.11ax
operates on both the 2.4 GHz and 5 GHz bands and can have a maximum rate of up to
9.6 Gbps. Another benefit of this standard is the increased power efficiency. This
standard is designed to improve wireless internet in congested areas such as stadiums,
shopping malls, and other public spaces.

3.2.2 Communication Protocol

As outlined in our requirement specifications, we will have three different
communication protocols to consider when deciding on what to implement in our
project. Each one has different standards to consider and each comes with its own set
of advantages and disadvantages. We will pick the one that best suits our needs. The
protocols are as follows:

14

UART
The first is the Universal Asynchronous Receiver/Transmitter (UART), which is a
hardware component for asynchronous serial communication. It is full-duplex
communication wherein data can be sent and received simultaneously. In addition,
UART requires only two wires to transmit data. Since it is asynchronous, therefore the
data rate between the devices should match. The maximum data rate of UART is about
5 Mbps.

SPI
The second is the Serial Peripheral Interface (SPI). It is a synchronous serial
communication that is considered as a full-duplex communication based on
master-slave architecture. Since it is synchronous, it uses separate lines to
communicate between the master and the peripherals. These data lines are used for a
clock signal, MOSI (Master Out, Slave In), MISO (Master In, System Out), and a signal
that enables the slave. SPI has a faster data transmission rate compared to UART and
I2C due to parallel transmission.

I2C
Lastly, we have the Inter-Integrated Circuit (I2C), which combines some of the features
of SPI and UART. Like SPI, I2C is synchronous and supports master-slave architecture.
It can either have a single master and multiple slaves, or multiple masters and a
single/multiple slaves. Similar to UART, I2C only uses two bidirectional lines for serial
clock and serial data. There is only one line for sending and receiving data, therefore it
is a half-duplex communication. I2C utilizes the ACK/NACK functionality for better error
handling.

3.2.3 Programming Standards

To create the web application and communicate with the hardware, several
programming languages are utilized, and with each language comes a new set of
standards to follow. Some standards are applicable to all the languages and some are
language-specific. C programming is used for communicating with the hardware and a
combination of JavaScript, HTML, and CSS is used to create the web application. Their
breakdown is as follows:

General
● All comments are descriptive and easy for others to interpret
● Every important function has a comment
● A line does not exceed 100 characters
● Relevant and descriptive names will be used for variables, functions, etc.
● Proper spacing and indentation (i.e. no excessive gaps)

C-Specific Standards
● Variable names are camel case (ex. camelCase)
● Braces will start underneath created functions

15

● Block comments will only be used when needed
● Spaces will be used for conditional statements and loops
● Default returns will be 0

JavaScript-Specific Standards
● Variable and method names are camel cased (ex. camelCase)
● Class names are capitalized camel cased (ex. CapitalizedCamelCase)
● Braces will start underneath created functions
● Block comments will only be used when needed
● Spaces will be used for conditional statements and loops

HTML-Specific Standards
● All element names will be lowercase
● All elements will be closed where applicable
● Attribute values will be in quotes
● There will be separate CSS files for styling
● CSS-Specific Standards

● One property declaration per line
● All names will be lowercase/camel case

3.2.4 Software Testing Standards

Different standards exist for software when people are testing. These are sets of rules
that are implemented as guidelines and instructions to help improve the quality needs of
the software and should be adhered to. These standards were developed by many
organizations around the world including the International Organization for
Standardization (ISO) and the Institute of Electrical and Electronics Engineers (IEEE).
This section discusses some of the standards that we will adhere to when testing the
software of our project.

ISO/IEC 9126
This ISO standard addresses the quality of a software application based on the quality
mode, external metrics, internal metrics, and quality standard in use metrics. This
standard ensures that the software is functional, reliable, usable, efficient, maintainable,
and portable.

ISO/IEC 9241-11
This standard covers the interaction between humans and computers. The usability of
the software is considered based on user performance and satisfaction. It is used to
verify how well the requirements are fulfilled based on users’ experience. Three
components describe this standard. System effectiveness refers to the ability of the
users to complete a specific task. System efficiency describes the resources that the
user utilized to complete a task. The last component is system satisfaction which refers
to the feedback of the users.

ISO/IEC/IEEE 29119-4

16

This particular standard talks about software test methods or techniques that companies
can use during the test design and implementation process. It is intended for software
testers, developers, and everyone involved in the implementation of software testing.
This standard is divided into three categories. The first category is the
specification-based test design techniques which are based on the functional
specification of a product. Some tests under this category include syntax testing,
scenario testing, and random testing. The second category is called structure-based
test design techniques which are based on the internal structure of the system. Some
tests under this category include branch testing, branch condition testing, and data flow
testing. The last category is the experience-based techniques which depend on the
experience of real users.

IEEE 1008-1987
This standard defines possible approaches for unit testing and the expectations when
performing unit testing. It specifies the criterion for identifying the completeness of the
software unit testing. Activities and tasks that need to be executed while doing the unit
testing are also described under this standard.

4. Research
This section will discuss the research that we have conducted so far regarding the
different technologies that could be utilized in our project. While designing any product,
a technology investigation must be made to create a successful initial prototype. This
part of our document also aids us as a team to make sure that the requirements that we
previously specified are met by the best technology that we can afford.

4.1 Existing Projects and Products
Several smart irrigation systems already exist in the market. This section will talk about
existing products that have similar functions as our project. This section will also include
previous Senior Design projects from UCF. These existing devices vary from smart
sprinkler controllers to hydroponics. By comparing these devices, our group will be able
to gain additional knowledge from the different technologies and methods that were
used on these products and projects.

4.1.1 EasyHerb

EasyHerb is an automated plant growing system that was developed by a group of
Electrical and Computer Engineering students from UCF in 2020. It is a hydroponic
system that focuses on growing and maintaining herbs indoors. The system monitors
the daily needs of herbs such as water, light, and soil nutrients. The data is collected
from various sensors, including soil moisture sensors, water level sensors, pH sensors,
temperature sensors, and light sensors. The data can be accessed through the LCD
screen attached to the device and through a web app. Users will receive a notification

17

whenever the system is running out of water and soil nutrients. The whole system is
contained in one device and is powered by a wall outlet.

When comparing our project to EasyHerb, we found several similarities. In terms of
achieving our objectives, we are both utilizing a variety of sensors to obtain information
on the quality of products. The metrics that we share in particular are soil moisture,
temperature, humidity, and pH. We both also care about the experience the user has
with our products. So, when it comes to the ability to allow the user to water plants
remotely, both of our projects share this feature. To accomplish this, we both plan to
create an interactive software application that is easy to use for the user.

When contrasting our project to EasyHerb, we also found several differences. Starting
with portability. For Greenie, one of the key points we are emphasizing is our ability to
use outdoor and indoor use. With EasyHerb, the main focus in their motivation is that
they wanted to create a hydroponic system that works in settings like a kitchen or living
room. We recognize this a great distinction because we acknowledge that the weather
can be a great element when saving water in plant growth. This is why we decided to
incorporate parts like our rain sensor. Another difference that Greenie has over
EasyHerb is the materials being utilized. For our project, we are looking to include
materials like newer model voltage regulators to improve the overall efficiency and a
smart speaker with Alexa integration. By including these newer parts and additional
features into our smart irrigation system, we believe that the user experience will
ultimately be enhanced. For more information on similarities and differences, refer to
their project located on the UCF EECS Senior Design website.

4.1.2 Smart Garden Controller

Smart Garden Controller is a UCF Senior Design project from 2018 that focuses on
automated home gardening systems intended for the outdoors. The system uses a soil
moisture sensor, temperature sensor, wind speed sensor, light sensor, humidity sensor,
and an atmospheric pressure sensor to help determine when to water the plants and
how much water to release. Irrigation will be reduced or skipped once the moisture level
of the soil reaches a certain threshold. Users will be able to control the system’s
schedule and settings through a web application and the buttons on the device. The
system is portable and is powered by rechargeable batteries.

Comparing our project to the Smart Garden Controller, we found more similarities. In
terms of important factors or metrics, we both care about the following: soil moisture,
temperature, humidity, and the weather. Some of which are also shared by EasyHerb.
Additionally, we both care about having a project that is convenient through automation.
So, when it comes to saving water, we both believe that it would be best for the plants
and the user if there is an option available where an automatic watering schedule can
be set in place.

Contrasting our project to the Smart Garden Controller, we go back to the portability of
our project. For the Smart Garden Controller, they have emphasized having their project

18

outside. We plan to have Greenie capable of operating both inside and outside, either
on a farm or in a garden. Another difference that Greenie has is regarding the
technology used. For our project, we are looking to create a web application that utilizes
HTML, CSS, JavaScript, and a web service model. More of which can be seen in the
later sections. With the Smart Garden Controller, they decide to use a Tomcat server to
deploy their code to. Something that utilizes a very different structure. This along with
several other technology differences can be found on the UCF EECS Senior Design
website.

4.1.3 Orbit B-Hyve 57950

The Orbit B-Hyve 57950 is one of the least expensive smart sprinkler controllers in the
market. It is available in both six and twelve zones. The system is housed in a
weatherproof enclosure and can be installed indoors or outdoors. The system can be
programmed and controlled through a Wi-Fi connection with the mobile app or the web
app. It can also be configured manually via the controller’s LCD screen and buttons. In
addition, Orbit B-Hyve is compatible with Amazon Alexa. Users can use voice
commands to water all zones or a specific zone, turn the timer on and off, activate and
cancel the rain delay, or ask Alexa about the past and upcoming watering schedule.

The Orbit B-Hyve utilizes technologies such as Smart Watering and WeatherSense.
Smart Watering allows users to set a watering schedule based on the plant’s properties.
This feature uses information about the plant, soil, water and sun necessities, and
sprinkler type to create an efficient watering schedule. On the other hand,
WeatherSense gathers data from local weather to modify the schedule based on the
past and expected rainfall. The system can also be programmed to initiate rain delays
manually or based on the collected weather data.

When comparing the Orbit B-Hyve 57950 to Greenie, they have several similar aspects.
Both products are smart irrigators that offer very similar benefits to their users. The two
provide both indoor and outdoor utility, internet connection, weather integration, Alexa
compatibility, the ability to utilize a web application to fully automate plant watering, and
to set designated times for when the user would like to water. Also, both products are
capable of providing care to plants by their site conditions, such as soil type, making
sure that the right amount of water is delivered to plants.

Although both products have very similar characteristics, they also differ in several
areas. The Orbit B-Hyve 57950 can provide watering information on a plant from their
position on the ground and whether they are under the sun or the shade. This product
comes in a lockable, weather-resistant cabinet that must be wall-mounted. These are
areas where the Orbit B-Hyve 57950 and Greenie differ. As opposed to the competitor
product, Greenie utilizes a soil sensor, a rain sensor, a pH sensor, and a humidity and
temperature sensor to read and store data regarding the herb currently planted. Our
product is going to be portable, lightweight, and will not require wall mounting from the
user.

19

4.1.4 Rachio 3 Smart Sprinkler Controller

Rachio 3, which is available for eight or sixteen zones, is an easy-to-install smart
sprinkler controller that connects to the Wi-Fi so users can control the system anywhere
using the mobile app or the web app. The round button attached to the controller is
used to manually start and stop watering specific zones. This system considers the
vegetation and soil type, sun exposure, and slope of the area to determine the best
possible watering schedule for the garden. Flex Daily and Flex Monthly are two
scheduling options recommended on the app. Users can either choose from these
schedules or they can create a manual schedule. Regardless of which type of schedule
is chosen, users can enable the Weather Intelligence setting that skips or delays
watering when soil is too wet, it is too windy, or when a freeze alert is detected.

The Rachio 3 controller offers advanced features including dual-band Wi-Fi, Premium
Weather Intelligence Plus, and Wireless Flow Meter. Dual-band Wi-Fi allows the
controller to connect to 2.4 GHz and 5 GHz wireless networks. Rachio’s Premium
Weather Intelligence Plus provides the most accurate watering schedule based on
weather data collected from more than 300,000 weather stations around the area to
deliver hyperlocal forecasts. Rachio Wireless Flow Meter is a separate device that helps
detect water leaks and monitors water flow rates. It alerts the user by sending
notifications when leaks and blockages are detected, and the leaking zone
automatically shuts off. Rachio 3 controller also works with Amazon Alexa and Google
Assistant voice commands and IFTTT Applets.

When comparing the Rachio 3 Smart Sprinkler Controller to Greenie, they have several
aspects that are quite similar. Both products are smart irrigators that offer alike benefits
to their users. The two provide the use of a web application to read and store plant data
as well as either automating or setting timers for appropriate watering. Both products
can inform the user of possible watering done by rain through the use of weather
integration applications. Similar to greenie, the Rachio 3 Smart Sprinkler Controller is
compatible with Alexa, allowing the user to utilize voice commands to communicate with
the product.

Even though both products are pretty alike in many ways, they also differ in several
areas. The Rachio 3 Smart Sprinkler Controller can create personalized watering times
given the specific needs of the user's plants and/or lawn, based on plant type, soil type,
and sun exposure. Greenie can perform personalized watering times, but they have to
be previously created and set by the user as our product does not include the
technology to create these schedules on its own. Similar to the Orbit B-Hyve 57950, the
Rachio 3 Smart Sprinkler Controller comes in a lockable cabinet that must be
wall-mounted, as opposed to our product which does not.

4.2 Project Hardware
This section will discuss the research that we have conducted so far regarding the
different hardware technologies that could be utilized in our project. We will compare the

20

different hardware components that we have investigated by describing them and
differentiating them specifications-wise. The following items will be discussed: LCD
screen, microcontroller, power supply, sensors, relay module, and water pump.

4.2.1 LCD

In our project, the user needs to be able to visualize and/or monitor parameters, and an
alphanumeric LCD is the most practical solution. This is due to their low consumption,
different sizes available, and how they work with alphanumeric characters. This allows
us to present to the user various information about the herb, so an LCD allows us to
present this in the best way.

When investigating which screen would work best for our project, we came across a few
different options. After careful consideration of price and what products were available,
the top three Arduino-compatible screens we considered were the LCD-013-420, the
LCD1602, and the 0.96" OLED Module by DIYmall. For a more detailed comparison
between the three previously mentioned screens, refer to Table 2. As seen in the table
above, both LCD screens are almost identical. These LCDs only differ in their cost and
text dimensions. The LCD-013-420 can display four lines with up to twenty characters
each while the LCD1602 can display two lines with up to sixteen characters each. The
DIYmall 0.96” OLED Module is the most different, as it is a 128 x 64 OLED display.

Attribute LCD-013-420 LCD1602 0.96" OLED
Module

Communication I2C I2C I2C

Text Dimensions 4 x 20 2 x 16 128 x 64 OLED

Text Color White White White

Address 0x27 0x27 0x3C

Cost $6.99 $10.99 for two (2) $9.99

Table 2: Different LCD Screens Specification Comparison

The LCD screens in Table 2 were the top contenders we considered when selecting an
LCD for our project. While researching, we also came across the HiLetgo 20x4 LCD
Display and the Coolwell Technology 2inch LCD. These screens, although promising,
were not selected as we found ones that fit our project better. Below, we are going to
briefly describe the two scrapped LCD screens.

HiLetgo 20x4 LCD Display
This LCD has four lines with twenty characters that can be controlled by jumpers or the
program. It looks very similar to the 1602 version since it also uses the same amount of

21

pin definitions and also has the yellow backlight. This module uses two IO ports instead
of the 1602s seven I/O ports and also has a potentiometer that can be adjusted to
control the contrast of the screen. The LCD needs a voltage of 5 V to operate. The size
of this is 4.8 x 3 x 0.5 inches, making it a bit on the larger side because of the four lines
that are used.

Coolwell Technology 2inch LCD
This is an IPS screen. The main draw of this module is the ability to reproduce color.
The operating voltage of this LCD is 3.3 V and it has a 2-inch screen. This LCD is on
the expensive side, mostly because of the ability to reproduce color. However, there is
only one color that could be displayed, with various online reviews stating they are easy
to set up and just as many saying it is difficult to do. This LCD also has the most IO
ports at eight, which makes it less desirable to use.

4.2.2 Microcontroller

A microcontroller is a device that is required for our project and many like it as we need
to utilize a device that can be programmed to carry out the specific actions and/or
instructions that we want our system to do. The design of our system is heavily
dependent on this control unit, given that our project requires the use of several
hardware components, such as an LCD screen, water pump, a relay module, and
several different sensors. A microcontroller unit, or MCU, is crucial to the seamless
integration of these parts into one system because of their need to interact with one
another and transfer information while performing different actions because of this
information.

As observed in Figure 2, the MCU will serve as the “brain” of our hardware setup, given
that not only are all three soil moisture sensors, the rain sensor, the pH sensor, and the
humidity and temperature sensor connected to it, but also the relay module, the LCD
screen, the water pump, and the Wi-Fi module with our software, are going to be
connected to it as well. The Wi-Fi module is going to ensure that our microcontroller is
constantly connected to the internet and can access our database. By having a
microcontroller with an internet connection, we will be able to remotely control the parts
needed for our various features. This is crucial since the irrigation process has to work
as intended.

22

Figure 2: MCU Hardware Connections

When investigating which microcontroller would work best for our project, we came
across several different options. The top three microcontrollers we considered were the
Atmel ATmega328P, the Texas Instruments ARM Cortex-M3, and the Texas Instruments
MSP430 LaunchPad. For a more detailed comparison between the three previously
mentioned microcontrollers, refer to Table 3.

Atmel ATmega328P
The Atmel ATmega328P is Atmel's high-performance, low-power, and advanced
architecture microcontroller from the megaAVR family optimized for C/C++ compilers. It
is most commonly included in the Arduino Uno board. The Arduino Uno board is based
on an open hardware design, so users can simply remove the ATmega328P from the
board and apply it to other electronics. The Microsoft Visual Studio integrated
development IDE allows, through an installation package, the code for Arduino to be
edited. The Atmel ATmega328P is compatible with three different communication
protocols, which are the Universal Asynchronous Receiver/Transmitter (UART), the
Serial Peripheral Interface (SPI), and the Inter-Integrated Circuit (I2C).

23

Texas Instruments ARM Cortex-M3
The Texas Instruments ARM Cortex-M3 is a product of the ARM Cortex-M processor
family developed by Texas Instruments. It is based on low-cost, energy-saving ARM
processor designs. The ARM Cortex-M3 is capable of performing general data
processing, including hardware division instructions. It also includes memory access
instructions that support 8-bit, 16-bit, 32-bit, and 64-bit data and instructions for
transferring various 32-bit data. The Texas Instruments ARM Cortex-M3 is compatible
with three different communication protocols, which are the Serial Communications
Interface (SCI), the Serial Peripheral Interface (SPI), and the Inter-Integrated Circuit
(I2C).

Texas Instruments MSP430 LaunchPad
The Texas Instruments MSP430 LaunchPad is Texas Instruments’ beginner-friendly,
ultra-low power kit that allows you to program and debug the Texas MSP430 series of
microcontrollers through the USB interface. It is known for its very low electrical
consumption and for being ideal for battery-powered devices. It uses the same
programming interface and the same programming language as Arduino, the same
basic examples and various Arduino libraries are present. The MSP430 gives the user
the possibility of expanding peripherals through additional boards, known as
BoosterPacks. This microcontroller was the first one considered as our team has the
most experience utilizing this board. We programmed it using C language on the Code
Composer Studio integrated development IDE in our embedded Systems course. The
Texas Instruments MSP430 LaunchPad is compatible with three different
communication protocols, which are the Universal Asynchronous Receiver/Transmitter
(UART), the Serial Peripheral Interface (SPI), and the Inter-Integrated Circuit (I2C).

Attribute Atmel
ATmega328P

Texas Instruments
ARM Cortex-M3

Texas Instruments
MSP430
LaunchPad

Communication
Protocol

UART
SPI
I2C

SCI
SPI
I2C

UART
SPI
I2C

Memory 32 KB 256 KB 128 KB

Maximum I/O Pins 23 52 83

Maximum
Operating
Frequency

20 MHz 50 MHz 16 MHz

Operating Voltage 5 V 2.5 V 3.3 V

Table 3: Different Microcontrollers Specification Comparison

24

4.2.3 Power Supply

The power supply allows the whole system to run. We will be using wall power to run
the irrigation system during the day. To properly utilize the wall outlet as a power source,
we must use a voltage converter since the United States provides alternating current
(AC) as its power source and we are going to utilize direct current (DC). More research
on these topics was performed and recorded in section 4.2.7 Voltage Regulator. We
require a 12 V voltage regulator so that we can provide power to the water pump and
both 5 V and 3 V voltage regulators so that we can power all of the other parts of the
system. The flow of power in the power supply is shown in Figure 3. At night, the Solar
Power Bank will be used to power the irrigation system. This was decided to cut costs in
the long term.

Figure 3: Power Supply Diagram

Part Hours Working Rating (mA) Total mAh

LCD1602 Module 12 1.1 13.2

Microcontroller 12 200 2,400

Soil Sensor 12 5 60

Rain Sensor 12 15 180

H&T Sensor 12 2.5 30

Relay Module 12 5 60

pH Sensor 12 10 120

Speakers 12 2 24

Water Pump 12 375 4500

Wi-Fi Module 12 80 960

Total 8,647.2
Table 4: Calculation of mAh

25

The information in Table 4 was used to determine how many mAH will be used during
the night. The time period of a twelve-hour worst-case scenario was used to prepare for
a situation where the components need to be constantly running. It was found that
during the night, a total of 8515.2mAh is used, which is under the 10,000mAh of the
battery pack. This means that the Solar Power Bank can keep the irrigation system
powered.

When investigating which power supply would work best for our project, we came
across a few different options. The top three power banks we considered were the
10,000mAh Solar Power Bank and Solar Panel Charger, the 20,000mAh Solar Power
Bank and Solar Panel Charger, and the Solar Power Bank 26800mAh by Riapow. We
also researched the 12V 15Ah Mighty Max Battery. Below, the three power supplies and
the battery are going to be discussed.

10,000mAh Solar Power Bank and Solar Panel Charger
The 10,000mAh Solar Power Bank and Solar Panel Charger allows for the usage of
10,000 mAh by the irrigation system. There is also a solar panel that allows for the use
of charging and gaining power back during the day. However, many of the reviews on
the product note that the solar charging that occurs is something that should be used in
an emergency. The voltage range of the power bank is around 9 to 12 V.

20,000mAh Solar Power Bank and Solar Panel Charger
The 20,000 mAh version of the Solar Power Bank comes with more solar panels to help
with the charging aspect. Where the 10,000mAh version has one panel, this power bank
comes with 6 panels that can be laid out. This device provides a voltage of 9 to 12 V.
This device is much heavier and larger than its lower 10,000 mAh version and is more
expensive.

Riapow Solar Power Bank 26,800mAh
The Riapow Solar Power Bank supplies about 26,800 mAh and delivers up to 8 days of
power on a single charge. Like the two solar banks mentioned above, this one also
includes a small solar panel that allows the battery to charge itself during the day. It has
a voltage rating of 5 V.

12V 15Ah Mighty Max Battery
The 12V 15Ah Mighty Max Battery has a nominal voltage of 12 V. One important thing
to notice is that the battery has reduced capacity starting at around 32 °F. Capacity also
reduces after a set amount of time has passed, at about three months there is 90%
capacity of the regular size. This battery is rechargeable and is spillproof with a high
discharge rate. This battery is also resistant to shocks and vibrations allowing it to be
used in more areas.

Although we wanted to implement a second source of power in our system, due to time
constraints, we unfortunately had to cut this feature. We decided to just go with AC/DC
and DC/DC power for our system.

26

4.2.4 Sensors

Sensors play one of the most important roles in our project. Through the use of sensors,
the smart irrigation system is going to be able to receive data regarding the herb that is
currently planted, allowing the user to quickly observe crucial information about the
soil’s state and future irrigation needs while also allowing the system to make decisions
based on what information is acquired. We have decided to utilize three soil moisture
sensors, a rain sensor, and a humidity and temperature sensor for our project.

To measure the moisture in the planter’s soil, our system requires a soil moisture
sensor. The data acquired from this sensor is crucial given that this sensor is going to
inform the user if the soil has received enough water on any specific day. When
investigating which soil moisture sensor would work best for our project, we came
across a few different options. The top three soil moisture sensors we considered were
the SparkFun Soil Moisture Sensor, the Adafruit STEMMA Soil Sensor, and the
KeeYees LM393. In Table 5, the differences between these models can be observed.
All three are similar, being different in their output type and the methods utilized to take
measurements.

Attribute SparkFun Soil
Moisture Sensor

Adafruit STEMMA
Soil Sensor

KeeYees LM393

Arduino
Compatibility

Yes Yes Yes

Operating Voltage 3.3 - 5 V 3 - 5 V 3.3 - 5 V

Output Type Analog Analog Analog and Digital

Measurement
Method

Resistivity
Measurement

Capacitive
Measurement

Resistivity
Measurement

Number of Prongs 2 1 2

Cost $5.95 for one (1) $7.50 for one (1) $7.99 for five (5)

Table 5: Different Soil Sensors Specification Comparison

Our system requires a rain sensor that is going to allow the system to detect and
respond to drops of moisture by either switching the water pump on or off, depending on
if the plant has been watered or not by rain. Two models are widely used in irrigation
systems today, the FC-37 and the MH-RD. The FC-37 is most commonly found. Similar
to the soil moisture sensor, these two models measure values from 0 for a fully soaked
plate, to 1023 for a fully dry plate. In Table 6, the differences between these models can
be observed. They are very similar, their dimensions and weight slightly vary, but they
work quite similarly.

