
Polyphonic Analog to MIDI
Converter for Musical

Applications
Andrew Obeso-Silva, Noah Watts, and Colin

Smith

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — While examples of real-time analog to MIDI

converters can be found on the market, all of them are
monophonic. Polyphonic analog to MIDI converters tend to
be computer programs that do not work in real-time. This
project is a proof-of-concept for a real-time polyphonic
analog to MIDI conversion device suitable for use in a live
music or studio setting. This Polyphonic Analog to MIDI
Converter is programmed with algorithms to detect up to six
notes at a time, generate a MIDI stream, and output that
stream via MIDI or USB port. It serves as a starting point
for the development of a novel device in the music technology
industry.

Index Terms — DAW, FFT, MIDI, Monophonic,
Polyphonic

I. INTRODUCTION

Many different technologies, both ancient and modern,
are used in the creation of music. The instruments that
musicians use can be either acoustic or electric, and the
electric instruments can be either analog or digital. In the
production studio, the sounds from all these different
instruments can be captured electronically for
manipulation in a software application called a digital
audio workstation (DAW). In music production, there are
many ways to capture and incorporate analog and acoustic
instruments into a DAW. Most of these solutions involve
USB microphones or an audio interface that digitizes your
analog signal for DAW use. Very few options exist that
allow you to use your analog or acoustic instruments in
the same way that you might use a digital instrument. A
digital instrument using MIDI protocol will have certain
parameters of the notes encoded into a signal rather than a
digital replication of an analog signal. The sounds of
acoustic instruments are captured with a microphone that
converts the sounds into an analog electrical signal.
Analog electrical instruments also output an analog
electrical signal. This signal is then digitized and recorded
in a computer. Digital instruments send digital signals.

They can send a digital representation of an analog signal,
or they can send messages that can tell another system
what sounds to produce. For example, a keyboard can
send a message that tells the computer that a note was
played. The computer can then output the corresponding
sound. Unfortunately, only these digital instruments are
capable of sending messages. Other instruments, like an
electric guitar or a flute, cannot do this. What this project
aims to achieve is to create a device that gives acoustic
and analog electrical instruments the ability to send
messages just like a digital instrument in full six-voice
polyphony.

The Polyphonic Analog-to-MIDI Converter for Musical
Applications is a device that will accept an analog signal
and convert it to a MIDI signal of up to six voices. It is
designed to be used in both a music studio and live
performance settings. MIDI technology is most often
purely digital, with some digital MIDI controllers
interfacing with a program or instrument that operates on
the MIDI standard. While some products exist which
convert an analog music signal into a digital MIDI stream,
they are usually monophonic (single-voiced). We aim to
develop an analog-to-MIDI device that is capable of
translating each string of a standard-tuning guitar
simultaneously. While the main goal is for the device to
work with a guitar, it will be designed to work with any
instrument capable of producing a consistent tone in the
12-tone equal-temperament tuning system.

II. GOALS
The primary purpose of this device is to detect more

than one note being played by an instrument at the same
time in an analog audio signal and transmit that
information through a MIDI stream. The device accepts
analog input from a ¼” tip-sleeve mono audio jack. Most
electric instruments typically transmit analog audio signals
through these connections. For example, electric guitars,
basses, and synthesizers use ¼” cables to carry their
signal. XLR was considered for this device, as having an
XLR input would allow for a microphone to be used as an
input transducer for the device. There are other interfaces
that could be implemented into the device, like USB,
coaxial, and optical. However, the interfaces we have
selected are the most common in music production
applications, and these analog interfaces are simpler to
implement than those three digital interfaces. It has a
switch to select the source of the input. The device can
output a MIDI stream through a MIDI port. This is the
most useful interface through which MIDI streams can be
transmitted, as it allows direct interfacing with
MIDI-controllable instruments and connection to a DAW

on a computer via MIDI to USB cabling or a
MIDI-compatible audio interface. The device will also
have another ¼-inch tip-sleeve jack port to output an exact
copy of the input. The purpose of this is to allow the
signal to be passed through the device to other systems.
This passthrough makes integration of this device into a
system of other audio devices more simply and with less
conflicts. We will need to buy ports for these interfaces
and implement electrical circuitry that transmits the
signals to and from these ports.

