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Abstract — While examples of real-time analog to MIDI          

converters can be found on the market, all of them are           
monophonic. Polyphonic analog to MIDI converters tend to        
be computer programs that do not work in real-time. This          
project is a proof-of-concept for a real-time polyphonic        
analog to MIDI conversion device suitable for use in a live           
music or studio setting. This Polyphonic Analog to MIDI         
Converter is programmed with algorithms to detect up to six          
notes at a time, generate a MIDI stream, and output that           
stream via MIDI or USB port. It serves as a starting point            
for the development of a novel device in the music technology           
industry. 

Index Terms — DAW, FFT, MIDI, Monophonic,       
Polyphonic 

I. INTRODUCTION 

Many different technologies, both ancient and modern,             
are used in the creation of music. The instruments that                   
musicians use can be either acoustic or electric, and the                   
electric instruments can be either analog or digital. In the                   
production studio, the sounds from all these different               
instruments can be captured electronically for           
manipulation in a software application called a digital               
audio workstation (DAW). In music production, there are               
many ways to capture and incorporate analog and acoustic                 
instruments into a DAW. Most of these solutions involve                 
USB microphones or an audio interface that digitizes your                 
analog signal for DAW use. Very few options exist that                   
allow you to use your analog or acoustic instruments in                   
the same way that you might use a digital instrument. A                     
digital instrument using MIDI protocol will have certain               
parameters of the notes encoded into a signal rather than a                     
digital replication of an analog signal. The sounds of                 
acoustic instruments are captured with a microphone that               
converts the sounds into an analog electrical signal.               
Analog electrical instruments also output an analog             
electrical signal. This signal is then digitized and recorded                 
in a computer. Digital instruments send digital signals.               

They can send a digital representation of an analog signal,                   
or they can send messages that can tell another system                   
what sounds to produce. For example, a keyboard can                 
send a message that tells the computer that a note was                     
played. The computer can then output the corresponding               
sound. Unfortunately, only these digital instruments are             
capable of sending messages. Other instruments, like an               
electric guitar or a flute, cannot do this. What this project                     
aims to achieve is to create a device that gives acoustic                     
and analog electrical instruments the ability to send               
messages just like a digital instrument in full six-voice                 
polyphony. 

The Polyphonic Analog-to-MIDI Converter for Musical           
Applications is a device that will accept an analog signal                   
and convert it to a MIDI signal of up to six voices. It is                           
designed to be used in both a music studio and live                     
performance settings. MIDI technology is most often             
purely digital, with some digital MIDI controllers             
interfacing with a program or instrument that operates on                 
the MIDI standard. While some products exist which               
convert an analog music signal into a digital MIDI stream,                   
they are usually monophonic (single-voiced). We aim to               
develop an analog-to-MIDI device that is capable of               
translating each string of a standard-tuning guitar             
simultaneously. While the main goal is for the device to                   
work with a guitar, it will be designed to work with any                       
instrument capable of producing a consistent tone in the                 
12-tone equal-temperament tuning system. 

II. GOALS 
The primary purpose of this device is to detect more                   

than one note being played by an instrument at the same                     
time in an analog audio signal and transmit that                 
information through a MIDI stream. The device accepts               
analog input from a ¼” tip-sleeve mono audio jack. Most                   
electric instruments typically transmit analog audio signals             
through these connections. For example, electric guitars,             
basses, and synthesizers use ¼” cables to carry their                 
signal. XLR was considered for this device, as having an                   
XLR input would allow for a microphone to be used as an                       
input transducer for the device. There are other interfaces                 
that could be implemented into the device, like USB,                 
coaxial, and optical. However, the interfaces we have               
selected are the most common in music production               
applications, and these analog interfaces are simpler to               
implement than those three digital interfaces. It has a                 
switch to select the source of the input. The device can                     
output a MIDI stream through a MIDI port. This is the                     
most useful interface through which MIDI streams can be                 
transmitted, as it allows direct interfacing with             
MIDI-controllable instruments and connection to a DAW             



on a computer via MIDI to USB cabling or a                   
MIDI-compatible audio interface. The device will also             
have another ¼-inch tip-sleeve jack port to output an exact                   
copy of the input. The purpose of this is to allow the                       
signal to be passed through the device to other systems.                   
This passthrough makes integration of this device into a                 
system of other audio devices more simply and with less                   
conflicts. We will need to buy ports for these interfaces                   
and implement electrical circuitry that transmits the             
signals to and from these ports.  