27

Attribute FC-37 FC-37 MH-RD

Manufacturer ACROBOTIC HiLetgo Teyleten Robot

Operating Voltage 3 - 5 V 3 - 5 V 3.3 - 5 V

Output Current 15 mA 15 mA 15 mA

Type of Output Analog and Digital Analog and Digital Analog and Digital

Cost $8.99 for one (1) $5.99 for three (3) $5.88 for three (3)

Table 6: Rain Sensor FC-37 versus MH-RD

To measure the humidity and temperature in the air, our system requires a humidity and
temperature sensor. Through this sensor, the user is going to receive data regarding the
ideal air humidity and temperature needed from the room to optimize their plant’s
needs. When investigating which humidity and temperature sensor would work best for
our project, we came across a few different options. The top three humidity and
temperature sensors we considered were the RHT03 (also known as DHT22), the
DHT11, and the AM2302. In Table 7, the differences between these models can be
observed. As seen in the table, all three models are relatively similar but different in
terms of their temperature range and cost.

Attribute RHT03 DHT11 AM2302

Operating Voltage 3.3 - 6 V 3 - 5 V 3 - 5 V

Maximum Current 1 - 1.5 mA 2.5 mA 2.5 mA

Humidity Range 0 - 100% RH 20 - 80% RH 0 - 100% RH

Temperature Range 40 - 80 °C 0 - 50 °C -40 - 80 °C

Measurement
Accuracy

± 2% RH Accuracy
± 0.5 °C Accuracy

± 5% RH Accuracy
± 2 °C Accuracy

± 2% RH Accuracy
± 0.5 °C Accuracy

Cost $12.95 $8.88 for five (5) $18.49 for four (4)

Table 7: Different Humidity and Temperature Sensors Specification Comparison

To maintain the overall health of the user’s herb, our system requires a pH sensor. The
pH is a measure of acidity or alkalinity of a solution and there exists something that is
called a pH scale which varies from 0 to 14, with 0 being the most acidic and 14 being
the least acidic. A value of 7 is neutral. The correct soil pH is essential to ensure optimal
plant growth and crop yield, as it allows nutrients to be freely available for plants to
absorb. Each plant will have different pH needs, so this information will be needed to be

28

taken into account. An inappropriate pH range directly affects the capacity of the root
system, because if the pH values are extreme, it can lead to precipitation of certain
nutrients, making them no longer available. Our pH sensor is going to read the pH level
of the soil to maintain the health of the user’s plant.

When investigating which pH sensor would work best for our project, we came across a
few different options. The top three pH sensors we considered were the DONGKER pH
Sensor Module, the GAOHOU PH0-14 Sensor Module, and the BOOTOP PH0-14
Sensor Module. In Table 8, the differences between these models can be observed.
The three pH sensors are extremely similar, being different mostly on their measuring
temperature and their zero point, which covers their accuracy.

Attribute DONGKER pH
Sensor Module

GAOHOU PH0-14
Sensor Module

BOOTOP PH0-14
Sensor Module

Operating Voltage 5 V 5 V 5 V

Working Current 5 - 10 mA 5 - 10 mA 5 - 10 mA

Measuring Range 0 - 14 pH 0 - 14 pH 0 - 14 pH

Measuring
Temperature

0 - 60 ℃ 0 - 80 ℃ 0 - 80 ℃

Zero Point 7 ± 0.01 pH 7 ± 0.25 pH 7 ± 0.25 pH

Cost $36.99 $35.59 $35.19

Table 8: Different pH Sensors Specification Comparison

Another sensor that is helpful is a piezoelectric vibration sensor. This sensor is used as
a flow sensor that would detect the flow of water. The main purpose of this sensor is to
let the user know if there is a leak in the system, allowing the user to fix the leak and not
waste water. When water is flowing through the tube, it would send a signal to let the
user know that water is in fact flowing through that part of the tube. If it was not, it would
indicate that there would be a leak in the system. This is done so that the user stops
sending water through the system if none of the vibrations are detected. When
investigating which piezoelectric vibration sensor would work best for our project, we
came across a few different options. The top three piezoelectric vibration sensors we
considered were the HiLetgo Analog Ceramic Vib Sensor, the HiLetgo Vibration Sensor
Module, and the HiLetgo 801S Vibration Sensor Module. In Table 9, the differences
between these models can be observed. The three piezoelectric vibration sensors are
quite different, being only similar in terms of operating temperature and their cost, as all
three are below $10. Although we wanted to implement the piezoelectric vibration
sensor, due to time constraints, we unfortunately had to cut this feature.

29

Attribute HiLetgo Analog
Ceramic Vib
Sensor

HiLetgo Vibration
Sensor Module

HiLetgo 801S
Vibration Sensor
Module

Operating Voltage 3.3 - 5 V 5 V 3 - 5 V

Working Current < 1 mA ~15 mA 5 - 10 mA

Interface Type Analog Signal
output

Digital Switching
Output

Analog output
signal

Operating
Temperature

-10 - 70 ℃ 0 - 80 ℃ 0 - 70 ℃

Cost $8.49 $5.99 $7.75

Table 9: Different Piezoelectric Vibration Sensors Specification Comparison

4.2.5 Relay Module

Our system automatically turns on and off the system and pumps whenever they are not
being utilized. To fully implement the turn on and turn off functions of our project we
need to utilize a relay module (refer to Figure 9). A relay module is required for this
implementation since it must be utilized whenever an application needs to switch from
high to low or vice versa within the same circuit. The relay is going to be used as a
mechanical switch, which will be electrically operated, that can be turned on or off,
allowing current to pass or not.

When investigating which relay module would work best for our project, we came across
a few different options. The top three relay modules we considered were the HiLetgo
5V, the WINGONEER KY-019 5V, and the KeeYees 5V Relay Module. For a more
detailed comparison between the two previously mentioned relay modules, refer to
Table 10. As seen in the table, the three relay modules are only different in their cost.

Attribute HiLetgo 5V WINGONEER
KY-019 5V

KeeYees 5V Relay
Module

Operating Voltage 5 V 5 V 5 V

Maximum AC AC 250 V / 10 A AC 250 V / 10 A AC 250 V / 10 A

Maximum DC DC 30 V / 10 A DC 30 V / 10 A DC 30 V / 10 A

Cost $5.98 for two (2) $8.49 for five (5) $9.99 for five (5)

Table 10: Different Relay Modules Specification Comparison

30

4.2.6 Water Pump

A distinctive feature of our project is that it requires a water pump to irrigate the plant.
The water pump is essential for efficient water use and distribution. It is going to move
the water between the container and the planter, becoming especially necessary since
the resource needs to be transported from a container located below, which it could not
otherwise reach due to the lack of pressure. For our project, we require our water pump
to be submergible and to include both inlet and outlet pumps. Many brands on the
market sell this type of product. In Table 11, the differences between three different
water pump models that we are considering can be observed. Although their
dimensions, current, and rated power vary slightly, these three pumps are quite similar.

Attribute LEDGLE Mavel Star MOUNTAIN_ARK

Rated Voltage DC 12 V DC 12 V DC 12 V

Rated Power 3.6 W 4.8 W 4.5 W

Lift 3 M / 9.8 ft 3 M / 9.8 ft 3 M / 9.8 ft

Flow Rate 240L/H 63.4GPH 240L/H 63.4GPH 240L/H 63.4GPH

Current 300 mA 350 mA 400 mA

Cost $8.99 $12.99 $10.99

Table 11: Different Water Pump Specifications Comparison

4.2.7 Nutrient Pump

Similar to the water pump, a nutrient pump is also essential for the proper growth and
maintenance of the herbs supported by the system. Whether ornamental or horticultural,
all plants need to obtain minerals and other elements to grow properly. If they lack
nutrition, the health of the plant is at risk. Therefore, it is essential to guarantee an
adequate supply of nutrients for the herbs.

To accomplish this task, the system contains a nutrient pump, specifically the Gikfun 12
V DC Dosing Pump. This nutrient pump boasts a “Snap-in” type design through which it
is easy to remove the pump head, making it very convenient for pump tube replacement
and cleaning. The Dosing Pump has a voltage of 12 V DC, a current of 80 mA, and a
flow rate of 0 to 100 milliliters per minute (ml/min). It also has a small pump head size
with a diameter of 31.7 mm, making it ideal for precisely pumping small amounts of
nutrient solution.

31

4.2.8 Voltage Regulator

The voltage regulator is an important part of the project. This component will allow the
system to use the correct voltages for all of the different pieces of technology that exist
in our product. Voltage regulators also protect from voltage spikes. It is imperative to
protect electric equipment from voltage spikes as they can be dangerous. These can
occur, for example, because lightning strikes nearby. No electrical network is exempt
from these spikes that can reach thousands of volts. However, most of a regulator's
power goes into trying to stabilize voltage fluctuations, not stopping voltage spikes.

To properly utilize a voltage regulator, research on converting alternating current to
direct current along with direct current to direct current power conversion was performed
so that we can give an accurate description of how this will affect the various
components on our project. We also investigated older and newer technologies in the
voltage regulator field as these have evolved over the recent years. These topics are
going to be discussed in detail in the sections below.

4.2.8.1 AC/DC Power Conversion

If we are going to make use of the power from transmission lines, we need to make sure
that the alternating current power from the outlet can be used as direct current power for
the devices that we need like the pump and MCU, thus AC/DC power conversion is
going to be required to power our product. AC to DC power converters, or adaptors, are
used to operate small items that work with direct current. These adapters convert the
high-voltage AC we draw from the wall outlet to low-voltage DC for the products we are
powering, such as phones, laptops, and small appliances. AC power switches its
direction back and forth at a rapid velocity, flowing in both directions along a power line.
This bi-directional flow could damage DC equipment, which can only handle power
flowing in one direction, hence the need for an AC/DC adapter.

The standard in the United States is 120 V and 60 Hz AC electricity4, therefore, we must
use a voltage converter since we are going to be utilizing DC electricity for our product.
To properly power any device, the rated output voltage of the adaptor should match the
rated input voltage of the electric components it is going to power. Using a power
adapter rated for a higher amperage than the electronic equipment it is going to power
is safe, as the equipment will only draw the necessary current. We require a 9 to 12 V
regulator to provide power to the system and its parts, so we must select a power
adapter that matches the voltage rating or is higher. Failure to do so will result in the
adaptor not being able to properly power our system.

For an AC/DC converter, three main parts need to be taken into account. When the
input comes in, we need a transformer, a rectifier, and then an output filter to get the
desired DC output. The transformer usually comes in a large size, it would also usually
produce a lot of heat, but our device does not require a large amount of power so it will
not pose an issue.

32

When investigating which AC/DC power adapter would work best for our project, we
came across a few different options. The top three adapters we considered were the
Corporate Computer Power Supply Adapter, the SmoTecQ Store Power Supply
Adapter, and the TMEZON Power Adapter Supply. In Table 12, the differences between
these models can be observed.

As seen in the table below, all three models are similar in terms of their connector
dimensions, as all three are 5.5 mm x 2.1 mm wide, and in their polarity, given that the
center or tip is positive and the sleeve is negative. The Corporate Computer Power
Supply Adapter varies the most, as its input voltage, output voltage, and current rating
are smaller than its two other competitors. In terms of price however, it is the cheapest
one between the three options we considered. The SmoTecQ Store Power Supply
Adapter and the TMEZON Power Adapter Supply are almost identical, being only
different in terms of their price and the amount of pieces included.

Attribute Corporate
Computer Power
Supply Adapter

SmoTecQ Store
Power Supply
Adapter

TMEZON Power
Adapter Supply

Input Voltage 110 V AC 240 V 240 V

Output Voltage 9 V DC 12 V DC 12 V DC

Current Rating 1 A 2 A 2 A

Polarity Positive center/tip,
negative sleeve

Positive center/tip,
negative sleeve

Positive center/tip,
negative sleeve

Connector
Dimensions

5.5 mm x 2.1 mm 5.5 mm x 2.1 mm 5.5 mm x 2.1 mm

Cost $6.99 for one (1) $11.99 for two (2) $7.99 for one (1)

Table 12: Different AC/DC Power Adapter Specifications Comparison

4.2.8.2 DC/DC Power Conversion

DC/DC power conversion is necessary for our project. DC to DC converters are circuits
capable of transforming voltage levels into others, temporarily storing energy, and
discharging it in such a way that the final voltage levels are those that are desired. This
transformation is done through the use of inductors, transformers, and capacitors. Given
that the AC/DC power adapter we are going to utilize is going to output a voltage of 12
V DC, this value must be converted to different voltages, as different electronic
components in our project require different voltage values. The voltage values required
for the other parts are around 3 V and 5 V.

33

For this purpose, we are going to be utilizing voltage regulators, circuits that perform the
voltage-switching operation. There are many types of voltage regulators depending on
the need. The most common are the buck converter, the boost converter, the
buck-boost converter, and the SEPIC converter. In the buck converter, the output
voltage is less than that of the input due to it stepping down the voltage. These
converters are most commonly used in self-regulating power supplies as well as in
communication systems. As opposed to the buck converter, in the boost converter, the
output voltage is higher than that of the input due to it stepping up the voltage. These
converters are most commonly used in regulated power supplies and portable device
applications. The buck-boost converter can step either up or down a voltage, resulting in
a voltage that is either lower, equal, or higher than the input voltage. This converter
could be used to supply a 12 V output from a 12 V battery whose voltage can range
from 10 V to 14.7 V5. Like the buck-boost converter, the SEPIC converter can step a
voltage up or down, producing the same result. The SEPIC converter differentiates itself
from the buck-boost converter by producing a non-inverted output, meaning that the
output has the same voltage polarity as the input.

Given that we must step down our 12 V power adapter to both 3 V and 5 V for our
electronic components, we are going to utilize a buck converter. A buck-boost converter
could also be utilized but its boost ability would not be utilized as it is not needed.

4.2.8.3 Older Regulator Technology

Voltage regulators have been around for years given that they have been utilized
throughout history to ensure that electric devices receive the correct voltage supply. As
we were investigating which voltage regulator to utilize in our project, we came across
different types of technologies. The voltage regulators that stood out to us the most
were the L7805 and the LM317T.

The “78” series of voltage regulators indicates that it is a positive regulator, as opposed
to the “79” series, for example, that regulates negatively. The XX after “78” tells what
voltage it will regulate. These voltage regulators are most commonly utilized in projects
with Arduino programming due to their practicality and simplicity. The L78XX series is
used to guarantee a constant voltage source, which reduces the possibility of damaging
circuits due to fluctuations in voltage levels. This series of voltage regulators has three
pins. The first pin is used for the input voltage, the second pin is used as the ground,
and the third pin is used for the output voltage. The L7805 is a voltage regulator that
can control a positive voltage of 5 V and 1 A current. This regulator is capable of
producing an output voltage of 5 V to 18 V from an input voltage of 35 V and an output
voltage of 20 V to 24 V from an input voltage of 40 V. Its output current and power
dissipation are internally limited and it boasts an operating junction temperature range
of -55 °C to 150 °C.

The LM317T voltage regulator is one of the most used regulators for being variable.
This regulator has different configurations or circuits according to the application. Its
variability is controlled by different arrangements or resistors. Similar to the L7805, the

34

LM317T is a positive-voltage regulator that has three pins. The first pin is used for the
input voltage, the second pin is used as the ground, and the third pin is used for the
output voltage. These pins connect to the various configuration circuits. The LM317T is
a voltage regulator that has an output voltage range adjustable from 1.25 V to 37 V with
an input voltage range of 3 V to 40 V. It boasts an output current greater than 1.5 and an
operating virtual junction temperature of 150 °C. The LM317T also includes current
limiting, thermal overload protection, and safe operating area protection6. The LM317T
circuit can be supplied with an input voltage that is at least 3 V different from the desired
output voltage. That is, if we want to regulate from 3 V to 5 V, a minimum 8 V input
source is required. In our case, our input source is going to be 12 V.

When investigating which L7805 and LM317T packages to utilize, we came across the
Bojack Voltage Regulators, the Valefod Voltage Regulator, and the Yiwanson Voltage
Regulator.

Bojack Voltage Regulators
An important part of the power supply is the voltage regulators. Since we will be drawing
upon the local power to use Greenie, we must have voltage regulators that can make it
so that the correct voltage can be transferred into the device. Our device uses
components that require 12 V, 5 V, and 3 V, so we will need the necessary regulators.
We have the BOJACK series which is a trusted voltage regulator that can be used.

Valefod Voltage Regulator
There is also the Valefod voltage regulator. This voltage regulator can be changed from
3 V to 40 V by using a screwdriver to adjust the value of the built-in potentiometer. The
maximum current is 3 A and is a small size at 45 mm * 23 mm * 14 mm. The converter
has high Q inductance and has solid-state capacitors that are meant to filter out
high-frequency noise. These pieces are priced very well too.

Yiwanson Voltage Regulator
The Yiwanson Voltage Regulator promises short circuit protection and thermal
shutdown protection so that the equipment does not get damaged from being used.
These voltage regulators go from 5 V to 37 V depending on the device used, coming in
at a very small size as well. The current of these voltage regulators is at about 1 A to
1.2 A also depending on which device is being used.

4.2.8.4 Newer Regulator Technology

Although the L7805 and LM317T are widely popular voltage regulators and are largely
utilized in many projects like ours, they are still a bit outdated. Given their age, newer
projects are discouraged from utilizing them. In hopes of providing Greenie users a
more advanced experience, we also decided to research newer technologies in the
voltage regulator area. The voltage regulators that stood out to us the most were the
LM2576 and the LM2596.

35

The LM2576xx is a series of popular step-down (buck converter) switching voltage
regulators. These regulators are available in the market with fixed output voltages of 3.3
V, 5 V, 12 V, 15 V, and an adjustable output version8. This series is simple to use,
includes fault protection, and is also commonly utilized today to replace popular
three-pin linear voltage regulators such as the L7805. The LM2576 regulator has five
pins. The first pin is used for the input voltage, the second pin is used for the output, the
third pin is used as the ground, the fourth pin is used as the feedback, and the fifth pin is
used as the on/off. The maximum supply voltage for this regulator is 45 V and it has a
specified 3 A output current. Its power dissipation is internally limited and its maximum
junction temperature is 150 °C.

Similar to the LM2576, the LM2596 is a step-down (buck converter) switching voltage
regulator. This regulator also has a five-pin design, with its pins being used for the same
purposes as the LM2576. Today, this regulator is used over designs with three pins
given its high efficiency. It is capable of driving a 3 A load with excellent line and load
regulation9. This regulator comes in an adjustable output voltage range of 1.23 V to 37
V. The LM2596 has a maximum supply voltage of 45 V and its power dissipation is
internally limited. This regulator boasts an operating junction temperature range of -40
°C to 125 °C.

When investigating which LM2576 and LM2596 packages to utilize, we came across the
D-FLIFE 5 V 16-Channel LM2576 Power Relay and the Zixtec LM2596 DC-DC Buck
Converter Step Down Module Power Supply. Both are discussed briefly below.

D-FLIFE 5 V 16-Channel LM2576 Power Relay
The D-FLIFE LM2576 Power Relay boasts 16-channels of 5 V active low where each
one requires a driver current of 15 to 20 mA. It is equipped with a high-current relay of
AC 250 V / 10 A and DC 30 V / 12 A. To work properly, the control signal must be within
the voltage range of 0 to 2 V for the trigger signal and the high voltage must not exceed
5 V. The D-FLIFE LM2576 module is a 16-channel relay interface board that is
supported and can be controlled by multiple microcontrollers such as Arduino, 8051,
AVR, PIC, DSP, ARM, ARM, MSP433, and TTL logic. Given that this package can
control several different types of equipment with large current values, it is commonly
used in projects regarding microcontroller control, Programmable Logic Controller (PLC)
control, and smart home control. The module also includes LED lights to indicate the
work status. The D-FLIFE 5 V 16-Channel LM2576 Power Relay comes at $15.69 on
Amazon for 1 piece.

Zixtec LM2596 DC-DC Buck Converter Step Down Module Power Supply
The Zixtec LM2596 Module boasts an input voltage range of 3.2 V to 35 V DC. For all
LM2596 packages, it is imperative that the input voltage is higher than the output
voltage by at least 1.5 V to prevent failures such as the system not being boosted. The
output voltage ranges from 1.25 V to 30 V DC. The voltage is adjustable as it has a
clockwise boost and a counterclockwise buck. The Zixtec LM2596 Module has high
efficiency and a maximum output current of 3 A although it is recommended to use
under 2 A of current. All solid capacitors in the module use SANYO technology and the

36

circuit boards are on the thicker side, at 36u. It also includes High-Q inductors with a
LED indicator light for when high power output occurs. The module also comes with
built-in functions such as over-temperature protection function, current limit function,
and output short-circuit protection function. The Zixtec LM2596 DC-DC Buck Converter
Step Down Module Power Supply comes at $13.89 on Amazon for 10 pieces.

We also researched individual LM2576 and LM2596 from different manufacturers, as
we may not need packages for our project. The most popular pieces were from Mouser
Electronics, one of the most popular online suppliers of electronics components. Both
pieces are briefly described below.

LM2576-12WU
The LM2576-12WU is described as a step-down (buck) switching voltage SMPS
regulator with an output current of 3 A. The product is manufactured by Microchip and it
has a mounting style of SMD/SMT. It has support for one output at a time, an input
voltage range of 4 V to 40 V, an output voltage range of 1.23 V to 37 V, a switching
frequency of 52 kHz, and an operating temperature ranging from -40 °C to 125 °C. The
LM2576-12WU comes at $2.39 on Mouser Electronics for 1 piece, $50.00 for 25 pieces,
and $182.00 for 100 pieces.

LM2596S-5.0/NOPB
The LM2596S-5.0/NOPB is described as a step-down (buck) switching voltage regulator
with an output current of 3 A. The product is manufactured by Texas Instruments and it
has a mounting style of SMD/SMT. It has support for one output at a time, an input
voltage range of 4.5 V to 40 V, an output voltage of 5 V, a switching frequency of 150
kHz, and an operating temperature ranging from -40 °C to 125 °C. The
LM2596S-5.0/NOPB comes at $7.15 on Mouser Electronics for 1 piece, $64.60 for 10
pieces, and $154.00 for 25 pieces.

4.2.9 Smart Speaker

Smart speakers that listen to and obey a user’s orders through the use of voice
commands are increasingly common in our homes. They have become personal
assistants and will do everything the user asks, from playing music or popular radio
stations, giving weather predictions, turning lights on and/or off, and even creating
and/or managing calendar events. Most smart speakers today are compact, intelligent,
relatively affordable, and boast decent sound quality.

The inclusion of a smart speaker is an important part of our project. The user must be
able to utilize voice commands to activate or deactivate certain actions regarding the
product and how it interacts with the user’s plant. Through the use of our software, the
user can ask the smart speaker to water their plant automatically and also present/read
out loud information regarding the plant. The user will also be able to ask the system to
either select automatic watering or water their plants manually through the use of their
voice. Additional voice commands will also work with our LCD screen, where the user

37

can observe data such as soil moisture levels, whether the plant was watered by rain or
not, temperature, humidity, and pH information.

When investigating which smart speaker would work best for our project, we came
across a few different options. The top three smart speakers currently in the market
were considered. These are the Apple HomePod Mini, the Amazon Echo Dot, and the
Google Nest Mini. For a more detailed comparison between the three previously
mentioned smart speakers, refer to Table 13.

Apple HomePod Mini
The Apple HomePod Mini is Apple’s smart speaker. This speaker is considered to be
the best smart speaker for many users even though it is higher in price than its
competitors. The HomePod Mini is a smart speaker exclusively made for Apple users,
meaning that it can only be used with other technology within Apple’s ecosystem, such
as the iPhone, the iPad, or Mac. It works with the Siri voice assistant, which although is
not as sophisticated as Alexa or Google Assistant, is capable of doing a good job for
basic commands. Although Apple’s smart speaker lacks flexibility, it possesses great
security and privacy, an aspect that is important for many users today. Nothing said to
the speaker will be shared without the user’s consent and none of the commands are
linked to the user’s Apple ID.

Amazon Echo Dot
The Amazon Echo is Amazon’s smart speaker. It is part of the wide family of speakers
made by Amazon whose voice assistance is Alexa. Thanks to years of updates, Alexa
has become one of the most intelligent smart speakers, adding more abilities and ways
to interact with the user. Amazon’s smart speaker is compatible with the largest number
of devices, making it one of the best options for controlling different types of technology
gadgets. The Echo Dot can be integrated with Zigbee, a wireless technology based on
the IEEE 802.15.4 personal area network standard used for creating personal area
networks. Zigbee deals with the unique requirements of low-power, low-cost wireless
IoT networks.

Google Nest Mini
The Google Nest Mini is Google’s smart speaker. It is part of the growing family of
speakers made by Google whose voice assistant is Google Assistant. Google Assistant
is one of the most natural voice assistants today, matching Amazon’s Alexa in terms of
intelligence. It has advantages that focus on integration with Google applications, which
are commonly used today, such as Google Calendar, Google Docs, Gmail, etc. The
Nest Mini boasts a machine learning chip that recognizes and learns the user’s most
used commands, being able to respond quickly to these. This technology also allows
the Nest Mini to respond to the user’s most used commands without needing to access
the cloud.

