
Husky Super Brute RV Lift

Nader Abd El Rasol, Lucy Golebiewski,

Andrew Melvin, and Hesham Zidan

Dept. of Electrical Engineering and

Computer Science, University of Central

Florida, Orlando, Florida, 32816-2450 (12

point Times font)

Abstract — The Husky Super Brute stabilizer jack is

a practical and useful application of electrical and

computer engineering concepts. Recreational vehicles
need to be lifted and stabilized to ensure their safety
and longevity. The new Husky jack uses a blend of

hardware and software to provide a reliable, user-
friendly, and innovative way to bring stabilization to
customers’ vehicles. The PCB was custom designed to

withstand high power applications and fit within
Husky’s existing stabilizer jack. The system is
comprised of four main integrated circuits to control the

motor with a mobile application, provide security
measures, and an extra feature for customers.

Index Terms — DC Motor, Bluetooth Low Energy,

RV stabilizer jack, mobile application, accelerometer.

I. INTRODUCTION

Recreational Vehicles, or RVs, need to be

stabilized while parked either at home or a campsite.

Stabilizing keeps the RV steady when people are

walking around inside, or wind is blowing outside.

The stabilization provided by the Husky Super Brute

jack is important for user safety and the lifespan of

the vehicle. Many jacks are manually operated with a

hand crank or handheld drill, but this is a fully

automated jack controlled with a mobile application.

The mobile application connects to the jack via

Bluetooth Low Energy. This connection allows the

user to lift and lower the stabilizer jack at the touch

of a button. There are safety features in place to

prevent the user from lifting or lowering the jack if it

is already at its maximum or minimum point of

operation. The module selected for Bluetooth Low

Energy is also the main controller for our system. It

controls and receives the data from the motor driver,

accelerometer, and hall effect sensor.

The team researched and designed the printed

circuit board to fit the requirements given from the

sponsor and customer. The PCB needed to fit within

the dimensions of the Husky jacks already being sold

on the market. This allows the company to easily put

the Husky Super Brute board directly into their jacks

by plugging their wires into our connectors. The

electrical design team needed to conform to these

constraints by making sure the size of the board was

perfect, the modules were oriented in the correct

locations, and the correct connections were

implemented. The connectors needed to correspond

to the wires within the stabilizer jacks, so the team

made sure to accommodate for the manual switches

and power from the Husky jack.

One of the most important factors the team needed

to consider while designing the circuit board is the

high voltage and current supplied to the jack. These

brushed DC motors require 12 volts at the input, so

we designed the board to withstand extra voltage to a

maximum of 20 volts. The rest of the components in

this system run off 3.3 volts, so electrical team

needed to design the system to convert this input

voltage to lower voltages. The current supplied to the

motor is between 20 and 30 amps, while the modules

require much less current, measured with milliamps

and microamps. Working with such high power can

be dangerous, so we made sure to take precautions

while testing the system. The integration of software

and hardware in this project created a beneficial

product and provided the team with new skills.

II. SYSTEM COMPONENTS

The system is comprised of several different

modules that work together to create the final

product. This section will discuss the components

chosen and their purpose in the design. The following

devices were developed by different companies, so

the team gained different experiences from each one.

An overall system design can be seen in Fig. 1 with

the SPI communication and power connections.

A. Cypress Bluetooth Module CYBLE-212006-01

The main controller for this system is the Bluetooth

low energy module developed by Cypress, which is

now owned by Infineon technologies. This module

receives instructions from the user through a mobile

application connected through Bluetooth. These

signals are then processed in our driver and command

the other modules to perform their intended actions.

The CYBLE-212006-01 connects to the

accelerometer and motor driver through SPI

communication lines. The software team developed

drivers for each module based on the Cypress SPI

protocol. The main program calls the different drivers

to perform actions such as motor control, reading

accelerometer data, detecting motion data, and

gathering pulse information to calculate motor speed

and direction. The Cypress module receives the data

and sends some of it back to the phone for the user to

view. The main function of the mobile application is

to control the motor, but a new lighting function has

been implemented in this design. Users can plug

LEDs into their stabilizer jack to light up their

workspace or just provide light at their campsite.

