Barkaroo: The Collar
Companion

Cody Khong, Vincent Martinez, Allan Nevalga,
Jesse Ray

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,
32816-2450

Abstract — The barkaroo: collar companion is a device
that will help any new dog owner to understand the
responsibility of taking care of their pet. The collar will sit on
the dog’s collar and track movement and keep a daily
schedule via a provided phone app for easy use. The hope is
to protect dogs from being forgotten after the initial
excitement and show the daily task to the new owner.

Index Terms — Bluetooth low energy, Global Positioning

System, Accelerometer, Thermoresistivity, Speech
processing, Human voice, Light Emitting diode

1. INTRODUCTION OF COLLAR

This product is to help new pet owners to take
responsibility for their new pet, as we all discussed our
love of furry companions and saw how sad it is to see
people forgetting to take care of their animals after the
initial excitement goes away. We noted that this was
especially true for small children as they do not
comprehend the responsibilities associated with owning a
pet. By making a collar/harness with automated reminders
triggering LEDs to notify the child or forgetful owner of
their dog needing their attention, whether this be the dog
likely needing to; go to the bathroom, be fed, be walked,
or be given affection. When looking up this idea we found
there were plenty of activity trackers for pets (dogs
especially); LINK AKC, PetPace, Whistle, and Fitbark to
name a few of the biggest names in the market space at the
time of our research. These competitive devices help to
track the activity of your pet, alert you to when your dog
might have got out and then help you to find them. They
do this by monitoring your pet using a heart rate sensor
and a GPS tracker. Although these products have great use
cases, we believe that they are missing important features
that do not allow them to be used for helping forgetful
owners and teaching children the value of responsibility
with their pets.

We want our product to be a lightweight, cost
effective, low power and feature filled product that offers
more for the same price as compared to the competitors
mentioned earlier. Our collar will implement the notable
features from leading competitors such as GPS tracking,
real-time notifications, and customizable mobile
applications. Together with this internal information will
be from certified sources from general to specific size dog
hygiene to each of their own necessary diet. This in return
will allow our LED to toggle for when it is the right time
for feeding or to go outside. We want our product to be
usable and available to everyone, so we are taking steps to
make the collar more accessible. So, we will be implanting
a way to change LED color to accommodate those with
colorblindness. We also had a hard time finding the best
parts as of the writing and prototyping of this product
there is a part shortage so finding the best and cheap parts
will be hard but not impossible.

II. HARDWARE OVERVIEW

A. Microcontroller

The ESP32 WROVER although not as power efficient
as some of our other choices it does have features where it
counted most. It also has a community unmatched by
almost any other chip and therefore it checks off the box
for ease of development while still giving our Electrical
Engineers enough freedom to design around and with it,
with up to 150Mbps speeds allowing for quick uploads
and downloads of small sensor data used in our project.
Has multiple kinds of sensor interfaces including ADCs
for calculating values directly from an analog voltage
reading such as for a Thermistor as well as I2C and SPI
for other sensors such as our accelerometer and RGB
LEDs and some DAC for our speaker although low bit
count, we want this collar to be small. The major
drawbacks of the ESP32 are the package size and the
power draw of the complete unit. After much discussion
the ESP32 WROVER was chosen for our project.

B. Accelerometer

The LIS2DW12 is a three-axis accelerometer that is
ultra-low power (sub 1pA). The chip has “very low noise:
down to 1.3mg RMS in low power mode”. This chip offers
a 32 level FIFO for storing measurements and 16-bit
outputs for high resolution data. Has gesture recognition
which opens to the possibility of being able to recognize
when a dog might be eating or drinking or etc. The
package is also the smallest package size out of all other

parts, just 2x2x1mm. Lastly it is readily available which is
again a major reason to use this chip.

This sensor from STMicroelectronics uses 12C or SPI,
12C requiring a two-wire interface before accessing the
sensors while one SPI interface however this is needed to
properly access the sensors. The module also has single
data conversion on demand meaning this will give us a
huge advantage in processing data because MCU
ultimately gets to decide when the sensor should measure
it. Digital output interface provides high speed
transmission on demand and can enter low power mode
with given the right parameters. LISDWI12 high
configurability allows it to meet the demands for
BarkaRoo’s needs. This device has also an embedded
temperature sensor that is stored as two’s complement data
and left justified.

