The Smart Bird Feeder

EEL 4915 | Senior Design Il | December 7, Fall 2021 | Group 7

Paul Amoruso
Computer Engineering
University of Central Florida

Nikki Marrow
Electrical Engineering
University of Central Florida

John Hauff
Computer Engineering
University of Central Florida

Matthew Wilkinson
Computer Engineering
University of Central Florida

Table Of Contents

1. Executive Summary

2. Project Description

2.1 Introduction
2.2 Motivation
2.3 Goals and Objectives
2.4 Requirements Specifications
2.4.1 General
2.4.2 Hardware
2.4.3 App and Ul Integration
2.4.4 Machine Learning Bird Species Detection
2.4.5 WiFi Connectivity
2.4.6 Power
2.5 House of Quality
2.5.SD2 House of Quality
2.6 Software Block Diagram
2.6.SD2 Software Block Diagram
2.7 Hardware Block Diagram
2.7.SD2 Hardware Block Diagram
2.8 Mobile Application Design Diagram
2.8.SD2 Mobile Application Design Diagram
2.9 User Guide Instructions
2.9.5D2 User Guide Instructions

3. Technology Investigation and Part Selection

3.1 Existing Products and Projects
3.1.1 Automatic Species Detection
3.1.2 Deterring Squirrels
3.1.3 Solar Power
3.1.4 Combined Innovation

3.2 Machine Learning Acceleration Technology Comparison

3.2.1 Product Options
3.2.1.1 Coral Dev Board

3.2.1.2 Raspberry Pi 4 + Coral USB Accelerator
3.2.1.4 Raspberry Pi 4 + Intel Neural Compute Stick 2

3.2.1.5 Arduino Nano 33 BLE Sense
3.2.1.6 Jetson Nano Developer Kit

O 00 NO OO O WWW =

| |\ JESS N N N UL U U G
O © © 0 NO O O w

N DNDNDNDNDDNMNDNDDNMNDNDDNMNDNDDND
NOoO o ar~rbdbPAApbpOWDNMDDNMND

3.2.1.6.1 Jetson Nano 4GB Developer Kit
3.2.1.6.2 Jetson Nano 2GB Developer Kit
3.2.2 Product Comparisons
3.2.2.1 SoM CPU and Graphics Comparisons
3.2.2.2 Power Considerations
3.2.2.3 Memory Comparison
3.2.2.4 Product Pricing

3.2.2.5 Product Developer Software Comparison

3.2.2.6 Miscellaneous Features Comparison
3.2.3 Machine Learning Product Choice
3.2.3.SD2 Machine Learning Product Choice
3.3 Wireless Communication
3.3.1 Wireless vs Wired Communication
3.3.2 Wireless Communication Options
3.3.3 Wi-Fi
3.3.4 Bluetooth
3.3.5 Infrared
3.3.6 Wireless Communication Selection
3.4 Microcontroller
3.4.1 Microcontroller Options
3.4.1.1 MSP430FR6989
3.4.1.2 MSP430G2553
3.4.1.3 ATMEL ATmega328P
3.4.2 Microcontroller Selection
3.5 Motor Control
3.5.1 Motor Options
3.5.1.1 DC Motors
3.5.1.2 Stepper Motors
3.5.1.3 Servo Motors
3.5.2 Categorical Motor Comparison
3.5.3 Motor Selection
3.5.3.SD2 Motor Selection
3.6 Distance Sensing Technology
3.6.1 Distance Sensing Options
3.6.1.1 Ultrasonic Sensor
3.6.1.2 Infrared Sensor
3.6.2 Distance Sensing Technology Selection
3.6.2.SD2 Distance Sensing Technology Selection

28
28
29
29
30
31
32
32
35
37
37
37
38
38
39
40
41
41
42
43
43
44
44
45
46
46
47
47
47
48
49
50
51
51
51
53
53
54

3.7 Solar Energy
3.7.SD2 Solar Energy (SD2 Stretch Goal)
3.7.1 Charge Controller (SD2 Stretch Goal)
3.7.2 Solar Powered Battery (SD2 Stretch Goal)
3.7.3 Solar Cells (SD2 Stretch Goal)
3.8.SD2 Replacement Battery System
3.9 Piezo Speaker
3.9.SD2 Piezo Speaker
3.10 Serial Communication Technologies
3.10.112C
3.10.2 UART
3.10.3 SPI
3.10.4 Serial Communication Protocol Conclusion
3.11 Full Stack Development Technologies
3.11.1 Flutter
3.11.2 React Native
3.11.3 SQL and NoSQL Databases
3.11.4 Expo
3.11.5 Visual Studio Code
3.11.6 Operating System
3.12.SD2 Motion Sensor Technology
3.12.1.SD2 Motion Sensor Comparison

4. Design Constraints and Standards
4.1 Constraints
4.1.1 Economic Constraints
4.1.2 Environmental Constraints
4.1.3 Social Constraints
4.1.4 Political Constraints
4.1.5 Ethical Constraints
4.1.6 Health and Safety Constraints
4.1.7 Manufacturability Constraints
4.1.8 Sustainability Constraints
4.1.9 Time Constraints
4.1.10 Testing/Presentation Constraints
4.2 Standards
4.2.1 IEEE 802.11 Standard
4.2.2 Battery Standard
4.2.3 C Language Standards

55
56
56
56
57
58
58
59
60
60
60
61
62
62
62
62
63
63
63
64
66
66

68
68
69
70
71
71
72
73
74
75
76
77
78
79
80
81

4.2.4 |PC PCB Standards

5. Smart Bird Feeder System Design
5.1 Hardware
5.1.SD2 Hardware

5.1.1 Birdhouse Design

5.1.1.SD2 Birdhouse Design

5.1.2 Power Distribution

5.1.2.5D2 Power Distribution

5.1.3 Voltage Regulators and Converters
5.1.3.1 Linear vs Switching Regulators
5.1.3.2 Voltage Converter Selection
5.1.3.3 Voltage Converter Design
5.1.3.3.SD2 Voltage Converter Design

5.1.4 NVIDIA Jetson Nano Hardware Design

5.2 Software
5.2.SD2 Software

5.2.1 Smart Bird Feeder Application Design
5.2.1.1 User Interface
5.2.1.2 Login/Signup
5.2.1.2.SD2 Login/Signup
5.2.1.3 Landing Page
5.2.1.3.SD2 Landing Page
5.2.1.4 Memories Page
5.2.1.4.SD2 Memories Page

5.2.2 Computer Vision Annotation Tool Software (CVAT)

5.2.3 MSP430G2553 Software and Components
5.2.3.1 MSP430G2553 Development
5.2.3.1.SD2 MSP430G2553 Development
5.2.3.2 Motor
5.2.3.2.SD2 Motor
5.2.3.3 Alarm
5.2.3.3.SD2 Alarm
5.2.3.4 Ultrasonic Sensor

5.2.4 Machine Learning Object Detection Model

6. Overall Integration, PCB Design, and System Testing
6.1 Overall Schematic
6.1.SD2 Overall Schematic

82

84
84
85
85
87
89
89
90
91
91
92
93
94
95
95
96
96
96
99
99
101
101
102
103
105
105
106
106
108
108
108
109
109

110
110
112

6.2 PCB Design
6.2.5D2 PCB Design
6.2.1 PCB Power Interfacing
6.3 System Testing and Prototyping
6.3.1 Hardware Testing and Prototyping
6.3.1.1 Microcontroller Testing
6.3.1.2 Printed Circuit Board Testing
6.3.1.3 Solar Energy System Testing
6.3.1.3.SD2 Solar Energy System Testing
6.3.1.4 ML Accelerator Hardware Testing and Prototyping
6.3.1.4.SD2 ML Accelerator Hardware Testing and Prototyping
6.3.1.4.1 ML Accelerator Hardware System Testing
6.3.1.4.1.1 Raspberry Pi Camera Module V2 Testing
6.3.1.4.2 ML Accelerator Hardware System Prototyping
6.3.1.4.2.1 Running A Pre-trained Object Detection Model

112
114
114
115
115
117
118
119
120
120
120
121
121
122
122

6.3.1.4.2.2 Retraining and Running A Pre-trained Object Detection

Model to Detect Bird Species and Squirrels
6.3.1.4.2.2.1 Detecting Bird Species
6.3.1.4.2.2.1.SD2 Detecting Bird Species
6.3.1.4.2.2.2 Detecting Squirrels
6.3.1.4.2.2.2.SD2 Detecting Squirrels
6.3.1.4 Ultrasonic Sensor Testing
6.3.1.5 Alarm Testing
6.3.1.6 Motor Testing
6.3.4 Software Testing
6.3.4.SD2 Software Testing
6.3.4.1 Sign Up Testing
6.3.4.1.SD2 Sign Up Testing
6.3.4.2 Photo Storage Testing
6.3.4.3 Livestream Testing
6.3.4.3.SD2 Livestream Testing
6.3.4.4 Notifications Testing
6.3.4.4.SD2 Notifications Testing
6.3.4.5 Ul and Buttons Testing
6.3.4.5.SD2 Ul and Buttons Testing

7. Administration
7.1 Project Budgeting and Financing
7.1.SD2 Project Budgeting and Financing

124
124
126
127
127
128
128
129
131
131
131
132
132
133
134
134
135
135
135

136
136
137

7.2. Project Milestones
7.2.1 Semester | (Senior Design I)
7.2.2 Semester Il (Senior Design Il)
7.3 Project Member Contributions
7.4 Project Management Tools
7.4.1 Discord
7.4.2 Clickup
7.4.3 Text Messaging and Calls Via Cellular Device
7.4.4 GitHub

8. Conclusion

Appendix
A1 References

139
139
140
141
143
143
145
146
146

148

150
150

1. Executive Summary

As people try to reconnect with nature, many people find watching and interacting
with wild, free-spirited birds as a form of relaxing entertainment. However, where
there are birds, there are often squirrels. Squirrels are constantly scavenging for
food, and the number of squirrels that populate areas that humans inhabit grows
each day. Thus, squirrels are often considered one of the top pests in the
backyards, gardens, and any places where food and trees exist. This leads us into
the issue we have aimed to fix. Due to the similar diets birds and squirrels have,
squirrels will often steal bird food that is given by humans to entice bird activity.
Thus, because of the skittish nature of birds, squirrels will often scare off the wild
birds by approaching and snatching most if not all of the food before the birds are
able to. In response to this, our team's goal for this project was to provide a
method of feeding wild birds without pesky squirrels. People have been inventing
bird feeders that try to prevent squirrels from doing this for a long time. However,
they often have relatively annoying constraints on the end users by their required
shape, design, or placement to be remotely effective. On the other hand, several
bird feeders have been invented that incorporate modern-day technology to
improve the traditional bird feeder. Moreover, some popular modern bird feeders
have made attempts at creating devices that can recognize bird species with an
attached camera. Features like notifications, uploaded pictures, and videos, have
allowed the bird watchers to be anywhere in the world and still get to watch their
backyard birds. However, nearly all of these bird detection feeders lack the ability
to defend against squirrels. This presented the opportunity for our group to
innovate, using the inspiration from these modern bird feeders, and create a smart
bird feeder that not only detects birds for us to look at, but also defends against
pesky squirrels from eating all the food and scaring off the visiting birds. However,
in our endeavor to develop a Smart Bird Feeder that is able to do all that we aim
for it to do, we were faced with a couple constraints. While we address these
constraints along with issues that arose later, it is important that throughout our
project we keep in mind that a limited amount of time of around seven months to
build and test this product prior to presentation is important to note, and that on
top of that, we were highly reliant on the animals (birds & squirrels) to interact with
the bird feeder to test and document the effectiveness of the product.

The Smart Bird Feeder has been designed with the intention of allowing bird
enthusiasts to stay up to date with their feathery friends, while defending birds
from squirrels, allowing them to enjoy the bird feeder to its full potential. To realize
this idea, our smart bird feeder contains a trained machine learning (ML) model
performing object detection from a purchased ML development board. This
development board is connected to a camera and a custom designed printed
circuit board (PCB) which itself is connected to a speaker to play sound to help
scare off invading squirrels, an ultrasonic sensor to keep track of amount of feed
left, and a servo motor to close a hatch door which provides a physical barrier
between squirrels and the feed. These components also interface with a
microcontroller located on the custom PCB. It is important to note that the

utilization of sounds to scare away squirrels is not a one hundred percent effective
method, as it is based upon the assumption that the squirrel is not experienced
enough to realize that the sound is coming from the speaker and that there is no
potential harm that comes from it. However, since squirrels are often
underestimated, we suspected that the sound would not be one hundred percent
effective, thus, this led us to implement a physical barrier known as the hatch, that
closes when squirrels visit, so that we can get to as close as possible to one
hundred percent effective. The idea for the project was to have the ML
development board detect between bird species and squirrels, then either close
the hatch and play a noise through the speaker when a squirrel arrives or take a
picture if the required percent accuracy of the bird species is reached. This picture
will then be sent to the mobile application through bluetooth or Wi-Fi. The user will
then be able to open the app and enjoy a live stream of the camera’s view. Our
smart bird feeder device also automatically captures a still image of the detected
bird and stores the image for easy viewing from the user application, along with a
label on the image indicating the species of the bird(s) contained within the image.

The following report documents the design process of The Smart Bird Feeder. It
will start off with the motivations, goals, and objectives for this project. It will then
proceed to describe the details of the requirement specifications and how our
team designed our smart bird feeder device to adhere to these requirements,
such as choosing to partially use low power modes in our device for the purpose
of limiting battery consumption. Chapter 3, known as the technology investigation
chapter, will contain the decisions made for each of the individual parts of the
system and the steps that lead to those decisions. Subsequently, the report will
dive deep into the design constraints that deal with such things like power
consumption and ease of use, and standards set by such organizations as IEEE,
that influence the making of our project. This document then moves on to design
details that go into discussing and providing visual depictions of such things as
the hardware, software, interfaces, and schematic of the overall system. Then,
once the design section is adequately discussed, the report will go into the overall
integration of the custom PCB into our smart bird feeder device, the design of the
PCB, and system testing performed on our smart bird feeder device. Afterwards,
the paper will finish off with an administration section followed by an overall
conclusion.

2. Project Description

In this section, we dive deeper into the project from the initial inspiration to a basic
design of what we had thought the application may look like. In other words, the
intention for this section is so that the project may be further explained and
introduced, in a short and to-the-point manner that is intended to be relatively
easy to comprehend and explain our intentions moving forward in the project.
Thus, this section starts off with a brief introduction and motivation to shed light on
how the project came to be. Then we move on to describe our group goals and
objectives before diving deep into the requirements specifications that help
describe requirements and implementations for such things as power, hardware,
mobile application, and more. Following this, we begin providing visual
representations of some aspects of the project, starting with the House of Quality
to help distinguish and relate our project's engineering requirements and
marketing specifications. Then, a software block diagram and hardware block
diagram are provided to show various aspects that will go into the project, and
who is leading the team on each individual aspect of this project. In subsection
2.8, there is a simple drawn sketch of the most basic features of the mobile
application to describe a very brief overview and representation of the important
pages of our user application, such as the login and main page of the application.
Then, finally, subsection 2.9 outlines the main steps to operate the smart bird
feeder device.

2.1 Introduction

The purpose of this project is to design and develop a solution for anyone who
enjoys feeding backyard birds, without the hassle of squirrels eating the food set
out for birds in their backyard. This project will incorporate designs for many
technical features. This includes a computer vision machine learning model
designed to identify bird species and squirrels, and a method of preventing
squirrels from staying at the feeder which involves using a speaker and automatic
door. In addition to the features mentioned, the bird feeder will incorporate novel
features such as image captures of the visiting birds provided in a mobile
application. This will let the user easily view the pictures, and also check the
amount of food left in the feeder.

2.2 Motivation

The idea to create a smart bird feeder stems from one of our team members'
hobbies, which we have found extends to a large market that’s rife for innovation.
There is a large majority of the population that enjoys bird feeding; zoos often
have attractions dedicated to the task, it's commonly seen in media, and most of
the time, bird feeding carries with it a positive societal connotation. The idea of
creating a personal bird feeding station right in a backyard is a great way to enjoy
the hobby in the comfort of one's home. However, as with many hobbies, in order

to maximize the potential benefits of a bird feeder, one must devote time and
resources into the hobby.

Our team found, as many others have, that it is challenging to devote enough time
towards the hobby to feel properly rewarded by it. A person could spend an
indefinite amount of time waiting and watching the feeder while nothing happens,
which is time that could be spent on another hobby or performing some other
more essential task. Due to these time constraints on a user, they are likely to
miss the birds feeding from time to time. Our team has set out to solve this issue
by creating a bird feeder that provides the level of satisfaction that the user would
be rewarded with if they always had time to watch the feeder. The team started by
considering how to create this dynamic and found that implementing a streaming
and photo system would ensure the user always had access to the bird feeding
moments.

This idea to extend the typical bird feeder’s potential began to grow the more the
group investigated current bird feeding systems. The ability to track the species of
the bird feeding is a key feature that spoke to our group, as tracking the different
types of birds visiting the feeder is an exciting part of the hobby. This feature
would also open other avenues in scalability for us or others to pursue in the
future, as a notifications system tied to a user application could be extended in
many ways, such as only notifying the user when the type of bird they're
interested in is feeding.

A group member also noticed a significant problem when trying to feed birds in
the past. Squirrels acted as a threat to the hobby, constantly stealing the food and
scaring the birds away. Our group hypothesized that by using the machine
learning species detection technology, we could equip the bird feeder with a
technology to detect unwanted animals, such as squirrels, preying on the bird
feed, and a chance to maximize the potential of the bird feeder. This detection
system could provide us with the potential to create a bird feeder which would
only allow birds to eat the bird feed. With this, our motivations began to align with
this train of thought. If our group could find a way to deter these predators, then
the user would not need to concern themselves with other animals feeding from
their bird feeder and could focus on enjoying their bird watching activities.

We noticed that other bird feeders on the market were not considering all of these
aspects at once. Overall, our group holds a strong motivation to automate and
maximize the potential of the bird feeding and bird watching process and consider
our product to be rife with potential based on the current marketplace, giving the
user the choice to take an active or more passive role in their bird watching hobby.

2.3 Goals and Objectives

Our group’s motivation to maximize the potential of the bird feeder in such a way
where the user needs to devote as little time as possible to actively bird watching

themselves, while still achieving maximum results, led us to develop several
concrete goals and objectives to achieve this potential. The primary consideration
was how to ensure autonomous functionality with the bird feeder. To do this, the
bird feeder is equipped with a device that uses machine learning with object
detection to be capable of determining the species of bird that’s currently feeding,
as well as any squirrels that may appear to unwantedly prey on the bird feed. The
process should be automatic, in which case The Smart Bird Feeder uses HTTP
communication over WiFi to send signals to an end-user's application that has ties
to the Smart Bird Feeder. This will alert the user to any feeding event, allowing
them to obtain immediate satisfaction without having to watch the bird feeder all
the time. The camera also provides a user who can’t view the event directly with
high quality images that are stored on the bird feeder application. The bird feeder
application should be seamless and efficient, providing the user with easy access
to any of the streams or image captures that have taken place.

In order to save time and the hassle of checking everyday to see if the bird food
has run out, the product will alert the user to when the feed is low. By
incorporating an ultrasonic sensor and connecting it to the processor, the
processor can then send a signal to the application when the bird feed has
passed a set threshold. The same thought process can be incorporated by setting
a threshold for the battery. The user should receive a notification upon a low
battery alert so they’re aware when they have to charge the device. If added onto
the system as a stretch goal, given that our team would like to limit the input time
from the user, a solar panel should provide strong support for the battery to make
the battery last as long as possible between charges.

To actively deter squirrels from the feeder, which will promote more bird feeding
time, the device will be equipped with a hatch door that will close the access to
the food when it detects a squirrel. However, given that the squirrels' presence
alone may deter birds, the feeder will also have an alarm that emits a sound that
will cause the feeding predators to flee from the feeder. This will ensure the
squirrel should have no reason to stick around near the feeder.

Our design goals ensure that we will bring to life a smart bird feeder that is full of
innovation and has the potential to find a proper area in the marketplace, all while
protecting itself against predators, providing beautiful up close images of visiting
birds, and keeping the user informed with the status of the feeder. With this
project, we are given the opportunity to satisfy every bird watcher’s wish of having
a sanctuary for local birds to eat in peace and provide customers a way to
experience the process.

2.4 Requirements Specifications

This section will outline the requirements that are highlighted above in a more
specific and verifiable manner. By writing the requirements in clear sentences, the
group will have a clearer and more organized path to take going forward. This

section will also be consulted throughout the design process to ensure we remain
focused on completing the objectives outlined below.

2.4.1 General

e A container houses the bird feed, which is protected by a motor-controlled
door, and gravity brings the bird feed into the feeding holes at the bottom of
the bird-feeder.

e Bird feed is always visible to the birds, even when covered from the

squirrels.

e The electronics are housed in a sturdy casing in order to protect from the
elements.

e A bird perch adjacent to the feeding holes provides a spot for image
capture.

2.4.2 Hardware

e Connected components:
o A machine learning acceleration device with camera and WiFi
module attached.
o A custom PCB with a motor and speaker attached.
o Battery bank to power all components.
e A servo, powered by the PCB, is connected to a hatch to rotate and limits
unwanted animals' access to feeding zones.
e A camera is placed at a proper vantage point to observe the feeding
platform.
e An alarm sound system deters unwanted visitors.
e An ultrasonic sensor provides information on low food level based on the
range between the ultrasonic sensor and the bird feed.
e A motion sensor detects movement to activate the machine learning
processor.

2.4.3 App and Ul Integration

The mobile application has an easy-to-use user interface, connecting the
user with various feeder technologies.
Notifications

o Notifications for low feed level.

o Notifications for birds active at the feeder.

o Notifications for new images added to the memories gallery.
Streaming (stretch goal)

o Access a stream of the bird feeding in real time.
Memories

o Save a picture of the bird feeding as a memory.

o Sort memories by date or bird species.

2.4.4 Machine Learning Bird Species Detection

e Object detection is suspended and inactive until movement is detected at
the feeder.

e A machine learning (ML) model is fed camera input and identifies bird
species or other feeder predators.

e The ML model identifies squirrel predators, and communicates with the
PCB to signal the feeding mode or defense mode.

e The ML dev kit sends a photo to the PCB to transfer to the application.

o The photo will be the picture with the highest percentage of species

confirmation.
Table 1 - Chosen bird species for recognition and their class labels

Bird Species Object Detection Class Label

American Crow american-crow

Blue Jay blue-jay

Blue-gray Gnatcatcher blue-gray-gnatcatcher

Carolina Wren carolina-wren

Common Grackle common-grackle

Downy Woodpecker downy-woodpecker

Gray Catbird gray-catbird

Green-cheeked Parakeet green-cheeked-parakeet

Mourning Dove mourning-dove

Northern Cardinal cardinal

Northern Mockingbird northern-mockingbird

Palm Warbler palm-warbler

Pileated Woodpecker pileated-woodpecker

Red-bellied Woodpecker red-bellied-woodpecker

Tufted Titmouse tufted-titmouse

Yellow-rumped Warbler yellow-rumped-warbler

The amount of time granted to our team for the development of our smart bird
feeder device put a heavy potential constraint on our device's object detection

capabilities. Given that the amount of time required to train a machine learning
(ML) model tends to increase as the number of objects the model is trained to
classify increases, our team had to carefully consider which bird species to train
our ML model to detect. Our team’s choice was based on enabling our smart bird
feeder to detect and capture images of the most commonly found birds in the
backyards of Florida (according to online sources [23]), given the time available to
develop this device. Table 1 shows the bird species that we chose to train our
smart bird feeder to detect, along with the species labels that the ML model uses
when it classifies the object detected in the live camera feed. These bird species
are the fifteen most common bird species found in Florida backyards and are the
bird species that our team required our smart bird feeder device to recognize,
capture images of, and feed.

In selecting our bird choice, we thought it to be logical to factor in the location in
which the project was being developed into our decision. Therefore, our team
decided that detecting the most commonly found bird species in Florida backyards
was the most natural choice. Our team is certainly considering expansion past this
list of bird species, however, if time permits. Our team will also make efforts to
ensure that the machine learning model is scalable, allowing for growth and
adaptation of the ML model to incorporate detection of additional bird species or
other objects if so desired. The team is also prepared in the event a bird is not
recognized, as the machine learning model will still be able to sense whether or
not the creature is a bird of an unknown species. Under these circumstances, the
device will tell the user that this bird is of an unknown species to the device, and
more updates will be coming to identify more species. The functionality of the bird
feeder will still provide users with a livestream, a picture, and deterrent against
squirrels.

2.4.5 WiFi Connectivity

e The Jetson Nano connects to WiFi

o Using IEEE 802.11 standard.
o Uses antennae to boost WiFi signal range.

2.4.6 Power

e Powered by a rechargeable battery.

e Battery is able to be charged while in use.

2.5 House of Quality

Tables 2.1 and 3.1 describe the numerous engineering requirements which are
relevant to this project with various relevant marketing requirements. The three

columns of these tables share an engineering requirement, a marketing
requirement that relates to the adjacent engineering requirement, and a
justification for the engineering requirement's existence in this project. Highlighted
in Tables 2.1 and 3.1 are the three project requirements that our team plans to
demonstrate with our device in Senior Design 2. The first requirement is for the
machine learning (ML) model of The Smart Bird Feeder to have at least a 70%
confidence level that an object is either a bird or a squirrel. This accuracy level
should be indicated along with a bounding box on the live video feed from the
smart feeder's camera. The second requirement for our smart bird feeder which
we plan to demonstrate is the speed at which the hatch that will shield the bird
feed from predatory squirrels will shut itself whenever there is a squirrel detected
nearby, where the camera on the smart bird feeder device will be the primary
component for detecting nearby squirrels. The third requirement that we will
demonstrate is that a given user will have access to at least 1 GB of storage
space for their bird images within their smart bird feeder application.

Below this table, the described requirements are then related to one another in
Figure 1, a product planning matrix known as The House of Quality (HOQ). This
figure is a tool designed to help groups like ours in establishing a visual
representation between the engineering requirements mentioned and marketing
specifications. We set our marketing requirements based on the wants and needs
that most potential customers in the market for bird feeders would have. It is
important to note that many of the engineering requirements are derived from the
marketing requirements initially set in place by these common wants and needs.
Obviously, a common requirement is to have a low maintenance system. Thus,
two of the engineering requirements deal with the longevity and charge speed of
the power supply.

We can see how the House of Quality displays the relationship between
marketing and engineering, by looking at the correlation between cost and battery
life. Customers will often tend to desire a low cost item, however, increasing the
battery life will increase the cost with it, thus it is evident that where cost and
battery life intersect, there is a strong negative correlation. It is important to also
note that while consumer desires play an important role in the requirements, the
engineering requirements that list the needs of our system (or any system) must
also be from the viewpoint of the developer/engineers of different engineering
aspects. This can easily be seen in how cost, ease-of-installation, and battery life
affect one another. While smaller dimensions correlate to lower battery life, we
must also ensure that we have enough power to supply to the electronic devices,
and meet our minimum baseline requirement.

Table 2 - Marketing and engineering requirements

Marketing
Requirements

Engineering Requirements

Justification

1. Accuracy of bird

Customer expectations

3 species and squirrel based on similar products
detection must exceed | are high.
90% capture images.
2. The dimensions should [The entire system must be
1 not exceed 8" x 8" x hung or mounted and remain
14", stable without falling.
3. The system should The system should have
5 have enough power to | enough battery life to be
run for at least 2 hours. | used practically.
4. Duration of external The system recharge time
5 battery recharge should | should not exceed a night
not exceed 6 hours. cycle and should be ready
by the next day or sooner.
5. The speaker should Speaker sound intensity
7 have an output range of | should be at a safe but
60-95 dB. effective range for deterring
squirrels.
6. Hatch door closing time | The door should close
7 should not exceed 3 quickly enough to prevent
seconds. squirrels' access to feed
7. Users should receive a | Long delays in notifying
4 notification of a new users of birds at the feeder

bird memory in 10
seconds or less.

would diminish the quality of
the bird-spotting experience.

Table 3 - Marketing and engineering requirements

Marketing Requirements

NN~

The device should have a compact and easy-to-install design.
The device should have a low cost.
The object detection for birds and squirrels should be reliable.
Images should be of high quality.

The device should be low-maintenance.
The device should be durable against weather and wildlife.

The device should not be harmful to its environment or any wildlife.

10

Table 2.1 - Marketing and engineering requirements (continued)

Marketing
Requirements

Engineering Requirements

Justification

8. Accuracy of bird

Customer expectations

3 species and squirrel based on similar products
detection must exceed | are high.
90% capture images.
9. The dimensions should [The entire system must be
1 not exceed 8" x 8" x hung or mounted and remain
14", stable without falling.
10. The system should The system should have
5 have enough power to | enough battery life to be
run for at least 2 hours. | used practically.
11. Duration of external The system recharge time
5 battery recharge should | should not exceed a night
not exceed 6 hours. cycle and should be ready
by the next day or sooner.
12.The speaker should Speaker sound intensity
7 have an output range of | should be at a safe but
60-95 dB. effective range for deterring
squirrels.
13.Hatch door closing time | The door should close
7 should not exceed 3 quickly enough to prevent
seconds. squirrels' access to feed
14.Users should receive a | Long delays in notifying
4 notification of a new users of birds at the feeder

bird memory in 10
seconds or less.

would diminish the quality of
the bird-spotting experience.

Table 3.1 - Marketing and engineering requirements (continued)

Marketing Requirements
8. The device should have a compact and easy-to-install design.
9. The device should have a low cost.
10. The object detection for birds and squirrels should be reliable.
11. Images should be of high quality.
12.The device should be low-maintenance.
13. The device should be durable against weather and wildlife.
14.The device should not be harmful to its environment or any wildlife.

11

External Quantity of
Bird Squirrel Battery Speaker Daoor Storage Per
Eecognition Battery Recharge Somnd [Adechamizm| Userio
Accuracy | Dimenzions Life Time Frequency Spesd App Weight Coxt
Installation Ease + T T T
Cost = T l l l TT
High o # .
Performance - -+
Hizh Image o A o
Quality - b
Low-maistenance = T T T T T TT
Drarability + . l
Safety of Wildlife o - - - -
and Environment b +
- eers - - 2" x 8" | = 20000 0-9C -3 i
Torgets for Enginesring | > 70% |5 %5 (2200000 gy | 0-90 =3 L1 GB | <151s | <8300
Fequirements x 14 mAh [~ dB zeconds | < = =

Legend
+ Increasing this requirement increases the desirability
of the device.
i Decreasing this requirement increases the
desirability of the device.
1 Positive correlation.
™ Strong positive correlation.
! Negative correlation.
U Strong negative correlation.

Figure 1 - House of Quality

12

2.5.SD2 House of Quality

In Senior Design 2, the group changed the engineering requirements to be more
relevant and testable. We found that a few of the engineering requirements listed
before were not backed up by reasoning and lacked clear meaning.

For instance, we noticed that requirement 3, “Life of the power bank should be at
or exceeding 20000 mAh”, was attempting to ensure our device could run for a
certain amount of time, but as we didn’t yet fully know the current consumption, it
was rather arbitrary. This requirement now reads “The system should have
enough power to run for a certain amount of time” with a specification of at least 8
hours. This clarification is more aligned with our goals. The accuracy regarding
bird species detection in requirement 1 was raised from 70% to 90% as further
testing ensured we could aim for a higher percentage. Requirement 7 reads
“Users may store a minimum of 1 GB of bird images on their app” but we found
this number to be arbitrary and not very demonstrable. Instead this requirement
was shifted to focus on the speed in which a user is notified of a bird memory,
“User will be notified of a new bird memory within a certain time period”.

Table 2.SD2 - Updated engineering requirements

Accuracy of bird species and squirrel detection must > 90%
exceed a certain confidence level to capture images. . °
The dimensions should r.10t exceed the size of a < (8" x 8" x 14")
common bird feeder.
The system should have enough power to run for a > 2 hours
certain amount of time. -
Duration of external battery recharge should not <7 hours
exceed a certain time. B
The alarm speaker should have a certain output range. 60-95 dB
Hatch door closing time should close within a certain
. < 3 seconds
amount of time.
Users will be notified of a new bird memory within a
o . < 10 seconds
certain time period.

Some of the requirements were seen as excess and cut entirely. Requirement 8
and 9 read “The system should not exceed a weight of 15 pounds.” and “The cost
of all materials should not exceed $300 (not including replacement materials).”
The weight requirement was arbitrary and unlike the size of the bird feeder
requirement, wasn’t based on the common size of bird feeders. The cost of the

13

feeder was raised higher than the threshold listed in SD1 as products were added
to meet functionality requirements, and is no longer as competitive as we had
hoped, so raising it does not seem appropriate as there isn’t as much reasoning to
justify its existence. This is a design reality the team has learned a lesson from.

The new engineering requirements are listed in Table 2.SD2, with demonstrable
requirements highlighted. An updated House of Quality is included in Figure
1.SD2.

External Bird Mem
Bird Squirrel Battery Speaker Door Notification
Recognition Battery | Recharge Somnd |Mechamism| Receival
Accoracy | Dimenzions Life Time Frequency Spesd Time
Installation Ease + T 1
Cost T
High i + 45 44
Performance o
Hizh Image o #
Quality +
Low-maintensnce T TT T TT
Durability +

Safety of Wildlife o - - -
and Environment o

60 - 20 =3

i il IRl I s sl A) e
Legend
+ Increasing this requirement increases the desirability
of the device.
i Decreasing this requirement increases the
desirability of the device.

1 Positive correlation.

™" Strong positive correlation.

! Negative correlation.

N Strong negative correlation.

Figure 1.SD2 - Updated House of Quality

14

2.6 Software Block Diagram

Figure 2 shows a block diagram developed and designed by our group to
effectively provide a visual description of the software aspects that will make up
the project, and how it all integrates with each other to create a complete system.
With this said, it is clearly evident that the software we are working on is divided
into three integral parts. Considering these three parts of the software block
diagram, only the mobile application sector will contain the necessary user
interface to our consumers. This diagram displays how the main computation that
creates the backbone of our project is under the Al Dev Kit software block. Due to
our project's hardware and software demands and the skillset of our group
members, we organized ourselves into certain blocks based on each team
member’s various strengths and their confidence in a particular area. Therefore,
Matthew Wilkinson pioneered the mobile app development and design, John
Hauff led the team on object detection, and Paul Amoruso was in charge of
additional code on the PCB and Jetson Nano. Taking a look at the custom PCB
Software block, it is relevant to note that Nikki Marrow has only one block under
her in the software diagram. This is due to her limited experience in software, and
increased workload in the hardware space. Unlike the next diagram on hardware
that has statuses on each block, the software diagram only contains statuses on
the three main software parts.

I./f_ﬁ\". / v Kt Sufiuas "x\

! Start .l_
S S o Mo

Maovement?

1 Yes
Olject Detecthar
!

Bard ar
Squirrel?

Squanr|

Slatuegd

To b aequirved (TBA) - he Block will b purchased or donased
Aeguired {A) - block has been danased ar purchased

Research (R) = block design approachs is being myvestigated
Desigin (1) - block 15 curmently bemg designed

Frototype (P) - block is currently being profotyped
Completed (C) - hlock design is 2 finished prototype _\

Figure 2 - Software block diagram

15

2.6.SD2 Software Block Diagram

In Senior Design 2, the group came to a better understanding of what the
breakdown for the software components would be and the roles we played.
Shown below in Figure 2.SD2 is the updated software block diagram. The new
diagram better segments the various components of the device's design. For
example, the frontend work on React Native and backend work on Express is
clearly labeled and more specific to each task. John Hauff and Paul Amoruso split
responsibility of the programming tasks for the Jetson Nano, while Nikki Marrow
focused on the embedded software on the MCU on our PCB. John Hauff and
Matthew Wilkinson also worked together on the development of the mobile
application.