Previous methods of lighting require users to wire the

lighting from inside of the RV, which can be very

complicated and time consuming. The Husky Super

Brute provides an easy connection point for LEDs

with a supply voltage of 12 volts. The user can

control the colors with their mobile application. The

Cypress module driver receives these signals and

sends them to the Infineon TLE-92108 driver.

B. Infineon Motor Driver TLE-92108-232QX

The TLE driver is a MOSFET driver that can drive

up to eight half-bridges. Half bridges one and two are

used to control the motor through extend and retract

signals from the 6-position switch connector. Half

bridge 3 is used for the brake signal. Half bridges 4-8

are used for controlling the external LEDs. The TLE

from Infineon is a new component, so there was not a

lot of data and example code to use. This team

developed our own driver, discussed in “Software

Design.”

C. Diodes Incorporated Hall Effect Sensor AH3774

To monitor the speed and direction of the motor,

the team chose a hall effect sensor from Diodes

Incorporated. The hall effect sensor has a single

open-drain output that is switched on and off with a

magnet. The south pole of the magnet switches the

output on, while the north pole of the magnet

switches the output off. Two magnets were placed

around the motor for the hall effect sensor to detect

their magnetic fields. As the magnets rotate, the

sensor sends voltage signals to the Cypress module.

The team developed a program to calculate the

direction and speed of the motor based on the timing

of the pulses. Since the magnets are placed at

different intervals, a short pulse indicates the motor is

spinning clockwise, while a long pulse indicates the

motor is spinning counterclockwise. Using the pulse

count and timer within the Cypress module, the team

calculated the speed of the motor spinning. This data

is useful for implementing safety measures within the

system. If the motor is spinning to fast or in the

wrong direction, the Cypress will notify the motor

driver to stop the motor.

D. Bosch Sensortec Accelerometer BMA456

Along with the hall effect sensor, the team

implemented safety features with an accelerometer

from Bosch Sensortec. The accelerometer can detect

the orientation of the PCB and sends the data to the

Cypress module at a rate of 25 Hz. This data is in the

form of X Y Z axis coordinates. If the accelerometer

detects motion above the set threshold, it sends a

motion detection interrupt. This interrupt allows the

Cypress module to send a warning notification to the

user, stating that the device is experiencing excessive

motion. The stabilizing jack should not be tilted out

of place while in use and could cause damage if not

prevented. To develop the driver for the BMA456,

the software team utilized the API provided by Bosch

Sensortec for their line of BMA4xx accelerometer

devices. While utilizing the API provided much of

the code needed for background processes, the main

communication and driver needed to be coded by the

team. The SPI communication provided some

challenges due to the specific requirements in the

API, but the team was able to overcome this obstacle.

Since the accelerometer and the Bluetooth module

were developed by two separate companies, there

was not an abundance of resources to refer to while

creating the driver. The team was able to

communicate with other programmers on community

forums provided by Bosch Sensortec and Cypress.

Fig. 1. Block diagram depicting the basic connections

between system components. The blue lines represent SPI

communication, and the red lines represent voltage.

III. HARDWARE DESIGN

A. Motor Driver

 As mentioned earlier, The TLE driver can drive up

to eight half-bridges. Half bridges one and two are

used to control the motor through extend and retract

signals from the 6-position switch connector. Half

bridge 3 is used for the brake signal. Half bridges 4-8

are used for controlling the external LEDs. The driver

has three PWM inputs. The three PWM signals are

designated for the LEDs. PWM1 for green, PWM2

for blue, and PWM3 for red. Turning the three

PWMs together is would be the white LED signal. A

different combination of the PWM signals will result

in different color. Current from DH (which is the

drain high current supply) comes through the first

half bridge and passes through the motor and it then

passes by the N-channel of the second half-bridge as

seen in Fig. 2. A 1 mΩ sense resistor is added to

measure the current passing through the motor. Two

current sense inputs CSIPX and CSINX from Fig. 2

are inputs to the TLE that are connected to an

instrumental amplifier. A shunt circuit is added

between the sense resistor and CSIPX and CSINX to

protect the TLE from any high power. The current

measurement is then given to the microcontroller

through a RC low-pass filter. Since the

microcontroller sampling rate is around 1000 Hz, we

picked R to be 1.5kΩ and C to be 0.1µF.

Fig. 2 Current flow through the motor from half-bridge

one to half-bridge two.