= a0 [, (O * BO) + (x,, (£ = 1) * f

(6,0 (E = 2) % B + (&, (6 = D) * aD)) +
(¢t -2)* a(2)] (1)

grav

We will be using SPI to communicate to our
microcontroller unit and will automatically pass the values
of each direction’s acceleration by request from the
appropriate register but it does not natively have any sort
of step counting functionality. Now that we are able to set
and read, we can use this information to detect the
direction of the gravitational acceleration and thus
determine if a step is taken. To do this we are using a
series of software implemented filters to separate
gravitational acceleration from user acceleration and then
get an output that is used for tracking the repeated vertical
oscillations that all animals experience during a step.

We start by passing the data from the
accelerometer directly into a low pass filter equation for a
filter in Equation (1) with a cutoff frequency of 0.5Hz to
separate gravitational acceleration from our data as we
know gravitational acceleration should be very near
constant. Once we have gravitational acceleration, we can
subtract this value from the value read off of our sensor
and this gets user acceleration. Once we have these
separate values, we then dot product them in an effort to
isolate the acceleration only in the direction of
gravitational acceleration. Finally, we pass our calculated
values through a high pass and then low pass filter to get
rid of any peaks that are too fast to be steps as well as
peaks too slow to be steps.

C. Temperature sensor

We found many IC chips that are low power and
contactless with shutdown/ interrupt features, but these
chips are hard to find and could cause more issues if say a
chip went bad and we need a replacement. Seeing how
little time we have and having an IC chip would be nice
and could allow more flexibility, better accuracy and a
way to communicate an interrupt but some of the chips
require calibration and making sure that they can
communicate with already existing parts like the
processor. So, we made a choice to go with the thermistor
NXRT15XV10. Its very light, small and accuracy is fair
with a +1C but this product does not need to be extremely
accurate to read the ambient temperature.

1

T

R)
(T+5In(E)

Where: T is the temperature to be measured in
Kelvin; To is the reference temperature in Kelvin for 25
degree Celsius; Ro is the thermistor resistance at To; B is
Beta or B parameter, provided by the manufacturer in their
specification.

Implementation of the thermistor won’t be
particularly difficult as ESP32 GPIO pins can be
configured as ADC (Analog to Digital Converter). Luckily
for us we know that ESP32-IDF has built in functions for
ADC applications. Our team has also noted the
non-linearity of ESP32 ADC where there are instances
that an inaccurate temperature reading above a certain
temperature will occur. ESP32's high CPU clock and small
factor is also receptive to noise as we collect data from the
thermistor for analysis and adjust by adding a filtering
algorithm or adding a small capacitor. [5]

D. LED

We went with the CHINLY RGB LEDs because they
have a good build with waterproof rated at IP67 that will
allow us to comfortably place the led on the collar. With
RGB we can make these lights accessible to those with
color blindness using a setting in our phone app. The only
downside to the LED inclusion is that we need another
power line as these LEDs need a 5-volt line which can
drain our battery. But we will not use it too often only
when needed.

E. Speaker and amplifier

This speaker is waterproof rated at I[P67 which can
last for a while submerged in water. With a very nice small
size of 12x6mm and a dB rating of 116 this little speaker
has very good sound quality, although it as an impedance
of 32Q which is fine for what we want for a speaker and
only a frequency range of 300 to 7kHz which is great as
this sits perfectly in the human speech range. We also had
to keep in mind that dog’s ears (threshold of pain at 95dB)
are more sensitive to noise then humans (threshold of pain
at 130dB) so we will lower the rails of the amplifier and
set up a high pass filter at 7khz so that its loud enough to
be heard not loud enough to hurt the dog. We will use the
ESP32 DAC to send out the audio signal. The only bad
thing is that this DAC is only 8bits, with testing this is
passable and is loud and clear enough to be heard. We will
add a low pass filter to the amplifier as well to clear any
noise that may come from the DAC. (equation (2) provide
by lumissil microsystem)

1
f=%mc O

Fig. 1. The range of frequency with respect to dB that the
speaker will go which correlates to human speech.