Mobile React Native Application Frontend
Member Assigned to Block / AI Dev Kit Software ,@ oolle React Ratlve Apprication Tronten

« Matthew Wilkinson f Get bird image(s) User attempis
Update user User attempts

+ Paul Amoruso False T i T to sign up
» Nikki Marrow Motion detected
by PIR sensor?
"
k interface to sign in
. IL Model detected
Fals bird & no squirrel? f
| Express (Node js) Backend /
"

Save data to cloud
database storage

Send push notification|

Handle user
login route sign-up route

bird image to database

N
E%@-‘%ﬁ-

!E_[Eé
./

True Custom MCU Seftware

|Ask MSP430 is feed|

level if low -
Feed is low?
Delay (4
hours)
= -

.

Figure 2.SD2 - Updated software block diagram

2.7 Hardware Block Diagram

Figure 3 shows a block diagram that was also designed by our group to
adequately provide a visual description of the hardware aspects that will go into
the project, and who is leading the team on the individual hardware aspect. With
this said, it is clearly evident that the hardware diagram is noticeably simpler than
the previous software diagram. In this diagram, the center has the microcontroller
with the necessary hardware parts that go along with the project either pointing to
it or away from it, to say which way the necessary information/signal is going. This
diagram also displays how individual hardware pieces interact with each other,

16

such as how the external storage will directly interact with both the MCU and Al
development kit. Similarly with the software, we assigned each other to certain
blocks based on their confidence in the particular area. Therefore, Nikki Marrow
received the most amount of hardware blocks for her experience in the hardware
space, while John Hauff, Paul Amoruso, and Matthew Wilkinson each led two
hardware blocks based on the experience and excitement over the particular
device. In addition to the members assigned, we also add statuses on where each
block is at the given moment. Thus, readers are able to look at our diagram to
determine things such as whether or not the particular hardware device is in our
possession and if we have completed a prototype of it.

Camera)
A.F)

Al Drevelopment
MCL Kit

A, F)

Legend
ember Assirned to Block
L larth Vilkinsoea
- ul A 151
- Mikka Marrow
Shluses

To be acquired (TBA) - the block will be purchased or donated
Acquired (A) - block has been domatedd or purchased

Research (R) - block design approach is being investigated
Desipn (I¥) - block is u;u'rn,'nll}' hq;-ing du.':;lgnm]

Protatype (P) - block is curently being prototyped

Completed (C) - block design is a finished prototype

Figure 3 - Hardware block diagram

2.7.SD2 Hardware Block Diagram

In Senior Design Il the hardware block diagram was also updated to reflect our
changes to the product and shifted to better reflect work input. Components were
removed from the design all together, such as the solar cells and charge controller
that would help to extend the battery life. The original design included some sort
of IR sensor to monitor movement. In Senior Design |l, we realized that using a
passive infrared sensor was a great fit for our device, and so Figure 3.SD2
reflects this update. The updated diagram is shown below.

17

Camera

Al Development
Kit

—
B

Member Assigned to Block

. Matthew Wilkinson
. Paul Amoruso

e Nikki Marrow

Figure 3.SD2 - Updated hardware block diagram

2.8 Mobile Application Design Diagram

The mobile application design diagram below is used to show a basic idea for
what the mobile app will look like. The diagram shown in Figure 4 was purposely
left simple, so that it can stand as an open canvas to which we could add
additional aspects and features. With this being said, the core features this app
will have is a login screen, notifications that will lead the user to a live stream, and
a library of bird images showing pictures taken by the bird feeder. The idea for the
notifications is that it will notify our phones when a bird has spent a substantial
amount of time at the bird feeder so that a user is able to bird watch in real time
from the comfort of their living space, in addition to being able to view a library of
all the captured images. All in all, the design aims to be simplistic and easy to use,
while providing a well rounded app that lets you interact and keep up with any
notifications (such as low food) to allow you to feel connected and up to date on
the status of the bird feeder.

18

Figure 4 - Mobile application initial design diagram

Building on what was said and the visual description provided, the initial idea for
the mobile application will have roughly four pages, shown in Figure 4. The first
page will be the login/signup page, where the user can either create an account
for the application, or login with an existing account. Then the user may navigate
to the landing page after logging in or signing up. From the landing page, we aim
to have an option available to navigate to a bird memories page which is
essentially going to be a library for bird images taken by the bird feeder when the
accuracy of the bird is very high, so the user can look back at all high accuracy
labeled birds that have visited their Smart Bird Feeder. We also aim to have the
user application contain the live stream for users to watch the birds eat the bird
food at the Smart Bird Feeder when a user is not there to physically observe the
bird feeder or if they do not wish to frighten the birds.

2.8.SD2 Mobile Application Design Diagram

The design for the mobile application transformed over time, and so it is not
exactly the same as what is shown in Figure 4. Live streaming was a stretch goal
that has not been met yet, and the application has a tabular screen layout, rather
than a stacked screen layout.

2.9 User Guide Instructions

The Smart Bird Feeder will include setup instructions and a guide on how to use
the device. In order for the installation to be as seamless as possible for not only
during the demonstration of the prototype, but for the potential future end user. It
is highly important that there is a proper list that contains simple instructions to
follow. Therefore, in the design and construction of our product, we specifically
aimed for ensuring various aspects of our project are as user friendly as possible.
For instance, when designing the mobile application, we decided to keep the app

19

as simple as possible and just provide the necessary options, such as connecting
the device to wireless network, image library (bird memories), and live view. The
first impression is often said to be the most important, thus, our group has taken
that to heart as we decided the build for our product so that the first impression of
the product during installation is as best as relatively possible.

Thus, in discussing all the steps that the end user needs to follow for a successful
setup, we were able to narrow it down to nine relatively simple steps to follow.
Therefore, we as a group recommend that for the best user experience, follow
these guidelines.

1. Download the “Smart Bird Feeder” application from an app store.

2. After the application has finished downloading, access the
application and click the “Sign up” button. Enter your email and
personal information and click “Create Account”.

3. You will then be prompted with an email to confirm your account,
click the application link and you will be directed to a page to enter
your password, then fully sign into the application.

4. Plug in the Smart Bird Feeder using a USB cord and wait for the
feeder to charge.

5. To connect the Smart Bird Feeder to your WiFi network, Select
settings on the application, then click “Smart Bird Feeder” and input
the WiFi networks password to connect.

6. Place the Smart Bird Feeder in its desired location (preferably a
location with sunlight) and fill the feeding chamber with bird feed.

7. To view a livestream of a feeding event, click “View Feeding” when
promoted with a notification.

8. To view pictures of previous feedings, click the “Memories” page.

9. Enjoy the Smart Bird Feeder!

2.9.SD2 User Guide Instructions

There were a few changes to the functionality of the device that are listed
throughout the SD2 sections of the paper. Such as removing live streaming. So
the user guide instructions are made more simple.

1. Download the “Smart Bird Feeder” application from an app store.

20

. After the application has finished downloading, access the
application and click the “Sign up” button. Enter your email and
personal information and click “Create Account”.

. Plug in the Smart Bird Feeder using a 12 V DC charging cord and
wait for the feeder to charge.

. Place the Smart Bird Feeder in its desired location and fill the

feeding chamber with bird feed.
. Flip the power switches on the battery and the PCB.
. Wait for a notification of bird activity or low feed.

. To view pictures of previous feedings, select the “Bird Memories”
tab. While viewing the screen, pull down to refresh the gallery.

. Enjoy the Smart Bird Feeder!

21

3. Technology Investigation and Part Selection

The initial step in designing the Smart Bird Feeder, once we clarified our
intentions and requirements going into the project, was to perform a very thorough
technical investigation on various aspects of selecting the necessary parts to use
in the development of our product. Prior to investigating and comparing various
parts of the project, we start off with exploring current existing products and
projects similar to our design idea. This leads us to current similar projects that
use automatic species detection, deterring squeals, solar power, and a
combination of them. Once observing the various parts commonly used, we start
looking at things such as machine learning technology options and comparisons
to help determine the correct development board for us to utilize. Next, we dive
deep into the various wireless communications as we explain our reasoning for
going wireless. After this, we will move onto comparing the various
microcontrollers based on their computation power, memory storage, and amount
of input/output pins relative to our requirements. Then naturally, we need to look
into the various motors that could potentially be applied to our product in order to
successfully close the hatch on the bird food to keep squirrels away from it, and
the right distance sensing technologies available such as the potential
implementation of a ultrasonic sensor to determine if the food supply needs. Then,
prior to addressing the technological comparisons of the software side of things,
we investigate the implementation of solar energy for the charge controllers, and
the comparisons of various serial communication technologies. Then to end off
the technological investigation, we take a look at the software side of various
comparisons between full stack development technologies such as Flutter and
React Native.

3.1 Existing Products and Projects

There are currently other bird feeders on the market. Our objective is to use this
section to distinguish what already exists regarding bird feeding in the current
market, and to gain knowledge for our implementation. This knowledge will help
shape our design so we can provide innovations that have yet to be incorporated
into existing designs.

3.1.1 Automatic Species Detection

The ability to detect the species of birds coming into contact with a bird feeder is
shown in a similar product, Bird Buddy [9]. In the Bird Buddy’s design, the user
receives a notification that a feeding event is taking place and has the option to
take a manual picture which is then scanned for species detection. The species
won’t be detected unless there is manual input from the user, however. This
design can be enhanced by introducing more automation.

22

In our design, species detection will be a constant process instead of a manual
one for a multitude of reasons. For one, there will most certainly be a time where
the user cannot access the live feed of the bird eating, and thus would miss the
opportunity to snap a picture of the bird to determine its species. Our smart bird
feeder will take a photo of the event regardless of participation from the user, so
that the user will never miss an opportunity to see who visited their feeder. Also,
this functionality will allow the user to receive a notification about what species is
currently feeding before they have to check the live feed, so they can decide
beforehand if they have an interest in the particular bird who'’s currently being
filmed.

3.1.2 Deterring Squirrels

The ability for a bird feeder to deter squirrels has shown up in a few similar
products, one being the Squirrel Buster Bird Feeder. The product uses animal
weight to determine whether or not there is a squirrel on the feeder, and the
weight pulls down the device, limiting access to the food until the squirrel leaves.
This is effective, however there’s no way to actually deter the squirrel besides just
boredom. They might stick around to investigate and waste time the birds could
be feeding. Also, this limits the types of birds that can access the feeder due to
weight constraints. Finally, the owner won’t get to see the number of squirrels or
the effectiveness of the device in action, which would be an exciting addition.

With these thoughts in mind, we've innovated this idea in our invention to
overcome these obstacles. The feeder will have a hatch door that closes when the
machine learning processor detects a squirrel. This removes the weight
component and is a more accurate method of determining if there’s a feeding
predator. The owner will also get an alert so that if they want, they can watch the
process in action. Lastly, the alarm system will actively deter the squirrels from
staying on the platform, which opens up more time for the birds to feed.

3.1.3 Solar Power

The Bird Buddy is the closest device in terms of capability to our own, given its
species detection ability. This means it relies on a power source in order for it to
function properly, via charging it by USB-C. This requires more input from the user
of the product however, and since it's an outside device may go unnoticed for
some time.

As a secondary goal, The Smart Bird Feeder will mitigate this concern by
including a solar panel incorporated in its design. Given that the device is already
outside, we've concluded that a solar panel will be an effective solution to this
problem. The cost of adding a solar panel is worth the time it will save the user not
having to charge the device.

23

3.1.4 Combined Innovation

The existing products give the team a good vision of the market our design will fit
into. The process of innovating on what’s available in the market is key to creating
a good product. By combining enhanced species detection capabilities, squirrel
deterrent, and solar power into a single design, we’ll have a strong footing when
entering the market.

3.2 Machine Learning Acceleration Technology
Comparison

Our smart bird feeder project requires machine learning (ML) inferencing with
computer vision to detect objects and identify them as either a certain species of
bird or as a squirrel. The component of our bird feeder which would perform these
tasks would need to meet various criteria such as (but not limited to) minimal
power requirements, compatibility with a CSI camera, and high capability for
tensor processing. Because of this feature requirement, our team sought a mobile
development system equipped with technologies which could accelerate machine
learning inferencing. With this in mind, we looked toward technology that uses
edge computing for Al and ML applications. Using Al, ML, and computer vision in
projects has become increasingly common in recent years. Due in part to this,
there is a wide variety of options to select from to use in building an ML model to
perform object detection.

3.2.1 Product Options

The following section lists the products that were considered for performing
machine learning inferencing and shares each products' strengths and
weaknesses along with our thoughts on how each product option would
specifically benefit our smart bird feeder project. Some products listed below were
eliminated from consideration early on, and reasons for their elimination are given.
A more direct comparison of the features of each of these products will follow this
section, where the choice for a machine learning technology product which
performs machine learning inferencing with object detection for our device will
have been filtered down from many to only the most promising options.

3.2.1.1 Coral Dev Board

The Coral Dev Board was the first board to be considered for performing fast
machine learning inferencing. The reason for this development being our first
choice is because upon initial technical investigation for edge computing, we
discovered a very convenient tutorial from Google developers and engineers
which could have saved us some time and effort by avoiding writing all of our
software from scratch if we chose to use the Coral Dev Board. This tutorial even

24

shared a potential design for a bird house which could be created using a 3D
printer.

A large drawback for the Coral Dev Board is its upfront cost. The Coral Dev Board
costs $129.99 USD at MSRP for the model that ships with 1 GB of RAM, and a
model with 2GB costs $169.99 USD at MSRP. There is a model advertised with
2GB of RAM, but our team cannot find any sellers for this model as the following
sections in this paper will show, the upfront cost of the Coral Dev Board is among
the highest of any of the boards or hardware accelerator tool options that we
considered for use with our smart bird feeder device. Another potential drawback
that our team saw with using this product was its relatively young age in the
market, along with its low flexibility with regard to ML models that it is able to run.
The Coral's ML accelerator module is made to accelerate TensorFlow Lite
models, so models not created using TensorFlow Lite (includes models that were
created with Google's TensorFlow software library) must be converted to a
TensorFlow Lite format before they can be run on the Coral Dev Board. This limits
the possibility of using pre-trained ML models with the Google Coral Dev Board.
The key reasons for why this board was kept for final comparisons and
considerations are due to its clear and concise documentation and its powerful
Edge TPU.

3.2.1.2 Raspberry Pi 4 + Coral USB Accelerator

The Raspberry Pi 4 is a series of single-board computers known for its low cost
and its wide usage in the area of robotics and computer science. Our team first
decided to consider the Raspberry Pi series of products to use for this project due
to their popularity and vast support network in the engineering community, along
with their relatively low cost. Our team was specifically interested in the Raspberry
Pi 4 Model B. Some of the features of this product that stood out to us were its 1.5
GHz 64-bit quad core ARM Cortex-A72 System-on-Chip (SoC) processor, along
with its inclusion of 2.4 GHz and 5.0 GHz IEEE 802.11ac on-board WiFi, 2 USB
3.0 ports, 2 USB 2.0 ports, a 40 pin GPIO header with 5V DC power input, 2
micro-HDMI ports for dual displays, and LPDDR4-3200 SDRAM (size varies by
model), just to name a few. The included feature of Bluetooth 5.0 was especially
enticing to our team at first, since for a short time we had considered using
Bluetooth for communication between the smart feeder device and the user
interactive application. However, since we have now decided to use WiFi for
interacting with our user application instead, built-in Bluetooth is not currently
necessary for our smart bird feeder device and is no longer considered a large
selling point for the purposes of our project. The versions of the Pi 4 that contain
1GB and 2GB of RAM are discontinued and out of stock, respectively. Even so, at
a cost of $55 USD at MSRP for the 4GB RAM version of the Pi 4, and $75 USD at
MSRP for the 8GB version of the Pi 4, there is little to dislike with regards to the
cost of this product alone.

25

The Raspberry Pi 4 alone is not very well-suited for training and running machine
learning models, however. This is where the Coral USB Accelerator comes in. The
Coral USB Accelerator would connect to the Raspberry Pi 4 and provide hardware
acceleration using the USB Accelerator's Edge TPU. The Coral USB Accelerator
device is similar to the Coral Dev Board in computational power, but lacks some of
the features that the Coral Dev Board includes. This means that it lacks the ability
to be connected to an external display and run an operating system on its own,
and also lacks GPIO pins to connect to other devices such as the PCB that will
operate the ultrasonic sensor and food mechanism for the bird feeder. If we chose
to use this product, we would need to have another device with an OS installed to
run the ML models on, which could increase costs. For these reasons, this
product is no longer being considered for use in our smart bird feeder project.

3.2.1.4 Raspberry Pi 4 + Intel Neural Compute Stick 2

Our team again saw an opportunity to use the Raspberry Pi 4 in this project, only
this time it would be combined with the Intel Neural Compute Stick 2. The Intel
Neural Compute Stick 2 is similar to the Coral USB Accelerator in that it is a small
form factor device built to be connected to another existing computer device to
accelerate the device's machine learning capabilities.

Unfortunately, this combination of products suffers from the same drawbacks as
the Coral USB Accelerator combined with the Raspberry Pi 4. For this reason, this
product quickly fell out of consideration for use in this project.

3.2.1.5 Arduino Nano 33 BLE Sense

Based on the nRF52840 microcontroller (32-bit ARM Cortex-M4 CPU @ 64 MHz),
the Arduino Nano 33 BLE Sense is a small form factor (45x18m) Al board
developed with the main goal of enabling Edge Computing Al applications on an
edge device in a network. It uses TinyML (an emerging area of deep learning) and
TensorFlow Lite to enable the creation of these ML models. This board is meant to
be an evolved version of the Arduino Nano with its improved processing speeds
and larger program memory and RAM. Some of the other notable features
included with the Arduino Nano 33 BLE Sense are as follow:

e 1 port for a microUSB connection for power and connection to a computer.
Communications chipset supporting both Bluetooth Low Energy (BLE) and
Bluetooth 5.0 with a processor that supports Bluetooth pairing via NFC
3.3V operating voltage

1 UART, 1 SPI, and 1 12C serial communication pins

Microphone

Sensors for tracking gestures, proximity, light color and intensity,
temperature, and humidity

e O axis inertial sensor

26

The first factor that drew our team to the Nano 33 BLE Sense was its low price. At
$31.10 USD at MSRP without pin headers, and $33.40 USD at MSRP with pin
headers, this device is very cost-efficient, which plays to the advantage of our
goal to minimize the budget for our smart bird feeder device. Another feature of
the Arduino Nano 33 BLE Sense that would benefit our project would be its
inclusion of a built-in microphone, which we could potentially use if we wanted to
recognize the species of bird(s) making noise in close proximity to our smart bird
feeder on top of doing object recognition of birds and squirrels. Another enticing
factor of this product is its low operating voltage of 3.3V. The low power
requirements of this small form factor device means that it would not put much
stress on the power supply for our smart bird feeder, thereby increasing the
potential longevity of The Smart Bird Feeder’s battery.

A drawback to the Arduino Nano 33 BLE Sense is its lack of any on-board
peripheral ports. The only USB port on the Nano 33 BLE Sense is its
aforementioned port for a microUSB connector. Another negative aspect of this
product is its requirement to be connected to an existing computer device, and its
additional requirement of being programmed using the Arduino IDE. The
members of our team believe that using this IDE would limit us, and prototyping
would also not be as simple as it would be with other ML celebration hardware
with support for such things as full Linux OS. This device could potentially be used
in combination with a device such as the Raspberry Pi 4, similar to the previously
proposed combinations of the Raspberry Pi 4 and the Coral USB Accelerator or
the Intel Neural Compute Stick 2, but more investigation would be required before
attempting to do this, since we are not certain that the Raspberry Pi 4 would
support an Arduino product such as the Nano 33 BLE Sense. Due to these
reasons, our team has decided to no longer consider the Arduino Nano 33 BLE
Sense for use in this project.

3.2.1.6 Jetson Nano Developer Kit

The Jetson Nano Developer Kit series is a family of products made for developers
to train and run multiple ML models in parallel on a single small computer. There
are two models of the NVIDIA Jetson Nano currently available for purchase, and
the advantages and disadvantages of both of these options are subsequently
discussed and considered in detail. As for similarities, all devices in the Jetson
Nano family come equipped with ML accelerator hardware in the form of a
128-core NVIDIA Maxwell™ GPU, as well as a Quad-core ARM® A57 @ 1.43
GHz CPU, which are perfect for developing and deploying ML models on an edge
device such as the Jetson Nano quickly and effectively. Both Jetson Nano
Developer Kits also include the following features:

e 4Kp30 | 4x 1080p30 | 9x 720p30 (H.264/H.265) video encoder

e 4Kp60 | 2x 4Kp30 | 8x 1080p30 | 18x 720p30 (H.264/H.265) video decoder
e 64-bit LPDDR4 25.6 GB/s memory (size varies by model)

27

Gigabit Ethernet, 802.11ac wireless

microSD expandable storage (card not included with developer kit)
Dimensions of 100 mm x 80 mm x 29 mm

40-pin header (GPIO, I12C, 12S, SPI, UART)

12-pin header for power, UART, and related signals

4-pin fan header

The true shining feature shared by the Jetson family of devices is the popular and
acclaimed JetPack Software Development Kit (SDK). Any NVIDIA Jetson Nano
Developer Kit is capable of training and deploying Al software (such as an object
detection ML model for bird and squirrel recognition) using the NVIDIA JetPack
SDK'’s Al platform. This SDK contains the L4T package with drivers for a full Linux
OS, as well as libraries and APIs for deep learning, which would vastly simplify
the object detection ML model development process for our team. This SDK
paired with the numerous tutorials, sample projects, and extensive documentation
available for the NVIDIA Jetson Nano products made the Nano a top contender
for use in our project.

3.2.1.6.1 Jetson Nano 4GB Developer Kit

The Jetson Nano 4GB Developer Kit is the original model of the Jetson Nano. It
consists of the developer kit module plus a carrier board for the module to sit on.
This developer kit includes 4GB of 64-bit LPDDR4 25.6 GB/s RAM, two CSI
camera connector slots, four USB 3.0 Type A ports, and one micro-USB 2.0 for
connecting to other peripheral devices. The Jetson Nano 4GB Developer Kit can
run in a 5W low-power mode or run at its default 10W power usage state. The
low-power state option that the Jetson Nano 4GB Developer Kit is enticing to our
team, since this would make the Jetson Nano Developer Kit even better suited to
fit our specified power requirements. Although the Jetson Nano 4GB Developer
Kit does not come with WiFi pre-installed, it does have an M.2 Key E slot for a
developer to install their own WiFi module, or a WiFi adapter could also be
connected to the device via one of the USB ports on the Jetson Nano 4GB
Developer Kit carrier board.

3.2.1.6.2 Jetson Nano 2GB Developer Kit

Unlike the original previously mentioned 4GB Developer Kit, the Jetson Nano 2GB
Developer Kit is labeled and marketed as reasonably priced for everyone and
lacks some of the features that the 4GB developer kit has, but is still powerful
enough to run virtually any ML model that the 4GB developer kit can run. The
Jetson Nano 2GB Developer Kit includes a 128-core NVIDIA Maxwell GPU, a
Quad-core ARM A57 @ 1.43 GHz CPU, a 2GB 64-bit LPDDR4 35.6 GB/s
memory, a microSD storage, Gigabit Ethernet with 802.11ac wireless, a 1x MIPI
CSI-2 connector, HDMI display port, and much more. Similar to the Jetson Nano
4GB Developer Kit, the 2GB version also has two module power modes which are
the 10W default mode for higher performance, and the 5W mode for less energy

28

usage. When comparing the developer kits, we see that there are many similar
technical specifications, however there are some differences other than the
memory size. Unlike the 4GB version, the 2GB version has one USB 3.0 Type A
slot and two USB 2.0 Type A slots. Moreover, one of the other main differences
between the Jetson Nano 4GB Developer Kit and the Jetson Nano 2GB
Developer Kit, is that the 2GB comes with (depending on the region) the 802.11ac
wireless adapter with an extension cable. This means that the 2GB version will be
able to connect to the Wi-Fi seamlessly without the hassle of getting a Wi-Fi
adapter. Moreover, the overall idea for the Jetson Nano 2GB Developer Kit, is to
deliver an incredible Al performance at a relatively low price, so that there are
more Jetson developers around in the world with the same software tools. In all,
the Jetson Nano 2GB Developer Kit offers most of the same features as the
Jetson Nano 4GB Developer does, with a few select features removed to save
cost. Therefore, if our team chooses to use a product from the Jetson Nano
Developer Kit family for developing our device, the most significant reason for
choosing the Jetson Nano 2GB over the Jetson Nano 4GB would be its $59.99
USD at MSRP price tag, versus the $99.99 USD at MSRP price of the Jetson
Nano 4GB.

3.2.2 Product Comparisons

At this point, all of the machine learning products that our team considered have
been listed, and several options have been removed from consideration. What
remains are the products which our team spent the most time and effort
considering for use in our project. The following section compares these
remaining products in the area of CPU and GPU clock frequency, power
consumption, monetary cost in USD, choice of memory size and speed, and the
amount of convenience offered by the miscellaneous features contained in each
product

3.2.2.1 SoM CPU and Graphics Comparisons

In Table 4 shown below, the CPU and GPUs of the System-on-Module located on
the Coral Dev Board by Google and the System-on-Module located on the NVIDIA
Jetson Nano Developer Kit' are compared, along with the amount and speed of
cache on each system. This comparison will assist our team in discovering which
product is better suited for performing both novel and repeated computations
necessary for nearly instantaneous object detection of birds and squirrels,
communication with our PCB, and communication with our smart bird feeder
application, without being significantly slowed down.

' The SoM on the NVIDIA Jetson Nano 2GB Developer Kit and the NVIDIA Jetson Nano 4GB
Developer Kit contain identical CPU and GPU components.

29

Table 4 - Coral Dev Board v. Jetson Nano Dev Kit (CPU & GPU comparison)
Coral Dev Board NVIDIA Jetson Nano Developer Kit
Quad-core Arm

Quad-core ARM Cortex-A57 MPCore

CPU Cortex-A53, plus FOCESSOr
Cortex-M4F P
‘F:PU e 1.5 GHz 1] 1.43 GHz 4
requency
GPU Edge TPU coprocessor; | 128-core NVIDIA Maxwell @ 921 MHz
Vivante GC7000Lite [4]

48 KB L1 instruction cache (I-cache)
per core; 32 KB L1 data cache
(D-cache) per core | L2 Unified Cache:
2 MB [4]

32 KB L1 Instruction
Cache Cache; 32 KB L1 Data
Cache [3]

Table 4 shows that the Coral Dev Board has a higher clock frequency than the
NVIDIA Jetson Nano, but the Jetson Nano evidently has more cache available,
which can contribute to decreased time taken for repeated computations. Another
noticeable advantage that the Coral Dev Board has over the Jetson Nano is its
Edge TPU coprocessor, which is developed by Google specifically for high
performance ML inferencing applications with TensorFlow Lite models. However,
the Edge TPU architecture is not very flexible, and models would need to be
either created using or converted into Google's TensorFlow Lite format to be
functional. In terms of raw computational ability, the Coral Dev Board has the
advantage here.

3.2.2.2 Power Considerations

Power consumption of the machine learning board used is one of the leading
factors in our team's decision-making process for choosing a product, since our
team has a goal of minimizing the overall power consumption of our smart bird
feeder device to maximize battery life while minimizing the size of the portable
power supply used.

The Coral Dev Board may be powered using a USB Type-C connection from a 5V,
2-3A power supply. The NVIDIA Jetson Nano Developer Kit's power requirements
depend on whether the 2GB Developer Kit or the 4GB developer kit is being used.
The 2GB Jetson Nano Developer Kit requires 5V=3A input via a USB Type-C
connection, while the 4GB Jetson Nano Developer Kit may be powered by 5V=2A
input from a micro-USB connection or may be safely run in the default 10W power
mode by using a 5V=4A barrel jack power supply. The Jetson Nano 4GB
Developer Kit may also be powered using its 40-pin J6 header, which contains
two 5V pins with each accepting up to 3A of current. On the other hand, the
Jetson Nano 2GB Developer Kit's two 5V power pins can power it at 2.5A per pin.

30

Considering the power that must be delivered to each of these boards for them to
properly function, the Jetson Nano 4GB Developer Kit and the Coral Dev Board
seem to require the least amount of power (5V=2A) when operating at their
minimum capabilities. However, our team expects to run multiple applications on
these boards at once, and machine learning models alone typically require a large
number of resources to run, meaning that the system on the modules of the
boards would be expected to be working at or near maximum capacity when
running the object detection model for detecting birds and squirrels. Due to this,
our team does not believe that 5V=2A would be a suitable state for the board to
run in, and in the case of the Jetson Nano 4GB, it would need to be run in its 10W
default state, which means that the 5V=4A power jack would need to be
connected. The Coral Dev Board would also be expected to draw more than 2A of
current while it operates with an ML model running, so it would actually be
operating at or near 5V=3A, which matches the power requirements of the Jetson
Nano 2GB Developer Kit. Because our team is seeking to minimize the size and
cost of our power supply, while maximizing battery life of the power supply, we
would like to avoid using a board which would require 5V=4A to be supplied by
our power supply. Therefore, the Jetson Nano 4GB Developer Kit has a
disadvantage in terms of power efficiency for our smart bird feeder device. Since
the Jetson Nano 2GB Developer Kit and the Coral Dev Board were both created
for developers who want to run ML applications on them, and their 5V=3A power
requirements would be more feasible to meet for the purposes of our project.

3.2.2.3 Memory Comparison

The memory on the System-on-Module located on the Coral Dev Board by
Google and the System-on-Module located on the NVIDIA Jetson Nano
Developer Kits must also be compared to properly judge which system can handle
more simultaneous tasks. Table 5 lists the RAM and Flash memory units available
for the Coral Dev Board, the Jetson Nano 4GB Developer Kit, and the Jetson
Nano 2GB Developer Kit.

Table 5 - Coral Dev Board v. Jetson Nano Dev Kit memory comparison

Coral Dev Board

NVIDIA Jetson Nano
4GB Developer Kit

NVIDIA Jetson Nano
2GB Developer Kit

4GB 64-bit LPDDR4

2GB 64-bit LPDDR4

storage via microSD

RAM (1,2, or 4 GB LPDDR4 25 6 GB/s 25 6 GB/s
8GB eMMC for 1GB &
Flash 2GB RAM, 16GB 16GB eMMC or Expandable storage
eMMC for 4GB RAM | expandable storage pandab 9
Memory L via microSD
or expandable via microSD

31

As Table 5 shows, all the boards under consideration use LPDDR4 RAM, and
each product’s module offers expandable storage by connecting a microSD card.
It is notable that the The Jetson Nano 4GB and the 4GB option available for the
Google Coral Board are the evident victors in this category, but it is important to
note that while the Jetson Nano 4GB Developer Kit does have more memory
available than the Jetson Nano 2GB Developer Kit, there is a swap memory
feature built into the Jetson Nano by default which essentially utilizes the memory
from the microSD card connected to the Jetson Nano as a virtual memory
substitute for physical RAM. This means that when the physical memory on the
Jetson Nano 2GB is at capacity, the memory space can be virtually extended so
that processes do not need to be killed. It is also notable that while a 2GB version
of the Coral SoM is available, our team could not locate any retailer with a 2GB
version of the full Coral Dev Board available.

3.2.2.4 Product Pricing

One of the most crucial aspects of picking a machine learning processor is price.
Our team has set out to achieve the best price possible while still maintaining the
requirements and functionality listed in section 2.4. In the sections labeled 3.2.2,
the team is breaking down many aspects of the development kits, as to ensure
our functionality goals will be met by our choice. As long as that metric is achieved
and the price differential isn’t high enough to consider removing functionality from
our design, then the lowest cost option will be selected.

The team has chosen a design philosophy that values functionality first, then
price, then effort required. Hence, while the higher cost options have shown to
have easier implementation, as long as the functionality requirements can be met
with hard work our team will value price at a higher standard. We've also taken
into consideration whether or not the extra effort will hurt the timeline of the
project, which would ultimately limit functionality, which is our prime concern.

All of these factors taken into consideration, the price for the Coral Dev Board is
$129.99 at MSRP. The price of the NVIDIA Jetson Nano 2GB development board
is $59.00 at MSRP. Finally, the NVIDIA Jetson Nano 4GB development board is
$99.00 at MSRP. Given these pricing dynamics, the Coral Dev Board is certainly
the highest priced board. When taking price into consideration, the Jetson Nano
2GB Developer Kit is the best option.

3.2.2.5 Product Developer Software Comparison

In the search for the most ideal developer kit for the Smart Bird Feeder, it is highly
important to not just look at the hardware, but also look at the software associated
with each option.

In looking at the NVIDIA Jetson Nano Developer Kit, we see that NVIDIA provides
a simple way of getting started by just inserting a microSD card with the system

32

image and begin using the NVIDIA JetPack SDK once booted up. With the SDK
being utilized across the entire NVIDIA Jetson family of products (in other words,
all Jetson modules and developer kits). It is stated that the JetPack is compatible
with NVIDIA’'s world-leading Al platform for training and deploying Al software in
an attempt to reduce complexity and or effort on the developers' side.
Furthermore, the SDK includes the most recent Jetson Linux Driver Package
(L4T) with the Linux operating system along with CUDA-X accelerated libraries
and APIs for deep learning, computer vision, accelerated computing, and
multimedia. Moreover the JetPack is able to be installed and upgraded via the
Debian package management tool on the Jetson and host Debian packages for
JetPack components for installing on the host. When looking at the nano, some of
the first things one may look at are the key features in JetPack. The top features
include TensorRT, cuDNN, CUDA, Multimedia API, Computer Vision, developer
tools (CUDA Toolkit), and supported SDKs and tools (such as the PowerEstimator
& Deepstream SDK). With this said, it evident that JetPack provides features that
seem highly applicable to the Smart Bird Feeder with TensorRT as a high
performance deep learning inference runtime for image classification,
segmentation, and object detection neural networks as one of the main software
features of the bird feeder is to be able to use implement object detection for
identifying bird species and squirrels. NVIDIA says that the TensorRT-based
applications are able to perform up to 40 times faster than CPU-only platforms
during inference.

When looking at the other developer kits, we see that Coral Development Board is
marketed as a quick and easy board to use as well, with just requiring the user to
flash Mendel Linux to it, and then accessing the board’s shell terminal to update
some of the software before being able to run an an image classification model on
it. Coral states that they simplified the development with the Coral by making the
Edge TPU compatible with the standard TensorFlow Lite API so that those that
already have code utilizing TensorFlow Lite API, just need to change a couple
lines of the code. They also go further to say that they helped to make
development even easier by having made a wrapper library (the PyCoral API) to
handle boilerplate code that is required with running an inference with TensorFlow
Lite. Moreover, the PyCoral APl which is built on top of the Tensor Flow Lite
Python API and provides advanced features for the Edge TPU such as model
pipelining across multiple Edge TPUs. The modules listed in the API overview
include pycoral.utils.dataset, pycoral.utils.edgetpu, pycoral.adapters.common,
pycoral.adapters.classify, pycoral.adapters.detect,
pycoral.pipeline.pipelined_model_runner,

pycoral.learn.backprop.softmax_regression, and pycoral.learn.imprinting.engine.
With this said, if we were to utilize the Coral Development Board, we would most
likely look into the pycoral.adapters.detect as it functions to work with a detection
model, with it returning a list of Object objects with each containing the detected
objects id, score, and bounding box. Due to our unique project requirements on
object detection, it is important to note that if we intend to customize a base
model, the process will require multiple build steps along with several hours of

33

model training even with a powerful GPU. For example, retraining a base
MobileNet model from ImageNet ILSVRC2012 cannot run on the Edge TPU and
some of the required tools are not compatible with the Coral Development Board,
so several steps must be taken on a separate powerful desktop computer.

Furthermore, when looking at the benchmarks provided by both the Jetson Nano
and Coral's Edge TPU. When it comes to the Jetson Nano, it is able to run a
relatively wide variety of advanced networks that include full native versions of
popular ML frameworks such as TensorFlow, PyTorch, Caffe/Caffe2, Keras,
MXNet, etc. With the supported networks are able to be utilized to build
autonomous machines and complex Al systems by implementing image
recognition, object detection & localization, pose estimation, segmentation, video
enhancement, intelligent analytics, and other similar robust capabilities. On the
other hand, when looking at the performance benchmarks provided by Coral, it is
labeled that the individual Edge TPU is capable of performing around 4 trillion
tera-operations per second (TOPS) while using about 0.5 watts for each TOPs to
get 2 YOPS per watt.

