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1. Project Summary 
 
The Polyphonic Analog-to-MIDI Converter for Musical Applications is a device that will 
accept an analog signal from a quarter-inch or XLR3 tip-sleeve audio jack and convert it 
to a MIDI signal of up to six voices. It is designed to be used in both a music studio and 
live performance settings. MIDI technology is most often purely digital, with some digital 
MIDI controllers interfacing with a program or instrument that operates on the MIDI 
standard. While some products exist which that convert an analog music signal into a 
digital MIDI stream, they are usually monophonic (single-voiced). We aim to develop an 
analog-to-MIDI device that is capable of translating each string of a standard-tuning guitar 
simultaneously. While the main goal is for the device to work with a guitar, it will be 
designed to be able to work with any instrument capable of producing a consistent tone in 
the 12-tone equal-temperament tuning system. 
 
While the MIDI stream is being created, the original instrument signal is simultaneously 
bypassed out of the device. This allows the device to be a single block in the instrument’s 
signal chain and for the signal to pass through to other devices, amplifiers, or interfaces. 
This functionality opens a world of creative possibilities. The Analog-to-MIDI Converter 
can be used to transcribe the notes being played or control a MIDI device playing in 
parallel with an instrument while still allowing the instrument’s voice to be heard. Designed 
with form, function, and compatibility in mind, the Analog-to-MIDI Converter will be 
lightweight and powered by +5V via USB or +9V via DC barrel jack. USB is ubiquitous in 
studio settings where musicians can connect to their desktop or laptop workstation and 
negative center DC barrel jack is a widely used power standard in music technology for 
performance. The most important challenges to overcome in this design are the analog to 
digital conversion, discrete Fourier transform (DFT), and filtering. The ADC must be fast 
enough to pick up all of the notes being played, the DFT must be accurate without slowing 
down the program too much, and the note detection must be able to identify all of the up 
to six voices for notes which may be only 5 Hz apart. 
 
The prototype device presented at the Senior Design Showcase lacks many intended 
features, such as USB functionality, 9 volts power, and XLR3 input and output. However, 
the core functionality of polyphonic analog-to-MIDI conversion is implemented, and it is 
confirmed to work for a guitar as intended using external 5-volt and 3.3-volt power sources. 
This document includes the original intended design and feature set, details on the failure 
of the implementation of cut features, and new ideas and designs that avoid the failures 
we had. 
 

2. Project Description 
 
Many different technologies, both ancient and modern, are used in the music industry to 
create music. The instruments that musicians use can be either acoustic or electrical, and 
the electrical instruments can be either analog or digital. In the production studio, the 
sounds from all these different instruments are captured electronically for manipulation in 
a software application called a digital audio workstation (DAW). In music production, there 
are many ways to capture and incorporate analog and acoustic instruments into a DAW. 
Most of these solutions involve USB microphones or an audio interface that digitizes your 
analog signal for DAW use. Very few options exist that allow you to use your analog or 



 

 
 

acoustic instruments in the same way that you might use a digital instrument. A digital 
instrument using MIDI protocol will have the notes and other musical information encoded 
into a message stream rather than a digital replication of an analog signal. The sounds of 
acoustic instruments are captured with a microphone that converts the sounds into an 
analog electrical signal. Analog electrical instruments also output an analog electrical 
signal. This signal is then digitized and recorded in a computer. Digital instruments send 
digital signals. They can send a digital representation of an analog signal, or they can 
send messages that can tell another system what sounds to produce. For example, a 
keyboard can send a message that tells the computer that a note was played. The 
computer can then output the corresponding sound. Unfortunately, only these digital 
instruments can send these encoded messages. Other instruments, like an electric guitar 
or a flute, cannot do this. What this project aims to achieve is to create a device that gives 
acoustic and analog electrical instruments the ability to send encoded, digital messages 
just like a digital instrument. 
 

2.1. Motivation 
 
Our motivation for this project is to apply what we have learned in our classes at the 
University of Central Florida. This will be one of our first experiences completing a project 
of this scale in a team, so we will also be building our teamwork and coordination skills to 
be applied in our careers moving forward. Furthermore, we all share an interest in music 
technology which drove us toward this project, and we came up with this idea since it can 
be very useful to both musicians and engineers. The ability for this device to take a 
microphone input and convert it to a MIDI stream opens a world of possibilities where any 
instrument can be used as a MIDI controller. This includes acoustic guitar, trumpet, flute, 
accordion, even voice. If it can be captured by a microphone or a pickup and produce a 
consistent tone, then it is compatible with one of our inputs. 
 
Additionally, in a live music performance setting, musicians tend to either play an analog 
instrument or a digital instrument with very few options for blending the two. Percussionists 
have the option to attach digital “trigger” devices to their instruments, connecting them to 
a DAW and allowing them to use the drums to play a digital instrument. There are no clear 
equivalents to such a device for other instruments such as guitar, voice, or acoustic piano. 
This is likely because of the much higher processing power required to decompose an 
analog signal in real time with a DFT versus a binary on or off signal that can be used for 
percussion trigger devices. 
 
Another useful application of this device would be note transcription. When musicians 
write down or transcribe their music compositions, they will typically use a digital 
instrument such as an electric keyboard or manually program notes into software. If the 
music is written for a different instrument than a piano, it may be very difficult to perform 
the piece on a keyboard to transcribe it and would require the musician knowing how to 
play the instrument. If the musician instead inputs notes manually into the software, they 
must choose the note length, the note, volume, and articulation of the note. This can be 
incredibly inconvenient and time consuming. With this device, you can instead play your 
analog or acoustic instrument of choice directly into the device and into your MIDI 
compatible transcription software. This will allow a musician to play the instrument that 
they are comfortable on and originally composed the music on while automatically 
transcribing their composition. We aim to blend forms of digital and analog music making 
with a Polyphonic Analog to MIDI Converter. Such a device will allow the user to transcribe 



 

 
 

their notes into MIDI format or control a digital instrument in real-time using their analog 
or acoustic instrument of choice. 
 

2.2. Objectives 
 
The primary purpose of this device is to detect more than one note being currently played 
by an instrument in an analog audio signal and transmit that information through a MIDI 
stream. The device will ideally take analog input from a ¼-inch tip-sleeve mono audio jack 
and from an XLR3 connection. Most electronic devices with musical applications typically 
transmit analog audio signals through these connections. For example, electric guitars 
typically use a ¼-inch jack, and professional microphones typically use an XLR3 
connection. There are other interfaces that could be implemented into the device, like 
USB, coaxial, and optical. However, the interfaces we have selected are the most common 
in music production applications, and these analog interfaces are simpler to implement 
than those three digital interfaces. It will have a switch to select the source of the input. 
Also, some microphones require a phantom power source from the input port that they 
connect to. The device must be able to supply enough power through the XLR3 port to 
power as many microphones as possible, and there will be a switch that toggles the 
availability of this power source. The device can output a MIDI stream through a MIDI port 
and through a USB port. These are the most popular interfaces through which MIDI 
streams are transmitted. Like the input ports, the device will have another switch to select 
the output port. The device will also have another ¼-inch tip-sleeve jack port and another 
XLR3 port to output an exact copy of the input. The purpose of this is to allow the signal 
to be passed through the device to other systems. This makes integration of this device 
into a system of other audio devices simpler and with less conflicts. There will also be a 
switch to toggle each of these outputs. We will need to buy ports for these interfaces and 
implement electrical circuitry that transmits the signals to and from these ports. We will 
need to use a dedicated integrated circuit for our USB implementation since it is a complex 
standard. 
 
The device must be capable of digitizing audio signals within the range of frequencies that 
MIDI establishes as notes for processing. To prepare the analog signal for the analog-to-
digital converter (ADC), we will have a preamp stage that amplifies the line-in signal to a 
range that is accepted by the ADC. The user can adjust the gain for this preamp using a 
potentiometer on the faceplate of the device in order to improve the accuracy of the device 
for whatever input source they are using and to prevent clipping. This preamp stage will 
also include a bandpass anti-aliasing filter to make the signal easier to work with once it 
is digitized. An ADC is then used to collect samples of the signal, but its sample rate must 
be high enough to digitize the signal accurately at the highest frequencies. The device 
must analyze a chunk of the audio signal and determine which notes are being played, if 
any. Musical notes are related to different sound frequencies, so the device must calculate 
the frequency content of the chunk of signal. A DFT is capable of converting a chunk of a 
digital audio signal into a spectrum of frequencies that make up the sound. The frequency 
spectrum lists the magnitudes of each multiple of a fundamental frequency, thus also 
giving information on the loudness of each note the device hears. However, the issue with 
this is that the spectrum has a linear frequency scale, while musical notes have a 
logarithmic frequency scale. The device needs enough frequency density in the spectrum 
to be able to accurately relate frequencies to notes. We will use a processor that is 
powerful enough to perform the DFT in real time on chunks of the audio signal. Also, there 
may be several notes being played at the same time, so the device must be capable of 



 

 
 

detecting more than one note. This is called polyphony. As discussed in a later section, 
other analog to MIDI products exist, but they are exclusively monophonic, they can only 
convert one note at a time. The novel feature of our device will be its ability to convert 
multiple notes at once. 
 
Using the frequency spectrum, the device must accurately determine which notes are 
being played and transmit the corresponding MIDI messages in time. The input will 
typically never be digitized into a mathematically perfect sine wave, even from analog 
synthesizer instruments, and especially not from acoustic or electric instruments like the 
guitar. Due to the complexity of typical input signals, the device must be able to distinguish 
between the overtones and the fundamental frequency of each note, and it must also filter 
out noise. Being able to filter out the noise, overtones, and lower resonant frequencies of 
each note is important in accurately determining the notes being played since only the 
fundamental frequencies of each note will be left over. After determining which notes are 
being played, it outputs that information to a MIDI output stream. The device must perform 
the translation from analog audio to MIDI within a very short amount of time. With low 
latency, the device becomes effective for use in live recordings and performances. Timing 
is critical in music production since the art itself relies on the arrangement of sounds in 
time. If the device outputs an instruction too late, then it will ruin the recording or 
performance because the effect or sound that the device was supposed to trigger would 
have happened at the wrong time. The processor and the DFT implementation will be an 
important factor in determining our latency because the DFT is the most time-consuming 
computation that the processor will perform. 
 
There are other aspects that this device must achieve. It must be portable and small, since 
its potential applications include live performances, and the cost decreases with a smaller 
size. For example, if the device takes up too much space on a guitarist's pedal board, then 
it is useless because other tools will have priority over it. The device needs to be safe to 
handle and never get too hot to touch. This requires a smooth plastic case, suitable 
passive cooling systems, and low-power electronics. While we could implement an active 
cooling system with a fan and control circuit, this would make the device less portable, 
increase the size and cost, and create EMI. Reducing the amount of EMI that this device 
produces, and experiences is critical because analog audio signals are sensitive to 
interference. This interference creates noise in these signals when they are transmitted 
along unbalanced connections and along the PCB traces, and the noise will affect the 
accuracy of the note translation. The objectives that this product aims to achieve are the 
main goals. The project is successful if these goals are met. 
 
There are also stretch goals for this project that we will attempt to implement but are not 
required for the final product. We would like to make the device capable of recognizing 
the instrument that produced the audio signal and detect and relay note effects such as 
vibrato, tremolo, pitch bend, note slur, etc. Doing this requires much more work on the 
algorithms that analyze the frequency spectrums and accurate detection of these effects 
without interfering in the detection of notes. We would also like to make the device 
configurable through the USB interface. The settings that would be changed are the 
equalizer, input gain, maximum polyphony, pitch range, and effects processing. The user 
would be capable of changing these settings anytime while the device is connected to a 
computer using a simple computer application. Finally, we would like to make the input 
band-pass filter and ADC sampling rate adjustable. This would allow optimized processing 
for low pitch ranges, since digitizing signals with only low frequencies does not require a 



 

 
 

high sample and bandwidth. These goals make the device more versatile and more 
efficient. However, they are not required for the main functionality and are thus considered 
to be stretch goals. 
 

2.3. Requirements Specification 
 
The requirements specification defines the parameters for the device to be considered 
successful. These requirements are either self-imposed for the feature set of the device 
or required by the components needed to implement the functions of the device. For each 
requirement there are three value columns, minimum, maximum, and ideal. The minimum 
and maximum columns of the table are the minimum and maximum values that each 
characteristic of the device must have for our project to be considered successful for the 
purposes of Senior Design. This value is lower than the ideal value because we realize 
that we may be limited in the performance of the device by our budget, parts, and time. 
We want to create at least a working prototype of the device that can show that the ideal 
values are potentially possible by using more expensive parts. The ideal value column of 
the table shows the ideal required values we would like to have if we did not have any 
limitations. Some of the minimum and ideal values are the same due to being necessary 
for the device to be functional. 
 

Requirement Description Unit Min Max Ideal 

Polyphony Number of simultaneous notes 
converted 

 6  128 

MIDI Stream 
Latency 

Amount of time between signal 
reception and note output 

ms  100 10 

Device 
Temperature 

Long-term temperature. Must not 
require active cooling. 

℃  30  

Preamp Gain Range of values for linear gain of 
adjustable preamp stage. 

V/V 1.2 600  

Length Length of device. inch  12  

Width Width of device. inch  9  

Height Height of device. inch  6  

Weight Device must be light-weight for 
portability. 

lb   0.5  

¼” Audio Input 
Voltage 
Range 

Voltage range for the ¼” audio input. V -2.5 +2.5  

XLR3 Audio 
Input Voltage 
Range 

Voltage range for the XLR3 audio input. V -2.5 +2.5  



 

 
 

High-pitch 
Sample Rate 

Sample rate for mid range to treble 
range voices. 

kHz 2.637   

Low-pitch 
Sample Rate  

Sample rate for low range to bass 
range voices. 

Hz 390   

Input 
Impedance 

A high input impedance is typical for 
musical devices. 

kΩ 5   

Note Accuracy The number of correct notes detected 
divided by the total number of notes 
detected. 

 0.8  1 

Note Minimum The lowest frequency that the device 
will be able to detect. 

Hz 82.41  27.5 

Table 2-1: Table of  requirements. 

 
We decided on 6 note polyphony so that the device can capture each voice in a standard, 
six-stringed guitar. We are not limited to just the six strings of a guitar, however. This six 
tone limit should also apply to how the device captures other instruments such as six 
musical tones of a piano or up to six singers singing into a microphone input. A number of 
the design choices we have made are based on this device being compatible with an 
electric guitar (6 note polyphony, quarter-inch bypass). A device such as the L.R. Baggs 
Para Acoustic D.I. is an interface device for use with acoustic instruments that can be 
used on its own or on a pedal board. Its dimensions are approximately 6” by 3.5” by 1.5”. 
These kinds of dimensions would be ideal, but we are allowing a slightly larger form factor 
for our minimum acceptable prototype. Delay tends to become noticeable at around 30ms 
[citation needed] , so we should aim to keep latency below that, ideally at less than 10ms, 
however for our minimum acceptable prototype we are aiming for a latency under 100ms 
as a proof of concept. Our goal is to convert six notes simultaneously so that this device 
will be fully compatible with a standard six string guitar. We want MIDI and USB output for 
compatibility with the widest range of devices. Simply having a MIDI output jack alone 
would be enough to use the device with other MIDI devices, such as digital synthesizers 
and audio interfaces, but including the USB port removes the need for an audio interface 
and enables connectivity to a computer. The device will be able to act as a USB compatible 
MIDI controller. We want the dimensions of the device to be small and the weight to be 
light so that it can be portable and useful for live performance applications. If we exceed 
the specified dimensions, we risk the box being too big to gig or inconvenient to place on 
a desk for studio use. We need our note recognition time and note translation time to be 
fast in order to reduce latency and make the device usable in a live performance setting. 
Even in a studio setting, it would be inconvenient to work with a device with too much 
latency. For both applications, low latency is preferable. 
 
We need our components to not generate much heat so that we do not need to implement 
a fan which would add unwanted audible noise. This also applies to both live performance 
and studio recording settings. A fan would generate noise that the audience might hear at 
a live performance and that a microphone might pick up in a recording studio. We need to 
regulate the voltage of both the quarter-inch and XLR3 inputs to make both of them usable. 
Our implementation of our input jacks must comply with accepted standards for 
transmitting audio signals through them. We need our sample frequency to be sufficiently 



 

 
 

high to capture the highest relevant frequencies of the input signal. Too low of a sampling 
frequency (below Nyquist rate), and we will not capture the signal correctly, potentially 
ending up with aliases that could cause problems in our analysis. Too high of a sampling 
frequency and we risk slowing down the DFT and introducing unwanted latency. We need 
a high input impedance to use electric instruments without introducing “tone suck” to the 
sound. Tone suck is an informal term used by musicians and music technology companies 
to explain the attenuation of high and mid frequencies in their signal as it runs through a 
long cable or other hardware. In this case, the tone suck can be caused by the loading 
effect which would diminish our signal by demanding too much power from it. [1] Finally, 
we need to keep the device under budget. It would be ideal to not spend more money than 
we need to on our project. That would be bad for the team because it would mean more 
money out of our pocket and it would be bad for any potential consumer because it would 
mean a higher price tag on the final product. 
 

2.4. House of Quality Analysis 
 
In the case of the Polyphonic Analog to MIDI Converter, many of the engineering 
requirements are directly related to the customer requirements. Both the engineers and 
the customers want low cost, low latency, and high accuracy. In addition to this, the 
engineers want high processing power and frequency bandwidth while the customer wants 
low power consumption and good portability. 
 

 
 

Figure 2-1: House of  quality 

 
Development, manufacturing, and consumption all benefit from lower cost. The cheaper 
the parts, the easier it will be to acquire them for prototyping and testing and the cheaper 
it will be for the end customer. Unfortunately, almost every other requirement is at odds 



 

 
 

with low cost, leaving power consumption as the only requirement that is independent of 
cost. Thankfully, cost is the simplest requirement to manage in the context of the senior 
design course; if something is not in the budget, simply increase the budget as we are not 
beholden to any sponsors or other constraints. We acknowledge this will not always be 
the case in projects moving forward, but for now we will take any advantage we can. 
 
Possibly the most important relationship for the function of the device is that between 
latency and accuracy. They have a strong correlation with one another, as an increase in 
latency will allow room for an increase in accuracy and a decrease in latency will provide 
less time for an accurate algorithm. If latency was not an issue, we could implement the 
most accurate algorithm possible without worrying about how long it takes to execute, but 
because this device has to work in real-time for music performance many concessions 
may need to be made in the DFT, filtering, and note detection algorithms in order to 
manage latency. 
 