38

Attributes Apple HomePod
Mini

Amazon Echo Dot Google Nest Mini

Released In 2020 2020 2019

Voice Assistant Siri Alexa Google Assistant

Microphones Four-microphone
design

Four-microphone
design

Three-microphone
design

Dimensions (length
x width x height)

3.9” x 3.3”
(97.9 x 84.3 mm)

3.9” x 3.9” x 3.5”
(100 x 100 x 89
mm)

3.85” x 1.65”
(98 x 42 mm)

Weight 0.76 lbs (345 g) 0.75 lbs (341.3 g) 0.39 - 0.4 lbs
(177 - 183 g)

Cost $99.00 $49.99 $49.00

Table 13: Different Smart Speakers Specifications Comparison

As seen in Table 13 above, all three smart speakers include up-to-date technology, as
the Google Nest Mini was released in 2019 and both the Apple HomePod Mini and the
Amazon Echo Dot were released in 2020. In terms of design, the Homepod Mini and the
Echo Dot are the most similar, having practically the same number of microphones,
dimensions, and weight. The Nest Mini differs the most, having a three-microphone
design, smaller height, and relatively less weight. As mentioned before, Apple’s smart
speaker is higher in price than its competitors, being sold at a price point of $99.

4.2.10 Solenoid Valve

Solenoid Valves are needed for our project in order to control how much and when
water can flow into the different herbs. A solenoid valve is a combination of two things,
first is a valve that is electrically controlled to either stay closed or to stay open
depending on whether it is a normally closed valve or normally open valve. The other
part is the top of the device which is a solenoid that is meant when current passes
through the various loops causing the valve to open or close. We want to focus on
getting a solenoid valve that is normally closed. This is because the solenoid gets hot
and requires power whenever it is used, since in a base state we normally do not want
water to pass through the system getting a valve that is normally closed will allow us to
save power on the long run and extend the usage of our solenoid valve since it will only
require power once we need the valve to be open and allow water to pass through the
tube into the plant. Solenoid valves allow many different kinds of fluids that can pass
through the valve, generally most kinds of fluid like gasoline, oil, or water are used and
gases like air are used with the solenoid valves. For our project, we will be passing
through mostly water which means we need to stay conscious of what materials the

39

valves are made of so that when water is passing through it, it will not affect the plant in
a strong way.

When looking through what solenoid valves were going to be used we came across
three main options. Three different companies: Digiten, Kako, and SNS all make
solenoid valves of different sizes and from different materials. When investigating which
solenoid valve would be the best to use, we need to make sure of the things that we
have mentioned before, making sure that the valve is normally closed and that the
material of the valve will not affect the water passing through that much. Depending on
this, we will determine which of these three options would be the best to use for our
project.

Digiten DC Inlet Feed Water Solenoid Valve ¼”
This is a 12V DC Quick connect valve that is normally closed. The pressure that this
valve works best at is in the 0.02-0.08 Mpa range and the working temperature is
0-70℃. Although the temperature should not exceed 60℃ for long periods of time
because it causes the solenoid part to overheat, so care should be taken that this does
not happen. The valve part is made of plastic and can withstand temperatures of about
150℃. The rated power of this device is 4.8W.

Brass Electric Solenoid Valve from Kako 1”
This is also a normally closed valve that works in 110V AC. The size of the tube is one
inch and it has a working temperature of 23-176°F. The valve part is made of brass and
is resistant to corrosion. The valve is made with a VITON seal that is used mostly when
dealing with oil and gasoline. The pressure range is 0-145 Psi. Many reviews say that
this valve should not be used when working with water projects because it is made in
brass.

SNS NPT Brass ELectric Solenoid Valve ¼”
This valve is a DC12V operated valve that is normally closed. The working temperature
range of this valve is -5℃~85℃. The valve part is made of copper. This solenoid valve
works well with different materials like air, water, and oil. The port diameter is 2.5mm
and the working pressure when using it with water as the passing fluid is about 15~70
psi.

4.3 Project Software
This section will discuss the research that we have conducted so far regarding the
different software technologies that could be utilized in our project. We will compare the
different software components that we have investigated by describing them and
differentiating them specifications-wise. The following items will be discussed:
communication, database, interface, and Wi-Fi module.

40

4.3.1 Communication

Different types of wireless communication that can be used to provide interaction
between multiple devices exist. The devices within the system require different forms of
communication to perform their function. Our project utilizes a mix of wireless and wired
communication. Possible wired communications that are supported by our
microcontroller are described (on 3.2.2 Communication Protocol) under the Standards
section of this document (3.2 Standards). The following wireless technologies were
inspected to determine which wireless communication is the best fit for our project.

Wi-Fi
Wi-Fi is a wireless networking technology that allows devices to communicate via the
Internet without direct cable connections. It is the most commonly used means of
wireless communication. Protocols for wireless local area networks (LAN) are specified
by a set of standards known as IEEE 802.11. Typically, Wi-Fi uses radio waves to
transmit data at 2.4 GHz and 5 GHz frequencies. Lower frequencies like 2.4 GHz
provide stronger signals which allow more devices to connect. While higher frequencies
like 5 GHz are faster than 2.4 GHz, it also shortens the signal range and is more
susceptible to interference.

Bluetooth
Bluetooth uses ultra-high frequency radio waves to directly transmit information
between devices within a short distance. Bluetooth devices operate on a frequency
band between 2.4 GHz and 2.48 GHz and have a maximum range of approximately 30
feet. Compared to Wi-Fi, Bluetooth is more safe and secure against hacking. This is due
to devices hopping between various frequencies every second. Standards for Bluetooth
technologies were originally defined by IEEE 802.15.1 but are now defined by the
Bluetooth Special Interest Group (SIG).

LPWAN
Low-Power Wide-Area Network (LPWAN) allows devices to send small bits of data over
great distances on a single battery that lasts for many years. This technology offers low
power, low cost, and wide-area coverage that is perfect for wireless sensor networks.
This is commonly used in Internet of Things (IoT) devices that do not require high
bandwidth. LPWAN allows IoT devices to operate on small, inexpensive batteries for 10
to 15 years. It can support small packet sizes from 10 to 1000 bytes and its long
coverage range can vary from 2 km to over 100 km. LPWAN requires less infrastructure
and hardware which results in lower costs.

Zigbee
Zigbee is an alternative to Wi-Fi and Bluetooth which transmits data over long distances
through a mesh network. This wireless technology is used when creating personal area
networks with low power like home automation. Zigbee devices communicate with each
other based on the IEEE 802.15.4 personal area network standard. Security is
guaranteed with this technology because of its 128-bit symmetric encryption. Zigbee

41

operates on a 2.4 GHz frequency and has a data rate of up to 250 Kbps. The range of
Zigbee can reach up to 100 meters indoors.

4.3.2 Database

A database is commonly known as a useful source where a large collection of data is
efficiently stored and retrieved. In developing Greenie, we decided to utilize a database
as a way to better integrate with our full-stack web application. As seen in Table 14, one
table in our database was created to store 10 specific herbs as well as valuable
information relating to each one. The 10 herbs that our product is going to support are
basil, bay leaf, cilantro, chives, lemongrass, mint, oregano, rosemary, sage, and thyme.
Our database is going to store data on watering requirements, soil preference, ideal
humidity, ideal temperature, and ideal pH for all 10 herbs supported.

By interacting with the user interface, we will be able to extract the key components
needed from each herb and use that to decide how the irrigation system will operate.
For example, looking at basil, we see that it has a water requirement of lightly every
day. Taking note of that, we will use that information, tie it into the typical amount of fluid
ounces dispersed for basil, and then have it set so the process is automatic. As for
specific fluid ounces for each herb, we will itemize them in the future.

With the information shown in Table 14, our database is going to better maintain the
health of the user’s plant. Through the use of the database and the interface, the user is
going to be able to access and view this data on our web application. The web
application is going to be accessed anytime and through any device as it is going to be
opened through the use of a link. For generic data collection and displaying statistics,
we plan to utilize a separate table for storing information. Some examples of generic
data include current soil moisture, current water level, number of times watered, and the
total amount of water dispersed.

For deciding on the best database to use, we looked into several options and decided to
weigh the pros and cons of using each one. During our research, we looked to see what
each database could do and what features it could provide in helping construct our
project. Properties like complexity and restrictiveness were all taken into consideration
when coming to a final decision. We began our research by first breaking down the
difference between SQL databases and NoSQL databases. Our findings can be seen in
Figure 4.

42

Herbs
Supported

Watering
Required

Soil
Preference

Ideal
Humidity

Ideal Tem-
perature

Ideal pH

Basil Every day Well drained 40 - 60% 70 - 90 °F 5.5 - 6.5

Thyme Every 2 - 3
days

Moist /
Well drained

40% 60 - 70 °F 5.5 - 7.0

Bay Leaf Every 2 - 3
days

Well drained 40% > 20 °F 6.0 - 7.0

Lemongrass Every 2
days

Well drained 40% 65 - 85 °F 6.5 - 7.0

Oregano Every 2 - 3
days

Moist /
Well drained

40% 50 - 70 °F 6.5 - 7.0

Mint Every 2
days

Moist /
Well drained

70% 60 - 70 °F 7.0 - 8.0

Sage Once a
week

Well drained 40% 60 - 70 °F 5.5 - 6.5

Rosemary Every 2
days

Well drained 45 - 55% 55 - 80 °F 5.0 - 6.0

Chives Every 2
days

Well drained 40% 40 - 85 °F 6.0 - 7.0

Cilantro Every 2
days

Moist /
Well drained

75% 40 - 75 °F 6.5 - 7.0

Table 14: Herbs Included in Database

When it comes to using the weather component in our web application application, we
are looking to include a separate table for that as well. In other words, we are looking to
take the information we get from our API and send that over to its own designated
section. One reason we think it is beneficial to set up the weather component in this
manner is because of organization. In regard to the table holding our general
information, while we think it is useful to have a section of our database that specifically
caters to that, we also think it is useful to not have a section that becomes filled with too
many random pieces. We recognize that at a certain point having all of our information
stored into one or two tables is not fully taking advantage of what a database is offering
us.

43

Figure 4: SQL vs No SQL

After analyzing the similarities and differences between SQL and NoSQL we then went
over specific databases to see what each of them could offer. To break down each
database we decided to outline each one’s pros and cons. We recognize that because
each database has a large number of features to offer that we can not go in-depth on
everything, but we have decided to highlight the values we found to be most valuable.
Also, in constructing our list, we decided to highlight the level of familiarity our group has
with each database.

MySQL (SQL Database)
● Familiarity = Medium
● Pros

○ Free and open source
○ Supports additional languages (Tcl, Perl, etc.)

● Cons
○ Need 3rd party for LINQ queries
○ Need to back up data by extracting SQL statements
○ Cannot cancel query while running without ending the entire process

Microsoft SQL Server (SQL Database)
● Familiarity = Medium
● Pros

○ .NET framework. Can do LINQ queries
○ Can backup large amounts of data

44

○ Can truncate database query without ending the entire process
● Cons

○ More expensive. Need to pay for a license to run a server
○ Not as many languages

MongoDB (NoSQL Database)
● Familiarity = High
● Pros

○ Simple setup with MongoDB Atlas
○ Advanced manipulation features

● Cons
○ Joining documents is difficult
○ Slower without proper indexing

Redis (NoSQL Database)
● Familiarity = None
● Pros

○ Simple setup and is easy to use
○ One of the fastest for caching

● Cons
○ Difficult for large cloud deployment
○ Limited database size

CouchDB (NoSQL Database)
● Familiarity = None
● Pros

○ Fast indexing and retrieval of data
○ Can be used to store any type of data

● Cons
○ A large amount of space is used for overhead
○ Huge datasets can result in it being very slow

Firebase (NoSQL Database)
● Familiarity = None
● Pros

○ Custom Libraries that work with devices
○ Realtime database so immediate value readings

● Cons
○ Less support for IOS devices
○ Realtime database not great for complex queries

4.3.3 Interface

The user interface allows users to interact with the system. One of its main goals is to
provide users with effective and efficient control of the system. A few user interface
designs were considered for our project. This includes a web application, a mobile

45

application, and an onboard control using buttons. Due to time and budget constraints,
our group decided to utilize a web user interface or web application as our project’s user
interface design. One of the advantages of using a web application is accessibility. It
provides users access on any device through a web browser. It also requires less time
to build compared to a mobile application. The following lists some tools that can be
used when designing and developing the front-end of the web application.

Bootstrap
Bootstrap provides a huge collection of reusable codes written in HTML, CSS, and
JavaScript that enables web developers to build responsive web pages quickly. Design
templates such as grid systems, tables, and buttons are predefined therefore there is no
need to code for your design. Users can fully customize their web page. It also adjusts
the images automatically based on the current size of the screen. It is compatible with
Google Chrome, Firefox, Edge, Safari, and Opera.

React
React is a free and open-source JavaScript library that is used to create interactive user
interfaces for both web and mobile applications. It allows for the easy creation of
dynamic applications due to less coding. React contains reusable components with
unique logic and controls that can be reused throughout the application which makes it
time-efficient. One of its main features is having a virtual DOM (Document Object
Model) which allows complex applications to have a better and more effective
performance. This web development tool is being used by huge companies including
Netflix, DropBox, and PayPal.

TypeScript
TypeScript is a superset of JavaScript that is designed for large applications. It uses
existing JavaScript code and supports JavaScript libraries. One of its features is the
optional static typing. This will alert the web developers of any possible errors in the
code and will result in increased productivity and less error during the execution. It
provides flexibility since users can change the level of type strictness. Another great
feature of TypeScript is IntelliSense which gives users some hints while coding. This
front-end web development tool can operate on any device, browser, and operating
system.

4.3.4 Wi-Fi Module

One key piece to ensuring that the irrigation works as intended is an established
internet connection. By having an internet connection, we will be able to remotely
control the parts needed for our various features. To accomplish this, however, some
type of Wi-Fi module antenna will be needed. Through our research, several modules
stuck out. The ESP8266 made by Hiletgo stuck out as the most affordable option, the
ESP32 by Hiletgo stuck out as a strong option in performance, and the Bolt IoT stuck
out for its additional features. The modules cost $7, $11, and $150 respectively.

46

Comparing the ESP8266 by Hiletgo to the Bolt IoT Module, we discovered that both
devices ended up being pretty similar. Both utilize the standard 802.11 wireless
connection, the same 3.3 operating voltage, similar dimensions, etc. Looking even
closer at the specifications for the Bolt IoT module, we noticed that it also utilized the
ESP8266 framework itself. What mainly proved to be the difference between the two
modules were the extra services that Bolt provided to its users. Such as their cloud
platform, LEDs, and their unique design.

Comparing the ESP32 module to the ESP8266 and the Bolt IoT module, we found more
differences in technical specifications. In the ESP32, some of the differences include
more GPIOs, faster clock speed, and Bluetooth support. Performance-wise, we
continued to find slight improvement after slight improvement to the ESP8266 going
down the list. Logically this made sense because the ESP32 is the successor to the
ESP8266. Looking at Table 15, we can see the detailed specs that highlight these
specific instances. What we did notice, however, is that once again the ESP32 does not
have the Bolt IoT extra services.

Attribute ESP8266
NodeMCU

ESP32 Bolt IOT Module

Wi-Fi 802.11 b/g/n 802.11 b/g/n 802.11 b/g/n

Operating Voltage 3.3 V 3.3 V 3.3 V

Clock Speed 80 MHz 160 MHz 80 MHz

GPIOs 17 Pins 34 Pins 5 Digital Pins

Bluetooth X Bluetooth 4.2 and
BLE

X

Table 15: Wi-Fi Module Specification Comparison

4.3.5 Web Service

To obtain access to our web application from a URL, we will need some type of web
server or service to give our users commercial access. When it comes to web services,
there are many options that developers can choose to go with. Originally, we looked into
utilizing the Platform as a Service (PaaS) model. The Platform as a Service is a type of
service that allows cloud computing platform users to fully develop and deploy
applications. From small projects to startups to medium-sized businesses, the Platform
as a Service model is becoming more and more of a viable choice in modern web app
development. However, for our project we decided to also add in new alternatives with
cloud service capabilities. For Greenie, we have recognized the convenience of usings
cloud models and have decided to utilize it moving forward. In our research, we found

47

some of the popular services that use these models and decided to analyze them. The
following are our findings:

Microsoft Azure
Microsoft Azure is one of three popular cloud services that is known for offering several
types of sub-services to its users. Its main competitors are Amazon Web Services
(AWS) and Google Cloud Platform (GLP). The three sub-services that are offered by
Azure are the Platform as a Service model, the Infrastructure as a Service (IaaS) model,
and the Software as a Service (SaaS) model. Regarding the Platform as a Service
model, it has its own environment for getting applications developed and deployed and
is incredibly versatile. Some features that we decided to highlight are as follows:

● Familiarity = None
● Works well with their services (Ex. Microsoft SQL Server)
● Takes some time to adjust to
● Only free for a certain period

Heroku
Heroku is a platform that utilizes Amazon Web Services as the framework for getting
web applications developed and deployed. It can work in conjunction with repository
platforms like Github and Gitlab and it is known for making the development process
incredibly smooth. Some highlights that we have outlined in using Heroku are as
follows:

● Familiarity = High
● Allows us to spend more time on coding as opposed to repeated server

management
● Easy to use/More user-friendly
● Has an option that is free to use

Google App Engine
Google App Engine is a type of Platform as a Service that utilizes a sandbox-type
environment for code to be housed and run. Similar to other services it is compatible
with a wide variety of programming languages and handles the development and
deployment process well. One of the things the service is known for is showcasing its
compatibility with Google’s programming language Go. Some of the features we
outlined for it are as follows:

● Familiarity = None
● Offers automatic scaling to assist in management
● Has an option that is free to use
● Works best for Google applications

Drive to Web
Drive to Web is an online cloud service that allows users to make their code accessible
on the internet. It is similar to the Platform as a Service model, but operates in a
different fashion. Unlike the providers mentioned above that utilize the Platform as a
Service model, Drive to Web allows developers to house their code on Google Drive
and make it available in the same way as if it were housed on Github or Gitlab. The

48

convenience that comes with using Google Drive over processes like the Gitlab
continuous integration/continuous deployment can in some cases be seen as a benefit.

● Familiarity = None
● Automatically updates code when added
● Free to use
● Gives developers more time to work on coding

4.3.6 Weather Integration

For our project, another feature we would like to incorporate is a form of weather
integration. Given that our project is a smart irrigation system, we figured that our
product would not be that smart if we are using water from the water pump while it is
raining outside. So to account for this, we have decided to incorporate the weather as a
useful tool throughout the user experience. A couple of uses can be seen through our
web application. First, on the main page, we will have the weather posted for the user
so they can decide whether or not to leave Greenie outside. Second, in the app, we can
have a popup for the user so they get further clarification on if they are okay with their
decision to utilize the pump system. By doing this, we believe the user will become
more informed on their habits when watering the herbs. To accomplish these tasks
though, we will have to retrieve weather data relative to the user’s location and send
that information to our database. The method we plan to use to retrieve the data is
through a weather API provider. In our research, we found several providers that would
work well for us. However, for selection purposes, we decided to list out some of our
options and see the features that they offered. That way we could choose based on
what seemed most intriguing to us. Our findings are as follows:

OpenWeatherMap
● Has a free option
● Works with JSON
● Provides minute by minute forecasts and historical data
● A large number of weather stations around the globe

Tomorrow.Io
● Has a free option
● Works with JSON
● Offers an all-in-one endpoint with multiple data fields (real-time weather, pollen,

air quality, etc.)
● Can receive notifications

WeatherBit
● Has a free option
● Works with JSON
● Uses 5 different APIs
● Limited to 500 API calls a day

49

4.3.7 Repository Management

Another key piece to ensuring that our web application is set up properly is managing a
software repository. With a software repository, we will be able to store all of our code
and deploy it to a web service such as the various models described in section 4.3.5.
Additionally, we will have the ability to write code collaboratively given that we can share
access to projects within the platform. For most modern coding projects today the
repository platforms that are often used are Github, Gitlab, and Bitbucket. In other
cases, platforms like Google Drive can also be utilized to house code.Each platform has
its advantages and its disadvantages, but they are all capable of getting the job done for
our project. So, to assist us in coming to a selection we decided to weigh the pros and
cons of our options and figure out which platform would be of the greatest use to us.

Github
Github is the repository platform that is often viewed as the most popular and is known
for having many developers on it. The philosophy of Github differs from something like
that of Gitlab because it focuses on ensuring that the overall performance of the
platform is good rather than having more things to offer. It also started in 2008 which is
a few years earlier than platforms like Gitlab, so some may argue that the platform is
more stable. Meanwhile, others may say that regardless of the year it started, platforms
like Gitlab have caught up to it.

● Familiarity = High
● Pros

○ Large Community Support
○ Good for infrastructure support
○ Easy to learn for new users

● Cons
○ Continuous Integration/Continuous Deployment (CI/CD) with external tools
○ Maximum 3 contributors on the free plan (private projects)
○ Security is not the greatest

Gitlab
Gitlab is a repository platform that is often known for having a lot of features. When it
comes to their competitors, Gitlab prides itself in having more things to offer than
everyone else. It started in 2011 and is the youngest out of three, but it still has a strong
following. Also, unlike the other two Gitlab is known for using what are called merge
requests. With merge requests, the developers can combine all the code they worked
on separately into one branch. Github and Bitbucket have a similar process, but they
refer to it as pull requests.

● Familiarity = High
● Pros

○ Good for features-based support (Usability Testing, DevOps Reports, etc.)
○ Continuous Integration/Continuous Deployment (CI/CD) built into the

platform
○ Allows for Subgroups

● Cons

50

○ Slightly higher learning curve for newer users
○ Pipeline fails could cause long delays
○ Platform can be slightly slower

Bitbucket
Bitbucket is a repository platform that is often not talked about as much as Github or
Gitlab but it is still capable of getting the job done. With Bitbucket, the developer has
access to functionality similar to that of Github. It also started in 2008, and some may
say that it is just as stable as Github. However, when it comes to features it is also
known for working well with several external integration tools like Jira.

● Familiarity = Low
● Pros

○ Has API that allows you to build your own integrations
○ Has a useful Jira integration tool for tracking
○ Is flexible for code deployment

● Cons
○ Not open sourced
○ Slow for heavy loads
○ Maximum 5 Contributors

Google Drive
While it may be not as commonly known as the platforms mentioned above, Google
Drive is also capable of acting as a repository for code storage. In many cases where
programming projects can be complex, Google Drive is probably not utilized as the sole
platform, but it can act as a great backup for sharing code easily and quickly.

● Familiarity = Medium
● Pros

○ Platform is easy to use
○ Is flexible for code deployment

● Cons
○ Limited community support
○ Limited support for different programming languages

5. Design

5.1 Overview
In the previous section (4. Research), we discussed the research behind each part
needed for our project. We compared and contrasted different pieces of technology to
better understand which components would work better for us. In this section, we will
discuss which components we chose to incorporate into our product and why.

51

5.2 Technology
This section discusses the decisions made in software technology. Here, we will discuss
the conclusions that we arrived at while researching which technologies to utilize. We
will be discussing our chosen communication method, database platform, interface
application, Wi-Fi module component, web service, weather API provider, and
repository platform.

5.2.1 Communication

The communication between the microcontroller and the cloud server is wireless. As
seen in Figure 5, the microcontroller sends data from the sensors to the server through
wireless communication. This allows users to get information about their plants. Since
the statistics of the herbs will be uploaded to a cloud and can be accessed through a
web app, we decided to use Wi-Fi for wireless communication. With a Wi-Fi module, the
transmission of data from the microcontroller to the cloud is direct and the system can
be installed anywhere close to a Wi-Fi access point. Wi-Fi is the preferred form of
wireless communication because of its increased efficiency since the transmission of
data between devices is usually faster when using Wi-Fi. Because of the flexibility and
the availability of Wi-Fi technologies, the users of Greenie will be able to access the
web app anywhere using any device as long as they are connected to the Internet. In
contrast, the sensors will send data to the microcontroller through wired communication.

SPI, I2C, and UART are the possible communication protocols that will be utilized for
the transmission of data between the sensors and the microcontroller. Since the
microcontroller and all the sensors are compatible with I2C, we decided to use I2C to
integrate all the sensors into the microcontroller. The following reasons were also
considered when choosing the appropriate communication protocol for our system. I2C
can handle multiple components that work simultaneously without jeopardizing the
communication path. Our project consists of multiple sensors and with I2C, the
communication between the sensors and the microcontroller would hopefully be
smooth. Another advantage of using the I2C protocol is that only two wires are required
to transmit data between the devices, which means we can lessen the wires in our
project and avoid complicated wiring.

Figure 6 demonstrates how users will interact with the system and how the system will
respond to users. The user will be the plant owner while the system will be a
microcontroller and the sensors. The user will interact with the system through a server.
The server will receive all the requests from the user and send it to the system. The
server will then gather the response from the system and then send it to the user.

52

Figure 5: Hardware and Software Communication

Figure 6: Communication between the user and the system

53

5.2.2 Database

For our database, we originally decided to use MongoDB, but we ended up switching to
Firebase. Initially our reasons for selecting MongoDB were because of two areas:
familiarity and utility. When it came to familiarity, out of all of the choices we went
through, we recognized that the MongoDB database platform was the one most
members of our team were comfortable with. MongoDB offers its Atlas service to quickly
construct our tables and get our connection synched up with our server and it also
provides us with a way of easily giving shared access amongst our team. However,
given the developments that occurred in constructing the project, we realized that
switching to Firebase would be more appropriate. For starters, we recognized that in
working with the hardware, getting a reliable connection to send values to the database
ended up taking more time than anticipated. So, when we noticed that Firebase had
custom libraries that specifically worked with our Wifi module we recognized that
switching to it would be a huge time saver. Additionally, we noticed that after switching
away from the MERN stack and utilizing pure HTML, CSS, and Javascript, Firebase
also made it simple for us to sync stored values with objects like buttons and lines of
text. As for utility, with the type of application we planned to create, we recognized that
having a NoSQL (Not only SQL) database was still ideal. To be specific, we still
intended on creating a web application that had a stack like framework where
JavaScript would be throughout the entire web application. For us to complete such a
task, we acknowledged even after switching to Firebase, we would still get the
advantages of a NoSQL database as well as a good amount of community support. We
can say however, that a small downside that came from the switch was not
implementing tables in their original concept. So things like separate tables weren’t
created for the weather portion of the databases, but rather status sections and various
subsections we utilized to carry out our plans.