The device must be capable of digitizing audio signals
within the range of frequencies that MIDI establishes as
notes for processing. To prepare the analog signal for the
analog-to-digital converter (ADC), we will have a preamp
stage that amplifies the line-in signal to a range that is
accepted by the ADC. The user can adjust the gain for this
preamp using a potentiometer on the device in order to
improve the accuracy of the device for whatever input
source they are using and to prevent clipping. This preamp
stage will also include a bandpass anti-aliasing filter to
make the signal easier to work with once it is digitized. An
ADC is then used to collect samples of the signal, but its
sample rate must be high enough to digitize the signal
accurately at the highest frequencies. The device must
analyze a chunk of the audio signal and determine which
notes are being played, if any. Musical notes are related to
different sound frequencies, so the device must calculate
the frequency content of the chunk of signal. A discrete
Fourier transform (DFT) is capable of converting a chunk
of a digital audio signal into a spectrum of frequencies that
make up the sound. The frequency spectrum lists the
magnitudes of each multiple of a fundamental frequency,
thus also giving information on the loudness of each note
the device hears. However, the issue with this is that the
spectrum has a linear frequency scale, while musical notes
have a logarithmic frequency scale. The device needs
enough frequency density in the spectrum to be able to
accurately relate frequencies to notes. We will use a
processor that is powerful enough to perform the DFT in
real time on chunks of the audio signal. Also, there may
be several notes being played at the same time, so the
device must be capable of detecting more than one note.
This is called polyphony. Other analog to MIDI products
exist, but they are exclusively monophonic, they can only
convert one note at a time. The novel feature of our device
will be its ability to convert multiple notes at once.

III. RESEARCH

In our market research, we found some products
currently that exist that are similar to the PAMC. There
are two current products made by Sonuus that deal with

audio to MIDI conversion, the G2M V3 and the i2M. The
G2M V3 is a great tool for translating guitar and bass
sounds to MIDI with a MIDI output port, ¼” passthrough
port, and a built-in tuner. The main limitation of the G2M
V3 is that it is monophonic only. The i2M musicport is a
similar product created by Sonuus that has many of the
same features as the G2M but with some changes in
implementation and hardware. Like the G2M, the i2M
musicport is a plug-and-play device that takes musical
audio from guitar, bass, voice or wind instrument and
converts it to MIDI. The main difference of the i2M
musicport from the G2M is that it uses a USB interface for
power and MIDI output. Again, the i2M is only capable of
monophonic translation.

We also researched various technologies to begin
working on our design, including filter design [1].
Comparing the gentle cutoff and relatively linear response
of a Bessel filter to the sharper cutoff and flatter response
of the Butterworth Filter led us to determine that the
Butterworth Active Band-Pass filter was the correct
choice for our device. We want as much attenuation as we
can on rejected frequencies with as little impact on the
passed frequencies as possible.

A preamp section is also needed to ensure that the input
signal is at an appropriate level for the ADC to capture.
We had to research different op-amp circuit types to use in
our design. With several op-amp circuits, we can do
filtering, amplification, buffering, and signal splitting.
Op-amp buffers allow us to isolate the input and output so
the load doesn’t affect the input and also gives us more
ideal impedances to our circuit. This should be very useful
for splitting and mixing signals. The implementation of
this signal splitting is called a distribution amplifier. This
means it recreates multiples of the same signal [2].

We knew we would have to use an ADC in our design,
so we had to determine what parameters of our signal
would affect the performance of the ADC. There are two
main factors that contribute to the accuracy of the analog
to digital conversion which are bit rate and sampling rate.
Increasing the bit rate of an ADC improves the precision
of the approximations in its digital output [3]. The sample
rate is important due to the Nyquist sampling theorem
which states that the sampling rate of the ADC must be at
least twice as fast as the highest frequency component of
the waveform being sampled. If the sampling rate is not at
least equal to twice the highest frequency component,
there can be inaccuracies in the sampling due to aliases.
The minimum sampling rate that we will need to use for
the analog to digital conversion for our device will depend
on the frequency range of possible musical instruments
that will utilize our device and the maximum musical
frequency. The maximum note frequency used in MIDI is

12543.854 Hz. We want our device to be able to be used
with multiple musical instruments including guitar, piano,
voice and more. These instruments have varying
frequency ranges. Table I shows the frequency ranges of
some musical instruments and MIDI notes.

TABLE I

Frequency Ranges of Various Instruments

All of the common musical instruments listed in the chart
have frequencies that are below the maximum frequency
of the MIDI note range. This means that the ADC part of
our device will need to be able to sample at least
25087.708 Hz which is double the max MIDI note
frequency. If there are musical instruments that play notes
at a higher frequency than the highest MIDI note
frequency it would be irrelevant for the uses of our device
since MIDI would not have a note available to play in that
frequency.