One of the most important accessibility features of this device is its variety of inputs and 
outputs, including a MIDI out and a USB out. This is to make it compatible with as many 
other MIDI devices and platforms as possible though it may impact cost due to the 
additional hardware required, latency due to the additional step in the signal chain of the 
USB controller, and accuracy as a result of latency being affected. The additional 
hardware is likely to be a simple integrated circuit used to control the USB port, so it will 
not be very expensive or very time consuming to implement, so impact on cost should be 
minimal. Impact on latency should also be low as indicated by the single arrow of 
correlation in the house of quality table. With appropriate planning and part selection, MIDI 
compatibility should not be too difficult to achieve. 
 
Low power consumption is an important feature for both usability and compatibility. We 
want to be able to build this device with no active cooling component. Adding a fan to the 
design can add audible noise which might be heard by those nearby in a performance 
setting or picked up by a room mic in a studio setting which is unacceptable in a music 
performance environment. The device will be able to accept a microphone input with 48V 
phantom power, meaning that a sensitive condenser microphone may be used as the 
input. If our device is creating audible noise that is being picked up by that microphone, 
then we have failed to deliver a useful product. Additionally, we are constrained on our 
power usage. In order to make it easy to power, we will try to implement two different 
powering options: DC 5V, 0.5A USB power and DC 9V power. USB is standard for use in 
a production setting where you will have a computer nearby and 9V will be useful in 
situations where you have the device on a pedal board with a typical 9V power supply and 
are cabling to a computer or other MIDI device that is not nearby. 9V DC power is a 
ubiquitous power supply voltage for music devices with current output ranging from 100mA 
to 1500mA. A 9V, 300mA power supply will supply an amount of power that is roughly 
equivalent to what the USB port will be able to supply, falling safely within the range of 
acceptable values for our target demographic. We will have to consider in our power 
budget the many parts used in our design and whether the amount of power they consume 
is worth the reduction in latency or increase in accuracy, processing power, or bandwidth 
that they provide. 
 
Like power usage and cost, the portability requirement may negatively affect all our 
engineering requirements. If we find ourselves running low on space, we may need to 
design our PCB with more layers for more traces which costs more money. We may need 



 

 
 

to use suboptimal parts if they take up less space on our PCB, which could impact our 
latency, processing power, accuracy, and bandwidth. We want a powerful microcontroller 
or microprocessor to carry out our fast Fourier transform and filtering algorithms to make 
them fast and consistent. More powerful parts may come at a higher cost, consume more 
power, and may even be physically larger on the PCB than other options but these will 
likely be the most impactful parts in the design on latency and accuracy so they should be 
prioritized over other parts affecting the cost, power, and portability constraints. 
 
Finally, the frequency bandwidth requirement regards the bandwidth of the input to the 
device. Ideally, a device like this could accept input signals with frequencies across the 
range of human hearing. This is, however, not realistic for a project of this scale, so we 
are aiming for a bandwidth that covers the range of notes that is playable by a standard, 
six-string guitar: 82 Hz to 1.32 kHz. This range will cover many other instruments as well, 
encompassing most notes on the piano, most notes that are sung, etc. The most obvious 
constraints on input bandwidth is the ADC and the DFT. The  ADC must have a sample 
rate of at least the Nyquist rate of the input (twice the highest frequency) in order to 
accurately capture it in digital form. However, the higher the sample rate, the more time-
consuming it will be to perform the fast Fourier transform and filtering processes. We will 
have to find a sweet spot for the sample rate where it is high enough to capture what we 
need but low enough to not be too taxing on the microprocessor / microcontroller. We will 
also have to design clever fast Fourier transform and filtering algorithms that will allow us 
to take advantage of a high sample rate without compromising our real-time capabilities. 
 

2.5. Device Overview 
 
In summary, our final design will accept an analog input from ¼” or XLR3 input (one or the 
other, toggleable) which will be buffered, amplified, and filtered by our preamp stage. This 
prepared signal is then sent to the processor where it is converted to a digital signal and 
an FFT is performed to analyze the frequencies of the signal. This data is processed to 
find the root frequencies of the notes being played and up to six frequencies that cross 
the threshold for what the device recognizes to be a note. Finally, this signal is converted 
to MIDI and delivered to an external MIDI device or computer via a USB or MIDI 
connection.  
 
Additional features include a potentiometer on the faceplate of the device to adjust input 
gain, allowing the user to control the level and prevent clipping of the signal. The anti -
aliasing bandpass filter will be made adjustable via toggle switch for treble frequency, bass 
frequency, or full range to improve performance for specific instruments or voices. The 
analog signal output can also be toggled between a buffered output or an output that has 
been affected by the preamp stage. The device can be powered by both external 9V DC 
power supply and by 5V USB power. A bridge rectifier to protect against and even operate 
with reverse voltage from either power supply. 
 
The prototype demonstrated in the Showcase does not feature the XLR3 input and output, 
the USB connectivity (including 5V from USB), and 9V power. 5V and 3.3V power are 
sourced from external jumper cables instead. 



 

 
 

 
 

Figure 2-2: Overview block diagram. 

 

3. Research Related to Project Definition 
 

3.1. Existing Similar Projects and Products 
 

3.1.1. Sonuus G2M V3 
 
There are two current products made by Sonuus that deal with audio-to-MIDI conversion. 
These products are the G2M V3 and the i2M. Both products are very similar in their 
features but differ slightly in their implementations and hardware designs. The Sonuus 
G2M V3 is the third installment in the line of G2M models created by Sonuus. This device 
is a portable plug-and-play device that can connect to any MIDI device or computer. The 
G2M V3 is a major improvement from the previous versions of itself because it can work 
with any electric guitar along with bass, voice and wind instruments. The previous versions 
of this product only worked specifically for an electric guitar and there was a separate 
product (B2M) that worked specifically for a bass guitar. The device uses a single AA 
battery for power and has an optional 9V DC power adapter that can be used for pedal 
board integration. The device has a 6.35mm mono jack input to connect a guitar, bass or 
microphone and a MIDI output through a standard 5 pin MIDI socket. Some features of 
the G2M V3 include accurate pitch-bend determination, very low latency, built in precision 
tuner to guitar or bass tuning, and long battery life. 
 
A limitation of the G2M V3 is that it can only translate monophonic notes. We would like 
to make a product that is like the G2M V3 but with polyphonic capabilities and some other 
changes in the hardware. We want our device to be powered through USB rather than by 
battery like the G2M. The polyphonic capabilities of our device would allow instruments 
like an electric guitar or an acoustic piano to play chords and harmonies that will be 



 

 
 

converted into MIDI. We will have to develop an efficient algorithm for decomposing the 
instrument signal into individual notes in order to keep the latency low enough for use in 
a performance or production setting. 

 

3.1.2. i2M musicport 
 
The i2M musicport is a similar product created by Sonuus that has many of the same 
features as the G2M but with some changes in implementation and hardware. Like the 
G2M, the i2M musicport is a plug-and-play device that takes musical audio from guitar, 
bass, voice or wind instrument and converts it to MIDI. The main difference of the i2M 
musicport from the G2M is that it uses a USB interface for power and MIDI output. Since 
the i2M musicport is USB-powered instead of battery powered, it is much smaller than the 
G2M making it more lightweight and portable. The i2M musicport has a high impedance 
USB audio interface that prevents the degradation of the tone of the musical instruments 
being played which is a problem that can arise from using line inputs.  
 
Like the G2M V3, the i2M musicport only supports monophonic MIDI conversion. We 
would like to make a device that is closer to the i2M musicport rather than the G2M. The 
device will be more like the i2M musicport because we would like our product to be USB 
powered as well but also having the option to be powered by a 9V DC barrel jack. The 
main difference between our device and the i2M musicport is that we would like our device 
to support polyphonic MIDI conversion. Other differences are that we want our device to 
have both an output for both USB and MIDI cable so that our device can work with as 
many MIDI devices as possible.     
 

3.1.3. Beat Bars: A2M Converter 
 
The A2M converter is a free software developed by Beat Bars that is used for real time 
Audio to MIDI conversion. This software can convert guitar real time audio to MIDI through 
a line input or other types of analog musical instruments through a microphone. This 
application works with any instrument that receives MIDI. This software is currently in beta 
so it is still being worked on and improved. Since this software is free it is a good option 
for people who may not be able to afford plug-in products such as the Sonuus devices or 
other costly Audio to MIDI converter softwares. This application is not a plug-in such as 
the Sonuus devices or the device that we are creating. One limitation of the A2M converter 
software includes the lack of polyphonic note detection. The device that we are developing 
should improve on this and should be able to recognize polyphony or multiple notes played 
at the same time and translate it to MIDI. Other known limitations of the A2M converter 
include lack of pitch bending feature and that only the first default audio-in channel of the 
audio interface is supported. Pitch bending could be a stretch goal for our design but is 
not currently one of the requirements for our device. 
 

3.1.4. IntelliScore Polyphonic Audio to MIDI Converter 
 
The IntelliScore Polyphonic Audio to MIDI converter is a software created by Innovative 
Music Systems Inc. The IntelliScore music recognition software can take prerecorded 
polyphonic music that is in WAV or MP3 format and convert it to a MIDI file that contains 
the notes played, chord names and overall key. There are many features that come along 
with the software such as multiple instrument recognition including drums, removal of 



 

 
 

vocals from music files, and music transcription. The software makes it possible for the 
user to take polyphonic music from an MP3 and use it in MIDI. This software is one of the 
only polyphonic audio to MIDI converters that can be found when looking online. The 
IntelliScore Polyphonic Audio to MIDI converter can be purchased for about 100$. 
 
This software has one main feature that we would also like to implement in our hardware 
device. This feature is the polyphonic audio to MIDI conversion. The main limitation of this 
product is that it is only able to convert prerecorded music audio to MIDI. This makes the 
product useless for live music transcriptions to MIDI. If someone wants to use the 
Intelliscore product to transcribe music that they are playing they would have to record the 
music and convert it to an MP3 or WAV file and then use the product to convert it to MIDI. 
We want our device to be able to convert live music into a MIDI file or stream which would 
cut out the middle of recording the music and converting to MP3 which would take time. 
With live music audio to MIDI conversion our device would be usable during a live 
performance which would be impossible using the IntelliScore product. Another difference 
between this product and our device is that our device will be a physical hardware plug-in 
device, while the IntelliScore product is software that must be downloaded on a computer 
which means it has very limited portability.   
 

3.2. Relevant Technologies 
 

3.2.1. Analog Signal Filtering 
 
Filters for AC analog signals attenuate different frequency ranges found in the signal. In 
the input section of this device, we want to attenuate unnecessary high and low 
frequencies before converting the signal from analog to digital. This will help to clean up 
the signal and make it easier to process digitally. To filter just the high and low frequencies 
we will need some variation of a bandpass filter. There are active and passive filters, active 
having power consumption and typically an amplifier, while passive requires no power and 
can only have a voltage gain of less than 1. For this application we will investigate active 
filters as that will provide more versatility with the types of filters we can choose from as 
well as keep our signal voltage gain from dropping. Since we are processing audio, it is 
most ideal to try and maintain the most accurate phase and frequency response outside 
of the attenuated high and low frequencies. To do this we would prefer a sharp cutoff as 
well as a low Q factor to keep the frequency response as flat as possible. Another factor 
to keep in consideration is the power consumption since the filter will be active, although 
this will likely be negligible for a low voltage microphone or instrument input. Figure 3-4 
shows different active filter types as described by a tutorial on globalspec.com. 
 

 
 

Figure 3-4: List of  f ilter characteristics.[2] 



 

 
 

 
While the Bessel filter has a more linear phase response, it has a very gentle cutoff which 
will not filter out as many frequencies as we would like. On the other hand, Butterworth 
filters have a very steep cutoff and a flat response in the frequencies that aren’t attenuated. 
In our application it seems most ideal to give up a bit of the phase response and in turn 
have a better frequency response. This is because we are analyzing the frequencies using 
a relatively large set of samples with Fourier transform and so the phase should not be 
very important. Because of this, it would be best to use a variation of a Butterworth 
bandpass filter. Supported MIDI frequencies cut off at ~12,500Hz so our upper cutoff 
frequency should be about 15,000Hz to give a little room for roll off before the cutoff as 
well as a lower cutoff frequency of about 20Hz so that lower bass frequencies of 30-40Hz 
can be detected. 
 

3.2.2. Analog Amplification & Mixing  
 
We need amplification before our signal goes into the analog to digital converter to get the 
signal within the input specifications of the device. Amplification can also provide buffering 
and filtering applications that will be useful. For our purposes, the most practical way to 
amplify our signals is to use operational amplifiers. Operational amplifiers typically are a 
differential amplifier with feedback which will make it versatile and easy to configure for 
different purposes. Operational amplifiers also can come in IC packages with many 
amplifiers in one chip. This will be ideal as it will allow us to perform many functions with 
one IC in a relatively small surface area on our PCB. 
 
With several op amp-based circuits, we can do filtering, amplification, buffering, and signal 
splitting [4]. Op amps are easily configured to form as a signal buffer by simply connecting 
the output to the negative terminal of the op amp input. This causes the voltage differential 
to be 0 so no amplification occurs. This allows us to isolate the input and output, so the 
load doesn’t affect the input and gives us more ideal impedances to our circuit. This should 
be very useful for splitting and mixing signals. The implementation of this signal splitting 
is called a distribution amplifier. This means it recreates copies of the original input signals 
in the outputs [3]. Op amps also will be useful for our active analog filters. Even though 
our filters will only need to cut out frequencies and not amplify, the op amps will allow us 
to filter without hurting the circuit impedance by adding resistors and capacitors for 
filtering. Most importantly, op amps can function as our form of amplification of course. In 
its most simple form, an op amp can be configured to amplify by adding a voltage drop 
over the feedback loop which causes there to be a voltage differential in the inputs. The 
op amp by design then amplifies based on that voltage differential. This makes it very easy 
to control exactly how much the op amp amplifies the signal as well as what frequencies 
it amplifies. Using this, we may even be able to both amplify and perform our filtering in 
the same op amp circuits, although it may be better to isolate them. 
 
Another use for our op amps would be as a comparator. We want to make sure we don’t 
clip the input of our analog to digital converter by going past it’s input voltage range. To 
prevent this, we can set a threshold in the analog input that if the input passes, it can shut 
off or reduce the input and then turn on an LED to notify the user that their input is clipping. 
This will be useful because it will protect the ADC as well as notify the user so they can 
adjust the gain on the preamp until it no longer clips. A comparator can be made in a few 
ways with an op amp. One way is to have the differential amplifier set up with an open 
loop, always making the gain maximum. This makes it so that when the input is greater 



 

 
 

than the reference voltage, the output will be the difference between the input and 
reference multiplied “infinitely” until it hits Vcc+. For us this is 5 volts which will be perfect 
for powering an LED. Then when the input is below the set threshold, the output will 
multiply the same way as before but it will be negative so it will swing down to the low rail 
which we will be using ground for, making the LED not have any power. Simplified, the 
comparator basically acts as a switch allowing us to see if the voltage is above the clipping 
threshold we set, and then turns on an LED as a result.  
 

3.2.3. Analog-to-Digital Conversion and Sampling 
 
Analog to Digital conversion is the process of changing an analog signal into a digital 
signal. For our device we will be converting analog sound signals to digital signals that 
can be converted to MIDI. This process is usually done by with either a dedicated Analog 
to Digital conversion (ADC) chip but this process can be done with an integrated ADC one 
within a microcontroller or digital signal processor. A typical ADC samples an analog signal 
on either the falling or rising edge of a sample clock [5]. During every cycle, the ADC 
measures the analog signal voltage and converts it to an approximate digital value. 
 
There are two main factors that contribute to the accuracy of the analog to digital 
conversion which are bit rate and sampling rate. Increasing the bit rate of an ADC 
improves the precision of the approximations in its digital output [5]. The sample rate is 
important due to the Nyquist sampling theorem. The Nyquist sampling theorem states that 
the sampling rate of the ADC must be at least twice as fast as the highest frequency 
component of the waveform being sampled. If the sampling rate is not at least equal to 
twice the highest frequency component, there can be inaccuracies in the sampling due to 
aliases. The minimum sampling rate that we will need to use for the analog to digital 
conversion for our device will depend on the frequency range of possible musical 
instruments that will utilize our device and the maximum musical frequency. The maximum 

note frequency used in MIDI is 12543.854 Hz. We want our device to be able to be used 
with multiple musical instruments including guitar, piano, voice and more. These 
instruments have varying frequency ranges. Table 3-1 shows the frequency ranges of 
some musical instruments and MIDI notes. 
 

Musical Instrument Minimum Frequency (Hz) Maximum Frequency (Hz) 

Guitar 82.41  1318.51 

Piano 27.5  4186  

Bass 41 262 

Human voice 87 1047 

Flute 262 1976 

Trumpet 165 988 

Clarinet 165 1568 

MIDI 8.1758 12543.854 



 

 
 

 

Table 3-1: List of  f requency ranges for various instruments. 

 
All of the common musical instruments listed in the chart have frequencies that are below 
the maximum frequency of the MIDI note range. This means that the ADC part of our 
device will need to be able to sample at 25087.708 Hz, which is double the max MIDI note 
frequency, to support all possible analog instruments; if there are musical instruments that 
play notes at a higher frequency than the highest MIDI note frequency it would be 
irrelevant for the uses of our device since MIDI would not have a note available to play in 
that frequency. For this project, we are focused on making this device work best with a 
guitar, so the desired sample rate will be at least 2.637 kHz. 
 

3.2.4. Processors 
 
Processors are electronic circuits that manipulate data from various sources. They are 
typically used to control other circuits or to perform calculations using binary data. There 
are many kinds of processors available, and they can be grouped into categories 
depending on their purpose and functionality. There are microprocessors, which are 
mostly focused on manipulating binary data and controlling external circuits and devices, 
and they are typically high-performance integrated circuits (ICs) with high power 
requirements. There are systems-on-chip (SoCs) and microcontrollers (MCUs), which are 
low-power alternatives to a microprocessor with more functionality and other systems 
included in the chip, like random-access memory (RAM) or a liquid-crystal display driver.  
There are also processors dedicated to specific tasks like graphics processors, digital 
signal processors (DSPs), and ASICs. There is also the field-programmable gate array 
(FPGA), which allows its physical circuitry to be programmed. 
 