The device must be capable of digitizing audio signals                 
within the range of frequencies that MIDI establishes as                 
notes for processing. To prepare the analog signal for the                   
analog-to-digital converter (ADC), we will have a preamp               
stage that amplifies the line-in signal to a range that is                     
accepted by the ADC. The user can adjust the gain for this                       
preamp using a potentiometer on the device in order to                   
improve the accuracy of the device for whatever input                 
source they are using and to prevent clipping. This preamp                   
stage will also include a bandpass anti-aliasing filter to                 
make the signal easier to work with once it is digitized. An                       
ADC is then used to collect samples of the signal, but its                       
sample rate must be high enough to digitize the signal                   
accurately at the highest frequencies. The device must               
analyze a chunk of the audio signal and determine which                   
notes are being played, if any. Musical notes are related to                     
different sound frequencies, so the device must calculate               
the frequency content of the chunk of signal. A discrete                   
Fourier transform (DFT) is capable of converting a chunk                 
of a digital audio signal into a spectrum of frequencies that                     
make up the sound. The frequency spectrum lists the                 
magnitudes of each multiple of a fundamental frequency,               
thus also giving information on the loudness of each note                   
the device hears. However, the issue with this is that the                     
spectrum has a linear frequency scale, while musical notes                 
have a logarithmic frequency scale. The device needs               
enough frequency density in the spectrum to be able to                   
accurately relate frequencies to notes. We will use a                 
processor that is powerful enough to perform the DFT in                   
real time on chunks of the audio signal. Also, there may                     
be several notes being played at the same time, so the                     
device must be capable of detecting more than one note.                   
This is called polyphony. Other analog to MIDI products                 
exist, but they are exclusively monophonic, they can only                 
convert one note at a time. The novel feature of our device                       
will be its ability to convert multiple notes at once. 

III. RESEARCH 

In our market research, we found some products               
currently that exist that are similar to the PAMC. There                   
are two current products made by Sonuus that deal with                   

audio to MIDI conversion, the G2M V3 and the i2M. The                     
G2M V3 is a great tool for translating guitar and bass                     
sounds to MIDI with a MIDI output port, ¼” passthrough                   
port, and a built-in tuner. The main limitation of the G2M                     
V3 is that it is monophonic only. The i2M musicport is a                       
similar product created by Sonuus that has many of the                   
same features as the G2M but with some changes in                   
implementation and hardware. Like the G2M, the i2M               
musicport is a plug-and-play device that takes musical               
audio from guitar, bass, voice or wind instrument and                 
converts it to MIDI. The main difference of the i2M                   
musicport from the G2M is that it uses a USB interface for                       
power and MIDI output. Again, the i2M is only capable of                     
monophonic translation. 

We also researched various technologies to begin             
working on our design, including filter design [1].               
Comparing the gentle cutoff and relatively linear response               
of a Bessel filter to the sharper cutoff and flatter response                     
of the Butterworth Filter led us to determine that the                   
Butterworth Active Band-Pass filter was the correct             
choice for our device. We want as much attenuation as we                     
can on rejected frequencies with as little impact on the                   
passed frequencies as possible. 

A preamp section is also needed to ensure that the input                     
signal is at an appropriate level for the ADC to capture.                     
We had to research different op-amp circuit types to use in                     
our design. With several op-amp circuits, we can do                 
filtering, amplification, buffering, and signal splitting.           
Op-amp buffers allow us to isolate the input and output so                     
the load doesn’t affect the input and also gives us more                     
ideal impedances to our circuit. This should be very useful                   
for splitting and mixing signals. The implementation of               
this signal splitting is called a distribution amplifier. This                 
means it recreates multiples of the same signal [2]. 

