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Abstract  —  The Husky Super Brute stabilizer jack is 

a practical and useful application of electrical and 

computer engineering concepts. Recreational vehicles 
need to be lifted and stabilized to ensure their safety 
and longevity. The new Husky jack uses a blend of 

hardware and software to provide a reliable, user-
friendly, and innovative way to bring stabilization to 
customers’ vehicles. The PCB was custom designed to 

withstand high power applications and fit within 
Husky’s existing stabilizer jack. The system is 
comprised of four main integrated circuits to control the 

motor with a mobile application, provide security 
measures, and an extra feature for customers.  

Index Terms  —  DC Motor, Bluetooth Low Energy, 

RV stabilizer jack, mobile application, accelerometer. 

 

I. INTRODUCTION 

Recreational Vehicles, or RVs, need to be 

stabilized while parked either at home or a campsite. 

Stabilizing keeps the RV steady when people are 

walking around inside, or wind is blowing outside. 

The stabilization provided by the Husky Super Brute 

jack is important for user safety and the lifespan of 

the vehicle. Many jacks are manually operated with a 

hand crank or handheld drill, but this is a fully 

automated jack controlled with a mobile application. 

The mobile application connects to the jack via 

Bluetooth Low Energy. This connection allows the 

user to lift and lower the stabilizer jack at the touch 

of a button. There are safety features in place to 

prevent the user from lifting or lowering the jack if it 

is already at its maximum or minimum point of 

operation. The module selected for Bluetooth Low 

Energy is also the main controller for our system. It 

controls and receives the data from the motor driver, 

accelerometer, and hall effect sensor. 

The team researched and designed the printed 

circuit board to fit the requirements given from the 

sponsor and customer. The PCB needed to fit within 

the dimensions of the Husky jacks already being sold 

on the market. This allows the company to easily put 

the Husky Super Brute board directly into their jacks 

by plugging their wires into our connectors. The 

electrical design team needed to conform to these 

constraints by making sure the size of the board was 

perfect, the modules were oriented in the correct 

locations, and the correct connections were 

implemented. The connectors needed to correspond 

to the wires within the stabilizer jacks, so the team 

made sure to accommodate for the manual switches 

and power from the Husky jack.  

One of the most important factors the team needed 

to consider while designing the circuit board is the 

high voltage and current supplied to the jack. These 

brushed DC motors require 12 volts at the input, so 

we designed the board to withstand extra voltage to a 

maximum of 20 volts. The rest of the components in 

this system run off 3.3 volts, so electrical team 

needed to design the system to convert this input 

voltage to lower voltages. The current supplied to the 

motor is between 20 and 30 amps, while the modules 

require much less current, measured with milliamps 

and microamps. Working with such high power can 

be dangerous, so we made sure to take precautions 

while testing the system. The integration of software 

and hardware in this project created a beneficial 

product and provided the team with new skills.  

II. SYSTEM COMPONENTS 

The system is comprised of several different 

modules that work together to create the final 

product. This section will discuss the components 

chosen and their purpose in the design. The following 

devices were developed by different companies, so 

the team gained different experiences from each one. 

An overall system design can be seen in Fig. 1 with 

the SPI communication and power connections. 

A. Cypress Bluetooth Module CYBLE-212006-01 

The main controller for this system is the Bluetooth 

low energy module developed by Cypress, which is 

now owned by Infineon technologies. This module 

receives instructions from the user through a mobile 

application connected through Bluetooth. These 

signals are then processed in our driver and command 

the other modules to perform their intended actions. 

The CYBLE-212006-01 connects to the 

accelerometer and motor driver through SPI 

communication lines. The software team developed 

drivers for each module based on the Cypress SPI 

protocol. The main program calls the different drivers 



to perform actions such as motor control, reading 

accelerometer data, detecting motion data, and 

gathering pulse information to calculate motor speed 

and direction. The Cypress module receives the data 

and sends some of it back to the phone for the user to 

view. The main function of the mobile application is 

to control the motor, but a new lighting function has 

been implemented in this design. Users can plug 

LEDs into their stabilizer jack to light up their 

workspace or just provide light at their campsite. 