What we require for our device is a processor that is capable of performing a fast Fourier 
transform (FFT) and other digital filtering schemes within a limited amount of time, includes 
the peripherals we need within the chip, is easy to program and test, and consumes low 
power. The processor we choose needs to have internal RAM and writable program 
memory, an ADC, and a USB interface or support for an external one. The processor is 
also responsible for sending the MIDI stream serially through a USB or MIDI port. The 
MIDI standard for the physical interface requires a bit rate of 31.25 kHz, so the 
microcontroller must be capable of this bit rate while also performing other tasks. Since 
the MIDI physical and application layers are simple, a MIDI output can easily be 
implemented with just the microcontroller and some basic active and passive components. 
Since USB is a more complex standard, we would need either a dedicated IC that the 
processor supports that interfaces with USB or a processor that is capable of interfacing 
with USB directly. 
 
From our experience with the MSP430 MCU, we know that MCUs can come with ADCs, 
RAM, program memory, and a serial communications system on-chip, so we will consider 
MCUs as a category of processors to select from. We will also consider using a DSP since 
it is specialized for the kind of work the device must do, and some DSPs have the 
peripherals we need included. We will not use a microprocessor since it would use too 
much power, and we will not use an FPGA since they are relatively expensive and require 
much more low-level programming. We will also not consider using an SoC because they 
typically have much more peripherals than we need, consume a medium amount of power, 
and are relatively more expensive than a microcontroller. 



 

 
 

 

3.2.5. Digital Signal Processing 
 
Digital signal processing is the act of performing operations on discretely quantized 
signals. This means that rather than a continuous waveform, the signals are turned into 
discrete voltage levels and processed using discrete logic rather than continuous such as 
calculus. Having a discrete signal allows you to represent it in binary which allows you to 
interpret signals with traditional computer architectures. These operations can be anything 
from interpreting the signal and encoding it into a file or data type or using it as input for 
machines or programs. The signals are often filtered or modified in some way and then 
output from there. Our applications will process the signal in multiple ways. These include 
filtering, FFT to analyze the signal in the frequency domain, amplitude filtering, selective 
frequency filtering etc.  
 
The Fourier transformation is a function that converts a time domain signal to the 
frequency domain and there is a discrete version of it using summation rather than 
integration [6]. This can be implemented in many ways algorithmically, but we will focus 
on a fast Fourier transform algorithm to efficiently perform the transformation in real time. 
Filtering can be done directly by realizing a transfer function in the Z domain using delays 
and other functions. Signals can also be modified more simply in the frequency domain 
and then an inverse DFT can be performed to turn it back into a signal. In our case we are 
converting the signal simply to a MIDI signal so we can work with the signal in the 
frequency domain and change frequencies and magnitudes as needed in an array data 
structure. 
 
Some important characteristics with digital signals are bit depth and sample rate. Sample 
rate refers to the rate at which discrete samples are taken from the analog signal [7]. The 
faster the sample rate the more accurate the interpreted signal, given a large enough bit 
depth. According to Nyquist sampling theorem, the sample rate must be at least twice as 
fast as a frequency to be able to mathematically recognize or interpret the digital 
waveform. This means that for us to recognize the highest frequency in MIDI protocol of 
about 12.5 kHz we need a sample rate of at least 25kHz. This ensures that we can actually 
recognize any frequencies up to the range MIDI protocol can represent. Bit depth on the 
other hand is the amount of voltage level quantization’s [7]. For instance, if there was only 
a bit depth of 1, there could only be 2 volume levels, on and off. A higher bit depth means 
you have a larger dynamic range of the frequencies between soft and loud. When listening 
to audio it is important to have a good bit depth so that all the frequencies are represented 
accurately and reproduce the intended sounds with all their original complexity. Most 
listening applications try to maintain at least a bit depth of 16 which gives 216 or 65,536 
different volume levels for every frequency. In our case, we only need enough volume 
levels to be able to represent any notes in MIDI and possibly slightly more for filtering out 
low volume noise. MIDI has 128 different magnitude levels ranging from 0-127. This 
means that we should have a bit depth of at least 8 bytes per sample to be able to 
accurately represent the magnitude of notes in MIDI. Figures 3-5 and 3-6 show the effects 
of bit depth and sample rate on the digital representation of an analog signal. 
 



 

 
 

 
 

Figure 3-5: The ef fect of bit depth on sampling an analog signal. 

 

 
 

Figure 3-6: The ef fect of increasing sample rate on sampling an analog signal.  
 

3.2.6. Pitch Detection 
 
In music, monophony is a melody that is played by a single instrument or voice that is 
unaccompanied by any other chords or harmonies. An example of this is someone 
humming a tune with no other instrument being played. Polyphony is a melody that uses 
multiple voices or sounds. An example of this would be a choir singing multiple pitches at 
the same time. To achieve pitch detection, the fundamental frequency of the input must 
be found. This is what pitch detection algorithms are used for.  Pitch detection algorithms 
can be done by using either time-domain or frequency domain techniques. 
 

Time-Domain Methods 
 
Analyzing the pitch of an input can be done by using time-domain algorithms. This method 
is done by changing the amplitude of the input in the time-domain and looking for repeating 
patterns in the waveforms to figure out its periodicity to find the fundamental frequency. 
The simplest of time-domain methods is the zero crossings approach. This method is done 
by counting the amount of times that a signal crosses the zero-level reference. Using the 
zero crossings method is easy and inexpensive but does not have great accuracy [8]. 
Noisy signals cause this method to have inaccurate results which means that it would not 
be good to use for polyphonic signals. Another time-domain method is the method of using 



 

 
 

autocorrelation. This method tries to find similarities between the signal and a shifted 
version of the signal. Autocorrelation is defined by the equation in Figure 3-7.  
 

𝑦(𝑛)  = ∑ 𝑢(𝑘)𝑢(𝑘 + 𝑛)

𝑀

𝑘=1

 

 
Figure 3-7: Autocorrelation def inition. 

 
This technique has a limited pitch range and works best at low to mid frequencies. This 
method can become very expensive due to the use of numerous add-multiply operations. 
Maximum likelihood is another method that can be used in the time-domain for pitch 
detection. Maximum likelihood is done by taking a signal and breaking it up into N 
segments that are of length τ. These segments are then added together. The segments 

add coherently when τ equals τo. Doing this gives the function shown in Figure 3-8. [8] 
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Figure 3-8: Maximum likelihood function. 

 

Maximizing this function gives τo which can be used to find the fundamental frequency for 

pitch detection.[8]. The time domain methods shown can be successful in giving accurate 
pitch detection but for the purposes of our device we will need to use a method that utilizes 
the frequency domain. This is because the methods using the time domain will be too slow 
and expensive for making a device that can detect pitches in a live setting or polyphonic 
signal in general 
 

Frequency Domain Methods 
 
Methods using the frequency domain are more complex than the time domain but in 
general are more accurate and faster. All the methods that use frequency domain analysis 
to detect pitch use some version of the discrete Fourier transform (DFT). The DFT is a 
discrete version of the Fourier transform of a continuous time signal that uses a finite sum 
instead of an infinite integral which would be used in a continuous time Fourier transform. 
The definition of the DFT is shown in Figure 3-9. 
 

 
 

Figure 3-9: Discrete Fourier transform.[9] 

 
This equation requires no calculus in its computation unlike the continuous Fourier 
transform that uses an infinite integral. DFT is needed for digital signal processing 
because the spectra that are analyzed in digital signal processing are sampled which 
makes them discrete rather than continuous. For the purposes of pitch detection, the best 



 

 
 

version of the DFT to use is the Fast Fourier Transform (FFT). The FFT is an efficient 
implementation of the Discrete Fourier Transform that will be used for the pitch detection 
algorithm for the device. 
 

3.2.7. Fast Fourier Transform 
 
A fast Fourier transform (FFT) is an algorithm that calculates the discrete Fourier transform 
(DFT) more quickly and efficiently. As mentioned before, the DFT transforms temporal 
data into frequency data in a discrete manner. This makes it easy to analyze the frequency 
makeup of the signal. The DFT can be calculated as it is defined, but its run-time would 
be O(n2) because of the summation of N terms and the use of this algorithm to calculate 
X for all k from 0 to N - 1. All known FFT algorithms have a run-time of O(nlogn), which is 
a considerable improvement.[10] The FFT algorithm we plan to implement is called the 
Cooley-Tukey FFT algorithm. It relies on N being a power of two and uses this property to 
reduce the number of complex additions and multiplications.[11] By expanding the sum, 
grouping terms with even or odd multiples of n in the exponent, factoring out like terms 
from each group, and repeating, the DFT will look something like Figure 3-10. 
 

 
 

Figure 3-10: An example binary tree representing X(k) for N = 4. 
 
This is a binary tree with log2 N levels, where, at each node, the node’s left child is added 
to the product of the node’s right child and a coefficient, where s is the current depth within 
the tree starting from 0 at the bottom, denoting the stage of the calculation. At the deepest 
level, the nodes are equal to values of x(n), where n corresponds to the directions taken 
to reach that node. A left turn represents a 0, and a right turn represents a 1, starting from 
the root node. The order is interpreted such that the last turn represents the most 
significant bit (ex. left-right-right = 1102 = 6). This is also known as bit-reversed ordering, 
because the new order reflects the previous one, but with the bits of the indices reversed. 
After doing this, the run-time would still be O(n2) because, for any N, the total number of 
complex additions and multiplications has only decreased by 1. The number of operations 
can further be reduced by exploiting the periodic nature of the coefficient.[12] This 
coefficient is shown in Figure 3-11. 
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Figure 3-11: The coef f icient used in the FFT. 
 
In the case of N = 4, the coefficient in the second level (s = 1) can take on two unique 
values: 1 when k is even, and -1 when k is odd, for any k. The coefficient in the first level 
(h = 0) can take on four unique values: 1, i, -1, and -i, for any k. Essentially, for each stage, 
each node in the level needs to be calculated only 2s times to get X(k) for all k.[9] Figure 
3-12 shows a graph of the entire FFT for N = 4. 
 

 
 

Figure 3-12: Example FFT graph for N = 4. 

 
This is how the Cooley-Tukey FFT algorithm works. The reordering of the input data 
simplifies the implementation and allows the entire calculation to be split up into blocks of 
“butterfly” operations.[12] Figure 3-13 shows a visual representation of a butterfly 
operation. A butterfly operation takes a left input and a right input. 
 

 
 

Figure 3-13: A visual representation of  a butterf ly operation. 

 
It first multiplies the right input by the coefficient, then puts the sum of both inputs in the 
left output and the difference between both inputs in the right output. Each stage has N / 
2s+1 sets of 2s unique butterfly operations, where uniqueness refers to the coefficient used 
in the operation.[12] It is important to note that the number of stages is equal to log2 N. 
Figure 3-14 shows a graph of the general form for an FFT. 



 

 
 

 

 
 

Figure 3-14: A visual representation of  an FFT. 
There is another optimization that can double the speed of our FFT implementation. Since 
our discrete signal only has real values, the summation can be split into two summations, 
one for cosine and another for sine.[13] This eliminates all complex math since the real 
and imaginary parts can be calculated separately without needing each other. To 
implement this optimization, each complex coefficient within every butterfly operation is 
replaced by a sine or cosine of the argument of the complex coefficient, depending on 
which summation is being processed. 
 

3.2.8. Enclosure, Shielding, and signal Interference 
 
Signal interference proves to be much more of a problem in analog circuits, especially 
audio, as compared to digital circuits. If noise causes a voltage level in a digital circuit to 
fluctuate, there are only 2 voltage levels so the interference would have to be very large 
to read a 0 as a 1 or vice versa. When processing analog signals and audio, noise can be 
picked up and amplified or distort a signal. In some audio applications like speaker 
systems or studio recording, noise can be a large issue. In our case, noise will not be 
nearly as important to avoid since most noise is in high frequency ranges beyond that we 
will be detecting, but a high frequency can be interpreted as a lower frequency harmonic 
by the analog to digital converter if the voltage is high enough. There can also be lower 



 

 
 

frequency noise that could potentially be detected as a note or mess up the detection of 
notes that we need to avoid. 
 
Noise and interference can come from many sources. Some of these include 
Electromagnetic waves like radio waves, digital signal lines like clocks, improper 
grounding which can cause ground loops, and power supply ripple [14]. Each of these can 
typically cause different types or amounts of interference but precautions should be taken 
to minimize all these sources of noise. Outside interference from EM waves can be 
minimized greatly through EMI-RFI shielding [15]. This simply involves physically encasing 
the device with an electrically conductive material to reflect and absorb EMI. For this to be 
fully effective, the conductive material must be grounded so that it can provide a path for 
the interference to go. Without this it could build a voltage on the conductive material and 
cause interference. We must ensure that the shielding has a very low impedance path to 
ground so no voltage can build up. This can be ensured by avoiding connectors with any 
measurable impedance and sticking with a direct connection to ground with low 
impedance such as a solder joint. The simplest ways to protect the device with shielding 
would be to use a conductive enclosure or to use a non-conductive enclosure with a 
conductive lining or exterior layer. This could be achieved with an aluminum enclosure or 
plastic enclosure lined with copper coated shielding tape for instance. 
 
Other interference that can occur include capacitive and inductive coupling. Capacitive 
coupling is when there are fluctuations in the voltage on a line and it generates an electric 
field that can affect other lines. This can be largely avoided by shielding on the lines that 
are most likely to cause issues. Most of our lines will have low voltages and will not cause 
significant capacitive coupling but if we have any AC power input, it is best we isolate 
those from signal lines and shield them with conductive material to prevent them from 
causing interference. Inductive coupling occurs when there is a current in a line and the 
flow of charge generates a magnetic field. Fluctuations in the magnetic field from changes 
in the flow of charge can induce currents into other wires or lines. Magnetic fields can go 
through normal conductive shielding so other measures have to be taken to prevent 
inductive coupling. One of the simplest ways to reduce this is to separate any lines most 
likely to cause inductive coupling from other lines. This would also most likely be our power 
lines so we should attempt to isolate power from signal lines as much as possible in our 
design. Also, another way to reduce inductive coupling is to reduce loop area which can 
be done by twisting pairs of cables, like our power and ground. This reduces the magnetic 
field generated by the loop and as a result the inductive coupling. 
 
Some noise can come from grounding issues. Ideally ground is a perfect reference voltage 
with no fluctuations but doesn’t always present itself that way. If you ground from different 
paths to different points, there will always be different impedances and voltage levels 
along those paths, even if all the paths connect to ground. If the grounding scheme is 
made in a way that causes differences in voltages between ground nodes, there can be 
current between nodes on the ground line and noise in the circuit can occur. This is called 
a ground loop. One of the most common ways to attempt to reduce issues like this is a 
signal point grounding scheme. This is also sometimes called a star grounding scheme. 
This means that all paths to the ground go to a single physical point, forcing every line to 
end at nearly the same voltage [16]. The downside of this is that it can require a lot of extra 
wiring or pcb traces. Figure 3-15 shows two different grounding schemes. 
 



 

 
 

Lastly, there can be interference between analog and digital lines. This occurs mostly 
through capacitive coupling as described above. This is a common issue with circuits that 
include both analog and digital signals such as ours. Analog signals are particularly prone 
to capacitive coupling from digital signals. This is because digital signals change voltage 
very fast with a high slope and that causes a stronger electric field to be generated. Our 
device will likely have many different digital signal lines throughout and only a few analog 
signal lines in the input section before digital conversion. This means we should attempt 
to isolate the analog signals from the digital signals as much as possible. One of the most 
common culprits of capacitive coupling from a digital signal is the clock signal. This can 
change very rapidly and cause a large amount of noise. One way to shield the analog 
signals in the PCB is to put a ground path or layer between the analog and digital paths 
for coupled or induced noise to travel through. 
 

 
 

Figure 3-15: A diagram showing dif ferent grounding schemes. 
 

3.2.9. DC-DC Conversion 
 
To power our device, multiple DC-DC converters will need to be used. DC-DC conversion 
is a type of circuit that converts one DC voltage to a different one. Most electronic devices 
require DC-DC conversion because of different voltage requirements throughout their 
designs. There are three types of DC-DC converters which are Buck converters, Boost 
Converters and Boost-Buck Converters. Each of these DC-DC converters are a type of 
switch mode power supply circuit which is a circuit that uses semiconductor devices for 
switching methods to get a required output voltage rather than using a typical linear 
regulator. A Buck Converter or Step-Down Converter converts a DC voltage input to a 
lower DC voltage output. A Boost Converter or Step-up Converter converts a DC voltage 
input to a higher DC voltage output. The last type of DC-DC converter, the Boost-Buck 
converter is a circuit that can switch between being used as a boost or a buck converter. 
For our device we will need both boost and buck converters. A boost-buck converter will 
not be needed because there are no parts of our system that will need a voltage that 
varies. 
 



 

 
 

Boost Converter 
 
There is only one boost converter that will be needed for this device; it is a 5 Volts  to 48 
Volts DC-DC converter. This DC-DC converter is needed because we want our device to 
be able to supply 48 Volts of phantom power. This is a desirable feature of our device 
because 48 Volts phantom power is the most used power supply used for condenser 
microphones which would be used by users of our device to record voice or other 
instruments to transmit to MIDI. The 5 Volt input would be coming from either the USB 
which supplies 5 Volts regularly or from the 9 Volt DC barrel jack input that has been 
converted to 5 volts by the 9V to 5V DC-DC converter.  
 
The boost converters that we use need to step up voltage while also stepping down current 
so that the circuit does not have a power output that is too high. Common configurations 
of boost converter circuits utilize different types of semiconductor devices such as diodes 
and transistors and at least one element is used for energy storage such as a capacitor 
or inductor [17]. Boost converter circuits usually work by switching the circuit on and off 
which changes the duty cycle of the circuit. The configuration of the circuit results in the 
steady state output voltage equation of Vout = 1/(1-D)*Vin, where D is the duty cycle which 
is the ratio of time that the circuit is on and the total time that the circuit is on or off [17]. 
This can be seen in the equation D = ton/(ton+toff) [17]. This means that the output voltage 
can be regulated by controlling the duty cycle. Based on the equation the output voltage 
will always be greater than the input voltage which is what makes it a boost converter. 
 