5.2.3 Interface

The main interaction between the users and the system is through a web application.
The user will be able to view the herb’s daily statistics through the web app. They can
access the web app remotely on any device that has a web browser and an internet
connection. The herb’s statistics include the current soil moisture, the rain level, the pH
level, and the current temperature and humidity. The web app has a list of herbs that the
user can choose from, which contains information about the herb to determine how the
watering system will operate. All information is going to be stored in the cloud database.
The web app also provides an option for the user to manually turn on or off the water
pump and the nutrient pump. Figure 7 (see below) details the overview of the web
application in an easy-to-follow diagram.

54

Figure 7: Web Application High-Level Overview

For the front end of our web application, we originally decided to utilize React. There are
several reasons why we chose this specific web development platform to build our
system’s user interface. The first reason is the members’ familiarity with this platform.
Some of our members have experienced developing a web app through React. This
saves us a lot of time since we do not have to learn a new tool and software. We just
have to apply what we know so that we can create the web app easily and smoothly.
Because of its very simple library, React is easy to learn, and having JavaScript skills
will make it even easier to adapt to this environment. Other reasons are the advanced
features that React has which are discussed below.

One of its best features is the Virtual DOM (Document Object Model) where a virtual
representation of the actual DOM is kept in the memory. With this feature, any
modifications that are made will be performed initially on the virtual DOM and not on the
actual DOM. It will then compare the differences between the actual and the virtual
DOM and will update the actual DOM based on the changes made instead of updating
all the components on the user interface. This selective modification guarantees an
increased performance of our web application and a better experience for the users.

Traditionally, reusing a code when building a web app is not ideal since making changes
on one component will affect all the same components. This is where React gains an
advantage over other web development platforms because it provides reusable
components. Each component has its logic and controls which are easy to manipulate.
React allows web developers to reuse these components in other parts of the code that
have the same functionality. This increases our productivity while developing the web
app and help us maintain the structure of our code.

55

Most JavaScript frameworks follow a multi-directional data flow wherein changes in the
child can affect its parent as well. React, on the other hand, follows a downward data
flow which means the parent is not affected by the changes made to the child. This
helps us to have a more stable code. This feature also allows any member to track all
the changes made to a specific part of the code.

For the web application designed for our project, we decided to switch to pure HTML,
CSS, and JavaScript. Bootstrap was also used as an add-on rather than a framework
by adding one extra line of code to the HTML file. Although Bootstrap provides
predesigned grid systems, tables, and buttons, additional styling and font links were
added to provide users with the best user experience possible.

5.2.4 Wi-Fi Module

For our Wi-Fi module, we decided to use the ESP8266 NodeMCU. Our reason for
choosing this module came down to the cost. We noticed during our research that we
did not need materials that go beyond our required specifications. All we needed was a
part that could perform in the way we outlined. As seen in Table 16, our module does
utilize Wi-Fi as well as the UART, SPI, and I2C protocols mentioned in our requirement
specifications. During our research, we found that this module not only works well with
our microcontroller of choice but that it also makes features like Alexa integration even
easier.

Attribute Description

Operating Voltage 3.3 V

Clock Speed 80 MHz

Flash Memory 4 MB / 64 KB

UART / SPI / I2C 1 / 1 / 1

Wi-Fi Built-In 802.11 b/g/n

Table 16: ESP8266 NodeMCU Technical Specifications

5.2.5 Web Service

For our web service, we originally decided to go with Heroku, but we ended up
switching to Drive to Web. We initially intended on using Heroku as our platform of
choice once again for two reasons, cost, and familiarity. However, given the
developments that occurred while working on the project, we realized that we need to
adjust to a platform that would demonstrate our web application working in a timely
manner. This can be further expanded upon by looking into the switch from the MERN
stack to regular HTML, CSS, and JavaScript. Given the stack format and given that

56

Heroku is known to be useful for it’s compatibility with NodeJS, we realized that after
moving away from NodeJS that Heroku was no longer the top contender. With Drive to
Web we noticed that when working with pure HTML, CSS, and Javascript, that putting
on Google Drive made the process even easier than using the Gitlab continuous
integration/continuous deployment process. The Drive to Web Providers would simply
update their servers so that whenever new code was uploaded. The process is much
simpler and there is no need to continually manage pipelines to see if jobs fail or pass.
Lastly, a reason we decided to switch to Drive to Web is because we recognized that
similar to Heroku that using this platform was also free. All we needed was a Google
account that gave the Drive to Web providers the ability to make our code public on the
internet.

5.2.6 Weather Integration

For weather integration, we have decided to use OpenWeatherMap as our API provider.
From a technical standpoint, it provides all the information we need and goes beyond
that. For Greenie to be successful, we will need minute-by-minute forecasts. This is
important because we do not wish to delay the water process for a long time when it is
not necessary. In the scenario where the forecast is set to rain all day and there has not
been an update in hours, then that could lead to the event where the herbs never get
the water they need. Another reason why we decided to go with OpenWeatherMap is
because of the need for information based on where you are located. With
OpenWeatherMap, we saw that it has thousands of locations spread across the globe
and that one should be able to access their weather information wherever they go. We
found this as an important point to us because one of the key elements we are looking
to include when designing Greenie is that it is portable. When it comes to the other
options we researched, we recognized that both Tomorrow.io and WeatherBit also had
great features to offer. So much so that all 3 options appeared pretty even to us. So,
when it came down to selecting out of the three, we ultimately ended up choosing the
one that we found to be the best representative of Greenie’s mission.

As for the design plan we decided to implement, the outline can be seen in Figure 8. In
this design, we can see that based on the information that is gathered from
OpenWeatherMap, we check to see if it is raining first. If there's no rain then we can
proceed with the process outlined in the interface section after a button is pressed.
Otherwise, if the user is looking to manually or automatically water the herbs remotely,
then they will be notified that it is raining and that it would be better to save water by
keeping the product outside.

57

Figure 8: Weather Check Process

5.2.7 Repository Management

For our repository platform, we originally decided to go with just Gitlab, but we decided
to switch to a combination of Gitlab and Google Drive. We originally wanted to utilize
just Gitlab because it had one of the greatest features to assist in constructing our web
application, the built-in continuous integration/continuous deployment (CI/CD) tool. With
this tool, we were going to place all of our code in a single project and not have to
manually send over updates to our web service. To be more specific, with every commit
(i.e. change) we pushed into our Gitlab project, Gitlab was going to automatically
construct a pipeline and send our code over to our web application within a matter of
minutes. By having that type of feature built into the platform, we would be able to save

58

a tremendous amount of time in the development process. However, given that during
the development we decided to move away from the MERN stack model, we realized
that using the Gitlab CI/CD process became less realistic. So, what we decided to do as
a team was still utilize Gitlab for code storage and Google Drive for the code
deployment. Additionally, given that Drive to Web as a web service was something that
was still new to the team, we didn’t want to rely solely on Google Drive as the platform
for handling the code sharing and storage. Which ultimately goes back to our constraint
with time. We recognized that because we have such a short amount of time to
complete our project, we could not afford to experiment on tools that did not need
experimenting on.

5.3 Architecture
This section discusses the decisions made in hardware architecture. Here, we will
discuss the conclusions that we arrived at while researching which components to
utilize.

5.3.1 LCD

For our project, we have decided to utilize the LCD1602. The main factor behind us
choosing this LCD was that it is our most affordable option since one of our team
members already owns one, helping us maintain our desired budget for the project. The
device is lightweight, small, and inexpensive to use. This LCD is also versatile, being
able to be used for several different purposes, such as Arduino projects, IoT projects,
home animation, and smart building. This LCD is made of two lines of sixteen
characters to make different kinds of numbers, letters, and symbols. This LCD allows
the use of about 160 characters that are produced to be used. The LCD1602 we
acquired has a 6-pin interface (standard), an operating voltage of +5 V or +3.3 V
(typical), and supports the I2C communication protocol and development board.

Design-wise for our LCD, we were planning to allow the user to see a large variety of
data. We would have started with a standard welcome screen that tells the user that
they are using Greenie. We would have then gone on from that screen and have
scrolling text that continually gives updates on the status of herb being watered. The
two most prominent being the data retrieved from the sensors (temperature, humidity,
soil moisture, pH) and the weather. However, this does take into consideration that a
plant was selected and the automatic watering process has been set up. We are also
looking to implement elements such as the number of times watered in day, the amount
of water dispersed in a day, or the water schedule in use. By including elements such as
these into the LCD we think that we are not only giving the user more of a reason to use
the LCD, but we are also making the data analysis process more convenient for the
user. Our rationale for including these elements goes back to the user experience.

Due to time constraints, our wish to include the desired specifications mentioned above
was not completed. We were still able to allow the user to observe data from the
sensors on our LCD screen as well as use voice commands to observe this data. It was

59

important to us to show basic data as, looking at the case where the user just wants to
see the status of their herbs and they do not have the time or desire to load their
electronic device, we think the user should have the ability to do so. Given the world we
live in today is fast paced and there are times users need quick status updates, we think
the LCD will come in handy. Additionally, this setup works well for us as developers
because it allows our LCD to standout as a feature and not just an add-on component.

5.3.2 Microcontroller

For our microcontroller, we have chosen to utilize the Atmel ATmega328P. Our decision
was based on three factors: cost, familiarity, and versatility. In terms of cost, the
ATmega328P is our most affordable option for an MCU since one of our team members
already owns one. This helps us maintain our total budget for the project as low as
possible while still accounting for all of the other components we want to integrate into
our system. In terms of familiarity, the ATmega328P is our best option given that it is
compatible with C/C++ and its libraries. C/C++ is a universal coding language that all
members of this group are comfortable with, making it more feasible to work with the
Atmel MCU.

The ATmega328P is one of the most popular MCU’s that are currently being used in the
market for IoT projects, given that it is a versatile, high-performance, low-power
microcontroller that is Arduino-based and optimized for C/C++ compilers. It is most
commonly utilized in machines to receive, analyze, and output data. The Atmel MCU
allows hardware and software components within a system to connect with the use of
Wi-Fi modules, which is why we plan on utilizing it. Another benefit of choosing this
microcontroller as the “brain” for this system is the fact that it can be programmed using
the popular and easily available Arduino Software IDE. The technical specifications of
the ATmega328P can be observed in Table 17 below. As seen in Table 17, this MCU is
equipped with fourteen pins, which meets our requirement specification of at least ten.
These pins are going to be utilized for the sensors and other hardware components
(refer to Figure 2).

For this project, two ATmega328P chips were utilized to maximize performance and
guarantee the best experience possible for the user.

60

Attribute Description

Microcontroller ATmega328P

Operating Voltage 5 V

Input Voltage 7 - 12 V (recommended) /
6 - 20 V (limit)

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins Current per I/O Pin 40 mA
DC Current for 3.3 V Pin 50 mA

Flash Memory 32 KB (ATmega328P) of which 0.5 KB
used by bootloader

SRAM/EEPROM 2 KB / 1 KB (ATmega328P)

Clock Speed 16 MHz

Length/Width/Weight 68.6 mm / 53.4 mm / 25 g

Table 17: Atmel ATmega328P Technical Specifications

5.3.3 Power Supply

The part that would have been chosen as a second source of power for the system was
the 12V 15Ah Mighty Max Battery while also using the 10Ah power bank as a backup
power source. These two parts were chosen over the others because of the power
needed to make it work at night (refer to Figure 3 and Table 4). Taking into
consideration that in twelve hours there is only about 8000 mAh that is being used in a
scenario where all of the parts in the project are being used without anything being shut
off or taking a break, it can be safe to assume that during the day, the solar bank can be
charged with the solar panels and can be used during a single charge. At night, which
we assume to be about a 12 hour period, since the 20,000 mAh bank is about 2.5 times
more than what is used, we can simply use the 10,000 mAh version of the power bank
for our design because the 15Ah battery can help with any issue that is left. Not only is
the 10,000 mAh version lighter, smaller, and more cost-effective, but it also uses less
voltage. The Mighty Max battery is needed mainly because of the pump; the pump is a
12V device, so we need a sufficiently strong battery to give power to the pump and any
other component that is being used in the project.

As previously mentioned, although we wanted to implement a second source of power
in our system, due to time constraints, we unfortunately had to cut the 10Ah power bank
as a backup power source. We decided to just go with AC/DC and DC/DC power for our
system.

61

5.3.4 Sensors

The soil moisture sensor we are going to utilize is the KeeYees LM393. Soil moisture
sensors with the LM393 chip are widely used in automatic irrigation systems to detect
when it is necessary to activate the water pumping system. It is a simple sensor that
measures soil moisture by varying its conductivity. The KeeYees LM393 is supplied with
a standard measurement board that allows the measurement to be obtained as an
analog value or as a digital output, activated when the humidity exceeds a certain
threshold. The values obtained from the sensor range from 0 submerged in water, to
1023 in the air. The KeeYees LM393 sensor we acquired has the following technical
specifications:

● Chip: LM393 (stable operation)
● Operating Voltage: 3.3 - 5 V
● Power Indicator (RED)
● DO LED (GREEN)
● Mode: Dual output mode (accurate output)

The rain sensor we are going to utilize is the Teyleten Robot LM393. Similar to our soil
moisture sensor, this rain sensor contains an LM393 chip, making it ideal for irrigation
projects like ours. The Teyleten Robot LM393 surface is coated with a nickel plating
treatment, giving the rain sensor a higher conductivity and a longer service life. The
sensor can be used to monitor different kinds of weather conditions and translate the
results into an output signal and analog output. We chose this rain sensor over the other
options we found since it was the most cost-effective, given that it was $5.88 for three
sensors, as opposed to the ACROBOTIC sensor, which was $8.99 for one sensor. The
Teyleten Robot LM393 sensor we acquired has the following technical specifications:

● Chip: LM393 (stable operation)
● Operating Voltage: 3.3 - 5 V
● Output Current: 15 mA
● Item Weight: 9g / 0.32oz

The humidity and temperature sensor we are going to utilize is the DHT-11. This sensor
is a simple, low-cost sensor that uses a digital pin to send information. Because it is
digital, the sensor is more protected against noise. Our system requires a humidity and
temperature sensor that is going to allow the system to read data from the environment
to maintain the plant’s health. The main factor behind us choosing this sensor was that
it is our most affordable option since one of our team members already owns one,
helping us maintain our desired budget for the project. This sensor has the following
technical specifications:

● Power: 3 - 5 V
● Maximum Current: 2.5 mA
● Humidity Readings: 20 - 80% RH
● Temperature Readings: 0 - 50° C
● Accuracy: ±5% RH, ± 2° C

62

The pH sensor we are going to utilize is the GAOHOU PH0-14 Sensor Module. The pH
electrode probe included in this sensor is accurate and reliable, supplying the user with
almost instantaneous readings (less than one minute). This sensor is also versatile,
being able to be used for several different purposes, such as aquariums, hydroponics,
laboratories, etc. We selected the GAOHOU PH0-14 pH sensor because as we were
researching pH sensors, we came across a couple of irrigation projects that utilized the
same one and achieved good results. Compared to the DONGKER pH Sensor Module,
the GAOHOU PH0-14 has a better measuring temperature range and zero point, also
contributing to us choosing the latter sensor. The GAOHOU PH0-14 Sensor Module we
acquired has the following technical specifications:

● Heating voltage: 5 ± 0.2V (AC DC)
● Working current: 5 - 10 mA
● Working temperature: -10 - 50 ℃ (nominal temperature 20 ℃)
● Humidity: 95% RH (nominal humidity 65% RH)
● Module Size: 42 mm × 32 mm × 20 mm
● Output: analog voltage signal output

The sensor that was chosen as the vibration sensor as the piezoelectric sensor was the
HiLetgo 801S vibration sensor module. This sensor module has a LM393 chip and
would provide data towards the MCU to let the user know that water is flowing into the
water. This sensor was chosen because of its cheap price, and because we need one
that is sensitive enough to detect water flowing through the tube. The small size also
allows it to be as unobtrusive as possible. The sensor will be placed at the furthest end
of the tube and the soil meets, and if it is sending a signal this would mean that the
water is in fact going into the tube. The HiLetgo 801S vibration sensor module has the
following technical specifications:

● Operation Voltage: 3 - 5 V
● Working Current: 5 - 10mA
● Operating Temperature: 0 - 70 ℃
● Dimensions: 45mm x 10mm x 15mm
● Interface Type: Analog output signal

As previously mentioned, this sensor was removed from the final design as we were
limited on the features to include in our project due to the time constraints we
experienced.

5.3.5 Relay Module

For our relay module, we have chosen to utilize the HiLetgo 5V Relay Module. This is a
relay module that boasts a stable performance and a strong driving capability. The
HiLetgo 5V relay also contains a “fault-tolerant” design4 where the relay will not operate
if the control line is broken. This makes this relay module ideal for switching power
loads. The relay module’s contacts are designed to switch between loads with
maximum AC and DC levels of 10 A and AC 250 V and DC 30 V respectively. We plan
to leave a margin below the previously mentioned values when we utilize this relay
module to not exceed its limitations. The relay module also includes two LED lights. The

63

green LED is the power indicator and the red LED functions as the relay status
indicator. The HiLetgo 5V Relay Module we plan on utilizing has the following technical
specifications:

● Current Rating: 10 A
● Contact Type: Normally Open, Normally Closed
● Trigger Select: High or low level
● Module Size: 50 mm * 26 mm * 18.5 mm (L * W * H)

The design planned for the relay module can be seen in Figure 9 below. As seen in the
figure, through the use of the HiLetgo 5V Relay Module, our system is going to
automatically turn on and off the system and water pump whenever they are not being
utilized. Our microcontroller, the Atmel ATmega328P, is going to direct the action.

Figure 9: Relay Module Connection

5.3.6 Water Pump

The water pump we decided to utilize is the LEDGLE Mini Submersible Water Pump.
This is an easy-to-install water pump that has both inlet and outlet pumps, which is
something our team prioritized. Having a water pump with both inlet and outlet pumps
gives the user more flexibility, allowing the user to choose if they would like to install the
water pump outside or inside the water container. The LEDGLE water pump is
low-noise, features anti-explosion and no-spark properties, and is IP68 waterproof. This
water pump is also versatile, being able to be used for several different purposes, such
as fish tanks, aquariums, fountains, etc. We chose this water pump because it was the
most cost-effective option, being only $8.99, as opposed to $10.99 and $12.99 from the
other models we viewed. Another factor for us choosing the LEDGLE is that it claims to
have a long lifespan and higher efficiency due to its lower energy consumption. The
LEDGLE Mini Submersible Water Pump we acquired has the following technical
specifications:

● Power Source: Corded Electric
● Inlet/outlet diameter: 8 mm
● Volume: ≦ 40 dB
● Max water temperature: 60 °C

5.3.7 Nutrient Pump

64

The nutrient pump we decided to utilize is the Gikfun 12 V DC Dosing Pump. As
previously mentioned, this nutrient pump boasts a “Snap-in” type design through which
it is easy to remove the pump head, making it very convenient for pump tube
replacement and cleaning. The pump has the following specifications:

● Motor RPM: 5000 RPM
● Operating voltage: 12 V DC
● Flow rate: 0 - 100 ml/min
● Current: 80 mA
● Diameter: 31.7 mm

5.3.8 Voltage Regulator

Taking into consideration that we are trying to use more modern components with our
project, we are going to go with the LM2576. These types of voltage regulators are
better than the older versions because these are step-down switching regulators that
can accurately drive 3 A with great line and load regulation. Many different voltages can
be used, the main ones that our system will be using are the 5 V and the 12 V. This
value is also adjustable from a range of 1.23 V to 37 V. There is a high-efficiency
procedure in these regulators that allows for a large reduction in the amount of heat that
is created. Built into these regulators is a 4% tolerance on the output of the regulator
that also comes with a 10% tolerance on the oscillator frequency. With its high
resistance to temperature and taking into account the tight tolerance that the new
voltage regulators provide compared to the older LM317T, the LM2576 is a much better
voltage regulator. The regulators have some important technical specifications that are
important to keep track of when looking into how to use these:

● 52 kHz frequency oscillator
● Dimensions of 10.16 mm x 8.51 mm
● 3 A output current
● Maximum operating temperature of 150 °C

5.3.9 Smart Speaker

For our smart speaker, we have chosen to utilize the Amazon Echo Dot. Our decision
was based on three factors: cost, familiarity, and versatility. In terms of cost, the Echo
Dot is our most affordable option for a smart speaker since one of our team members
already owns one. This helps us maintain our total budget for the project as low as
possible while still accounting for all of the other components we want to integrate into
our system. The Echo Dot is the smart speaker that is most familiar to us since we have
all interacted with one. Given its popularity and wide-range accessibility, it has become
a product that is commonly found in homes today. In terms of versatility, the Echo Dot is
our best option given that it is compatible with the largest number of technology devices.
Given that the Echo Dot can also be integrated with Zigbee, it is the best choice for our
project. This will allow us to seamlessly integrate our wireless IoT networks into
Greenie.

65

As seen in Figure 10, the Echo Dot is a crucial component of our project. Through the
use of the speaker’s smart assistant, Alexa, the user is going to be able to command
different actions to be performed and listen to their results. The user is also going to be
able to listen to stored data within our cloud. Once the user calls Alexa, they will be able
to activate the sensors, the water pump, and the weather prediction application.
Through the sensors, the user can ask to listen to the current soil moisture, pH,
humidity, and temperature levels. With the combined use of the sensors and the
weather prediction application, the user is going to be able to ask and listen to whether
the plant has been watered by rain or not and if it will be in the predictable future. Lastly,
through the activation of the water pump, the user is going to be able to ask the system
to either water the plant immediately or to set up a scheduled time to do so. The user
can also ask to listen to whether the plant has been watered that day or not. In Figure
10 below, the process explained in this paragraph can be observed in a flowchart
manner, making it easier for the reader and/or user to follow.

Figure 10: Alexa’s Capabilities within Greenie

Some of the previously mentioned features regarding Alexa integration were removed
from the final design as we were limited on the features to include in our project due to
the time constraints we experienced. For the final design, we were able to accomplish
the following. Once the user calls Alexa, they can activate the sensors and the pumps.
Through the sensors, the user can command Alexa to show the current soil moisture,

66

pH, rain condition, humidity, and temperature levels on the LCD screen. The user can
also command Alexa to either turn on or off the water pump. The commands previously
mentioned belong to the system, being three unique commands to Greenie. These
commands can be voiced by the user at any point as long as both the system and the
smart speaker are connected to the same Wi-Fi network. The three unique commands
included are, explicitly, “Alexa, turn on the water pump,” “Alexa, turn off the water
pump,” and “Alexa, turn on X display.” The “X” in “X sensor” represents any of the four
different types of sensors contained in the system.
5.3.10 Solenoid Valve

The Solenoid valve that we will be using for the project is the Digiten DC Water Solenoid
Valve. This Solenoid Valve was chosen mostly because it is made from plastic, which
would ensure that the pH of the water will not change as drastically if something like
brass was used instead. It seems as though the minerals have a tendency to mix in with
the water after having used it for a long period of time, so to ensure that this does not
happen, plastic would be a better material to use as the valve part of the solenoid valve.
To use plastic, finding one that would have a high tolerance to temperature is needed
since having the plastic deform would cause problems to the flow of the water coming
through the tube. The valve part has a high tolerance for temperature making it an ideal
choice for use in high temperature environments, it will ensure that this solenoid valve
stays the way it is.

It was also desirable to find one that would fit the tubing we acquired, so the ¼” hole is a
perfect size to use as a solenoid valve. This will allow the water pressure to stay more
consistent, since using a 1” hole will make the stream be much wider and will not allow
enough pressure to flow through the tube. The next reason was because out of the
different solenoid valves, this one was rather inexpensive at about $7.50 per valve
which is great since there will be multiple herbs being used in the project. The plan is to
have ten different herbs in Greenie, so having the tight tubing makes it so that water can
flow well throughout the system without having much trouble to make this happen. The
low cost that is associated with these valves allows one to test if the part will be useful
or not. This valve also operates in DC, which is in line with the rest of the components in
the projects.

When we were preparing to build our system, the solenoid valve we desired was out of
stock. We replaced the Digiten DC Water Solenoid Valve with the HFS 12 V DC Electric
Solenoid Valve. It is a normally closed valve that is composed of an electromagnetic
coil, which is energized to generate a magnetic field that controls the input and output
ports. The solenoid valve has a flow aperture of 2.5 mm and a power of 8 W.