E Lipo Charging Chip and battery

The LM3658 will be our choice, comes with safety
features such as: multiple charging time monitoring
systems, over-current and over temperature monitoring,
and pre-conditioning for our battery if it is ever overly
depleted. Other great features for our project include a 1A
charging current if using a wall adapter and a USB
limiting feature for when this product might be connected
to a USB port such as one located on your laptop. The
chip also comes with a sleep mode, low-quiescent current,
and a package size of 3x3mm. The most useful feature of
this charging chip is that it is designed for the purpose we
intend to use it in (USB power interfaces) so it can
communicate through USB to any device or just take its
max allowed current. The only real drawback of this chip
is we are limited to 1 cell batteries if we ever wanted to
change the battery voltage, we would also need to change
this charging IC, but it comes at the benefit of a much
cheaper price for the features included

| Part: Max current (A): Min Current (A):
Accelorometer 0.00009 0.000003
LIPO charger IC 0.0006 0.000005

Boost 0.000109 0.000005
Buck 0.000948 0.0000006
ESP32 11 0.0008
Speaker 0.01 0.006
RGB LEDs 0.1 0.02
Thermistor 0.001 0.001
GPRS/ GSM 0.5 0.0007
#of Hours In a week: 168 168

Total worstcase Total best case
current draw:
0.0285136
35.07098367
52.60647551

70.14196734

current draw:
1.712657
0.583888076
0.875832113
1.167776151

Amount of time a 1AH could run it for (Hours):
Amount of time a 1.5AH could run it for (Hours):
Amount of time a 2AH could run it for (Hours):

Amount of time a 3AH could run it for (Hours): 1.751664227 105.212951
Amount of time a 4AH could run it for (Hours): 2.335552303 140.2839347
Amount of time a SAH could run it for (Hours): 2.919440378 175.3549184

Fig. 2. Estimated power usage over time with add parts

£

<

Power lines

O

Power lines

O

Power lines Power lines

\

Buck / Boost
(3.3v)

Power lines

Power lines

Sensors and
processors

Data lines

Fig.3. Power supply layout

G. Global positioning system

We wanted a way to track our pet with our product.
Originally, we planned to have LoRa as our GPS as it did
not require a subscribing based only issue is that LoRa is a
new technology and only one tower only exists in Florida
where this product is being developed another reason we
moved on from this technology is because LoRa uses very
low frequency signals which is fine for some application
as some of the receivers will set on high areas but our
product will be on a pet which is low to the ground, so the
fear of this not working efficiently.[1] We went on to work
with the SIM8OOL as this one only needed a cell tower as
it uses GPRS using only cellular towers, unfortunately we
ran into issues with this module as this device uses a
specific device tracking algorithm that the current
company does not fully support anymore thus having us
move forward to Ai-Thinker A9G module.[3]

III. SOFTWARE OVERVIEW

A. Bluetooth Low Energy

One mode of communication that we will be
using in this project will be Bluetooth Low Energy (BLE)
to communicate information such as if the dog has the
collar on. what it is doing, and other activities we wish to
track and convey to the user though their phones.

One area where we spent a majority of our time during
this project was implementing a way to send RGB values
over BLE to our dog collar and having the color properly
displayed. In order to implement this, we first started by
setting up all the proper permissions and server/client
attributes on our mobile application. Our first step was
ensuring that BLE was enabled in our mobile application.
After this was coded successfully, we had to code a proper
way to scan and connect to our ESP32. This was done
utilizing the ESP32’s Unique Universal ID (UUID) and
address.

Once the connection was successful, we started
modeling how we would send a RGB value to ESP32 in
order for it to read the value and display the color on our
LEDs. We started by making a color wheel that was able
to cycle through all combinations of RGB values from
0,0,0) to (255,255,255). The color wheel was
implemented in a way that allowed the user to visually
choose a color and the wheel would return RGB
hexadecimal string (#000000) to (#FFFFFF).

Once the user chose a color, the wheel would display a
hex string with the values of the color that user chose. Our
next step was to take this string and send it over BLE to
our ESP32. This was done by sending a “send” type to our
ESP32 that would let it recognize that it was about to
receive three RGB values. Then, we had a function that
would split the hex string into 3 values to send to the
ESP32. The ESP32 was coded so it knew that the first
value after the “send” type value was for the red LED ®,
the second value was for the Green LED (G), and the last
one sent was for the blue LED (B).

After receiving the values from our mobile application,
the ESP32 would go on to convert these hex values to
decimal values. These decimal values would then be the
brightness value that the corresponding LEDs would
change to after being processed.