Buck Converter 
 
We will need two buck converters for our device. One buck converter that will be needed 
for the device is a 9V to 5V DC-DC converter. This DC-DC converter is needed because 
we want our device to have the option to be powered by a 9V DC barrel jack. This is a 
desirable accessory for our device because a negative center DC barrel jack is a very 
common power standard used in music technology for performance so we want to provide 
this option of power supply to users of the device that want to use the device on stage. 
Since we also want to give the user the option to power the device through USB, we need 
to convert the 9 volts of input voltage from the DC barrel jack to 5 volts which is the voltage 
that would be coming from a computer if it was being powered by USB. The other buck 
converter that we will need is a 5V to 3.3V DC-DC converter. This DC-DC converter is 
needed to convert the 5 volts from the USB or 9 to 5 volt converter to 3.3 volts to power 
the microcontroller or processor we are using. 
 
Buck converters use the same parts as boost converters but just configured in a different 
way to produce a different result. Like in the boost converter circuit, the buck converter 
circuit uses a semiconductor device like a BJT transistor or MOSFET as a switch and will 
usually also utilize diodes, capacitors and inductors [17]. The buck converter does not 
have the same problem of trying to keep the output current low since the output voltage 
should be lower than the input meaning that having a high power output should not be a 
problem. Like the boost converter circuits, buck converters usually work by switching the 
circuit on and off which changes the duty cycle of the circuit. The steady state output 
voltage of the buck converter is given by the equation, Vout = D*Vin, where D is the duty 
cycle [17]. This guarantees that the output voltage is less than the input voltage because 
the duty cycle must always be less than one. 
 



 

 
 

Power Multiplexing 
 
The device has two ways of supplying the main power needed for the device. These 
methods are either through 5V USB or 9V DC barrel jack which will be converted to 5 Volts 
through DC-DC conversion. There will need to be a logic circuit built to determine whether 
power will be supplied to the device from the 5V USB or 9V barrel jack. This part of the 
device will be needed to supply power to other parts of the device such as the MCU. Also, 
this part of the device will need to be able to supply 5 volts for the 5V to 48V DC-DC 
converter used for phantom power supply. 
 
To make this logic circuit, we will need to make a type of switching circuit that can switch 
between which supply voltage is being used. When the 5V USB is plugged in, the 5V from 
the 9V barrel jack should be disconnected and when the 5V from the 9V barrel jack is 
connected the 5V USB should be disconnected. If both inputs are plugged in at the same 
time only the 5V USB part of the circuit should stay connected. We made this decision 
because using the 5V USB part of the circuit wastes less power than using the 9V barrel 
jack part of the circuit. There are multiple ways to implement this switching circuit. Two 
possible ways to build a switching circuit that will be explored are using discrete parts like 
diodes and MOSFETs or using an integrated circuit. Using discrete parts to build this 
switching circuit can become complicated and will increase the space needed for this part 
of the power design. Using an integrated switching circuit will make this process much 
simpler and will reduce the footprint of this part of the design. Using diodes for switching 
is very cheap and simple. An example of this type of circuit is shown in Figure 3-16. The 
drawback of using diodes to get this done is that there will be around a .6V drop in voltage 
from the diode which would lower the output voltage we want from this circuit. A Schottky 
diode can be used to reduce this voltage drop, but there would still be a voltage drop of 
around 300mV. We do not want this voltage drop so we will not be using diodes for the 
switching logic in our design. 
 

 
 

Figure 3-16. Simple diode switching circuit 
 
Another option for the switching circuit would be to use MOSFETs. Using discrete 
MOSFETs for the switching circuits fix the dropout voltage problem but brings added 
complexity to the design. This would need a lot of space to design which could potentially  
increase our PCB cost. The best option for our switching circuit would be to use an IC. 
This would be more expensive than using Schottky diodes but would reduce the voltage 
drop significantly. The types of ICs that we would need to use for this application are called 



 

 
 

ideal diodes or ORing MOSFET controllers. These ICs are designed to be able to control 
which input voltage is selected for use on a load and provide protection to power sources 
by minimizing reverse currents that go back into the supply. Using an ideal diode or Oring 
MOSFET controller instead of building a circuit with discrete MOSFET parts would 
significantly reduce the space used as well. When using these types of controllers there 
are two ways to control which voltage is chosen, highest voltage or highest priority. Since 
both input voltages we are using are the same at 5V we will look to make a circuit with 
one of these ICs that makes the highest priority the 9V jack voltage in the case that both 
inputs are plugged in. 
It is possible for our device to be connected to a power source with the voltage reversed 
with ground connected to supply voltage and visa vice versa. This can happen if our 
negative pin barrel jack is connected to a 9V DC supply that is grounded on the shield or 
if the USB port of the device is connected to another USB device that is polarized in a 
nonstandard way. There are two ways in which we can protect our circuit from reverse 
voltage. The first protection technology is to use a single diode on each of our inputs to 
prevent current from flowing the wrong direction. It is a simple solution with the downside 
of the 0.7V drop across the diode. This cost is minimal as the 9V source already must be 
down converted to 5V and the 5V source can simply be amplified back up to 5V after the 
diode. Another downside is that the device will not work under reverse voltage conditions. 
Our second option does allow the device to work under reverse voltage conditions. It is 
the diode bridge rectifier. By putting a rectifier on each of our inputs, we can correct the 
polarity of our voltage source and continue operating. This comes at an increased cost 
since the voltage source sees two diodes in series with the rectifier, whether it is in reverse 
voltage or not, so there is a drop of approximately 1.3V. This, again, is a cost that can be 
compensated for by adjusting our 9V to 5V DC-DC converter to accept 7V to 8V and output 
5V and using a noninverting amplifier to adjust our 5V source back up to 5V after the 
diodes. This option is better, as it allows the device to operate under reverse voltage 
conditions with similar drawbacks to the simple single protection diode. This scheme is 
illustrated in the LTSpice drawing in Figure 3-17. 
In addition to reverse voltage, we must also be concerned with over voltage. It would be 
very easy for the user to accidentally plug in a 12V or 18V power supply into the 9Vin 
barrel jack of the device and it is also possible that the user may plug the USB port into a 
nonstandard USB power supply that runs on some voltage greater than 5V. Two Zener 
diodes can be used to protect against this over voltage condition. By connecting a 9V 
Zener diode across the 9V input and ground and a 5V Zener diode across the 5V input 
and ground, we can ensure that our device does not receive more voltage than expected. 
Further protection is required on each of the power rails. Decoupling capacitors will be 
placed on the power lines close to the pins of our ICs to minimize inductance of the line 
and to provide cleaner, less noisy power for our fast-switching IC signals.  
 

3.3. Strategic Components and Parts Selection 
 
This section is dedicated to explaining our methods for choosing the processor, op-amps, 
DC-DC converters, and USB controller that we had planned for the device to use. It 
includes explanations for each method and comparison tables. In general, we choose the 
parts that satisfy the bare minimum requirements while also allowing the ability to add 
additional features and improvements. 
 



 

 
 

3.3.1. Processor Selection 
 
The main aspects of the processor that are being considered in selection are: throughput, 
memory, ADC support, USB support, serial peripherals, power consumption, and 
programmability. We will choose from two classes of processor: an MCU and a DSP. We 
could use a microprocessor or system-on-chip as our processor; however, they typically 
are more feature-rich, more complex, and more expensive, and we do not require more 
features than what a simpler device provides. Since the processor is the core element of 
our device, it is important that we choose one that gives us room for additional features. 
Just using the bare minimum will hinder us from that and make it harder to implement 
required features and improve existing ones. 
 
Since our choice of processor heavily depends on the FFT, we first need to figure out its 
parameters: the number of frequency indices, N, and the buffer frequency, f 0. The number 
of frequency indices determine how many different frequencies the FFT can distinguish, 
and the buffer frequency determines which frequencies correspond to each frequency 
index. The MIDI note scale is based on the 12-tone equal temperament scale, which is a 
logarithmic scale that assigns note names to specific frequencies. There are 128 possible 
notes in MIDI, but note information alone does not account for pitch effects like vibrato, 
slurring, and pitch bend. The hardware should be capable of detecting at least the 128 
frequencies that correspond to notes, with the option of implementing the detection of pitch 
effects and the sending of MIDI messages with this information. Thus, we will use a 
modified logarithmic scale as shown in Figure 3-18 based on the MIDI scale with extra 
bins in between each note bin and at the beginning and end of the scale. Our scale has 
two adjustable parameters: the starting note, M, and the number of intervals between two 
note bins, K. The MIDI scale under this scale has M at C-1 and K at 1. 
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Figure 3-18: The logarithmic f requency scale for note detection.  

 
Ideally, we want the parameters of the scale to be specific values. To determine K, we 
must determine how many cents there should be in between bins. A cent is one hundredth 
of a semitone. The typical vibrato effect can bend the pitch of a note from around ±34 to 
±123 cents, and the average adult can reliably hear differences between two pitches down 
to a 25-cent difference.[18] A reasonable pitch interval for pitch detection would then be 
12.5 cents, since it is around half of 25 and 34, and it is one eighth of 100. With 128 notes 
and intervals of 12.5 cents, 1024 pitch bins will be in the logarithmic scale. A pitch interval 
of 12.5 cents corresponds to a K of 8. The M parameter depends on the physical limitations 
of our note detection system. Since detection of very low frequencies requires a high buffer 
period, the lowest frequency bins will be removed from the scale such that the lowest 
frequency is higher and all other bins above the cutoff remain the same. The M parameter 
is the number of semitones above C-1, so an M of 40 makes the first frequency bin 82.4 
Hz, which is the note E2. 
 
Since the FFT operates on a linear frequency scale, we must find a linear scale such that 
the difference between each linear bin and each logarithmic bin is small enough to not 
mismatch frequencies. The FFT linear scale as shown in Figure 3-19 starts at 0 and 



 

 
 

increases at a constant rate. This rate is determined by the buffer frequency, which also 
happens to be the frequency at n = 1. It also has an adjustable number of bins equal to a 
power of two. It is important to note that the number of bins in the linear scale is half the 
number of frequency indices produced by the FFT. This is due to the Nyquist limit. We 
define a measure called alignment for each logarithmic frequency bin. It is the ratio of the 
lowest frequency over the highest frequency of a pair of frequencies in different scales. 
The alignment that is assigned to each logarithmic bin is the greatest alignment it has 
when comparing it to the linear frequency bins. 
 

𝑓𝑙𝑖𝑛(𝑛) = 𝑛 × 𝑓0 
 

Figure 3-19: The linear f requency scale of  an FFT. 

 
The alignment between the linear and logarithmic scales is the lowest alignment for all the 
frequency bins. By varying the number of linear bins and the linear slope, we can find a 
set of linear frequency scales that are well aligned to the logarithmic scale we will use. We 
will vary the number of linear bins in between 210 and 220, K in between 1 and 8, and the 
buffer frequency in between 0 and a semitone above the lowest logarithmic scale 
frequency. The goal is to find a linear scale that has a low bin count, has a high buffer 
frequency, and has an alignment greater than the minimum. This is done for various 
logarithmic frequency scales with different M and K. Figure 3-20 is a flowchart of the 
algorithm used to find these linear scales. 



 

 
 

 



 

 
 

 



 

 
 

 
 

Figure 3-20: A f lowchart of  the algorithm used to determine the linear scales.  
 
Tables 3-2, 3-3, and 3-4 show the results of the algorithm. The results for K above 2 are 
not shown, as the results are much worse than those for K = 2, whose results are already 
poor. The best option for minimizing latency would be to have the lowest note at E2, the 
number of frequency bins at 2048, and f0 at 7.263 Hz. This corresponds to N being 4096 
and the buffer period being 137 ms. The buffer period is the amount of time the processor 
must spend collecting samples. This buffer period is too high to keep the MIDI stream 
latency below 100 ms, but we can cut it in half by sampling only half the period and padding 
the other half with zeroes or a previous version of the signal. Thus, we would only spend 
68.8 ms collecting samples. There are also other methods of reducing this number that 
will be discussed in the section on our FFT implementation. The product of f0 and N 
determine the required sampling rate. In this case, it is 29.75 kHz. Any deviation from this 
sampling rate will require further testing. 
 

Lowest Note (M) Exponent of Minimum Bin 
Count 

f0 (Hz) Alignment 

E2 (40) 11 7.263 0.943875 

C2 (36) 12 5.764 0.943902 

A1 (33) 12 4.847 0.943909 

E1 (28)  12 3.631 0.943928 



 

 
 

C1 (24) 13 2.881 0.944153 

A0 (21) 13 2.423 0.943977 

F0 (17) 13 1.923 0.943997 

C0 (12) 14 1.441 0.944182 

C-1 (0) 15 0.720 0.944197 

 
Table 3-2: Results of  f inding appropriate linear scales for K = 1 and a minimum alignment of  

0.943874 (max. 1 semitone of fset). 

 

Lowest Note (M) Exponent of Minimum Bin 
Count 

f0 (Hz) Alignment 

E2 (40) 12 3.427 0.943881 

C2 (36) 13 2.719 0.944149 

A1 (33) 13 2.286 0.944282 

E1 (28)  13 1.713 0.943978 

C1 (24) 14 1.360 0.944179 

A0 (21) 14 1.144 0.943906 

F0 (17) 14 0.908 0.943965 

C0 (12) 15 0.679 0.944890 

C-1 (0) 16 0.340 0.944897 

 

Table 3-3: Results of  f inding appropriate linear scales for K = 2 and a minimum alignment of  
0.943874 (max. 1 semitone of fset). 

 

Lowest Note (M) Exponent of Minimum Bin 
Count 

f0 (Hz) Alignment 



 

 
 

E2 (40) 12 3.142 0.971794 

C2 (36) 13 2.494 0.971791 

A1 (33) 13 2.097 0.971895 

E1 (28)  13 1.571 0.971907 

C1 (24) 14 1.247 0.971826 

A0 (21) 14 1.019 0.971608 

F0 (17) 14 0.832 0.972197 

C0 (12) 15 0.605 0.973053 

C-1 (0) 16 0.302 0.974673 

 
Table 3-4: Results of  f inding appropriate linear scales for K = 2 and a minimum alignment of  

0.971532 (max. ½ semitone of fset). 
 
Throughput 
 
The throughput is the most important characteristic of the processor that must be 
considered. There must be a maximum of 100 ms between when a sound is heard and 
when the related MIDI notes are output. If the processor spends 68.8 ms collecting 
samples, then it can only spend up to 31.2 ms processing the data. Thus, the processor 
should be able to perform a fast Fourier transform (FFT) with a set of samples within 25 
ms. This gives enough time to perform the filtering methods, signal sampling, and data 
transfer in a short time. This requires high enough throughput, and can be achieved 
through high clock speeds, large word size, Single Instruction Multiple Data (SIMD) 
operations, and low clocks per instruction. 
 
The maximum time-complexity of the FFT algorithm is O(N log N), where N is the number 
of samples. This means that it takes N log2 N steps to perform the FFT. Each step will 
require a certain amount of specific instructions; by figuring out the instructions required 
for each step, the total number of each instruction can be calculated. Table 3-5 lists the 
instructions used in implementing the FFT and describes their function. We will define one 
step as half of a complex butterfly operation, since the number of those operations is half 
the time-complexity of the algorithm. Each complex butterfly operation consists of 1 
complex multiplication, 1 complex addition, and 1 complex subtraction. However, as 
mentioned before, we can split all complex butterfly operations into two real butterfly 
operations, so one step is also one real butterfly operation. Within each real butterfly 
operation there is 1 real multiplication, 1 real addition, and 1 real subtraction. 



 

 
 

 

Instruction Description 

add x,y Adds two signed integers x and y and 
stores the sum in x. 

addi x,N Adds a constant to x and stores the sum in 
x. 

sub x,y Subtracts two signed integers x and y and 
stores the difference in x. 

or x,y ORs each bit of x with the corresponding 
bit of y and stores the result in x. 

srl x,N Shifts x’s bits N times to the right without 
preserving the sign bit. The result is stored 
in x. 

sla x,N Shifts x’s bits N times to the left while 
preserving the sign bit. The result is stored 
in x. 

mul x,y Multiplies two signed integers x and y, 
creating a product with twice the size of 
each factor. The top half is stored in x and 
the bottom half is stored in y. 

mov x,y Copies the value of y into x. 

lw x,A Copies the value at address A into x. 

sw x,A Copies the value of x into address A. 

cmp x,y Compares the values of x and y, setting 
flags. 

jeq A Checks if the last comparison was 
between two equal numbers and jumps to 
A if that is true. 

jmp A Jumps to address A. 

 
Table 3-5: Table of  instruction names and descriptions. 

 
Since most microcontrollers do not support floating-point operations, these real operations 
will be implemented using fixed-point math. Real additions and subtractions can be done 
with the same integer instructions. However, a real multiplication requires more 
instructions. A real multiplication can be done with an integer formatted as a fixed-point 
fractional number, with N bits used as the fractional part. This formatting is referred to as 
QM.N format, where one bit is used as the sign bit, M bits are used for the integral part, 



 

 
 

and N bits are used for the fractional part.[11] We will also need to consider the instructions 
required to iterate through parts of the entire calculation. As shown by Figure 3-14, there 
are 3 nested iterations: one iteration over stages, one iteration over butterfly operations 
with different coefficients, and another one over different sets of butterfly operations with 
the same coefficient. Thus, our implementation would also require three nested for-loops. 
Since the coefficients in every butterfly operation will not change, there is no need to 
calculate sines and cosines for each one, so they are treated as constants. Also, we 
assume that samples are already written to the buffer in bit-reversed order, so we would 
not need to reorder them. Table 3-6 shows the implementation of real multiplication and 
for-loops using instructions. 
 

Statement Real Multiply For-Loop 

Instruction 
Sequence 

mul x,y 
srl y,Q 
sla x,N-Q 
or x,y 

for: 
cmp x,y 
jeq endfor 
… 
addi x,1 
jmp for 
... 

Instruction 
Count 

4 4 

Notes Assuming x and y are 
each N bits and the 
product is a 2N-bit 
integer, with x holding 
the higher half and y 
holding the lower half. Q 
is the number of bits in 
the fractional part. 

This operation is 
implemented like this in 
most architectures, with 
slight potential differences 
in instructions, order, and 
number. 

 
Table 3-6: A table showing the instructions for each operation. 

 
We expect N/2 log N for-loop statements to be executed (log N for the outer stage loop, 
N/2 for both inner loops), and 2 load word, 2 move, and 2 store word instructions per pair 
of real butterfly operations (N log N). Also, we expect two extra load word instructions for 
each iteration over butterfly operations with different coefficients to load the sine and 
cosine coefficients (2(N - 1)). With knowledge of the instructions required for each 
operation and the number of operations required for one complete FFT, we can calculate 
the number of each instruction required to perform the entire FFT. Table 3-7 shows the 
results of this calculation. This analysis may be inaccurate for processors with SIMD 
instructions, since the processor may be able to achieve the results of multiple instructions 
with just one instruction, making the results of this method an overestimate. However, this 
method is still useful as it gives an upper bound for the execution time in this case. A DSP 
is designed to do these kinds of operations quickly and efficiently, however they come at 
a greater cost. We will discuss the details of the runtime of the FFT for each processor we 
consider. 
 