IV. TECHNOLOGIES AND STANDARDS USED
One of the key ideas kept in mind during the design of

the PAMC device was compatibility. The PAMC should
be compatible with as many instruments and devices as
possible, so it is important for it to make use of common
technologies and standards to achieve this.

First, in order to be compatible with the greatest number
of electric instruments, we decided to implement a ¼”
audio input jack. This allows practically any electric
instrument to be used as an input, with compatible electric

instruments including the electric guitar, analog and
digital synthesizers, and even acoustic instruments that are
outfitted with electric pickups like the acoustic guitar,
mandolin, and even violin. The ¼” jack is a simple
tip-sleeve connector with signal being carried in the tip
and the sleeve being used for ground connection. The only
commonly-used instruments that are not compatible with
this input scheme are non-pitched percussion instruments
like drums or shakers. This is not an issue, since products
already exist that can turn acoustic drums into digital
instruments, such as trigger clips and trigger pads.

Next, for ease of use and compatibility with existing
technologies, MIDI output has been implemented. The
MIDI output can be sent out to an audio interface or MIDI
to USB cable and work with a DAW through that or
interface directly with MIDI-compatible synthesizer
instruments.

Finally, as a way of being useful in the greatest number
of situations a passthrough was implemented which
buffers the input signal and sends it straight out of the
device. This way the user will not lose their original sound
and can use the PAMC device in combination with, rather
than instead of, any other devices they may be sending
their signal to such as a mixer or amplifier. Additionally,
to be more useful to performers in a live setting, a
center-negative barrel jack is used to deliver 9V power to
the device. This is the most common power standard in
music technology for live performance, so most guitarists
or other performers with electric instruments are likely to
already have compatible power supplies.

Fig. 1 The Critter and Guitari Septavox is an example of
an instrument with MIDI in and out ports that can control
other MIDI instruments or be controlled by a device such
as the PAMC.

Musical
Instrument

Minimum
Frequency
(Hz)

Maximum
Frequency
(Hz)

Guitar 82.41 1318.51

Piano 27.5 4186

Bass 41 262

Human voice 87 1047

Flute 262 1976

Trumpet 165 988

Clarinet 165 1568

MIDI 8.1758 12543.854

V. HARDWARE OVERVIEW

In the design of the hardware of the PAMC, the
MSP430FR5992 was chosen to be the MCU due to its
specialized fast fourier transform (FFT) hardware that
would allow the device to process the input signal fast
enough to meet our latency standards and its easily
programmable nature. To make the signal easier to
process, a preamplifier section was placed before the
MSP430’s on-board analog to digital converter to filter
out unwanted data, bring the signal to line level. The
output ports are the ¼” passthrough port and the MIDI
port. The USB port requires a USB controller IC to be
used. All of this is powered by 5 volt and 3.3 volt
regulators designed on TI Webench.

Fig. 2 Simplified Hardware Block Diagram

A. Preamp Section

The preamp section serves the dual purpose of

preparing the input signal for the ADC and buffering the
signal for the passthrough. Four dual op-amp packages are
used, with seven of the op-amps used in the preamp
design and one op-amp left unused. The first stage of the
preamp is used to bring the signal up to line level with a
non-inverting amplifier. The user can adjust the gain of
this amplifier with a potentiometer which serves as the
feedback resistor of this amplifier. The last stage of the
preamp section is an active band-pass filter with a low
frequency of 20Hz, a high frequency of 16kHz to capture
the lowest note of the bass guitar (40Hz) and the highest
note of the MIDI protocol (15kHz).

B. Power Section

TI Webench was used to create three different power

conversion circuits based on the TPS563231DRLR and
TPS62825DMQR chips for 9V to 5V conversion and 5V
to 3V3 conversion respectively. Unfortunately, due to
component failure and time constraints these power
circuits were not implemented on the final demo board of
the PAMC device. As an emergency solution, an external
power solution is being used to provide the necessary 5V
and 3V3 power to the board.

C. MCU

The MSP430FR5992 has 80 pins, only 23 of which are

used. Two of these are used for the ADC, with one pin to
bias the signal to 1.2V and the other to read the output of
the preamp section. Another two pins are used for USB
communication, three for SPI communication and one for
the MIDI output sent to the MIDI output circuit. The rest
of the connections are used mostly for power pins.