B. ThingSpeak and Wi-Fi

ThingSpeak IoT platform was another suitable choice
for BarkaRoo purpose and implementations. Having a free
limited option to sending no more than 3 million messages
each year earning this platform the highest rank in that
category. ThingSpeak uses channels to send and retrieve
data from the microcontroller unit. It has a social media
plugin compatible with Twitter for automatic “tweet”
notifications of triggered events as well as Twilio APIs and
support most if not all mobile and web applications.
ThingSpeak ability to transform our collected data from
ESP32 toavisualize datarepresentationon a cloud
platform solidifies our components working status. This
visualize data also give our team feedbacks on outputs that
could be inaccurate, wrong or simply
disabled components for debugging purposes. This rapid
prototype testing also give a quick assurance that our
sensors will have no issues in cooperation of our software
application.

In regards to integrating ThingSpeak into our project,
we used the platform’s API keys and Channel ID in order
to facilitate communication between our mobile
application and the ESP32. ThingSpeak creates unique
API keys for reading and writing that were integrated into
our firmware for the ESP32. Similarly, these keys were
also included in our mobile application. To test the read
and write features needed for our project, our mobile
application would seed a request number through to one of
ThingSpeak’s fields. The ESP32 would read this request
number and write corresponding data according to the
request number to a different field. Our mobile application
would also have a “read” button that allows us to read the
data just uploaded by the ESP32 of a particular field.

C. Global Positioning System

The Ai-Thinker A9G module is still as capable as the
initial choice of SIM80OL with the difference that A9G
supports GPS tracking. Without being said, the software
development platform for A9G with our initial
prototyping of its capabilities was done over Ai-Thinker
Serial Tool that allows for AT based commands for
GSM/2G connectivity initiation, GPS tracking and SMS
functionalities.

ESP32MCU
Command Center

AIG
AIG Enable and
Initiate GPS system to configure
gather longitude and GSM/2G data for
latitude information sending/receiving
SMS & HTTP data

Enable minimum
functionality

mode(Power
Saving) for A9G

SMS
User request for Send to user exact
pets current location of the tracker
location embedded as a Google
Map link

Fig. 4. A9G Functional Overview

After we have verified the AT command capabilities of
the A9G we moved forward to completely integrate its
functionalities through ESP-IDF software development
environment of ESP-32. The primary language ESP-IDF
will be done in Embedded C. The software design
structure for A9G programming consists of individual
function sets to ‘Enable/Disable’ GSM/2G connections
and GPS systems when it is not needed, sending SMS
with relevant information for location, GPS retrieval of
location and parsing of NMEA(National Marine
Electronics Association) GPS data into latitude and
longitude data. This structure was purposely designed by
our team to facilitate rapid testing, debugging and
deployment of each function our wireless module will
provide for our system.

D. Android Studio

The mobile application development aspect of this
project will be a key component in addition to the
hardware design. This application will be the main mode
of interaction users will have to get the hardware we
design to be usable for the features we plan on including.
We chose to make a mobile application for this project
since the collar we are designing would be best suited for
interaction through the phone and on-the-go. As such, a
stationary web application that requires users to sit at a

personal computer was ruled out. For the platform, the
team decided the development on the Android platform
would be most beneficial for us throughout the project. In
large part, this is due to the open-sourced nature of
Android. Android allows development, integration,
testing, and deployment to be more manageable with
ample documentation online that will help us with any
issues that may arise during the process.

After narrowing down our options to an Android,
mobile application, we looked at tools we believe would
best suit this project. In order to develop an Android
application, we decided to use a mix of both Android
Studio and Visual Studio Code as our IDE for this project.
Android Studio will allow us to see a glimpse of our final
application as we code with its built-in Android Emulator.
Based on IntelliJ, Android Studio offers a platform that
allows us to code with included templates, integrated
version control tools using GitHub for team development,
Java/C/C++ support, and much more included. Since
Android Studio is supported by Google and has been
extensively used over the years for other application
development, this established platform allows us to fully
utilize the ample documentation and online resources
while developing our mobile application. In tandem with
Android Studio, we will also be incorporating Visual
Studio Code into our workflow since most of our team
members have experience with this IDE. With Visual
Studio Code, we will be able to keep our options open and
ease into the Android Studio environment.