Previous methods of lighting require users to wire the 

lighting from inside of the RV, which can be very 

complicated and time consuming. The Husky Super 

Brute provides an easy connection point for LEDs 

with a supply voltage of 12 volts. The user can 

control the colors with their mobile application. The 

Cypress module driver receives these signals and 

sends them to the Infineon TLE-92108 driver. 

B. Infineon Motor Driver TLE-92108-232QX 

The TLE driver is a MOSFET driver that can drive 

up to eight half-bridges. Half bridges one and two are 

used to control the motor through extend and retract 

signals from the 6-position switch connector. Half 

bridge 3 is used for the brake signal. Half bridges 4-8 

are used for controlling the external LEDs. The TLE 

from Infineon is a new component, so there was not a 

lot of data and example code to use. This team 

developed our own driver, discussed in “Software 

Design.”  

C. Diodes Incorporated Hall Effect Sensor AH3774 

To monitor the speed and direction of the motor, 

the team chose a hall effect sensor from Diodes 

Incorporated. The hall effect sensor has a single 

open-drain output that is switched on and off with a 

magnet. The south pole of the magnet switches the 

output on, while the north pole of the magnet 

switches the output off. Two magnets were placed 

around the motor for the hall effect sensor to detect 

their magnetic fields. As the magnets rotate, the 

sensor sends voltage signals to the Cypress module. 

The team developed a program to calculate the 

direction and speed of the motor based on the timing 

of the pulses. Since the magnets are placed at 

different intervals, a short pulse indicates the motor is 

spinning clockwise, while a long pulse indicates the 

motor is spinning counterclockwise. Using the pulse 

count and timer within the Cypress module, the team 

calculated the speed of the motor spinning. This data 

is useful for implementing safety measures within the 

system. If the motor is spinning to fast or in the 

wrong direction, the Cypress will notify the motor 

driver to stop the motor.   

D. Bosch Sensortec Accelerometer BMA456 

Along with the hall effect sensor, the team 

implemented safety features with an accelerometer 

from Bosch Sensortec. The accelerometer can detect 

the orientation of the PCB and sends the data to the 

Cypress module at a rate of 25 Hz. This data is in the 

form of X Y Z axis coordinates. If the accelerometer 

detects motion above the set threshold, it sends a 

motion detection interrupt. This interrupt allows the 

Cypress module to send a warning notification to the 

user, stating that the device is experiencing excessive 

motion. The stabilizing jack should not be tilted out 

of place while in use and could cause damage if not 

prevented. To develop the driver for the BMA456, 

the software team utilized the API provided by Bosch 

Sensortec for their line of BMA4xx accelerometer 

devices. While utilizing the API provided much of 

the code needed for background processes, the main 

communication and driver needed to be coded by the 

team. The SPI communication provided some 

challenges due to the specific requirements in the 

API, but the team was able to overcome this obstacle. 

Since the accelerometer and the Bluetooth module 

were developed by two separate companies, there 

was not an abundance of resources to refer to while 

creating the driver. The team was able to 

communicate with other programmers on community 

forums provided by Bosch Sensortec and Cypress. 

 

Fig. 1. Block diagram depicting the basic connections 

between system components. The blue lines represent SPI 

communication, and the red lines represent voltage.  



III. HARDWARE DESIGN 

A. Motor Driver  

    As mentioned earlier, The TLE driver can drive up 

to eight half-bridges. Half bridges one and two are 

used to control the motor through extend and retract 

signals from the 6-position switch connector. Half 

bridge 3 is used for the brake signal. Half bridges 4-8 

are used for controlling the external LEDs. The driver 

has three PWM inputs. The three PWM signals are 

designated for the LEDs. PWM1 for green, PWM2 

for blue, and PWM3 for red. Turning the three 

PWMs together is would be the white LED signal. A 

different combination of the PWM signals will result 

in different color. Current from DH (which is the 

drain high current supply) comes through the first 

half bridge and passes through the motor and it then 

passes by the N-channel of the second half-bridge as 

seen in Fig. 2. A 1 mΩ sense resistor is added to 

measure the current passing through the motor. Two 

current sense inputs CSIPX and CSINX from Fig. 2 

are inputs to the TLE that are connected to an 

instrumental amplifier. A shunt circuit is added 

between the sense resistor and CSIPX and CSINX to 

protect the TLE from any high power. The current 

measurement is then given to the microcontroller 

through a RC low-pass filter. Since the 

microcontroller sampling rate is around 1000 Hz, we 

picked R to be 1.5kΩ and C to be 0.1µF. 