We knew we would have to use an ADC in our design,                       
so we had to determine what parameters of our signal                   
would affect the performance of the ADC. There are two                   
main factors that contribute to the accuracy of the analog                   
to digital conversion which are bit rate and sampling rate.                   
Increasing the bit rate of an ADC improves the precision                   
of the approximations in its digital output [3]. The sample                   
rate is important due to the Nyquist sampling theorem                 
which states that the sampling rate of the ADC must be at                       
least twice as fast as the highest frequency component of                   
the waveform being sampled. If the sampling rate is not at                     
least equal to twice the highest frequency component,               
there can be inaccuracies in the sampling due to aliases.                   
The minimum sampling rate that we will need to use for                     
the analog to digital conversion for our device will depend                   
on the frequency range of possible musical instruments               
that will utilize our device and the maximum musical                 
frequency. The maximum note frequency used in MIDI is                 



12543.854 Hz. We want our device to be able to be used                       
with multiple musical instruments including guitar, piano,             
voice and more. These instruments have varying             
frequency ranges. Table I shows the frequency ranges of                 
some musical instruments and MIDI notes. 

 
TABLE I  

Frequency Ranges of Various Instruments 
 

 
All of the common musical instruments listed in the chart                   
have frequencies that are below the maximum frequency               
of the MIDI note range. This means that the ADC part of                       
our device will need to be able to sample at least                     
25087.708 Hz which is double the max MIDI note                 
frequency. If there are musical instruments that play notes                 
at a higher frequency than the highest MIDI note                 
frequency it would be irrelevant for the uses of our device                     
since MIDI would not have a note available to play in that                       
frequency.  

IV. TECHNOLOGIES AND STANDARDS USED 
One of the key ideas kept in mind during the design of 

the PAMC device was compatibility. The PAMC should 
be compatible with as many instruments and devices as 
possible, so it is important for it to make use of common 
technologies and standards to achieve this.  

First, in order to be compatible with the greatest number                   
of electric instruments, we decided to implement a ¼”                 
audio input jack. This allows practically any electric               
instrument to be used as an input, with compatible electric                   

instruments including the electric guitar, analog and             
digital synthesizers, and even acoustic instruments that are               
outfitted with electric pickups like the acoustic guitar,               
mandolin, and even violin. The ¼” jack is a simple                   
tip-sleeve connector with signal being carried in the tip                 
and the sleeve being used for ground connection. The only                   
commonly-used instruments that are not compatible with             
this input scheme are non-pitched percussion instruments             
like drums or shakers. This is not an issue, since products                     
already exist that can turn acoustic drums into digital                 
instruments, such as trigger clips and trigger pads. 

Next, for ease of use and compatibility with existing                 
technologies, MIDI output has been implemented. The             
MIDI output can be sent out to an audio interface or MIDI                       
to USB cable and work with a DAW through that or                     
interface directly with MIDI-compatible synthesizer         
instruments. 

Finally, as a way of being useful in the greatest number                     
of situations a passthrough was implemented which             
buffers the input signal and sends it straight out of the                     
device. This way the user will not lose their original sound                     
and can use the PAMC device in combination with, rather                   
than instead of, any other devices they may be sending                   
their signal to such as a mixer or amplifier. Additionally,                   
to be more useful to performers in a live setting, a                     
center-negative barrel jack is used to deliver 9V power to                   
the device. This is the most common power standard in                   
music technology for live performance, so most guitarists               
or other performers with electric instruments are likely to                 
already have compatible power supplies. 

 

 
Fig. 1 The Critter and Guitari Septavox is an example of                     
an instrument with MIDI in and out ports that can control                     
other MIDI instruments or be controlled by a device such                   
as the PAMC. 