Due to our project dependence on object detection, it is important that we take a
look at several trained models provided by both Coral and NVIDIA to make an
informed decision. Thus, when looking at the Coral Edge TPU, we can use
real-time video at over 100 frames per second, with the ability to even run multiple
detection models concurrently while maintaining a high frame rate. Coral provides
several trained models that are compiled for Edge TPU, along with example code
to run them and information on how to train our own model with TensorFlow.
Some of the example code provided consists of python code for image recognition
with video (to identify objects like bird and dog). For example, Coral provides
documentation on a Dev Board that uses Edge TPU Python API to identify birds
with machine learning inference, and the video feed processed via a MobileNet
model which identifies different animals and detected bird species. When it comes
to NVIDIA's Jetson Nano, they provide us with a coding environment by installing
prerequisite libraries & downloading DNN models such as SSD-Mobilenet
pre-trained on the popular 90-class MS-COCO dataset. Moreover, they provide
several object detection examples with NVIDIA TensorRT.

Because NVIDIA's Jetson Nano Developer Kits and the Google Coral Dev Board
use the MobileNet ML model in their tutorials for object detection, we have
included Table 6, which displays performance benchmark results in
frames-per-second (FPS) from tests run on each ML accelerator product. These
results were provided by NVIDIA Jetson Nano: Deep Learning Inference
Benchmarks.

34

Table 6 - FPS performance comparison [15]

Google Edge
Model Application Framework Lol TPU Dev
Jetson Nano
Board

MobileNet-v2 | Classification | TensorFlow 64 FPS 130 FPS
SSD Object TensorFlow 8 FPS DNR
MobileNet-V2 | Detection
(960 x 544)
SSD Object TensorFlow 27 FPS DNR
Mobilenet-V2 | Detection
(480 x 272)
SSD Object TensorFlow 39 FPS 48 FPS
Mobilenet-V2 | Detection
(300 x 300)
*DNR stands for did not run.

Table 7 below displays the comparison between the time spent to perform a single
inference on several popular models using Edge TPU. In the comparison, they are
using trained models using ImageNet dataset with 1,000 classes. The values are
found in the page called Edge TPU performance benchmarks under the Docs &
Tools tab. MobileNet v1 and MobileNet v2 have nearly identical performance, so
either of them would be suitable for use when limiting time per inference.

Table 7 - Time per inference in milliseconds [12]

ML Model Dev Board with Edge TPU
MobileNet v1 (224x224) 2.4

MobileNet v2 (224x224) 2.6

MobileNet v1 SSD 11

(224x224)

MobileNet v2 SSD 14

(224x224)

3.2.2.6 Miscellaneous Features Comparison

There are some notable differences in the small features that the boards under
consideration have available. In this section the differences will be highlighted in

35

order to determine whether or not the changes should be taken into consideration
for the product choice.

A crucial aspect of the product’'s design is WiFi capability. Thus, this is the
component in this section with the highest pull on the team's decision. The Coral
Dev board comes equipped with a module with both WiFi and Bluetooth capability.
The Jetson Nano 2GB Developer kit comes with a WiFi adapter included in the Kit
which requires the use of a USB port. However, the Jetson Nano 4GB Developer
Kit does not come with any WiFi support.

Given the importance of WiFi in the design, the Jetson Nano 4GB Developer Kit
would have to be supplemented with a WiFi adapter. Given that the 4GB model is
already priced higher than the 2GB model, adding an extra component would
increase the price even further. This difference then plays a large role in the
decision and skews the choice towards the Coral Dev Board and 2GB model.
When considering WiFi capability, the 4GB lack of accessibility is a heavy
detractor.

For USB support, the Jetson Nano 4GB Developer Kit has access to 4 USB 3.0
ports and 1 USB 2.0 Micro-B port, while the Jetson Nano 2GB Developer Kit has
access to 1 USB 3.0, 2 USB 2.0, and 1 USB 2.0 Micro-B ports. The Coral Dev
board contains a USB 3.0 Type-C port, USB 3.0 Type-A port, and USB 2.0
Micro-B serial port.

In our project, it's important to distinguish between the two stages of the product’s
lifespan and how this affects our USB requirements. During the prototyping,
testing, and set up phase, our team will need access to three USB ports. One for
the WiFi adapter, another for a mouse, and finally a USB for a keyboard. Since
the mouse and keyboard require a very low level data transfer, they essentially
gain nothing from USB 3.0 access. However, the WiFi adapter will gain an
advantage from the higher data transfer speed, which means that during this
phase of development, access to the USB 3.0 port is beneficial. After the testing
period and during the time period of the product's lifespan, while the keyboard and
mouse will no longer be required, the WiFi adapter will still be a required tool.
Since each board listed here has the capability for a USB 3.0 port support, there
will always be a spot for the higher speed port allocated to a WiFi adapter. Thus,
we’ve concluded that the USB capabilities of all the devices listed suit the needs
of our design, and can be ruled out of consideration after this research.

When taking into consideration camera connection ports, the Jetson Nano 4GB
Developer Kit and Coral Dev Board both have 2 MIPI CSI-2 lanes, while the 2GB
kit has 1 MIPI CSI-2 lane. Currently, the product is only designed with one camera
in mind, but there could be benefits to another camera in the future. However,
since our project requires only one camera this added functionality is considered
unnecessary.

36

In terms of display capabilities, The Jetson Nano 4GB Developer Kit comes with
an HDMI and Display port. The Jetson Nano 2GB Developer Kit and Coral Dev
Board comes with only an HDMI port. However, the display mechanism will only
be of use in the development phase, and the HDMI port is sufficient, so this
aspect did not influence the group's design decision.

3.2.3 Machine Learning Product Choice

Our team has chosen to use the NVIDIA Jetson Nano 2GB. Its relatively low price
of just $59 given its wide array of features, impressive processing power,
straightforward user interface, machine learning capabilities, community support,
and relatively low power usage all combine to make a fantastically enticing
product for machine learning inferencing which is simple for developers at many
levels to perform prototyping on and will suit the needs of our smart bird feeder
device very nicely. The NVIDIA TensorRT SDK built on CUDA that can comes
packaged within the JetPack SDK is especially enticing to our team, since it
packages together many of the software components that we need for performing
object detection, and some of our team members already have experience with
the CUDA parallel programming model. Plus, if we can use the Nano 2GB
Developer Kit, our device will be more cost-effective, but if we require more
memory to run our ML model(s), we can always upgrade to the Jetson Nano 4GB
Developer Kit with relative ease.

3.2.3.SD2 Machine Learning Product Choice

As stated at the end of the previous section, the group was considering the move
from the Jetson Nano 2GB model to the 4GB model. During testing, the 2GB
model was running with the full use of its RAM when utilizing the machine learning
program. However, there are many other tasks this processor needs to perform.
The team came to the decision during testing that in order to fully realize all of our
requirements, we need more RAM. The additional functions that the operating
system distribution on the Jetson Nano 4GB were also appealing, so ultimately,
we switched to the 4GB model and kept the 2GB model for testing purposes.

3.3 Wireless Communication

The Smart Bird Feeder will need to have a means of communication. The Smart
Bird Feeder is designed to be placed outside in order to attract birds to the feeder.
Birds are known for being mostly skittish creatures, so if a user wants to maximize
the potential of their bird feeder, they should place it a good distance away from
themselves and not directly interfere during the feeding process. However, a main
component of enjoying a bird feeder is watching the birds eat food from the
feeder, yet the closer a user gets to the bird feeder, the less likely the birds will
feel comfortable to stick around.

37

Our goal was to solve this problem by implementing a communication technology
that could allow our users to stream the feeding process right to a capable device,
so they can enjoy the feeding process without interrupting. There are also other
secondary benefits to a communications network, as we could implement
notifications for various bird feeder applications such as low bird feed, low battery,
and memory storage of different feeding events.

The following subsections will discuss and provide considerations on the pros and
cons of the communications technologies, for a detailed explanation on why
certain technologies were picked over others. Thus said, the following subsections
will get into the nitty gritty to help discuss the decisions made.

3.3.1 Wireless vs Wired Communication

We chose to use a wireless communication framework to achieve these benefits.
To achieve the same goal with a wired connection, there would have to be a
greater restriction placed on the distance away the feeder could be placed. Also,
the user would have to have a compatible device that could accept the wired
signal, or we’d have to provide one. Providing a device to watch the bird feeding
take place would increase cost and given that most users would already have a
wireless capable device it would be wasteful and redundant.

We've also found users are much more comfortable with downloading an
application that achieves the same goal. Users are already accustomed to
downloading compatible apps for their smart devices. We also considered
whether or not users would have access to a wireless communication framework,
and concluded that it's likely they would, given the need for these networks in
everyday life. There’s also a possibility that the network does not extend far
enough to reach their desired bird feeder placement, but this issue would be even
more apparent in a wired communication. One of the main goals is to keep this
system easy to install in any backyard and stay free from any inconvenient
situations where users would have to run a wire around their yard just to hook up
the bird feeder. Moreover, a wired connection would also have to deal with various
length wires to accommodate the needs of individual yards. Therefore, it is
evident that in order to free everyone with the hassle that comes with wired
transmission, our product will utilize the wireless network like so many smart
devices these days.

3.3.2 Wireless Communication Options

Given that we’ve already decided to implement wireless communication for the
benefits listed above, this section will break down the wireless communication
options we considered. Choosing a good wireless communication framework will
have effects on performance, access, battery life, and data transfer speed.

38

The implementation of wireless communication will allow The Smart Bird Feeder
to transfer data with already commonly established devices such as smart phones
with a clean appearance, and without depending on a long ethernet cable. The
smart bird feeder is intended to be established outdoors, so this requires a robust
communication protocol that can handle noise and physical barriers between it
and the house for things such as trees and various plants and weather conditions.
In looking at our system and the use of the developer kit, it will be suggested to
utilize the developer kit to transmit the necessary data such as images, statuses,
and live video streams. This means that the communication methods will be
based on what is supported by the developer kit, and more specifically which ones
of those that are supported are the best in terms such aspects of performance,
reliability, and battery life. With most developer kits available for use in this
product, the most commonly supported wireless communication technologies
consist of Wi-Fi, Bluetooth, and potentially infrared. Due to the fact that our smart
bird feeder will most likely need to transfer data to be stored on a cloud server, it
is highly assumed that Wi-Fi will be the best bet, however the following
subsections will look into what goes into each of the technologies and explain
whether or not they fit for this system.

3.3.3 Wi-Fi

In order to have wireless communication for the obvious benefits listed prior, it
provides Wi-Fi as a top contender to successfully transmit data from the bird
feeder to cloud storage and mobile application. Therefore, it is important that we
fully understand the Wi-Fi brand name that was trademarked by the non-profit
Wi-Fi Alliance. This family of wireless network protocols are based on the |IEEE
802.11 standard which defines the protocols that allow communication with
Wi-Fi-enabled wireless devices such as mobile smart phones that will support our
mobile application. Nearly every smart phone supports Wi-Fi to connect to the
internet, as it has become a major wireless communication standard supported by
many electronic devices and a common way of communication.

When considering the implementation of Wi-Fi as the means of communication, it
is important to consider how large the range is in order to determine the
usefulness of implementation. Wireless network’'s range will often vary
dramatically depending on the type of network, thus in order to determine the
usefulness we shall start by looking at the common frequencies used. Moreover,
Wi-Fi routers commonly operate at a 2.4 GigaHertz band that can reach up to 150
feet indoors and around 300 feet outdoors. This means that it must be
recommended that users of our bird feeder must do some preliminary
investigation to determine an area which will satisfy its needs to connect to the
Wi-Fi. We will also need to recommend to users that unless they have strong
signals outside their house, they are recommended to set the device relatively
close as physical obstructions in homes, such as brick walls or metal frames
which may reduce the range of a Wi-Fi network.

39

Due to the high likelihood of integrating Wi-Fi to The Smart Bird Feeder for
communication to users, it is important to look at vulnerabilities brought about by
this technology, so we are prepared for any surprises when using Wi-Fi. While
Wi-Fi has been around for a while, it still has some flaws when it comes to
network security. That being said, there may need to be an advisory that intruders
could gain access to the network and potentially take advantage of the developer
board within The Smart Bird Feeder. This network intrusion could happen due to a
variety of different reasons such as a weak Wi-Fi password. While the Wi-Fi
security vulnerabilities may be of concern, and is something that everyone should
take seriously, it is believed that due to the lack of importance the bird feeder is in
the eyes of hackers, it most likely is not a large concern. That said, a larger
concern comes from the fact that Wi-Fi networks in this day and age are very
much saturated with a load of many different Wi-Fi connecting devices. Due to a
restricted bandwidth on a wireless network, the increased number of these
devices connecting to the WiFi network are negatively impacting the network. One
of the unique aspects of our product is uploading images to our digital library of
birds to allow users to stay up to date with the bird feeder. Therefore, the
requirements that The Smart Bird Feeder needs in order to function as planned is
highly dependent on the network performance which may be affected as upload
and download speeds are relatively sensitive to the number of simultaneously
connected devices on the network. Moreover, even with the systems overhead,
this form of wireless transmission is the most suitable for our smart bird feeder for
its performance, reliability, and practicality.

3.3.4 Bluetooth

In looking at wireless communications that are commonly supported on object
detection developer kits, bluetooth appears as a contender. Bluetooth is a
short-range technology standard utilized for communicating data between devices
over a relatively short distance via UHF radio waves within the ISM bands that run
around 2.4 GHz. It is a low power radio that allows transfer of data over seventy
nine channels in the unlicensed industrial, scientific and medical frequency band
mentioned in the previous sentence. While this standard radio protocol is behind
many day to day devices such as headphones, and wireless speakers, it is limited
to a short range of about 10 meters (30 feet). Unlike Wi-Fi, Bluetooth varies in
many ways, such as the fact that it was formerly standardized as IEEE 802.15.1
but now has been continued under the Bluetooth Special Interest Group (SIG).
Furthermore, Bluetooth works on much shorter distances than Wi-Fi, and
emphasizes direct communication between a packet-based protocol with a master
and a slave architecture.

With what was mentioned, it should be noted that while Bluetooth is a commonly
supported wireless communication protocol, it has some cons with the fact that it
is short range and will limit the availability of places in which The Smart Bird
Feeder may be placed within yards.

40

3.3.5 Infrared

Table 8 shows a comparison of several of the most common means of wireless
communication in the modern era, one of which being infrared (IR)
communication. Infrared (IR) is a commonly found wireless mobile technology that
has a wavelength spectrum between the ranges of 780 nm and 1mm. This band
of electromagnetic radiation spectrum has wavelengths above the red visible light.
Due to the wavelength infrared is within, it is unable to be seen by the human eye
and is said to not impact any mobile communication systems. However, the
problem lies with implementing infrared, is the fact that it requires a direct
line-of-sight connection between the transmitter (LED) and the receiver. This is
because the light-based communication has a relatively short transmission range
as it is unable to penetrate physical barriers such as walls. Moreover, this wireless
communication is often used between relatively short ranges within the same
room such as remote controls. Therefore, when looking at how our smart bird
feeder is going to be used compared to the limitations of infrared, it is evident that
relying on a technology that requires a direct line-of-sight between transceiver and
receiver since it is loses connections quite easily due to physical barriers, does
not match the needs of a reliable means of communications outdoors.

Table 8 - Wireless technology comparison

Infrared Bluetooth Wi-Fi (802.11)
Range 1m 10m 91 m
Data rate 115 Kbps 3 Mbps 54 Mbps - 600
Mbps
Power 20-50 mA 5-15mA 50-110mA
consumption
Frequency 850 nm - 900 nm | 2.4 GHz ISM Band 24 &5 GHz

3.3.6 Wireless Communication Selection

In the technologic investigation we have done for the various wireless options
available for our group to implement, we have unanimously selected Wi-Fi as the
means of communication for The Smart Bird Feeder. When considering out of the
three wireless technologies we landed between the utilization of bluetooth or
Wi-Fi, since infrared depends highly on having line-of-sight and that there is a
high chance that most phones will not support it. Thus, when comparing between
the two left, we worried about bluetooths shorter range compared to Wi-Fi, and
Wi-Fi’s potential impact on upload and download speeds and security concerns.
However, when discussing the pros and cons of both technologies, we concluded
that we base our final decision based on what common products use, and what

41

we believe is worth more to our consumers. That being said, many related
projects often utilize Wi-Fi, thus proving its worthiness and reliability for smart
devices, and the realization from the group members that range and ease of use
is most important. Since ease of use is nearly shared equally between Wi-Fi and
Bluetooth, the range is the next consideration. Therefore, due to the reliability and
support for using Wi-Fi with Smart devices and the range provided by the Wi-Fi,
we believe that our end users would agree with our decision that the use of Wi-Fi
is the correct and appropriate choice for us.

3.4 Microcontroller

A microcontroller is a compact integrated circuit in an embedded system whose
purpose is of a specific operation. For the integration and control of the several
peripherals in the project, we needed a main microcontroller that would be able to
make computations, store memory, and have enough input/output pins for the
operation of the device. The main tasks of the microcontroller will be to receive
and transfer data from the Jetson Nano development kit, control when the motor
turns on, send and receive signals from the ultrasonic sensor, and send output
signals to the speaker. The computer will be able to communicate with the Jetson
Nano through either UART, SPI, or I2C. The microcontroller’s source of power will
be a Lithium lon rechargeable battery. An important aspect of the microcontroller
is the ability to send and receive signals that are synchronous. This means that
the signals are synchronized by a clock signal. This type of signal is necessary for
sending PWM, or pulse-width-modulation signals. PWM signals work by varying
the duty cycle, which is the amount of time that the signal is in the ‘high’ state.
This type of signal becomes very important when controlling a servo motor, which
will be discussed in section 3.5.1.3.

Before deciding on a microcontroller for this project, we must first understand the
exact specifications that we will need. This includes aspects like the type of
communication, number of pins, operating voltage, and size. Taking a look at the
hardware block diagram in Figure 3, we can see all the peripherals that the
microcontroller will need to support and control. The microcontroller will have to
support a total of four peripherals. These peripherals are the communication
between the MCU and Jetson Nano, ultrasonic sensor, external speaker, and door
motor. This means that at least six 1/0O pins on the MCU will be utilized. This
includes two for the transmitting and receiving of data to/from the Jetson Nano, at
least one for the door motor control, two for the ECHO and TRIG pins on the
ultrasonic sensor, and one pin for input to the external speaker. When looking for
a microcontroller, we are not looking for the module with the most pins, but
instead the module that will only meet our requirements, since more pins on a
chip will mean a steeper price.

For the speed of the microcontroller, we need a module that will have enough
speed to quickly communicate back and forth with the development kit and be
able to quickly control the peripherals. However, too high of a CPU speed is not

42

necessary, as this will just increase the cost of the device. For our requirements,
~16 MHz is an ideal speed.

Finding a microcontroller with a low-power mode is a major requirement for the
project. Our marketing and engineering requirements define a device that will
have low-maintenance by managing a long battery life. In order to reach these
characteristics, we must find a microcontroller that can utilize a low-power mode
option when it is not actively doing computation or sending/receiving signals from
the peripherals. The three options in Table 9 all have this characteristic, as
microprocessors without a low-power mode were not considered.

When considering memory and RAM, we again look at our requirements to
understand what the best option for our project would be. Since the MCU will not
be storing data, but only sending data to the development kit, where it will be
stored on external memory, the memory specification of the MCU does not need
to be relatively large. What is more important is the RAM. For all the
microcontrollers listed below, the RAM is 2K x 8. This means that they have 2048
individually addressable units and can write or read 8 bits at a time. This also
means that there are 11 address lines and 8 data lines.

3.4.1 Microcontroller Options

The following subsections under this section, addresses the various
microcontrollers available for us to investigate and compare their individual
features to determine which set of specifications are worth more to our Smart Bird
Feeder. The options implemented are highly important for understanding the
design of our programmable circuit board.

3.4.1.1 MSP430FR6989

The MSP430FR6989 is a microcontroller in a family of boards created by Texas
Instruments. This board in particular is a 16 MHz module with a 2 KB RAM size.
This microprocessor can reach 100uA/MHz in active mode, and reach a current
consumption as low as 0.4 uA in standby mode. The MSP430FR6989 Launchpad
Development Kit is very helpful in the development of electronic projects, as it
features an LCD display. This could come in handy if we wanted to be able to see
the data collected on the microcontroller before that said data is sent to the
development kit. This microcontroller features all three types of communication
protocols discussed: 12C, UART, and SPI. Since the group members already have
this launchpad as it has been required in previous classes, this would help the
budget of our project, since this would enable us to prototype with this
microcontroller without the need to purchase a new unit solely for prototyping.
Another thing to note is that a group member already possesses a book that
details MSP430 microcontroller basics. This book of information would be a big
help when developing the microcontroller functions. Overall, the MSP430FR6989

43

is a good choice for our microcontroller, as it has extensive capabilities, and has
been rather popular for use in senior design projects.

3.4.1.2 MSP430G2553

The MSP430G2553 is an ultra-low-power microcontroller, like the
MSP430FR6989. This device includes a 16-bit RISC CPU and 16-bit registers. In
addition, this microcontroller features a digitally controlled oscillator which is able
to wake up the system from its low-power mode in less than 1 us. Like the
MSP430FR6989, our group members have experience with this microprocessor
from previous classes, hence this would be a substantial benefit to choosing this
module opposed to modules that we have not had experience with. However, this
module has less community support than the Arduino microcontroller. This would
be a drawback when researching and developing the programs for the project. In
active mode, the microprocessor consumes 230 uA at 1 MHz, and 2.2 V. In
standby mode, this drops to 0.5 uA. Compared to the MSP430FR6989, its active
mode is slightly worse, with 130 uA more in current consumption than the
FR6989. With five different power saving options, this is a good pick for the
microcontroller in our design. Similar to the MSP430FR6989, several group
members already have the Tl Launchpad kit with this microcontroller, so there
would be no need to spend money on a new unit for prototyping.

3.4.1.3 ATMEL ATmega328P

This Arduino microcontroller has a key benefit of being widely popular. Because of
its relevance in electronics projects, there are a lot of resources and online help
that would assist greatly with the development of our MCU program. Another
benefit is its simplicity. This microprocessor’s main market is projects where a
simple and low-powered microcontroller is needed, particularly Arduino modules
like the Arduino Uno board. Table 9 shows a comparison of several
microcontrollers. Investigating the power consumption of ATmega328P, we see
that in active mode, this microprocessor consumes a current of 200 uA at 1MHz.
This is comparable to the MSP430FR6989, which has an active mode current of
230 uA. The power-down mode of the Arduino microcontroller consumes a current
of 0.1 uA, while the power-save mode consumes only 0.75 uA. The low power
mode for this module is slightly higher than the two MSP microcontrollers, but not
by much. A significant downside to the ATmega328P option is the programming
language. The programming language used for this microcontroller is basically a
framework based upon the C++ programming language. The framework is slightly
different from C++, with additional special methods and functions. This may pose
some difficulty when developing the microcontroller’'s functions and could
potentially be harder to program than the microcontrollers we are familiar with.

44

Table 9 - Microcontroller comparison

MSP430FR6989 MSP430G2553 ATmega328P
Cost $9.43 $3.38 $2.63
GPIO pins 83 24 23
Speed 16 MHz 16 MHz 20 MHz
Architecture 16-bit 16-bit 8-bit
Memory 128 KB 16 KB 32 KB
Operating 1.8V ~ 3.6V 1.8V ~ 3.6V 1.8V ~ 5.5V
Voltage
RAM Size 2 KB RAM 0.5 KB 2 KB SRAM
SPI 4 2 Yes
UART 2 1 UART/USART
12C 2 1 Yes
Package 80-LQFP 20-PDIP 28-DIP

3.4.2 Microcontroller Selection

For our project, we have chosen to use the MSP430G2553. There were several
key reasons why this became our selection. The first is the low-power mode
option. Out of the three microcontroller options, this module had the second
lowest current consumption when in standby mode, with a current of only 0.5 uA.
This standby mode will become very important when the device is in operation.
The microcontroller will be used to turn on the motor and close the door, read the
bird feed level with the ultrasonic sensor occasionally, and play sounds to the
external speaker. These tasks will only be executed infrequently, so it is important
that the microcontroller does not drain much battery when it is idle. Another
reason that we chose this microcontroller was its simplicity and our previous
experience with it. We had experience with both of the MSP430 microcontrollers,
but given the extent of its potential application, the MSP430FR6989's many pins
and functions will be too excessive for our project. The MSP430G2553 has the
perfect amount of communication protocols that we need, and excess pins in
addition to those necessary, allowing us the option to implement additional
features if time permits or needs arise. Additionally, the small package size,
20-PDIP, will make this board easy to create a PCB with and replace if need be.
For our PCB board, there are several sites in consideration for the manufacturer

45

of our board. One of these sites is JLCPCB. This site is considered to have a
good turn-around time, and has the MSP430G2553 microcontroller and
ATmega328P in stock. However, they do not have the MSP430FR6989 in stock.
Other PCB manufacturing sites are known to have very long lead times, and so if
we want the option of re-ordering PCBs due to manufacturing issues or design
errors, the option of being able to order from JLCPCB is a positive. Finally,
opposed to ATmega328P, in which the group members have little or no
experience, the MSP430G2553 is a microcontroller that all group members are
familiar with. The group members are also much more acquainted with the C
programming language than the C++ language that the Arduino microcontroller
utilizes. In conclusion, we concluded that the MSP430G2553 is the best option as
our microcontroller of choice and provides us with the most optimal parameters for
our smart bird feeder design.

3.5 Motor Control

An important feature of this device is the automatic door functionality. In order to
open and close the door, a motor must be used in conjunction with the door.
Several motors were considered for this purpose. The aspects of the motors that
were compared were the cost, torque, speed, size, acceleration, and
voltage/current requirements. For the cost, the budget estimated a price of
approximately $12 for the motor. Considering that we want the door to close
relatively slowly, so as to not harm any small animals, it is not required for the
acceleration to be highly rated. Likewise, speed is not an important aspect of the
motor chosen. However, the size of the motor is highly important, as it must be
able to securely and easily integrate into the bird house design. A larger sized
motor would become an obstacle, as installing it with the relatively-small bird
house would be challenging. Finally, voltage and current specifications of the
motor are also highly important. Since we are powering the device with a
rechargeable battery and solar cells, we want to find the lowest-rated motor in
terms of voltage and current, as to have the least impact on battery drain. Other
characteristics that are less important when deciding on a motor are the lifetime
and efficiency.

3.5.1 Motor Options

In determining the type of motor we will utilize in our smart bird feeder, the
following subsections under this section will take a look at DC motors, stepper
motors, and servo motors to determine which will work best for our
implementation. By investigating and comparing the following motor options, we
hope to identify the most adequate motor for closing and opening the hatch that
will physically block the bird food from the squirrels.

46

3.5.1.1 DC Motors

A direct current, or DC, motor is a class of rotary electrical motors that uses direct
current in order to provide mechanical energy in the form of rotation. Many DC
motors rely on magnetic fields to convert this electrical energy into mechanical
energy. The two DC motors that were considered were the brushless and brushed
types. In a brushed DC motor, brushes are used to connect the power supply to
the rotor assembly. Inside, there is a permanent magnet which creates a
permanent magnetic field. When current passes through the coils inside, the
rotating coils inside will become an electromagnet and interact with the permanent
magnetic fields already established. The repulsion between the two magnetic
fields then causes the shaft to rotate. Unlike brushed motors, brushless motors do
not use brushes. While the moving parts in a brushed motor include the rotor and
the brushes, the only moving component in a brushless motor is the rotor. The
main difference between the two is that in brushless motors, there is a control
input from the microcontroller. The motor also sends out reference signals taken
from a sensor inside the motor. This extra complexity makes brushless motors far
more difficult to control. However, brushless DC motors are simpler in the
mechanical sense than brushed DC motors. Between the two types of DC motors,
brushless motors tend to be more efficient and require less maintenance, since
there are no brushes that need to be eventually replaced after wear.

3.5.1.2 Stepper Motors

A stepper motor is a brushless DC motor that divides its full rotation into equal
steps and as a result, is valued for its higher precision than other types of motors.
This type of motor does not require any feedback to a microcontroller. However,
this motor does require an input of pulses in order to control the rotational
position. This is called pulse-width modulation. This would require input from the
microcontroller. In a stepper motor, the number of north and south poles
correspond to the number of ‘steps’. As the number of poles increases, the angle
of each step decreases. The stepper motor is a good candidate for a motor, as the
step precision makes the motor very accurate when controlling. Another great
aspect of the stepper motor is that at low speeds, the torque is higher. For our
device, we need a motor that is precise, yet on the slower side, so the stepper
motor would be great in this aspect. However, the need for microcontroller input
increases the complexity. Another drawback is the current draw. The stepper
motor will consume maximum current whether there is a large load or not. Any
energy not applied to a load will be lost as heat. Also, when large loads are
applied to the motor, the motor may skip steps as a result.

3.5.1.3 Servo Motors

Servo motors are highly energy-efficient and can offer a lot of torque in a small
size. The servo motor has three input signals, the ground, signal, and positive
voltage line. In order to control the motor, an electrical signal is sent through the

47

signal line. This signal will generally come from the microcontroller, and will
consist of pulse width modulation. The duty cycle of the signal determines the
position to which the servo moves to. The signal line of the motor accepts the
PWM signal, while the positive line is connected to the voltage source, and it
provides the servo motor power. The servo motor works mainly by use of a
potentiometer internal to the motor. Also inside the motor is a DC motor and
control circuit. While the motor is turning, the potentiometer’s resistance will
change as a result. This allows precise control of the direction and movement of
the servo motor. This way of operation is similar to the stepper motor discussed
earlier. Another key feature of the servo motor is its proportional control. This
means that the speed that the motor turns is proportional to the distance between
its current and desired position. In other words, if the motor is already close to the
desired position, it will turn slower than if it was farther away from this desired
position. The main benefit of the servo motor that sets it apart from other motors is
its closed-loop design. This means that the motor will send feedback to the
microcontroller for compensation. A big disadvantage with the servo motor,
however, is that these motors are usually limited to around 180 degrees of
rotation. This may pose a challenge when designing a door that can be closed
with only 180 degrees of rotation.

3.5.2 Categorical Motor Comparison

Table 10 shows a categorical comparison of each type of motor option discussed
so far. This table offers a head-to-head comparison of each motor's lifetime
expectancy, the amount of torque that each type of motor has, along with each
motor's efficiency, cost, typical voltage and current, and control complexity
(whether or not an external logic board is required to be connected to the motor
for proper operation). The brushed DC motor has the shortest life expectancy,
while the rest of the motors all have a roughly equivalent life expectancy, at over
10,000 hours.

48

Table 10 - Types of motors comparison

Brushed Brushless Stepper Servo
DC Motor DC Motor Motor Motor
Lifetime 1,000 to over 10,000 [over 10,000 over
3,000 hours | hours hours 10,000
hours
Torque 0.49 mNm 0.021 Nm at | 490 mNm 0.148 Nm
at 5VDC 12VDC holding at at 6vVDC
5vVDC
Efficiency 75%-80% 70%-90% ~65% over 85%
Cost $3.22 $14.95 $26 $7.95
Voltage/Current 1.5-24V 4 - 24V 1.68A at 2.8V | 200mA -
(typical) 10A
4A at 3V 5-15mA
Control No MCU MCU MCU needed | MCU
Complexity needed needed for to send pulses | needed to
feedback send PWM
and for
feedback

3.5.3 Motor Selection

For the motor in our bird feeder design, we are going to choose a servo motor.
This type of motor was mainly chosen due to its feedback option. Since our motor
will be opening and closing a door many times, it may not be wise to have a DC
motor where we cannot determine the exact position at which the motor is
positioned. A servo motor also ties other motors for the highest lifetime, so we do
not need to be concerned about the servo motor failing from normal use. This
could lead to the DC motor not closing completely or overshooting the position
that it needs to stop at. With a servo motor, we can have feedback which lets the
microcontroller know exactly where the motor, and subsequently the door, is
positioned. This will make sure that every time the door is utilized, it is completely

49

opened or closed. The servo motor that will be used is the FEETECH FS90-FB
Micro Servo. This motor only costs $7.95 per unit, and includes positional
feedback. This feedback potentiometer allows direct positional measurement of
the output.

3.5.3.SD2 Motor Selection

In Senior Design Il, our team still liked the choice of motor type, but wanted to
ensure the chosen motor was of the best available. Listed below in Table 11 are
the servo motors we considered. The team’s specifications were focused around
voltage, weight, and price.

Table 11 - Servo motor comparison

SG90 FS90-FB FS0403
Weight 9g 13g 5g
Torque 1.8kg/cm 1.5kg/cm 0.7 kg/cm
Maximum
rotational 180° 180° 120°
angle
Cost $2.75 $7.95 $5.50
Voltage/Curre
4.8 ((2A V (.2A V (0.2A
nt (typical) 8(2A) 6V (2A) SV(0.2A)
Speed 0.1 sec/60° |0.1sec/60° 0.08 sec/60°
Size 32x32mm |24x22mm 20 x 20 mm

We decided to use the SG90 micro servo motor due to its cheap price point and
similar specifications to the others. While it was the largest of the motors
available, it had the most torque while still maintaining the same base current
requirements.

50

3.6 Distance Sensing Technology

One feature that our device will have is the capability of taking a measurement of
the amount of bird feeder in the bird feeder container. This feature is important for
achieving our goal of low maintenance. Since the mobile app will inform the user
that the bird food is low, the user will not have to constantly go outside and
visually check the bird feeder themselves. This lowers the time the user must put
towards maintenance.

3.6.1 Distance Sensing Options

The purpose of the first two subsections below is to describe our technical
investigation, so that it helps in the comparison of the distance sensing options.
The two options investigated and compared in this section are the ultrasonic
sensor and infrared sensor. The third subsection under this subsection, is to build
on our technical investigation and compare between the two to derive to the
option that will be used in this project.

3.6.1.1 Ultrasonic Sensor

Ultrasonic sensors are very popular in electronic applications and have been used
in past UCF engineering courses. This sensor is easily integrated with the
MSP430G2 to provide distance sensing ability. The wiring to the HC-SR04
module includes pins for Vcc, Trig, Echo, and GND. In Figure 5, the entire module
is shown, including the pins and the transmitter and receiver. Other key aspects of
the sensor are included in Table 12.

The important aspect of the ultrasonic sensor is the minimum and maximum
range range. This means the minimum/maximum range that the ultrasonic sensor
is able to detect distances at. Since the bird house will be relatively small, the
sensor will have to be able to read distances of about 1 — 13 inches, depending
on the depth of the bird feed container in the final design. The sensor must be
able to detect the levels of bird feed by looking down vertically on the bird feed
from the ceiling of the bird house. When the bird feed is fully filled, the distance
from the sensor to this level will be ~1 inch. Since the minimum range of the
sensor is 2 cm, this will not present an issue for our device. When the bird feed
level is depleted, the distance between the bottom of the bird house and the
sensor will be ~13 inches. Again, since the maximum range is 4 meters, this
design will be feasible. Another good aspect of the sensor is the small size. The
relatively small dimensions of the sensor will make it easy to integrate into the bird
house structure with the rest of the electronics.

The ultrasonic sensor works by sending out a signal from its transmitter and then
receiving the reflected signal back to its receiver. The time between transmission
and reception is used to calculate the distance between the sensor and the object.
In order to control the ultrasonic sensor, a signal will be sent from the

51

microcontroller to the Trig pin of the sensor. This signal will consist of a 10 us
pulse. This commands the sensor to start its distance detection by transmitting an
8 cycle burst of ultrasound at 40 kHz. Once the ultrasonic sensor receives the
reflected signal, it then produces a pulse that is sent to the microcontroller through
the Echo pin. This pulse goes high as soon as the eight pulses are sent from the
transmitter of the sensor. Once the pulses are reflected back, this pulse goes low.
Therefore, the pulse width is proportional to the time between transmission and
reception of the ultrasonic pulses. In order to calculate the distance, we must
multiply the speed of sound, 0.034 cm/us, and the time duration of the echo pulse,
then divide this product by two. The pulse is proportional to the distance traveled
from the transmitter to the object, and back to the receiver. Since we only want the
distance of the ultrasonic sensor to the object, we divide the product by two.