 
Fig. 2  Current flow through the motor from half-bridge 

one to half-bridge two.  

 

B. Protection Circuit 

Our supply voltage range is between 9 V to 20 V. 

Our typical supply voltage is 12V. The MAX16141A 

part is a diode controller that functions as reverse-

voltage protection circuit, over-voltage protection 

circuit and under-voltage protection circuit. If the 

voltage exceeds our over-voltage threshold, falls 

below our under-voltage threshold, the part shuts 

down. The circuit shuts down based on the threshold 

that we decide. The part has a window-detection 

threshold comparators, so by using a voltage divider 

circuit, we can set the values of the resistors, so that 

when the voltage change beyond the desired 

thresholds, the N-Channel FETs will turn off. To find 

the values of the resistors of the voltage-divider 

circuit, we used equations 1-5. 

  (1) 

   (2) 

   (3) 

  (4) 

     (5) 

Setting R_total = 100kΩ, get R1 = 95.3kΩ, R2 = 

2.8kΩ, and R3 = 2.5kΩ. Low-power mode (SLEEP) 

is active high. So, we connected SLEEP to a 10kΩ 

pull-down resistor to ground. In addition, pins RS 

and OUT are connected to a comparator inside the 

module. A sense resistor is connected between RS 

and OUT which compares the current and detects any 

overcurrent. If any overcurrent is detected, then the 

module shuts off. The current threshold is calculated 

using equation 6. 

    (6) 

Where VRS-OUT is the voltage of the overcurrent 

threshold and RSENSE is the sense resistor between 

pins RS and OUT. IOS = 27.5 A, VRS-OUT is 27.5 mV 

(which is the maximum VRS-OUT that the module can 

handle), and the RSENSE = 1 mΩ. Since the motor is 

rated at around 300 W (12V*25A), then 27.5A is an 

appropriate overcurrent threshold. For reverse-

voltage/reverse-current protection, the module 

measures the different between VIN and VOUT across 

the external FETs. If VOUT – VIN = 10mV, then the 

module activates a fault that turns the gate voltage to 

zero as well as load current. Fig. 3 is a graph of the 

effect of a reverse-voltage fault. 

 
Fig. 3  Reverse voltage fault response. 



 

Connected to the protection circuit is a hold-up 

circuit which is a circuit of three capacitors in 

parallel; two of them are ceramic and one is a 100µF 

electrolytic capacitor that functions as a reservoir. 

The hold-up circuit is then connected to a 12V-3.3V 

and a 12V-5V linear voltage regulators. The small 

signal ICs have a nominal voltage of 3.3V, and the 

5V regulator is for the external LEDs. The 5V linear 

regulator is enabled by the microcontroller through 

an enable circuit that we designed. The circuit is 

mainly consisted of a P-channel MOSFET and a N-

channel MOSFET which has its source connected to 

ground. A simulation of the enable circuit for the 5V 

regulator is shown in Fig. 4.  

 

 
Fig. 4  Enable circuit simulation for the 5V linear 

regulator. 

 

Simulating the circuit above when V2 (which is the 

enable signal coming from the microcontroller and 

the gate-to-source voltage of the N-channel 

MOSFET) is zero, the voltage at the input of the 

regulator is 0V as shown in Fig. 5. When V2 is 

enough of a voltage, the voltage at the input of the 

regulator becomes close to 12V as shown in Fig. 6. 

Green is regulator input and blue is the 12V supply. 

 

   
Fig. 5    Enable circuit when VGS of the N-channel = 0V. 
 