Musical 
Instrument 

Minimum 
Frequency 
(Hz) 

Maximum 
Frequency 
(Hz) 

Guitar 82.41  1318.51 

Piano 27.5  4186  

Bass 41 262 

Human voice 87 1047 

Flute 262 1976 

Trumpet 165 988 

Clarinet 165 1568 

MIDI 8.1758 12543.854 



V. HARDWARE OVERVIEW 

In the design of the hardware of the PAMC, the                   
MSP430FR5992 was chosen to be the MCU due to its                   
specialized fast fourier transform (FFT) hardware that             
would allow the device to process the input signal fast                   
enough to meet our latency standards and its easily                 
programmable nature. To make the signal easier to               
process, a preamplifier section was placed before the               
MSP430’s on-board analog to digital converter to filter               
out unwanted data, bring the signal to line level. The                   
output ports are the ¼” passthrough port and the MIDI                   
port. The USB port requires a USB controller IC to be                     
used. All of this is powered by 5 volt and 3.3 volt                       
regulators designed on TI Webench. 

 
Fig. 2 Simplified Hardware Block Diagram 

 
A. Preamp Section 
 
The preamp section serves the dual purpose of               

preparing the input signal for the ADC and buffering the                   
signal for the passthrough. Four dual op-amp packages are                 
used, with seven of the op-amps used in the preamp                   
design and one op-amp left unused. The first stage of the                     
preamp is used to bring the signal up to line level with a                         
non-inverting amplifier. The user can adjust the gain of                 
this amplifier with a potentiometer which serves as the                 
feedback resistor of this amplifier. The last stage of the                   
preamp section is an active band-pass filter with a low                   
frequency of 20Hz, a high frequency of 16kHz to capture                   
the lowest note of the bass guitar (40Hz) and the highest                     
note of the MIDI protocol (15kHz). 

 

B. Power Section 
 
TI Webench was used to create three different power                 

conversion circuits based on the TPS563231DRLR and             
TPS62825DMQR chips for 9V to 5V conversion and 5V                 
to 3V3 conversion respectively. Unfortunately, due to             
component failure and time constraints these power             
circuits were not implemented on the final demo board of                   
the PAMC device. As an emergency solution, an external                 
power solution is being used to provide the necessary 5V                   
and 3V3 power to the board. 

 
C. MCU 
 
The MSP430FR5992 has 80 pins, only 23 of which are                   

used. Two of these are used for the ADC, with one pin to                         
bias the signal to 1.2V and the other to read the output of                         
the preamp section. Another two pins are used for USB                   
communication, three for SPI communication and one for               
the MIDI output sent to the MIDI output circuit. The rest                     
of the connections are used mostly for power pins. 

 
D. MIDI Output 
 
The MIDI output circuit is a simple NPN transistor                 

circuit where the transistor is used to convert the logic                   
level of the signals from the MSP430 from 3.3V to 5V to                       
meet the MIDI protocol standards. 

VI. SOFTWARE OVERVIEW 

The software of the PAMC device consists of four main                   
components: the input section, the fourier transform, the               
note detection algorithm, and the MIDI output stream. 

 
A. Input Section 
 
The input section involves processing the input from the                 

analog to digital converter and storing the input as                 
samples in memory. Since we are using the ADC built                   
into the MSP430FR5992 chip, we did not need to write                   
any drivers for the ADC. A driver was needed for saving                     
the ADC data as a useful data type for the fourier                     
transform to be applied. 

 
B. Fourier Transform 
 
The goal of the Fourier transform section is to convert                   

the digital signal from the time domain to the frequency                   
domain. This is so that we can process the frequencies and                     
determine the notes being played. This is achieved by                 
implementing an FFT similar to the Cooley-Turkey FFT,               
using bitwise operations rather than arithmetic operations             



wherever possible to reduce the amount of time required                 
for the Fourier transform. This is one of the most                   
important software blocks to optimize in this way because                 
we expect that the majority of the time spent converting                   
the analog notes to MIDI will be spent performing this                   
Fourier Transform. 

 

 
Fig. 3 Simplified Software Flow Chart 

 
C. Note Detection 
 
The note detection algorithm has multiple stages             

including spectra aggregation and magnitude clamping, a             
unique harmonic product spectrum generation, and final             
note selection and output logic. 