B. Protection Circuit

Our supply voltage range is between 9 V to 20 V.

Our typical supply voltage is 12V. The MAX16141A

part is a diode controller that functions as reverse-

voltage protection circuit, over-voltage protection

circuit and under-voltage protection circuit. If the

voltage exceeds our over-voltage threshold, falls

below our under-voltage threshold, the part shuts

down. The circuit shuts down based on the threshold

that we decide. The part has a window-detection

threshold comparators, so by using a voltage divider

circuit, we can set the values of the resistors, so that

when the voltage change beyond the desired

thresholds, the N-Channel FETs will turn off. To find

the values of the resistors of the voltage-divider

circuit, we used equations 1-5.

 (1)

 (2)

 (3)

 (4)

 (5)

Setting R_total = 100kΩ, get R1 = 95.3kΩ, R2 =

2.8kΩ, and R3 = 2.5kΩ. Low-power mode (SLEEP)

is active high. So, we connected SLEEP to a 10kΩ

pull-down resistor to ground. In addition, pins RS

and OUT are connected to a comparator inside the

module. A sense resistor is connected between RS

and OUT which compares the current and detects any

overcurrent. If any overcurrent is detected, then the

module shuts off. The current threshold is calculated

using equation 6.

 (6)

Where VRS-OUT is the voltage of the overcurrent

threshold and RSENSE is the sense resistor between

pins RS and OUT. IOS = 27.5 A, VRS-OUT is 27.5 mV

(which is the maximum VRS-OUT that the module can

handle), and the RSENSE = 1 mΩ. Since the motor is

rated at around 300 W (12V*25A), then 27.5A is an

appropriate overcurrent threshold. For reverse-

voltage/reverse-current protection, the module

measures the different between VIN and VOUT across

the external FETs. If VOUT – VIN = 10mV, then the

module activates a fault that turns the gate voltage to

zero as well as load current. Fig. 3 is a graph of the

effect of a reverse-voltage fault.

Fig. 3 Reverse voltage fault response.

Connected to the protection circuit is a hold-up

circuit which is a circuit of three capacitors in

parallel; two of them are ceramic and one is a 100µF

electrolytic capacitor that functions as a reservoir.

The hold-up circuit is then connected to a 12V-3.3V

and a 12V-5V linear voltage regulators. The small

signal ICs have a nominal voltage of 3.3V, and the

5V regulator is for the external LEDs. The 5V linear

regulator is enabled by the microcontroller through

an enable circuit that we designed. The circuit is

mainly consisted of a P-channel MOSFET and a N-

channel MOSFET which has its source connected to

ground. A simulation of the enable circuit for the 5V

regulator is shown in Fig. 4.

Fig. 4 Enable circuit simulation for the 5V linear

regulator.

Simulating the circuit above when V2 (which is the

enable signal coming from the microcontroller and

the gate-to-source voltage of the N-channel

MOSFET) is zero, the voltage at the input of the

regulator is 0V as shown in Fig. 5. When V2 is

enough of a voltage, the voltage at the input of the

regulator becomes close to 12V as shown in Fig. 6.

Green is regulator input and blue is the 12V supply.

Fig. 5 Enable circuit when VGS of the N-channel = 0V.

Fig. 6 Enable circuit when VGS of the N-channel = 3V.

C. Connectors.

As for the connectors, we have a 6-position

connector for the switches: LIGHT_1, LIGHT_2,

EXTEND, RETRACT, and BRAKE. LIGHT_1 and

LIGHT_2 are for the LEDs. When the switch is

turned on, the signal on the microcontroller is shorted

to ground. Since the GPIO for the microcontroller are

active low, then the microcontroller gives the signal

to turn on the LEDs. We decided to use five signal

vertical connectors for external LEDs to be

connected: RED, GREEN, BLUE, WHITE, and

WORK LIGHT. External LEDs are controlled by the

MOSFET driver which gets its signal from the

microcontroller. As for the power supply and the

motor, we decided to use single horizontal

connectors. To each connector, we connected a

transient voltage suppressor to prevent any spikes in

voltages. We designed a protection circuit to every

switch signal so protect the microcontroller. The

circuit is consisted of a transient voltage suppressor, a

Shockley diode, a pull-up resistor, and a series

resistor. Fig. 7 shows the protection circuit for the

switch signal EXTEND.