5.4 Parts Acquired
Below, the parts that we have selected for our prototype and that we have received so
far can be observed. Images of all the components have been combined in a collage
manner titled Figure 11: Parts Purchased. Given the current pandemic, meeting in
person has become a bit difficult for our team members so we decided to take individual

67

pictures of our components instead of an image with all of them together. The
components were divided among us group members, making each of us responsible for
specific parts, mostly for testing the preliminary conditions of our components. In Table
18, a number label for each component has been created along with the name of the
part in order to be more easily read.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Figure 11: Parts Purchased

68

Number Label Part Name

1 HiLetgo ESP8266 Development Board

2 Miuzei Board with Atmel ATmega328P

3 LCD1602 Module (with Pin header)

4 KeeYees LM393 Soil Moisture Sensor

5 Teyleten Robot LM393 Rain Sensor

6 DHT-11 Temperature and Humidity
Sensor

7 Solar Power Bank 10,000mAh

8 Bojack Voltage Regulator Assortment Kit

9 Quickun Pure Silicone Tubing

10 LEDGLE Mini Submersible Water Pump

11 PH0-14 Sensor Module + PH Electrode
Probe

12 2 5V One Channel Relay Modules

13 Gikfun 3m Silicone Tubing 2mm

14 Gikfun 12V DC Dosing Pump

15 HFS 12V DC Solenoid Valve

Table 18: Number Label and Part Name of Components Acquired

5.5 Potential Product Design
Throughout the process of researching our project, several potential designs were
considered for Greenie. The design of our product is important given that we must
understand the architecture of our product to better meet the needs of users. The
prospective design of Greenie takes into consideration aesthetics as well as
small-garden efficiency. In Figure 12, the potential front view of our finalized product
can be observed. Greenie will consist of three different sections enclosed in one
rectangular container. These three different sections are the “Herb and Soil”
encasement, located at the top of the container, the “Electronics,” located on the left
side, and the “Water” enclosure, located on the rightmost side of the container.

69

Figure 12: Potential Front View of Product

As we built our system and integrated more features into our design, such as a nutrient
pump, our product’s design had to change. As of building, Greenie consists of four
different sections enclosed in two rectangular containers. These four different sections
are the “Herb and Soil” and “Water” encasements, located on the top container, and the
“Electronics” and “Nutrients” encasements, located on the bottom container. In Figure
13, the final front view design for Greenie can be observed.

Figure 13: Final Front View of Product

70

5.5.1 Herb and Soil Compartment

As seen in Figure 12, the “Herb and Soil” encasement is going to house the user’s
selected herb out of the 10 supported by our software. The user is going to be able to fill
the case with their selected soil type, allowing the user to personalize. All of our
sensors, as well as the outlet tubing of our water pump, are going to be located in this
section.

Our sensors consist of three soil moisture sensors, one rain sensor, one pH sensor, and
a humidity and temperature sensor. In Figure 14, the potential top view of our planter
can be observed. The three soil moisture sensors are going to be inserted into the soil
and placed as near the plant as possible, to ensure that the soil around it is fitting for its
growth and health. The pH sensor is going to be inserted into the soil as well and
located close to the plant and the water tubing to make sure that the pH levels from the
soil and water are ideal. The rain sensor is also going to be placed near the plant as our
system must inform the user if their herb was properly watered by the rain if placed
outside. Lastly, our humidity and temperature sensor is going to be placed in the
enclosure as well. Given that this sensor measures the humidity and temperature of the
room, it can be placed at a distance from the herb. Space for the outlet water tubing is
also taken into consideration. The water tubing is placed on the rightmost side of the
“Herb and Soil” compartment since this placement ensures that the tubing can reach
from the “Water” compartment located below.

Figure 14: Potential Top View of Planter

71

Due to changes made in the design, two of the soil moisture sensors had to be cut. This
resulted in our system only having one soil moisture sensor instead of three, as shown
in Figure 14. This change was made since more space was needed on our PCB to fit
the pins necessary for new additions, such as our nutrient pump and the relay modules
required for it to function with our voice commands. The pH sensor was also moved
from this section to the “Water” compartment, to ensure that the pH of the water
supplied to the herb was appropriate.

5.5.2 Electronics Compartment

In the “Electronics” section, the parts and components required for our project to
function are going to be placed. In this compartment, we are going to be placing our
PCB, our microcontroller, our Wi-Fi module, our relay modules, our voltage regulators,
and any other common electronic parts needed, such as resistors, capacitors, inductors,
etc. Our LCD screen, external power supply, and smart speaker are going to be located
outside, but close to, our enclosure so that the user can easily access these parts when
needed.

For our sensors and power adapter, we are going to be drilling holes into the
compartment to make sure that the cables required for these components fit properly
and can reach their specified areas. Our sensors must be connected using long enough
wires that will allow the sensors to be planted in the “Herb and Soil” section above. The
same approach must be applied to our power adaptor as it also needs to reach the wall
outlet specified by the user. Special care must also be taken for our LCD screen, as it
must be placed outside for the user to be able to read the data being shown on it while
not letting it get wet. We made accommodations for it once we started constructing this
design.

72

Figure 15: Inside View of “Electronics” Compartment

In Figure 15 above, the inside view of the “Electronics” compartment can be observed.
As previously mentioned, all of our electronics except for our smart speaker and LCD
screen are going to be placed inside this enclosure. The LCD will be connected to our
microcontroller as seen in Figure 15. It will be mounted onto the front of the
compartment by drilling holes into the enclosure. The wires necessary for connection
are going to be passed through the holes. To ensure that the LCD screen stays in place,
we are going to glue it onto the plastic enclosure. The cables needed for our sensors
are going to be placed inside a hollow PVC pipe, represented by a gray rectangle in our
Inside View Figure. This is going to be done for neatness and aesthetic purposes, as it
would not be ideal for the wiring to be convoluted.

Given the changes made in our design as we built it, extra features such as drilling
holes for wires to go through enclosures were not necessary. Instead, our enclosure
included handles that were also used as access points, making it easier for the
components on the bottom to reach the compartments at the top.

5.5.3 Water Compartment

In the “Water” encasement, the water required to irrigate the herb is going to be
contained. In this compartment, we are going to place our inlet/outlet water pump. To
make sure that the herb is properly watered, we are going to be drilling a hole the size
of our water tubing on the upper, rightmost side of the container. The hole will be drilled
in the upper, rightmost part of the planter to allow our water tubing to reach the herb

73

located above and allow as much water as possible to be contained. This is a concern
as it would not be ideal for the user to constantly concern themselves with refilling their
water source. To allow access to the electric components and water pump located in the
“Electronics” and “Water” compartments respectively, we plan on incorporating access
doors on the backside of this encasement.

Figure 16: Inside View of “Water” Compartment

In Figure 16 above, the inside view of the “Water” compartment can be observed. As
previously mentioned, the drainage holes are going to be drilled in the plastic dividing
the “Herb and Soil” and the “Water” compartments. The water pump along with its inlet
and outlet water tubings can be seen in Figure 16 as well, with the water pump being
the black box and the tubes being the grey rectangles. Looking at the upper right part of
the container, it can be observed that the outlet water tube is going to leave the
compartment through a dilled area to reach the herb supposed to be watered above. To
ensure that the tube stays in place, small holes are going to be drilled along the tube’s
path and zip ties are going to be utilized to hook the tubing onto the product.

Given the changes made in our design as we built it, drilling was not necessary, as the
“Water” compartment was moved to the top container, making it easier for the
components to reach the herb.The solenoid valve included in our system is not
submergible so it was placed outside of the compartment but still connected to the
water pump tubing.

5.5.3.1 Water Drainage

74

Watering is a crucial step in growing and maintaining a plant. Therefore, being
knowledgeable in watering and water drainage is important for anyone that wishes to
create a garden, no matter the size or environment it is in. When watering a plant,
occasionally the water can be puddled in the upper part of the soil, something that
usually happens since the substrate cannot evacuate the excess water. Whenever this
occurs, the roots suffocate in the puddled water, resulting in the roots becoming rotted.
This is a grave condition that can easily kill plants. To prevent this from happening, it is
important to facilitate water drainage.

One of the biggest problems that can arise when planting is a lack of holes at the
bottom of the planter. Holes allow water to easily drain, allowing air to reach the roots.
The most important thing is that the holes in the base of the container are kept free of
obstruction, as this would result in water not being able to properly flow outward. To
prevent rotting from occurring to the user’s plant, we are going to be drilling small holes
on the bottom of our “Herb and Soil” encasement. These tiny holes are going to be
located on the rightmost part of the enclosure, to ensure that the water flows from the
soil to the water encasement and not the electronics. Given that the drained water will
flow back into the “Water” enclosure, this valuable resource will be reused.

Due to time constraints, we were not able to implement this idea. This was one of our
priorities if we had more time to implement more functions.

5.5.3.2 Water Detection

Water detection is a crucial factor that must be addressed for our product. If proper
water detection is not set up, the user is going to constantly have to open the “Water”
compartment through the access door being placed in the back of the enclosure. This
action can become tedious which is something we want to avoid, given that we are
designing a smart irrigation system. Poor water detection can not only become a
monotonous activity for the user but it can also be dangerous to the health of the plants.
If the user cannot observe the water levels, they might forget to refill, leading to the
health of the plants being compromised due to lack of watering.

To avoid these issues, we are planning on designing the “Water” compartment with the
use of clear hard plastic. This is going to allow the user to visualize how much water is
currently stored in the enclosure. The use of clear plastic is also going to allow the user
to not concern themselves with refilling the container until it is needed. Given that
separate pieces of plastic are going to be glued together to create this compartment, the
use of waterproof glue and clear silicone is crucial since we do not want water leaks.

5.5.3.3 Water pH Maintenance

Our pH sensor is going to determine what pH the soil of the plants are. We will also
provide the users with a way to change the pH if there is an issue with the level of the
pH that the soil is at. Many different materials exist to raise or lower the pH of the soil,

75

by mixing these with the water we can allow the user to change the pH should the user
have need of it.

There will be a separation in the existing water container that contains water mixed with
aluminum sulfate. Aluminum sulfate allows us to lower the pH of the soil when it is
mixed with the soil. It is recommended that you need about 6/10 of a pound of
aluminum sulfate per 0.5 drop in pH in every 10 square feet of soil.

To raise the pH of the water, it is recommended to use potassium carbonate mixed in
with water. We will separate the water in the same way and have a mixture of the two so
that the pH of the soil can be raised. You can use about one tablespoon per gallon of
water.

5.5.4 Build Material

As previously mentioned in our Project Specifications (refer to section 2.4.3
Specifications and Table 1), our planter prototype is not going to exceed the stated
numbers for dimension and weight. Greenie is going to be less than or equal to a
dimension of 20” x 20” x 20” and less than or equal to a weight of 15 pounds. To not
exceed our previously stated specifications, we are going to utilize a lightweight but
durable material to build the enclosure.

When investigating which build material we should utilize for our product, we came
across several different options. The possible build materials we found were terracotta,
wood, metal, plastic, fiberglass, concrete, and fabric. Each one is briefly discussed
below by stating their advantages and disadvantages.

Terracotta Containers
Terracotta containers are planters made with clay. These are characteristic because of
their classic warm brown color, which has maintained its popularity throughout the
years. Terracotta planters are durable as long as they are being taken good care of.
Although they are a staple in almost every garden, terracotta containers are extremely
heavy, especially when filled with soil. Not only are they not portable, but also can break
easily if they are dropped.

Wood Containers
Wood containers are one of the easiest planter choices as they can be cut and modeled
after any shape and form, allowing users to custom make their pots. If quality wood is
utilized and is taken proper care of, wood planters can last for a long time.
Unfortunately, wood containers are quite fragile as the wood needs to be taken care of
constantly by either regularly coating the wood with sealant or making sure that the soil
is always dry. If not, the wood can easily decay and possibly even rot.

Metal Containers
Metal containers are often used today as pots as they can be quite stylish. Metal
planters allow users to get creative with their pots as they can be easily painted over

76

with either a brush or spray. Metal containers are widely available as well since any
metal container can become a pot as long as it is properly repurposed. Although they
can easily be found, metal planters are usually not recommended for outdoor use in
many hot climates since the metal can become very warm. The high temperature
surrounding the plant can dry the soil quickly, requiring the user to constantly water the
plant, which may result in damage.

Plastic Containers
Plastic containers are middle tier when it comes to aesthetics as they can either look
nice or poorly made. Plastic pots are the most practical of our options since similar to
metal, plastic containers can be found anywhere and they can be easily repurposed.
Plastic pots can be fun to own as they are commonly used for many DIY projects.
Plastic planters can come in any shape, size, and color, and are also extremely
lightweight and resistant. They are also one of the cheapest options discussed. Care
must be taken when using plastic pointers outside as the sun may gravely damage
them, leading to cracks in the container.

Fiberglass Containers
Fiberglass containers are one of the most all-around flexible pots as fiberglass is
extremely adaptable. Fiberglass planters can be made to look like terracotta, wood, and
even concrete pots. This is due to fiberglass containers being produced with fiberglass
fibers that are easily shaped into different things. Fiberglass planters are just as tin and
light as their plastic competitors. Unfortunately, these containers tend to be on the
pricier side and are easily worn down when exposed to severe conditions.

Concrete Containers
Concrete containers are top tier in terms of aesthetics since concrete is a very desirable
material for decorating. Concrete is an extremely durable material and given its look, it
is used in many houses today to create both outdoor and indoor gardens. Although
concrete pots are very popular as of late, they are exceptionally heavy, making them not
an ideal build material for portable planters.

Fabric Containers
Fabric containers are a new trend in the gardening world. These fabric pots claim to be
beneficial to plants as they provide breathability for their roots, preventing them from
rotting due to the accumulation of water in their soil. Given that these planters are made
of fabric, they are thin, lightweight, and durable. Many fabric containers are being used
today in the form of laundry basket lookalikes. These are used to house big plants
and/or small indoor trees.

As of now, the best material for the build of our product is hard plastic. Plastic is one of
the most practical materials as it is lightweight, durable, and can take on any shape,
size, and color. In terms of price and availability, this material is inexpensive and easily
available in stores.

77

The containers selected include built-in, easy-grip side handles that make it easy for the
user to transport from indoor or outdoor space. The handles are also being used as
access points, making it easier for the components on the bottom to reach the
compartments at the top. The bins are clear, making it ideal for the user, as they can
constantly observe the water and nutrient levels.
5.6 Potential Scalability
As previously stated in the scalability constraints section of this report (refer to section
3.1.11 Scale and Time), the scale of our project has been minimized for individual use.
However, Greenie is being made with the idea that it can be expanded, and if chosen to,
it can be set up to irrigate large amounts of land for farmers, optimizing irrigation
through the use of our sensors and software. Not only would it be able to irrigate
agriculture fields, but also any other green areas such as parks and golf courses.

To show how our product can be enlarged, we are going to utilize the golf course
expansion design. Given that Greenie is incorporated with IoT technology, it could
support the high costs of maintaining green areas and it could ensure optimal green
area conditions throughout every season. In terms of our hardware, many of our
components can be purchased in wireless versions that can communicate through
technologies such as Bluetooth. The soil moisture sensors included can be buried a
certain distance below ground in different zones of the course to ensure that soil
moisture is properly and evenly kept throughout the field. The same approach can be
utilized for rain and pH sensors. A vast number of humidity and temperature sensors
can be supported to make certain that the air surrounding the field is to the needs of the
green areas. The data acquired from these sensors can be wirelessly sent via Bluetooth
to local and/or central stations dedicated to the upkeep of courses. Most golf courses
utilize recycled water to irrigate the entire area but even so, this water expenditure
accounts for an estimated 312,000 gallons per day12. This is one of the several reasons
why golf courses benefit from the use of smart irrigation since this would positively
impact factors such as resource wasting.

A second area where our project could be expanded is in the amount of produce
supported. For our project, we chose to only provide support for 10 herbs in our
database. This is due to scalability and cost constraints as well as microcontroller
storage constraints. If a microcontroller with bigger storage was utilized, the database
within our system could be expanded to support more herbs or even more types of
products, for instance, fruits, vegetables, and roots. If desired, support for flowers could
also be included.

Finally, Greenie could also be expanded in its reachability. At the moment, our product
is only accessible through the use of a web application. However, if desired, our project
could be enlarged to provide support through a mobile application as well. Similar to the
web app, the mobile app can be accessed by any mobile device, whether it is a phone
or tablet. The mobile app would have to be downloaded through an application store as
opposed to a web app, which can be accessed by simply inputting a link onto a web
server’s search bar.

78

6. Prototype
In this section, we will be discussing the preliminary model of our product. We will use
our prototype to test that our electrical components and software programming operate
as they should. Given that our project is still in development, this section is not as
advanced as it will be at the end of this course. First, we will discuss the facilities and
equipment needed to test our product and its components. Then, we will talk about our
Printed Circuit Board (PCB), the software we have decided to utilize to build it, the
beginning process for the design, the layout, and the manufacturers that we will look
into to construct our PCB. After, we will discuss the build of our product, meaning how
the hardware components will be connected and how they will interact. We will do the
same for our software components as well.

6.1 Facilities and Equipment
To create a working prototype for Greenie, we needed to ensure we had the proper
facilities and equipment to test our materials. Concerning location, at the bare minimum,
we needed to have an open area where all of our materials can be placed and
constructed. Given our goal was to make our project as portable as possible, there were
several places we could use. One example was taking a large table set up on an
outdoor porch where we would place all of our materials and begin working. A benefit to
utilizing a location like this was that it also allowed us to test the weather integration
portion of the project. Another example was indoors within an apartment with a similar
table setup. A benefit to utilizing a location like this was that it allows us to avoid the
possibility of our materials getting wet from the rain. Given that we live in Florida and at
the time of writing this report we’re in the thunderstorm season, avoiding rain can prove
to be crucial.

As for equipment, there are some key materials that we needed to ensure our product
was working properly. First, a breadboard. With a breadboard, we would be able to
construct samples of our circuit without having to have a fully constructed printed circuit
board ready. Additionally, with the number of electrical components we have for our
product, we were going to need at least a medium-sized board. Second, we needed a
digital multimeter. With a digital multimeter, we would be able to verify that we are
getting the necessary output voltages and currents outlined for our requirement
specifications. This is important because in the case where we did not have enough
power to supply our components, we had to re-evaluate not only our specifications but
also our battery selection. Third, we needed a soldering iron. With a soldering iron, we
would be able to attach several pieces to our printed circuit board. This was important
because to have a polished final product, we needed to have several parts integrated
into our design. Materials such as the breadboard were purely made for testing and
were not viewed as part of the final design. Lastly, we needed an oscilloscope. With an
oscilloscope, we would be able to get a visual representation to verify that our

79

specifications are being met. This was important because it also acted as a backup to
our readings from the digital multimeter. In the case where we just used one of these
tools, there was a possibility that an error could be overlooked.

On the other hand, we also took advantage of the location and materials in UCF’s
senior design laboratory. The senior design lab is located in Engineering building 1,
room 456 on the UCF campus. This location was uniquely beneficial for our group
because it was a familiar place that all of us easily have access to. Additionally, it was
beneficial to us because once again it gave us the advantage of avoiding the rain.
Materials-wise, the senior design lab gave us everything we needed and more.
Provided by the UCF Electrical and Computer Engineering department’s web page on
the senior design lab, the following are some of the materials included in the lab:

● Tektronix Oscilloscopes
● Tektronix Dual Arbitrary Function Generators
● Tektronix DMM 4050 Digital Multimeters
● Keithley 2230-30-1 Triple-Channel Power Supplies
● Dell Precision 3420 Computers
● SMD Rework Station
● Soldering and Desoldering Stations
● Digital Microscope Inspection Station

Overall, we decided not to give ourselves unnecessary limits on facilities and equipment
during the prototype phase of our project. The locations mentioned above were just a
few of many places we thought about going to. What was most important to us was that
we had an ideal environment to test our prototype. In sections 7.1.1 and 7.2.1, we
discuss more on the hardware and software test environments respectively.

6.2 Printed Circuit Board (PCB)
The Printed Circuit Board, or PCB, is the core of the vast majority of technology
products today. PCBs are found in everyday items such as cellphones, computers, and
car alarms. Our PCB is going to support and connect our electronic components, with
copper paths or tracks, so that our circuits, and therefore, our product, work as desired.
Before building our PCB using software, we are going to model it using a breadboard.
Building our prototype on a breadboard first is extremely beneficial as breadboards are
not permanent like PCBs, meaning that on a breadboard, we can move parts around
and change circuits as needed. We are going to utilize our breadboard for investigation
purposes and once our final design is complete, we will be moving on to creating the
PCB.

6.2.1 Software Utilized

To successfully create the PCB that we need for our project we must utilize PCB
designing software. When investigating which designing software would work best for
our project, we came across several different options. The top three programs we

80

considered were Autodesk Eagle, DesignSpark PCB, and KiCAD. Below, we will
discuss all three options.

Autodesk Eagle
Autodesk Eagle is the most popular PCB designing software. It contains a schematic
editor, which allows users to design circuit diagrams, configure different components,
and perform routing on circuit boards. Eagle also includes one of the most substantial
libraries on any PCB designing software3. The program is not entirely free to use, but
students and hobbyists can download the limited version for free. Autodesk Eagle is
compatible with Windows, Mac, and Linux, and it is recommended for all users, whether
they are beginner, intermediate, or advanced.

DesignSpark PCB
DesignSpark PCB is a free-to-use PCB designing software. It contains an easy-to-use
interface that allows users to perform circuit capture as well as automatic arrangement
for circuit boards and layouts3. DesignSpark can also perform 3D modeling of PCBs.
DesignSpark PCB is only compatible with Windows and it is recommended for
intermediate and advanced users only.

KiCAD
KiCAD is a cross-platform, free-to-use PCB designing software. It contains a circuit
editor that allows users to easily create and build their designs. The program allows up
to thirty-two layers of copper to be used and similarly to DesignSpark PCB, can also
perform 3D modeling of PCBs3. KiCAD is compatible with Windows, Mac, and Linux,
and it is recommended for intermediate and advanced users only.

For our project, we ended up going with Autodesk Eagle. The main reason why we have
chosen this software is its familiarity. All team members have utilized Eagle before for
one of our previous courses, Junior Design. In the course, we were introduced to the
software by having to create and build a PCB for our final project.

6.2.2 Design

Given that we have chosen to utilize Autodesk Eagle to create and build our PCB, the
schematic must be designed using the software’s environment. To successfully create
our PCB using Autodesk Eagle, we are going to follow the following steps:
understanding which components need to be in the design and how they need to be
connected, create the PCB’s schematic by placing parts on a blank template, insert
drilling holes in the schematic, add routing to traces, add labels to components in the
schematic, and print the internal layers.

A few design factors have to be considered when constructing a PCB. In our case, we
need to be mindful of the number of layers, the size, and the components that will be
placed, as these are all factors that decide the price of constructing a PCB. As of the
moment, it is assumed that two layers will be needed to be successfully printed. These
two layers are the upper plane and the ground plane. In terms of size, our PCB needs to

81

be as small as possible while still containing all of the components that we need for our
product. For the components, most of them were chosen to be through-hole since it
would be easier to control what was happening when soldering ourselves, some pieces
like the voltage regulator were left to be soldered by the company we sent the
schematic to.

6.2.3 Layout

For the PCB, the parts will be placed around initially based on being able to connect to
each of the parts as closely as they can. We will try to make this part as clean as
possible in order to make it so that figuring out what ports and wires lead to where is
more easily visible.

In Figure 17, the connections of the pins of two Atmega328Ps to the various
components in the device can be observed. There is a section for the pin headers that
go to various sensors our project needs, along with some leds to show the power is
flowing correctly. There is also an area that has some things like the voltage regulator,
the oscillators, and the usb. In Autodesk Eagle, there is an autoroute tool that can be
used that is helpful as a starting point and so that it can be a guide to how the board
should be routed. By cutting down the length of traces and the number of intercepts, we
can reduce electromagnetic interference and reduce the cost of the board.

Figure 17: Printed Circuit Board (PCB)

82

The second iteration of the PCB that shows the top layer wiring in red and the bottom
layer wiring in blue can be seen from Figure 18 below. This positioning aims to
decrease the total size of the board so that costs can also be reduced, we got it down to
67.31 x 69.85 mm. We took care to make sure no traces overlapped on the two layers
and reduce the amount of distance all traces travel.

Figure 18: Printed Circuit Board (PCB)

For the design, the engineers wanted to switch to the Atmega2560 due to the larger
quantity of pins, however, since this piece has been out of stock, two Atmega328Ps
were chosen instead. As seen in Figure 18, the PCB board layout incorporates support
for the LCD, all sensors included in the system, the relay module, the water and nutrient
pumps, the Wi-Fi module, a port for the usb, a DC jack and the voltage regulator.

83

Figure 19: PCB with wiring to sensors

84

As seen above, Figure 19 shows the physical version of the PCB. All of the parts were
successfully placed and worked as expected with the exception of the LCD that had
trouble connecting and sending data to the PCB.

6.2.4 Manufacturing

The last step of creating the PCB that we require for our product is manufacturing it. We
must send our design to a company that will convert the software board to a physical
board. Given the current pandemic, factors such as product availability, manufacturing,
and shipping times have been severely affected. Taking these into consideration, we
must choose a vendor that is preferably within the United States to reduce shipping
costs and time. Once our PCB is ready to be printed, we will contact different PCB
manufacturers to acquire information such as manufacturing quotes, shipping costs,
and estimated delivery times. Although our goal is to keep the cost of the PCB as low as
possible, we are willing to make sacrifices for the product if these affect the efficiency
and reliability of the board.

6.2.4.1 Potential Vendors

When investigating which potential vendors would work best for our project, we came
across a few different options. The top three vendors we are currently considering for
the manufacturing of our PCB are Advanced Circuits, JLCPCB, and PCBWay.

Advanced Circuits
Advanced Circuits is the third largest printed circuit board manufacturer in the United
States7. All orders receive a free engineering file review before going to fabrication; this
prevents ending up with unusable boards. Also, they hold the best on-time shipping
record, which enables good planning. Advanced Circuits offers 24-hour computer-aided
manufacturing (CAM) engineer service, ensuring any questions about the product are
answered. They do not have bundle purchase requirements, so we only buy what is
needed. There is no tooling charge for standard specifications as well as no repeated
charge for orders with custom specifications.