Crystal Oscillator (4 MHz) www.TheEngineeringProjects.com

HC-SR04 Pinout

Transmitter for

Ultrasonic Waves Receiver for

Ultrasonic Waves

Vce (+5V) <

» GND (Connected to 0V or Ground)

Trig (Input Pin) < >

Figure 5 - HC-SR04 Sensor [26]

Table 12 - Ultrasonic sensor specifications

Operating Voltage 5V
Working Current 15 mA
Working Frequency 40 Hz
Maximum Range 4m
Minimum Range 2cm
Measuring Angle 15 degrees
Dimensions 45 x 20 x 15 mm

52

3.6.1.2 Infrared Sensor

The second type of distance sensing technology that was considered for our
project was an infrared sensor. Infrared sensors work through the principle of
triangulation. This means that the sensor measures the distance between itself
and the object in question based on the angle of a reflected beam.

The process of distance detection works first with the IR sensor emitting a beam
of light. The light beam is created using an LED. Next, this beam of light hits the
object in front of the infrared sensor. This light beam is reflected off the object at
an angle. The reflected light beam then travels back to the sensor, and lands on it
at a different location. The sensor then uses this location where the beam was
detected in order to determine the position of the object in relation to the sensor.
Figure 6 displays the operation of the infrared sensor.

PCB | proximity Sensor
OBJECT

5

Infrared
LED

Figure 6 - Infrared LED to proximity sensor behavior diagram [25]
3.6.2 Distance Sensing Technology Selection

In order to determine which type of distance sensing technology is best for our
application, we compare and contrast the two types discussed. The main
advantage that IR sensors have over ultrasonic sensors is their ability to better
detect edges of an area. A significant disadvantage of the IR sensor, however, is
their inability to use them in sunlight. This is because of the interference that the
sunlight causes. This can cause difficulty when trying to use the sensor outdoors
or in the dark. Examining the main advantage of the IR sensor, we realize that this
advantage would not apply to our project, since we do not need our sensor to
determine the size of an area. Since our sensor will only need to know the
distance, and will not need this aspect, the IR sensor is not necessary for this
reason. Also, the huge disadvantage that IR sensors have when it comes to

53

sensing in sunlight or night makes the ultrasonic sensor much more desirable. In
conclusion, we will be utilizing the HC-SR04 ultrasonic sensor in order to measure
the bird feed level in our project.

3.6.2.SD2 Distance Sensing Technology Selection
During Senior Design Il, the team's perspective on the best sensor for our use did
not change, but we did create Table 13 to better highlight the advantages or

disadvantages of the decision.

Table 13 - Ultrasonic Sensor v. Infrared Sensor

Ultrasonic Sensor Infrared Sensor

° Distance .
Small devices

measurement .
. Works well in
e Works well in
dark
Strengths dark

environments
e Can measure
complex objects

environments
e Low power

consumption
e Minimum
e Distance detection range
constraints too large
Drawbacks e Unsuitable for e More expensive
fast objects in cost than the

ultrasonic sensor

The team also performed more research on the type of ultrasonic sensor we’d use
for our design. The HC-SR04 was the first option as it was already available to us
and fit our requirements. However research suggested that there was a Grove
sensor that performed slightly better than our chosen sensor. The specifications
are listed below in Table 14.

The specification that the team was most impressed with regarding the Groove
were the current requirements. At 8 mA, this was half the value of the HC
ultrasonic sensor. The other metrics were largely the same. However, the HC
sensor was already owned by the group, and thus the group was familiar with how
to code for it.

54

Table 14 - HC-SR04 sensor v. Grove IR sensor

HC-SR04 Grove
Operating 5V 5V
Voltage
Working 15 mA 8 mA
Current
Working 40 kHz 40 kHz
Frequency
Maximum 4 m 3.5m
Range
Minimum 2cm 3cm
Range
Measuring 15 degrees 15 degrees
Angle
Dimensions 45 x20x 15 50 x25x 16

mm mm

Accuracy 3mm 2 mm

We began testing early with the HC sensor and didn’t find the benefits to
switching to the lower power sensor to be high enough given how small the
change was when looking at our total energy requirements.

3.7 Solar Energy

Solar energy will allow us to reduce maintenance for our system, while also being
mindful of the environment. Solar energy will provide a clean, green source of
power to our system devices. Our solar energy system will consist of solar cells
that convert the solar energy into electrical energy, a rechargeable battery which
will store this electrical energy, and a charge controller placed between the solar
cells and battery that will protect the battery from overcharging and overvoltage.
The charge controller will also increase the life-span of the battery due to its
capabilities. In this following section we outline the research and selection of the
charge controller, rechargeable battery, and solar cells. We also do some

55

calculations to determine the amount of charging time required to fully charge a
battery.

3.7.SD2 Solar Energy (SD2 Stretch Goal)

One of the most challenging problems the group faced in Senior Design Il was
how to maximize the power potential of The Smart Bird Feeder. In SD1 the group
was under the impression that the best way to do this would be solar energy.
However in SD2, we realized the real issue regarding the project was the amount
of energy consumed by the device. Our power requirements were high enough
that adding a solar energy panel would not be enough to offset consumption by
any meaningful amount. So we shifted our focus by including a more powerful
battery and by attempting to limit the consumption of the Jetson Nano Developer
Kit. We’'ll speak about this more in the coming sections more related to these
changes. But for now solar energy has become a stretch goal as the team does
not find it key to the success of the project.

3.7.1 Charge Controller (SD2 Stretch Goal)

The next consideration when creating our solar energy system is the type of
charge controller. The purpose of a solar charge controller is to control and
regulate the current flowing from the solar panel to the rechargeable battery. This
prevents overcharging of the batteries. There are two main types of charge
controllers. These are the PWM and MPPT type solar charge controllers. The
main difference between these two is how the current is drawn out of the solar
cells. With PWM controllers, the current is drawn out of the solar panel just above
the battery’s voltage. In contrast, with MPPT controllers, the current is drawn out
of the solar cells at the solar panel’s “maximum power voltage”. This means that
there is usually an increase in energy harvested using a MPPT controller over a
PWM controller. Of course, with higher efficiency comes a higher cost. The PWM
charge controllers are less expensive than MPPT controllers, and are ideal for
smaller systems. The average price of a MPPT controller is around a few hundred
dollars, while it is easy to find a PWM controller as low as $15. Since we are trying
to achieve a low-cost system, we will be choosing the PWM type charge controller
to regulate the charging of our rechargeable battery. For our initial testing, we will
be choosing several charge controllers.

3.7.2 Solar Powered Battery (SD2 Stretch Goal)

Next, we must choose a rechargeable battery for our solar energy system. This
battery will store the energy needed to power the components in our system.
There are two main types of batteries that we can choose from. These are lithium
and lead acid batteries. These are the two most popular types of rechargeable
batteries, especially when it comes to solar energy systems. When it comes to
capacity, depth of discharge, efficiency, and lifespan, lithium-ion batteries usually
take the lead. Depth of discharge is the percentage of the battery that can be

56

safely drained of energy without damaging the battery. Typically, lithium-ion
batteries can drain 85% of the total capacity. However, lead acid batteries should
not be discharged more than 50%. With efficiencies, lithium-ion batteries see
around 95% efficiency, while lead acid batteries' efficiencies come closer to 80%.
This means that lithium ion batteries can typically use ~15% more of their stored
energy. In addition, higher efficiencies mean that lithium ion batteries will take less
time to charge. This becomes very important when we want our system’s power to
rely mostly on solar energy. When looking at all the factors, it is clear to see that
lithium ion batteries are the better choice. The difference in cost between lithium
and lead acid batteries is relatively negligible with the size batteries we are
looking for, and this will be worth the benefit of less maintenance of our system.
For our initial design, we will be using two lithium ion rechargeable batteries found
on Digikey.com. The batteries are rated at 3.7V and 2.5Ah each. The price of
each battery is $14.95.

3.7.3 Solar Cells (SD2 Stretch Goal)

When we are choosing a solar cell, charge controller, and battery to power our
system, there are several key aspects to consider. For the solar cell, we must
choose which type of solar cells we want. The two most popular types of solar
cells under consideration are monocrystalline and polycrystalline solar cells. In
order to create monocrystalline solar cells, silicon is formed into bars and then cut
into wafers. The reason that this type of solar cell is called “monocrystalline” is
due to the fact that it utilizes single-crystal silicon. Monocrystalline panels tend to
be more efficient because of this, and as a result are more expensive.

Polycrystalline solar panels generally are less efficient than monocrystalline
panels. These solar cells are also made of silicon, however, the silicon wafers are
formed in a different process. This process involves melting many fragments of
silicon together, resulting in a multi-crystalline structure. This multi-crystalline solar
cell allows less freedom of movement than the single-crystalline solar cells,
resulting in lower efficiency. Although the price is higher for monocrystalline than
polycrysalline, we are choosing to go with the monocrystalline solar cells due to
their higher efficiency. Monocrystalline solar cells are readily available online.

Let us see how long it would take to charge a rechargeable battery given a certain
solar panel and PWM charge controller. We will need a maximum current of 4A,
and a voltage of 6V. For our system, we will have two lithium ion batteries each
with a voltage of 3.7V and an amperage of 2.5AH. Together, they will provide our
system with 7.4 volts, and a maximum current of 5A. In order to calculate the total
charge time we must divide the battery’s capacity (in watt hours) by the power of
the solar panel. We then multiply this quotient by 2. This leaves us with the total
charge time. To our battery’s parameters into watts/hours, we must multiply the
amp-hours by the voltage of the battery. This leaves us with 5Ah * 7.4V = 37 Wh.
For our solar panel, we are choosing two 5V, 250mA solar panels. Together, they
provide 10V and 500mA. This gives us a power of 5 watts. Calculating everything
together, we get approximately 37Wh/5W = 7.4 hours for the total time it will take

57

to charge our two batteries with our solar panels. Of course, this is only an
estimation, and extensive testing will have to be done to create the most efficient
and best suited solar charging system for our smart bird feeder.

3.8.SD2 Replacement Battery System

As the original solar design was pushed to stretch goals following a new
understanding of power requirements, the team needed a method of powering the
PCB. The power requirements of the system are listed in section 5.1.2.SD2,
however for the purpose of this section the maximum current for the system is 1.8
Amps. The minimum current after implementing the power saving features on the
Jetson Nano is 1.2 Amps. The team needed a battery that outputs 12 Volts and
carries with it as many mAh as possible.

The battery bank that the team decided on is the TalentCell rechargeable 12 V
6000mAh battery bank as it had a barrel jack port capable of functioning well with
our PCB. Compared to the previous 3.7 V 2500 mAh batteries that would need to
be placed in series, this option was much stronger in terms of supporting our
power requirements.

3.9 Piezo Speaker

In our design, we are to have a speaker whose purpose is to help deter squirrels
from The Smart Bird Feeder. For the speaker, we have decided to use a
piezoelectric speaker. The piezoelectric speaker works by using voltage applied to
a piezoelectric material. Piezoelectric materials are capable of converting
electrical energy into mechanical energy. This means that when a voltage is
applied to a piezoelectric material, stress will then be induced in it. In the case of
the piezoelectric speaker, when voltage is applied to the metal diaphragm inside,
a stress is induced, consequently causing the diaphragm to undergo tension or
compression, depending on the polarity of the voltage applied. This tension and
compression causes the diaphragm to dish in either direction, and produces
sound as a result. The visual representation of this is shown in Figure 7, where
you can see the direction of protrusion corresponds to the polarity of voltage
applied. In order to control the piezoelectric speaker, we will be using the
MSP430G2553 microcontroller. The microcontroller will send out a PWM, or pulse
width modulation, signal on one of its output pins to the piezo speaker. Depending
on the PWM signal, the piezo speaker will emit a certain pitched sound. There are
also many benefits to using a piezoelectric speaker, including the low cost and
small size, making this a good choice for our design. In conclusion, this is a great
option for our design, and will achieve our speaker requirement.

58

—_—> €— j;-l-

<« —>; ;'
+

Figure 7 - Piezoelectric Effect [27]

3.9.SD2 Piezo Speaker

In Senior Design Il, the group considered both 12 and 5 V alarms piezo alarms.
12 V alarms are considerably more common, however most of them carry a
decibel range outside of our requirement range. Since the alarm will be in such
close proximity to any backyard pest, the group wanted to remain cautious. The
alarm the group selected is the Fielect Piezo Alarm. The specifications are listed

below in Table 15.

Table 15 - DUDUA Piezo Alarm v. Fielect Piezo Alarm

DUDUA Piezo Alarm Fielect Piezo Alarm
Resonant Frequency 3.9 +/- 0.5KHz 4.0 +/- 0.5 KHz
Rated Voltage 12V 50V
Operating Voltage 3~24V 1~30V
Max Curm?nt 10 mA 5 mA
Consumption
Min. Sound Output at
Rated Voltage 95 dB 80 dB

However during late stages of the implementation stage, the Fielect Piezo alarm
failed to provide sound close to its desired 80dB. The group tested other
pre-owned alarms with the same circuitry and found that they functioned properly,
so the issues with the Fielect alarm were manufacturing based in nature. After
implementing the pre-owned alarms and the system functioning properly, the team
decided to continue to utilize the pre-owned alarm, rather than purchasing another

Fielect alarm.

59

3.10 Serial Communication Technologies

Communication between the Jetson Nano and our microcontroller is vital to the
success of this device. The Jetson Nano must be able to send information to the
microcontroller about when and how to operate its peripherals and collect data. In
addition, the microcontroller must be able to send the data collected from the
peripherals back to the Nano. In order to do this, a type of communication protocol
must be decided on, which is common to both the Nano and the microcontroller.
In the next few sections, we investigate these different protocols, and determine
what is the best for our application.

3.10.1 12C

I2C stands for inter-integrated-circuit. This is a serial communication protocol
used for communication between modules and sensors. It is a bidirectional
two-wire synchronous serial bus which only requires two wires to send/receive
data, similar to the UART protocol. Since the 12C protocol uses an address
system and a shared bus, it is able to allow many different devices to connect to
the microcontroller using the same wires. The disadvantage of 12C is that it is
slower than SPI, since there is less wiring.

The way in which 12C sends data from various devices on one line is by utilizing a
SCL, or serial clock line, and SDA, serial data line acceptance. The SCL allows
the master to send and receive data, while the SCL is the clock line for
synchronizing the transmission of data. In order to send data, the master
addresses the slave by sending the 7 or 10-bit address of the slave it wants to
communicate with to all the slaves. The slaves then determine which one of them
is the desired recipient, and then the correct slave returns an ‘acknowledge’ bit,
which switches the SDA line low for one bit. The master is then free to send or
receive data. Once all data has been transferred, the recipient will send another
ACK (acknowledge) bit to verify that the transmission was successful.

A big drawback with 12C is the slower speed. Another disadvantage is the larger
space taken up by the needed pull-up resistors. In conclusion, although this
protocol is very helpful for systems with multiple slaves connecting to a master,
this is not the setup in our project. Our device will only have the development kit
communicating with the microcontroller, so the need for 12C does not exist.

3.10.2 UART

UART stands for Universal Asynchronous Reception and Transmission. This is a
simple serial communication protocol that supports bi-directional communication,
similar to the 12C. However, unlike SPI or I2C, UART is asynchronous, meaning
that it is not synchronized with a clock signal. This protocol operates by having
two data lines: a transmit line and receive line. By the way that UART is setup,
communication can only occur between two devices.

60

Since there is no synchronization in UART, specific aspects of UART compensate
for this. First, the two devices must be set to the same baud rate. This rate
designates the speed of communication by defining the number of times a signal
changes per second. Second, the UART adds start and stop bits to the messages
in order to identify the start and end of messages sent and received. UART can
operate in 3 different ways: simplex, half-duplex, and full-duplex. The half-duplex
and full-duplex modes of operation both have data transferring in both directions,
however full-duplex has the data transferred in each direction simultaneously,
while half-duplex is not simultaneous. Since we need the Jetson Nano to send
commands to the microcontroller, and the microcontroller to send information back
to the Nano, we would be using either half-duplex or full-duplex for our UART
communication.

The biggest advantage of UART is its simplicity. This communication protocol is
very popular and widely used, so there is also plenty of documentation to support
our development process. The lack of a clock signal also makes this protocol
simpler to understand and develop. Finally, the inclusion of a parity bit helps with
identifying errors when they occur.

A disadvantage of UART is that there is no possibility of having multiple master
systems and slaves, as mentioned before. However, since our project will only call
for communication between the development kit and the microcontroller, only one
master-slave system will need a communication protocol. Thus, UART would work
perfectly for this application. Some other disadvantages include the size of the
data frame being limited to only 9 bits, and low transmission speeds. Low
transmission speeds are not a big concern, considering that our engineering and
marketing requirements don'’t call for quick communication and processes. Also,
the data frame bit limit should not pose a problem.

3.10.3 SPI

SPI stands for Serial Peripheral Interface. This communication protocol is similar
to 12C. SPI operates a full-duplex, meaning that data can be received and
transferred simultaneously. Compared to 12C, SPI tends to run faster, due to its
simpler protocol design.

SPIl works by communicating via four different ports. When SPI is used in a
multi-slave system, meaning multiple devices, each slave must have a different
enable signal. This results in the SPI protocol being slightly more complicated
than the 12C protocol. Since SPI is synchronous, it operates with a clock signal.
This complicates the design of communication using SPI.

The four ports of SPI make this protocol more complicated than the UART

protocol, however, still less complicated than the slave addressing system of 12C.
A major advantage of this protocol is that it has the fastest communication among

61

the three protocols. Unlike UART, this protocol does not have a start and stop bit,
meaning that data is transferred continuously. A disadvantage of SPI is the lack of
error check, whereas UART has the parity bit.

3.10.4 Serial Communication Protocol Conclusion

Comparing the three protocols, it is clear to see why UART is the best method for
our application. The simplicity is ultimately what made the decision land on UART.
This is also the reason for UART’s widespread popularity for communication. Our
microcontroller will be sending various information to the Jetson Nano. This
includes the position of the motor, the bird feed level, and updates on the external
speaker output. None of the information that will be sent to the development kit
from the microcontroller will call for a clock signal, as the data being sent will all
be simple numbers in binary form. Both 12C and SPI include clock signals in their
protocols, and this is something that is simply unnecessary for our project. In
conclusion, UART was found to be the most suitable choice for our bird feeder.

3.11 Full Stack Development Technologies

There are a number of different full stack development tools to choose from when
choosing to implement a mobile application. Choosing which stack to build the
application on top of is a process that’'s dependent on the needs of the developer.
Stacks can be broken down in terms of an operating system, database, web
server, and programming language. It's important for our project to pick a stack
that is well documented, with components that have strong ties together. In the
coming paragraphs, the choices will be compared for the success of the project.
Then we’ll break down the technologies chosen and their usefulness to the
project.

3.11.1 Flutter

Flutter is a tool from Google that’'s based on the dart programming language. The
members of our team do not know how to code in Dart, so our team took that into
consideration when choosing a stack. However, coding in Dart is known to be
easily understandable. Flutter uses built-in widgets and has quick performance.
However, due to the young age of Flutter, there is less documentation online of
using the tool. When considering the lack of familiarity and documentation on
Flutter, our team is less likely to incorporate this over other stacks.

3.11.2 React Native

React Native is based on JavaScript, which is a highly known and well-supported
programming language that our team already is proficient in. React Native is
extremely common for building applications, and thus has the most

62

documentation of the Stacks listed here. Our team also has experience coding in
React Native from the Project of Object Oriented Software course at UCF. React
Native is part of the MERN stack, which consists of MongoDB, Express, React,
and Node. This stack allows the user to code in JavaScript on both the front end
and back end of the application. Which means there is less programming
language overhead when implementing the application. The previous experience
with React Native and its MERN stack counterparts make React Native an
excellent choice for our project.

3.11.3 SQL and NoSQL Databases

When choosing a database, it's important to consider the difference between SQL
and NoSQL databases. SQL databases are relational, and as such they require
that in order for data to be inserted, you must predefine the structure of the data
before inserting anything inside. NoSQL databases however are much more
flexible, the data can be stored in a number of ways, allowing for a more dynamic
approach. For our project, we prefer a more dynamic approach to memory
storage and prefer not to waste time defining the structure for our user’s data. We
are also more comfortable using a NOSQL database when implementing a React
application, so it was an obvious choice for our project.

MongoDB is a database associated with the MERN stack and is a NoSQL
database, and works well with React based applications. The cluster is easy to
configure, and adding data due to the dynamic structure is efficient. MongoDB
also has a tool called MongoDB Compass, which allows its developer to visualize
the data that's been added, which will be very helpful in our efforts to test and
debug test data.

3.11.4 Expo

Our team will be utilizing Expo to test our application. Expo is a framework that
allows developers to test React applications with ease. Expo apps can be tested
in conjunction with React native as soon as they’re written just by saving
progress. Expo will run a live server that can be used to immediately see changes
in a browser to mimic mobile views, or there is an associated application that can
scan a generated barcode and updates right on the phone. By using expo, testing
changes can be done quickly and seamlessly.

3.11.5 Visual Studio Code

Our team's editor to build the bird feeding application is Visual Studio (VS) code,
which is an open-source editor created by Microsoft. The editor supports
extensions for the programming languages needed for the project, and includes
useful features such as syntax highlighting, bracket-matching, auto-indentation,

63

and more. This code editor should improve the team’s efficiency for the
development process.

3.11.6 Operating System

This section will break down the choices of operating systems, and discuss the
differences between the two, and ultimately our decision to develop on which
platform. The two platforms that form a monopoly on the application market are
Android and iOS. Android is a mobile operating system, and is primarily formed on
a modified version of the Linux Kernel. iOS is a proprietary mobile operating
system that’s developed by Apple with a much more strict base. This decision will
be based on a multitude of factors that affect the development process and user
experience after the launch of the product. For the developmental side, the team
must consider whether or not the full stack development technologies are more
catered to a certain platform. We also need to consider our coding experience.
regarding the languages primarily used for the platforms and how this could affect
development time. Finally, the extraneous startup cost and process of
implementing the app into the store for download. For the user side, we need to
consider the percentage of users who would have access to the application and
the entry fee associated with using the product. Another key factor is the feature
set available to both platforms. Finally, the team will discuss the possibility of
incorporating the application onto multiple platforms if given the time to do so, but
there will be a priority assigned to one of the mobile platforms.

The first consideration is whether or not the development platform is supported by
the full stack technologies that we've decided to use. Our team is using React
Native as a mobile development platform for reasons listed in section 3.5.2. React
native supports both Android and iOS, but there are limitations to testing the
application depending on what OS is being used to use react native. For example,
when programming with a windows machine, there is no solid way to ensure that
the application is functioning on iOS, iOS emulation has a low toolset and is
finicky on windows machines. There is a tool called XCode which simulates an
apple device, but this can not be installed unless you are on a macOS to begin
with. When using android studio however, which is available on both macOS and
windows, you can freely emulate an android device. Our project members have a
mix of windows and macOS, but when developing on android, there are no
concerns regarding emulation or testing. While react native is supported, there are
limitations depending on hardware.

Each platform uses a different coding language to achieve its functionality.
Android primarily runs on Java, while iOS uses a native programming language
called Swift. Java is more open ended and is used for many other coding
practices, while swift is streamlined for iOS development. Swift is considered to be
easy to write and read, and also fast and powerful. Java is simple, distributed to
many other applications, and is based on object oriented programming. Both
however have a varied toolset and are capable for the task at hand. Our team is

64

more concerned about the time spent learning a new coding platform given they
are both powerful tools capable of creating our application. In that sense, the team
is much more familiar with Java, having used it to program other applications in
the past. Java is also integral in coding with React Native. Simply choosing the
coding platform that we’re more familiar with can impact the development time
greatly, so we are leaning towards Java for our coding language.

The last developmental factor is the process of adding the applications to the
respective app stores. Consumers are used to downloading applications from
their respective smartphone stores, as it feels familiar and more secure. So in
order to correctly implement our application, it's important to make sure the
download process is reliable and feels legitimate. Most Android applications are
downloaded from the Google Play Store. In order to submit an application to the
google play store, you have to pay a one time fee of 25$. This fee is associated
with a Developer Dashboard account, which once owned can upload applications
to the Google Play store for free. iOS applications are exclusively downloaded
from the App Store, an apple software integral to the apple mobile phones.
Unfortunately, the App Store has a much more stringent upload process, which
must be approved. The fee for an application is also annual, sitting at 99%. This
means that choosing iOS would include a much higher cost, and more
development time for approval. This factor is quite large when comparing the two
platforms for our team, as price has been a key factor in many of our group's
decisions.

When considering user experience, we need to take into account the amount of
devices capable of using the platform we develop on. When taking a look at the
total market share, Apple and Android make up 99% of the smartphone market.
Android controls a larger share of the market worldwide, at about 87% of the total
market, to Apple’'s 13%. However, our primary audience will be in the United
States, in which the numbers are much more in Apples favor. In the United States,
Apple controls about 53% of the market, while Android sits at 46%. So, when
considering the user base for the North American audience it'd be beneficial to
choose I0S as the development platform. While we prefer to focus on cases
where the users already have a smartphone capable device, it's important to
highlight the cost of entry for these two platforms. Apple products are more
expensive than Android products by about 2.5 times as much. The average
Android device is around $254, while Apple sits at $687. In the case where a user
would need to buy a device to use our product, android would be the better
option. However, this scenario does not affect the decision as much as the current
user base does.

When considering all of the topics listed above, the team needs to make a
decision for which platform to set priority development on given the stringent time
frame of the project. It is important to mention that the team would prefer to
incorporate both development platforms when developing, but due to time
constraints this may not be possible. If given the opportunity, both platforms will

65

have an application in order to cater to the largest possible user base. Overall, the
benefits in developing for Android include the ease of testing, code knowledge,
and associated cost of uploading to a store. While iOS marks a slightly higher
user base, this difference is not enough to overshadow the benefits of Android
listed above. Thus, our team has decided to use Android for its developmental
platform.

3.12.SD2 Motion Sensor Technology

In Senior Design Il, as current consumption issues were made more pressing the
group decided in order to save power there needed to be a way to limit the
consumption on the Jetson Nano. Through running intensive current tests, the
group learned that by shutting off the machine learning processor, the current
consumption of the system as a whole dropped ~60%. To do this, a motion sensor
needed to be implemented in order to trigger the machine learning sensor to
restart.

3.12.1.SD2 Motion Sensor Comparison

There were two motion sensor technologies the team compared and considered

to implement into the design, as Table 16 shows. A photo resistive sensor and

laser were considered, acting as a tripwire for any animal who broke the line of

sight between the laser and sensor. The other idea considered was a PIR sensor

that used thermal technology to monitor motion of objects that produce heat.
Table 16 - Laser sensor v. PIR sensor

Laser Sensor
(transmitter +
photoresistor) PIR Sensor
Operating 3.3-5V 45V -20V
Voltage
Working Current <40 mA 65 mA
Maximum ~3m 3-7m
Range
Measuring N/A 120 degrees
Angle
Dimensions 6.5 x 18mm 24mm*32mm*25
mm

66

The team originally considered the tripwire sensor given it has lower power
requirements, however there were a few issues regarding the use of this sensor.
Given that both components would need to be located on the perch of the feeder,
itd be easier for the animals present to shift the laser or receiver, which would
cause a stream of never ending false positives and turn the machine learning
processor on constantly.

The team chose to use a PIR sensor to monitor movement, as it uses thermal
technologies to monitor for changes in heat signatures. This technology would
limit the number of false positives by avoiding other inanimate objects from
triggering the sensor, such as a falling leaf. This design allowed the sensor to also
be mostly hidden in the enclosure. The specifications table for both sensors
considered is shown below.

67

4. Design Constraints and Standards

This section discusses the constraints on developing this Smart Bird Feeder as
well as the standards that apply to the technology that will be applicable to this
project. The idea behind the constraints subsections is to help highlight the
various concerns and constraints that play a major part of our schedule and part
selection decisions. Then we proceed to the subsections on standards to lay the
foundation for the sets of standards and regulations that this group must be well
aware of as we develop and pick various aspects of The Smart Bird Feeder.

4.1 Constraints

The group had to balance the added features of development processing boards
with the cost of those boards. For example, there already exists a board with
strong bird-detecting functionality built in, however, it sits at nearly double the cost
of the alternative option. Thus, price constraints limit the capabilities of equipment
and add on extra working hours. Another constraint is the amount of memory
offered by the developer kit that we use, since any company that creates the Al
developer kit that we plan to use would only offer a finite number of kit models
with a finite number of memory size options. Only once we have finalized the
hardware and software designs for this project will we truly know what the
memory requirements for our developer kit will be.

Time constraints create an interesting dynamic between monetary cost and the
feasibility of our group completing certain aspects of this project, given our skillset.
In situations where we find the time frame to be too short for our group to feasibly
learn how to develop and execute original solutions for accomplishing our goals,
the monetary cost of components may increase, since pre-built products and
packages may have a higher overall monetary cost than most original
do-it-yourself components. However, in situations where we feel that we are able
to accomplish our goals in the given time frame, we may choose to develop some
hardware/software components ourselves, which would save monetary cost by
purchasing less pre-built products. We expect each group member will spend at
least an estimated 13 to 15 hours per week working on this project, and our
current monetary budget is $400 (see Project Budgeting and Financing for
details). Similarly, shipping times and part availability also need to be considered,
as some parts may not be available to order when our group requires them, or if
they are available, the shipping time cost may be unacceptable. With regards to
our machine learning object detection model, if we need to train our own model, or
even retrain an existing model, the amount of time that we are able to put toward
training/retraining a model will be a significant constraint on the number of bird
species that can be detected, since it takes more time and resources to find data
and train a model and the amount of data to find and use for training increases.

68

Since the smart bird feeder device belongs outdoors, power also stands as a
concern. Our plans were to avoid the user recharging the device inside, if
possible, and to be able to power the entire smart bird feeder device for up to 3
hours or more on a single charge. We are currently investigating self-charging
options such as solar power. Also, the battery supply must be large enough to
power the processor and peripherals, and this total power needed could only be
determined after the system components have been chosen. With the size of our
bird feeder, and the total power consumption, a constraint arose when trying to
incorporate a battery that was powerful enough for our system, while also being
small enough to physically attach to our device. To mitigate this concern, we
looked into low-power modes for the processor so that power consumption can be
reduced, but more investigation is required to know how much power and current
the entire smart bird feeder device will draw, which will reveal to us how large our
battery must be. Environmental constraints are also produced as a result of our
smart bird feeder device being made for the outdoors. Our bird feeder and the
electronics within it must be fitted to withstand the weather conditions common to
the area in or around Orlando. This means that the device should be waterproof,
substantially shock-proof, and overall able to avoid any damage or loss of
materials due to external weather conditions which could cause corrosion, shorts
circuits, etc.

Other variables that will surely be constraints for this project are the birds and
squirrels that will interact with the bird feeder. We cannot directly control most, if
any, of the actions of live birds or squirrels, so we will be under a constant
constraint in terms of testing and demonstration which is controlled by the
personal choices of the birds and squirrels. They must first choose to make their
way over to the bird feeder before our device can be tested.

4.1.1 Economic Constraints

In designing The Smart Bird Feeder, one of the many constraints comes from the
cost of construction. Due to the common situation most groups face in Senior
Design is that there is no corporation funding the project, which leads to the
project being self funded by the group members. When companies fund Senior
Design projects, they usually provide a substantial amount of money to ensure
that the end result. is highly reliable and works as intended. However, when
projects are self funded, such as the Smart Bird Feeder, we must use our budget
constraint as a motivation to be frugal yet inspire us to ensure the end product has
the most bang for its buck. This means, we need to ensure that we spend
adequate time in technical investigation and comparisons to ensure that we
identify the most important components of our system so that we save money on
non important parts so that we can invest in the important components. For
instance, we may go with a 2GB Development Board that has one camera port vs
a 4GB Development Board that has two camera ports, since we know that the
2GB can work adequately to identify species and we only require one camera,
which will save us a substantial amount of money. Moreover, the group will also

69

have the burden of buying various components to test, in the creation of our
prototype, so that we can have an end product that does what it needs to do.

In continuation the economic constraint, another very important reason to keep
the manufacturing cost low, is for the marketability of our product to show that it
could be made into a real product to rival other bird feeders in the market space.
The Smart Bird Feeder must be kept at an overall low cost, so that it is affordable
and reasonably priced when compared to other smart bird feeders. The reason for
this is so that our bird feeder can be proof that if we were to ever go to market
with a finalized product, it could be affordable to potential customers. This means
that even if we have extra money to afford the highest priced parts, we must
consider that we want to have an affordable end product that has a very good
balance between cost and quality/reliability.

4.1.2 Environmental Constraints

Another highly important constraint comes from the fact that it is important for our
bird feeder to be as environmentally friendly as possible, yet still have all its
features that make it so smart. Renewable energy has been becoming a highly
sought after want in the market, for obvious reasons when it comes to aiming for a
more sustainable society. One of the main reasons for our group to try to
incorporate a solar panel to have renewable energy is so that it helps us ensure
that The Smart Bird Feeder is portable to different parts of a yard without the
concern of reaching a power outlet. The idea for utilizing solar energy came from
a similar concern that was brought up when deciding if the internet connection
should be wired or wireless. The debate for incorporating solar panels was to
ensure that the system was hassle free, and does not have to rely on the
customer being constrained by the access to power outlets. However, the
constraints brought about from this decision make our product dependent on
ensuring that it is placed in a spot that gets an adequate amount of sunlight.
Moreover, not only will the bird feeder be dependent on being placed in a well lit
place, but it will also require a battery pack to store that energy so that power can
be consistent during various times of the day. In addition, the incorporation of a
solar panel and battery will undoubtedly increase the cost of the overall product.

With this all said, the constraints put upon this project is not all on the desire of
utilizing solar power, but as well as ensuring that the bird feeder does not harm
the wildlife. Due to the fact that our end product is responsible for feeding birds,
we must ensure that every aspect from the type of seeds/food dispersed to the
squirrel deterring hatch and sounds are safe and do not harm any visiting animals.
Two of the main concerns for The Smart Bird Feeder, is the randomized noises
we use to deter squirrels does not have any negative effects such as hurting their
ears, the second concern comes from the use of the physical barrier hatch that
will cover the food when a squirrel is detected by the object detecting
Development Board does not in any way physically harm the animals by closing
on them. These two concerns are of high priority.

70

As usual, while we share many of the same concerns as our potential customers,
it is obvious that these constraints are also fueled by the marketability of our
product. For instance, implementing solar power is highly marketable as the craze
for renewable energy is ever growing, however this constraint also puts other
constraints on our products price and dependency on sunlight. Overall, while
environmental impacts on our Smart Bird Feeder puts many constraints on the
design and building, it also is highly important to us as a group, since we want to
make sure that our product is safe to the environment it is in.

4.1.3 Social Constraints

The objective of The Smart Bird Feeder is to provide an interactive smart bird
feeder that caters to anyone from professional bird watchers to someone that just
wants to passively observe birds eat. This goal of having our bird feeder available
to a large variety of customers, puts the constraint that ensures we make the
product as affordable as possible, so that it is not limited to specific customers.
Another possible social constraint comes from the potential push back of people
that believe our product is against squirrels. Thus, placing the constraint that we
need to specify that we want our users to get the same joy of feeding and
watching birds as we get, without the hassle of dealing with squirrels stealing the
bird food and scaring the birds.

With this said, an additional major social constraint that comes to mind other than
the fact that we need to ensure that it is affordable, but it is also easy to install and
use. It is important for our bird feeder to be easily installed in different places in a
yard. This means that this constraint of making it easily installable will require us
to determine a technique to connect the bird feeder to a support platform of either
a pole or some type of mount on a wall or tree. In addition to making the bird
feeder attach to a support structure easily, it must also be lightweight so that it
helps in making sure that it is easy for most users to install. In terms of the ease of
use in software, we are going to have to ensure that it will have a very friendly
user interface and experience. Therefore, things such as connecting The Smart
Bird Feeder to the wireless internet and navigating to the photo memories and
accessing the live feed must be very easy for any user, as it must appeal to a
wide variety of users. These challenges described above that were placed by the
social constraints will definitely test our ability to design a unique product that can
conform to the needs and wants presented to us as a group developing a sought
after bird feeder.