The tools we have at our disposal seem best suited for
how we want to proceed with our development process. At
that time (6/24/2021), the mobile application development
aspect of our project was constrained mostly by the lack of
hardware to work on. As such, we are starting mobile
application development with a barebone prototype. This
prototype will be with Android Studio with a superficial,
UI design that will act as a placeholder for the features we
plan on including once the hardware is completed. This
barebone app gave us a bit more perspective on how we
want our finished product to operate with the
functionalities we plan on having with the placeholders
within the app. Additionally, we were able to
simultaneously work on the application and the hardware
while adding and removing aspects of our project we find
achievable or otherwise. From our bare prototype with
dummy buttons and tabs, we integrated working features
as they are done to test on the Android application
(blinking an LED, receiving a Bluetooth transmission,
etc.) one-by-one to test functionality. After ensuring the
feature we are testing works in a controlled, isolated
environment, we brought the application with the feature

we are testing to a “live” environment to simulate what the
end user’s experience will be like without the developers
interfering with the code and hardware. From this process,
we saw how well this testing methodology worked and
repeated the process throughout development with each
feature filling in the placeholder on the prototype until we
have a stable, feature-filled, mobile application.

IV. OVERVIEW OF THE COLLAR

Power circuitry

Sensing hardware

Database

Android app

User

Fig.5. The complete layout

Wl esse
B oo

s

-

-
——
\7\.
]

D

B

Fig. 6. hardware layout (due to some constraints/decisions we
have cross out part we are no long working on)

The barkaroo collar will have many different parts
that will work in tangent to one another. We will have a
temperature sensor running with a pressure sensor to let
the user know if the dog is wearing its collar. gps will text
the user the dog's location if requested, speaker and LED
will go off with a present of audio lines giving attention to
the dog, Wi-Fi and BLE will be sending data from the
esp32 to the android app. This device will be able to track
your pet though many ways.

Communication is key, using the esp’s different
communication methods will be helpful A Universal
Asynchronous Receiver/Transmitter (UART) is a
hardware feature that handles communication (i.e., timing
requirements and data framing) using widely-adopted
asynchronous serial communication interfaces, such as
RS232, RS422, RS485. A UART provides a widely
adopted and cheap method to realize full-duplex or
half-duplex data exchange among different devices. The
ESP32 chip has three UART controllers (UARTO, UARTI,
and UART?2) that feature an identical set of registers for
ease of programming and flexibility. Each UART
controller is independently configurable with parameters
such as baud rate, data bit length, bit ordering, number of
stop bits, parity bit etc. All the controllers are compatible
with UART-enabled devices from various manufacturers
and can also support Infrared Data Association protocols
(IrDA). [2]-[4]

I12C is a serial, synchronous, half-duplex
communication protocol that allows co-existence of
multiple masters and slaves on the same bus. The I2C bus
consists of two lines: serial data line (SDA) and serial
clock (SCL). Both lines require pull-up resistors. With
such advantages as simplicity and low manufacturing cost,
I12C is mostly used for communication of low-speed
peripheral devices over short distances (within one foot).
ESP32 has two 12C controllers (also referred to as ports)
which are responsible for handling communications on the
I2C bus. Each I2C controller can operate as master or
slave. As an example, one controller can act as a master
and the other as a slave at the same time. [2]

The ESP32 has four SPI peripheral devices, called
SPI0, SPI1, HSPI and VSPI. SPIO is entirely dedicated to
the flash cache the ESP32 uses to map the SPI flash device
it is connected to into memory. SPI1 is connected to the
same hardware lines as SPIO and is used to write to the
flash chip. HSPI and VSPI are free to use. SPI1, HSPI and
VSPI all have three chip select lines, allowing them to
drive up to three SPI devices each as a master.[2]

V. THE CONSTRAINTS

The health and safety constraints will be discussed
for our device. This dog collar will be placed on dogs and
used by humans. Taking these two groups into
consideration, necessary precautions and planning must
take place to ensure that no one gets injured or harmed in
any capacity. The device will be primarily around the dog.
Therefore, we must ensure that no components or features
will harm or disturb the dog. Additionally, the device will
be used by humans. Any testing or use by humans must be
carefully planned and taken into account to make sure that
no one can be injured or harmed by the device. If the
device is clearly not safe or healthy to use, then the final
product will either not be released or even approved for
release.