JLCPCB
JLCPCB (Shenzhen JIALICHUANG Electronic Technology Development Co., Ltd.) is an
economic circuit board manufacturer while still offering high-quality PCB technology
suitable for industrial standards. JLCPCB is the biggest PCB manufacturer in China,
specializing in the fast creation of PCBs. They also specialize in the production of small
PCB batches. Similar to Advanced Circuits, they offer a 99.97% on-time delivery rate
and 24/7 online service10. Also, they have a 0.23% quality complaint rate. JLCPCB
features an “easy-to-use” online ordering system.

PCBWay
PCBWay has more than a decade of experience in the field of PCB creating and
manufacturing11. PCBWay offers services for PCB prototyping, SMD/SMT (solder paste)
stencil, and PCB assembly. This manufacturer provides the best value, manufacturer

85

direct pricing, low minimums, and quality customer service. Similar to both competitors
mentioned above, PCBWay offers a high on-time delivery rate of 99%. Even though
they are located in China, PCBWay provides fast 24 hour turnarounds.

The vendor that was eventually chosen was JLCPCB. The parts were completed quickly
and effectively, there were no major defects found on the boards.

6.3 Build
Here, we will discuss the build of our product, meaning how all of the components will
be connected and how they will interact. It is important to understand the build of the
project so that it can be implemented properly. Proper implementation of our product is
crucial, as it should work perfectly once it is presented.

6.3.1 Hardware

The microcontroller unit is the component that is going to be driving every piece of the
project. A steady supply of power is needed so that the MCU can be on at all times to
give and take information while doing all the necessary tasks of keeping the plants
watered and healthy. In this project, we have various sensors that will be collecting
information and feeding it to the microcontroller. The various sensors are humidity and
temperature, pH, rain, and soil. Information like this will be collected so that it can then
be displayed on the LCD screen. The next component is the water pump, this piece will
ensure that all the plants get the necessary amount of water to them. Finally, the voltage
regulators will help make sure that each of these pieces is getting the right amount of
voltage.

6.3.2 Component Mounting

The PCB is a very important part of our project, and when talking about this piece, we
need to know how the PCB and its components are going to be held in place. There are
three different methods to keeping the components in a safe and secured place, they
are by standard mounting bosses, custom mounting standoffs, and slide-in mounting
rails.

Standard Mounting Bosses
In this method, components are pre-formed along with being the easiest and quickest
methods of mounting. This method makes it so that there are protrusions located along
with the PCB, these holes have threading so that the mounting boss screws can be
screwed until they are secured. They are about ¼ of an inch tall which makes them
desirable because of how little space they take up, though there is a way to decrease
this size further if need be.

Custom Mounting Standoffs

86

This is the second method of mounting. This method is for when you need specific
locations for the mounting bosses, however, doing this would raise the price by a
substantial amount for the project. The cheaper alternatives to this method are making
plastic standoffs that can be used with the circuit board. There is an adhesive that
allows the standoff to stay in place securely. This can be done where there would be no
screws used, allowing for a smaller size.

Slide-In Mounting Rails
This is the final mounting method that could be used. On the inside of the enclosure,
rails exist so that the circuit board can slide into them. This is mostly used when having
multiple circuit boards and is easier since there are no screws involved.

The method that our group ultimately used is just the very standard surface mounting
and through hole mounting method. The surface mounting was done by hand by two of
the group members while the surface mounting was left to JLCPCB because of issues
that arose when surface mounting on the first iteration.

6.3.3 Arduino Integrated Development Environment

The software that we are utilizing for most of the hardware components is the Arduino
Integrated Development Environment. The Arduino IDE is an open-source programming
software that allows users to write code in C or C++ and upload it to any Arduino
compatible board. It is compatible with Windows, macOS, and Linux.

The Arduino IDE has several features which led our group to choose this to program our
hardware components. One of its features is the board module options which allows
users to choose which board they are using for their project. When another board is
added or when modifications are made, the port data is automatically updated. Another
feature of the Arduino IDE is direct sketching, wherein users can do sketches within the
text editor. The text editor provides users an interactive experience through its additional
features. It also lets users decide whether to document their project or not. This feature
will help track our progress and all the modifications that are made. Even if this IDE is
specifically intended for Arduino boards, it can support boards from other developers as
well with the help of a third-party hardware. The Arduino IDE contains hundreds of
libraries that can be used by users. This will allow our software developers to save time
in programming our system’s hardware components. Our system’s microcontroller,
sensors (soil moisture, rain, temperature and humidity, and pH), LCD screen, and relay
module will be programmed using the Arduino IDE.

6.3.4 Software

6.3.4.1 Software Connecting to Hardware Overview

For connecting the software to the hardware, we used a combination of the Arduino
IDE, the Atmega328P, and the ESP8266 to communicate with the other elements of the

87

web application. As expected with any web application there are buttons throughout the
application. With each button click, we triggered events to reach the hardware. For
instance, for turning on the water pump, we took a button click on the web application
and sent that to the Wifi Module and from there to the microcontroller. Then from the
microcontroller we went on to control the physical components and triggered it to turn
on or off however we like. By setting up the connection in this fashion, we made the
manual process as simple as possible for the user. In the case of automatic watering,
which was what we recommended to our users, the connection is similar but a bit more
controlled on the developer’s end. As seen in Figure 20, for selecting automatic
watering, additional checks needed to be performed to get something like the water
pump to turn on. If the soil moisture level is already too high or rain is being detected
from the rain sensor, then a notification will be sent to the user and the water pump will
not turn on. In the final design, the only check that ended up being utilized was the soil
moisture check, but for the sake of seeing the original intent, the figure can be
observed.

As for the ESP8266, another way it came into play was with the Alexa Integration. Using
the same structure with buttons throughout the application we caused an event to
trigger that reached the Wi-Fi module and eventually the microcontroller. Then from the
microcontroller we controlled the relay module attached to the water pump. Of course,
the only substitution that needed to be made was a button click for saying the phrase
“Alexa. Turn on the water pump.”

88

Figure 20: Automatic Watering Structure

6.3.4.2 MERN Stack Inspiration

For creating the web application, we originally planned to create it in the model of a
MERN stack application. While working on the project, we decided to switch away from
the MERN stack and as a specific structure and use it more as an inspiration. For our
design, we ended up using pure HTML, CSS, Javascript, and Firebase. Which does
contain some elements of the MERN stack, but are not all encompassing of what the
MERN stack is. To gain a better understanding of the MERN stack we can look at it in
parts. A MERN stack is one example of a full-stack web application where the client and
server sides are fully managed. The M in MERN stands for MongoDB. MongoDB is a
document-based NoSQL database that stores any data you have. So, things like users,
statistics, or pictures can be stored for convenience. For Greenie, we plan to use our
database to mainly store statuses and statistics. The E in MERN stands for Express(.js).
Express is a server-side framework and its purpose is to make writing code for Node.js
simpler. It’s useful for working with APIs (application program interfaces) and handling
various HTTP requests and responses. The R in MERN stands for React(.js). React is

89

the framework used for the front end/client side and its purpose is to present everything
that the user will see. It’s useful for managing all of the HTML and CSS that go into
front-end programming as well as all of the error handling and events. Lastly, the N in
MERN stands for Node(.js). Node.js is the JavaScript runtime environment that allows
the user to build and run the application. It’s useful because it is the main piece that
keeps everything in the stack together.

By removing any of the NodeJS portion of the stack, the whole thing falls apart. We
know this because there are other stack variations where the other components are
interchangeable. Take the FERN stack and the MEAN stack for example. In the FERN
stack, MongoDB is replaced with Firebase with Node.js still at the center. In the MEAN
stack, React is replaced with Angular(.js), but Node.js is still at the center. When it
comes to our selection though, we decided to go ahead and make that stack fall apart
so that we could have a web application that is interactive with our hardware.

Looking at Figure 21, we can get a visual representation of how the MERN stack is
connected. At the top of the stack, we see the front end of the application, in the middle
section we see the server/back end of the application, and on the bottom, we see our
database.

Figure 21: MERN Stack Structure
In general, some benefits that came with using the MERN stack as an inspiration for our
web application are the following:

● Spent more time into learning javascript as it was the main component the stack
revolved around

● The entire development cycle was covered (front-end/back-end)
● Technology was free and open-source
● Not a large learning curve
● Strong performance and speed

90

6.3.4.3 Sensor Checking

On a more low-level overview of how the software was utilized in the Arduino IDE, one
component to address for our project was the checking process for our sensors. Given
that our sensors are key to automatic watering, we needed to outline the criteria being
used to decide not to turn on the water pump.

We started with the checks that involved no interaction on the user's behalf. The soil
moisture check and the rain sensor check. With both of these checks, if they failed in
the watering process then the user simply had to wait until further user interaction was
needed. Looking at Figure 22, we can see that in the soil moisture check that there are
specific ranges assigned to dry, well-drained, and moist and when the threshold is
crossed the water pump will no longer be active. We can also see a similar structure
with the rain sensor in Figure 23. Ultimately in the final design, only the soil check was
implemented due to time constraints, but for the sake of seeing the original intent, the
rain diagram can be observed.

As for the checks that did involve user interaction, we go to the temperature, humidity,
and pH sensors. For both of these, neither of their checks were implemented either, but
their diagrams can still be observed for our original intent. With these sensors, the type
of notification sent to the user was supposed to specify that something needed to be
done to allow for a proper watering process. With the temperature and humidity sensor,
if the user was in a location where the temperature was 30 degrees Fahrenheit and the
temperature needed for the herb is 70 to 90 degrees Fahrenheit, then the user was
supposed to be prompted to move to a location where the temperature is in the desired
range.

Then with the pH sensor, in the case where the soil was not in the proper range for herb
growth, the user was supposed to be prompted with a notification to confirm if watering
is desired. With the soil sensor and rain sensor, this type of additional confirmation was
not necessary. When it came to both checks in general, we did not want to stop the user
from watering the herbs if they are unable to do something like move to a new location,
but we did feel it is best to let the user know the herb was not being cared for given their
situation. In Figure 24 and Figure 25, we outline the very nature of these sensor
checks.

91

Figure 22: Soil Sensor Check

Figure 23: Rain Sensor Check

92

Figure 24: Temperature and Humidity Sensor Check

Figure 25: pH Sensor Check

93

6.3.4.4 LCD (Software to Hardware)

Another component to look at on a low-level is our LCD. For our prototype, we were
orignally looking to include a large variety of information. Our goal was to get the data
from our sensors working and save the other elements for later. Ultimately, this did not
end up happening. The only functionality that we decided to get working with the LCD
were the Alexa commands. This decision was made simply because the time constraint
was too great. Given more time, we would’ve implemented these plans into our LCD.
Looking at Figure 26 we can see an overview of what original intent was in utilizing the
LCD. In the figure, we can see that for each sensor that we were using, we were going
to assign a value to it and check its value to determine what message that should be
displayed. From there we loop what’s on the screen so the data is continually being
updated in real time.

For elements like the number of times water has been dispersed in a day, we can see in
the figure that counters were going to be used. So with every iteration the water pump
switches on, the counter would increase and we could reflect that value on the LCD.
The value would then reset at the end of the day. Lastly, for the elements like the
amount of water dispersed, we can see that there was a bit more involved.

In the case of determining the appropriate amount of fluid ounces dispersed, we were
going to use time and in conjunction with a counter to reach a value. We were going to
start by finding out how much water was dispersed for having the water pump on for
one second. Then we take that value and use it to correlate to how much time the water
pump is on. So starting with a value of zero, the moment the water pump turns on, we
are counting the seconds and adding up the number of fluid ounces with each second.
This process would then go on throughout the day and the user would be able to see
the total amount of water dispersed at different times of the day. At the end of the day,
the counter value that was being used for display on the LCD would be set back to zero.
For the information we decided to implement with the LCD in the finished product, we
were going to use a format similar to this structure and make modifications as time goes
on.

In Figure 26 below, the LCD software to hardware configuration can be observed. We
begin with the welcome screen that introduces the users to Greenie. After staying on
the welcome screen for a certain period of time, the text would automatically scroll to
the first screen where the users can see the soil moisture sensor readings. Here the
user could verify that the herb is getting the water it needs and that the automatic
watering process is going smoothly. Next, the text on the LCD would scroll to the
second screen where they could see the number of times their herb has been watered.
Here the user can then verify that their herbs are being watered to the correct amount.
Finally, the text on the LCD would scroll to the third screen where they can see how
much water has been dispersed from the water pump. Here the user could verify that
Greenie is not pumping out excess water. After iterating through all of the screens, the
LCD would loop back to the welcome screen and begin the process again. This way the
user can continually observe the LCD throughout the day if they desire. In Figure 26

94

below, the process explained in this paragraph can be observed in a flowchart manner,
making it easier for the reader and/or user to follow.

Figure 26: LCD Software to Hardware Configuration

95

6.3.4.5 Relay Module (Software to Hardware)

For working with our relay modules on a low-level, we needed to select pins on our
Atmega328p microcontroller and use those to control the state of the devices connected
to the other ends of the modules. Taking the water pump as an example, say we use pin
6 on our microcontroller. Connecting all 3 components together, we could control the
water pump by altering the state of pin 6 and the relay module will act as a middle man.
As for how the state is altered in this example, we needed to set the pin 6 value to either
“high” or “low”. By doing this, we switched the circuit open and closed respectively.

To ensure the relay modules operated properly in our prototype as part of our automatic
watering structure, we needed to ensure that designated sections and time delays were
set up. With designated sections and time delays, we gained the ability to isolate
different watering patterns for the ten herbs we specified. So in the case where we have
an herb that needs the water pump to be on for 5 seconds at a time repeatedly, we
could create a small section within the main loop that has a delay value of 5000
milliseconds. Of course with an herb like this though, the soil would eventually become
flooded. For our herbs, our main use for sections and time delays were to itemize how
long the water pump should stay on. So, when the water pump had been on for 5
seconds, the relay module would be set to high and it should not be closed again until
one of our conditions has been met (i.e soil moisture is dry or enough time has passed).
Most of the time for our project, the condition would be dry soil, but in the case where
more frequent watering is needed, we recognized that having a timer for frequency can
act as a good back up.

6.3.4.6 Wi-Fi Module (Software to Hardware)

To obtain a better understanding of how the Wi-Fi module will work with the other
components on a low level, then we need to expand on the usage of libraries in the
Arduino IDE. So, in the Arduino IDE given that we coded in a structure similar to c we
started by obtaining libraries by using the standard “#include”. From there we went into
the different options available for creating our prototype. To clarify, in working on our
prototype, our plan was to go through the different libraries we’ve collected and try out
each one to see which yields the best results. Based on our research, we know that with
different libraries comes different methodological approaches and with each approach
typically comes some undesired outcomes. Our goal was to sort out each of those
outcomes and find the ones that reduce the amount of code that needs to be written,
and that meet our requirement specifications. So for instance, in the case where there’s
a library that accomplishes some of our tasks but it's alexa capabilities only work for
certain devices or works for 2 commands, then we had to put that library lower on our
priority list. Or in the case where there’s a single library that can do things that would
normally require 2, we would put that single higher on our priority list.

96

For our Wi-Fi module, there is a library available specifically catered to it called
“ESP8266Wifi.h”. By using this library in conjunction with libraries like the “WiFi.h” ,
“SoftwareSerial.h”, and “FirebaseESP8266.h”, we were able to secure a connection and
ensure that data was being properly transferred to and from the web application. So in
the case of our sensors for example, if we wanted to ensure that our data is readily
available on our web application then we would establish a connection, send
information from our atmega 328p microcontroller to the ESP8266, and then that have
the data posted in Firebase. By using the libraries in this fashion we were able to get the
best use of hardware and imitate a stack-like software structure.

For implementing Alexa integration, one approach available was using the Wi-Fi
libraries mentioned above along with some external tools. One example of an external
tool was with the “skills” service that Amazon provides to their customers. With the
“skills” service, Amazon gives their users the ability to create custom commands for
alexa that make the user experience more enjoyable. With these custom commands,
they can be paired with different kinds of devices and they can all be mapped to web
services like Heroku. Ultimately, we did not end up using this approach, but using an
external tool such as this would have been beneficial in the sense that it’s advanced
capabilities went beyond our desired specifications. Given our goal was to have at least
3 unique Alexa commands. The downside to using this methodology would have been
that there was a large time commitment needed for setup.

An alternative library that could be used was the “espalexa” library. With this library, the
user would essentially be able to work specifically with alexa and get our devices
connected. The library works in its own fashion and can do several unique things. The
benefits that come from using this library would be that it’s a convenient single library for
getting Alexa set up with our devices. The downside to using it would be that it is not as
comprehensive as other Alexa setup approaches. In the end, we ended up using this
approach due to time constraints. However, we do encourage any future projects to look
at the skills development portion of the Amazon website so even more in-depth
commands could be made.

6.4 Web Application Prototype
Software prototyping is important because it enables the developers to understand the
user’s requirements during the early stage of development. The feedback from the
users will be helpful to the software developers as it provides them details on what is
expected from the product. These prototypes are utilized during the analysis and design
process of web application development. Software prototyping allows for more user
involvement during the development process. It will also help us to save time as the
errors and missing functionalities can be detected much earlier. When it comes to web
application prototyping, horizontal prototypes and vertical prototypes are used to verify
and elaborate the requirements of the application.

Horizontal prototypes provide a broad view of the web app and are used during the
early stages of development. This includes the sample screen, main menu, and buttons.

97

These features do not necessarily need to be fully implemented. For example, a user
may just navigate through the screen and once a button is clicked, they could be
redirected to another page that contains sample data. These prototypes give users the
idea of what will be included in the web app without the actual implementation of the
features when integrated with the hardware components.

In contrast, vertical prototypes are used in the later stages of web application
development. This type of prototyping focuses on the technical side of the web app. It
includes connecting to the database and interacting with the subsystems and hardware
components. Vertical prototypes also allow users to navigate through the screen, click
on buttons, and see the actual functions of the buttons. It is useful in demonstrating that
the web app’s features are actually feasible.

The users of Greenie have many options to interact with the system. They can view the
current statistics acquired from the following sensors: soil moisture, rain, pH,
temperature, and humidity through the LCD screen that is attached to the plant
enclosure. They can also use voice commands to control the system through Amazon
Alexa. Lastly, the users can manage and control the system using the web application.
This section describes the possible design of Greenie’s web app. As we moved forward
in developing the web app, the logo and colors were added to the interface. The design
of the web app is very user-friendly, simple, and straightforward. The color and the
theme is eye-catching but not too bright. The colors that we used on the web app were
appropriate with the theme of our project. Throughout the web app we included different
hues of green.

The main page of our web app displays the name of our project, Greenie: The Smart
Irrigator. On the left-hand side of the web app are four clickable buttons that will take the
user to the home page, the herbs page, the metrics page, or the about page. Once the
user has clicked any of the buttons, the response time should not exceed five seconds.
The default page is the home page or the dashboard which is divided into different
sections as seen in Figure 27.

The sections on the dashboard/home page are classified as soil moisture level, rain
level, temperature, humidity, and pH level. Each section contains an up-to-date reading
from the sensors as well as the ideal range for the selected herb. We originally wanted
to incorporate a bell button on the left side of the page that lists the notifications when
clicked by the users. Users will receive a notification from the system when the following
actions have been triggered. When the water pump disperses water to the plant, it will
inform the user how much water was dispersed and when the system watered the plant.
When rain is detected, the system will alert the user so that the user can decide whether
to turn off the system or delay the watering cycle. When the sensors are not working,
the user will be alerted which sensor is not working. When an error is detected on the
system, a notification will pop up on the user’s end containing an error message. Due to
time constraints, we decided to not include the notification features mentioned above.

98

Since we are gathering weather information from a weather app called
OpenWeatherMap, the daily weather forecast was initially placed on every page but we
decided to just put it on the home page along with the sensor readings. The users will
receive a pop-up notification that asks them to share their current location for accurate
weather information that will be updated every minute. Users also have the option to
enter their city and country on the search bar to view the weather information at their
location. The watering schedule is based on the combined data from all the sensors.
Originally, there is only one on/off button placed at the top of the main page where users
can easily access it. However, since we added a nutrient pump, we decided to have a
start/stop button for the water pump and for the nutrient pump. This buttons exist so that
users can turn on/off the water pump and the nutrient pump manually. The diagram
below is one of the prototype designs of Greenie’s web app.

Figure 27: Prototype of the Web App’s Dashboard

When the users click on the “Herbs” tab, they will be redirected to a page where they
can view the list of ten herbs that are supported by our system. The herbs are organized

99

in a table that describes the watering requirement, soil preference, ideal humidity, ideal
temperature, and ideal pH level of each herb.

In Figure 28, every herb has an add button so users can add the herb that they want to
put into the plant enclosure. If they click the “add” button, the system will gather the
information about that herb, so that the sensors within the system can function based on
the needs of the selected herb. Instead of the “add” button, we used “start/stop” button
for automatic watering. For example, if the user decided to put lemongrass inside
Greenie, then all its information will be added to the system. All of the herb’s
requirements will be used to water the herb and the ideal range of values for each
sensor will be displayed on the dashboard page so that the user has reference when
viewing the current data of their plant. The current reading of the sensors will then be
displayed on the web app’s dashboard which will be updated every hour.

Figure 28: Prototype of the Web App’s Herb page

The “About” page on Figure 29 will contain a short description of the Greenie system
including the goals and objectives of our project. A copy of the device’s manual will also

100

be placed on this page so that the users can access it anytime via the web app. Instead
of a pdf link of the user’s manual, we included a section on how to use Greenie on the
about page. We also provided answers to possible questions that the users might have
regarding the system and the web app.

Figure 29: Prototype of the Web App’s About page

The History page on Figure 30 will provide a brief overview of Greenie’s activities over
the past seven days. It will contain the watering history and soil moisture level of the
herb so that users are able to review the condition of their plant and see how it changes
over time. The weekly history will be represented by a graph that plots the amount of
water that has been dispersed by the water pump and the average soil moisture level
that was collected for the past seven days. The x-axis of the graph represents the time
and the y-axis represents the average value. A blue line will be used for the water that
has been dispersed and a green line will be used for the average soil moisture level.
The users will also be able to download the data of their plant.

Instead of a History page, we decided to implement a Metrics page. This page contains
a bar graph of the total water and nutrient dispensed, as well as the water and nutrient
saved while the system is running. Another graph that is included in this page is the
average sensor readings from five automated readings. Lastly, this page provides users
the percentage of their manual usage and automatic usage of Greenie.

101

Figure 30: Prototype of the Web App’s History page

7. Testing
In this section, we will be discussing the preliminary tests that we either plan on
performing or have already performed on the components that we have acquired so far.
Testing our components is one of the most crucial steps to making our product work.
Given that our product needs to perfectly function during our final presentation, it is
crucial that testing on parts is performed so that malfunctions can be observed and fixed
before this deadline.

7.1 Hardware
Here, we will be discussing the preliminary tests that we either plan on performing or
have already performed on the hardware parts that we have acquired so far.

7.1.1 Hardware Test Environment

There are many parts in our project that need to be tested so that we can make sure
that they are performing well. All the parts that need to be tested are the voltage
regulators, the battery, the microcontroller unit, the LCD screen, the relay module, the
water pump, and the various sensors in the project. The main pieces of equipment that

102

we will be using to test these components are a digital multimeter (DMM) and an
oscilloscope.

For the battery, we need to make sure that the output voltage of the battery and the
number of Amps coming out of the battery are at acceptable values. To see if the water
pump works as intended, we need to turn it on and make sure that it can pump out
240L/H. For the LCD1602 module, we use the multimeter to make sure that it is using
the right amount of voltage of 5 V. Next, we check to see if the voltage regulators are
providing the correct voltage for each part by measuring the power with a multimeter.
We need to check to see if 12 V goes into the pump, about 3 V for the sensors, and 5 V
for the MCU. When looking at the MCU, we need to simply make sure that it powers on
and executes code the way that it should. Finally, for the sensors, we look at whether
they are capturing information and sending it to the MCU.

7.1.2 Sensor Testing

The sensors must provide accurate values since the system relies entirely on the data
collected from the sensors. Preliminary testing and additional testing were conducted on
the soil moisture sensor, rain sensor, humidity and temperature sensor, and pH sensor.
For the preliminary testing, the sensors were tested individually to make sure that each
sensor works properly and provides reasonable values. The values were compared to
the ideal values stored in the database (as seen in Table 14). After the initial testing,
the sensors were tested together to verify that they are compatible with each other and
with the microcontroller. The preliminary tests were done by connecting each sensor to
the microcontroller and then running a code on the Arduino IDE. The code was able to
read data from the sensors and output values to the LCD screen. Additional tests were
done during and after the development of the system. Different methods of testing the
sensors are described below.

Possible issues arose while testing the sensors. One issue that we encountered is when
the LCD screen is not displaying the correct format of the output. Another issue is when
the readings are completely off compared to the expected values. To fix these issues,
we first had to make sure that there are no connection issues between the
microcontroller, the sensors, and the LCD screen. We then checked if the pins are
properly connected. Next, we had to check the code that we used to implement the test
and make sure that we are using the proper functions and variables. In a case where
the LCD froze during the sensor testing, we restarted the system.

7.1.2.1 Soil Sensor Testing

7.1.2.1.1 Preliminary

Testing the soil moisture sensors verify if they measure the correct volumetric content of
water in the soil. This specific sensor has a potentiometer that can be used to adjust the
threshold level. It also has both digital and analog outputs, however, the analog output
will be utilized for our project.