First the spectra aggregation section simply takes the 3                 
frequency spectra that we obtain from our series of FFT’s                   
and aggregates them into a common, ordered frequency               
spectrum. This spectrum is checked to see if the                 
magnitudes are high enough to indicate a note being                 
played, and then all of the magnitudes are multiplied to                   
clamp the highest value to a set magnitude. This ensures                   
that whenever a note is being played the peak frequency                   

magnitudes are the same every time, making the note                 
detection process more consistent. 

Next, the primary part of the algorithm is the generation                   
of a harmonic product spectrum. Traditionally a harmonic               
product spectrum would divide an entire frequency             
spectrum by an integer multiple and multiply it by the                   
base spectrum for the first few integer multiples such as 2,                     
3, 4 and 5. This makes it so that the harmonics of a                         
fundamental frequency get multiplied into the           
fundamental frequency bin giving the fundamental a             
greatly exaggerated magnitude as compared to harmonics             
and noise.  

In our case we go bin by bin and divide and multiply                       
individually. While this is more difficult, it allows us                 
greater accuracy as we can split bins that do not divide                     
evenly into a single bin. For instance, say we have 200 Hz,                       
400 Hz, and 700 Hz bins. If we are dividing the 700 Hz by                           
two and multiplying that magnitude into the respective               
bin, that would result in 350 Hz being multiplied into                   
nothing since we do not have a 350 Hz bin. Instead we                       
multiply it into both 200 Hz and 400 Hz with the 400 Hz                         
bin being heavily favored. This works similar to how the                   
magnitudes on an FFT would show up if your bins don’t                     
line up with the input frequencies.  

Another benefit of doing every bin individually is that                 
we can account for different harmonic differences             
between notes on a guitar. The harmonic content of notes                   
on a guitar vary based on the pitch of the note and where                         
you play the note. This means the magnitudes of the                   
harmonic product spectrum will vary based on the pitch                 
being played if we do not account for that. To fix that we                         
analyzed the harmonic content of the notes on a guitar and                     
scaled the harmonic response accordingly when dividing             
and multiplying harmonics in the harmonic product             
spectrum. While this response is specifically tailored to               
suit guitar, a finalized product could generate a response                 
for every instrument and input response by having the user                   
play every note and analyzing the harmonic content. 

Finally, after the harmonic product spectrum is             
generated there must be determined what notes are being                 
played. To do this we first check for frequencies above a                     
magnitude threshold and map those frequencies to their               
closest MIDI note values. When two consecutive bins are                 
above the note threshold, we select the largest. This                 
happens when a note is being played in which the                   
frequency is between two bins. We then take these                 
detected notes and compare them to the current output                 
array. We then remove the notes that are no longer being                     
detected and add the unique notes from the most recent                   
loop. This keeps an up to date array of up to 6 notes being                           
played which is used as the input for our output drivers. 

 



D. MIDI Stream Generation 
 
The MIDI stream generator collects the data gathered               

by the note detection algorithm and encodes it into MIDI                   
protocol. MIDI is a very simple interface to implement                 
with just a digital output pin and some passive and active                     
components. MIDI uses asynchronous data transmission           
and transmits as bytes at 31.25 kilobits per second. The                   
interface uses a start bit, 8 data bits and a stop bit. This                         
means for each serial byte there are a total of 10 bits that                         
are sent for a period of 320 microseconds. MIDI has this                     
low data transfer rate because it usually only needs to do                     
basic instructions of which MIDI notes to play and                 
changing its timing, velocity and etc. The primary MIDI                 
parameter that we are concerned with is note pitch, which                   
is encoded as a single byte. Our pitch bytes are between                     
the values of 0x28 for our lowest note, E2, and 0x58 for                       
our highest note, E8. Sending this pitch byte along with a                     
byte to set the velocity of the note will be enough                     
information for a MIDI device to play a note. Velocity is a                       
measure of the force and presence with which a note is                     
played. We have set the velocity of all of our notes to be                         
0x7F. 