4.1.4 Political Constraints

As we make our design, build, and connect the various components of the Smart
Bird Feeder we are continuously searching for possible political constraints.
Moreover, it seems that the only potential political constraint could come from

71

possibly having a political figure propose a law to prohibit bird feeding in some
way, or use of cameras in yards. Other than that, we as a group have decided that
as long as everything our product does is legal, we will not have any relevant
political constraints placed upon the use of the Smart Bird feeder.

4.1.5 Ethical Constraints

As we develop our product, we plan to aim for the highest standards of safety
precision, so that we can reduce any possible safety concerns when handling and
using the Smart Bird Feeder. This means in the production of the system, we
cannot cut corners on any aspect of the overall product that could affect the end
users or wildlife. Therefore, we plan to ensure that the randomized noise is well
within a safe zone, and that the materials utilized are not potentially toxic or
negatively affect the longevity of the bird feeder. Thus, the materials sourced were
to be well documented and be part of the technical investigation of comparisons
between various materials to determine a good medium between price, safety,
and quality. Similarly built off the environmental constraints, the ethical constraints
encompass both environmental concerns with such matters as ensuring the
squirrel proof hatch is safely implemented where it does close on an animal or
hurt them, and concerns on quality and safety of the overall bird feeder. The
ethical constraints are highly important for a variety of reasons, that span from
basic concerns of ensuring that the product is high quality for its price, to the
important concerns that it is safe for both end users and animals. For instance,
when it comes to safety, we need to ensure that the material it is built out of (such
as plexiglass) is constructed in such a way that there are no sharp edges where
someone could get cut from. In terms of longevity and quality of the product, we
need to ensure that the material it is built from does not fade or disintegrate at a
relatively quick manner from being exposed to elements of the outdoors. Overall,
there will be no features or safety measures cut out from the product for solely
financial reasons or lack of care.

Another topic of consideration when considering possible ethical constraints, has
to do with ensuring that our bird feeder does not violate or infringe on any existing
patents. This ethical constraint put on us by patent protections means that patent
owners have the right to stop someone like our group from potentially taking
advantage of their patented inventions, which means our product could not be
commercially made, used, imported, distributed, or sold without the patent
owner’s permission/consent. Due to our group's concern over accidentally
infringing on existing patents in the creation/production of the Smart Bird Feeder,
we plan on taking it seriously and follow a comprehensive investigation of existing
patents. While it may be highly doubted that there are any possible issues with
patent protection, we will attempt to ensure that we do not copy or use any
protected designs or concepts, without the proper permission and credit given to
the inventors.

72

4.1.6 Health and Safety Constraints

In building on the constraints mentioned already, our Smart Bird Feeder needs to
be safe for the end user and any potential animal which might interact with it. The
health and safety of our end user and animals of the Smart Bird Feeder and those
around them are our utmost priority. When considering the constraints that deal
with health and safety, we see that there are various aspects that must be
considered, not only for the end user handling the product but also for the animals
that interact with them. One constraint that must be addressed in our design is
that since animals will interact with the bird feeder, there is possibility that animal
could get caught in the bird feeder by for example trying to go into the food
reserve, so it is highly important that in our design we take precaution that our
design does not have any crevices or areas where an animal could lodge
themselves into. Furthermore, with the concern for both customer and animal
usage, we must consider that all electrical components are placed in a way that
they are a safe distance from harm. For example, the camera that is used to
capture video and images of the visiting birds and squirrels must be protected
from any animals from chewing it, eating it, or interacting with it in a way that
could hurt the animal. In continuation with the concern on housing electrical
components so they are out of reach from visiting animals, another constraint on
the design and build has to do with ensuring there are not exposed electrical wires
that could cause a hazardous environment. As many are well aware, any
electrical wire that is loose and not hidden securely from animals, are at risk of
being chewed on and potentially electrocuting the animal that is in contact with it.
That is why we plan on ensuring that our design takes into consideration that any
wires or electrical wires are placed in such a way that they are unable to be
messed with by curious creatures. Also, as mentioned many times prior, we will
need to investigate a safe material to use in building the housing of the bird feeder
that cannot poison the animals or hurt in any way.

In continuation with the constraints that revolve around our number one priority of
providing the utmost health and safety measures, we must allocate sufficient time
for technical investigation and comparisons on various potentially hazardous
devices within the Smart Bird Feeder. For example, lithium-ion battery fire hazards
are a concern as they have “high energy densities coupled with flammable
organic electrolyte” [17]. Therefore, not only will we need to design a bird feeder
that keeps the electrical components at a reasonable temperature, but also
consider that the battery must not be exposed to elevated temperatures that can
cause a thermal runaway. Another constraint that will be put on the development
of the bird feeder, is the technical investigation and comparison between speakers
along with the safe zone of audible noise (such as decibel level) that the particular
speaker can output to not damage the end user or animals’ ears when interacting
with the Smart Bird Feeder. The hatch that keeps the squirrels from the food is
another important concern in the design, so it is important that the motor closes
the hatch at a slow enough speed to allow any animals from getting stuck
between the hatch and the food disposal. Overall, the importance that we place

73

on such things as the type of non-toxic safe build materials that we utilize, along
with correct design implementation to keep electrical components hidden and
secure with safe use of battery and noise level, will help in the marketability of the
Smart Bird Feeder.

4.1.7 Manufacturability Constraints

In the development of the Smart Bird Feeder, there was an array of various
manufacturing constraints. One of which has to do with the building materials and
components available. For instance, we need to not only look into the material
that will make up the walls and house the electrical parts which are safe and can
handle the specific use case, but also be able to be at a reasonable price
readability. For example, after investigating the technical differences in such
aspects as durability, weight and longevity, we might consider making the bird
feeder out of plexiglass or plywood but depending on which one is more available
in nearby home improvement stores and the price point at which they are at. In
addressing some constraints on the housing of electrical components such as
battery, printed circuit board, and development board, we might consider using a
3-D printer at one of the various labs provided by the University of Central Florida
to print a more custom design. This importance on the manufacturability
constraints ties in with nearly all other constraints in one way or another from the
time it takes to build, to price point.

The manufacturability constraints also apply to the implementation of electrical
components in our Smart Bird Feeder. Due to many components that make up the
Smart bird feeder such as the ultrasonic sensor, printed circuit board, and servo
motors, there are various points along the building process that might be altered
depending on availability and expected time to become available of particular
items. For example, when we decide which microcontroller or servo motor, we
plan on buying to implement in the Smart Bird Feeder, our team will have to
consider which product to buy based on whether or not the particular piece of
technology is available to us and how long it will take for the part to be expected,
on top of all the technical other pros and cons.

In continuation with the manufacturability constraints placed upon us in
developing a prototype Smart Bird Feeder, we must also think ahead on how
these constraints could play in with our end product if we were to make this into a
company to mass produce. While many of the constraints stay the same from the
designing and building of the prototype to mass production, there will be some
difference in manufacturability in terms of the number of parts in stock. For
instance, if there are thousands of parts (such as motors) available from a
supplier, it should be okay, however if a supplier only has a hundred or less parts
in stock, then mass production of our product could be affected if there are not
enough parts available. And in some cases, suppliers might sell package deals for
entities that need more than what a hobbyist might want, so this might make some
parts used in our prototype differ from the suppliers we use if we were to mass

74

produce. However, as of now, we will continue on our design mainly based on the
availability of the parts that can satisfy our prototype.

4.1.8 Sustainability Constraints

In the design and construction of the Smart Bird Feeder, we aim to have our
product last a considerable amount of time as all the parts picked and structured
are for the intention of having an end product that can withstand various weather
conditions. Our intention when designing this bird feeder is to keep it as
self-sustainable as possible, by harnessing solar energy, notifying users of food
levels, and being built out of some of the most reliable materials.

In considering all the possible constraints, it has come to our knowledge that the
sustainability of the electrical components such as the printable circuit board and
development board will be the greatest concern. The reason for being concerned
over the sustainability of the electrical components is due to the fact that we need
to ensure that they are housed in a way where they do not get wet from rain, but
also have ventilation for very hot days. Ideally in order for our Smart Bird Feeder
to successfully be used by a vast variety of users, we need to have a system that
can withstand very hot temperatures found around North America that reach over
one hundred degrees Fahrenheit. In addition, the bird feeder must aim to be able
to withstand freezing temperatures that are also found across North America,
which can reach below zero degree Fahrenheit. Therefore, in the decision
process of figuring out which parts to use within the system, the temperature
range of the operating conditions must be considered as one of the top
constraints. Moreover, the housing of the electrical units along with the solar panel
roof and walls of the bird feeder will be exposed to the elements and need to
withstand such things as erosion and strong winds. This means that the housing
material must be very durable and fastened tightly to withstand winds that could
potentially be a hundred miles per hour. Which essentially implies that the Smart
Bird Feeder needs to be designed for hurricane conditions, however, it would be
most likely recommended to remove the bird feeder from its outdoor conditions
during hurricane 3 winds. The purpose for making the bird feeder aim to withstand
large winds, is because this product should be able to be kept outside all year
long with the only maintenance of ensuring adequate sunlight, wireless
connection, and maintaining constant supply of bird seeds. Moreover, the camera
that is used to connect to the development board in order to capture videos and
images must be positioned in the bird feeder where it is protected from the
elements and animals by a piece of glass or plastic for instance, but also still have
clear visibility for relatively high quality video and images for detecting birds and
squirrels. This means there will be a lot of technical investigation on the best
implementations to overcome the constraints listed, so the housing of the
electrical components can protect against various weather conditions and
animals, and still be able to perform for a long time compared to the average
smart bird feeders currently available.

75

In continuation with sustainability constraints, we also need to consider the
software side of things. For instance, in order to keep our product up to date and
usable for a relatively long time, we need to keep pushing updates to the
application that interfaces with the Smart Bird Feeder. In response to the
constraints placed on keeping the software sustainable, we need to ensure that
we develop well built software that is relatively easy to maintain and push updates
if need be. For example, as we might need to continuously update our application
as smartphone operating systems (such as iOS) update, so that our app can
continuously be used on the same phone for multiple years.

Looking at all the constraints already given, it is also important for our group to
consider the longevity of the product design. For instance, it is not only how long
the actual product will function, but how long our product will remain in the market.
When it comes to the love of bird feeding and watching, it has been around for a
very long time and will not go anywhere. Thus, if we ever want to take our product
national with a company, it is important for our bird feeder to get the most bang for
its buck by utilizing modern technology to connect our customers with their
friendly backyard birds in a whole new experience.

4.1.9 Time Constraints

In comparison with all the constraints put upon in the development of the Smart
Bird Feeder, it could be easily said that the time constraints are possibly one of
the most stressful for the group. The reason for the concerns for the time
constraints, is due to the fact that our group needs to have the bird feeder fully
functional and proven that it works well outside before the end of Senior Design 2.
This means that if we have one semester, around 4 months in Senior Design 2, to
have completed the software and hardware side of things and have enough time
to test it out sufficiently. While in Senior Design 1, we were able to fully design and
investigate nearly all aspects of the product so that once we go in Senior Design
2, we already know what needs to be done and how. However, the main concern
is the potential hurdles we might have to get over for things such as the time we
might have to wait for the printable circuit board to come in, and actual assembly
of the bird feeder.

One of the main time constraints that our group might run into in Senior Design 2
is the time it takes to receive, test and install the PCB after ordering it. It is said
that the PCB often takes the longest amount of time, as most groups in previous
semesters often have to order it twice if the first one does not work as expected.
This is why we plan on placing orders on all components such as the PCB in the
first week, so that by the third week we can expect to start collecting and testing
them to verify that they work as planned. Thus, we need to ensure that we plan in
our schedules wiggle room for additional time if we need more time for resigning
and reordering the PCB if need be.

76

Due to the lack of prior building skills from our group, it will be necessary for the
group to address this concern in our schedule for allowing group members to take
sufficient time in building the bird feeder. Even though our project does not rely
too heavily on prior building skills, it is necessary that we do not underestimate the
time it takes in taking designs on paper and actually shape it out on the material
we use to build. Which brings us to the next concern of this time constraint, that
we might need to account for accessing the necessary tools needed to shape the
various parts of the bird feeder,such as the entrance where the food comes out of
it and the support pieces to keep the wall. fastened together.

The next constraint that affects our schedules is the time it takes to commute in
order for everyone to meet and build the Smart Bird Feeder. This has to do with
the fact that three of the four group members live relatively far (around 30 to 45
minutes away) from the University of Central Florida, making group meetings
in-person potentially time consuming. In addition to having a long commute to the
University, we also do not live relatively very close to one another making
meetings outside of the University also potentially time consuming if we have to
meet at one of the group members' home.

Last but not least, we will have to wait for an unknown amount of time for the birds
to find the bird feeder. In doing some reading on feeding birds via bird feeders,
there have been articles mentioning that depending on the design of the feeder,
location, and local birds, it can take anywhere from a couple of hours to nearly a
month before birds start associating the bird feeder with food for them. This
means that we will have to predict an uncertain amount of time to add in our
schedule for testing the final product to see if it works correctly or if there is
anything that needs to be improved before the presentation at the end of Senior
Design Il. Therefore, it is planned for our group to take consideration of this
situation so that we as a group aim to complete the build of the Smart Bird Feeder
ahead of schedule so that we can have enough wiggle room for testing it out in a
real world usage for as long as possible before presentations.

4.1.10 Testing/Presentation Constraints

In the development of the Smart Bird Feeder project, our group has a slightly
different scenario than others as we are constrained by various reasons when it
comes to testing and presenting our product. One of the things that makes our
group unique when it comes to testing our product, is that the bird feeder needs to
be securely set up outside in an adequate location. Moreover, one of the main
features of our project is object detection to determine bird species or squirrels.
When it comes to object detection, it already takes a long undetermined amount
of time putting it through machine learning to be able to detect bird species on the
computer screen, but we have to also prove that it works well with wild birds
outside that approach the bird feeder, which makes it a lot harder to test. This
means that we have to set up the bird feeder in the right spot, and wait for enough
time to successfully attract multiple bird species that we have trained for, so that

77

we can determine if the level of accuracy is satisfiable in our product. Also, even
though our project is to keep squirrels away from eating bird food, we need to
allow for squirrels to show up to the bird feeder so that we can observe and
determine if our attempts to keep squirrels away is successful enough to present,
or of there is any tweaking that might be needed to do before the presentation.
Unlike many other groups with various projects, our group must overcome the fact
that we are reliant on the arrival of birds and squirrels to test it out.

The team is also constrained by the fact that not everyone in the group has a yard
to test the Smart Bird feeder. Our initial idea was that it could be an interesting
experiment in our presentation to have various group members test out the bird
feeder in their yard to see if there is any difference based on location, however,
only Paul Amoruso owns a private yard to test it out. Therefore, unless we have
enough testing time to locate public spaces that birds frequent, our smart bird
feeder device will end up only being tested at Paul Amoruso’s house.

Lastly, when it comes to the presentation, we are faced with an interesting
situation as the proof of functionality is highly placed on extra documentation to
prove it did what it was supposed to do. This means that we might have to have
someone such as Paul Amoruso to passively observe the Smart Bird Feeder
during the initial installation to document his observations of animal interactions
with it and potentially add extra multimedia for additional content to present
multiple points of view of the bird feeder in action. In other words, Paul may want
to capture images or videos with his own camera of various angles of the birds
and squeals interacting with it, so the judges of our project can get a more
comprehensive idea of the way it looks in yards. We of course will present its
functionality by presenting images of the notifications and thorough tour of the
mobile application that contains live feed mode and library of birds labeled by their
species name. Thus, placing the constraint that we must keep the Smart Bird
Feeder installed for enough time to capture enough interactions, or until we are
satisfied with the results to present.

4.2 Standards

Standards are in every part of our life, from what we wear to the technology we
use to communicate with one another. That is why, when building a product to be
utilized for consumers, it is important to be aware of the sets of standards and
government regulations put upon us when designing the Smart Bird Feeder.
When looking at some examples of standards, we see how for example the radio
frequency (RF) signals are subjected to a frequency spectrum that helps prevent
interference, when it comes to wireless communications. Therefore, the following
subsections will intend on specifying the standards involved in the various aspects
that go into developing The Smart Bird Feeder.

78

4.2.1 IEEE 802.11 Standard

IEEE, or Institute of Electrical and Electronics Engineers Standards Association, is
a subdivision of IEEE which develops an array of standards for many industries.
These industries include those related to power and energy, artificial intelligence,
consumer electronics, and health care. In addition, these standards brought forth
by IEEE developers go through accredited consensus development processes
that bring many volunteers to represent many viewpoints and interest to finalize it.
The IEEE 802.11 standard has the purpose of providing wireless connections for
fixed, portable, and moving stations within a local area. Moreover, this standard
also offers regulatory bodies a way of “standardizing access to one or more
frequency bands for the purpose of local area communication” [3]. In looking at
the scope of the standard, we see that it defines a medium access control known
as MAC along with several physical layer (PHY) specifications for wireless
connectivity. In looking at the purpose in further detail, in the context of the

IEEE 802.11TM-compIiant devices the standard describes such things as the
functions & services needed by devices to operate in networks (that are
independent, personal, and infrastructure) as well as the aspects of device
mobility within the networks.

In connecting the usability of the IEEE 802.11 standard with the implementation of
the Smart Bird Feeder, it is important that the description provided with additional
material in the standard is understood as we implement wireless communication.
Moreover, section four of the standard attempts to explain how wireless local area
networks known as WLANSs are different from the traditional wired LANs. For
instance, the standard states that the design for wired LANs differs from wireless
as its design implicitly assumes that an address is equivalent to a physical
location, while this is not always the case in wireless networks as the addressable
unit is a station (STA). In continuation with understanding the impact of a wireless
network, the standard discusses the media impact on design and performance as
PHYs used in this standard are different from the wired media. Moreover, this
standard looks at PHYs implementation differences in things such as how it uses
a medium that has no absolute or readily observable boundaries outside of which
STAs with PHY transceivers are known to be unable to receive network frames,
its unprotected from other signals sharing the medium, less reliable medium than
wired, dynamic topologies, lack full connectivity, time-varying & asymmetric
propagation properties, and might experience interference. Therefore, due to the
limitations on wireless PHY ranges, WLANs intended to cover a reasonable
geographical distance may be built from basic coverage building blocks. After the
IEEE document provides a general description on the architecture, the document
goes into further description on MAC service definition, layer management, DS
SAP specification, PHY service specification, frame formats, MAC sublayer
functional description, MLME, and Security to name a few.

With the Smart Bird Feeder highly dependent on wireless communications for
reasons mentioned earlier in the sections on technical investigation, it is

79

imperative that we recognize the importance of the IEEE 802.11 standard. For
example, similar to the section in technical investigations, the standard ensures to
mention important information about Wi-Fi such as the frequency range allocated
by the regulatory which is described in 15.4.4.2 the operating frequency range is
discussed as the DSSS PHY is allowed to operate in the frequency range 2.4
GHz to 2.4835 GHz allocated as in China, United States and Europe, while the
2.471 GHz to 2.497 GHz frequency band is allocated by the regulatory authority in
Japan. Overall, wireless communication plays an important part in our project as it
will allow the bird feeder to play live video, and send images and notifications to
the user of the Smart Bird Feeder.

4.2.2 Battery Standard

The battery we decide to use in the Smart Bird Feeder will be part of the basis of
what makes our bird feeder stand out from most electronic bird feeders, due to the
batteries ability to keep charge in order to power the electronic devices that rely
on it to perform the actions that make up the complete system. With this said, the
battery standards must be observed. One of which is the IEEE Std 1013™-2019
standard, labeled as the "IEEE Recommended Practice for sizing Lead-Acid
Batteries for Stand-Alone Photovoltaic (PV) Systems" [2]. The document on the
standard provides a systematic approach for deciding an appropriate energy
capacity of lead-acid batteries to appease the energy requirements of electrical
loads of stand-alone photovoltaic (PV) systems. Photovoltaic is in reference to the
prosecution of electrical current at the junctions of two substances exposed to
light, thus referring to the use of some type of solar panel to produce an output
voltage and current. Moreover, the standard helps to explain the battery usage
within a system where the load exceeds the output of the photovoltaic array.
Therefore, this will help as we aim to utilize a battery that will support our Smart
Bird Feeder during times when the solar panel is not receiving enough sunlight to
produce enough power to keep the electronic devices running.

The scope of this IEEE standard will help with the recommended practice that
illustrates an approach for sizing vented & valve-regulated lead-acid batteries in
stand-alone PV systems, installations, maintenance, safety, testing procedures,
and the considerations of other battery types. As stated in the previous paragraph
of the function of the battery in a PV system, the standard also describes the
factors for a satisfactory PV battery system. These factors include the autonomy,
load determination, battery capacity & functional-hour rate determination,
determining number of series-connected cells, cell capacity & battery size
determination, battery sizing worksheets, battery characteristics, and examples
demonstrating various aspects of battery sizing. For example, the discussion on
the establishing the system design requirements based on the length of time that
the stand-alone PV systems load should be supported only via the fully charged
battery is in the Autonomy clause of the standard. In other words, the Autonomy
clause is on the topic of the battery being utilized when the solar panel is not
outputting power. Moreover, the standard helps as the length of time that the

80

system is able to run solely from battery power is required to be known as the
load that the battery will need to support. In further investigation, by answering
these questions of the dc load current & its duration within an autonomy period
with no power provided to the PV array. we can calculate the overall duty cycle
imposed on the battery. The maximum load (for example daily) is used to
compare different battery sizes in order to ensure that the battery acquired for the
Smart Bird feeder can sustain. In addition, we must also consider the parasitic
loss from such things as tare losses of charge controllers and inverters which
need to be included as part of the running-currents, as well as
determining/tabulating the maximum & minimum voltage each load device needs
to operate properly with the consideration of voltage drops for each load device
for ensuring an minimum operating voltage.

In order for the needs of the Smart Bird Feeder to stay operational in the scenario
where it relies on a battery that is charged by the sun, it is important for
documents specifically such as IEEE Std 1013TM-2019 to be fully comprehended
to ensure that the battery used in our system is adequate to sustain our electronic
devices at an operational voltage so that they may perform. This standards
document is important in explicitly describing factors that go into choosing the
correct battery, such as the consideration of the temperature adjustment section
that informs that battery capacity is affected by the operating temperature, with
cell capacity rating in the United States generally standardized at 25 degrees
Celsius. Therefore, the recommended practice in the document helps us to
determine an efficient safe-sizing lead-acid battery in a stand-alone PV system. In
picking a battery for the Smart Bird Feeder, we will ensure that we determine the
duration that the battery will be solely used, the amount of current supplied by the
battery over a certain duration, number of series connected cells, as well as
considering maximum and minimum voltage along with temperature demands. In
doing so, this standard will be seen in other sections that discuss the technical
decision making of what battery we end up picking for the Smart Bird Feeder.

4.2.3 C Language Standards

Like every electronic device the Smart Bird Feeder depends on code to perform
the correct actions. Therefore, it is important that the international standard that
defines the C programming language, known as ISO/IEC 9899 is understood.
ISO/IEC 9899 is a joint effort between ISO and IEC along with contributing
countries which allow the standard to be available. The International Organization
for Standardization (ISO) and International Electrotechnical Commission (IEC)
come together to form a specialized system. In the development of the
International Standards, national bodies that are members of ISO and or IEC
participate through technical committees established by organizations to deal with
particular fields of technical activity. Moreover, other organizations such as
governmental and non-governmental organizations are in communication with the
ISO and IEC to participate in the work.

81

Due to the addition of new devices and an extended character set, new features
will potentially be added to this international Standard. With certain features
considered obsolete and may be considered to be taken out of future regions in
the International standard. The International Standard is divided into four major
subdivisions that contain the preliminary elements, characteristics of
environments to translate and execute C programs, language syntax, constraints,
semantics, and library facilities. The overall scope of this international standard is
to “specify the form and establish the interpretation of programs written in the C
programming language” [4]. This means that the standard will specify such things
as the representation of C programs, syntax & constraints per interpreting C
language, semantic rules for interpreting per interpreting C programs,
representation of input data for processing by C programs, representation of
output data produced by C programs, and restrictions & limits imposed by a
conforming implementation of C. Even though many may overlook the standards
when developing software, it is important to be aware of standards such as this,
due to its direct link with the software section for the Smart Bird Feeder. It is also
important to understand what the International Standard does not specify.
Moreover, the standard has no specification on the mechanism by which the C
programs are transformed or invoked for use by a data-processing system, the
mechanism through which the input data is transformed for use by the C program,
the mechanism through which the output data is transformed after being produced
via C program, and the size or complexity of a program along with its data that will
exceed the capacity of a particular data-processing system or the capacity of a
processor.

In simplifying a particular benefit or goal of this International Standard, is that it
allows and promotes the portability of C programs among a variety of
data-processing systems as its intention is for utilization by programmers and
implementers. Thus, being said, the importance of the International Standard will
make impacts on the software design of the Smart Bird Feeder. The impacts will
be seen as the necessary guidelines will be met in order to allow for definitions
along with the regained importance for realization of such things as operand types
to be used in import arithmetic calculations to ensure for correct values, so that
the Smart Bird Feeder operates in the intended manner.

4.2.4 IPC PCB Standards

Due to the fact that an integral part of The Smart Bird Feeder is designing our own
printed circuit board, it is integral to look into the association which produces PCB
related standards. Therefore, it is important to note that IPC (formally called the
Institute for Printed Circuits) is known as the Association Connecting Electronics
Industries, which aims to ensure a standardization of the assembly and production
requirements of electronic equipment and assembly. The non-profit,
member-driven organization has members represented in nearly all aspects of the
electronics industry that include design, printed board manufacturing, electronics
assembly, and test. This means that the standards IPC puts forth apply with all

82

printed circuit board types from single-sided, double-sided, the multilayer. The
idea is that by the organization regulating most of the standards commercial PCBs
need to comply with, it will help ensure reliability and longevity of the products. In
giving an example of how far reaching the standards go, some of the standards
include design specifications, material specifications, general documents,
performance documents and material standards to name a few. In looking at the
design standards that apply for printed boards, IPS labels IPC-2220-FAM as a
family of specification for board design with standards labeled IPC-221, IPC-2222,
IPC-2223, and IPC-2225. Thus, there is the IPC-221B as the generic standard on
printed board design which prescribes general requirements for the design of
printed boards and other forms of component mounting/interconnecting structures
for single-layer, double-layer, and multilayer boards. Next in the family of
standards for printed boards, is IPC-2222B to prescribe the explicit requirements
for designing rigid organic printed boards with supporting the generic IPC-2221
standard. In conjunction with [PC-2221, |IPC-2223 establishes explicit
requirements on the design of flexible printed boards along with the forms of
component mounting and interconnecting structures, as IPC-2223 handles
Sections Design. Standard for Flexible Printed Boards. In addition to the list of
standards, IPC-2225 helps to establish the requirements with the considerations
of thermal, electrical, electromechanical and mechanical for the Sectional Design
Standard for Organic Multichip Modules (MCM-L) and MCM-L Assemblies. As can
be seen, IPC provides tons of standards from generic requirements on printed
circuit board design in the software to requirements on the traces, thickness,
tolerance, and material properties.

With the investigation of IPC PCB standards, it is evident that the standards
brought forth by IPC should be followed, as they help ensure that the results
desired are achievable by the design. With the standards put in place, it helps to
ensure that the end product will have enough reliability along with quality to
adequately compete in the marketplace. This means that to ensure performance
and longevity, it is integral that these standards are complied with throughout the
manufacturing process. This also allows for seamless communication as |IPC
establishes the language for the global electronic industry. Moreover, these
standards help to eliminate confusion and help ensure designers that production
of electronic assemblies meets adequate quality tests so there is no need for
delays and that the production goes smoothly.

83

5. Smart Bird Feeder System Design

This section consists of detailed descriptions of the Smart Bird Feeder Design in
all its aspects. In this section, we start off with the design of all the hardware
components connecting to each other such as the PCB and Development Board
to the servo motor, then the section goes further and displays a 3D representation
of the bird feeder, and finally it is all tied together with a very detailed system
design of the software and its aspects. In the software subsection, there will be
descriptions for the functionality in order to cover the necessary capabilities and
components of the application. Therefore, the user interface, login/signup, landing
page, and memories page will be described in the subsections of this system
design.

5.1 Hardware

Figure 8 shows a rough draft of the outline of the PCB and the peripherals and
power supply that connect to it. This figure displays the connections from the solar
panel to battery to linear control on the PCB, the connection to the servo motor,
and the NVIDIA Jetson Nano Developer Board.

P12, P16 and P26
Bow can be used as
Barrel Fower TAD.CCR1 PWM output
,ONNECIO

Timer0i1_A3 is 16-hit timerfcounter

W 3 capture/compare registers
Jetson E——— U I PCB
Nano S
GND
R

e | o
Jetson - = GND
Nano . = Serser

Serva Motat Door

Figure 8 - Hardware block diagram schematic

84

5.1.SD2 Hardware

The team created an updated hardware block diagram to showcase a more

accurate layout of components.

GND «<— 12V Cooling Fan

Battery (12V)

— GND

!

PCB

DC Barrel Port

’7 Linear Regulator

LDVCC

Extra Pin P10

Jetson Nano TXD P1.1 RXD

Jetson Nano RXD P12 TXD

P13

P14
2
e vce P15

Ulirasonic 2

P21

DvsSS

P28

P27

TEST

P17
P18

P25
P24

—®TRIG nsor
2
L—eECHO —— F22

USB Port —» Nano Power

Door

Figure 8.SD2 - Updated hardware block diagram schematic

The ultrasonic sensor was added as well as the Jetson Nano connection pins.
The pin values have also been updated. The solar panel was moved to stretch
goals and we added a new PIR sensor to save power. A cooling fan was added to
offset the heat inside the enclosure due to the regulators and processor.

5.1.1 Birdhouse Design

Figure 9 shows a translucent view of the latest version of our 3D Computer-Aided
Design (CAD) model for the smart bird feeder birdhouse. Our team's birdhouse
design is inspired by a design that we found from a smart bird feeder project
created by Google Engineers in the past. We used a CAD software called
Onshape to create a 3D rendered design of the birdhouse.

85

S,

\

N

/

_ﬁ/
1%

Figure 9 - 3D CAD render of birdhouse (Onshape)

Our team decided to make the birdhouse of the smart bird feeder a rectangular
shape of dimensions 16" x 10" x 9.05", with a triangular-shaped sloped roof
placed on top of the front, back, and side walls of the birdhouse. This was done to
shield the innards of The Smart Bird Feeder from various weather conditions. A
triangular shape for the roof was justified due to its sloped nature, which enables
prevention of any buildup of additional mass (rain, snow, etc.) on top of the
birdhouse, which if left unaddressed would weigh the birdhouse down and
potentially cause structural damage to the birdhouse and electronics that are a
part of our smart bird feeder device. As Figure 9 makes evident, there is plenty of
space within the confines of this birdhouse for the remaining components of our
smart bird feeder to fit into.

86

2 \ 1
I Birdhouse Back 2.202 /.._H
8.298) Birdhouse Front 8.298
2.202 r /
' ‘ f R4.000
10.000
B [10.000 T
l 5.000
Y 500 ——f |——
ol 500 |=——— 16000 —— =] —| —1s00 |~ 6500~
—=1l=—.500 Birdhouse Bottom 516 ——~y) _ Birdhouse LeftSide .51G=—Birdhouse Right Side
— 9.050 I I l

10.000 | [9.874 10.004

T 16.000] l l _I
500 —=] |=— |=— 9,050 —=] ‘ |=— 9,050 —=]|

A 500 A-I -
9,853 == Birdhouse Roof LI—-— 11.050 ——=]

A —==] 2615 A
Smart Birdhouse
Birdhouse
Assembled A | N [1
SCALE 1:8 T s [T azTstasazie | 1001
2 1

Figure 10 - Drawings of birdhouse structure?®

Figure 10 displays drawings of the birdhouse design that our team created. From
top left to bottom right, drawings paired with dimensions displaying the back, front,
bottom, and left and right sides of the birdhouse structure are shown.

Our group plans to laser cut the necessary materials for the birdhouse, adhering
as closely as possible to the dimensions shown in Figure 10. If time does not
permit us to do this, we may instead choose to purchase a premade birdhouse
and modify it to our needs. Therefore, the drawings shown in Figure 9 and Figure
10 are only initial drafts of what the final birdhouse dimensions and appearance
will be.

5.1.1.SD2 Birdhouse Design

The birdhouse design changed significantly as the group began to experiment
with the effectiveness of different designs. One of the first decisions made was to
lessen the focus of mechanical design by beginning with a preconstructed bird
feeder. This store-bought feeder is shown in Figure 11.

2 Birdhouse dimensions were designed and measured in units of inches.

87

- Figufe 11 - Store bought feeder

There were multiple designs proposed to extend this pre-built bird feeder. The
group considered many different hatch designs, and were constantly considering
camera placement, trough design, and the storage of the electrical components.
As shown in Figure 12, the design we created using CAD software and settled on
included an external trough with an internal feed container, feeding chimney, and
a perch for the birds to stand on. Although we acknowledge that more efficient or
cost-saving designs may exist, because our discipline is ECE and not Mechanical
Engineering, we did not prioritize perfection of the mechanical design of the bird
feeder as much as we did for the electrical and software components of the
device.

Figure 12 - Final bird feeder CAD mechanical design (Onshape)

88

5.1.2 Power Distribution

It is very important to determine the power distribution flow through the project. In
order for our components to turn on, we must determine the correct power
required for their operation. If we don’t supply the correct voltage/current, our
system will not be able to operate. All of the components in the system will be
consuming power. These components are the object-detection development Kkit,
the microcontroller, the door motor, the ultrasonic sensor, and the speaker sensor.
The development kit will be running in its 10W mode. This means that it will be
requiring a voltage of 5V for operation, and could consume up to 2A for the board.
Since the board will also have an on-board camera, this adds 1A of current
consumption. The ultrasonic sensor, door motor, and speaker will also require 5V
for operation. Finally, the microcontroller will require 3.3V, and will consume an
active-mode current of 230uA. If all components are running, the total current that
must be provided to the system will be approximately 4A. The full power
requirements are listed in Table 17.

Table 17 - System hardware power requirements

Voltage Requirement Current Requirement
Development Kit ~5V 2-3A
MCU 1.8-3.6V Operating: 230 uA

Standby: 0.5 uA

Servo Motor 48-6V 500 mA
Speaker 5V 4 -6 mA
Ultrasonic Sensor 5V 15 mA
Total 5-6V 25-35A

5.1.2.SD2 Power Distribution

Our team's understanding of system power requirements was one of the most
significant changes between Senior Design | and Senior Design Il. After testing
the current requirements of all our components we came up with a much more
accurate table, which allowed us to fine tune our power system, and look for
solutions to the most power hungry device, the Jetson Nano Developer Kit.

&9

Table 17.SD2 - Updated system hardware power requirements

Voltage
Requirement | Current Requirement
Developer Kit ~5V 04-11A
Operating: 230 uA
MCU 18-36V Standby: 0.5 uA
Servo Motor 48-6V 500 mA
Speaker 5V 4 -6 mA
Ultrasonic 5\ 15 mA
Sensor
Fan 12V 137 mA
PIR Sensor 5V 65 mA
Total 36-12V 1.2-1.8A

After intensive testing the group concluded that the Jetson Nano consumes 1.1 A
when it is running the machine learning module, however when the model is shut
off, the current is reduced by ~60%. Since the nano accounts for a significant
amount of the current consumption of the device, this became a key focal point for
the group to focus on to reduce power consumption. However, given its integral to
the design functionality of the feeder that the machine learning is always on, we
needed a way to monitor when an animal arrived without using the machine
learning module. We started prototyping a motion sensor that would allow the
machine learning module to stay off unless prompted by the sensor. This would
lower our current requirement for the majority of time and allow the team to meet
its engineering requirement.