 
Fig. 6  Enable circuit when VGS of the N-channel = 3V. 

 

C. Connectors. 

As for the connectors, we have a 6-position 

connector for the switches: LIGHT_1, LIGHT_2, 

EXTEND, RETRACT, and BRAKE. LIGHT_1 and 

LIGHT_2 are for the LEDs. When the switch is 

turned on, the signal on the microcontroller is shorted 

to ground. Since the GPIO for the microcontroller are 

active low, then the microcontroller gives the signal 

to turn on the LEDs.  We decided to use five signal 

vertical connectors for external LEDs to be 

connected: RED, GREEN, BLUE, WHITE, and 

WORK LIGHT. External LEDs are controlled by the 

MOSFET driver which gets its signal from the 

microcontroller. As for the power supply and the 

motor, we decided to use single horizontal 

connectors. To each connector, we connected a 

transient voltage suppressor to prevent any spikes in 

voltages. We designed a protection circuit to every 

switch signal so protect the microcontroller. The 

circuit is consisted of a transient voltage suppressor, a 

Shockley diode, a pull-up resistor, and a series 

resistor. Fig. 7 shows the protection circuit for the 

switch signal EXTEND. 

 
Fig. 7  Protection circuit for switch signals. 

 

D. PCB Design 

After measuring the dimensions of the jack and the 

board-mounting place, we designed the PCB to have  

a length of 16 cm, and as for the width; the upper part 



of the PCB has a width of 7 cm and 6 cm down from 

the top of the PCB, the width is increased to 8 cm. 

The PCB is shown in Fig. 8. We decided to design a 

4-layer board. The top and bottom layers are for 

power traces. And the second and third layers are for 

signal traces. We filled the top and bottom layer with 

ground. As for the signal ground we designated the 

bottom left area of the top layer (where the radio is 

located) to be signal ground. There are three 5-mm 

screw holes. One at the top left, one is to the right, 

and one is near the bottom. We designed the board so 

that the power supply would be connected to the 

bottom right of the board. There is a drill hole at the 

bottom right and an edge cut for the zip tie to hold 

tight the three high current wires, which are SH1, the 

source current for half-bridge 1, SH2, the source 

current for half-bridge 2, and the 12V supply. Power 

traces have a track width of 3 mm. However, we 

avoided connecting the high-power components with 

traces; instead, we created different zones for the 

different high-power components such as the 12V 

voltage supply, SH_1, and DH_1 which are the drain-

high and the source-high inputs for the half-bridge 

supplying the motor. Each zone on the front copper  

Fig. 8  PCB Design Layout 

has its identical sister on the back copper and they are 

connected through vias. We placed stitching vias all 

over the zones for thermal relief.  

We tried to place the TLE as close to the middle of 

the board as possible, so it is close to the FETs at the 

top and the radio at the bottom. We placed the radio 

in the very bottom as far from the high current and 

the motor as possible to avoid radio interference. The 

MAX part is placed between the TLE and the radio. 

The six-position connector is connected above the 

TLE and the LEDs connectors are placed at the top of 

the board close enough to the FETs that are assigned 

to control the LEDs. We have the debug connectors 

placed at the bottom of the board close enough to the 

radio. We also have the hall effect sensor located as 

close to the motor as possible. 

 

E. Design Complications 

We designed a protection circuit to every switch 

signal so protect the microcontroller. The circuit is 

consisted of a transient voltage suppressor, a diode, a 

pull-up resistor, and a series resistor. When the 

switch is turned on, we get a voltage of 2.4V at the 

anode of the diode which is too high to enable the 

GPIO which is active low. As a result, switches were 

not working. We removed the 3.3 Ohms series 

resistor. 

The MAX16141A protection circuit always gave a 

fault when we tried to start the motor. The part 

activates a fault if VOUT is less than 90% of VIN.  We 

tracked VIN, VOUT Vin – VOUT, and the fault signal 

The fault signal is active low, and it went low as VIN– 

VOUT was more than 10% of VIN. To solve this issue, 

we jumped a wire over the protection circuit to the 

regulator. 