D. MIDI Output

The MIDI output circuit is a simple NPN transistor

circuit where the transistor is used to convert the logic
level of the signals from the MSP430 from 3.3V to 5V to
meet the MIDI protocol standards.

VI. SOFTWARE OVERVIEW

The software of the PAMC device consists of four main
components: the input section, the fourier transform, the
note detection algorithm, and the MIDI output stream.

A. Input Section

The input section involves processing the input from the

analog to digital converter and storing the input as
samples in memory. Since we are using the ADC built
into the MSP430FR5992 chip, we did not need to write
any drivers for the ADC. A driver was needed for saving
the ADC data as a useful data type for the fourier
transform to be applied.

B. Fourier Transform

The goal of the Fourier transform section is to convert

the digital signal from the time domain to the frequency
domain. This is so that we can process the frequencies and
determine the notes being played. This is achieved by
implementing an FFT similar to the Cooley-Turkey FFT,
using bitwise operations rather than arithmetic operations

wherever possible to reduce the amount of time required
for the Fourier transform. This is one of the most
important software blocks to optimize in this way because
we expect that the majority of the time spent converting
the analog notes to MIDI will be spent performing this
Fourier Transform.

Fig. 3 Simplified Software Flow Chart

C. Note Detection

The note detection algorithm has multiple stages

including spectra aggregation and magnitude clamping, a
unique harmonic product spectrum generation, and final
note selection and output logic.

First the spectra aggregation section simply takes the 3
frequency spectra that we obtain from our series of FFT’s
and aggregates them into a common, ordered frequency
spectrum. This spectrum is checked to see if the
magnitudes are high enough to indicate a note being
played, and then all of the magnitudes are multiplied to
clamp the highest value to a set magnitude. This ensures
that whenever a note is being played the peak frequency

magnitudes are the same every time, making the note
detection process more consistent.

Next, the primary part of the algorithm is the generation
of a harmonic product spectrum. Traditionally a harmonic
product spectrum would divide an entire frequency
spectrum by an integer multiple and multiply it by the
base spectrum for the first few integer multiples such as 2,
3, 4 and 5. This makes it so that the harmonics of a
fundamental frequency get multiplied into the
fundamental frequency bin giving the fundamental a
greatly exaggerated magnitude as compared to harmonics
and noise.

In our case we go bin by bin and divide and multiply
individually. While this is more difficult, it allows us
greater accuracy as we can split bins that do not divide
evenly into a single bin. For instance, say we have 200 Hz,
400 Hz, and 700 Hz bins. If we are dividing the 700 Hz by
two and multiplying that magnitude into the respective
bin, that would result in 350 Hz being multiplied into
nothing since we do not have a 350 Hz bin. Instead we
multiply it into both 200 Hz and 400 Hz with the 400 Hz
bin being heavily favored. This works similar to how the
magnitudes on an FFT would show up if your bins don’t
line up with the input frequencies.

Another benefit of doing every bin individually is that
we can account for different harmonic differences
between notes on a guitar. The harmonic content of notes
on a guitar vary based on the pitch of the note and where
you play the note. This means the magnitudes of the
harmonic product spectrum will vary based on the pitch
being played if we do not account for that. To fix that we
analyzed the harmonic content of the notes on a guitar and
scaled the harmonic response accordingly when dividing
and multiplying harmonics in the harmonic product
spectrum. While this response is specifically tailored to
suit guitar, a finalized product could generate a response
for every instrument and input response by having the user
play every note and analyzing the harmonic content.

Finally, after the harmonic product spectrum is
generated there must be determined what notes are being
played. To do this we first check for frequencies above a
magnitude threshold and map those frequencies to their
closest MIDI note values. When two consecutive bins are
above the note threshold, we select the largest. This
happens when a note is being played in which the
frequency is between two bins. We then take these
detected notes and compare them to the current output
array. We then remove the notes that are no longer being
detected and add the unique notes from the most recent
loop. This keeps an up to date array of up to 6 notes being
played which is used as the input for our output drivers.