 

 
 

Operation Number of 
Operations 

Instructions 
per Operation 

Instruction Number of 
Instructions 

For-Loop 22528 4 cmp 22528 

jeq 22528 

jmp 22528 

addi 22528 

Real Add 45056 1 add 45056 

Real Subtract 45056 1 sub 45056 

Real Multiply 45056 4 mul 45056 

srl 45056 

sla 45056 

or 45056 

Load Word 53246 1 lw 53246 

Store Word 45056 1 sw 45056 

Move 45056 1 mov 45056 

Total 315392  503806 

 

Table 3-7: Operation and instruction tally for the FFT when N = 4096. 

 
Memory 
 
The ADC sample rate must be 29.75 kHz for the FFT to be accurate with the lowest 
sampling period. MIDI uses 7 bits for note velocity (equivalent to volume), so we only need 
to distinguish 128 different magnitudes on the frequency spectrum. We will only capture 
at least 8 bits per sample, but we will need 16 bits to store the real numbers used in the 
calculation. If N = 4096, and each sample uses 16 bits, we need 8 kB of memory to store 
this buffer. The size of RAM must accommodate at least two of these buffers. A faster or 
more complex implementation of the FFT may require more space. Also, the FFT needs 
a buffer large enough to store the twiddle factors: around 2 * 2 * 4096 / 2 bytes. We need 
a buffer to store the 8-bit magnitudes of each MIDI note and some spare stack space. The 
table below lists how much memory we will need. In total, we would use at least 30 kB of 
memory just for the FFT. To give room for additional or improved features, the total size 



 

 
 

of RAM should be at least 64 kB. The constant coefficients (twiddle factors) can be stored 
in the processor’s ROM. Some MCUs can use some of their program storage as writable 
non-volatile RAM. We will take this into account when determining the memory 
specifications of each processor. Note that this analysis assumes we will only do a plain 
FFT on the sample buffer. In fact, we use a more complex method that reduces memory 
requirements to 4 kB. This is explained in greater detail in section 6.2. 
 

Purpose Sample 
buffers 

(kB) 

Twiddle 
Factors 

(kB) 

Note 
Magnitude

s (kB) 

Stack 
space 
(kB) 

Misc. 
(kB) 

Total 
(kB) 

Space Required 16 8 0.125 2 4 30.125 

 

Table 3-8: A table showing the memory requirements of  the processor.  

 
Analog-to-Digital Converter 
 
The processor we use must include an ADC that is capable of sampling all signals whose 
frequencies are within the MIDI range without aliasing. The maximum sampling rate is the 
most important aspect of the ADC, since it limits the bandwidth of signals that can be 
converted; it must be 29.75 kHz. An ADC that can also operate at a much lower sampling 
rate is a bonus since that allows us to work with low frequencies more efficiently. The 
number of values the ADC can detect is not very important, as the MIDI protocol uses 7 
bits for note velocity, which relates to volume, and most MCUs and DSPs use at least 8 
to 10 bits per sample. The ADC should have a high input voltage range, though, since this 
gives a good signal-to-noise ratio. Although we could choose to buy a processor and ADC 
separately, this would likely increase our costs. We would need more space on the PCB 
for both parts, and more complexities would be introduced into the design. Also, most 
MCUs and DSPs have an integrated ADC, so it is best to take advantage of that. 
 
USB and MIDI 
 
USB is a complex serial transmission interface that defines multiple protocol layers of the 
TCP/IP model, so it would be best to have either a separate IC to handle the interface or 
integrated capability within the processor itself. If the processor does have USB support, 
it must have USB 2.0 support with at least full-speed transmission capabilities to support 
the USB-MIDI specification. [18] This implies that the clock speed is greater than 12 MHz. 
For our MIDI implementation, the processor only needs general-purpose input/output 
(GPIO) pins and a UART. SPI support is not required if the processor includes a USB 
interface, since this would only be used to communicate with an external USB controller. 
 
Programmability 
 
The processor we choose must be easily programmable. There must be a software 
development application available for the processor that allows us to write C or C++ source 
code and allows us to use the special or required features of the processor. There must 
be libraries available for implementing the math-focused parts of our software on the 
processor. There must be cheap hardware available that can connect to a desktop 
computer and the processor on the PCB to program the processor. If no such hardware 



 

 
 

exists, there must be enough documentation to be able to implement a programmer on an 
MSP430, and the programming protocol must be simple enough to implement. The best 
case would be for all the necessary development tools to be available at a low price, and 
a processor that would require our own implementation of its programmer will be low on 
the list of best choices. 
 
Selection 
 
When looking at the datasheets for processors, we are interested in parameters that 
correspond to our requirements; these are listed in the processor specification tables for 
eleven different processors. The clock frequency, instruction set architecture (ISA), 
availability of SIMD instructions, and inclusion of an FPU are related to the throughput of 
the processor. The cycles-per-instruction of the processor is also important, but there are 
more details for consideration, so the estimations of execution time will only be done for a 
small set of best candidates. The memory parameters for each processor must be 
reasonably high. While we do need at least 32 kB to implement the raw FFT, we plan on 
optimizing its runtime and memory requirements by at least one fourth, so a processor 
with less RAM is acceptable. Also, we are looking at whether the processor can read 
constant data from its ROM, whether it can write configuration data to its ROM, and 
whether it can use its ROM as RAM (quick reads and writes). If the ROM can be written 
to by the processor itself, then we do not need an external non-volatile memory for storing 
configuration data. Almost all processors in the tables that have ROMs are capable of this. 
If the ROM can reliably be used as RAM, then the actual RAM for that processor is the 
sum of the memory sizes of both the ROM and RAM. The ADC parameters are also 
included in the tables of processor specifications. All processors have ADCs that are 
suitable for our application. Most of them also support I2C, SPI, and UART. As for the 
programmability, our focus in the tables is the availability and cost of a programmer for 
each processor. The estimated maximum power requirements are also included with the 
VIN and estimated maximum current fields. This is important if we want to keep the 
temperature low with passive cooling. All these parameters were collected from the 
datasheets and user manuals of each processor. 
 
Beginning with the TI MSP430 MCUs, we considered the MSP430G2553 and the 
MSP430FR6989 at first because we had used them before, and we had programmers for 
those chips. However, the MSP430G2553 clearly lacks the memory requirements as it 
only has 512 bytes of RAM. For the MSP430FR6989, the memory size is also rather low, 
and each chip is $6.08. Since we are buying at least 2 of every IC, the total cost would be 
$18.24. Since there is nothing remarkable about this processor, it is not cost-effective. The 
MSP430FR5992 is an interesting one because it has a DSP coprocessor that can perform 
the FFT without using the CPU’s resources. The programmer for this chip is also relatively 
cheap at $16.99. The only downside is that it has 8 kB, which gives us less room for 
performing the FFT. One of the cheapest MCUs that we found is the Atmel 
ATSAMD20E18. It has a much higher clock speed and more overall memory than the 
MSP430 MCUs. It surpasses the basic requirements, but unfortunately, the programmer 
for this MCU costs $69.00, which is high above our budget for the processor. There are 
three other processors whose programmers are very expensive: the TI TMS320C5533 
DSP, the Cypress S6E1C32B0A MCU, and the SiLabs EFM32LG842F256G-F-QFP64R. 
These processors would be good choices, since all three have a high clock speed and 
implement a USB 2.0 interface, and the TI DSP has SIMD instructions for DSP tasks and 
plenty of memory. 



 

 
 

 
We found another Cypress MCU, the CY9BF564K, but it is marked as obsolete by 
Cypress, and we cannot find enough documentation on how to develop for and program 
it. While it does have a high clock speed, 32 kB of RAM, and USB 2.0 support, we will not 
consider using it for that reason. Also, it uses up to 238 mW of power, which is at least an 
order of magnitude above most of the others. We considered another DSP: the AKM 
AK7755EN. The problem with it is that we cannot find enough information to know how to 
program and develop for it. It is also the second most expensive chip in the list. The last 
two MCUs, the ST STM32G071KB and the Microchip dsPIC33EP128MC202, have high 
clock speeds and an acceptable amount of memory. While the Microchip MCU has only 
16 kB of RAM, it has specialized DSP instructions that can be used to perform the FFT 
much faster. Tables 3-9-A through 3-9-E list the relevant specifications and qualities of 
each processor that we have considered. Out of all these eleven processors, we have 
selected three best candidates for further throughput analysis: the TI MSP430FR6989, the 
ST STM32G071KB, and the Microchip dsPIC33EP128MC202. 
 

Processor TI MSP430G2553 TI MSP430FR6989 TI MSP430FR5992 

Clk. Freq. (MHz) 16 16 16 

VIN (V) 3.3 3.3 3.3 

Max. Current (mA) 4.3 2.68 3.00 

ISA TI MSP430 TI MSP430 TI MSP430X 

SIMD Instructions No No Yes 

FPU No No Unknown 

Min. ADC Bit Depth 10 12 12 

Sample Rate (ksps) 200 200 200 

ADC Range (V) 0 - 3.3 0 - 3.3 0 - 3.3 

Serial Interfaces I2C, SPI, UART I2C, SPI, UART I2C, SPI, UART 

ROM (kB) 16 128 128 

RAM (kB) 0.5 2 8 

Writable ROM Yes Yes Yes 

ROM as RAM Yes Yes Yes 

Debug Interface JTAG JTAG JTAG 

Unit Cost (USD) 1.77 6.08 4.10 



 

 
 

Programmer MSP-
EXP430G2ET 

LaunchPad 
Development Kit 

MSP-
EXP430FR6989 

LaunchPad 
Development Kit 

MSP430FR5994 
LaunchPad 

Development Kit 

Prgm. Cost (USD) 0.00 0.00 16.99 

Other Costs (USD) 0.00 0.00 0.00 

Total Cost (USD) 5.31 18.24 29.29 

Notes Development kit 
already owned. 

Development kit 
already owned. 

Includes hardware 
multiplier. 

Includes DSP 
coprocessor with 

FFT support. 

 

Table 3-9-A: Processor specif ications for the MSP430 MCUs being considered. 

 

Processor TI TMS320C5533 AKM AK7755EN 

Clk. Freq. (MHz) 100 18.6, 123 

VIN (V) 1.3, 3.3 1.2 & 3.3 

Max. Current (mA) 16.9 68.5 

ISA ? ? 

SIMD Instructions Yes ? 

FPU Unknown Yes 

Min. ADC Bit Depth 10 or None 24 

Sample Rate (ksps) 62.5/64 96 

ADC Range (V) ? 0 - 3.3 

Serial Interfaces I2C, SPI, UART, USB 2.0 I2C, SPI 

ROM (kB) 128 0 

RAM (kB) 320 63 

Writable ROM ? N/A 

ROM as RAM ? N/A 

Debug Interface JTAG No 



 

 
 

Unit Cost (USD) 3.95 5.64 

Programmer TMDX5535EZDSP ? 

Prgm. Cost (USD) 249.00 ? 

Other Costs (USD) 0.00 ? 

Total Cost (USD) 260.85 16.92 

Notes Only available as BGA. 
Powering the chip is more 

complicated than other chips. 

Clock frequency varies with 
sample rate. Includes 

amplifier & analog mixer. 
Evaluation kit only available 

through inquiry. Only 
available as QFN. 

 
Table 3-9-B: The processor specif ications for both DSPs being considered.  

 

Processor Cypress CY9BF564K Cypress S6E1C32B0A 

Clk. Freq. (MHz) 160 40.8 

VIN (V) 3.3 or 5 3.3 

Max. Current (mA) 72 5.9 

ISA ARM Cortex-M4F ARM Cortex-M0+ 

SIMD Instructions Yes No 

FPU Yes No 

Min. ADC Bit Depth 12 12 

Sample Rate (ksps) 2000? 500? 

ADC Range (V) 0 - 5 0 - 3.3 

Serial Interfaces I2C, SPI, UART, USB 2.0 I2C, SPI, UART, USB 2.0 

ROM (kB) 288 128 

RAM (kB) 32 16 

Writable ROM Yes Yes 

ROM as RAM Partial No 

Debug Interface SWJTAG SWD 



 

 
 

Unit Cost (USD) 1.42 0.85 

Programmer ? FM0-64L-S6E1C3 MCU 
Starter Kit 

Prgm. Cost (USD) ? 49.00 

Other Costs (USD) ? ? 

Total Cost (USD) 4.26 51.55 

Notes Obsolete. Hard to find 
documentation. ROM code 
cannot run during writing. 

Supported unlike previous 
Cypress chip. 

 

Table 3-9-C: The processor specif ications for the Cypress MCU’s being considered. 

 

Processor Atmel ATSAMD20E18 SiLabs EFM32LG842F256G-
F 

Clk. Freq. (MHz) 48 48 

VIN (V) 3.3 3.3 

Max. Current (mA) 6.16 10.8 

ISA ARM Cortex-M0+ ARM Cortex-M3 

SIMD Instructions No No 

FPU No No 

Min. ADC Bit Depth 8 12 

Sample Rate (ksps) 320 1000 

ADC Range (V) 0 - 3.3 0 - 3.3? 

Serial Interfaces I2C, SPI, USART I2C, UART, USB 2.0 

ROM (kB) 256 256 

RAM (kB) 32 32 

Writable ROM Yes Yes 

ROM as RAM Partial No 

Debug Interface SWD SWD 



 

 
 

Unit Cost (USD) 1.24 4.21 

Programmer SAM D20 Xplained Pro 

Evaluation Kit 

EFM32LG-STK3600 

Prgm. Cost (USD) 69.00 99.00 

Other Costs (USD) ? ? 

Total Cost (USD) 72.72 111.63 

Notes Can only write to ROM in 
chunks. 

 

 
Table 3-9-D: The processor specif ications for other MCUs with expensive development kits. 

 

Processor ST STM32G071KB Microchip 
dsPIC33EP128MC202 

Clk. Freq. (MHz) 64 60 

VIN (V) 3.3 3.3 

Max. Current (mA) 7.7 40 

ISA ARM Cortex-M0+ dsPIC33E 

SIMD Instructions No No 

FPU No No 

Min. ADC Bit Depth 12 10 

Sample Rate (ksps) 2000 1100 

ADC Range (V) 0 - 3.3 0 - 3.3 

Serial Interfaces I2C, UART I2C, SPI, UART 

ROM (kB) 128 128 

RAM (kB) 36 16 

Writable ROM ? Yes 

ROM as RAM ? No 

Debug Interface SWD JTAG 

Unit Cost (USD) 3.39 2.56 



 

 
 

Programmer ST-LINK/V2 TEMLP001 LProg 
Programmer 

Prgm. Cost (USD) 22.61 20.00 

Other Costs (USD) ? ? 

Total Cost (USD) 32.78 27.68 

Notes  Includes single-cycle multiply, 
multiply-accumulate, and 

multiply-subtract instructions. 

 
Table 3-9-E: The processor specif ications for other MCUs with cheaper development kits. 

 
To estimate the throughput of each processor, we must determine the amount of time 
required to execute each kind of instruction. This is done by considering the clock speed 
and the number of cycles per instruction. Table 3-10 lists each processor and the number 
of clock cycles spent executing each instruction. This analysis does not completely 
consider any special instructions or hardware that may decrease the time of the FFT. 
There are important details that the table does not include that affect the throughput. The 
TI MCU’s version of the addi instruction takes 4 clock cycles to execute, but it can be 
reduced to 1 by using the add instruction with the constant generator register as an 
argument. The MCU does not have a multiply instruction, but instead it has a hardware 
multiplier circuit that can be configured with two sw-like instructions, and it takes three 
more cycles until the multiplication is finished. This MCU can also perform multiply-
accumulate operations with the multiplier using the same amount of time. The TI MCU 
does not have instructions to shift left or right the bits in a register in one cycle. However, 
each right shift by N in the FFT is paired with a left shift by 16 - N, so in total each pair of 
these instructions takes 16 cycles. The ST MCU has a high clock speed but requires wait 
states when accessing the ROM. However, the MCU has an instruction buffer and cache 
that can store instructions, thus keeping the effective clock speed at 64 MHz most of the 
time. The effective clock speed decreases after branching and fetching long instructions, 
however. Although the Microchip MCU has special instructions for DSP that are single-
cycle, such as multiply-accumulate and multiply-subtract, they do not appear to be useful 
for an FFT implementation because the same number of instructions is required with or 
without using those special instructions. 
 

 Individual Instruction Execution Cycles 

Processor cmp jeq jmp add addi sub mul 

MSP430FR5992 1 2 2 1 4 1 5 

STM32G071KB[15] 1 1-2 2 1 1 1 1 

dsPIC33EP128MC202 1 1 or 4 4 1 1 1 1 



 

 
 

 srl sla or lw sw mov  

MSP430FR5992 1-16 1-16 1 2 3 1 

STM32G071KB[15] 1 1 1 1 or 2 1 or 2 1 

dsPIC33EP128MC202 1 1 1 1 or 4 1 or 4 1 

 
Table 3-10: Comparison of  individual instruction execution cycles for processors  

 
Table 3-11 shows the estimated execution times for a 4096-point FFT based on the 
instructions used and the number of cycles per instruction. The MSP430FR5992 has the 
slowest execution time for the FFT due to its low clock speed and lack of a single-cycle 
bit shift instruction. The STM32G071KB and the dsPIC33EP128MC202 have similar 
execution times for each instruction. However, the ST MCU has a higher clock speed, so 
the execution time of the FFT is much quicker than the Microchip MCU. 
 

Processor Clock Speed 
(MHz) 

Total Cycles 
Spent 

FFT Execution 
Time (ms) 

MSP430FR5992 16 1570812 98.2 

STM32G071KB 64 624636 9.76 

dsPIC33EP128MC202 40 669692 16.7 

 
Table 3-11: Comparison of  FFT Execution Times 

 
An important feature that the TI MCU has is a DSP coprocessor that is designed to do an 
FFT quickly and efficiently. TI has published benchmarks of processors with this feature 
on performing an FFT. [16] By extrapolating their data, we estimate that the TI MCU would, 
using this feature, be able to perform a complex FFT with N = 2048 in 2.82 ms, which 
corresponds to a real FFT with N = 4096 in the same time. This relationship between the 
complex and real FFTs is explained in the section on designing the FFT algorithm. 
Although this coprocessor cannot do a complex FFT with N = 2048, we are able to reduce 
the N of our FFTs. This will also be explained later. Since the TI MCU is much faster at 
doing the FFT than the other processors, we will use the TI MSP430FR5992 in our project. 
 