Fig. 7 Protection circuit for switch signals.

D. PCB Design

After measuring the dimensions of the jack and the

board-mounting place, we designed the PCB to have

a length of 16 cm, and as for the width; the upper part

of the PCB has a width of 7 cm and 6 cm down from

the top of the PCB, the width is increased to 8 cm.

The PCB is shown in Fig. 8. We decided to design a

4-layer board. The top and bottom layers are for

power traces. And the second and third layers are for

signal traces. We filled the top and bottom layer with

ground. As for the signal ground we designated the

bottom left area of the top layer (where the radio is

located) to be signal ground. There are three 5-mm

screw holes. One at the top left, one is to the right,

and one is near the bottom. We designed the board so

that the power supply would be connected to the

bottom right of the board. There is a drill hole at the

bottom right and an edge cut for the zip tie to hold

tight the three high current wires, which are SH1, the

source current for half-bridge 1, SH2, the source

current for half-bridge 2, and the 12V supply. Power

traces have a track width of 3 mm. However, we

avoided connecting the high-power components with

traces; instead, we created different zones for the

different high-power components such as the 12V

voltage supply, SH_1, and DH_1 which are the drain-

high and the source-high inputs for the half-bridge

supplying the motor. Each zone on the front copper

Fig. 8 PCB Design Layout

has its identical sister on the back copper and they are

connected through vias. We placed stitching vias all

over the zones for thermal relief.

We tried to place the TLE as close to the middle of

the board as possible, so it is close to the FETs at the

top and the radio at the bottom. We placed the radio

in the very bottom as far from the high current and

the motor as possible to avoid radio interference. The

MAX part is placed between the TLE and the radio.

The six-position connector is connected above the

TLE and the LEDs connectors are placed at the top of

the board close enough to the FETs that are assigned

to control the LEDs. We have the debug connectors

placed at the bottom of the board close enough to the

radio. We also have the hall effect sensor located as

close to the motor as possible.

E. Design Complications

We designed a protection circuit to every switch

signal so protect the microcontroller. The circuit is

consisted of a transient voltage suppressor, a diode, a

pull-up resistor, and a series resistor. When the

switch is turned on, we get a voltage of 2.4V at the

anode of the diode which is too high to enable the

GPIO which is active low. As a result, switches were

not working. We removed the 3.3 Ohms series

resistor.

The MAX16141A protection circuit always gave a

fault when we tried to start the motor. The part

activates a fault if VOUT is less than 90% of VIN. We

tracked VIN, VOUT Vin – VOUT, and the fault signal

The fault signal is active low, and it went low as VIN–

VOUT was more than 10% of VIN. To solve this issue,

we jumped a wire over the protection circuit to the

regulator.

IV. SOFTWARE DESIGN

The system is comprised of several different

components that communicate through serial

peripheral interface (SPI) communication. The

software team developed drivers for each device and

integrated them together with flags and interrupts.

There are different priorities assigned to the different

devices. The TLE-92108 motor driver has the highest

priority because it is the most important. The extend

and retract flags will be raised if the user sends those

commands to the CYBLE-212006-01 module. The

main loop constantly checks for the flags and calls

the corresponding driver based on the flag. The

overall software system design can be seen in Fig. 9

with the flag handler within the main loop.

A. Motor Driver Software Design

The TLE-92108 is a new part from Infineon thus it

does not yet have software support. This meant that

we had write our own driver for it from scratch. The

goal was to write a driver that is agnostic enough to

be able to work on multiple projects not just ours.

This meant that we had to structure the files for the

driver from simple defines for the different Hex bytes

in one file to functions that take those values and

build and send the command packets in another file

to functions that state the action that we want to

perform and call all the functions necessary in the

other files to configure the TLE to make that action

happen.

There are two ways to control our Super Brute

jack, you can use the physical switches in the jack or

you can you the mobile app, thus there are two ways

to set the flags that start the different functions of the

device. We programmed the CYBLE microcontroller

so that it will always give the physical switches

priority over the commands issued through the BLE.