D. MIDI Stream Generation

The MIDI stream generator collects the data gathered

by the note detection algorithm and encodes it into MIDI
protocol. MIDI is a very simple interface to implement
with just a digital output pin and some passive and active
components. MIDI uses asynchronous data transmission
and transmits as bytes at 31.25 kilobits per second. The
interface uses a start bit, 8 data bits and a stop bit. This
means for each serial byte there are a total of 10 bits that
are sent for a period of 320 microseconds. MIDI has this
low data transfer rate because it usually only needs to do
basic instructions of which MIDI notes to play and
changing its timing, velocity and etc. The primary MIDI
parameter that we are concerned with is note pitch, which
is encoded as a single byte. Our pitch bytes are between
the values of 0x28 for our lowest note, E2, and 0x58 for
our highest note, E8. Sending this pitch byte along with a
byte to set the velocity of the note will be enough
information for a MIDI device to play a note. Velocity is a
measure of the force and presence with which a note is
played. We have set the velocity of all of our notes to be
0x7F.

A UART channel on the MSP430 is used to set the baud
rate of the MIDI stream. The system stores the state of
finite state machines for each note. Each state machine has
2 states, where 0 is off and 1 is on. The state machine for a
note is set to 0 by default or if the note is not in the current
output frame and is set to 1 if the note is in the output of
the current frame. This provides a three frame buffer
between when a note is no longer detected and when the
state machine is set to 0, ending the transmission of that
note. This buffer is important to reduce stuttering where a
note will cut in and out due to the note mistakenly not
being detected in some frame. On a transition from off to
on, the system will append a Note On message for that
note with the velocity parameter = 0x7F. On a transition
from on to off, the system will append a Note On message
for that note with the velocity parameter = 0x00

VII. RESULTS

The three criteria that we have decided to judge the
PAMC on are the accuracy of its note detection, the
latency or delay from the time a note enters the PAMC
system to when it leaves as a MIDI signal, and the overall
functionality of the device including its versatility and
ability to stand on its own.

A. Note Detection Accuracy

In order to test the PAMC device’s note accuracy, we

recorded its response when a single note is played, a triad

is played, or an open position chord. The target for this
prototype is a note accuracy of 80%. Ideally, we would
look for accuracy closer to 100%, but as proof of concept
80% will suffice.

Four different tests were performed. The first test is a
test of the PAMC device’s ability to convert single notes
by playing open strings on the guitar without pressing
down on the fingerboard. The second is another single
note test, but this time the notes tested are fretted notes.
The third test is a polyphonic note detection test where
three different triads (chords composed of three notes) are
played. The final note detection test is also a polyphonic
note detection test in which open position chords of four
to six notes are played. In these tests, accuracy of 85%,
82%, 48%, and 53% was observed, respectively.

For the purpose of this test, accuracy is determined by
whether or not the played note or notes appeared in the
MIDI stream. Some of the notes received have a stuttering
effect where the note starts and stops several times despite
being played on the guitar only once. This stuttering is
most common with notes of lower pitch on the A string or
low E string. These notes are still counted because the
correct note was detected. There are also cases where the
right note and a wrong note are present at once. It is not
uncommon for the correct note to be sent along with a
note an octave above (twice the frequency) or of some
other harmonic. The octave is the most common wrong
note because it is the first harmonic in the harmonic series
and on guitar it is often the harmonic with the greatest
magnitude. In cases where the correct note and some
wrong note are both played, it is counted as a correct note
being played since the correct note was detected.

TABLE II

Results of Single Note, Open String Testing

Note Fraction Correct Percent Correct

E2 19/20 95%

A2 18/20 90%

D3 16/20 80%

G3 12/20 60%

B3 17/20 85%

E4 20/20 100%

Total 102/120 85%

When a single note is played, the PAMC will detect the
correct note 83% of the time. When a chord is played, the
PAMC will detect 51% of the correct notes. This data
highlights the difficulty of detecting multiple notes at
once, where even a reasonably good algorithm for
detecting a single note may have difficulty in detecting
multiple. In addition to improving the ability of the device
to detect the notes being played, improvements can also be
made in reducing stuttering and reducing the detection of
octaves and other harmonics.

TABLE III

Results of Multiple Notes, Triad Testing

B. Latency

The human brain has great difficulty in discerning any

delay of less than 10 milliseconds. Musicians refer to any
audible delay of approximately 30 milliseconds or less as
a “slapback” delay, where it sounds as if two instruments
are being played at once. Any delay greater than 30
milliseconds is very noticeable and can impede
performance if the sound of an instrument is delayed by
this much. For this prototype of the PAMC device, the
latency should be under 100 milliseconds. While this
seemingly generous amount of time can allow for long
sounding delays, it is a small enough delay that it proves a
low-latency version of the PAMC could exist with
sufficient optimization.