Final choice: TI MSP430FR5992 
 

3.3.2. Operational Amplifiers Selection 
 
We will be utilizing operational amplifiers in multiple parts of our project for buffering, 
amplification, and filtering. There are many different op amps to choose from and a very 
large number of specifications that define them. For our purposes, we want to choose the 
best for an audio application since these op amps will mostly be on the analog input 



 

 
 

section of our device. Some important characteristics to look at when choosing our op 
amps will be gain, input and output impedance, noise/total harmonic distortion, input and 
output voltage ranges, and slew rate. Gain is always one of the most important factors of 
an amplifier but in this case most op amps will be able to have a range of gain well beyond 
what we need. We should be able to configure nearly any op amp to have a small to 
moderate amount of gain, so this characteristic won’t be important to analyze in our 
selection. For voltage amplification, which is what we will be doing, it is ideal to have a 
very high input impedance and a very low output impedance. High input impedance 
minimizes any voltage loss while low output impedance will minimize any loading effects 
and guarantees the load gets most of the signal. Most op amps should have enough input 
and output impedance for our applications, but it is still an important factor that we will be 
comparing. 
 
Probably the most important characteristic for us will be the noise and total harmonic 
distortion levels. These specifications describe how much the signal is distorted from the 
input to the output since all components are non-ideal and will change the signal to some 
extent. Since we are working with audio which is much more sensitive to distortion then 
say a binary digital signal, we want to minimize distortion and noise as much as possible. 
The output voltage for any modern op amp will be much higher than any voltage we will 
need to input to our analog to digital converter so this specification will not be the most 
important. The input voltage however may be important as we need to make sure that it 
can take input from most microphones and instruments without distorting or clipping. The 
slew rate of an op amp is the rate of change of the output voltage as caused by a change 
in the input voltage. For instance, if the input voltage changes by 2V in 1 ms and the 
voltage gain was 1, the slew rate would dictate how fast the output could mimic the input. 
If the slew rate was too low, it may take longer than 1 ms to change 2V in the output and 
distort the wave form. As such, it is best to have a slew rate as high as possible to minimize 
distortion, particularly in the high frequencies. Since we don’t need frequencies beyond 
human hearing and possibly even instrumentation levels, it is possible that the slew rate 
won’t be incredibly important, but it is still best to try and minimize the distortion of the 
signal. Lastly, price may be a factor in our selection depending on how expensive or 
affordable an op is. If one op amp is only slightly better specification wise but much more 
expensive, it may not be the best choice for our project. We will be comparing several dual 
op amps commonly used in analog audio and preamp circuits to make our selection. Most 
of these have a similar quad op amp equivalent that we may use instead to save PCB 
space if needed. 
 
When comparing the input impedances, they should be sufficiently high on all the op amps 
but the TL072 and OPA2134 are exceptional and closer to the ideal impedance of infinity. 
Similarly, the output impedances on all the op amps are enough but exceptional on the 
OPA2134 and NE5532. The amount of voltage noise is especially high on the TL072 and 
it also has the most total harmonic distortion. The noise is low on the other three op amps 
but the THD is very low on the OPA2134 and NE5532. The input voltage range is relative 
to the supply voltage for all the op amps as the supply voltage affects the bias and thus 
the amount of voltage swing possible before clipping. For all the op amps the supply 
voltage range is above 18 volts which is way more than the peak voltage line level that we 
could see from an instrument or microphone of 1-2 volts. The slew rate is the best on 
OPA2134 and TL072 which will make the high frequency response better. Lastly, the price 
of all the op amps are relatively affordable except for the OPA2134. 
 



 

 
 

 TI TL072 Burr Brown 
OPA2134 

TI NE5532 TI LM833 

Input 
Impedance 
(𝛺 | pF) 

1012 | ? 1013 | 2 3 ⋅ 104−5  | ? 1.75 ⋅ 105 | 12 

Output 
Impedance 
(𝛺 | pF) 

~100 | ? .01 | ? .3 | ? 37 | ? 

Voltage Noise 
𝑛𝑉

√𝐻𝑧
 (1 kHz) 

18 8 5 4.5 

THD (%) .003 .00008 ~.0001 .002 

Input Voltage 
Range (V) 

(𝑉𝑐𝑐-) - .3 to 
(𝑉𝑐𝑐+) + 36 

(𝑉𝑐𝑐-) - .7 to 
(𝑉𝑐𝑐 +) + .7 

(𝑉𝑐𝑐-) to (𝑉𝑐𝑐 +) (𝑉𝑐𝑐-) to (𝑉𝑐𝑐 +) 

Slew Rate (
𝑉

𝜇𝑆
) 13 20 9 7 

Price ($) 
(As listed on 
DigiKey 
Electronics) 

0.41 4.26 .48 1.02 

 
Table 3-12: A list of  op-amps and their properties. 

 
Overall, the OPA2134 has the best specifications in every category we analyzed but the 
price is slightly prohibitive as we need multiple of these integrated circuits for all our 
buffering, splitting, and filtering purposes. The low output impedance, price, noise, and 
THD makes the NE5532 seem like the second-best option. The slew rate is on the lower 
side but since we are working with lower frequencies in musical notes (< 20 kHz), the slew 
rate is not the most important factor. [23] 
 
Final choice: TI NE5532 
 

3.3.3. DC-DC Converters 
 
Our device is powered entirely by external DC power sources, connected by either a barrel 
jack for a 9V source or by USB for 5V. The device uses 5V power for the processor and 
other logic components, 3.3V to power the microcontroller and 48V for the microphone 48 
volt phantom power supply. In order to get the voltage levels we need from both sources, 
we need a 9V to 5V DC-DC converter, a 5V to 48V DC-DC converter, and a 5V to 3.3V 
DC-DC converter 
 

9V to 5V DC-DC converter 
 



 

 
 

To build the 9-to-5 volt DC-DC converter needed for our device, we will be utilizing the TI 
WEBENCH power designer. This application uses TI DC-DC converter chips to create 
customized circuits based on the voltage and current requirements of the user. We looked 
at DC-DC converter circuits for 9 V input and 5 V output with a 500 mA max output current. 
When looking at the DC-DC converter chips that were suggested by TI we compared them 
using the following parameters: cost, BOM count, max output current, input voltage range, 
output voltage range, efficiency, footprint and frequency. The cost parameter is split into 
two categories: IC cost and BOM cost. The BOM cost refers to the total cost of all the parts 
that would be included in the bill of materials to build the circuit. The BOM Count is the 
amount of parts needed to build the circuit which usually includes resistors, capacitors, 
inductors and other materials along with the IC. An increase in the BOM count will usually 
result in an increase of the BOM cost for the circuit. The IC cost is just the cost of the IC 
chip without any other parts of the circuit which would be needed to make the DC-DC 
converter. Some ICs that were implemented in the designs that fulfilled our voltage and 
current requirements include the LMR50410X, TPS621351, TPS563231, and 
LMR14010A. A table with a comparison between the ICs is shown in Table 3-13.  
 

 LMR50410X TPS563231 TPS621351 LMR14010A 

IC Cost  $0.45 $0.22 $0.73 $0.40 

BOM Cost  $0.83 $0.97 $1.50 $0.92 

BOM Count 9 11 8 8 

Max Output 
current 

1 A 3 A 4 A 1 A 

Input Voltage 
Range 

Min:  4 V 
Max: 36V 

Min: 4.5 V 
Max: 17 V 

Min: 3 V 
Max: 17 V 

Min: 4 V 
Max: 40 V 

Output Voltage 
Range  

Min: 1 V 
Max: 28V 

Min: 0.6 V 
Max: 7 V 

Min: 0.8 V 
Max: 12 V 

Min: 0.77 V 
Max: 38.4 V 

Efficiency 93.8% 95.7% 92.4% 92.7% 

Short Circuit 
Protection 

Yes Yes Yes Yes 

Footprint  116 mm2 167 mm2 66 mm2 194 mm2 

Frequency 700 kHz 696.12 kHz 2.44 MHz 700 kHz 

 
Table 3-13: Comparison of  9V-to-5V DC-DC converters. 

 
The desirable features that we are looking for in our 9 to 5 volt DC-DC converter include 
low cost, high efficiency and low footprint. All the ICs have very low BOM costs with the 
TPS621351 being the highest at $1.50. This makes this parameter not that important since 
none of these chips are too expensive. The input voltage ranges and output voltage 
ranges for all the ICs in the table are satisfactory for the device. The f requency of each IC 
is shown but should not be a factor in choosing which one to use. It should be noted that 



 

 
 

all the DC-DC converter chips include short circuit protection which is helpful. In terms of 
efficiency, all the ICs have very high efficiencies with the TPS621351 having the lowest 
efficiency at 92.4% and the TPS563231 being the highest at 95.7%. This means that there 
is only a maximum difference of 3.3% in efficiency between all the circuits. In terms of 
footprint, all the footprints for each of the ICs are low with none of the footprints being 
smaller than 194 mm2. One of the ICs had a significantly smaller footprint than the others. 
This IC was the TPS621351 which had a footprint of 66 mm2. All the footprints should be 
more than small enough for use in our device. The choice for which IC to use for the 9 to 
5 volt DC-DC converter came between the TPS563231 and the TPS621351. The 
TPS563249 has the highest efficiency but a larger footprint while the TPS621351 has the 
smallest footprint but a lower efficiency than the TPS563231. Since both footprints should 
be small enough for use in our device, we decided to use the TPS563231 since it had the 
best efficiency. The circuit design for the TPS563231 provided by WEBENCH is shown in 
Figure 3-21. 
 
Final Choice: TPS563231 
 

 
 

Figure 3-21. TPS563231 Circuit Design 
 
5V to 3.3V DC-DC converter 
 
The processor we’re using requires 3.3 volts. This means we need a DC-DC converter on 
the 5V line to step it down to 3.3V to deliver to any pins on the processor that need it. 
Once again, we are using TI WEBENCH for this design. After inputting the power 
requirements of this converter, WEBENCH gave 396 potential circuits. Even after 
narrowing down the options to only those designs with BOM count of 12 components or 
less, cost of $4.30 or less, and efficiency of 88% or higher there are 102 options available. 
Valuing efficiency the most, we can sort the results by highest efficiency and take the top 
four options to compare. The schematics of each DC-DC converter are shown in figures 
33A through 33D and figure 33T is a table comparing all the parameters of each circuit. 
All four options are from TI’s TPS6282x line of chips, so they are very similar in 
performance and cost. Even expanding my search to the top eight results when sorting by 
efficiency, all the ICs used are from this line. TI seems to believe this is the correct chip 
for the job, so all that’s left is to narrow it down to the specific model that is best for our 
device. Table 3-14 shows a comparison between the ICs that were analyzed. 



 

 
 

 

 TPS62823 TPS62822 TPS62825 TPS62826 

IC Cost $0.45 $0.41 $0.41 $0.51 

BOM Cost  $3.20 $3.10 $3.10 $3.20 

BOM Count 8 8 8 8 

Max Output 
current 

3 A 2 A 2 A 3 A 

Input Voltage 
Range 

Min:  2.4 V 
Max: 5.5V 

Min: 2.4 V 
Max: 5.5 V 

Min: 2.4 V 
Max: 5.5 V 

Min: 2.4 V 
Max: 5.5 V 

Output Voltage 
Range  

Min: 0.6 V 
Max: 4 V 

Min: 0.6 V 
Max: 4 V 

Min: 0.6 V 
Max: 4 V 

Min: 0.6 V 
Max: 4 V 

Efficiency 96.4% 95.9% 95.9% 95.9% 

Short Circuit 
Protection 

Yes Yes Yes Yes 

Footprint  113 mm2 113 mm2 111 mm2 111 mm2 

Frequency 2.06 MHz 2.07 MHz 2.07 MHz 2.07 MHz 

 
Table 3-14: Comparison of  5V to 3.3V DC-DC converters. 

 
Being all from the same family of chips, there are few parameters where these ICs vary. 
TPS62823 is more efficient than the other options but only by 0.5%. With this being a 
theoretical, calculated efficiency rather than measured from a test board, we can ignore 
the difference in efficiency. TPS62825 and TPS62826 have a smaller footprint than the 
other two options, but only by 2 square millimeters. With so many similarities, it is difficult 
to find any substantial reason to choose one design over another, so we will simply use 
the cheapest one with the smallest footprint. This gives us the TPS62825 as our IC of 
choice. The circuit design for the TPS62825 provided by WEBENCH is shown in Figure 
3-22. 
 
Final Choice: TPS62825 
 

 



 

 
 

 

Figure 3-22: TPS62825 circuit design 
 

5V to 48V DC-DC converter 
 
We will also utilize the TI WEBENCH power designer online tool to design our 5 to 48V 
DC-DC converter. For this boost converter we require a 10 mA output current because 
48V phantom power requires a low current. When looking at the DC-DC converter chips 
that were suggested by TI we compared them using the same parameters we used to 
compare for the buck converter. Some ICs that were implemented in the designs that 
fulfilled our voltage and current requirements include the LM3478, LM3488, TPS61390, 
LM2587-ADJ, and TPS40210. 
 
The LM3478 and LM3488 have approximately all the same parameters, the only 
difference being slight change in frequencies. For comparison of the possible DC-DC 
converter chip we will use, we left out the LM3488 since there is virtually no difference 
between it and the LM3478 chip. A table with a comparison between the ICs can be seen 
below. The TPS40210 has an unspecified BOM Cost and Footprint because one of the 
parts used for the DC-DC converter circuit has an unavailable cost and footprint. Adding 
up the other quantities from the other parts on the BOM we could estimate these values 
to be at least 3.84$ and 249mm2. A table with a comparison between the ICs is shown in 
Table 3-15.  
 

 LM3478 TPS61390 LM2587-ADJ TPS40210 

IC Cost  $0.73 $1.32 $3.82 $0.66 

BOM Cost  $1.77 $1.68 $5.42 >$3.84 

BOM Count 16 21 9 21 

Max Output 
current 

20 A 0.04 A 5 A 20 A 

Input Voltage 
Range 

Min: 2.97 V  
Max: 40 V 

Min: 2.5 V 
Max: 40 V 

Min: 4 V 
Max: 40 V 

Min: 4.5 V 
Max: 25 V 

Output Voltage 
Range  

Min:1.27 V  
Max: 300 V 

Min:20 V 
Max:85 V 

Min: 4 V 
Max: 60 V 

Min: 5 V 
Max: 300 V 

Efficiency 81.6% 70.4% 76.7% 78.6% 

Short Circuit 
Protection 

Yes Yes Yes Yes 

Footprint  470 mm2 97 mm2 674 mm2 >249mm2 

Frequency 541.73 kHz 700 kHz 100 kHz 272.12 kHz 

 
Table 3-15: Comparison of  5V-to-48V DC-DC converters. 

 



 

 
 

For the purposes of powering our device we are looking for low cost, high efficiency and 
low footprint. The input voltage ranges and output voltage ranges for all the ICs are 
satisfactory for our device. While none of the BOM costs are out of our budget, the circuit 
with the LM2587-ADJ had the greatest cost by far while also having the largest footprint. 
This circuit also had the second lowest efficiency, making it undesirable for us to use. All 
the boost converters include short circuit protection like the buck converters looked at 
previously. This chip did have the lowest frequency, but the frequency of the chip should 
not matter much for the construction of our device. The uncertainty from not knowing the 
exact cost of the TPS40210 made us withdraw it from consideration considering it did not 
lead in any of the categories that we were using for comparison. This left us with the 
LM3488 and the TPS61390 for consideration for our 5-to-48 volt DC-DC converter. The 
advantage of the LM3488 is that it has the highest efficiency but with the drawback of a 
larger footprint. The advantage of the TPS61390 is that it has the smallest footprint of all 
the circuits. Both ICs have similar low costs. The problem with the TPS61390 is that it has 
the lowest efficiency in the table. We decided that the greater efficiency of the LM3478 
outweighed its larger footprint for use in our device and that the low efficiency of the 
TPS61390 was not worth using for the smaller footprint. The circuit design provided by 
WEBENCH is shown in Figure 3-23.  

Final Choice: LM3478 
 

 
 

Figure 3-23. LM3478 Circuit Design 

 

3.3.4. USB Controller 
 
Initially, we had planned to incorporate USB support for MIDI to USB functionality. 
Unfortunately, due to time constraints we were unable to implement a USB driver that 
would allow this. The USB controller is, however, present in our schematic and board 
layout as it was cut late in development. Also, the specific MCU chosen in this section 
would not have worked with the current design, but its low-power counterpart, the 
PIC16LF1454, would work perfectly with some small adjustments. 
 



 

 
 

We need to use an external USB controller because the processor we selected does not 
have USB support. While most USB controllers exist as an MCU that can communicate 
through USB, there are simpler systems called USB transceivers that allow an MCU to 
transmit data through a USB connection. We considered using a USB transceiver in the 
device, however upon further investigation we discovered that the MCU we chose would 
be unable to process USB data transmission and audio signal processing at the same 
time. Typically, the USB interface would not be utilized often because MIDI is a very low 
data rate protocol. However, when it is being utilized, the MCU will be stuck sending or 
receiving data through the USB interface instead of converting the audio signal into notes. 
Thus, we must use another MCU to handle USB data transmission. Table X shows a list 
of MCUs with USB support available. They all support USB 2.0 full-speed transmission 
and all the required transport-layer features to implement a USB-MIDI port. (See Section 
4.1.5: Application Layer (USB-MIDI) for details on what features are required to implement 
a USB-MIDI device.) The Silicon Labs EFM8UB1 has the highest RAM space out of all 
these MCUs, but it also has the highest power usage. The Cypress CY7C64346 is the 
worst choice out of all since it has high power usage, the lowest clock rate, and the highest 
total cost. The Microchip PIC16F1454 is the best choice since it has the lowest power 
usage and the lowest total cost. Although it only has 1 kB of RAM, this is more than enough 
to store the MIDI data stream that the MCU will be producing. 
 