While developing and testing the product, we will
ensure to the best of our abilities that our device does not
trigger any health and safety concerns. Since this device
will predominantly reside on the dog neck, we will have to
ensure that the battery, wiring, and all components with
electricity will not malfunction at any point and injure the
dogs or their owners. Once we can ensure that device has
a certain level of durability, we do not see the collar
raising health and safety issues. Although the potential of
our hardware malfunctions while on the dog is a concern,
we do not foresee this as a huge hurdle for us to
overcome since most of our hardware is low voltage. To

further ensure the safety of the dogs, we will be making
the enclosure for our circuitry and wiring waterproof and
dustproof to the best of our abilities.

Varying weather conditions is a prominent standard
usually discussed within product developments. These
conditions will allow operability of the device within
allowed parameters specified by our team of engineers. As
per our development procedure, water protection is the top
priority in design of the enclosures. IP65 enclosure is the
ideal bound of the development of BarkaRoo collar
making sure splashes of water will prevent damage within
the electrical unit. Humidity is a main concern as well in
connection with water damage. High humidity can cause
water condensation that eventually leads to corrosion if
not correctly dried. Low humidity on the other hand is
susceptible to electrostatic discharge that can result in
frying of device components.

VI. BoarD DESIGN

When designing this board for our group we needed a
Li-ion/ LiPo charger/management IC as well as power ICs
that could convert the variable voltage of the battery to
three-point-three volts and five volts. To do this we
decided to first use a boost converter to get the voltage of
the battery to a constant five volts and then from that
five-volt rail make our three-point-three-volt rail using a
buck converter off of the five-volt rail. This design
requires that we have a boost converter that can handle
both the five-volt rail demand as well as the
three-point-three-volt rail demand. This meant that the
max current draw of the boost regulator should at least be
one-point-five-amps. About one amp for the RGB LEDs
and then another half an amp for the ESP32 and sensors.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of the professors at the University of Central
Florida, Siying Yu, Seif El Shafei, Anirudh Pise, Charlie
Jordan and Samuel Richie

REFERENCES

[1] “What Is LoRaWAN® Specification.” LoRa Alliance®, 6
May 2021, lora-alliance.org/about-lorawan/.

[2] “UART ESP32.” ESP, Espressif,
docs.espressif.com/projects/esp-idf/en/latest/esp32/api-refer
ence/peripherals/uart.html.

[3] “Global Positioning System.” Wikipedia, Wikimedia
Foundation, 2 July 2021,
en.wikipedia.org/wiki/Global_Positioning_System#Regulat
ory_spectrum_issues_concerning_GPS_receivers.

[4] “ESP-IDE.” IoT Development Framework I Espressif Systems,
www.espressif.com/en/products/sdks/esp-idf.

[5] Cheung, Henry, et al. “Using a Thermistor with Arduino and
Unexpected ESP32 ADC Non-Linearity.” ETinkers, 29 Apr.
2020,
www.e-tinkers.com/2019/10/using-a-thermistor-with-arduin
o-and-unexpected-esp32-adc-non-linearity/.

Cody Khong is a 22 year-old Computer Engineering
student receiving his degree from the University of Central
Florida. He hopes to pursue a career in database
engineering and administration, application development,
or biomedical technologies. He is currently interning at
Phoenix Logistics LLC. where he hopes to start his career
after graduation as a full-time Software Engineer.

Jesse Ray is a 24-year-old Electrical Engineering
student. Jesse wishes to pursue a career in power
electronics, specifically charging systems for electric
vehicles and the electric vehicle’s internal charging and
battery management systems for companies like Tesla,
Rivian, Lucid, GM, ABB, and Siemens. Jesse currently
works at Advanced Charging Technologies in the research
and development / test engineering department

Vincent Martinez is a 26 year-old Electrical engineering
student who will be graduating from University of Central
Florida. He wishes to increase his knowledge by becoming
a full time electrical engineer in board design development
in control systems, robotics and more. places of interest
would be Lockheed Martin, Siemens.

Allan Nevalga is a 26yr old Computer Engineering
student. Allan is pursuing a career in software
engineering for a Financial Tech firm this coming Spring.
Allan was a former Research and Development Engineer
for a start-up company last year delving in Hardware
Integrations.