103

The following tests were applied to the soil moisture sensor. The first step is to set up
the connection between the microcontroller, LCD screen, and sensor in a breadboard.
We connected the VCC pin from the module to the Arduino board and the GND pin to
the ground on the Arduino. Since we are using analog output, we connected the analog
data pin to A0 on Arduino. Then, the probe was inserted into two different soil samples.
Before putting the probe in the soil, we have to make sure that the probes are dry and
clean so that the reading will be accurate. The first soil sample was completely dry while
the other soil sample was wet. A code was executed on the Arduino IDE that outputs
the current moisture level of the soil. It contains a loop function that reads data from the
sensor and displays a value on the LCD screen. It reads analog values from 0 to 1023.
The LCD screen displayed a value within the range and the value varied when placed in
different types of soil, therefore we were able to confirm that the soil moisture sensor
was working.

7.1.2.1.2 Additional

The soil moisture sensor was tested on our system similar to the preliminary test, but
this time we used one of the herbs from the collection of herbs that we have predefined.
An herb was chosen to test the sensor under two conditions. For the first condition, we
inserted the probe into the soil of the herb when it was dry. The second condition
includes watering the herb and then inserting the probes in the soil. To confirm that the
sensor works with Greenie, the system should be able to read data from the sensors
and display the reading on the LCD screen and the web app. The reading was observed
so that we can see how the values change under different conditions. The output values
were compared to the values on the table from our database that contains information
about the water needs of different herbs. If the output value is between 0 and 350, then
the soil is dry and needs to be watered. If the output value is greater than 650, then the
soil is wet and does not need to be watered. The ideal moisture level for most herbs
would be between 350 and 650. This triggers the system to water the plant when the
user chooses automatic watering via the web app.

7.1.2.2 Rain Sensor Testing

7.1.2.2.1 Preliminary

The rain sensor was tested to ensure that it can detect raindrops accurately. Before
testing the rain sensor, the microcontroller, LCD screen, and sensor were connected
properly. We connected the VCC pin from the module to the Arduino board and the
GND pin to the ground on the Arduino. Since we are using analog output, we connected
the analog data pin to A0 on Arduino. An initial test was done by placing a few droplets
of water on the sensor board. If the D0-LED lights up, then the rain sensor is working.
For further testing, we placed the rain sensor under three conditions. The first condition
was when the rain sensor was completely dry. For the second condition, we sprinkled a
few drops of water on the rain sensor board. For the last condition, we submerged the
sensor board in water. A code was executed on the Arduino IDE which contains a loop
that reads analog values from the sensor and maps the values. Originally, the LCD

104

screen should display “No Rain” when the sensor board is dry, “Moderate Rain” when
the sensor has a few drops of water, and “Heavy Rain” when the sensor board is
completely soaked with water. Instead, we had the LCD screen display the amount of
water drops. We observed how the output on the LCD screen changes under the three
conditions.

7.1.2.2.2 Additional

The same conditions above were used to test if the rain sensor works with our system.
In addition to displaying the output on the LCD screen, Greenie should be able to delay
the watering schedule when rain is detected. When there is enough rain detected, the
system will be triggered to turn off the water pump to avoid water waste and
overwatering of the herb.

7.1.2.3 Humidity and Temperature Sensor Testing

7.1.2.3.1 Preliminary

The humidity and temperature sensor was tested to ensure that it provides the current
temperature and humidity accurately. This sensor was tested in two different
environments, indoor and outdoor. Before doing the tests, we made sure that the wiring
between the microcontroller, LCD, and sensor is connected properly. We connected the
VCC pin from the module to the Arduino board and the GND pin to the ground on the
Arduino. Since we are using analog output, we connected the analog data pin to A0 on
Arduino. We then placed the sensor indoor where it is colder and less humid. We
executed a code on the Arduino IDE that reads the data from the sensor, maps the
humidity value, and displays the output on the LCD screen. The output was the current
temperature in Celsius which was then converted to Fahrenheit and the current humidity
in percentage. The readings were observed and compared to the current temperature
that can be obtained from a thermostat. The readings were around the same value,
therefore we were able to confirm that the sensor is functioning properly. Next, we
tested the humidity and temperature sensor by placing it outdoors where it is hotter and
more humid. The readings were observed and compared to the current temperature and
humidity provided by a weather app. The readings were within boundaries, therefore the
sensor is functioning outdoors as well.

7.1.2.3.2 Additional

To verify that the humidity and temperature sensor is functioning within our system, we
placed Greenie indoor first and observed if the reading changes over time. We then
transferred Greenie outside and observed the changes in temperature and humidity.
The outputs shown on the LCD screen and the web app varied based on the current
environment that the sensor is in. The observed values were around the values that a
thermostat and weather app provided. If the temperature and humidity reading is within
the ideal humidity and ideal temperature of a particular herb, then the system will turn

105

the water pump on.

7.1.2.4 pH Sensor Testing

7.1.2.4.1 Preliminary

To test that our pH sensor is working, we gathered several substances to see if data
was correctly being obtained through the Arduino IDE. First, we started by getting the
wiring setup for our circuit. We took our sensor, microcontroller, and breadboard and
made sure the pins were properly connected. Once the wiring was complete, we set up
the Arduino IDE and wrote some code that retrieves the information from the sensor.
Then taking our pH sensor, we took it and placed it in a cup of water. If the pH value we
see returned is between 6.5 and 8.5, then we confirmed that the sensor is partially
working. To complete the preliminary test for the sensor, we took substances such as
window cleaner, vinegar, and milk and verified that they were getting accurate results as
well. In the case where all of our tests returned the same pH value, we would have
confirmed that as a sign of potentially having faulty equipment.

7.1.2.4.2 Additional

For testing our pH sensor specifically with Greenie, we looked at the 10 herbs we’ve
identified and observed how they changed over time. Take basil, for instance, we
started with the soil when it was dry and see the value we get. After watering the herb,
we did a check immediately to see how the values have changed. Then after waiting for
an extended time, we checked the pH again to see how it was responding again. As for
why we tested in this fashion, we have highlighted that for our 10 herbs that each one
has an ideal pH range for the water to be in when dispensing. By checking how the pH
changes over time after watering, we identified a good pattern of automatic watering for
each type of herb.

7.1.2.5 Piezoelectric Sensor Testing

7.1.2.5.1 Preliminary

To test that our piezoelectric sensor is working as intended, we first made sure that it
senses vibrations. To accomplish this, we connected the sensor to the MCU and
connected the power to the sensor such that it receives the necessary voltage to turn
on. This was set up on a breadboard where we can connect all these wires together to
the Arduino IDE. A code that allows us to see if a reading can be gleaned from the
sensor was utilized. After connecting everything together, this is where we can then
move the sensor and see that a response emits from the sensor to the MCU. Once we
make sure of this, we can see what sort of information is being passed so that it can be
read by the user. We then observe if water is passed through the tube, the sensor
accurately picks it up and lets the user know that this is going well. We have to place
the sensor along various points on the tube to make sure that it can read water flowing
in any place. If these things did not work, we would have to double check the

106

piezoelectric sensor to see if there is any glaring issue and if it needs to be replaced
with another piece.

7.1.2.5.2 Additional

When we were testing the piezoelectric sensor with Greenie, we looked at all the
sensors that are placed and made sure that only the correct sensors are turning on
when we are watering that herb. Each herb has its own sensor on the tube that leads to
the soil. The test made sure that we are noticing that the tube is actually being watered.
There was also a tube where there is a hole that allows water to seep out of it, so that
the piezoelectric sensor can detect that the flow is not normal. If the sensor can
accurately tell that and let the user know, then we can confirm it is working as intended.

7.1.3 LCD Testing

7.1.3.1 Preliminary

For our project, we are going to utilize the LCD1602. This LCD was donated by one of
our team members to cut the cost related to an LCD screen. The team member
acquired this LCD screen as part of an electronics kit required for a project in a previous
course, Junior Design. The project was created as an ultrasonic-based distance meter
with an LCD screen. The same LCD1602 that was utilized for that project will be used in
our product. In Figure 31 below, we can see that the LCD1602 being utilized for this
project works perfectly fine. As mentioned in the Project Specifications (refer to Table
1), the LCD1602 screen consists of two lines where sixteen characters fit in each. This
can be observed in Figure 31 as well, where the LCD screen is displaying the word
“Distance”, which consists of eight characters, in the first line, and the message “2 cm”,
which consists of four spaces (including the blank space), in the second line.

107

Figure 31: Preliminary Test of LCD1602 Screen

This figure is being presented as a preliminary test. As our project advances, we will be
performing more tests on our LCD that are relevant to our project. We plan on utilizing
our LCD screen to show data such as the soil moisture levels on the current plant, the
pH levels in the soil, whether the plant has been watered that day by rain or not, current
humidity and temperature in the room, and weather prediction data. When our software
starts being developed, we are going to test our LCD to check if our data is being
printed correctly.

7.1.3.2 Additional

Although a preliminary test was conducted on our LCD screen, more tests need to be
planned to ensure that it works for the needs of our project. We are going to utilize our
LCD screen to show data regarding the plant’s health as well as weather prediction.
Data such as the soil moisture levels on the current plant, the pH levels in the soil, and
the current humidity and temperature in the room. Through the combined use of our
weather prediction application, the LCD screen is also going to be able to show whether
the plant has been watered that day by rain or not and if it will be on a day in the
foreseeable future.

To make sure that the LCD screen is properly set up, we are going to appropriately plug
its pin headers onto a solderless prototyping board by following the steps required. The
LCD1602 is composed of 16 pins. The first pin, VSS, is where the ground (GND) is

108

going to be connected. The second pin, VDD, is connected to the 2.5 V to 5 V power
supply. The third pin, VO, is in charge of controlling the contrast of the screen. The
fourth pin, RS, is the register select pin. The fifth pin is used to select between reading
or writing mode while the sixth pin is used as the enabling pin. The rest of the pins, pins
7 to 15 (D0 to D7), are used as the terminals to send and receive the data that will be
displayed on the LCD. These pins can be configured in two ways, 8-bit or 4-bit. If the
8-bit configuration wants to be utilized, pins D0 to D7 must be used, otherwise, only pins
D4 to D7 are used. This is due to the most significant bits being found in these last 4.

These pins are going to be appropriately connected with wires to the terminals in our
microcontroller, the Miuzei Board with Atmel ATmega328P. Once the LCD screen and
the microcontroller are properly wired, a trial code is going to be used to test that text
and numbers are being printed on the screen by utilizing the Arduino IDE. Given that
our screen can print 16 characters over 2 lines of text, all 26 letters of the alphabet are
going to be printed on the screen over the two lines of text as the first test. For the
second test, the numbers “0123456789” are going to be printed on both lines. Once we
confirm that our LCD screen is correctly printing these characters, we are going to
continue to test it with our sensors.

The LCD screen needs to read and print data from the sensors. Given that our soil
moisture sensors are going to be tested by inserting their probes into soil samples with
different moisture levels, the LCD has to print the numerical results. If our soil sensor is
inserted into fully dry soil, the LCD screen needs to print “Soil moisture level of 1023”
while if it is inserted into fully soaked soil, the LCD needs to print “Soil moisture level of
0.” Our pH sensor is going to be tested by measuring different liquids, so if the probe is
inserted into a neutral liquid, the LCD should print “pH level of 7.” Lastly, as we are
testing our humidity and temperature sensor, the LCD needs to print the resulting values
for humidity and temperature that are recorded by the sensor’s probes, in the format
“Humidity reading of XX” and “Temperature reading of XX.”

Our product is going to include an integrated weather application. The LCD screen is
also going to be tested through the use of the weather application. Our screen needs to
display information regarding the weather forecast as well as if the plant has been
watered by rain or not through the use of our rain sensor. This is going to be tested by
performing two test cases utilizing our rain sensor. In the first test case, the rain sensor
is going to be sprayed with a few drops of water. If the sensor detects water, the LCD
screen should print “Plant was watered by rain.” The second case is going to be when
the sensor is completely dry. If the sensor detects no water, the LCD screen should print
“Plant was not watered by rain.”

7.1.4 Microcontroller Testing

7.1.4.1 Preliminary

To test that our Atmega328P microcontroller was working, we performed several tasks.
Given that the microcontroller was at the center of our project, ensuring that it worked

109

properly was crucial. First, connecting the microcontroller to a computer and the Arduino
IDE we began with a basic blink test. We used the LEDs built into the board, loaded a
sample program provided, and ran it as is. The LED returned with the result we were
expecting and we noted it as a good sign. Then we modified the code so that the LEDs
blinked for different scenarios. One example was the LED blinking faster. After seeing it
worked according to how we programmed it, we confirmed that a portion of the
microcontroller was working.

Next, we went through other examples that were provided by the Arduino IDE. Some of
the built-in examples included a digital serial test, an analog serial test, and an LED
fade test. By going through these types of examples, we confirmed that the pins on the
board are working and that the LEDs are working beyond blinking. Lastly, we tested the
microcontroller by adding libraries like the SPI library and ensured that those were
working with the microcontroller as well. With libraries such as those working, then we
anticipated that libraries for a separate hardware component like the wi-fi module would
work as well.

After going through all the tests in the IDE, we can say that the microcontroller’s base
functionality is fully working. Our next steps from that point on were to create a more
complex circuit.

7.1.4.2 Additional

To test our microcontroller for Greenie, we verified that a connection was established
from the web application down to the hardware components. Similar to the software to
hardware process mentioned in section 6.3.4, we took buttons that we created for the
web application and tested if the microcontroller is being properly integrated.

Looking at the water pump as an example, we started at the web level application level
and pressed a button to turn the water pump on. On the button press, the code that we
wrote reached the microcontroller and as a result, reached the relay module which has
the water pump connected to it. The connection was properly made and we noticed the
water pump turned on. Another example we looked at was the LCD screen. Going
through the same process, at the press of a button, we reached the hardware and
displayed any piece of information we wanted. What was important to note in this test
was that for however many devices we needed to connect to the microcontroller we
were able to control them on a web application level.

7.1.5 Power Supply Testing

7.1.5.1 Preliminary

The power supply will need to go through various tests so that we can make sure that
the system works as intended. The first thing we need to do is make sure that the power
supply holds the correct amount of voltage. This will be verified with a multimeter The

110

power supply unit (PSU) will be measured using a multimeter with no load connected to
make sure that the full voltage of the power supply is being transmitted through the
system. We measured to see if the correct amount of voltage was being drawn from the
power supply while also making sure that minimal variation occurs. If there is too much
variation in the system, this can cause issues when trying to draw power from the
different pieces.

When the first test passes, the next test will be done with maximum load instead of
minimum load. So we would be testing the ampere at the highest load it is supposed to
work in, thus we will try to simulate the full load. We will also have to use the multimeter
to find how the device performs, if it were to not perform correctly, we will need to find
the cause and do our best to remedy the situation.

The last test is to look at the ripple voltage of the output. To check for this, we looked at
the outputs using an oscilloscope, and we ensured that there was as little ripple voltage
as possible.

7.1.5.2 Additional

To see if the system works as intended with our power supply, we need to connect
everything to make sure that all of it can be powered. This will be done by connecting all
of the pieces together, from the regulators and sensors to the MCU and pump, once all
the pieces are in place, then we will hook in the power supply and check to make sure
that every piece comes on and is powered appropriately.

7.1.6 Relay Module Testing

7.1.6.1 Preliminary

To test that our relay modules were working, we checked that the switching functionality
works as expected. To do this we performed a blink test with the realy’s built-in LED. We
started by getting our Microcontroller, some wires, and a breadboard. Then we wired the
circuit so the relay module was properly connected on one end and the other end was
connected to the microcontroller. Once the circuit was assembled, we set up the
Arduino IDE and wrote the code to get the switch to flip and the LED to glow. Starting
with the switch closed and leaving it closed, we verified that the LED turned red to
indicate it was on. Then with the switch open and leaving it open, we verified that the
LED turned off. When both actions work as intended, we confirmed that our code was
being recognized and being sent to the module. In addition, we recognized that our
modules had a good chance of working in our manual watering process.

Next, we verified that the module can do the switching independently. To do this, we
modified the code so that the LED turns on and off in a loop. This worked as intended
and we confirmed that the automatic watering component has a partially good chance of
succeeding. Lastly, we verified that the module can switch from open to closed over

111

different periods. To do this, we modified the code and put in different time periods for
the LED to turn on. We then compared the results with a stopwatch for accuracy.

The results we obtained show a response time that was in line with our requirement
specifications and confirmed that our modules are fully working. Also, we confirmed that
the modules have a great chance of working in our automatic watering process.

7.1.6.2 Additional

For testing our relay modules with Greenie, we moved on from the built-in LED to our
actual components. So, similarly wiring the circuit to the preliminary setup, we put in the
water pump and see if it will turn off and on in response to the switches being opened
and closed respectively. We went on to perform all the tests mentioned in the
preliminary section and verified that the water pump works in the same manner as the
LED. Doing so gave the most clarity in seeing if our manual and automatic watering
processes work or not. During the final test, we checked once again with a stopwatch to
see if our results were in line with our requirement specifications. In the case where our
tests were not yielding the results we were looking for, we would have reevaluated the
components we are using as well as the specifications we laid out. Something we
recognized that was not ideal if it came to that, but also was something that we viewed
as necessary to keep our project within the realistic bounds of completion.

7.1.7 Water Pump Testing

7.1.7.1 Preliminary

So that we can check that the water pump works well we will need to test how it
operates. To do this, we must pass the correct operating voltage of about 12 V and the
current of the pump with an appropriate power source to see and make sure that the
pump works well. The pump must drive water through at the correct rate of 240L/H. To
see if the rate is correct, we will fill a bucket with water using the pump for 10 minutes,
and then make sure that the rate that the bucket filled is in line with the specifications. If
it is not going through at the right rate we must find out what the problem is, if there is
something wrong with the circuitry it could be opened and corrected. Otherwise, if it
does not function at all, then we would have to order a new piece since ours would be
considered defective.

7.1.7.2 Additional

The next part to check is to see if the water pump works with the code from the
microcontroller. We will need to use a breadboard, wires, the pump, and the MCU for
this. To do this, we must connect the various pieces together and make sure that the
code can run the pump, turning it off and on so that it can provide water to the pumps
when needed by the various sensors. Once we confirm that it works as intended, we

112

can see if the MCU can do things like pumping water at different rates. After looking
through this, we then need to see if it can operate for long periods of time.

7.1.8 Voltage Regulator Testing

7.1.8.1 Preliminary

For the voltage regulator, we need to make sure that it works as intended. To do this, we
must check that the proper voltage enters the device and that the proper voltage also
exits the device. The regulators we will be looking at are the 12 V, 3 V, and 5 V, so we
must make sure that the proper values are being recorded with our digital multimeter
(DMM). Since many voltage regulators are being used, we need to go through them and
make sure that each one of them is working as intended.

For our project, we plan on utilizing the LM2576 voltage regulator. This regulator has a
five-pin design. The first pin is used for the input voltage, the second pin is used for the
output, the third pin is used as the ground, the fourth pin is used as the feedback, and
the fifth pin is used as the on/off. The pins can be checked using our DMM. To ensure
that the input voltage pin is working, we are going to check the voltage from the input
pin to the ground. We will be setting the DMM to the DC voltage setting and through the
use of the DMM probes, we are going to place them on the input pin of the voltage
regulator and the ground pin, pin three. The same process is going to be repeated for
the output pin, pin two. However, for this test, the positive probe of the DMM is going to
be placed on the output pin and the negative probe on the ground pin.

Another test that can be run is a digital test that Texas Instruments provides for people
to use that is called the Webench Power Architect tool. This tool can allow us to try out
samples of voltage regulators that perform well to see how this piece should be working
as intended.

7.1.8.2 Additional

When testing it with Greenie, we need to make sure that the proper values are flowing
through the system once everything is hooked up. The regulator on the pump should
read 12 V, the regulator at the MCU should read about 5 V and the regulator around the
various sensors should read about 3 V. A multimeter will be used to determine if the
values are correct when all of the pieces are put together. We also need to make sure
with an oscilloscope to check the ripple voltage of the various voltage regulators that are
going to be hooked in the system.

7.1.9 Continuity Test

7.1.9.1 Preliminary

113

The first thing that we have to do in the greenhouse system for testing, is having to do
what is called a continuity test. This test is done so that we can make sure that all the
connections that are located on the PCB and the various sensors and microcontrollers
were soldered correctly and that the paths that the current takes are moving correctly
and match the schematics that are made. So that this test is done correctly, team
members need to look at each piece individually using the schematics and we need to
perform the continuity test with a multimeter using the continuity function on said device.
Testing to make sure that there is a correct current path is important because if there is
a break, this can result in there being an incorrect signal being sent out and the MCU
collecting the wrong information making our device give incorrect data back to the user.

When we are checking the various ports in the system, we need to make note of any
discontinuities that are found within the system. Once these are found, we need to take
steps to ensure that we can fix that part of the system, either by soldering the
connection that is not working or by affixing a wire so that the connection can be
completed. In the case where there are many connections in the system that do not
work, we would have to reorder the part from the vendor, so it is important to this
procedure first.

7.1.9.2 Additional

Once the preliminary tests are done, additional testing will need to be considered to
ensure that the PCB works correctly. To ensure that everything is right, the project
needs to be put together and we must ensure that all the data is being transmitted
successfully. If everything is working as expected, there will be no need to do anything
else, however, if there is an error in some part of the project, we need to perform more
tests on the PCB to make sure that no component becomes fried while powering
everything together.

7.2 Software

7.2.1 Software Test Environment
Software testing is an essential part of project development to ensure that the overall
system is working as intended. We ran several test cases to ensure that every
component of our project is functioning as expected. The web application and all the
software components of Greenie were tested on a computer using a web browser. The
software testing for the microcontroller were conducted on a computer using the
Arduino IDE. The testing process were documented to keep track of all the tests that
have been done on the software. This allowed us to determine what changes need to
be done to meet the specific requirements. Our software developers came up with test
cases that we used to improve the quality of our system’s software. These test cases
helped ensure that we meet all the requirements of our project. Using a test case was
beneficial when deciding how to execute the different software tests. A test case
includes the objective, steps, expected output, actual output, and pass/fail. The

114

objective is where we are going to describe our goal for that particular test. The steps
list the instructions that need to be done to achieve our objective. For the expected
output and actual output, we described the output that we want to achieve and the
actual output that we got after completing all the steps. The last section of the test case
was based on our actual output. Pass was used if we are able to achieve the expected
output and fail if we are not able to achieve the expected output.

In addition to test cases, alpha testing and beta testing were considered when testing
the software of our project. Alpha testing was performed by the developers to identify all
possible issues and bugs before presenting our project. After the development of our
project, our group members tested Greenie and executed several tasks that a user
might do in our system. This allowed us to fix all the issues that arise to provide a better
system before the beta testing. Beta testing is done by several users to obtain feedback
on the quality and efficiency of the project. We let other people test our project and
asked them how well our project functions and some suggestions on how we could
improve our project. Alpha testing and beta testing were executed after performing all
the other tests and before presenting our project.

Other software testing methods that we can use in testing the software components of
our project include black-box testing and white-box testing. In black-box testing, we can
test the functionalities of the software without prior knowledge of the internal structure of
the system such as the code structure and the implementation process. It focuses on
providing input and observing the generated output. Black-box testing can help us
identify the response time, possible usability issues, and how our system will respond
with user interaction. It can be applied during unit testing, integration testing, system
testing, and acceptance testing. The first step in carrying out black-box testing in our
system is to identify all the requirements and specifications of the system. Next, we can
come up with valid inputs to check whether the system will respond as expected. We
can also choose invalid inputs to check whether the system is able to detect them. The
next step is to create test cases with the selected inputs and determine the expected
output for the inputs. We will then execute the test case and compare the actual outputs
with the expected outputs. For the last step of black-box testing, we can fix all the
defects and test the system again.

In white-box testing, we can test the functionalities with the knowledge of the internal
structure and design of the software. We are able to see the code as we conduct this
test. White-box testing is mainly applied to unit testing, but it can also be applied to
integration testing and system testing. It focuses on testing the code. Each statement
and functions are tested including the functionality of the loops. When performing this
kind of test, the tester must learn and understand the code. We can then create test
cases with both valid and invalid inputs. After that, we can execute the test cases and
compare the actual outputs with the expected outputs. The advantage of white-box
testing over the black-box testing is that testing will be more precise and detailed as it
aims to cover most parts of the code.

When it comes to testing the software components of our project, the code is tested
frequently to ensure that every hardware and software component and the overall

115

system will run smoothly and without errors. The software components of Greenie were
tested at different levels to ensure that we get the best results and reduce any potential
bugs or errors. The first level of testing is called unit testing wherein small parts of code
are tested independently. This was done throughout the development of our project to
ensure that every part of the code is functioning as expected. Conducting this type of
testing allowed our software developers to determine the errors before they proceeded
in testing the other parts of the code and the entire code. The next level of testing is
integration testing where individual components were integrated and tested as a group.
This testing ensures that all components are compatible with each other. It also detects
errors in the interaction between the combined components. The third level of testing is
system testing where the overall, integrated system were tested as a whole. This testing
was very helpful in evaluating and verifying if the system has met all the requirements
and specifications. The final level of software testing is called acceptance testing where
the system was tested for acceptability. Acceptance testing was performed by actual
users who determine whether the system meets all the requirements and specifications.

These levels of software testing were applied in our project throughout the development
process. For instance, the code for each sensor was tested individually during the unit
testing. When an error was detected, we were able to easily identify the part where
there is a fault and fixed it right away. As for the integration testing, we tested the
sensors together. We then observed how the sensors work together and how one
sensor impacts another sensor. The system testing involves testing the system and the
web as a whole. We observed whether Greenie is functioning properly considering all
the requirements and the specifications that we have identified at the beginning. We
made sure that the web app is responding to the system and displaying the correct
output. For the acceptance testing, we asked other people to test out our project and
gathered some feedback from them.