A UART channel on the MSP430 is used to set the baud                       
rate of the MIDI stream. The system stores the state of                     
finite state machines for each note. Each state machine has                   
2 states, where 0 is off and 1 is on. The state machine for a                             
note is set to 0 by default or if the note is not in the current                               
output frame and is set to 1 if the note is in the output of                             
the current frame. This provides a three frame buffer                 
between when a note is no longer detected and when the                     
state machine is set to 0, ending the transmission of that                     
note. This buffer is important to reduce stuttering where a                   
note will cut in and out due to the note mistakenly not                       
being detected in some frame. On a transition from off to                     
on, the system will append a Note On message for that                     
note with the velocity parameter = 0x7F. On a transition                   
from on to off, the system will append a Note On message                       
for that note with the velocity parameter = 0x00 

VII. RESULTS 

The three criteria that we have decided to judge the          
PAMC on are the accuracy of its note detection, the          
latency or delay from the time a note enters the PAMC           
system to when it leaves as a MIDI signal, and the overall            
functionality of the device including its versatility and        
ability to stand on its own. 

 
A. Note Detection Accuracy 
 
In order to test the PAMC device’s note accuracy, we          

recorded its response when a single note is played, a triad           

is played, or an open position chord. The target for this           
prototype is a note accuracy of 80%. Ideally, we would          
look for accuracy closer to 100%, but as proof of concept           
80% will suffice. 

Four different tests were performed. The first test is a          
test of the PAMC device’s ability to convert single notes          
by playing open strings on the guitar without pressing         
down on the fingerboard. The second is another single         
note test, but this time the notes tested are fretted notes.           
The third test is a polyphonic note detection test where          
three different triads (chords composed of three notes) are         
played. The final note detection test is also a polyphonic          
note detection test in which open position chords of four          
to six notes are played. In these tests, accuracy of 85%,           
82%, 48%, and 53% was observed, respectively.  

For the purpose of this test, accuracy is determined by          
whether or not the played note or notes appeared in the           
MIDI stream. Some of the notes received have a stuttering          
effect where the note starts and stops several times despite          
being played on the guitar only once. This stuttering is          
most common with notes of lower pitch on the A string or            
low E string. These notes are still counted because the          
correct note was detected. There are also cases where the          
right note and a wrong note are present at once. It is not             
uncommon for the correct note to be sent along with a           
note an octave above (twice the frequency) or of some          
other harmonic. The octave is the most common wrong         
note because it is the first harmonic in the harmonic series           
and on guitar it is often the harmonic with the greatest           
magnitude. In cases where the correct note and some         
wrong note are both played, it is counted as a correct note            
being played since the correct note was detected. 

 
TABLE II 

Results of Single Note, Open String Testing 
 

 

Note Fraction Correct Percent Correct 

E2 19/20 95% 

A2 18/20 90% 

D3 16/20 80% 

G3 12/20 60% 

B3 17/20 85% 

E4 20/20 100% 

Total 102/120 85% 



When a single note is played, the PAMC will detect the           
correct note 83% of the time. When a chord is played, the            
PAMC will detect 51% of the correct notes. This data          
highlights the difficulty of detecting multiple notes at        
once, where even a reasonably good algorithm for        
detecting a single note may have difficulty in detecting         
multiple. In addition to improving the ability of the device          
to detect the notes being played, improvements can also be          
made in reducing stuttering and reducing the detection of         
octaves and other harmonics. 

 
TABLE III 

Results of Multiple Notes, Triad Testing 
 

 
 
B. Latency 
 
The human brain has great difficulty in discerning any         

delay of less than 10 milliseconds. Musicians refer to any          
audible delay of approximately 30 milliseconds or less as         
a “slapback” delay, where it sounds as if two instruments          
are being played at once. Any delay greater than 30          
milliseconds is very noticeable and can impede       
performance if the sound of an instrument is delayed by          
this much. For this prototype of the PAMC device, the          
latency should be under 100 milliseconds. While this        
seemingly generous amount of time can allow for long         
sounding delays, it is a small enough delay that it proves a            
low-latency version of the PAMC could exist with        
sufficient optimization. 