Initial testing of the PAMC device indicated that delay
was likely in the target range of less than 100
milliseconds. When played alongside a 30 millisecond
slapback delay, the PAMC output seemed to be twice as
delayed as the slapback, meaning it would be delayed by
approximately 60 milliseconds.

In order to actually test the latency, we used the
DIGILENT Analog Discovery 2 kit and Waveforms
software to view the analog input of our device on one
channel and the MIDI output on another. We can measure
the length of time between the start of the analog input
signal and the beginning of the MIDI signal. This time
turned out to be 56 milliseconds which is just barely

below our estimation. This delay makes the current
version of the device unsuitable for most uses in a live
setting, but it does suggest that it is possible to reduce the
latency down to a point where it would be suitable for live
performance. With more optimized software, a more
powerful processor, and a faster clock rate the latency
could very likely be reduced below 30 milliseconds and
perhaps could even reach the 10 millisecond mark where
the delay would become imperceptible.

Fig. 4 Oscilloscope output for latency test. Analog input

(yellow) is followed by digital MIDI output (blue) after a
56 millisecond delay.

C. Overall Functionality

This is a subjective criteria where the PAMC device is

judged based on the completeness of its feature set and the
variety of its potential applications.

This current version of the PAMC device has a very
limited feature set, with only base functionality supported
by the preamp section and MIDI output. Additional
features were discussed, such as USB connectivity, XLR
input to support microphones, XLR passthrough output to
send the passthrough signal to line-in inputs, and 48V
phantom power delivery to condenser microphones. All of
these features were put on hold to focus on getting the
core functions of the PAMC device running as smoothly
as possible. If possible, future iterations of the PAMC
device should include these features in order to make it
more versatile and appealing. As a result of the reduced
feature set of the current version, there are fewer uses for
it. In fact, due to a malfunction of the power section, the
current version does not even include a 5V or 3.3V power
source. 5V and 3.3V power are being delivered from an

Notes Fraction Correct Percent Correct

C, E, G 15/30 50%

F, A, C 16/30 53%

A, C, E 12/30 40%

Total 43/90 48%

external source. In order to make a more useful product
with a more robust feature set, XLR input with optional
48V phantom power and XLR passthrough output should
be implemented to increase the pool of possible input
devices and USB should be implemented to eliminate the
need for peripheral devices to connect to a DAW. If we
should choose to pursue further development of this
device, these are features that we would be interested in
including in a later revision.

VIII. CONCLUSION

Though the latency of our current version of the PAMC
may be too great to use effectively in live performance
settings, it is a great starting point for further development
of a more usable version of this device. With greater than
20 milliseconds between the note being played and the
MIDI stream being produced, there will be a noticeable
delay but exploring other options in spectrum analysis of
the input signal and streamlining the filtering and note
detection algorithms could lead to a PAMC with a much
less noticeable delay. The accuracy of the note detection
algorithm is a strong point that is not to be overlooked, as
note detection is likely the main reason there are so few
existing polyphonic analog to MIDI products on the
market currently.

Many planned features of the PAMC device had to be
cut in order to deliver the finished prototype on time,
including USB functionality and XLR cable I/O jacks to
support microphone input. In the end we determined what
features were essential to our design and to meet the
requirements we laid out and cut the features that we
could not afford to spend the time implementing.

Across the last two semesters of our time at the
University of Central Florida, the three of us worked
together and supported each other as a team to solve each
problem presented in our ambitious design. Though we
may not have created a product that is ready for market in
its current state, we have gained valuable knowledge and
experience in research, design, and collaboration in
engineering.

ACKNOWLEDGEMENT

The authors wish to acknowledge Sean Dillon for his
contributions to this project.

REFERENCES

[1] IEEE GlobalSpec, “Active Band Pass Filters Information”,
2020. URL:
https://www.globalspec.com/learnmore/semiconductors/ana
log_mixed_signals/amplifier_linear_devices/active_bandpa
ss_filters

[2] Larry Davis, “Distribution Amplifier”, 7 Mar 2012. URL:
http://www.interfacebus.com/distribution-amplifier.html

Biographies

Andrew Obeso-Silva is a graduating
Computer Engineering student at the
University of Central Florida. He plans to
work in digital design and computer
architecture after graduating.

Noah Watts is a graduating Computer
Engineering student at the University of
Central Florida. He plans to pursue a
career in hardware design and computer
architecture.

Colin Smith is a graduating Electrical
Engineering student at the University of
Central Florida. He spent a year working
as a test engineering intern and is
beginning a career in test engineering.