IV. SOFTWARE DESIGN 

The system is comprised of several different 

components that communicate through serial 

peripheral interface (SPI) communication. The 

software team developed drivers for each device and 

integrated them together with flags and interrupts. 

There are different priorities assigned to the different 

devices. The TLE-92108 motor driver has the highest 

priority because it is the most important. The extend 

and retract flags will be raised if the user sends those 

commands to the CYBLE-212006-01 module. The 

main loop constantly checks for the flags and calls 

the corresponding driver based on the flag. The 

overall software system design can be seen in Fig. 9 

with the flag handler within the main loop. 

 

 



A. Motor Driver Software Design 

The TLE-92108 is a new part from Infineon thus it 

does not yet have software support. This meant that 

we had write our own driver for it from scratch. The 

goal was to write a driver that is agnostic enough to 

be able to work on multiple projects not just ours. 

This meant that we had to structure the files for the 

driver from simple defines for the different Hex bytes 

in one file to functions that take those values and 

build and send the command packets in another file 

to functions that state the action that we want to 

perform and call all the functions necessary in the 

other files to configure the TLE to make that action 

happen. 

There are two ways to control our Super Brute 

jack, you can use the physical switches in the jack or 

you can you the mobile app, thus there are two ways 

to set the flags that start the different functions of the 

device. We programmed the CYBLE microcontroller 

so that it will always give the physical switches 

priority over the commands issued through the BLE. 

One of the seemingly simple parts of the project 

that turned out much more complicated  is controlling 

the RGB lights through the TLE. The TLE has many 

safety features that detect overcurrent, overvoltage, 

drain to source overvoltage, etc. this created a 

challenge for us as setting the PWM signals that 

controlled the lights too low cause the TLE to throw 

a voltage error. This meant that we had to configure 

some of the TLE’s safety feature blanking times to 

the highest values and turn the PWM channels to stay 

in a certain range which fixed the issue. 

 

B. Hall Effect Sensor Software Design 

The hall effect sensor triggers an interrupt every 

time the magnet passes by the device. This interrupt 

sets a flag and adds a count to the pulse counter. The 

the hall effect sensor’s flag check has several 

different functions within it. When the flag is raised, 

the direction and speed functions are called, and the 

data is returned to the main function. There is a pulse 

timer flag that is set within the watchdog timer’s 

interrupt service routine. This timer starts when the 

first pulse is received and keeps track of how long the 

motor has been in motion. The revolution timer is 

also tied to this timer, but it resets every time there 

are two pulses. Two pulses signify a full revolution 

of the motor. By calculating the length of each pulse, 

the team was able to determine if the motor was 

spinning clockwise or counterclockwise. Another 

function determines the speed after each full 

revolution. If the speed is too fast or the motor is 

spinning in the wrong direction, an error will alert the 

user of a problem and possibly stop the motor with 

the emergency brake. 

 

C. Accelerometer Software Design 

The accelerometer triggers two different interrupts 

in the Cypress Bluetooth module. The new data 

interrupt triggers every 0.04 seconds to provide a 

constant supply of data. This triggers the new data 

flag for the main loop to check. The motion interrupt 

only triggers when the accelerometer senses motion 

in the system. When this is triggered, we set a motion  

 

Fig. 9. Flowchart depicting the main flag handler 



flag that the main loop checks. The motion function 

is called from the main loop and determines if the 

motion is great enough to send an error message to 

the user or stop the motor completely.  

 

D. Bluetooth Low Energy 

Once the software team wrote the drivers and the 

code worked with the switches, the Bluetooth Low 

Energy was added to the project. To implement the 

Bluetooth connection, the team used Cypress’s PSOC 

Creator program because there are tools available to 

generate Bluetooth low energy code. The GATT 

protocol was used to send data back and forth 

between the phone and the PCB. Cypress has an app 

for Bluetooth design to send commands to the 

Cypress Bluetooth module. We used this to test our 

Bluetooth code and make sure that our connection 

works. Our code is compatible with the Husky Jack 

mobile application. Commands are sent to the stack 

from the user, we read these commands and perform 

the corresponding action. Using Bluetooth, the user 

can extend, retract, and stop the jack. For additional 

features, the user can also turn on and off the work 

light for their workstation and colorful RGB LEDs. 