5.1.3 Voltage Regulators and Converters

In our system, the two voltages that will need to be supplied are 3.3V for the MCU
and 5V for the rest of the components, including the development kit. Since our
rechargeable battery will have a voltage higher than what is required in the
system, we will have to utilize voltage converters. Since we need to convert the
voltage from the battery to 5V and 3.3V, this will require two voltage converters. In
the following sections, we will discuss the two types of voltage converters, our
selection, and the design of the power regulation subsystem.

90

5.1.3.SD2 Voltage Regulators and Converters

In Senior Design 2, we extensively tested the switching regulators that were in the
original design. We found that the regulators would output the correct voltages
when no current was pulled. However, when a small current was pulled, these
regulators were not able to output the correct voltages. Finding a solution to this
issue proved difficult, due to the team’s lack of experience with switching
regulators. Utilizing the switching regulators was decided to be not necessary for
the project. Instead, the team switched to using linear converters. We decided to
use 3 converters in total. One converter is for 3.3V output. The other two
converters are for outputting 5V. One of the 5V converters powers the Jetson
Nano Developer Kit, while the other converter powers the rest of the peripherals
which require 5V.

5.1.3.1 Linear vs Switching Regulators

There are two types of DC/DC converters: linear and switched. In a linear DC/DC
converter, a linear component is used to regulate the output voltage. The control
elements which step down the input voltage are normally arranged in a linear
fashion, or in series. The main disadvantages of linear regulators are their poor
efficiency compared to switching regulators, their higher heat generation, and their
limitation to only step-down operations. In other words, the input voltage to a
linear regulator must always be higher than the output voltage. Some advantages
of the linear regulator include generally simple circuit configurations, need for
fewer external parts, and lower noise.

In a switch regulator, a switching element is used to transform the input power into
a pulsed output voltage. The basic operation works by turning on a MOSFET, or
switch, on and off repeatedly. When the MOSFET is turned on, the regulator waits
until the desired output voltage is achieved. Once this occurs, the MOSFET is
turned off. This switching of the MOSFET repeats continuously, and is why this
type of regulator is referred to as a ‘switching’ regulator. Switching regulators are
generally more complex in design. These types of regulators also require the
need for external parts, such as capacitors, inductors, and other elements. These
are required in order to smooth the oscillating characteristic of the output power.
However, switching regulators have some major advantages over the linear
regulator. These advantages include their high efficiency, low heat generation,
and options of both buck and boost conversions, in addition to negative voltage
operation.

5.1.3.2 Voltage Converter Selection

For our design, we will be choosing to use switching regulators. The high
efficiency of this type of converter is highly desirable. In addition, a team member
has previous experience using switching regulators. This provides our team with
more knowledge on switching regulators opposed to linear regulators, and will
make the design process of the switching regulators less challenging.

91

5.1.3.3 Voltage Converter Design

For both the 3.3V and 5V step-down regulation circuits, we will be using the same
module, the TPS565208DDCR. This buck converter is manufactured by Texas
Instruments. Using the same module for both circuits is good for the budget of the
project, and will also make the analysis and understanding of our circuitry less
complicated. The TPS565208DDCR is a 4.5V to 17V Input, 5AA Synchronous
Step-Down Voltage Regulator. Its package size is the SOT-23, a 184mm x 184mm
module size. The most enticing features about this module is its optimized design
for the purpose of minimum external components and low standby current. The
output voltage range for this module is 0.76V to 7V, which perfectly encompasses
our required system voltages of 5V and 3.3V. Its maximum output is 5A. Since our
maximum operating current of the system is 3.5A, the 5A max will be sufficient.
This module has 6 pins in total. These pins are the ground, switch node
connection, voltage input, converter feedback, enable input, and supply input pins.
The list of these pins and their full descriptions are listed in Figure 13. We created
our power supply designs with help from the Webench Power Designer tool
provided by Texas Instruments. In Figure 14, both voltage regulators are shown in
the full power regulation schematic. The values for R1 and R2 for both converters
were taken from the “Recommended Component Values” table in the module’s
datasheet. This schematic was created in TI-TINA, also a Texas Instruments
product. TINA-TI was used to perform simulation runs on the circuit and verify its
functionality.

Taking a look at the schematic, we see that there is both input and output
capacitance for each power supply. The input configuration includes the two 10uF
capacitors acting as decoupling capacitors and a 100nF capacitor. The 100nF
capacitor is optional and its purpose is to provide additional high frequency
filtering. An important thing to consider when choosing input capacitors is to make
sure that they are rated higher than the operating input voltage. The capacitor
connected between VBST and SW is called the bootstrap capacitor, and is
required for proper operation. It's recommended to use a ceramic capacitor for
this one. On the other side of the module, we have the output capacitance. These
capacitors are vital to the converter design, as they smooth out the emitting
voltage by reducing ripple voltage, and can either increase or decrease the
stability of the feedback loop, depending on the chosen configuration.

PIN
NAME NO.

110 DESCRIPTION

Ground pin. Source terminal of low-side power NFET as well as the ground terminal for
controller circuit. Connect sensitive VFB to this GND at a single point.

Switch node connection between high-side NFET and low-side NFET.

GND

SW
VIN
VFB
EN

Input voltage supply pin. The drain terminal of high-side power NFET.

Enable input control. Active high and must be pulled up to enable the device.

o (O |W[IN]| —~

(0]
|
| Converter feedback input. Connect to output voltage with feedback resistor divider.
|
0]

Supply input for the high-side NFET gate drive circuit. Connect 0.1 pF capacitor between

VBST VBST and SW pins.

Figure 13 - TPS565208 pin functions

92

With the Webench tool, we are able to see at exactly what efficiency the power
supply will be operating at, the cost of the materials, and much more. For the 3.3V
converter, its design operates at an efficiency of 93.6%. The total cost of all the
parts listed in the design come out to $1.26. For the 5V design, the efficiency
comes out to 94.9% and a total bill of materials cost of $1.72. The efficiencies of
both the power supplies are excellent, and should allow us to maximize our
system’s overall efficiency.

= -
= L1220 Vi
+KA\" i *® W - Y
TPS565208DDC é“l
FoNsIT o Ve z
1z 13 1 e —— E -
- -2 -8 c4100n
=]
]
U1 TPS565208DDCR
TEANY STATF=0
o
+KA“€‘§ N ™ y 1233 - VF2
TPS5665202DDC] -
3 &
- o (= VEI—T———' 7 -
L3 L3 L5 = =
p—— - . 2100 o
p 3 =
=]
i3

Figure 14 - 3.3V and 5V voltage regulator designs
5.1.3.3.SD2 Voltage Converter Design

In Senior Design 2, we changed our regulators from switching regulators to linear
converters. The converter we decided to use was the LM1084, a linear converter
from Texas Instruments. This converter has a maximum output current of 5A and
an industrial temperature range of —40°C to 125°C. For the LM1084, in order to
set the output voltage, 3 feedback resistors were used for each regulator. We are
supplying 3.3 volts for the MCU and supplying 5 volts for the remaining
components, which includes the development kit for object detection. We also
have a battery that stores a higher voltage than is required (12V), and with the
utilization of voltage converters, we are converting this voltage down to those
required in our system. We added 10uF capacitors before each converter for input
decoupling. We also added capacitance after the regulators for output decoupling.
Since linear converters are less efficient than switching regulators, and thus must
dissipate a lot more heat, we glued heatsinks on each of the converters with
thermal glue.

93

Figure 14.SD2 - Updated 3.3V and 5V voltage regulator designs

5.1.4 NVIDIA Jetson Nano Hardware Design

The NVIDIA Jetson Nano Developer Kit is designed and manufactured by the
NVIDIA Corporation. Figure 15 shows a diagram of the UART connections on the
Jetson Nano module, which sits atop the carrier board for the Jetson Nano. The
UART connections that we will be focusing on using for our smart bird feeder
device are the UART_1_TXD and UART _1_RXD connections. These connections
are used for transmitting and receiving with UART serial communication,
respectively, both route to the 40-pin header aboard the carrier board of the
Jetson Nano Developer Kit, and the pins that they route to on the 40-pin header
will be connected to our custom PCB via the pins containing the UCAORXD and
UCAQTXD pin functions.

94

Jetson
Tegra— UART
SPI UART3_TX UARTOTXD ™9l 3
UART3_RX |« ARTO RXD ™34y Routed to M.2 Key E
UART3_RTS_N UARTO RTS"_™ 103 —— [Connector on DevKit
UART3_CTS_N |« VARTO CTS" ™05
UART UART2_TX VARTLTXD 503
UART2_RX (<« UARTLRXD =205 Routed to 40-pin Expansion
UART2_RTS_N UARTLRTS 507 —— (Header on Devkit
UART2_CTS_N |«¢ VART1 CTS" ™ o0 ———
DEBUG UART1_TX UART2 TXD [536 —»} Routed to Debug
UART1_RX |« UART2 RXD [235 Serial Port on DevKit

Figure 15 - Jetson Nano UART connections

The Jetson Nano Developer Kit will be powered via the 40-pin header. Pins 2 and
4 on the 40-pin header will be used to power the Jetson Nano Developer Kit, and
5VDC power will be provided to these pins from the custom PCB that our team
has designed. Additional documentation related to the design guidelines for the
Jetson Nano module, the Jetson Nano Developer Kit, and other Jetson products
may be found at the Jetson Download Center [24].

5.2 Software

The team will use this section as a way to highlight the functionality and design of
the software components related to The Smart Bird Feeder. It will be broken down
by application design versus software designed for the device itself. Thus, we
start this section with a sequence of subsections that dive deep into the plan for
the user interface to have simplicity and functionality, then we discuss the
login/signup, which is then followed up by a deep dive into the design and goals
for the landing page of the mobile application. Moreover, once discussing our
intentions on the most likely main page of the mobile application known as the
landing page, we then continue the conversation of the application to discuss our
intentions and design to the memories page that contains a virtual library of
photos for all the images taken of visiting birds that were accurately identified by
the object detection.

5.2.SD2 Software

The mentality towards app design stayed consistent in SD2. However throughout
this section there are some small features mentioned that were not prioritized
throughout development. The largest change was associated with the live
streaming capabilities which could not be implemented in time, due in part to the
Jetson Nano using RTP streaming, which our front end is not compatible with.
Therefore, Live streaming and a few other additional design components were
moved to stretch goals, but unfortunately left incomplete at the end of Senior
Design Il In order to prioritize other elements of the project that were deemed of
higher priority.

95

5.2.1 Smart Bird Feeder Application Design

This section will be used to describe the functionality of the application's design.
In order to cover the breadth of capabilities, it will be split into subsections based
on key functions and components of the app.

5.2.1.1 User Interface

The application must be designed with simplicity and functionality in mind. The
user interface needs to be approachable such that the users show no frustration
towards the different mechanisms the application has to offer. In order to
accomplish this the Ul elements must remain consistent and common. For
example, a bell symbol is synonymous with notifications, and keeping that symbol
consistent in the Smart Bird Feeder Application will make our notifications function
consistent with how users understand mobile applications. This design philosophy
will extend to all Ul elements.

The page layout must be purposeful, with a clear goal associated with each
section of the Ul. The login page, home page, memories section, and live
streaming page all fill a purposeful purpose in the application, and the transition to
each of the individual pages must be fluid. For instance, the streaming page
should only be made clearly accessible via a feeding or deterring event, so as to
not confuse the user when there is nothing occurring on the camera system.

The color scheme should be strategically used to convey levels of urgency
towards different events, but also provide a comfort to the user's needs. A
consistent set of colors is important to the overall feel of the application, with
colors such as red being used for important things like notifications and live
streaming.

5.2.1.2 Login/Signup

The application will start with a login/sign up page. Figure 16 shows a prototype of
the welcome page that a given user will be met with upon opening the application.
The user may either sign up for the app by creating a new account, or log in with
an existing account if they have used the app before.

96

Welcome to The Smart Bird Feeder App!

Pleasa sign up or log in 1o gat started with your
bird viewing experience

Figure 16 - Welcome: sign up/log in page (prototype)

If the user chooses to create a new account, they will select the button labeled
"Sign Up". Figure 17 shows the sign up page of the application, which the user is
redirected to by selecting the "Sign Up" button. Here, the user is first given the
option of choosing a profile picture for their account. After making this optional
choice, the user must enter their name, email address, and a username, then
choose the "Sign Up" button on the sign up page. Any user's information will then
be held in a temporary table within a database, waiting for confirmation from an
email verification system.

97

¢ SignUp

Already have an account? Sign In

Figure 17 - Sign up screen (prototype)

The user will then be prompted with a message from the application requesting
the user to confirm their email address in order to sign into their new account.
After acknowledging this request, the user will be redirected back to the welcome
screen of the application, and may choose to sign in to their new account from
there (after confirming their own email address). When an existing user signs in,
they may choose to have the application remember their login credentials on that
device for the future use of the application.

Next, the user should be able to find their smart bird feeder device and connect to
it as long as both their smartphone and their smart bird feeder are within range of
the same WiFi network signal.

In order to increase security, it's important to ensure the user completes a
verification process. This process also saves space by avoiding fake accounts. A
user will not be able to input a password to sign in to the application until after
they have confirmed their email.

In order to store user information, we will be using a MongoDB database. The
program MongoDB Compass allows us to visualize and change the database
structure. Using MongoDB compass, a temporary database will store the user's
email and username information for a set amount of time, unless the user
confirms their account. When the confirmation process is complete, the user's
information is shifted from the temporary table to a permanent data storage table.

98

Node.js and React make up the MERN stack that will house the applications
functionality. The API being written in Node.js will collect a user's information and
store it in the appropriate database. Node.js API will also send the confirmation
email to the users email address. React will be used to create the login Ul, and
connect it to the API code.

5.2.1.2.SD2 Login/Signup

Verifying a user's email address was a feature that the team decided not to
prioritize over completing application core functionality, so this feature has been
moved to stretch goals. The updated login and signup screens are shown below
in Figure 16.SD2 and Figure 17.SD2.

6:23 = - 6:39 = ==

<
Smart Bird Feeder App

Account Signup
Full Name

Email Address
B4
Date of Birth
Smart Bird Feeder App
Account Login
Email Address Passwort d
=) A3
Password Confirm Passwort d
A N3 &) x

Don't have an account already? Signup Already have an account? Login

Figure 16.SD2 - Updated login Figure 17.SD2 - Updated signup
screen screen

5.2.1.3 Landing Page

Figure 18 shows a prototype of the application landing page, which will be home
to access most of the functionality of the app. The settings button will lead you to
the settings page, which will contain choices regarding notifications. The
notification button will open up a popup menu where the user will have the option
to view or clear recent notifications. During the event of a notification, a bar will
appear across the top of the application for a limited amount of time, showing off
the most recent notification. For example, if a feeding event occurs, the user will
see a box appear on the top detailing what species of bird is feeding; clicking this
box will transfer the user to the livestream page to enjoy the feeding taking place.

99

Bird Memaories Gallery

‘)..1

’
)

4 &
View Livestream
View a live video feed from the smart bird

feeder in real time
Additional Features

" Flay a sound to deter sgquirels

Figure 18 - Landing page (prototype)

In the center of the landing page will be two options which will access the primary
purposes of the application. The most important being the “Bird Memories Gallery”
card area, which will preview saved images of the birds taken by the smart bird
feeder. Upon selecting the title of this bird memories card, the user will be directed
to a dedicated bird memories page containing the full gallery of saved bird
images. The second card on the landing page is a card containing a preview and
description of the live video feed from the smart bird feeder device. If a user
selects this card, they will be taken to a page showing a live video feed from the
camera built into the smart bird feeder device that they are connected to. From
this page, the user may also manually capture still images from the feeder's
camera remotely through the app. Of course, the smart bird feeder device will be
programmed to automatically capture still images of the birds that it detects on its
own, and predict the species of the bird as well. Finally, the "Additional Features"
menu within the landing page contains a couple extra 'quick' features which may
be selected by the user at any time. The first button with the "Additional Features"
menu gives the user the option of manually playing a deterrent sound from the
smart bird feeder device, which would essentially temporarily override the
programming that the bird feeder has to automatically trigger the sound when a
squirrel is detected. The second button offers the user the option to manually
quickly capture a still image from the camera built into the smart bird feeder
without the need to have the live bird viewer video feed pulled up on the user's
app. Of course, there is no guarantee that a bird will be in sight of the feeder's
camera, or properly detected by the smart bird feeder, when an image is manually

100

captured, so results may vary when using this option for capturing images of
birds.

The Ul frontend design of this page will be done using React Native, with sub
categories such as notifications being coded using Node.js. The species detection
software will interact with the Node.js code for notifications, in order to detail that a
feeding event is taking place and what species is currently feeding.

5.2.1.3.SD2 Landing Page

The ability to manually take pictures or activate the alarm had been pushed to
stretch goals in order to complete the core functionalities of the application.
Therefore, these functionalities were not implemented on the landing page of our
application in Senior Design Il. For an updated look at the landing page, see
Figure 18.SD2 below.

Welcome to the Smart
Bird Feeder App!

Test Account
test@test.com

a =

Figure 18.SD2 - Updated landing page

5.2.1.4 Memories Page

A prototype of the bird memories gallery page ("memories page" for short) is
shown in Figure 19. The memories page will allow the user to access or delete
any of the previously saved feeding memories. The memories will be listed in an
endless scroll, with the picture and the name of the species indicating which
memory is being viewed. The memories will be able to be sorted by species, or
date acquired. There will also be a search bar on the top, allowing users to search
for a specific bird species.

101

Upon selecting a memory, the image will expand to a full screen view, and the
user will be able to easily view the name(s) of the bird species detected in the
image, and given the option to save the photo, delete, or set the memory as a
favorite. Within the bird memories page, the user may also filter all images by
favorites or date added.

= Bird Memories

Placeholder

Placeholder

Figure 19 - Bird memories page (prototype)

Allowing the user to categorize the memories how they see fit, and the option to
search for a specific memory are key functions that help to highlight the moments
that the user finds most valuable for the device, heightening the connection
between them and the smart bird feeder.

The images will be saved on the server application, Heroku. The server will link
images to their respective dates and species names using the mongoDB
database.

5.2.1.4.SD2 Memories Page

For an updated birds memories page, see Figure 19.SD2 below. The final design
for the bird memories gallery included a carousel card view of all the saved bird
memories from The Smart Bird Feeder showing the bird image, species name and
time of capture, with a scrollable FlatList thumbnail list to select the memories
from as well. Functionality for sorting bird memories by date/time in
ascending/descending order, or by species name, were also implemented in this
final design.

102

o Sprint 9:34 PM 0 26% (%)

Bird Memories Gallery

sortby: (O (new ->old)) (D (old -> new)) (D (@ -> 2))

\\\‘
gray catbird

November 23, 2021 - 17:21:44

Figure 19.SD2 - Updated bird memories page

5.2.2 Computer Vision Annotation Tool Software (CVAT)

In order to train the ML model run on the Jetson Nano Developer Kit to detect
various bird species and squirrels, we first need to annotate some images to train
on. While speaking to a mentor of ours on object detection, CVAT was introduced
to us as an easy to use free, online, interactive image annotation tool for computer
vision. This tool which was open sourced by Intel helps in labeling objects in
images with bounding boxes, as we intend to detect and label bird species and
squirrels at the Smart Bird Feeder. Therefore, we will have objects like blue-jay,
cardinals and squirrels that need to be labeled in the images so that we can train
our model to identify them as well.

After creating an account on CVAT, we are then prompted to the tasks page
where we can create and share labeling tasks amongst the group. Our group was
able to make new tasks as we found new images and expanded on the bird
species. However, one of the more stressful parts of this, came after naming the
task and inputting the classes (labels such as blue-jay or cardinal) that will be
used in the images, is the uploading part, as this means that we need to find a
database or library of good quality images of the particular bird species. But once
we found and uploaded a good amount of images to CVAT, we are on to the step
where we can open up the task and start labeling each object in the image.

103

BLUEJJA

!
¥ —
o _J-- - - e

Figure 20 - CVAT labeling of blue-jay

Figure 20 (seen above) is one of many images of Blue-Jay’s which needed to be
labeled before training our object detection model on detecting when blue-jays
visit the Smart Bird Feeder. Figure 20 gives a visual representation of what needs
to methodically be done to hundreds of images of the various bird species and of
squirrels. This step of labeling each of the images is easily one of the most if not
the most time consuming parts, even when the jobs are shared where each
participating member labeling can get around a couple hundred images to label.
Moreover, the processes of labeling might be a little longer than some may
expect, as it is important that when we label, we need to keep in mind that we
should label the entirety of the object and that the box around the object does not
have a lot of extra room. The idea is that we aim to box the object with a little bit of
room around it because the edges are important for the object detection model,
but we do not want too much unnecessary room around the labeled object.

Once all the labeling is done, we need to get it ready to upload to our
development kit where the machine learning is done. Therefore, we go back to the
tab of the tool where the task is, and click on the dump annotations. Under the
dump annotations tab, we are given a list of various ways of downloading the
collection of datasets for object detection. In our particular situation, we will click
on the option of PASCAL VOC, which provides multiple folders with an
annotations folder of all the xml file annotations corresponding to the images
which are labeled. With these xml files help provide the machine learning code to
know where in the corresponding image the label belongs with the corresponding
label.

104

5.2.3 MSP430G2553 Software and Components

For programming our MCU, the MSP430G2553, we used Code Composer Studio
(CCS). This application is an integrated development environment created by
Texas Instruments. This application is specifically designed for Texas Instruments
processors, such as our MSP430 module. Our team developed a program using
the C programming language for the microprocessor which is able to perform the
following tasks: send and receive data to/from the ML developer kit, control the
movement of the motor, control the output of the speaker, and send and receive
signals to/from the ultrasonic sensor. The following sections discuss the
development process of the processor's software related to each of the
components that the microprocessor interacts with.

5.2.3.1 MSP430G2553 Development

In order to develop the programming of the MSP430G2553, we used its
corresponding development kit. The name of this launchpad is MSP-430G2ET.
This kit provides an easy way to develop, troubleshoot, and flash the MSP
microcontroller. It also provides onboard emulation and multiple LEDS for use.
Figure 21 shows the Launchpad board and captures the 20 I/O pins to the
microcontroller.

Pins P1.1 and P1.2 will be used for transmitting and receiving data to and from
the development kit. These pins can make use of the USCI_AO0 UART mode in
order to send and receive data over UART. To interface the microcontroller with
the ultrasonic sensor, pin P2.0 will be used for receiving the echo signal while pin
P2.1 will be used to connect to the sensor’'s TRIGGER pin. Next we discuss the
pins connected to the motor. Timer0_A3 and Timer1_A3 onboard the
microcontroller can support PWM outputs, so we want to choose a pin that makes
use of one of these timers as our PWM output pin to the servo motor. The pin
P1.3 will work for this purpose. To apply voltage to the gate of the transistor in the
motor configuration, pin P1.5 will be used. Finally, for the piezo speaker PWM, pin
P1.4 will be utilized.

105

L A R N NN NN NN

Figure 21 - MSP430G2ET [28]

5.2.3.1.SD2 MSP430G2553 Development

In Senior Design 2, we used different pins than expected for some of the outputs
from the MSP430G2553. This came about because of more research that was
conducted in Senior Design 2. Pins 1.1 and 1.2 are still used for UART reception
and transmission. Pin 1.3 is used for the output of the PIR sensor. This pin is
connected to the ADC module on board the microcontroller. Pin 2.0 is still used for
receiving the echo signal from the ultrasonic sensor. Pin 2.1 is also still used for
connection to the TRIGGER pin on the ultrasonic sensor. Pin 2.2 is used for
sending a PWM signal to the transistor used for the speaker audio. Finally, pin 1.6
is used for connecting the MSP430 to the servo motor, and sending a PWM
signal.

5.2.3.2 Motor

The devices connected to achieve motor functionality are the MSP430G2553
board, the Jetson Nano Developer Kit, and the motor. Upon receiving the signal to
close the hatch due to a predator, the MSP430 provides power to the motor, which
spins the hatch mechanism, thus closing the access to the feeding chamber. The
command was programmed to power the motor with a specified PWM signal
which establishes which position the motor should rotate until. Also, the Jetson
Nano sends another signal to the MCU once it no longer detects squirrels. This
signal tells the MCU to move the motor to the open position once again.

The signal starts on the Jetson Nano Developer Kit. This is an enable message
telling the microprocessor to move the motor. The Jetson Nano Developer Kit is
connected to the MSP430 using UART connection. It is programmed to send a
signal through UART to the board if it senses a feeding predator while using its
machine learning technology. Once the MSP430 receives the signal, it sends a
specific PWM signal to the servo motor. This PWM signal enables the motor to

106

move to the new position, either opened or closed. How the PWM signal works in
relation to the servo motor is discussed in section 3.5.1.3.

There are several options for the configuration of the motor and the
microcontroller. The simplest configuration would have the motor directly
connected to the pins of the microcontroller. This means that the signals for the
PWM and the positive voltage would be coming directly from the board. However,
since our servo motor will require a voltage of ~5V, this option is not viable. The
configuration we will be using involves connecting the PWM signal to the source
of a transistor. The gate of this transistor will be connected to a different pin on the
MCU. When the program function is called inside of the MCU, this ‘enable’ pin will
drive the gate of the transistor, and allow the current to flow from source to drain,
providing power to the servo motor from the output of the 5V voltage regulator. At
the same time, the servo motor will send a PWM signal to the signal pin of the
servo motor, and thus telling the servo motor which position to move to.

This event will also alert the user that a predator is attempting to access the
feeding chamber. The Jetson Nano Developer Kit will send a signal over the WiFi
network to the application server. It will also snap a picture of the intruder and
send that to the application as well. The application server will have an API that
activates, and uses its notification process to alert the user that a predator has
attempted to feed, along with displaying the picture of the predator. React Native
will be used to code the display for the notification system, and display the picture
to the user.

After the ML program running on the Jetson Nano Developer Kit determines that
the squirrel has left the vicinity, with help from the alarm system as a deterring
mechanism, the Nano will send another signal through UART connection to the
motor, which will then be powered again to spin the hatch back to the open
position. It is not necessary to the project to send a notification or picture for this
process.

The opening mechanism will have logic built in to avoid constant opening and
closing in the case that the squirrel disappears from detection just for a moment.
There will be a time frame of 15 seconds where the squirrel must be absent from
view before the Machine Learning processor will open the hatch, and allow for the
possibility of the defense mechanism activating again. There will be a longer delay
regarding the notification and photo system. We do not want to frustrate the user
in a situation where a squirrel is constantly reappearing, and they are thus
receiving numerous notifications. The delay for the notification system will be 60
min, as it is unlikely the same squirrel will be returning to the feeding system after
constant failure.

107

5.2.3.2.SD2 Motor

Unlike the design in Senior Design |, we were able to connect the motor directly to
the MSP430G2553. In Senior Design 2, we did not use a transistor in the motor
circuit, and instead directly connected the motor’s PWM signal line to pin 1.6 on
the MSP430. We also directly connected the motor’s positive power line to a pin
on the 5V header on the PCB. The ground of the motor is connected to a pin on
the ground header on the PCB.

5.2.3.3 Alarm

The devices that will be connected to achieve alarm functionality will be the
Jetson Nano Developer Kit, the MSP430G2553 board, and a small speaker.

The signal will start on the Jetson Nano development kit which will be connected
to the MSP430G2553 board using UART connection. Once the machine learning
processor senses that there is a predator, the signal will be sent to the MSP430
board to begin the alarm process.

The alarm will be connected to the MSP430 board output pin, which will be acting
as a power source. When the board receives the command, the alarm will sound
by providing the alarm with a power source. This state will be relayed to the user
through the Jetson Nano kit, through a WiFi signal to the user application. This
process will also snap a picture of the intruder, and provide the user with a
notification to watch the deterrent in action.

The alarm will sound until the processor no longer detects the squirrel for a period
of time, around 15 seconds. Once the squirrel has vacated the detection vicinity
for this time frame, another signal will be relayed from the processor to the
MSP430 board to shut off power to the alarm.

The alarm software will ensure that continuous notifications are not sent to the
user in the instance the squirrel consistently harrasses the device in a small
timeframe. The alarm system will activate immediately after it detects a squirrel,
regardless of the amount of time the squirrel is not present. This system should
ensure the squirrel does not linger due to the annoyance of the alarm and inability
to access the food storage.

5.2.3.3.SD2 Alarm

In Senior Design 2, we made a slight modification in how the piezospeaker was
connected to the MSP430. In order to utilize the 5V on board the PCB for
maximum volume output, we had the 5V connected to the positive connection of
the speaker through a PN junction diode and 1k resistor in parallel. The direction
of the diode faces the 5V in order to limit current. The positive connection of the
piezospeaker connects to the 5V after the diode and resistor, and the ground of
the piezospeaker connects to the collector of the transistor. The PWM signal

108

coming from pin 2.2 connects to the base of the transistor. Finally, the emitter of
the transistor connects to the ground of the PCB.

5.2.3.4 Ultrasonic Sensor

The devices connected to achieve functionality for low bird feed alerts are the
Jetson Nano Developer Kit, the MSP430G2553 board, and the ultrasonic sensor.

The ultrasonic sensor is connected to the MSP430 board pin to provide a
connection. It is programmed to check for the depth of the food storage container
at intervals of 30 minutes. The MSP430 board is programmed to check for a
certain depth range to indicate a lack of food. As the amount of food volume
decreases, the depth of the container increases. When the sensor reads a volume
that is low enough to trigger the food alert, the MSP430 board sends a signal to
the Jetson Nano through UART connection.

This signal is sent over the WiFi network to the user application. The application
API activates and starts a notification process to alert the user that the bird feed
level is low and needs to be replaced. The user then has the opportunity to
replace the bird feed.

5.2.4 Machine Learning Object Detection Model

To detect bird species and squirrels, we will be utilizing the DetectNet v2 model
as a base for our machine learning model algorithm. This model is provided by
NVIDIA in the Transfer Learning Toolkit (TLT).

Thanks to helpful tutorials and examples provided by NVIDIA developers, we are
able to use DetectNet to retrain this model with the SSD MobilNet V2 model
working as a backbone feature extractor for the training of the model to perform
object detection on any object classes of our choosing. In using this DetectNet_v2
model in combination with the tutorials provided by NVIDIA developers, we are
fortunate enough to be able to keep our code simple and concise, and by writing
only a handful of lines of python code, we are able to have a working ML model
trained and running to detect bird species and squirrels. To do this, we utilize the
detectNet function found within the jetson.inference library provided by NVIDIA,
and we need only pass in a few select parameters to this function. These
parameters include the selection for which architecture to use for the model,
which in our case would be "ssd-mobilenet-v2", and a threshold value, which is
problem-dependent and requires fine-tuning to get completely correct. Thus, we
will only know the perfect threshold value to use for our ML model at the end of its
development cycle, once we have tried enough threshold values to yield the
results that we seek.

109

6. Overall Integration, PCB Design, and System
Testing

The integration process will involve uniting the multiple blocks of our system, and
creating a complete, whole device. Once we reach the overall integration stage of
our project, we will have successfully programmed the development kit and MCU.
At this point, we should have a fully fleshed-out program on the MCU that is able
to control the motor, ultrasonic sensor, and speaker. We should also have a
development kit that can accurately detect the difference between birds and
squirrels, identify and classify different bird species, and upload images to our
mobile application cloud. Finally, we should have a working mobile application. In
these final stages of our project, we will be working on integrating the three main
blocks of our project with one another. These blocks are the mobile application,
the developer kit, and the MCU and its peripherals. Extensive troubleshooting and
testing will be required during these last stages, especially when we are
integrating the development kit and MCU with one another. We must make sure
that communication between the two modules is accurate and efficient. Of course,
before we are able to integrate the blocks with one another, we must design and
order a custom printed circuit board. During overall integration, it may be required
to re-order PCBs with design changes, as we will most likely come across
problems that need to be solved with re-design. With overall integration will come
system testing. The purpose of system testing is to verify that our system works
perfectly. Through system testing, we will be able to test different cases to ensure
that our device does not have any bugs or issues. In the next sections, we provide
an overall schematic of the system, outline the PCB design process, overall
integration, and system testing of our smart bird feeder.

6.1 Overall Schematic

In Figure 22, we provide the overall schematic of the entire system. This
schematic was created using EAGLE, and will be used to create the board layout
and gerber file for the PCB manufacturing. For this schematic design, we tried to
achieve an organized and compact representation of the system. Since there are
no symbols provided for the Jetson Nano and servo motor, we have labeled the
pins on the pin headers that will be connected to the multiple connections on the
Nano and servo motor. Since there were symbols for a piezo speaker and
ultrasonic sensor, we added this to the schematic for better visual understanding.
Looking at the power regulator sub-system, we see that instead of having the six
capacitors in the previous mockup design provided by WEBENCH, we will be
using only three capacitors, since the input voltage to the system will be directed
to both regulator modules. In order to convert this schematic to a board layout,
and later a gerber file, we will remove the labels and also the ultrasonic sensor
and speaker symbols from the pin headers, since these components are not going
to be a part of the PCB. The top left symbol in the schematic shows the DC

110

female barrel port, which will allow connection between the battery and the PCB.

It is then followed by the power regulators, and microcontroller.

Toos o Tt %ng%
- :
N i|<rym :
%

Figure 22 - Overall schematic

111

6.1.SD2 Overall Schematic

Here is the finalized overall schematic. We added more components to better
outline the design, and highlighted and named each subsection of the design for
clarity.

DC Pc k
C Power Jad Voltage Regulation Circuit Sensor
LED Power i) Output

.~ Indicator N L. Capacitance sy franistor ¢

e c o0 _ Reset Pin
T T Pullup/Pulldown

L)
]

Figure 22.SD2 - Updated overall schematic

6.2 PCB Design

The PCB, or printed circuit board, is an important component for integrating our
many device components into one system. PCBs are typically composed of flat
laminated composite made from non-conductive substrate materials. The PCB will
have layers of copper whose purpose is to connect the many components on the
PCB. The PCB includes many parts, including the microcontroller and voltage
converters. We needed to have circuits on our board which were able to convert
the voltage input from the rechargeable battery to the required +3.3VDC for the
operation of the MSP430G2553, and to +5VDC for the VCC connection on the
ultrasonic sensor. We also needed to include an input port on the circuit board
that allows us to connect the rechargeable battery to the circuit board. In addition,
we needed to incorporate a way to connect the development kit to the circuit
board.

Many steps had to be taken before we had a working PCB. The first step was

determining the type of software that we needed to use in order to create our PCB
design. The software that we used for our project is EAGLE. This is a software

112

developed by Autodesk that provides schematic capture, PCB layout, auto-router
and computer-aided manufacturing features. The reason that this software was
chosen as opposed to other available softwares is due to the group members’
experience using EAGLE in past UCF curriculum. Since we have already utilized
EAGLE, we are most familiar with this software. This allowed us more time to
work on other aspects of the project, instead of needing more time to learn how to
use a software we are unfamiliar with.

In order to create a PCB design file with EAGLE, a process was followed. The
steps in this process are shown below.

1. Create electrical schematic
a. Retrieve footprints for necessary components
b. Add components to schematic
c. Connect components together
d. Label and name all nets
e. Give some parts specific values
f. Execute Electrical Rule Check
2. Create the board layout
a. Arrange components
b. Run ratsnest command
c. Create ground plane
3. Route the parts
4. Design Rule Check

After the PCB was designed in Eagle, we needed to export this file as a Gerber
file. This is the most widely used file format for PCB manufacturing, and is what
our chosen manufacturer, JLCPCB, required for production.

After we received our PCB from the manufacturer, testing was conducted before
we were able to integrate it with the rest of the system.

113

6.2.SD2 PCB Design

Below is an example of our final PCB design.