7.2.2 Wi-Fi Module Testing

7.2.2.1 Preliminary

To test that our ESP8266 ws working properly, we performed two tasks. First, we used
the module’s micro-USB port to connect to a computer and the Arduino IDE and bring
up some sample code. After establishing the connection, we initiated a blink test on the
module’s built-in LED. From there, similar to the Atmega328p testing, we ran it as is and
then verified that it was blinking correctly. If it ran as expected then we noted that as a
good sign. Then, once again we modified the code to work for different scenarios. After
making these modifications, we verified that it worked for how we programmed it. If the
LED responded in the way we expected, then we could say that the module was
partially working. For the second task, we tested to see if the module can do any kind of
network connection. To do this task, we used the module as an access point for other
devices to look for. So, going back to the Arduino IDE, we wrote some code that utilized
the ESP8266 Wi-Fi library and set up the required components for the access point.
Once the access point was set up, we searched for the module on a computer and then
connected to it. Finally, we opened a terminal on our computer and pinged to

116

192.168.4.1. The module responded to the ping, and we confirmed that the module was
fully working.

7.2.2.2 Additional

For testing the ESP8266 with Grennie, we took our devices and verified that they were
connected over the internet. Take our smart speaker, for example, to ensure that it
worked with something like our water pump, we needed to verify that the speaker and
the Wi-Fi module were connected to the same network. To accomplish this, we set up a
username and password for the Wi-Fi module while adding the necessary libraries to
the IDE. Once we’ve verified that both devices were on the same network, we verified
that the Wi-Fi module was properly connected to the water pump. To do this we
programmed the module like our Atmega328p microcontroller and caused the water
pump to trigger as needed. All the connections were correctly made, we confirmed by
performing more tests like in our next section “7.2.3 Alexa Integration.”

7.2.3 Alexa Integration Testing

7.2.3.1 Preliminary

For performing a preliminary test of Alexa, we verified that our selected smart speaker is
working properly. For this, we asked simple questions such as: “What’s today’s date”,
“What’s the weather like”, or “What’s 1 + 1”. The responses given are what we expected
and we confirmed that our smart speaker was working and so was Alexa.

7.2.3.2 Additional

For testing Alexa specifically with Greenie, we started by going to the Arduino IDE,
setting up the connection with the Wi-Fi module, and adding in our desired libraries. We
wired the circuit similarly to Figure 9 in section 5.3.5 with the Wi-Fi module acting in
place of the microcontroller. This setup was important for Alexa testing because the
relay module was still acting as the controlling force for deciding whether to activate a
device or not. We then programmed the required actions needed for turning our water
pump on and off. Once that was complete and the circuit was constructed, we went to
the Amazon Alexa app and registered our water pump as a new device. With the water
pump added, we issued commands for Alexa to perform. The following commands were
executed:

● “Alexa. Turn on the water pump”
● “Alexa. Turn off the water pump”
● “Alexa. Turn on temperature display
● “Alexa. Turn on soil display”

117

7.2.4 Web Application Testing
For the web application testing, we followed the standard web testing requirements
including functionality, usability, security, compatibility, performance, interface, and
crowd testing. This testing was done during and after the development of our project. As
part of the web application testing, we made sure to check the following requirements
that are outlined below.

Functionality Testing checks if each feature on our web app is functioning as expected.

● All links must be working properly using a web browser.
● Cookies should be deleted when the cache is cleared.
● Possible syntax errors will be checked.
● The ‘start’ button on the ‘Herbs’ page should add the selected herb to the system

and start the automated watering.
● The ‘stop’ button on the ‘Herbs’ page should stop the automated watering.
● The ‘start/stop’ button on the main page should turn on or off the water pump and

the nutrient pump.
● The dashboard should display updated readings from the sensors and updated

weather forecast.
● The Metrics page should include a graph of the amount of water and nutrient

solution that has been dispersed and how much was saved.

Usability Testing checks if our web app is responsive and accessible.

● Menus, buttons, and the herb’s daily statistics should be visible and accessible
on the web page.

● The format of the web app should be consistent and easy to navigate.
● Texts should be clear and understandable.
● Texts and images must have the right proportion.
● The theme and colors should not be too bright.
● The tabs on the left side of the web app should redirect users to the correct page.

Security Testing is important since our web app asks for the user’s personal information
such as name and address.

● When users enter an invalid address, the weather information will not be
displayed on the web app and integrated into the system.

● The session should expire after 30 minutes of inactivity.
● The herb’s daily statistics and watering history should not be accessible to other

users.

Compatibility Testing checks the compatibility of our web app on various operating
systems, web browsers, and devices.

● The web app should work on Windows, MAC, and Linux.

118

● The web app should work on Google Chrome, Microsoft Edge, Mozilla Firefox,
and Safari.

● The web app should work on desktops, laptops, tablets, and mobile phones.

Performance Testing checks how well our web app performs under different
circumstances.

● The response time should be less than 5 seconds.
● The response time will be checked under different internet conditions.
● The website must handle multiple users at the same time.

Interface Testing checks if communication between the web server, application server,
and the database server is working properly. Crowd Testing allows different users to test
our web application and provide feedback.

7.2.5 Weather Integration Testing
To test the weather integration for Greenie, we used the API keys provided to us to
verify that they work for our web application. Starting with the web application, we
started by using our current location and getting it to appear. Once that was confirmed
we moved to the forecast information. We checked to see if the temperature is
accurately displayed as well as the forecast status (i.e rain, sunny, cloudy, etc.). To do
the accuracy check, we looked at weather stations on a separate device and noted the
similarities. With all the checks going well, we verified that the weather integration was
working on our web application.

As for the notification for alerting the user of rain, we decided to use the forecast status
as a key point. So in the case of rain, we went back to the web application and
configured it so that it tells the user that it would be best to use the water pump at
another time given its status. To ensure that this feature was tested on time, rather than
waiting for it to rain where we are currently located, we searched for a location where
the forecast was already set to rain and sent the notification based on that. After
performing the rain forecast test, we found a location where it is sunny to verify that the
notification no longer appeared.

7.2.6 Database Testing

7.2.6.1 Preliminary

Given that we have decided to implement Firebase for our project and we are looking to
create an application that involves Arduino hardware materials, we have decided to
perform tests on our database to ensure that it works well in our project. In the event
where we assumed the database would work well with our hardware components and
they did not, we thought it would be best to catch these mistakes early. So, to perform a
preliminary test on our database we started by making sure that when working with the
web application, that the data retrieved was stored properly. We began by creating a

119

table and filling it with random pieces of information. We then took the information and
displayed it on our web application. If the data seen on our web application was
accurate, then we confirmed that our database is storing information correctly and
working with our web application. Next, we took that random information stored in our
table and then got it to display on our LCD. By doing so, we were not only able to see
that our microcontroller was set up properly with our LCD, but also that our stored
information was capable of reaching our hardware components. We recognized this as
an important check because it also played a big part in making sure our sensors were
reachable. With our sensors, because we were looking to do several checks based off
of the 10 types of herbs in our database, we wanted to ensure that our sensors were
capable of utilizing that information.

7.2.6.2 Additional

For testing our database with Greenie, we expanded on our preliminary testing by using
our 10 herbs in place of the random information. Taking basil as an example, we took
the status we’ve stored about basil in the database and then got that data to display on
the LCD. If the display showed the expected status, then we could say that our
Database is capable of reaching the hardware. To verify that the status showed up
correctly for basil, we also decided to do checks for the other 10 herbs. Given that the
status should return a certain value according to a certain herb, we confirmed that
hardware was working very well with our database when we saw that results were
displaying correctly for each herb on the LCD.

Then moving onto the sensors, for testing the database with them we took the data
normally used for sensor checks and verified that they could be altered. So, using basil
again but this time with our various sensors (soil moisture, temperature/humidity, pH) we
started by taking the values assigned in the database, sending them over to the Arduino
IDE and verifying that it has been captured in the output screen. The values in the
output screen matched the values in the database tables and we confirmed the data
transfer was a success. Then proceeding on with the alter check, we verified that the
values we’ve obtained were usable and that they did not yield any errors. So, we took a
value like temperature and added/subtract from it. After making the change and seeing
that the values updated accordingly on the hardware, we confirmed that the transfer
was a success and that there were no errors.

7.2.7 Web Service Testing

7.2.7.1 Preliminary

Given that we have several tests and components in our project that revolve around the
web application working properly, we recognize that testing the web service itself is
equally as important. So, for performing a preliminary test with Drive to Web decided to
test the responsiveness of their service as well as the it’s accuracy. In terms of
responsiveness, we started by creating a gmail account for the group and creating
some simple code to upload. After creating a simple setup with HTML, CSS, and

120

Javascript, we created a folder on Google Drive and uploaded the files to it. We then
deployed the code using their service and waited for the response. After seeing the
code update instantly, we confirmed that the service was responsive and that the Drive
to Web servers are running fine. Then in terms of accuracy, we tested this by uploading
code to it that involved external sources from the internet. We determined this was
crucial to test so we could verify that our weather integration could be properly deployed
online. After confirming that using external internet works in the code deployment, we
confirmed that the Drive to Web does work for our web application.

7.2.7.2 Additional

For testing our web service with Greenie, we performed a button interface test. With the
water pump for example, we created our button for manually turning the water pump on
and off and uploaded the code for it to the Google Drive folder. After making all of the
necessary connections, we attempted to turn on the water pump on and off and see if
we got our expected outcome. If neither button worked, then we concluded that we have
an issue with establishing a connection between the software and hardware. And to
remedy problems such as these, we would go back to our code and continually modify it
until the connection can be made. Ultimately, after making a successful connection
between the hardware and the software, we were able to confirm that Drive to Web
does work well specifically for our project.

8. Administrative Content
In this section, we will be discussing the administrative content behind our project. We
will discuss relevant information such as our budgeting and financing, our Bill of
Materials (BOM) as of now, our milestones for Senior Design 1 and 2, and how our
team members have divided the content of our project.

8.1 Budget and Financing
Greenie is financed by the members of Group 10. Throughout our research, we looked
around for the most inexpensive items that would ultimately lead to the completion of
our objectives. We have also decided to place a cap in our budget of up to $500.00. The
table shown below (refer to Table 18) gives a rough estimate of how much money we
intend to spend on the components we believe we need so far. The components and
their cost have changed throughout the development of our project as they are acquired
and tested. Given that the project is being self-funded by us, we have decided to utilize
parts that we have already purchased for other projects, whether they were personal or
for other classes.

121

Item Price Quantity Total

LCD1602 Module
(already owned)

$0.00 1 $0.00

Microcontroller -
Atmega328P
(already owned)

$0.00 1 $0.00

Power Supply -
Portable Battery

$25.00 1 $25.00

Soil Sensor $10.00 3 $10.00

Rain Sensor $10.00 1 $10.00

Temperature and
Humidity Sensor -
DHT-11
(already owned)

$0.00 1 $0.00

pH Sensor $40.00 1 $40.00

Piezoelectric Sensor $10.00 1 $10.00

Relay Module $10.00 1 $10.00

Water Pump $15.00 1 $15.00

Wi-Fi Module $15.00 1 $15.00

Tester Herbs $5.00 3 $15.00

Wires
(already owned)

$0.00 20 $0.00

Breadboard
(already owned)

$0.00 1 $0.00

Voltage Regulator
12V

$1.50 1 $1.50

Voltage Regulator 5V $0.95 1 $0.95

Final Total = $152.45

Table 18: Estimated Budget

122

8.2 Bill of Materials (BOM)
Our Bill of Materials (BOM) can be observed below in Table 19. In it, all of the
components that we have purchased for our project can be observed. The components
have the same numerical label and name as in Figure 11 and Table 18.

Number Part Name Qty Unit Cost Cost

1 HiLetgo ESP8266 Development Board 2 $6.49 $12.98

2 Miuzei Board with Atmel ATmega328P 1 $0.00 $0.00

3 LCD1602 Module 1 $0.00 $0.00

4 KeeYees LM393 Soil Moisture Sensor 1 $7.99 for 3 $7.99

5 Teyleten Robot LM393 Rain Sensor 1 $5.88 for 2 $5.88

6 DHT-11 Temperature & Humidity Sensor 1 $0.00 $0.00

7 Solar Power Bank 10,000mAh 1 $28.99 $28.99

8 Bojack Voltage Regulator Assortment Kit 1 $13.99 $13.99

9 Quickun Pure Silicone Tubing 1 $12.99 $12.99

10 LEDGLE Mini Submersible Water Pump 1 $8.99 $8.99

11 GAOHOU PH0-14 Sensor Module 1 $35.59 $35.59

12 HiLetgo 5V Relay Module 2 $6.19 for 2 $12.38

13 Gikfun 3m Silicone Tube 2mm 1 $7.88 $7.88

14 Gikfun 12V DC Dosing Pump 1 $10.98 $10.98

15 PCB 1 $35.51 $35.51

16 PCB Components 1 $39.18 $39.18

17 Enclosure 1 $31.99 $31.99

18 Nutrient Solution 1 $6.89 $6.89

19 HFS Solenoid Valve 1 $13.99 $13.99

Final Total: $286.20

Table 19: Bill of Materials (BOM)

123

8.3 Senior Design 1 Milestones
Given that this Senior Design course is split into two semesters, in Table 20 and Table
21 seen below, the milestones for each course and its corresponding dates can be
observed.

Milestone Task Completion Date Completion Status

1 Submit initial project
document (D&C 1.0)

June 11, 2021 Complete

2 Have the project
approved by Dr.
Riche

June 16, 2021 Complete

3 Submit initial project
document (D&C 2.0)

June 25, 2021 Complete

4 Order and test parts July 2, 2021 Complete

5 Design and create
PCB

July 7, 2021 Complete

6 Submit 60-page
draft

July 9, 2021 Complete

7 Have a 60-page
meeting with Dr.
Richie

July 14, 2021 Complete

8 Perform more
in-depth research for
100-page
submission

July 12 - 22, 2021 Complete

9 Submit 100-page
report

July 23, 2021 Complete

10 Submit SD1 final
document

August 3, 2021 Complete

Table 20: Senior Design 1 Milestones

124

8.4 Senior Design 2 Milestones

Milestone Task Completion Date Completion Status

1 Finalize ordering
correct parts for the
project

August Complete

2 Finish testing project August Complete

3 Get web app
working

August Complete

4 Connect web app to
hardware

September Complete

5 Purchase materials
necessary to build
the project design

September Complete

6 Build product design September /
October

Complete

7 Verify that the build
works properly with
the hardware and
software built

October Complete

8 Refine project October Complete

9 Edit and submit SD2
Final Document

End of SD2 Complete

10 Prepare final
presentation

End of SD2 Complete

11 Build and prepare a
website to store all
of our project’s
information

End of SD2 Complete

12 Final presentation End of SD2 Complete

Table 21: Senior Design 2 Milestones

125

8.5 Content Distribution
Senior Design courses are team-based so the work behind our project has been split
between our team members. Given that there are two Computer Engineering (CPE)
students and two Electrical Engineering (EE) students, the areas of focus were
assigned accordingly. Our CPE members were assigned the software part of our project
and the EE members were assigned the hardware parts. This was done to ensure that
all members were equally contributing to our joint document while working on the areas
that they enjoy the most. Below, the content distribution between our team members
can be observed.

1. Angelica:
a. Microcontroller
b. Sensors (soil moisture, rain, pH, humidity and temperature)
c. AC/DC Converter
d. DC/DC Converter
e. Water pump
f. Relay Module

2. Elliott:
a. Database
b. Wi-Fi module
c. Alexa integration
d. Web application

3. Kevin:
a. LCD
b. Power supply
c. Voltage Regulator
d. PCB
e. Relay Module
f. Solenoid Valve

4. Patricia:
a. Communication
b. Interface
c. Web application

5. Everyone:
a. Documentation
b. Building
c. Testing
d. Refining

126

9. Appendices

9.1 Appendix A: References
[1]
https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use/#:~:tex
t=Agriculture%20is%20a%20major%20user,percent%20in%20many%20Western%20St
ates.

[2] https://www.intellias.com/smart-irrigation-in-agriculture/

[3] https://www.ourpcb.com/pcb-design-softwares.html

[4]
https://www.oaktreeproducts.com/img/product/description/List%20of%20Worldwide%20
AC%20Voltages.pdf

[5] https://www.digikey.com/en/maker/blogs/introduction-to-dc-dc-converters

[6] https://hetpro-store.com/PDFs/lm317.pdf

[7] https://www.4pcb.com/about_us/

[8] https://www.ti.com/lit/ds/symlink/lm2576.pdf?ts=1626712929011

[9] https://www.onsemi.com/pdf/datasheet/lm2596-d.pdf

[10] https://jlcpcb.com/

[11] https://www.pcbway.com/

[12] https://www.npr.org/templates/story/story.php?storyId=91363837

9.2 Appendix B: Purchase Links
Solar Power Bank
https://www.amazon.com/gp/product/B07FDXDB3W/ref=ppx_yo_dt_b_asin_title_o00_s
00?ie=UTF8&psc=1

LEDGLE Mini Submersible Water Pump
https://www.amazon.com/gp/product/B085NQ5VVJ/ref=ppx_yo_dt_b_asin_title_o00_s0
0?ie=UTF8&psc=1

Teyleten Robot 3pcs LM393 Rain Drops Sensor

127

https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use/#:~:text=Agriculture%20is%20a%20major%20user,percent%20in%20many%20Western%20States
https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use/#:~:text=Agriculture%20is%20a%20major%20user,percent%20in%20many%20Western%20States
https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use/#:~:text=Agriculture%20is%20a%20major%20user,percent%20in%20many%20Western%20States
https://www.intellias.com/smart-irrigation-in-agriculture/
https://www.ourpcb.com/pcb-design-softwares.html
https://www.oaktreeproducts.com/img/product/description/List%20of%20Worldwide%20AC%20Voltages.pdf
https://www.oaktreeproducts.com/img/product/description/List%20of%20Worldwide%20AC%20Voltages.pdf
https://www.digikey.com/en/maker/blogs/introduction-to-dc-dc-converters
https://hetpro-store.com/PDFs/lm317.pdf
https://www.4pcb.com/about_us/
https://www.ti.com/lit/ds/symlink/lm2576.pdf?ts=1626712929011
https://www.onsemi.com/pdf/datasheet/lm2596-d.pdf
https://jlcpcb.com/
https://www.pcbway.com/
https://www.npr.org/templates/story/story.php?storyId=91363837
https://www.amazon.com/gp/product/B07FDXDB3W/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07FDXDB3W/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B085NQ5VVJ/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B085NQ5VVJ/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1

https://www.amazon.com/gp/product/B088FXM2JG/ref=ppx_yo_dt_b_asin_title_o00_s0
0?ie=UTF8&psc=1

KeeYees 5 Pcs High Sensitivity Soil Moisture Sensor Module
https://www.amazon.com/gp/product/B07QXZC8TQ/ref=ppx_yo_dt_b_asin_title_o00_s0
0?ie=UTF8&psc=1

HiLetgo 1PC ESP8266 Development Board
https://www.amazon.com/gp/product/B010O1G1ES/ref=ppx_yo_dt_b_asin_title_o00_s0
1?ie=UTF8&psc=1

BOJACK Package High Current Positive Voltage Regulator Assortment Kit
https://www.amazon.com/gp/product/B07T5ZHY63/ref=ppx_yo_dt_b_asin_title_o00_s0
1?ie=UTF8&psc=1

Quickun Pure Silicone Tubing, 8mm ID x 12mm
https://www.amazon.com/gp/product/B08BR8BB5D/ref=ppx_yo_dt_b_asin_title_o00_s0
2?ie=UTF8&psc=1

HiLetgo 5V Relay Module
https://www.amazon.com/dp/B00LW15A4W/?coliid=I1HRPDCZ693E0I&colid=3I8HKT91
70ODE&psc=1&ref_=lv_ov_lig_dp_it

GAOHOU PH0-14 Sensor Module
https://www.amazon.com/GAOHOU-PH0-14-Detect-Electrode-Arduino/dp/B0799BXMV
J/ref=sr_1_1_sspa?dchild=1&keywords=ph+sensor&qid=1625522607&sr=8-1-spons&p
sc=1&smid=A2NM95757809ZA&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzNFBNMV
RSSVIwVEw0JmVuY3J5cHRlZElkPUExMDQ0ODg5M0pDNklJSkc3Tlk0MyZlbmNyeXB
0ZWRBZElkPUEwNTU2NDUxMlJCVUdVWEdES0lWUyZ3aWRnZXROYW1lPXNwX2F
0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=

Gikfun 3m Silicone Tube 2mm
https://www.amazon.com/gp/product/B08H1ZD5VZ/ref=ppx_yo_dt_b_asin_title_o02_s0
0?ie=UTF8&psc=1

Gikfun 12V DC Dosing Pump Peristaltic Dosing Head
https://www.amazon.com/gp/product/B01IUVHB8E/ref=ppx_yo_dt_b_asin_title_o02_s0
0?ie=UTF8&psc=1

128

https://www.amazon.com/gp/product/B088FXM2JG/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B088FXM2JG/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07QXZC8TQ/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07QXZC8TQ/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B010O1G1ES/ref=ppx_yo_dt_b_asin_title_o00_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B010O1G1ES/ref=ppx_yo_dt_b_asin_title_o00_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07T5ZHY63/ref=ppx_yo_dt_b_asin_title_o00_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07T5ZHY63/ref=ppx_yo_dt_b_asin_title_o00_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B08BR8BB5D/ref=ppx_yo_dt_b_asin_title_o00_s02?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B08BR8BB5D/ref=ppx_yo_dt_b_asin_title_o00_s02?ie=UTF8&psc=1
https://www.amazon.com/dp/B00LW15A4W/?coliid=I1HRPDCZ693E0I&colid=3I8HKT9170ODE&psc=1&ref_=lv_ov_lig_dp_it
https://www.amazon.com/dp/B00LW15A4W/?coliid=I1HRPDCZ693E0I&colid=3I8HKT9170ODE&psc=1&ref_=lv_ov_lig_dp_it
https://www.amazon.com/GAOHOU-PH0-14-Detect-Electrode-Arduino/dp/B0799BXMVJ/ref=sr_1_1_sspa?dchild=1&keywords=ph+sensor&qid=1625522607&sr=8-1-spons&psc=1&smid=A2NM95757809ZA&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzNFBNMVRSSVIwVEw0JmVuY3J5cHRlZElkPUExMDQ0ODg5M0pDNklJSkc3Tlk0MyZlbmNyeXB0ZWRBZElkPUEwNTU2NDUxMlJCVUdVWEdES0lWUyZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.amazon.com/GAOHOU-PH0-14-Detect-Electrode-Arduino/dp/B0799BXMVJ/ref=sr_1_1_sspa?dchild=1&keywords=ph+sensor&qid=1625522607&sr=8-1-spons&psc=1&smid=A2NM95757809ZA&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzNFBNMVRSSVIwVEw0JmVuY3J5cHRlZElkPUExMDQ0ODg5M0pDNklJSkc3Tlk0MyZlbmNyeXB0ZWRBZElkPUEwNTU2NDUxMlJCVUdVWEdES0lWUyZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.amazon.com/GAOHOU-PH0-14-Detect-Electrode-Arduino/dp/B0799BXMVJ/ref=sr_1_1_sspa?dchild=1&keywords=ph+sensor&qid=1625522607&sr=8-1-spons&psc=1&smid=A2NM95757809ZA&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzNFBNMVRSSVIwVEw0JmVuY3J5cHRlZElkPUExMDQ0ODg5M0pDNklJSkc3Tlk0MyZlbmNyeXB0ZWRBZElkPUEwNTU2NDUxMlJCVUdVWEdES0lWUyZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.amazon.com/GAOHOU-PH0-14-Detect-Electrode-Arduino/dp/B0799BXMVJ/ref=sr_1_1_sspa?dchild=1&keywords=ph+sensor&qid=1625522607&sr=8-1-spons&psc=1&smid=A2NM95757809ZA&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzNFBNMVRSSVIwVEw0JmVuY3J5cHRlZElkPUExMDQ0ODg5M0pDNklJSkc3Tlk0MyZlbmNyeXB0ZWRBZElkPUEwNTU2NDUxMlJCVUdVWEdES0lWUyZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.amazon.com/GAOHOU-PH0-14-Detect-Electrode-Arduino/dp/B0799BXMVJ/ref=sr_1_1_sspa?dchild=1&keywords=ph+sensor&qid=1625522607&sr=8-1-spons&psc=1&smid=A2NM95757809ZA&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzNFBNMVRSSVIwVEw0JmVuY3J5cHRlZElkPUExMDQ0ODg5M0pDNklJSkc3Tlk0MyZlbmNyeXB0ZWRBZElkPUEwNTU2NDUxMlJCVUdVWEdES0lWUyZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.amazon.com/GAOHOU-PH0-14-Detect-Electrode-Arduino/dp/B0799BXMVJ/ref=sr_1_1_sspa?dchild=1&keywords=ph+sensor&qid=1625522607&sr=8-1-spons&psc=1&smid=A2NM95757809ZA&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzNFBNMVRSSVIwVEw0JmVuY3J5cHRlZElkPUExMDQ0ODg5M0pDNklJSkc3Tlk0MyZlbmNyeXB0ZWRBZElkPUEwNTU2NDUxMlJCVUdVWEdES0lWUyZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=
https://www.amazon.com/gp/product/B08H1ZD5VZ/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B08H1ZD5VZ/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01IUVHB8E/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B01IUVHB8E/ref=ppx_yo_dt_b_asin_title_o02_s00?ie=UTF8&psc=1