The user can send in different color commands to 

have customized LEDs light up the outside of the 

RV.  

 

E. Challenges Faced in Software Design 

One problem that the software team faced is the 

SPI clock phase and polarity of the devices. The 

TLE-92108 requires CPHA to be 1 and CPOL to be 

0. The data is driven on the rising edge of the clock 

and captured on the falling edge of the clock, with 

SCLK idling at low. On the other hand, the BMA456 

accelerometer only works with SPI clock phase and 

polarity set to 0 and 0 or 1 and 1. Both of these 

configurations have the data driven on the falling 

edge and captured on the rising edge. Since these 

components require opposite SPI configurations, the 

team had to develop code within the program to 

change the clock polarity every time communication 

switches between the TLE-92108 and the BMA456. 

Due to this inconsistency and the priority of the 

motor driver, the interrupts sent from the BMA456 

cannot always be read. This is not a major problem  

because the motor does not need constant orientation 

data. If there is a motion interrupt the motion flag 

will be raised, the SPI configuration will change, and 

the orientation data can be read. For our system, the 

initial SPI configuration is set for the TLE-92108 

motor driver and switched in the code when 

necessary to accommodate the BMA456.  

 

Another challenge faced by the software team was 

the documentation for the accelerometer. The 

datasheet did not provide information on certain 

registers and some values were incompatible with the 

BMA456. The accelerometer initialization requires a 

configuration file to be written to certain registers. To 

do this, paging was used with register 0x5E. In the 

datasheet, there is no mention of paging and the 

paging registers 0x5B and 0x5C were not included in 

the datasheet at all. The software team had to 

understand all the code in the API to write the driver 

needed. The API is written for all the BMA4 

accelerometers, so some of the code was not needed 

for our specific accelerometer. Additionally, the 

datasheet did not correctly document the bits for the 

interrupt mapping. The interrupts were mapped 

wrong at first and the team had to use a logic 

analyzer to determine that the interrupts were not 

triggering. For weeks, the interrupts were being 

triggered by noise and the team incorrectly assumed 

the interrupts were mapped correctly. This taught the 

team to always use a logic analyzer to make sure that 

the signals are being sent correctly.  

The logic analyzer was also essential for the SPI 

communication. The API required the team to write 

SPI bus read and bus write functions that are 

compatible with their function calls. The original SPI 

functions worked correctly without the Bosch API, 

but when the functions were called from the API 

there were errors. The team worked hard to figure out 

why, and eventually found out that there were two 

dummy bytes needed in the BMA SPI protocol. 

However, the API discards one dummy byte. To 

solve this problem, the team had to discard one 

dummy byte and return the data read array with a 

dummy byte in index position 0. This setback took a 

long time to figure out, but it provided a great 

learning experience for embedded coding. The team 

had previously thought that one dummy byte was 

used in SPI communication, but we learned that there 

can be more than one. It is important to understand 

the different components completely to program 

them correctly. Throughout this project, we have 

learned the valuable skill of reading and 

understanding datasheets. This is very important 

because every component is different, and we will 

need to read datasheets for the rest of our careers. 

The challenges experienced in this project taught us 

valuable information that we will always remember.  

 

 

 

 

 



V. CONCLUSION 

The overall design of the system required the 

student engineers to develop both hardware and 

software skillsets. The drivers were difficult to 

complete without a strong programmer on the team, 

but it provided an opportunity for everyone to learn 

more about embedded systems. Learning patience 

and approaching the problem systematically is how 

we were able to find solutions to the various 

difficulties in the project. Developing the schematic 

and PCB layout was very tedious but also a great 

learning experience for everyone. After the board 

was developed, a few errors were found. These errors 

provided the biggest learning experiences. Having 

these problems showed us how to find errors within a 

board and how to solve them. This also gave us more 

soldering experience. Overall, this project was a great 

way to develop new skills. 
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