One of the seemingly simple parts of the project

that turned out much more complicated is controlling

the RGB lights through the TLE. The TLE has many

safety features that detect overcurrent, overvoltage,

drain to source overvoltage, etc. this created a

challenge for us as setting the PWM signals that

controlled the lights too low cause the TLE to throw

a voltage error. This meant that we had to configure

some of the TLE’s safety feature blanking times to

the highest values and turn the PWM channels to stay

in a certain range which fixed the issue.

B. Hall Effect Sensor Software Design

The hall effect sensor triggers an interrupt every

time the magnet passes by the device. This interrupt

sets a flag and adds a count to the pulse counter. The

the hall effect sensor’s flag check has several

different functions within it. When the flag is raised,

the direction and speed functions are called, and the

data is returned to the main function. There is a pulse

timer flag that is set within the watchdog timer’s

interrupt service routine. This timer starts when the

first pulse is received and keeps track of how long the

motor has been in motion. The revolution timer is

also tied to this timer, but it resets every time there

are two pulses. Two pulses signify a full revolution

of the motor. By calculating the length of each pulse,

the team was able to determine if the motor was

spinning clockwise or counterclockwise. Another

function determines the speed after each full

revolution. If the speed is too fast or the motor is

spinning in the wrong direction, an error will alert the

user of a problem and possibly stop the motor with

the emergency brake.

C. Accelerometer Software Design

The accelerometer triggers two different interrupts

in the Cypress Bluetooth module. The new data

interrupt triggers every 0.04 seconds to provide a

constant supply of data. This triggers the new data

flag for the main loop to check. The motion interrupt

only triggers when the accelerometer senses motion

in the system. When this is triggered, we set a motion

Fig. 9. Flowchart depicting the main flag handler

flag that the main loop checks. The motion function

is called from the main loop and determines if the

motion is great enough to send an error message to

the user or stop the motor completely.

D. Bluetooth Low Energy

Once the software team wrote the drivers and the

code worked with the switches, the Bluetooth Low

Energy was added to the project. To implement the

Bluetooth connection, the team used Cypress’s PSOC

Creator program because there are tools available to

generate Bluetooth low energy code. The GATT

protocol was used to send data back and forth

between the phone and the PCB. Cypress has an app

for Bluetooth design to send commands to the

Cypress Bluetooth module. We used this to test our

Bluetooth code and make sure that our connection

works. Our code is compatible with the Husky Jack

mobile application. Commands are sent to the stack

from the user, we read these commands and perform

the corresponding action. Using Bluetooth, the user

can extend, retract, and stop the jack. For additional

features, the user can also turn on and off the work

light for their workstation and colorful RGB LEDs.

The user can send in different color commands to

have customized LEDs light up the outside of the

RV.

E. Challenges Faced in Software Design

One problem that the software team faced is the

SPI clock phase and polarity of the devices. The

TLE-92108 requires CPHA to be 1 and CPOL to be

0. The data is driven on the rising edge of the clock

and captured on the falling edge of the clock, with

SCLK idling at low. On the other hand, the BMA456

accelerometer only works with SPI clock phase and

polarity set to 0 and 0 or 1 and 1. Both of these

configurations have the data driven on the falling

edge and captured on the rising edge. Since these

components require opposite SPI configurations, the

team had to develop code within the program to

change the clock polarity every time communication

switches between the TLE-92108 and the BMA456.

Due to this inconsistency and the priority of the

motor driver, the interrupts sent from the BMA456

cannot always be read. This is not a major problem

because the motor does not need constant orientation

data. If there is a motion interrupt the motion flag

will be raised, the SPI configuration will change, and

the orientation data can be read. For our system, the

initial SPI configuration is set for the TLE-92108

motor driver and switched in the code when

necessary to accommodate the BMA456.

Another challenge faced by the software team was

the documentation for the accelerometer. The

datasheet did not provide information on certain

registers and some values were incompatible with the

BMA456. The accelerometer initialization requires a

configuration file to be written to certain registers. To

do this, paging was used with register 0x5E. In the

datasheet, there is no mention of paging and the

paging registers 0x5B and 0x5C were not included in

the datasheet at all. The software team had to

understand all the code in the API to write the driver

needed. The API is written for all the BMA4

accelerometers, so some of the code was not needed

for our specific accelerometer. Additionally, the

datasheet did not correctly document the bits for the

interrupt mapping. The interrupts were mapped

wrong at first and the team had to use a logic

analyzer to determine that the interrupts were not

triggering. For weeks, the interrupts were being

triggered by noise and the team incorrectly assumed

the interrupts were mapped correctly. This taught the

team to always use a logic analyzer to make sure that

the signals are being sent correctly.