USB Controller 
Cypress 

CY7C64346 
SiLabs EFM8UB1 

Microchip 
PIC16F1454 

Vin (V) 3.3 / 5 3.3 / 5 3.3 / 5 

Max. Current (mA) 7.1 10.1 1.7 

Pin Count 32 20 14 

ISA M8C CIP-51 (8051) PIC 

Clock Rate (MHz) 24 48 48 

ROM (kB) 32 8 8 

RAM (kB) 1 2.25 1 

Serial Interfaces I2C, SPI UART, I2C, SPI UART, I2C, SPI 

Cost (USD) 1.38 0.81 1.31 

Programmer PsoC MiniProg3 
EFM8UB1-

SLSTK2000A 
Curiosity LPC 

Development Board 

Prgm. Cost (USD) 91.76 29.99 26.99 

Total Cost (USD) 98.90 32.42 30.92 

Datasheet 
https://www.cypr
ess.com/file/138
721/download 

https://www.mouser.c
om/datasheet/2/368/e

fm8ub1-datasheet-

https://www.mouser.
com/datasheet/2/26

8/40001639B-

https://www.cypress.com/file/138721/download
https://www.cypress.com/file/138721/download
https://www.cypress.com/file/138721/download
https://www.mouser.com/datasheet/2/368/efm8ub1-datasheet-1666264.pdf
https://www.mouser.com/datasheet/2/368/efm8ub1-datasheet-1666264.pdf
https://www.mouser.com/datasheet/2/368/efm8ub1-datasheet-1666264.pdf
https://www.mouser.com/datasheet/2/268/40001639B-597000.pdf
https://www.mouser.com/datasheet/2/268/40001639B-597000.pdf
https://www.mouser.com/datasheet/2/268/40001639B-597000.pdf


 

 
 

1666264.pdf 597000.pdf 

 
Table X: List of  USB MCUs. 

 
Final choice: Microchip PIC16F1454 
 

3.3.5. Input and Output Ports 
 
There are six ports on the device for the analog inputs and outputs, MIDI, 9V power, and 
USB. There will be two ¼” jacks and two XLR3 jacks for instrument and microphone 
cables, a five-pin jack for MIDI signal, a barrel jack for the 9V power and a USB port for 
USB 2.0 data and 5V power. 
 
Analog Input and Output Ports Selection 
 
In order to make our prototype as easy to build as possible, we are deciding to attach the 
analog input and output ports to the case of the device and cable them to the board. We 
will solder wires to the terminals on the ports and use simple solder pads or through holes 
to solder the wires to the board. With this implementation in mind, we have a few options 
for these jacks. A simple search on Digikey yields the options for ¼” in Table 3-17. 
 

Part Number 12A 112AX 4833.2230 

Manufacturer Switchcraft Switchcraft Schurter 

Price per 1 part 
(DigiKey) 

$3.18 $2.68 $2.05 

Voltage Rating Mono Mono Mono 

Manufacturer 
Datasheet Link 

http://www.switchcr
aft.com/Drawings/1
2A_CD.pdf 

http://www.switchcr
aft.com/Drawings/1
10x-
m110x_series_cd.p
df 

https://us.schurter.c
om/bundles/sncesc
hurter/epim/_ProdP
ool_/newDS/en/typ
_4833.2230.pdf 

 

Table 3-17: ¼” Jack Comparison 

 
These options are all mono audio jacks that can be mounted to the sides of the device 
and wired into the board. There are only a couple of things that distinguish them from one 
another. First is the form factor of the jack, with the 12A being small with three metal 
terminals and the 112AX and 4833.2230 having plastic cases with three and four metal 
terminals, respectively. The number of terminals is also a difference as the Schurter is the 
only jack with four terminals, two for tip and two for shield, whereas the Switchcraft jacks 
both have three terminals, two for tip and one for shield. Only two connections are 
necessary as these are all mono jacks. The terminals on the Switchcraft options are made 
with a hole in them for ease of soldering wire to them. The terminals on the Schurter jack 
are pins that are designed to be placed directly into through holes on the PCB which may 

https://www.mouser.com/datasheet/2/368/efm8ub1-datasheet-1666264.pdf
https://www.mouser.com/datasheet/2/268/40001639B-597000.pdf
http://www.switchcraft.com/Drawings/12A_CD.pdf
http://www.switchcraft.com/Drawings/12A_CD.pdf
http://www.switchcraft.com/Drawings/12A_CD.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf


 

 
 

make soldering wires to those terminals harder. Considering all these factors, the best 
choice is the Switchcraft 112AX. The design of its terminals to facilitate easy wire soldering 
and its lower cost compared to the Switchcraft 12A make it the most attractive option. 
 
Final Choice: Switchcraft 112AX 
 
Initially, we had planned to incorporate XLR3-compatability into our design so that our 
device could accept microphone inputs and output a balanced XLR3 output for use with 
direct-in consoles and mixers. These features were cut in order to focus on the electric 
guitar as our primary input signal source for the design of the note detection algorithm and 
due to lack of time for implementing the hardware required to use XLR balanced audio 
signals. 
 
A decision must also be made as to which XLR3 jacks we will use in our design. These 
will also be panel-mount connectors attached to the sides of the device and we will solder 
wires to connect them to pads or through holes on the PCB. A Digikey search for panel-
mount XLR3 connectors yields several results. A selection of these results is shown in 
Table 3-18. 
 

Part Number IO-XLR3-F-BK-JL IO-XLR3-F-EV XLR331F77 

Manufacturer IO Audio 
Technologies 

IO Audio 
Technologies 

ITT Cannon, LLC 

Price per 1 part 
(DigiKey) 

$4.13 $2.19 $17.28 

Voltage Rating 125VAC 50VAC 133VAC 

Current Rating 15A 6A 3A 

Manufacturer 
Datasheet 

https://ioaudiotech.c
om/datasheet/IO-
XLR3-X-BK-JL.pdf 

https://ioaudiotech.c
om/datasheet/IO-
XLR3-X-EV.pdf 

https://ittcannon.co
m/Core/medialibrar
y/ITTCannon/websit
e/Literature/Catalog
s-Brochures/ITT-
Cannon-AudioXL-
Catalog.pdf 

 
Table 3-18: XLR3 Port Selection 

 
Most of the options available on Digikey are by IO Audio Technologies, but for the sake of 
completeness the ITT Cannon XLR331F77 will also be considered. The power ratings of 
all three options exceed values that we would require for the audio signals passing through 
them. The two IO Audio Technologies options in table 5.2.1b are from the same line of 
parts, the main difference being the intended implementation of the two parts. The “BK-
JL” jack is almost twice the price of the “F-EV” jack, though it is the part that is intended to 
be used for our implementation of soldering wires to the terminals on the plug and 
connecting them to solder pads or through holes on the PCB. The ITT Cannon jack is also 
designed for this kind of implementation, however its price is over four times that of the 

https://ioaudiotech.com/datasheet/IO-XLR3-X-BK-JL.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-BK-JL.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-BK-JL.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-EV.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-EV.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-EV.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf


 

 
 

“BK-JL” IO Audio plug. Being that the IO-XLR3-F-BK-JL is reasonably priced and designed 
with our implementation in mind, it seems like the reasonable choice. 
 
Final Choice: IO-XLR3-F-BK-JL 
 
Digital and Power Jacks Selection 
 
The three remaining ports are for a 9V DC barrel jack, a five pin MIDI port, and a USB port 
for programming the processor and sending MIDI signals. All three of these ports will be 
mounted directly onto the PCB and will be accessible through the back panel of the device. 
 
Our USB port, used to provide 5V DC power to the device and transmit MIDI data, will 
comply with the USB 2.0 standard, but not the USB 3.0 standard. Because USB 3.0 ports 
are visibly different from USB 2.0 ports, we will have to select a USB 2.0 port to use in our 
design. In music technology, both USB A and USB B ports are common with micro A ports 
being used frequently to power devices and transmit data and B ports being used 
frequently in MIDI devices and USB microphones. A quick Digikey search for right angle 
SMT and through hole USB 2.0 connectors yields many results to choose from. These 
results were sorted by price and availability and three viable options have been selected, 
listed in Table 3-19. 
 

Part Number UJ2-BH-1-TH USB-A-S-RA UE27AC5410H 

Manufacturer CUI Devices Adam Tech Amphenol ICC 

Price $0.54 $0.55 $0.58 

Voltage Rating 30VAC 30VAC 30VAC 

Current Rating 1A 1.5A 1A / contact 

Connector Type USB-B USB-A USB-A 

Datasheet https://www.cuidevi
ces.com/product/re
source/uj2-bh-th.pdf 

http://www.adam-
tech.com/download
er.php?p=USB-A-
S-RA.pdf 

https://signin.amph
enolcanada.com/Pr
oductSearch/drawin
gs/AC/UE27ACX4X
0X.pdf 

 
Table 3-19: USB Port Selection 

 
All three of these options are solid as far as voltage and current ratings; adherence to the 
USB standard ensures this. They are also all right angle through-hole connectors, which 
is fine for our form factor requirements. The only meaningful differences are the fact that 
the UJ2-BH-1-TH is a B-type connector with the other two being A-type connectors and 
the small difference in price between the three. Not only is the UJ2-BH-1-TH the cheapest 
part, but it is a USB-B connector, which is the most common type for MIDI and other audio 
devices. For this reason, the UJ2-BH-1-TH is our USB connector of choice. 
 
Final Choice: UJ2-BH-1-TH 

https://www.cuidevices.com/product/resource/uj2-bh-th.pdf
https://www.cuidevices.com/product/resource/uj2-bh-th.pdf
https://www.cuidevices.com/product/resource/uj2-bh-th.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf


 

 
 

 
The MIDI port is a circular, five-pin, female connector with the holes arranged in a 
semicircle. We found two suitable options from DigiKey and elsewhere. They are both 
board-mount and angled 90 degrees which is ideal. The options are listed in Table 3-20. 
 

Part Number SDS-50J TEDIN-D501 

Manufacturer CUI Devices Tayda Electronics 

Price $2.63 $0.32  

Voltage Rating 100VAC 100VAC 

Current Rating 2A 2A 

Datasheet https://www.cuidevices.co
m/product/resource/sds-
j.pdf 

https://www.taydaelectronic
s.com/datasheets/files/A-
1010.pdf 

 

Table 3-20: MIDI Port Selection 

 
These two parts are identical, functionally. Even their PCB footprints are both 
approximately 15mm by 15mm. Their voltage and current ratings are identical. The only 
major difference is their price, where the CUI Devices SDS-50J is nearly nine times the 
price of the Tayda Electronics TEDIN-D501. Due to the price difference, we would have 
selected the TEDIN-D501 to be our MIDI port, but it was unavailable at the time of 
purchase, so we selected the SDS-50J instead. 
 
Final Choice: SDS-50J 
 
Finally, a barrel jack must be selected for our 9V power supply. For the most part, any 
barrel jack is suitable. It is a simple connector that is hard to get wrong. The form factor 
we are looking for is a right-angle connector that will mount directly onto the PCB. A quick 
DigiKey search yields over 200 options, all of which are basically the same. We have 
selected four options from four different suppliers to compare in table 5.2.2c. All these 
options surpass the voltage and current requirements that we have of 9V DC and 0.5 A 
max. They all have similar form factors, though the metal shield on the outside of the 54-
00127 may be visible to the user from the panel on the side of the device which is a small 
concern.  
 

Part Number PJ-037A EJ508A RASM722X 54-00127 

Manufacturer CUI Devices MPD (Memory 
Protection 
Devices) 

Switchcraft Inc. Tensility 
International 
Corp 

Price $0.58 $1.27 $1.77 $0.82 

Voltage Rating 24VDC 12VDC 250VAC 48VDC 

https://www.cuidevices.com/product/resource/sds-j.pdf
https://www.cuidevices.com/product/resource/sds-j.pdf
https://www.cuidevices.com/product/resource/sds-j.pdf
https://www.taydaelectronics.com/datasheets/files/A-1010.pdf
https://www.taydaelectronics.com/datasheets/files/A-1010.pdf
https://www.taydaelectronics.com/datasheets/files/A-1010.pdf


 

 
 

Current Rating 2.5A 5A 5A 6A 

Datasheet https://www.cui
devices.com/pr
oduct/resource/
pj-037a.pdf 

https://www.me
moryprotection
devices.com/d
atasheets/EJ50
8A-
datasheet.pdf 

http://www.swit
chcraft.com/Sp
ecification.aspx
?Parent=581 

http://www.tens
ility.com/pdffile
s/54-00127.pdf 

 
Table 3-21: 9V DC Barrel Jack Selection  

 
One possible user error to account for is that the user may plug in a power supply that is 
the incorrect voltage. If this happens, we want to be able to protect as much of the device 
as we can, including the power jack itself. We are using a 9V power supply in our design 
because it is by far the most common voltage level for power supplies used in music 
technology (i.e. guitar pedals or preamplifiers) but 12V and 18V supplies are also 
somewhat common to the point where power supplies made for music devices such as 
the MXR DC ISO-BRICK or the Voodoo Lab Pedal Power 2 have 18V jacks or toggle 
switches built in. For this reason, the EJ508A is not a suitable choice, as it is not rated to 
withstand voltages greater than 12V and may be damaged if the user accidentally plugs 
in an 18V supply. 
 
The remaining two options are the PJ-037A and RASM722X. They are both good options 
in both form factor and ratings, so price will be the final determining factor. The PJ-037A 
is cheaper at $0.58, roughly a third of the price of the RASM722X. For this reason, the PJ-
037A is our barrel jack of choice. 
 
Final Choice: PJ-037A 
 

3.3.6. Power Multiplexing ICs 
 
Some potential ICs that we could use for power multiplexing are the LM74700, TPS2419, 
LTC4236, and the LTC4411. The LM74700 is the cheapest of all the ICs but after looking 
into its datasheet we found that this IC is more well suited for circuits with higher current 
and power needs. Both the LM74700 and LTC4236 are TI products and do not provide an 
easy way to simulate the designs without a CAD PSPICE simulator. The other two ICs, 
LTC4236 and LTC4411 are both produced by Linear Technologies which provides a free 
circuit simulator in LTSpice which has all the LT ICs programmed in already. The LTC4236 
has the most expensive cost and looks to be the most complicated to design for because 
of its 28 pins. This many pins on the IC seems unnecessary for our power switching circuit. 
After looking at the parameters for each of these ICs, we concluded that using the 
LTC4411 would be the best for our power select circuit. The LTC4411 is on the more 
expensive side of the ICs but is the smallest in footprint. The LTC4411 significantly lowers 
the voltage drop to 28mV. It has a 2.6 to 5.5V operating range which is perfect for our 5V 
inputs. 
 

 LM74700 TPS2419 LTC4236 LTC4411 

https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.tensility.com/pdffiles/54-00127.pdf
http://www.tensility.com/pdffiles/54-00127.pdf
http://www.tensility.com/pdffiles/54-00127.pdf


 

 
 

IC cost 0.62$ 1.02$ 10.60$ 4.14$ 

Vin Min: 4.2V 
Max: 40V 

Min: 0.8V 
Max: 16.5V  

Min: 2.9V 
Max: 18V 

Min: 2.6V 
Max: 5.5V 

Iq (Typ)  0.3 mA 1.2 mA 2.7 10 uA 

Iq (Max) 0.4 mA 7 mA  4 mA N/A 

Footprint  2.9 x 1.6 mm 19 mm2 4.00 x 5.00 mm 1 mm 

Features Integrated 
FET, Analog 
Current 
Monitor, 
Adjustable 
Current Limit, 
ON/OFF 
Control  

ON/OFF 
Control 

Ideal Diode-OR 
and In-Rush 
Current Control 
for Redundant 
Supplies, Low 
Loss 
Replacement 
for Power 
Schottky 
Diodes. 

Low loss 
replacement 
ORing Diodes, 
Small 
regulated 
Forward 
Voltage 
(28mV), 

 

Table 3-22: Comparison of  Power Switching ICs 
 

Final Choice: LTC4411 
 

4. Related Standards and Constraints 
 

4.1. Standards 
 
In order to create a product that is compatible with the greatest number of other MIDI 
devices and MIDI-compatible interfaces and computers, we will adhere to the standards 
shown in Figure 4-1. 
 

Standard Name Description 

USB 2.0 Communication with computer, +5V 
power in. 

MIDI 1.0 Defines physical layer and transmission 
protocol for musical data. 

XLR3 Microphone in, signal out. 

Phantom Power Power for condenser microphones. 

TS ¼” Connector Tip + Sleeve connector for instrument 
cable. 



 

 
 

Sleeve+ Tip/Center- 2.1mm Barrel Jack +9V power jack. 

Serial Wire Debug Debugging interface for microcontrollers. 

 
Table 4-1: Table of  standards. 

 

4.1.1. ¼-Inch Audio Jack Port and Connector  
 
The ¼ jack connector is one of the most common connectors used on musical devices. 
This jack is a quarter inch or 6.3mm and is the connection usually used for electric guitars. 
A common application for our device will be converting analog audio from an electric guitar 
to a MIDI stream so it is necessary for our device to have a ¼ jack input. We will also have 
a ¼” output jack for the bypassed instrument signal, so that the instrument can still be 
connected to an amplifier, PA system, or direct input box. The ¼” jack we will be using will 
follow the tip-sleeve (TS) standard rather than the tip-ring-sleeve (TRS) or tip-ring-ring-
sleeve (TRRS) standards. This is because TS is used for any normal guitar or most other 
electric instruments that produce a mono (not stereo) signal. TRS and TRRS are mainly 
used for headphones or mixers. 
 

4.1.2. XLR3 Audio Port and Connector  
 
The XLR3 connector is a 3-pin connector that is the most common style XLR connector 
used for audio. Most professional microphones use a XLR3 connector. This makes it 
important for us to implement a XLR3 input into our device because the device needs to 
be able to connect to good microphones to be able to pick up voice and other musical 
instruments that are not electric guitars. Since XLR3 is the one of the most common 
connectors used in audio, the device will also have a XLR3 output. 
 

  
 

Figure 4-2: XLR 3 Connector Diagram. (Made by Omegatron under a Creative Commons 
License) 

 

4.1.3. 48-Volt Phantom Power 
 
Initially, we had planned to make this device compatible with condenser microphones by 
implementing XLR connectors and phantom power. Unfortunately, due to several factors 
we decided to focus mainly on the core functionality of the device and cut this along with 
several other peripheral features. 