Figure 23 - PCB schematic

6.2.1 PCB Power Interfacing

In order to interface the battery with the PCB, we needed to decide on a charging
interface between the two. The main way in which we connect the battery to the
PCB is through use of a female and male barrel jack connector. In Figure 24, we
show an image of a barrel jack female port and its labeled pins. In addition, we
show a picture of the male barrel jack cable that was used for our power
interfacing. The female port has three pins: the insertion detection (or shunt), the
tip, and the sleeve. Typically, the Sleeve acts as the ground while the Tip is the
positive voltage. The purpose of the shunt pin is to detect if a power supply has
been plugged into the barrel jack. When nothing is plugged in, the shunt pin is
connected to the sleeve, or ground. Once something is plugged into the port, the
shunt pin disconnects, and acts as an open. This comes in handy when working
with battery-powered devices, as this avoids overheating the battery when an
external power source is plugged in. This feature was not beneficial to our
application, however. On our PCB, the tip on the barrel port connects to the input
to our voltage regulators. The positive and negative ends of the male plug connect
to our rechargeable battery array.

114

Insertion Tip
detection

Sleeve '\‘

Figure 24 - DC power jack female (left) and male (right) connectors [29, 30]

6.3 System Testing and Prototyping

This section will outline how we tested the hardware and software components of
our smart bird feeder device. It is important to ensure that each component in the
system operates properly before deploying the final system in order to limit the
potential for failure upon system deployment. In other words, since the overall
Smart Bird Feeder’s functionality and successfulness to perform all the necessary
tasks that make it unique, we need to ensure that each aspect of it works as
expected from it. This is why, one of the most crucial parts in building the
foundation for this product, is the testing phase. Thus, in doing the testing we are
able to test out the functionality of the prototype with various tests on the
hardware and software. For instance, as a group we started off with testing the
functionality of the microcontroller and machine learning acceleration hardware,
prior to looking into such aspects similar to the application. In this section of
system testing and prototyping, we have provided subsections that dive deep into
the various components of the bird feeder, such as the hardware testing and
prototyping, and the software testing. Within the hardware testing and prototyping,
there will be a detailed evaluation on such things as the microcontroller testing,
ultrasonic sensor testing, and machine learning acceleration testing and
prototyping to name a few. Then we go on to provide a detailed description of the
software testing and prototyping. In regard to the software side of things, one of
the main focuses other than the software that goes into object detection, will be on
the development and prototyping of the mobile application, as it will need to be
highly functional as it will be the main means of connecting users to the bird
feeder.

6.3.1 Hardware Testing and Prototyping

When looking at the various aspects we are testing and prototyping that make up
the Smart Bird Feeder, we have decided to label them under one of the two

115

groups, which are hardware and software. And while it may seem as if we have
the two subsections separated, it should be noted that they are very much
intertwined with one another in the overarching section. Before going into detail
with the implementation and results of testing and prototyping of the various
hardware parts, we start off with detailing the statuses of each in giving an
informative introduction. We started our hardware testing, with the microcontroller
and machine learning acceleration hardware as they were the first thing we had
on hand, and partly due to the fact that they seemed to be the most difficult to test
compared to some of the others. For instance, when it comes to the machine
learning hardware, we took a look at the NVIDIA Jetson Nano 2GB Developer Kit.
Some of the next components we moved on to after to test, were the ultrasonic
sensor, motor, and ultrasonic sensor.

The first aspect of our smart bird feeder device system that was tested is the
system hardware. A list detailing the system hardware that was tested or that we
plan to test and prototype in this procedure, along with how each system
hardware component was tested, is as follows:

e Microcontroller
o Tested for proper UART functionality.
e Machine learning acceleration hardware

o Tested functionality of Raspberry Pi Camera Module V2 when
connected to the Jetson Nano Developer Kit.

o Prototyped with object detection of multiple classes of objects
(person, bird, laptop, etc.) using pre-trained ML model(s).

o Prototyped object detection with recognition of bird species,
recording accuracies observed from testing.

o Prototyped sending information over WiFi to another
application/device.

e Ultrasonic sensor

o Tested by measuring the accuracy and uncertainty of depth
readings.

o Tested by placing an object at varying pre-measured distances from
the ultrasonic sensor and comparing range measured by the
ultrasonic sensor to the correct distance.

e Motor

o Tested by measuring acceleration and velocity when in motion.
e Speaker/alarm system

o Tested by measuring decibels and alarm consistency.
e PIR Motion Sensor

o Tested by printing statements when motion is detected through
UART, and verifying that print statements occurred only when there
was motion

116

6.3.1.1 Microcontroller Testing

In one of the many group meetings our group had, an overwhelming concern
came from the time constraints when it came to the time it takes to test and
receive parts from the manufacturer. Therefore, this concern of verifying that parts
such as the microcontroller work properly was a major priority to us, since if there
was any issue, we would have to wait for another one to ship out in time for us to
test again before adding it to the overall Smart Bird Feeder. With this being said,
after we unanimously decided on the microcontroller that we believed would
adequately suit the needs of our project, thus, we decided to waste as little time
as possible before going into ordering the microcontroller. Once we acquired the
microcontroller, we went straight into testing mode, led by Nikki Marrow, to not
only verify that it was the right purchase, but also to determine that it worked
correctly. Therefore, the remainder of this section will dive deep into the testing
that was done on the microcontroller, before incorporating it into Smart Bird
Feeder.

The microcontroller chosen for use in the smart bird feeder device is the
MSP430G2553, an ultra-low-power microcontroller from Texas Instruments (TI),
which our team members have prior experience using. Before integration into a
printed circuit board, all initial testing of the microcontroller will be done using the
corresponding launchpad created by Tl, MSP430G2ET. System testing for this
development board will be carried out using a multimeter and Digilent Discovery
kit, provided by UCF. This kit includes many tools which will allow us to test the full
functionality of the microcontroller, such as a USB oscilloscope and
instrumentation system, oscilloscope probes, and breadboard breakout cables.
With this kit, along with the multimeter that a team member currently owns, we will
be able measure and analyze the multiple signals coming from the
microcontroller. The oscilloscope will be particularly important when measuring
the PWM signals on the microcontroller’s output pins. We are not able to measure
these signals with a multimeter, since they will be varying with time.

In order to power the board, we used a USB to USB micro B converter cable. The
USB was plugged into a PC, and the USB micro B end was plugged into the
launchpad. The PC was loaded with Code Composer Studio, which our team
used to program, debug, and flash our microcontroller. Onboard the
MSP430G2ET launchpad is the eZ-FET Onboard Debug Probe. This module
enables debugging and programming, as well as communication between the PC
and launchpad. This gave us great debugging capabilities in the development
process of our microcontroller. Housed in this module are power converters which
convert the 5V from the PC down to 3.3V in order to provide input power to the
microcontroller. In addition to the onboard debug probe, the launchpad provided a
module which can provide real-time power consumption readings and state
updates from the MCU. This was incredibly helpful to us when trying to achieve
our low-power goals. We were able to observe exactly how much power our MCU
is consuming under various tests.

117

Once we fully tested the microcontroller’s outputs using the launchpad, we
connected the multiple peripherals to the microcontroller’s output pins on the
launchpad board. This included connecting the motor, piezo speaker, and
ultrasonic sensor. After connecting the peripherals, we ran the program using
artificial development kit signals to command the microcontroller. These are serial
inputs from the PC sent to the microcontroller over UART. These commands
eventually came from the object-detection development kit instead. We then
verified the program on the microcontroller through this method, and ran multiple
test cases. This includes different orders of execution of each peripheral, and
varying durations of time between each of these. For example, one of the tests
looked like: PC commands MCU to open the hatch via the motor, 2 seconds later,
the PC commands the MCU to take an ultrasonic sensor reading, and finally 1
second later, the PC commands the MCU to close the hatch again, and play a
sound on the piezo speaker. Through this testing, we were able to identify any
bugs in the microcontroller’s program. An example of a bug we encountered is the
microcontroller not being able to complete a task if the command was sent too
soon after the previous command. Through repeated testing, and program editing,
we were able to have a working microcontroller and peripherals system that works
smoothly and efficiently.

Once the previous step in the testing process is complete, we connected the
object-detection development kit to the launchpad. The peripherals were not
connected until we could confirm working communication between the
microcontroller launchpad and development board. We first verified this
communication by observing the Terminal tool in the Code Composer Studio. We
added a modification in our microcontroller program which outputs the serial data
being received by the microcontroller from the dev board in the CCS terminal on
our PC. The serial data being sent contained test data for the sole purpose of
verifying communication. Once we verified this, we then sent the specific
commands for operating the peripherals to the microcontroller. We were able to
verify that the MCU is receiving these commands and subsequently providing the
required signals to its output pins by utilizing our oscilloscope and multimeter to
measure these. Finally, only after this had been verified, could we connect our
motor, piezo speaker, and ultrasonic sensor to the MCU launchpad. The next
steps in the testing process were to use our PCB instead of the MCU launchpad
to verify the system process.

6.3.1.2 Printed Circuit Board Testing

Once we received our printed circuit board from the manufacturer, we began
testing and integrating the board with the rest of the system. Before connecting
the PCB to any power source or other components, we conducted a continuity
test. This test involved using a multimeter to verify each connection on the board.
For example, if we wanted to verify that a resistor is properly connected to a
specific pin on the microcontroller, we placed one of the multimeter probes on the
pin, and the other on the pad of the resistor connected to the pin. If the multimeter

118

displayed a very small resistance (<1ohm), we could confirm that the resistor is
properly connected to the pin. This was repeated for all components on the board.
We also verified MCU pin connections to the pin headers. One of the most
important continuity verifications was confirming the connection between all
grounds on the PCB, and verifying that none of the nodes on the PCB were
shorted to ground. In addition to the continuity test, we ran a component value
test. This involved testing the values of each of the RC components on the board
using the multimeter. The RC components encompass the resistors and
capacitors. Unfortunately, we were not able to test the inductance values of the
inductors, since multimeters do not have this capability.

Once we have verified that the PCB was manufactured correctly, we moved on to
testing the PCB with a power source. Our power source is a 12V rechargeable
battery pack. Once we connected the battery to our PCB, we were able to
measure each of the pins on the pin headers. We verified that the voltage
regulators outputted the correct stepped-down voltages.

After we verified the power, we needed to flash the microcontroller on the PCB.
This was done by using the PC and the MSP430G2ET launchpad. We first used
Code Composer Studio in order to flash the program to our PCB MCU. We then
took the MCU out of the DIP socket on the launchpad and placed it in the DIP
socket on the PCB. Once we had our program flashed to the microcontroller, we
were able to test the PCB’s full functionality with the power source and PC. We
used a USB to serial converter in order to connect the PC to the PCB. Our PC
sent the same serial signals to the PCB as the object-detection kit will. We then
verified that the PCB was working properly after it received each command.
Measurements were again taken using the multimeter and oscilloscope. Next, we
connected the PCB to the peripherals. We sent the same commands from the PC
to the PCB, and verified that the motor, piezo speaker, and ultrasonic sensor were
working properly.

Finally, we connected the development kit to the PCB in place of the computer.
This became our completed system. We then did all of the previous tests
mentioned previously and more. This included the various test cases of varying
orders of execution and timings. After we successfully completed these tests, we
had a completely working device ready for demonstration.

6.3.1.3 Solar Energy System Testing

Testing our solar cells, charge controller, and battery system will be vital to
ensuring a working power source for our system. We will begin testing the solar
energy system by testing our solar cells, and making sure that they provide the
correct output voltage and current. In order to accomplish this, we will need to find
a spot outside where we can get ample sunlight throughout the day. We will first
test the voltage output of the solar cells by connecting a multimeter to the positive
and negative nodes on the cells. After verifying the voltage output, we will proceed
to the current. In order to test the maximum current output, we will first need to
determine a load resistor to use. This load resistor will have the resistance equal

119

to the voltage output of the solar cells divided by maximum current output we
expect to see. This should be provided by the specifications on the solar cells.
The resistor used should also have a voltage rating higher than the maximum
voltage output from the solar cells. Once we have our resistor, we will connect the
resistor, multimeter set to current mode, and solar cells in series. Under direct
sunlight, we should be able to observe the maximum current output from the solar
cells on the multimeter.

Once we have verified good current and voltage outputs from the solar cells, we
will connect the solar cells to the rechargeable batteries through the charge
controller. We will first measure the current between the solar cells and the
regulator, then between the regulator and batteries. We will verify that these are
good operating currents. Once this is done, we will connect the battery to the
microcontroller and verify that the microcontroller has normal operation.

6.3.1.3.SD2 Solar Energy System Testing

Since the solar energy system was changed to a stretch goal in Senior Design 2,
and was not achieved, we did not complete solar energy system testing.

6.3.1.4 ML Accelerator Hardware Testing and Prototyping

The ML accelerator hardware chosen for use in the smart bird feeder device by
our team is the NVIDIA Jetson Nano Developer Kit. Our team first carried out
testing on this developer kit unit to ensure that it functioned as advertised and did
not contain any defects or unforeseen quirks. After the Jetson Nano Developer Kit
unit had been verified in system testing, we moved it to the prototyping phase,
where we utilized various tutorials and repositories provided by NVIDIA to
prototype our own Jetson Nano test unit to ensure that it is capable of meeting the
requirements specified for our smart bird feeder device. As mentioned prior, our
group lead by Paul Amoruso and John Hauff took advantage of the early
acquisition of the ML development board to be one of the first parts of the bird
feeder that we tested and prototype. The following two subsections on the testing
and prototyping of the machine learning acceleration hardware will discuss in
detail the purpose for testing, various tests performed on the hardware such as
checking if the Raspberry Pi camera would work, and the steps we took in
prototyping by cloning the jetson-inference repository for instance.

6.3.1.4.SD2 ML Accelerator Hardware Testing and
Prototyping

In Senior Design I, our team swapped the Jetson Nano 2GB Developer Kit for the
Jetson Nano 4GB Developer Kit, yet the tests and prototyping done in the
following sections which remain unchanged still yielded the same results.

120

6.3.1.4.1 ML Accelerator Hardware System Testing

This section will detail the procedures and results involved with testing the NVIDIA
Jetson Nano Developer Kit. The purpose of these tests is to ensure that the
Jetson Nano Developer Kit is properly functioning out of the box. These tests
performed on the developer kit were picked by identifying what we were planning
on doing with the kit, and then testing if the kit could do it. Moreover, it was highly
important that we ensure the NVIDIA Jetson Nano Developer Kit worked in every
aspect that we need it for as early in the processes of testing as possible, since
any issues with the developer kit could cause for a delay in prototyping and the
overall build of the Smart Bird Feeder.

6.3.1.4.1.1 Raspberry Pi Camera Module V2 Testing

We tested the Raspberry Pi Camera Module V2 for proper functionality by
connecting it to the MIPI CSI camera connector port on the Jetson Nano
Developer Kit. With the developer kit turned on and providing power to the
camera, we ran a program called video-viewer, which was included with the
JetPack SDK, to test the camera. As Figure 25 shows, the program did not run
properly at first, and errors were displayed as output to the console. We realized
that connecting the camera before powering on the developer kit was required for
the camera to function properly, and that the camera would often slip out of the
CSI port on the developer kit. We solved this issue by connecting the camera to
the CSI port before connecting the Jetson Nano to power, and by ensuring that
the CSI port latch was fully secured before powering on the Jetson Nano. Once
we figured this problem out, the camera functioned properly, and the program we
ran opened a floating window that showed a live camera feed.

Jthau@jthau-desktop: ~

File Edit Tabs Help

received SIGINT
“Creceived SIGINT

video-viewer: shutting down...

[gstreamer] gstCamera -- stopping pipeline, transitioning to GST STATE NULL

(Argus) Error FileOperationFailed: Failed socket read: Connection reset by peer (in src/rpc/socket/common/SocketUtils.cpp, func
tion readSocket(), line 79)

(Argus) Error FileOperationFailed: Unexpected error in reading socket (in src/rpc/socket/client/ClientSocketManager.cpp, functi
on recvThreadCore(), line 266)

(Argus) Error FileOperationFailed: Receive worker failure, notifying 1 waiting threads (in src/rpc/socket/client/ClientSocketMa
nager.cpp, function recvThreadCore(), line 340)

(Argus) Error InvalidState: Argus client is exiting with 1 outstanding client threads (in src/rpc/socket/client/ClientSocketMan
ager.cpp, function recvThreadCore(), line 357)

(Argus) Error FileOperationFailed: Receiving thread terminated with error (in src/rpc/socket/client/ClientSocketManager.cpp, fu
nction recvThreadWrapper(), line 368)

(Argus) Error FileOperationFailed: Client thread received an error from socket (in src/rpc/socket/client/ClientSocketManager.cp
p, function send(), line 145)

(Argus) Error FileOperationFailed: (propagating from src/rpc/socket/client/SocketClientDispatch.cpp, function dispatch(), line
87)

(Argus) Error InvalidState: Receive thread is not running cannot send. (in src/rpc/socket/client/ClientSocketManager.cpp, funct
ion send(), line 96)

(Argus) Error InvalidState: (propagating from src/rpc/socket/client/SocketClientDispatch.cpp, function dispatch(), line 87)
Segmentation fault (core dumped)

jthau@jthau-desktop:~$ I

Figure 25 - Error during Raspberry Pi Camera Module V2 testing

121

As Figure 26 shows, once the camera testing program ran properly without errors,
the output printed to the console was the frames-per-second (FPS) and resolution
(1280x720) that the Raspberry Pi Camera Module V2 was operating at with each
passing second. The floating window on the right side of Figure 26 shows that the
camera was able to capture a live video feed containing a view of a piece of paper
with text written on it in the frame.

NVIDIA

A= W e

Figure 26 - Raspberry Pi Camera Module V2 test results

6.3.1.4.2 ML Accelerator Hardware System Prototyping

This section details the procedures that went into prototyping the NVIDIA Jetson
Nano Developer Kit for use within our smart bird feeder device to perform object
detection using machine learning to detect bird species and squirrels. Prototyping
was first performed on the NVIDIA Jetson Nano Developer Kit by following along
with the NVIDIA Al tutorials and courses [19], specifically the Jetson Al
Fundamentals course. This course outlines how to initially setup the Jetson Nano
with JetPack, which our team was able to successfully do with the help of this
course. We started by cloning the jetson-inference repository [20] from GitHub,
which contains all of the necessary tools to help deploy a deep learning model on
the Jetson Nano Developer Kit.

6.3.1.4.2.1 Running A Pre-trained Object Detection Model

Our team wanted to prototype with the Jetson Nano by first ensuring that it could
run a pre-trained ML model that could detect multiple object classes at once in
each frame from a live camera stream. The ML model that was used for this step
in our prototyping was the SSD-MobileNet-V2 model combined with the DetectNet

122

model architecture from NVIDIA which was simply installed by following the
tutorials mentioned previously. The SSD-MobileNet-V2 model contains 91
different COCO object classes, including a person, laptop, and bird class, which
are the three classes being focused on for this stage of prototyping.

..........................

bird 96. 4%

¢

LLLL GEIEECGTITNT] Bl

Figure 27 - NVIDIA Jetson Nano 2GB object detection prototyping results

Figure 27 displays the results of prototyping with the NVIDIA Jetson Nano
Developer Kit to perform object detection on various common objects. As Figure
27 shows, the prototyping performed on the NVIDIA Jetson Nano was a success.
The window on the left side of Figure 27 shows the console output from the ML
model printing in near real-time as it runs. This console output contains important
information about what the ML model is doing, and with this tool, the team
member prototyping the Jetson Nano Developer Kit could easily notice and record
any problems or errors erupting from running the ML model, since the error would
be printed out to the console. The floating window on the right side of Figure 27
contains a frame from the view of the Raspberry Pi Camera Module V2, and this
frame shows multiple objects in the frame, as well as the frame rate that the
program was capturing at the time. It can be seen that the ML model was able to
detect one of our team members as a person with 53.8% certainty, which is not
commonly considered a very high level of accuracy, but this confidence level is
dependent on many factors, and fluctuates frame-by-frame, growing higher and
lower with each new frame. The lower confidence level displayed for the person
detected in Figure 27 could be due in part to the team member (person) being
further from the camera than the bird and laptop, which were detected with
accuracies of 96.4% and 79.3%, respectively. This could mean that the bird and
laptop in the foreground of the frame caught by the Raspberry Pi Camera Module
V2 may have partially obscured the person from the view of the camera and the
ML by pushing the person into the background of the frame. This is an obstacle
that we must not ignore when implementing this functionality in our final smart bird
feeder device.

123

6.3.1.4.2.2 Retraining and Running A Pre-trained Object
Detection Model to Detect Bird Species and Squirrels

The next step in prototyping with the NVIDIA Jetson Nano Developer Kit was for
our team to take a pre-trained ML model, in this case SSD-MobileNet-V2, and
retrain that model to perform object detection on the custom classes that we
specify. In order to retrain the ML model to detect specific species of birds or
squirrels, we first had to collect datasets of images for squirrels and each bird
species, then label the datasets. The labeling could be done automatically using
customized software, or manually by drawing bounding boxes around the objects
in each image of the dataset, then we may still use a program like CVAT to create
the metadata needed for the labeled dataset. At this stage, we chose the latter
approach.

6.3.1.4.2.2.1 Detecting Bird Species

The first main task in the prototyping stage for live video feed object detection of
birds species and squirrels was to detect bird species, the first subtask of which
involved locating and downloading a suitable dataset with the bird species that we
would like our device to detect. The dataset that we built comes from a mixture of
the Caltech-UCSD Birds-200-2011 dataset [21] and the 275 Bird Species [22]
found on Kaggle, an online source for downloadable datasets. For the purposes of
saving time and effort at this stage in prototyping, rather than labeling and training
with all fifteen species of birds that we plan to have our smart bird feeder capable
of detecting, we only chose seven bird species to label and include as classes for
the model to detect this time. The seven bird species that we trained with for this
stage of prototyping were (represented as labels) red-bellied-woodpecker,
northern-mockingbird, mourning-dove, common-grackle, gray-catbird, cardinal,
and blue-jay.

Once our images were gathered together, we used the CVAT software to annotate
each image in our dataset with a bounding box, then CVAT generated XML files
using the PASCAL VOC dataset format for use with our annotated images to train
the model. We used a Python script to run the training for the model, then once
the model was trained, we exported the model as a onnx file. With this, the ML
model was ready to detect objects from a live camera feed. Figure 28 shows a
portion of the outcome of our prototyping. The image on the left in Figure 28
shows the console output from running the ML model on a live camera feed,
displaying the CPU and CUDA usage while the model is running, and printing a
message each time an object is detected in the camera's view, along with the
confidence level of the model's object detection accuracy at that moment. The
image on the right in Figure 28 shows the live camera feed with a bounding box
tracking the detected bird species in the frame. Because the bounding box is
colored blue, shows the label of mourning-dove, and lists a confidence level of
97.5% (very high confidence), it can be determined that the ML model was

124

successfully able to detect the mourning dove from the camera's live video feed.
Please note that the two images in Figure 28 were captured separately, so the
confidence levels differ slightly.

File Edit Tabs Help

class #3 (mourning-dove) confidence=0.972723
(316.998566, 174.197815) (793.125000, 537.890625) w=476.12643

mourning- dove 97. 5%

class #3 (mourning-dove) confidence=0. 260
319.911926, 172.807159) (792.500000, 537.890625) w=472.58807

ilenet.onnx

Figure 28 - Object detection of Mourning Dove

Furthermore, we introduced images of each of the seven bird species that the ML
model was trained to detect in this stage one-by-one to the camera. Table 18
shows the confidence level returned by the model whenever it would correctly
identify the bird species in the image currently being shown to the camera. Please
note that these confidence levels are median confidence levels recorded for
testing purposes, and in practice, the confidence level may vary to a higher or
lower confidence with each passing frame. As Table 18 shows, the model was
able to detect the common grackle with the greatest accuracy and confidence,
while it had the most trouble with detecting Blue Jays, and could not detect the
red-bellied woodpecker in the test image shown to the camera at all, no matter the
position of the image.

Table 18 - Bird species detection prototyping results

Bird Species Object Detection Confidence
blue-jay 51.0%

cardinal 72.1%
common-grackle 98.0%
gray-catbird 77.8%
mourning-dove 97.5%
northern-mockingbird 87.9%
red-bellied-woodpecker -

125

6.3.1.4.2.2.1.SD2 Detecting Bird Species

In Senior Design |, the object detection was not equally accurate on all trained
bird species, and was especially unreliable in low-light environments and when
the bodies of birds were partially obscured. To solve this issue, in Senior Design
Il, our team re-trained the ML model several times before producing a suitable
model to perform object detection of all 15 common Florida backyard bird species,
and squirrels as well, with >90% confidence the majority of the time.

100%
90%

80%

nce Level (%)

70%

Confide

40%
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475
Frame #

Figure 29.SD2 - Object detection confidence levels of bird species captured
over 500 frames

Figure 29.SD2 and Figure 30.SD2 support this claim, as we measured and
averaged the confidence level of the object detection on a moving bird image, and
discovered that only ~6% of the time, on average, the object detection confidence
would drop below 90%. We trained the best version of the object detection model
by focusing more on the heads of birds and squirrels, rather than their entire
bodies. This meant that when the bodies of birds and squirrels were obscured
(possibly due to the limited field of view of the camera module), as long as the
head of the animal was in view of the camera, it would be detected confidently. It
was especially convenient to have the ML model only identify the heads of birds,
because this meant that an image of a bird would only be captured when its head
is in good view of the camera, thus increasing the chances of getting a nice bird
memory image.

126

350

300

250

OF FRAMES

200
150

100

30

: I

<90% >=90%
CONFIDENCE LEVEL INTERVAL

Figure 30.SD2 - Count of confidence levels captured with less than or equal
to 90% confidence over 500 frames

6.3.1.4.2.2.2 Detecting Squirrels

Although prototyping has not yet been completed for the object detection of
squirrels from a live video feed, the process to do so will be nearly identical to the
process for detecting bird species. This phase of the object detection model
development will be further explored in Senior Design Il. The main difference
between the tests run for detecting squirrels and detecting bird species is the
number of classes of objects that will be tested for recognition. In this case, the
ML model is still trained to detect bird species, but now it has an additional object
class of squirrel which the model can label an object in the camera feed with.
Therefore, the success of this stage of prototyping depends on the object
detection algorithm's ability to differentiate between an object that is a bird (more
specifically, the species of bird), and an object that is a squirrel. The Smart Bird
Feeder's alarm system will be tested separately, but eventually, our team plans to
test both the alarm system and machine learning model in combination.

6.3.1.4.2.2.2.SD2 Detecting Squirrels

In Senior Design Il, our team re-trained the ML model to focus on detecting the
heads of squirrels, which resulted in a detection interval of >90% confidence the
majority of the time.

127

6.3.1.4 Ultrasonic Sensor Testing

The ultrasonic sensor hardware was vital to the success of the project. It's
important that the readings were accurate and didn’t produce false positives. The
ultrasonic sensor test was used to ensure that the depth accuracy and uncertainty
were in an acceptable state for the project's requirements. The testing process
required some software elements to read the results, however this was unlike the
software test that needed to be performed on the ultrasonic sensor to ensure that
the assigned ranges provided the correct effects.

This test was strictly to test the hardware elements of the ultrasonic sensor. To
perform this test, the team set up a blank surface to reflect the sensor light back.
The surface distance was measured from starting point to surface location using a
tape measure, by setting proper distance marks. The sensor was then set into
place, and the team measured the readings accuracy. The uncertainty of the
reading needed to be no more than half an inch from complete accuracy for the
team to consider the ultrasonic sensor uncertainty acceptable. This first test
acted as a basis for the sensor's functionality under perfect conditions. However,
our practical application included a few more factors, including an uneven surface,
and finally an enclosed space.

To perform the second test, the surface being tested had to be uneven, similar to
the bird feed the sensor will be reading in its practical use. The material being
used was bird feed in order to maximize accuracy of the environment. The sensor
was hung from the ceiling, and the bird feed dropped into a bowl to create an
uneven gravity effect. The team then took a string and stretched it from the sensor
location to the highest point in the middle of the bird feed bowl. It was marked,
and then measured using a tape measure. The sensor's reading should have
been no more than %2 an inch from the theoretical result.

For the final test, an enclosed space was replicated. We then repeated the setup
procedure of the previous test, however we covered the testing environment with
a cardboard box to replicate an enclosed space. The experimental reading had to
be no more than %2 an inch from the theoretical reading. This process ensured
that the sensor was operating properly and ready to be incorporated into the
device.

6.3.1.5 Alarm Testing

The alarm system acted as the main deterrent for squirrels to stay away from the
bird feeding device. While the hatch mechanism ensured there was no
expectation for food from the feeding device, the longer the squirrel persisted near
the bird feeder, the less time would be spent utilizing the feeder for its primary
purpose. So the alarm system was a vital component that needed to function for
the sake of the bird feeder. The alarm needed to undergo testing to ensure it
functions under the right circumstances and play at the proper decibel to avoid
damaging ears or annoying nearby neighbors.

128

In order to pass the test, the alarm needed to play at 75-90 decibels to deter
squirrels yet stay safe for animals and humans. The distance the alarm system is
away from the creature hearing it will play a role in the decibels registered. Thus,
we can not rely solely on the datasheet for the alarm to determine what decibel
the alarm will play at near the intruder. Since these alarms also change decibels
depending on the power source applied, the microcontroller will need to be used
to apply the correct amount of power. In order to perform the test, a decibel
measuring application will be used. The application will be tested by playing a
sound from a computer system rated at a particular decibel. Once the application
has been checked for accuracy, it can be used in the testing process.

The alarm system will be placed 8 inches from the decibel testing application,
which will effectively mimic the distance from the alarm to the perpetrator in a
practical application. The alarm will then be powered on, and the decibel
monitoring application will measure the decibel of the alarm output. In order for
the alarm to pass this test, the experimental result should match the 75-90 decibel
range listed above. This test will ensure the desired range is met.

In order to ensure the alarm system does not exceed 90 decibels in any
circumstances, a safety test will be performed. In the situation where an animal or
person decides to get closer to the alarm system than is anticipated, this test will
ensure that the audible range is not considered dangerous. To perform this test,
the decibel testing application will be placed directly next to the alarm. In order to
pass this safety test, the decibel data can not exceed 90 decibels.

6.3.1.6 Motor Testing

In testing the various parts that make up our project, the motor needed to
withstand closing the hatch on the bird food to keep the pesky squirrels away was
definitely on the list, as it plays a small but crucial part in the Smart Bird Feeder.
The type of motor that we investigated to be on paper the most qualified for our
project was a servo motor, known as the FEETECH FS90-FB Micro Servo.
Therefore, at the time of acquiring the servo motor for the utilization of this bird
feeder, we went straight ahead into testing. Thus, in this section we provide
in-depth steps taken to test the functionality and overall quality of a FEETECH
FS90-FB Micro Servo motor, by verifying that it can do such things as rotate a
specific amount of degrees in a certain amount of time and force with and without
the hatch attached to it.

When buying servo motors, it may not come across our minds as an initial thought
that it is an important step to perform some functionality test, yet it is true that
occasionally a servo motor might not rotate when trying to initially use them, which
could lead to be possibly labeled as faulty without thorough testing. While testing
processes of the motor can be easily implemented by just instructing the motor to
rotate while being plugged into the MSP430G2553 board, and if that does not

129

work, it can be simply verified of its condition of functionality by building a
relatively quick circuit on a breadboard, where we can attempt to rotate it in a
forward and backwards direction to see if it rotates accordingly. Knowing that the
angle of rotation is controlled by the duration of the pulse, since servo motors
work on the pulse width modulation principle. Furthermore, we also know that the
motor is able to rotate from zero to one hundred and eighty degrees. Thus, we
can build a relatively simple circuit to test the degree of rotation by attempting to
control the motor via electrical pulses of a proper width. Therefore, by applying
pulses of one, one and a half, or even two milliseconds we can determine if the
motor works properly depending on the degree of rotation. Moreover, we can
apply our knowledge of applying pulse to rotate the motor, to ensuring it can also
rotate back and forth.

With this said, there will be two parts of the motor testing, the first will be without
the hatch attached to the motor, and second with the hatch attached to the motor.
The tests that will be undergone when the hatch is not attached to the motor will
consist of testing the degree of rotation, the speed and time. In order to test for
the specific degrees based on the width of the pulse applied, we will start off by
applying common recommended pulse widths to the servo motor to identify how
many degrees it rotates. Then we will mark the pulse width and the degree of
rotation down in our notes for comparison later on when testing with the hatch.
Next on the list of testing, we will observe the time it takes the motor without the
hatch to rotate the various degrees such as 90 degrees or 180 degrees when the
pulse is applied to it.

The next step will be to attach the physical hatch to the motor so that we can
determine if the FEETECH FS90-FB Micro Servo motor is able to move the
weight of the hatch without much or any noticeable complication, if any. The tests
that will be used to determine how much the hatch affects the servo motor when
connected will be tested based on performing the tests performed without the
hatch and then comparing the results. For example, we will apply the same pulse
widths to the servo motor as we did without the hatch to identify how many
degrees it rotates. With these notes on specific degrees and the time it takes to
rotate a particular amount of degrees will be directly applied to comparing with the
tests earlier, to see how much of a difference if much at all is there when the
weight of the hatch has to be moved. Moreover, this will correlate with testing the
force at which the motor can move the hatch. In all, the testing described, will be
another small yet important step in verifying that our only physical barrier between
the bird food and the squirrels is able to actually work as it was intended to.

The tests listed above are crucial for the implementation of controlling the hatch to
block off the squeals from munching on the bird food. For instance, by knowing
that with the extra weight of the hatch of the motor might make the degree of
rotation smaller that without the hatch, we are able to calibrate and determine the
difference needed to be added to the applied pulse width. Moreover, by
determining how long it takes the motor to rotate the hatch various degrees is

130

crucial for timing when the motor needs to be signaled to close the hatch when a
squirrel is detected, so that a squirrel does not get away with eating any of the
food before the hatch can close all the way.

6.3.4 Software Testing

The other aspect of our smart bird feeder device system that was tested is the
system software. System software includes any component of the smart bird
feeder device that is required for proper usage of the device, but does not rely on
any hardware that is unique or specifically calibrated to be used with the smart
bird feeder device. A list of the system software that was tested in this procedure,
along with how each system hardware component was tested, will be included
below.

e Planned Testing:
o Sign up - User information storage and email verification.
Forgot password - Forgot password functionality.
Photo storage - Properly take and store photos.
Livestream - Access livestream functionality.
Notifications - Low bird feed, livestream, predator detection, and
power notification.
o Ul and Buttons - Making sure buttons are clickable and perform
their expected functions across the Ul application.

O
O
o
o

6.3.4.SD2 Software Testing

The testing protocols stayed largely the same besides removing tests that revolve
around features that were moved to stretch goals and weren’t able to be
implemented.

6.3.4.1 Sign Up Testing

In order for a user to utilize the smart functionality of the bird feeder, they must
sign up for the application. Many of the features rely on syncing the bird feeder to
store information attributed to a specific user, and thus this functionality is
essential. In order for a user to be registered for the application, their email and
password must be stored inside of the MongoDB database, and receive an ID
associated with their account that will be used to identify the user. There are two
collections where data is stored during this process. A temporary collection will be
used to save a user's information before they’'ve completed their verification
process. Once the verification process is complete, a user's information will be
transferred to a permanent database. These tests will revolve around testing the
sign up process and ensure the database is working properly. The criteria for
passing will change depending on the test listed below.

131

The first test will focus around the temporary database collection. On the sign up
page, a test email and password will be inputted. This information should then be
stored inside of the temporary database. This test will pass if the information has
been correctly stored in the temporary database yet not be submitted to the
permanent database. To check the results, mongoDB compass will be used to
check the database for the temporary and permanent collections.

The second test will focus around the verification process. A user should receive a
verification email soon after signing up for the application in order to verify their
account. Their login information is then sent to the permanent database from the
temporary database. In order for this test to pass, the users should receive the
email within 1 hour, and the users information should be immediately nested in the
permanent database. Also, as a separate check, the data should be deleted from
the temporary database. A timer will be used from the test sign up confirmation
button to the arrival of the email link. The link will then be clicked, and to check the
entry to the MongoDB database will be used.

The final test will ensure that under the circumstances where a repeat email is
used to attempt to create multiple accounts, the system will not allow this. To
perform this test, an account with an existing email will be used to attempt and
sign up. To pass this test, the sign up page should submit an error message that
the email has already been used to create an account.

6.3.4.1.SD2 Sign Up Testing

The testing for this section revolving around the email confirmation process was
removed in Senior Design Il due to this functionality becoming a stretch goal and
not completed before the end of the project. So testing involving gathering the
user’s information and inputting it in the mongoDB database above was
completed.