Initial testing of the PAMC device indicated that delay         
was likely in the target range of less than 100          
milliseconds. When played alongside a 30 millisecond       
slapback delay, the PAMC output seemed to be twice as          
delayed as the slapback, meaning it would be delayed by          
approximately 60 milliseconds. 

In order to actually test the latency, we used the          
DIGILENT Analog Discovery 2 kit and Waveforms       
software to view the analog input of our device on one           
channel and the MIDI output on another. We can measure          
the length of time between the start of the analog input           
signal and the beginning of the MIDI signal. This time          
turned out to be 56 milliseconds which is just barely          

below our estimation. This delay makes the current        
version of the device unsuitable for most uses in a live           
setting, but it does suggest that it is possible to reduce the            
latency down to a point where it would be suitable for live            
performance. With more optimized software, a more       
powerful processor, and a faster clock rate the latency         
could very likely be reduced below 30 milliseconds and         
perhaps could even reach the 10 millisecond mark where         
the delay would become imperceptible. 

 

 
Fig. 4 Oscilloscope output for latency test. Analog input 

(yellow) is followed by digital MIDI output (blue) after a 
56 millisecond delay. 

 
 
C. Overall Functionality 
 
This is a subjective criteria where the PAMC device is                   

judged based on the completeness of its feature set and the                     
variety of its potential applications. 

This current version of the PAMC device has a very                   
limited feature set, with only base functionality supported               
by the preamp section and MIDI output. Additional               
features were discussed, such as USB connectivity, XLR               
input to support microphones, XLR passthrough output to               
send the passthrough signal to line-in inputs, and 48V                 
phantom power delivery to condenser microphones. All of               
these features were put on hold to focus on getting the                     
core functions of the PAMC device running as smoothly                 
as possible. If possible, future iterations of the PAMC                 
device should include these features in order to make it                   
more versatile and appealing. As a result of the reduced                   
feature set of the current version, there are fewer uses for                     
it. In fact, due to a malfunction of the power section, the                       
current version does not even include a 5V or 3.3V power                     
source. 5V and 3.3V power are being delivered from an                   

Notes Fraction Correct Percent Correct 

C, E, G 15/30 50% 

F, A, C 16/30 53% 

A, C, E 12/30 40% 

Total 43/90 48% 



external source. In order to make a more useful product                   
with a more robust feature set, XLR input with optional                   
48V phantom power and XLR passthrough output should               
be implemented to increase the pool of possible input                 
devices and USB should be implemented to eliminate the                 
need for peripheral devices to connect to a DAW. If we                     
should choose to pursue further development of this               
device, these are features that we would be interested in                   
including in a later revision. 

VIII. CONCLUSION 

Though the latency of our current version of the PAMC                   
may be too great to use effectively in live performance                   
settings, it is a great starting point for further development                   
of a more usable version of this device. With greater than                     
20 milliseconds between the note being played and the                 
MIDI stream being produced, there will be a noticeable                 
delay but exploring other options in spectrum analysis of                 
the input signal and streamlining the filtering and note                 
detection algorithms could lead to a PAMC with a much                   
less noticeable delay. The accuracy of the note detection                 
algorithm is a strong point that is not to be overlooked, as                       
note detection is likely the main reason there are so few                     
existing polyphonic analog to MIDI products on the               
market currently. 

Many planned features of the PAMC device had to be                   
cut in order to deliver the finished prototype on time,                   
including USB functionality and XLR cable I/O jacks to                 
support microphone input. In the end we determined what                 
features were essential to our design and to meet the                   
requirements we laid out and cut the features that we                   
could not afford to spend the time implementing. 

Across the last two semesters of our time at the                   
University of Central Florida, the three of us worked                 
together and supported each other as a team to solve each                     
problem presented in our ambitious design. Though we               
may not have created a product that is ready for market in                       
its current state, we have gained valuable knowledge and                 
experience in research, design, and collaboration in             
engineering. 
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