The logic analyzer was also essential for the SPI

communication. The API required the team to write

SPI bus read and bus write functions that are

compatible with their function calls. The original SPI

functions worked correctly without the Bosch API,

but when the functions were called from the API

there were errors. The team worked hard to figure out

why, and eventually found out that there were two

dummy bytes needed in the BMA SPI protocol.

However, the API discards one dummy byte. To

solve this problem, the team had to discard one

dummy byte and return the data read array with a

dummy byte in index position 0. This setback took a

long time to figure out, but it provided a great

learning experience for embedded coding. The team

had previously thought that one dummy byte was

used in SPI communication, but we learned that there

can be more than one. It is important to understand

the different components completely to program

them correctly. Throughout this project, we have

learned the valuable skill of reading and

understanding datasheets. This is very important

because every component is different, and we will

need to read datasheets for the rest of our careers.

The challenges experienced in this project taught us

valuable information that we will always remember.

V. CONCLUSION

The overall design of the system required the

student engineers to develop both hardware and

software skillsets. The drivers were difficult to

complete without a strong programmer on the team,

but it provided an opportunity for everyone to learn

more about embedded systems. Learning patience

and approaching the problem systematically is how

we were able to find solutions to the various

difficulties in the project. Developing the schematic

and PCB layout was very tedious but also a great

learning experience for everyone. After the board

was developed, a few errors were found. These errors

provided the biggest learning experiences. Having

these problems showed us how to find errors within a

board and how to solve them. This also gave us more

soldering experience. Overall, this project was a great

way to develop new skills.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance

and support of our sponsor, RV Intelligence, for their

continuous help in the production of this product. The

authors would also like to acknowledge the customer,

Husky Towing Products.

REFERENCES

Incorporated, Diodes. “AH3774 Datasheet.” High-

Voltage High Sensitivity Hall Effect Latch, 2015,

www.diodes.com/assets/Datasheets/AH3774.pdf.

Sensortec, Bosch. “BMA456 Datasheet.” BMA

Digital, Triaxial, Acceleration Sensor, 2017,

www.mouser.com/datasheet/2/783/BST-BMA456-

DS000-1509567.pdf.

Technologies, Infineon. “Cypress CYBLE-212006-

01.” Cypress Bluetooth Module, Infineon, 2019,

www.cypress.com/file/318881/download.

Technologies, Infineon. “TLE-92108 MOSFET

Driver.” Multiple MOSFET Driver IC, 2019,

www.infineon.com/dgdl/Infineon-TLE92108-

232QX-DataSheet-v01_00-

EN.pdf?fileId=5546d462749a7c2d01749b3138d607e

d.

BIOGRAPHY

Lucy Golebiewski is a senior at

the University of Central Florida.

She will receive her Bachelor of

Science in Computer Engineering

with a minor in secure computing

and networks in December of

2020. She is currently an intern at

Capacitech Energy, researching

and manufacturing cable-based

capacitors. In the future, she

plans to work on renewable energy or remote sensing

technology to help benefit the environment.

Hesham Zidan is a senior at the

University of Central Florida

receiving his Bachelor of Science

in Electrical Engineering in the

fall of 2020. He has done

research in distribution system

optimization. Post-graduation, he

plans to work as substation

designer and system planner for

large scale power networks.

Andrew Melvin is a senior at the

University of Central Florida. He

will be receiving his Bachelor of

Science in Electrical Engineering

with a double minor in Physics

and Robotics at the end of

Spring 2021. Through his time in

the Air Force as well as working

on various side projects, he has

accumulated a plethora of

experience on mechanical and

electrical systems. His ultimate career goal is to work

in the robotics field on medical robotics and fully

integrated prosthetics.

Nader Abd El Rasol is a senior at the

University of Central Florida. He

will receive his Bachelor of Science

in Computer Engineering with a

minor in Intelligent Robotic Systems

in December of 2020. He is

currently working part-time at

wholefoods market winter park, His

goal is to use what he learned

working on all the different projects

he’s worked on over the years to

begin a career in robotics and

automation system R&D.