6.3.4.2 Photo Storage Testing

These tests will focus on the software components revolving around sending and
storing photos. It's imperative to the design of our smart bird feeder that users are
able to save the memories of the species of bird the device has recognized. The
tests will involve the start sequence, sending the photo over a WiFi network,
storing the photo in the database, new memories being created and accessed,
and then the ability to download the photo. The criteria necessary to pass these
tests will be varied depending on the test, but will build up to include every
component of the photo sending process.

The first test will focus on the machine learning software knowing when to begin

the photo storage process. When there is a livestream event, a photo will be taken
at the point of highest species recognition that passes 80% accuracy. In order for

132

this test to pass, the photo needs to be snapped when the detection level passes
80% accuracy, and then again at each 5 percent increase in species recognition
accuracy. The machine learning device will then commit those photos to local
storage. For this test, the machine learning processor needs to sense a bird
species with 95% accuracy or higher. Then the local storage will be checked to
ensure that there are 4 photos taken at each appropriate interval. Additional tests
will then be performed at these intervals: 80%, 85%, and 90% corresponding to 1,
2, and 3 photos.

The second test is a repeat of the previous one, but the detection accuracy needs
to not pass 80%. The test will pass if there are no photos stored in local memory
after this event.

The second group of testing will focus on sending the photo to the application
over the WiFi network. This process will begin at the conclusion of a livestream
event and will begin with the photos stored in the local storage on the machine
learning processor. The photo needs to be taken from local storage and properly
sent to the application and stored in the database. In order for this test to pass,
the photo with the highest percentage accuracy in local storage needs to arrive at
the database associated with the user. To run the test, a livestream will be started
and finished, ensuring the species accuracy was 90% or higher during the event.
Then the tester should check the database using mongoDB to see if the photo
arrived and is associated with their test ID. Then the tester will check the photo to
ensure the highest quality photo was sent. As an additional test, they will then
check local storage on the machine learning processor to ensure that local
storage was deleted after the photo was sent.

The next test will focus on a new memory being created and shared with the user
after a feeding event. This test should be performed directly after the previous test
as the setup conditions are identical. Upon the database receiving the picture, the
user should be able to access the memory associated with the feeding event, and
see the picture. This test passes if the correct photo is incorporated with a new
memory on the testers Ul. The tester should click the new memory, and verify the
results to match what'’s listed above. As an additional test, the user should be able
to download the photo from the database, as well as favorite the memory so it
shows up in the “favorites” section.

6.3.4.3 Livestream Testing

This testing section will focus on livestream functionality. The ability to stream the
bird feeding directly to your device of choice is a key functionality. The test will
pass if the livestream button opens up a functioning livestream of the feeder. To
test, the user will press the livestream button and see if the image quality is good.
This test is much more subjective than the other test, as the image quality that is
acceptable is up for debate. The testing group will have to use their judgement to
determine acceptable quality.

133

6.3.4.3.SD2 Livestream Testing

The team was not able to incorporate live streaming and therefore this test was
not completed.

6.3.4.4 Notifications Testing

The heart of any smart product is its ability to notify the user of the various
capabilities. Our notification system touches nearly every aspect of the project,
and enables many of the features we find necessary to function properly. These
tests will cover all the notifications that should arise under various circumstances,
and test their functionality regarding interacting with the notification system. The
requirements for passing the test will differ depending on the test performed.

The first test will revolve around the notification for low bird feed, ensuring that the
ultrasonic sensor reading a range considered too low will send a response to the
application. The test will pass if the notification is received on the application. The
test will begin by removing food until the proper threshold is reached, and then the
tester will wait for the notification.

The second test will focus around receiving a notification for a bird feeding event.
The notification should also have the species of the bird currently feeding nested
inside so the user can choose whether or not to view the feeding process. In order
for this test to pass, the notification should appear directly after the machine
learning processor senses the bird feeding and determines its species. The
notification should also have the species listed. To test, the team will show an
image of a particular species of bird, and wait for the notification process to begin.

The third test will center around the predator defense mechanism natification.
When a squirrel attempts to eat the bird feed, the user will receive a warning
notification to see the deterring process in action. This test will pass if the squirrel
causes the predator notification to pop. The test will be run by simulating a
squirrel eating, and watching the results to check for passing functionality.

The final test will focus on the new memory notification. This should appear
following species detection and let the user know that a memory has been saved
of the bird. This notification should also be clickable, which will lead the user to
the memories page to see the new memory. To perform this test, the tester will
simulate a bird feeding with a picture, and view the results to see if the test
receives a pass.

134

6.3.4.4.SD2 Notifications Testing

The tests described in the section above were performed in Senior Design Il many
times, and luckily, all test results were positive, and notifications were received by
the user in 10 seconds or less on every occasion. Evidence of the success of
most of these tests can be found in our demonstration videos.

6.3.4.5 Ul and Buttons Testing

These tests will be less structured than the testing listed above, and focus more
around the performance of the application as a whole. It's important that every
button in the application works as intended. In order to perform this test, each
button that should be clickable or have functionality will be listed out and tested
individually for its performance. A checklist will thus be created, and the tester will
cycle through the application to ensure that each button or Ul element is behaving
as expected.

Some examples would be the separate pages listed at the bottom of the main
screen, clicking the memories page link should take the user to the memories
page. The notification bell should bring up a panel for recent notifications, which
should be clickable as well. Some buttons will also only be available during certain
times based on specific events corresponding to the bird feeder. Testing these
buttons will require the set up of the test listed above, so there will be repeated
tests.

Running these functionality tests must be done at the end of the development
process, to ensure that the added features to the application did not break any
previously tested features. To pass this series of tests, all buttons and Ul elements
must work as intended. If the test fails, and the code is changed to accommodate,
it's important to categorize anything that could have possibly changed by the new
code, and retest. This will be an ongoing process that will ensure the full and final
functionality of the application.

6.3.4.5.SD2 Ul and Buttons Testing

Ul testing was successfully performed in Senior Design I, and all buttons,
notifications, scrollable and draggable items properly functioned in the application.
The tabular screen layout turned out to be a very desirable design choice, since
during testing, the user could navigate between screens nearly instantaneously
upon selection of another tab.

135

7. Administration

This section will document how our team will manage our time, budget and
financing in order to accomplish our project in a timely fashion at a price point that
is reasonable for a Smart Bird Feeder. This section will also discuss the tools that
our team used to keep our development process organized and efficient.

7.1 Project Budgeting and Financing

Currently, this project is being financed entirely by our project members. The
maximum budget for this project is currently $400 USD, split evenly among the
four project members. We hope to minimize costs and avoid going over budget.

Table 19 - Project budgeting

Item Price (USD) Quantity
Camera $14.99 to $49.99 1
microSD Card (64 GB) $9.99 to $19.99 1
Developer Kit for Al $59.99 to $99.99 1
Computer Vision

Microcontroller $1.00 to $3.00 1
Misc. Parts for PCB $9.99 to $19.99 1
Bird Feeder + ~$49.99 1
Electronics Housing

Bird Feed ~$19.99 1+
Microphone $1.18 1
Speaker $4.60 1+
Micro Servo Motor (6V) [$11.95 1
10 W Polycrystalline $29.99 1
Solar Panel Charger

IR Sensor ~$9.00 1
Solar Charge Regulator | $21.99 1
6V Rechargeable Battery | $22.22 1
Total $256.88 to $343.88 —

136

Table 19 shows the current list of materials and costs that our project budget must
revolve around. It is important to note that a number of these prices are merely
estimations, and it is possible for the budget to vary in the future. One of the goals
in our group is to keep costs at a low price, while also delivering a well rounded
product.

7.1.SD2 Project Budgeting and Financing

In Senior Design Il, the budget changed to reflect any design changes, including
removing, adding, or replacing components. The team managed to stay close to
the target price of $400 USD. The updated budget list is shown below in Table
19.2.SD2.

Table 19.SD2 - Updated project budgeting

Price/Unit

Item Quantity $) Cost ($)
1 NVIDIA Jetson Nano 4GB 1 99.00 99.00
Dev Kit
5 Raspberry Pi Camera V2-8 1 28.99 28.99

MP

Intel Dual Band
3 Wireless-AC 8265 Device 1 25.99 25.99

4 DC Power Pigtails Cable 1 8.99 8.99
5 4Pcs SG90 9g Micro 1 10.99 10.99
Servos
6 HiLetgo Cp2102 USB 2.0 1 539 539
to ttl module
v E-outstanding 5PCS PCB 1 599 509
Mount
TalentCell Rechargeable 12
8 V 6000 mAh DC Battery 1 40.86 40.86
Pack
9 Bird feeder 2 22.00 44.00
10 PIR sensor 1 9.99 9.99

137

Table 19.2.SD2 - Updated project budgeting (continued)

11 Nvidia fan 1 13.50 13.50

12 PVC flooring 1 20.19 20.19

13 Hatch 1 6.99 6.99

14 Plexiglass 1 30.06 30.06

15 DIP socket 1 3.99 3.99

16 TO-220 Heatsink 3 0.39 1.17

17 USB 1130-15 1 0.82 0.82

18 124 ohm SMD Res 5 0.26 1.3

19 1 ohm SMD Res 5 0.37 1.85

20 0 ohm SMD Res 15 0.41 6.21

21 365 ohm SMD Res 8 0.33 2.64

22 DC Port 1 0.64 0.64

23 PCB 5 6.40 31.98

24 USB to Barrel Jack cable 1 8.99 8.99

25 | SPATCH SLIDESPST 1 1.29 1.29

26| Merocontrller 1 345|345

27 | PCB fan 1 ~9.99 ?r'ggycle "
28 Ultrasonic Sensor 1 3.95 ?rgc?ycle d)
Grand Total $411.81

138

7.2. Project Milestones

Senior Design | and Il will test our ability to schedule our time and plan for
deadlines. Each deadline will require us to coordinate with each team member
and allocate our time in the most efficient way possible. In order to help plan
through the two semesters, two tables were created, which list the important
milestones ahead and their dates. Through Senior Design |, our main goals will
relate to the technology investigation and development of our project. For each
major milestone, we are to increase the length of our project documentation, and
by the end of the course, we should have a complete 120 page document. This
documentation should thoroughly document the complexities and complete
break-down of our project design. Through Senior Design I, we will then be
bringing this project design to life. This semester will include plenty of
troubleshooting, redesign, and modification, as we attempt to produce the best
version of our device. By the end of Senior Design II, we will have created a final
project document and presentation, on top of our completed device. Following
these schedules and working consistently towards our goals will allow us to meet
these deadlines comfortably.

7.2.1 Semester | (Senior Design |)
Table 20 - Senior design | milestones

Week # | Dates Milestone Description

Begin forming a project group and think

1 5/17/2021 - 5/23/2021 2
about project ideas.

Study previous semester group projects
5/24/2021 - 5/30/2021 | and listen to idea recommendations to
better form an idea for our project.

Work on the Divide & Conquer (D&C), and
5/24/2021 - 5/30/2021 | get a consensus on who wants to be in
charge of each block in the diagram.

Finalize the initial Divide & Conquer paper

4 6/7/2021 - 6/13/2021 and submit it

Finalize the updated Divide & Conquer
6 6/21/2021 - 6/27/2021 | version 2.0 document and submit it by
Friday.

139

Table 20.1 - Senior design | milestones (continued)

Week #

Dates

Milestone Description

715/2021 - 7/11/2021

Finalize the 60 page Draft Senior Design |
Documentation, then submit it.

10

7/19/2021 - 7/25/2021

Finalize the 100 page updated report and
submit it by Friday.

12

8/2/2021 - 8/8/2021

Ensure that the documentation is finalized
and perform any last minute corrections
and finalizations.

Submit final documentation report by
Tuesday.

7.2.2 Semester Il (Senior Design Il)

Table 21 - Senior design Il milestones

Week #

Dates

Milestone Description

8/23/2021 - 8/29/2021

Ensure that bird feeder structure and
electronic components designs are
finalized for assembly of version 1 of our
device.

Order parts for the first completed version
of our smart bird feeder design.

9/27/2021 - 9/3/2021

Bird feeder structure should be complete
and all electrical components are ready or
close to ready to be installed.

10/4/2021 - 10/17/2021

Install the bird feeder in a testing location
outside and perform testing to ensure it
functions properly.

13

11/15/2021 - 11/21/2021

Prepare presentations so the device can
be adequately demonstrated with the
proper amount of information and
functionality to prove that our project was
successful.

15

11/29/2021 - 11/5/2021

Final project presentation and evaluation.

140

7.3 Project Member Contributions

In order to maximize the coherence of our team's project workflow, we chose to
create specific (tentative) roles to assign to each member of this project. These
roles serve to group together the various related tasks within this project. These
roles were also created as a means of avoiding the potential of role ambiguity
amongst our team members, which (if left unaddressed) can quickly lead to
stunted project progress, poor efficiency, and an unbalanced distribution of
workload for a given project team member. Of course, the roles listed here are
only loosely binding, and should a team member seek to contribute to a project
task which falls outside the scope of their given role, they are welcome to do so
under the majority grant of the remaining team members. The roles that were
used to complete this project, along with short descriptions of what the role
consists of, and which team members held a given role, are as follows:

e Project Manager - Organized team meetings, goals, and objectives. Also
delegated various roles to team members and ensured that every
necessary task was properly completed in a timely manner for the project
to proceed properly. The project manager was chosen as the default
representative to directly interact with the instructors of the Senior Design
course, and consolidated questions and issues that arose within the team
with regards to the project so that they may be efficiently and effectively
answered and solved by an instructor, other members, or another mentor
figure. The project manager was also responsible for taking notes at each
project team meeting.

o Role assignee(s): John Hauff

e Software Engineer - This role was assigned to project team members with
experience with programming software and working with Command Line
Interfaces (CLIs). Common tasks for this role were app development and
programming embedded systems.

o Role assignee(s): Paul Amoruso, John Hauff, Matthew Wilkinson

e Electrical & Embedded Systems Engineer - This role was assigned to
project team members with a strong background in electrical engineering,
as this role involved tasks that require knowledge of transistors, diodes,
and power management, along with the ability to design embedded
software.

o Role assignee(s): Nikki Marrow

e Hardware Engineer (Mechanical) - This was a relatively small role
designated for those who worked on the construction and design of any
non-electrical mechanical components of the product, such as the
birdhouse for the smart bird feeder device. Because our group consists of
only three Computer Engineers and one Electrical Engineer, and the

141

mechanical engineering discipline falls outside the scope of this course, the
tasks related to this role were very limited for this project.
o Role assignee(s): Paul Amoruso, John Hauff, Nikki Marrow, Matthew
Wilkinson

As mentioned previously, in order to complete this project in an orderly, efficient,
and timely manner, our team chose to split the tasks of this project between our
members in such a way that each team member had a roughly equal amount of
work to contribute to the overall product as any other member.

e Project Documentation and Presentation - Project documentation
involves documenting all of the technologies considered and used in the
design of the smart bird feeder product created for this project, updating
papers, and the creation of the conference paper. Presentation work
includes making slideshows, video editing, and the showcase presentation.

o Task assignee(s): Matthew Wilkinson spearheaded the creation and
updates of any presentation/documentation work. Project
documentation tasks were also assisted by every member of the
team.

e Machine Learning (ML) Model Training and Deployment - The
members who hold the role(s) assigned to this task are responsible for
completing various subtasks related to retraining and deploying a machine
learning (ML) model. Such subtasks will consist of deciding which
pretrained ML model to use to retrain for object detection of bird species
and squirrels, as well as locating or creating a dataset suitable to feed to
this ML model for retraining. The member(s) with role(s) assigned to this
task will be expected to properly retrain, validate, and test the ML model
that they choose to use for our smart bird feeder device. This task heavily
involves development using the machine learning development kit selected
for use in the smart bird feeder device, so experience with developing on a
Linux platform is also necessary to complete this task. The members who
hold the role(s) assigned to this task are also responsible for documenting
and reporting their progress and design ideas to the rest of the project
team for inclusion in the final EEL4914 and EEL4915 papers.

o Task assignee(s): Because this task heavily involves programming
and using a Command Line Interface (CLI), this task was handled by
any team member holding the Software Engineer role. However,
John Hauff and Paul Amoruso will be the team members who will
primarily contribute to this task, while Matthew Wilkinson serves
more as an advisor with respect to this task.

e Birdhouse Design and Construction - This task consists of designing
and constructing the birdhouse that will house the electronic parts
necessary for the smart bird feeder product. This involves locating suitable
materials for the birdhouse (weather-proof, suitable durability, etc.), as well

142

as carrying out the chosen method of construction of the birdhouse
materials and structure itself (3D printing, laser cutting, etc.). The
member(s) who hold the role(s) assigned to this task are also responsible
for documenting and reporting their progress and design ideas to the rest
of the project team for inclusion in the final EEL4914 and EEL4915 papers.
o Task assignee(s): This task was handled by any team member
assigned to the Hardware Engineer (Mechanical) role.

e Smart Bird Feeder Application Development - This task consists of
planning and executing the development of the user application that will
pair with the smart bird feeder device. A team member assigned to this role
must assist in choosing the stack that the application will be built upon
(LAMP, MERN, MEAN, etc.), as well as have some experience with full
stack (frontend and backend) development. The member(s) who hold the
role(s) assigned to this task are also responsible for documenting and
reporting their progress and design ideas to the rest of the project team for
inclusion in the final EEL4914 and EEL4915 papers.

o Task assignee(s): This task was handled by any project team
member assigned to the Software Engineer role.

e PCB Design - Again, the member(s) who hold the role(s) assigned to this
task are also responsible for documenting and reporting their progress and
design ideas to the rest of the project team for inclusion in the final
EEL4914 and EEL4915 papers.

o Task assignee(s): This task was handled by any project team
member assigned to the Hardware Engineer (Electrical) role.

7.4 Project Management Tools

Throughout the duration of the smart bird feeder device's development, our team
used multiple platforms and applications to effectively communicate with one
another and organize ideas and tasks coherently. This section discusses the
technologies used to keep our project well-organized and on track to meet
deadlines and maximize our chances of success.

7.4.1 Discord

In deciding the best method of communication for our group, we considered a
variety of messaging apps that are compatible with various devices and allow for
organized discussions. In our search, we stumbled across Discord, as we were
familiar with its service prior to Senior Design. Discord allows for users to create
so-called “servers”, where we can create topic-based channels to talk,
collaborate, and share about the specific topic without clogging up any group chat.
While some may say this isolation between topics can lead to disconnect between
members, this application was still on the top of the list for utilization of everyone
in the group. Therefore, we decided to utilize Discord as our primary means of

143

communicating with one another, for a variety of other reasons as well besides the
versatility, and topic segregation. Discord allows for media upload upload, editing
of text after being sent, pin messages (to emphasize importance and to keep
important text from getting lost), bots that interact with text, and easy to use voice
channels for meeting and discussions. Discord also allows you to give members
of the server special permissions, so that they can set up and moderate channels
on the server. However, a more useful aspect of Discord is its well marketed
reliable software technology, which provides relatively low-latency voice and
videos at any time of day. This ensures that our team can meet and clearly
communicate by voice, text, or video whenever we would like to do so.

After choosing Discord to utilize for our primary means of communication for the
various features this advertises and our familiarity with the application, our
experience each differed slightly, but for the most part each group member had
the same feeling towards the effectiveness of using it. In our discord server, John
Hauff as the acting project manager, decided to create a multitude of channels for
topics such as a general project discussion, hardware discussion, software
discussion, bird feeder design, scheduled meetings, and of course an off-topic
channel to mention a few. A common issue we each of noticed in the beginning of
our discord utilization, was that the general project discussion channel was
overflowing with messages, and started getting clogged up to a point that if
someone in the group were to try to catch up all that was said by three other
members would be a hard task to scroll through all the messages to read and
keep track of them. Thus, John decided to amend the situation by utilizing
Discord’s ability to have various channels so that we can break each of the
possible topics of discussion. After the creation of all the channels, productivity
and efficiency of communicating through Discord soard. The only issues that
arrived in the utilization of Discord as the primary means of communicating, is that
notifications from the application were sometimes not very effective as Paul
Amoruso reported to the group that once in a while not all the messages typed in
Discord were being notified on his phone, causing Paul to have to check the
mobile application occasionally. Moreover, Matthew Wilkinson also mentioned a
couple times that he had trouble keeping up with all the messages in the various
channels during times when a larger number of messages were being sent in
multiple channels by the other group members.

Looking back at our decision to choose Discord as our primary means of
communication, it is unanimous throughout the group that our decision was the
best for us compared to other messaging applications. The reason for saying this,
is due to the fact that after understanding the undesired side effects of using these
applications, such as missing notifications or too many channels, our group
members were able to work around them to get the most out of Discord key
aspects that make it unique from so many other applications. For instance, while
too many channels may be confusing, we narrowed it down to the most important
channels topics and by using the right amount, we were able to keep the channels
clogged free and still communicate without losing our messages. Then probably

144

one of the most important features provided by Discord, and highly used by John
and Paul to communicate, was the voice channel to discuss various topics about
the project and the ability to share each other's screens when needed for such
things as object detection training and utilization. Overall, we can honestly say
that Discord as our primary means of communication was essential to our
workflow.

7.4.2 Clickup

Clickup is a project management tool that can be used to coordinate collaboration
amongst team members in a streamlined manner by organizing goals into specific
tasks. Clickup provides the ability to propose tasks to a group for approval, assign
specific tasks to members, subcategorize large tasks into smaller components,
assign members to proposed tasks, and create deadlines to promote efficiency.
Before using Clickup, the team was reliant on meeting notes via discord to
document what needed to be done. This process can be time consuming to sort
through, and ineffective in situations where less information was jotted down than
needed to be. The free form nature of remembering what was discussed during
meetings opens up many inefficiencies, and by supplementing Clickup into our
workflow, many of these inefficiencies were further uncovered and dealt with.

One of the ways Clickup increased the productivity of our workflow was by
breaking down large tasks into smaller more manageable subtasks. By discussing
large tasks in the weekly meetings, and then attempting to assign a large subtask
to a single person, the specifics of the task become lost to the other group
members. Instead, by breaking down large tasks into documented subtasks, we
can have a better understanding of what needs to be done to accomplish a
particular goal. We can also better assign tasks to individuals who suit particular
strengths, as some subtasks from a larger goal might be better suited to a
particular person. The last way this assists the team is by creating a clearer
timeline on how long a goal should take to complete. Clickup provided an
excellent system to utilize this concept to its fullest.

Another way Clickup increased our team productivity was the ability to assign
deadlines to tasks. Before Clickup was implemented, the team would use the
weekly meetings to estimate how much could be done by the next team meeting.
However, by not assigning specific timelines, less was ultimately achieved. The
ease of assigning a proposed timeline to each idea and subidea created a flowing
and efficient system, which something like word of mouth or a Gantt Chart could
not achieve.

By shifting our task management system from discord notes to a more
comprehensive program, we gained a significant amount of efficiency. These
efficiency gains listed above not only affect our 120 page document, but shall
continue to affect our project build going forward.

145

7.4.3 Text Messaging and Calls Via Cellular Device

Communication by text messaging or calling via a cellular device was used as a
backup method of communication in the event that a member (or members) of the
team could not properly communicate and/or interact with another team member
in an effective and timely manner using other established tools such as Discord or
Clickup, which were described previously. For instance, on rare occasions Discord
may not adequately notify individuals of a group of every message sent in the
mobile application, therefore, if a particular person was not receiving an important
message via notification from the Discord application, then we would contact that
particular person via their mobile number by text or call. While Discord and
Clickup were highly effective at keeping the group well communicated, there were
still situations where text messaging and calls via cellular device was necessary.
For example, during one of the group meetings we planned in the middle of senior
design one, a group member of ours nearly missed a meeting because they did
not get a notification from Discord, where it was announced. Luckily in this
situation, our group used their mobile number to send text messages and call via
their cellular device to get in contact with the missing member in a relatively quick
manner. Moreover, we also occasionally texted through our cellular devices
passively when contacting individuals of the group privately in a quick manner.
Most text conversations happened openly with all the group members in the group
chat on Discord, but occasionally when having private conversations we were free
to use the easiest method of contact for that occasion.

With all this said, text messages and calls via our cellular devices were used as
an extra means of communication even though Discord was our primary means of
sending messages and calling. Similar to what was previously mentioned, this
means of communicating with group members was utilized only as a way of
individually reaching out to a particular member without going through the Discord
application. However, most private conversations happened through the Discord
application. All in all, texting and calling via our cellular devices as a form of
backup plan when we feel that it is easier or necessary to reach out to a particular
member of the group for a variety of reasons.

7.4.4 GitHub

During the managing of collaboration between the various codes for the various
parts of the overall development of the Smart Bird Feeder project, our group will
and is currently using the well known web based version control collaboration
platform known as GitHub. Having each code demanding aspect of the project
having a repository on GitHub allows for members of the group to collaborate with
one another by being able to download the newest version of the particular code
and update it, then post it back for everyone to see and implement. For instance,
if Matthew Wilkinson is working on the mobile application and needs help from
another member who is able to help, then another group member like Paul
Amoruso can download the mobile application code and add or tweak it. With the

146

various aspects of our project that rely on code, such as the mobile application,
and the code that runs the object detection and logic on the development board, it
is important that we utilize such platforms as GitHub for reliability and potential
efficiency. The reliability of GitHub comes from the fact that the code will be
housed on the cloud and will have cloned versions saved on our local computers
to decrease the risk of losing any code. And finally, this platform will potentially
help with efficiency as we are not dependent on sending code to one another
through unorganized messaging applications, but rather have a centralized
platform where the newest working version of the code will be on for each group
member to be able to clone on their local computer at any time or place with
internet connection.

147

8. Conclusion

After handling numerous obstacles and challenges in our path, our team is
confident that we have both fulfilled the requirements and expectations of the
Senior Design | course, planned the designs for our smart bird feeder device, and
properly investigated the technologies that will be an essential part of our smart
bird feeder. Our team has taken measures throughout this project's lifetime to
ensure that the project workload is split as evenly as possible among the ECE
engineering disciplines, paying careful attention to not give a specific member or
group of members an unfair amount of work. We have met every deadline set by
the Senior Design | and Senior Design |l courses and our own team so far, our
report meets the final report requirements properly, and we are confident that our
project contains substantial design, due to our inclusion of a custom PCB design
and its integration with the NVIDIA Jetson nano Developer Kit in this project.

In designing and combining various sensors and electrical components to create
our own original smart bird feeder, we have developed and produced an
innovative smart bird feeder that takes advantage of computer vision and machine
learning to distinguish between birds and squirrels visiting the feeder, and deters
squirrels from loitering in the immediate vicinity of The Smart Bird Feeder. The
feeder's squirrel deterrent system promotes the arrival of more feathery friends.
We also took advantage of The Smart Bird Feeder's camera for other uses, such
as capturing memories of birds' visits and storing the memories to be viewed in a
user application. The application has given the team the opportunity to connect
any and all features of the device directly to the user in a manner that maximizes
the device potential. Our application fits well in a hobbyist's toolkit when
accounting for a lack of time, as many of our features implemented ensure that
the bird feeder provides complete functionality without having to constantly watch
the device.

In regards to the creation and testing of the device, our team feels our research
and development has put us in a prime position for success. The in-depth plans
for testing each component of the device with strict parameters ensures that each
component is likely to work as intended when combined to create the full product.
Upon beginning development in Senior Design I, our team was confident that the
testing structure we've established will result in a smooth testing and
development.

With all of this being said, our team is also excited by our smart bird feeder
device's high potential for scalability, especially with regard to its user application
and machine learning capabilities. In the case of the user application, there is
plenty of potential for additional features if more development time is given. With
regard to the machine learning object detection model, this model can be scaled
virtually indefinitely, namely because the object detection model has the potential
to be trained to detect even more classes of bird species than our team will have it
capable of detecting, and the object detection model may also be extended to

148

recognize predators of bird feed outside of squirrels alone. The amount of species
that can be detected is beginning with Florida backyard birds, but can easily be
expanded to fit other markets if the test run goes well. Another interesting idea for
extending this project would be to purchase various bird feeds that different
species of birds prefer, then have the machine learning model detect the species
of bird visiting the bird feeder, and have the feeder dispense the bird feed that
matches that species of bird's preferences. As stated previously, though our team
is confident that our device meets the requirements for the Senior Design course,
the possibilities for extending this project are virtually endless.

The main goal that our team had in mind was to bring to fruition an easy-to-use
bird feeder that is reliable, and reasonably priced to compete in the marketplace.
In our preliminary design for the feeder, we aimed to house a series of electrical
components with the ability to process the frames taken from the bird feeder, and
identify the existence of birds or squirrels in these frames. With this capability, our
device will be able to determine whether or not the servo motor must be utilized to
close the hatch, in addition to capturing photos of the birds, storing them in
memory, and sharing them over WiFi to our app as we decided that a wireless
transmission of information from the feeder is the most logical in order to help
prevent hassle of using a wire. In addition, there is a motion sensor responsible
for ensuring the machine learning software is only active when there is motion in
front of the feeder. Finally, in addition to closing the hatch on the feeder, we also
added a speaker that plays a sound to discourage the squirrels from hanging
around the feeder. All of these features help to promote our original design goals,
and will allow any bird enthusiast the features they need to enjoy the hobby
without constant supervision. In conclusion, by combining a variety of hardware
and software features to create an enjoyable user experience, our original bird
feeder design offers a great opportunity to make our smart bird feeder device
stand out from the rest of the bird feeders on the market today.

149

Appendix

A1 References

[11 About IPC. IPC International, Inc. (2020, November 19).
https://www.ipc.org/about-ipc.

[2] 1013-2019 - IEEE Recommended Practice for Sizing Lead-Acid Batteries for
Stand-Alone Photovoltaic (PV) Systems. |EEE Xplore. (n.d.).
https://ieeexplore.ieee.org/document/88450307denied=.

[3] "IEEE Standard for Information Technology--Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area
Networks--Specific Requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications," in IEEE Std
802.11-2020 (Revision of IEEE Std 802.11-2016) , vol., no., pp.1-4379, 26
Feb. 2021, doi: 10.1109/IEEESTD.2021.9363693.

[4] Index of /jitc1/sc22/wg14/www/docs. (n.d.).
http://www.open-std.org/jtc1/sc22/wg14/www/docs/.

[5] NXP Semiconductors. (n.d.). iMX 8M Dual / 8M QuadLite / 8M Quad
Applications Processors Data Sheet for Consumer Products.

[6] Jetson Nano 2GB Developer Kit. NVIDIA Developer. (2020, October 29).
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit.

[71 Google LLC. (nd.). Coral Dev Board datasheet. Coral.
https://coral.ai/docs/dev-board/datasheet.

[8] NVIDIA Corporation, “DATA SHEET NVIDIA Jetson Nano System-on-Module” |
DA-09366-001_v1.0 datasheet, Feb. 2020

[9] Bird Buddy. (n.d.). Retrieved July 04, 2021, from https://mybirdbuddy.com/

[10] Arduino nano 33 Ble sense. (n.d.). Retrieved July 05, 2021, from
https://store.arduino.cc/usa/nano-33-ble-sense

[11] Klopfenstein, T., & Le, M. (n.d.). Smart Bird Feeder. Retrieved July 07, 2021,
from https://coral.ai/projects/bird-feeder/#project-intro

[12] Edge TPU performance benchmarks. Coral. (n.d.).
https://coral.ai/docs/edgetpu/benchmarks/.

[13] Jetpack 4.5 Archive. NVIDIA Developer. (2021, January 22).
https://developer.nvidia.com/jetpack-sdk-45-archive.

[14] JetPack SDK. NVIDIA Developer. (2021, May 24).
https://developer.nvidia.com/embedded/jetpack.

[15] Jetson Nano: Deep Learning Inference Benchmarks. NVIDIA Developer.
(2021, January 5).
https://developer.nvidia.com/embedded/jetson-nano-dl-inference-benchmar
ks.

[16] Lithium Battery Safety - EHS. (n.d.).
https://www.ehs.washington.edu/system/files/resources/lithium-battery-safe
ty.pdf.

150

[17] PyCoral API overview. Coral. (n.d.). https://coral.ai/docs/reference/py/.

[18] Real-Time Object Detection in 10 Lines of Python on Jetson Nano. NVIDIA
Developer Blog. (2020, January 31).
https://developer.nvidia.com/blog/realtime-object-detection-in-10-lines-of-py
thon-on-jetson-nano/.

[19] Jetson Al Courses and Certification: Jetson Al Fundamentals Course. NVIDIA
Developer. (2021, July 6).
https://developer.nvidia.com/embedded/learn/jetson-ai-certification-progra
ms#course_outline.

[20] Dusty-Nv. (n.d.). dusty-nv/jetson-inference: Hello Al World guide to deploying
deep-learning inference networks and deep vision primitives with TensorRT
and NVIDIA Jetson. GitHub. https://github.com/dusty-nv/jetson-inference.

[21] Wah C., Branson S., Welinder P., Perona P., Belongie S. “The Caltech-UCSD
Birds-200-2011 Dataset.” Computation & Neural Systems Technical Report,
CNS-TR-2011-001.

[22] Kaggle. (2021, July 4). 275 bird species also SEE 73 Sports Dataset. Kaggle.
https://www.kaggle.com/gpiosenka/100-bird-species.

[23] Gillson, G. (2019, July 17). 26+ common backyard birds of Florida (Photos,
ID). 26+ Common backyard birds of Florida (Photos, ID).
https://www.whatbirdsareinmybackyard.com/2019/07/most-common-backy
ard-birds-of-florida.html.

[24] NVIDIA. (2021, July 21). Jetson download Center. NVIDIA Developer.
https://developer.nvidia.com/embedded/downloads.

[25] SALLEH, A. S. (n.d.). IR proximity sensor working principle [lllustration].
https://www.researchgate.net/figure/IR-proximity-sensor-working-principle_f
ig2_301787143

[26] HC-SR04 Pin Details. (n.d.). [Mustration].
https://microcontrollerslab.com/hc-sr04-ultrasonic-sensor-interfacing-with-a
rduino-distance-measurement-example/

[27] PiezoBendingPrinciple.svg. (2011, February 17). [lllustration].
https://commons.wikimedia.org/wiki/File:PiezoBendingPrinciple.svg

[28] TI Launchpad Kit. (n.d.). [lllustration].
https://www.amazon.com/Texas-Instruments-Value-MSP430-LaunchPad/dp
/B07J3R15JB

[29] Texas Instruments. (2011, April). SLAS735J MIXED SIGNAL
MICROCONTROLLER. Dallas.

https://www.ti.com/lit/ds/symlink/msp430g2553.pdf?ts=1636685136752&a
mp;ref_url=https%253A%252F %252Fwww.ti.com%252Fproduct%252FMS
P430G2553

[30] Sparkfun. (n.d.). DC Barrel Power Jack/Connector [Photograph].
https://www.sparkfun.com/products/119

[31] Show Me Cables. (n.d.). 2.1mm DC Power Male Plug to Open End Cable
[Photograph].
https://www.showmecables.com/2-1mm-dc-power-plug-to-open-end-cable-

151

https://www.researchgate.net/figure/IR-proximity-sensor-working-principle_fig2_301787143
https://www.researchgate.net/figure/IR-proximity-sensor-working-principle_fig2_301787143
https://microcontrollerslab.com/hc-sr04-ultrasonic-sensor-interfacing-with-arduino-distance-measurement-example/
https://microcontrollerslab.com/hc-sr04-ultrasonic-sensor-interfacing-with-arduino-distance-measurement-example/
https://commons.wikimedia.org/wiki/File:PiezoBendingPrinciple.svg
https://www.amazon.com/Texas-Instruments-Value-MSP430-LaunchPad/dp/B07J3R15JB
https://www.amazon.com/Texas-Instruments-Value-MSP430-LaunchPad/dp/B07J3R15JB
https://www.sparkfun.com/products/119

22-awg-6-ft?gclid=CjwKCAjw0qOIBhBhEiwAyvVcfx6enYWApYDOtr35dKoV
mRBFyaB-0OlcO0aM7DHVSwEIQyTcFgf7FHxoCc1sQAvD_BwE

152