 

 
 

 
For the Polyphonic Analog to MIDI Converter to support all types of microphones, we need 
to incorporate 48 Volt phantom power into our design. Phantom power is a means of 
powering condenser microphones without the use of an external power supply. This lack 
of dedicated power supply unit is where the “phantom” name comes from. Instead, power 
is carried along the same lines as signal. The implementation of phantom power is 
straightforward. A simple voltage divider using 6.8k Ohm resistors delivers power from the 
48 V DC supply to the microphone’s preamp via the signal pins of its XLR3 jack. When 
the mic signal + phantom power reaches the mixer input, coupling capacitors are used to 
remove the DC component. The remaining microphone signal is sent to an op-amp which 
combines the two differential signals into a single signal. This implementation is essentially 
an industry standard and a schematic can be seen in Figure 4-2. Our greatest concerns 
regarding the design of our phantom power circuit are the reliability of the step-up DC 
converter to turn 5 volts into 48 volts and the ability to maintain a steady 5mA to not deliver 
too much power and damage the microphone. 

 

 
 

Figure 4-2: Phantom Power standard circuit. 

 

4.1.4. Musical Instrument Digital Interface (MIDI) 
 
Physical and Link Layers 
 
MIDI is a very simple interface to implement with just a digital output pin and some passive 
and active components. MIDI uses asynchronous data transmission. MIDI is transmitted 
as bytes at 31.25 kilobits per second. The interface uses a start bit, 8 data bits and a stop 



 

 
 

bit. This means for each serial byte there are a total of 10 bits that are sent for a period of 
320 microseconds. MIDI has this low data transfer rate because MIDI usually only needs 
to send basic instructions of which MIDI notes to play and changing its timing, velocity etc. 
 
Application Layer 
 
There are only 16 messages (based on the status byte) defined in MIDI. They are grouped 
into five categories: Channel Voice, Channel Mode, System Real-Time, System Common, 
and System Exclusive. The last three sets of messages generally do not apply to this 
device because they are used by sequencers and/or devices that have custom messages. 
Every message begins with a status byte and ends with at least zero data bytes, except 
for System-Exclusive messages, which append an End-of-Exclusive status byte. The 
values of every status and data byte are 7-bit values. However, the most significant bit of 
each status byte is always 1, while for each data byte it is always 0, giving a total of 8 bits 
and differentiating the purpose of each byte. A status byte contains a 3-bit code specifying 
the type of message and a 4-bit number used to address the channel that the message 
applies to. This does not apply to the System messages, which all have the code Fh, since 
the 4-bit number is used instead to specify the functionality of the message. There are 7 
different Channel messages. They all have a maximum of two data bytes. Table 4-2 shows 
their formats. 
 

Name Code Data 0 Data 1 

Note Off 8h Note number Note velocity 

Note On 9h Note number Note velocity 

Polyphonic Key Pressure Ah Note number Note pressure 

Controller Change Bh Controller ID Controller value 

Program Change Ch Program number N/A 

Channel Key Pressure Dh Channel pressure N/A 

Pitch Bend Eh Pitch change (LSB) Pitch change (MSB) 

 
Table 4-2: All Channel messages 

 
Control messages are sent by the MIDI controller to adjust the various parameters that 
affect the notes being played by the controlled instrument. These control signals are for 
varying the effects that are applied to the note, adjusting volume, and ending notes among 
other things. Control messages consist of a status byte and two data bytes which are the 
type and value (0 to 127) of the control adjustment. Table 4-3 enumerates the IDs of all 
control types and describes their function. [25] 
 

ID Name Function 

00h Bank Select Used for switching between instrument sets, 



 

 
 

expanding the range of the Program 
Change message 

01h Modulation Wheel Expression value used to apply some effect 
to the sound with controller 

02h Breath Controller Expression value used for Breath Controller 
peripheral devices to play MIDI as a wind 
instrument, can also be used by other 
controllers 

04h Foot Controller Expression value used for foot pedal 
controller, can send continuous stream of 
signals 

05h Portamento Time Controls speed at which one note slides into 
another 

06h Data Entry Controls NRPN or RPN parameter values 

07h Channel Volume Controls volume 

08h Channel Balance Left and right balance for stereo 

0Ah Channel Pan Left and right balance for mono 

0Bh Expression This is a percentage of volume 

0Ch Effect Control 1 Controls a parameter of some effect 

0Dh Effect Control 2 Controls a parameter of some effect 

10h-13h General-Purpose  

20h-3Fh Controllers’ LSB For controllers 00h-1Fh. Expands their 
precision to 16-bits. 

40h Damper Pedal Sustain toggle 

41h Portamento Switch Portamento toggle 

42h Sostenuto Sostenuto toggle 

43h Soft Pedal Soft/Hard note toggle 

44h Legato footswitch Legato toggle 

45h Hold 2 Used to hold notes 

46h Sound Variation Controls how sound is made 



 

 
 

47h Harmonic Intensity Shaping of voltage controlled filter 

48h Release Time Control release of voltage controlled 
amplifier 

49h Attack Time Controls time it takes for sound to reach 
maximum amplitude 

4Ah Brightness Cutoff frequency of voltage controlled filter 

4Bh-4Fh Other Sound Controllers  

50h-53h General-Purpose  

54h Portamento Control Controls amount of portamento 

5Bh External Effects Depth Controls some effect, usually reverb 

5Ch Tremolo Depth Controls tremolo or other effect 

5Dh Chorus Depth Controls chorus or other effect 

5Eh Detune Depth Controls detune or other effect 

5Fh Phaser Depth Controls phaser or other effect 

60h Data Increment Increments data for RPN and NRPN 

61h Data Decrement Decrements data for RPN and NRPN 

62h Nonstandard Parameter 
Number (LSB) 

Sets NRPN parameter 

63h Nonstandard Parameter 
Number (MSB) 

Sets NRPN parameter 

64h Standard Parameter Number 
(LSB) 

Sets RPN parameter 

65h Standard Parameter Number 
(MSB) 

Sets RPN parameter 

78h Panic Mutes all notes regardless of timing or 
sustain 

79h Reset All Resets all controllers to default 

7Ah Keyboard Connect Toggles connection of keyboard or 
workstation 

7Bh All Notes Off Mutes all notes but not those affected by 
sustain 



 

 
 

7Ch Omni-Mode Off Set omni-mode off 

7Dh Omni-Mode On Set omni-mode on 

7Eh Monophonic Mode One note at a time 

7Fh Polyphonic Mode Several notes at once 

 
Table 4-3: Enumeration of  controllers 

 

4.1.5. Universal Serial Bus (USB) 
 
USB is a standard that is used very commonly in various electronic devices and 
applications. Its main purpose is to standardize the way separate devices connect to and 
communicate with a computer. Since we will be using USB as a MIDI stream output and 
as a configuration input, it is very important to understand the USB standard and the 
protocols it defines. All information about USB in this section is taken directly from the 
document on the USB 2.0 specification, called “Universal Serial Bus Specification”, 
revision 2.0. Only information relevant to this project is included. USB defines protocols 
for every layer of the 5-layer TCP/IP networking stack, from the physical layer to the 
application layer. The topic of USB is split by layer. In summary, USB is a serial bus 
architecture with one bus master and several slaves arranged in a tiered star topology. 
The bus master is the computer, and it initiates all transactions. The bus slaves cannot 
manipulate the bus unless requested to by the computer. A bus slave can behave as a 
hub, which connects the device it serves to all other devices connected to it. Hubs make 
up the structure of the bus system. 
 
Physical Layer 

 
The physical layer describes the physical hardware on which data is sent between two 
different systems. USB defines the physical layer of the connection. It includes 
specifications for ports, connectors, cables, and wires. For USB 2.0, there are two different 
attributes for ports, type and size. There are two different types of ports: A and B. Devices 
with A ports can have devices under them in the hierarchy; this applies to computers and 
USB hubs. Devices with B ports connect to a device above them in the hierarchy; this 
applies to peripheral devices like storage drives and keyboards. This port type system 
ensures that devices are connected in the correct orientation. There are three different 
sizes of ports: normal, mini, and micro. The only purpose of the different sizes is for fitting 
in different size constraints, except for the mini and micro ports, which also support USB 
On-the-Go (OTG) functionality. Each port has four to five pins, with four of them being 
common to all ports. The VBUS pin is used to supply 5 volts power to the peripheral 
device. There is a limit to how much power a peripheral device can use: 100 mA for low-
power devices, 500 mA for high-power devices. The amount of power supplied by the 
computer is negotiated after the device is connected; by default, it is low. 
 
USB 2.0 defines three speeds for data transmission across the connection: low-speed, 
full-speed, and high-speed. Table USB shows the data transfer rates of the different USB 
speeds. When devices are connected to a port that supports a different speed, the highest 
common speed among both is used. The speed also affects the operation of other layers 



 

 
 

of the USB specification. While full-speed and high-speed devices may use a separate 
cable to connect their USB ports, a low-speed device must either hardwire its own cable 
and connector within the device or use a custom cable with a custom device-side 
connector that meets the USB specifications for a low-speed cable. This device will be 
using full-speed communication, so this restriction does not apply to the device. 
 
Link Layer 
 
The link layer is responsible for transmitting binary data between two ends of a physical 
link. USB also defines the link layer protocol; it specifies the data rate, voltage ranges, and 
bit encodings on the physical wires. The discussion on the link layer will focus on that for 
full speed devices since our device will operate at full speed. Full-speed connections have 
a clock cycle speed of 12 MHz, thus one cycle lasts 83.3 ns. Since there is no clock signal 
transmitted through the connection, this is the maximum rate at which the wire states can 
change. The jitter time is the maximum deviation in the length of a multiple of cycles and 
is measured in between state transitions. For full-speed connections, the jitter time 
between consecutive differential data transitions (from J to K or K to J) must be within ± 
2.0 ns and within ± 1.0 ns for paired differential data transitions (JK to JK or KJ to KJ). To 
mark the device as a full-speed device, the D+ line has a pull-up resistor of 1.5 kΩ 
connected to 3.3 V sourced from VBUS. 
 
Each line can have a high-voltage and low-voltage state. The high-voltage state is 3.3 V 
and the low-voltage state is 0 V. Together they have 4 possible states: Differential 1, 
Differential 0, Single-ended 0 (SE0), and Single-ended 1 (SE1). The SE1 state is an invalid 
state. The actual data and bus status states are defined using these wire states. The two 
data states are the J and K state, where the J state represents a logic 1. These states are 
used to send raw binary data across the link. The J state for full-speed devices is a 
Differential 1. The K state for full-speed devices is a Differential 0. The bus status states 
are the Idle, Start-of-Packet (SOP), End-of-Packet (EOP), Reset, Suspend, and Resume 
states. The Idle state is when neither line is being driven, which is equivalent to the J state 
because of the pull-up resistor. The SOP state is a transition from the Idle state to the K 
state, and it is used to mark the start of a packet transfer. The EOP state is when the wires 
are at the SE0 state for about two cycles followed by the J state for one cycle. This state 
is used to mark the end of a packet transfer. The SE0 for the EOP state must last for 
between 160 ns and 175 ns for full-speed connections, but it may be as short as 82 ns. 
The device must wait for between 2 and 6.5 cycles before manipulating the connection 
after the EOP to allow the host’s bus drivers to be turned off. The Reset state is when the 
wires are at the SE0 state for at least 10 ms, but the device can treat the SE0 state as a 
Reset state if it lasts for at least 2.5 µs. This state tells the device that the connection state 
is reset and that it should prepare to receive information about the host and introduce itself 
to it. The Suspend state is an Idle state that lasts for more than 3 ms. This state suspends 
the device, which limits the maximum amount of current draw from VBUS to 500 uA. The 
Resume state is any state that is not an Idle state, which is typically the K state. This 
applies only when the device is suspended, and it is used to bring the device out of 
suspension. This state must last for at least 20 ms and must end with the EOP state. Table 
4-4 lists these states and their properties. 
 

Name Definition 



 

 
 

Line States 

High ~3.3 V 

Low 0 V 

Wire-Pair States 

Differential 0 D+: High & D-: Low 

Differential 1 D+: Low & D-: High 

SE0 D+: Low & D-: Low 

SE1 D+: High & D-: High 

Data Logic States 

J Differential 1 

K Differential 0 

Bus Status States 

Idle J state & wires not explicitly driven. 

SOP Transition from J to K state. 

EOP SE0 for ~2 cycles, J state for 1 cycle. 

Reset SE0 for at least 2.5 µs. 

Suspend Idle state for more than 3 ms. 

Resume Transition from Suspend state to other state. 

 

Table 4-4: Dif ferent states of  the full-speed USB connection at dif ferent levels. 

 
Binary data is transmitted in sets called packets; they are transmitted only in between the 
SOP and EOP states using J and K states. Bits are encoded using the NRZI format, where 
a 1 is represented by no change in state and a 0 is represented by a change in state. A 0 
is added after six consecutive 1s before the following bits are sent. This is to maintain 
synchronization even when several 1s are being transmitted. Thus, when receiving data, 
a 0 after six 1s should be ignored. If seven 1s are received, then the packet is corrupt and 
must be discarded. Each bit in a byte is sent with the least-significant bit first and the most-
significant bit last. Each multi-byte datum is sent in little-endian order. Each packet is 
preceded by an 8-bit SYNC pattern. The SOP state is the first bit transmitted of the SYNC 
pattern. For full-speed connections, the pattern is three pairs of K and J states with 2 K 
states at the end (i.e. 10000001). 
 



 

 
 

Network Layer 
 
The network layer is responsible for the proper transmission of data across several 
different network nodes. Essentially, it establishes a system for sending and receiving data 
to and from the correct destination and source through multiple different devices. Since 
our device communicates only with the host computer, the network layer implementation 
is very simple. However, the host has multiple devices connected to it, and it must be able 
to send packets to the correct device. When a device is first connected to a USB port, its 
address is the default address of 0. The host assigns the device an address when the host 
discovers it. The device should only respond to requests whose address matches its own. 
In the hierarchy of USB devices, the host is always at the top. Below it are the USB hubs 
and peripheral devices. Each node of the hierarchy can connect to a hub or device below 
it, except for peripheral devices, which can only connect to a higher-level node. This 
hierarchy is limited to seven levels, including the host’s level. Each node has its own 
unique address. 
 
Transport Layer 
 
The transport layer manages data transmission between connected devices. It provides 
the backbone for application-specific data transfer by addressing the correct application 
that data must be transmitted to or from and organizing that data transfer. To ensure that 
data is transferred to the correct application, USB uses a system of endpoints. Endpoints 
split data that is transferred through USB into logical data streams. Each full-speed USB 
device has a set of input and output endpoints and a maximum of 16 of each. Thus, an 
input transaction and an output transaction on endpoints with the same endpoint number 
are transactions on two different endpoints. Each endpoint has an associated number and 
specific properties that describe its functionality. Some properties of an endpoint are the 
required bandwidth, maximum latency, error-handling requirements, maximum packet 
size, and transaction type. By default, there is always a pair of input and output endpoints 
with endpoint number 0. This is called the Default Control Pipe, and it is primarily used for 
USB-defined Control transactions. 
 
To organize data transfer between the host and the device, USB defines sixteen packets 
that may be transmitted between them. They are split into four categories: Token, Data, 
Handshake, and Special. Token packets mark the purpose of a transaction and the device 
being accessed. Data packets carry only binary data. Handshake packets inform the host 
or device of the result of a transaction. Special packets have special purposes. Table X 
shows the packet IDs (PIDs) of each packet and its function. The functions are only 
described in relation to the device. 
 

Category Name PID Function 

Token OUT 1h Tells the device that it must receive a data packet. 

IN 9h Tells the device that it must send a data packet. 

SOF 5h Marks the start of a frame with a new frame number. 

SETUP Dh Used to set an endpoint’s synchronization bits. 



 

 
 

Data DATA0 3h Contains binary data. Even PID version. 

DATA1 Bh Contains binary data. Odd PID version. 

DATA2 7h Only used in high-speed connections. 

MDATA Fh Only used in high-speed connections. 

Handshake ACK 2h The received data packet did not have errors. 

NAK Ah The device cannot send or receive data. 

STALL Eh The endpoint is in an error or halted state. 

NYET 6h Only used in high-speed connections. 

Special These packets are only used in high-speed connections or between a 
host and a hub. 

 
Table 4-5: List of  packets and their functions. 

 
There are four Token packets: OUT, IN, SETUP, and SOF. The OUT, IN, and SETUP packets 
are used to send or receive data to or from the device. All three of these packets have 
four fields: the PID, the device address, the device endpoint, and the CRC-5 of the address 
and endpoint fields. All data transactions begin with one of these packets. The OUT packet 

is always followed by any data packet sent by the host, while the SETUP packet is always 
followed by a DATA0 packet specifically. The IN packet is always followed by either a data, 

a NAK, or a STALL packet sent by the device, or no packet if the IN packet contains errors. 
Table X shows the format of these packets. 
 

Field PID Address Endpoint CRC5 

Size (b) 8 7 4 5 

Notes The CRC5 field contains the 
CRC-5 of the Address and 
Endpoint fields. 

 

Table 4-6: OUT, IN, and SETUP packet format. 
 
The Start-of-Frame (SOF) packet marks the start of a time frame. For full-speed devices, 
a frame is defined to be 1 ms. Thus, the host will send an SOF packet every millisecond to 

establish time frames. This will also keep the device from going into the Suspend state. 
No reply is expected for this packet. Table 4-7 shows the format of the SOF packet. The 
Data packets all have three fields: the PID, the data payload, and the CRC-16 of the 
payload. Only the DATA0 and DATA1 packets are used in full-speed communication. The 
size of the payload is not fixed, but the maximum size for full speed is 1023 bytes. Any of 
the Data packets must only be sent by the host after an OUT or SETUP packet, and they 

must only be sent by the device after an IN packet. Data packets may be followed by an 



 

 
 

ACK, NAK, or STALL packet sent by the recipient of the transaction, or no packet at all if the 

Data packet or the OUT packet that preceded it contains errors. However, if the Data packet 
was preceded by a SETUP packet, the device must reply with an ACK packet, except when 
the endpoint is not a control endpoint, in which case it does not reply. Table 4-8 shows 
the format of the Data packets used in full-speed connections. 
 

Field PID Frame Number CRC5 

Size (b) 8 11 5 

Notes The CRC5 field contains the 
CRC-5 of the Frame Number 
field. 

 
Table 4-7: SOF packet format. 

 

Field PID Payload CRC16 

Size (b) 8 0-1023 16 

Notes The CRC16 field 
contains the CRC-16 of 
the Payload field. 

 

Table 4-8: DATA0 and DATA1 packet format. 

 
There are three Handshake packets used in full-speed connections: ACK, NAK, and STALL. 
All these packets only have one field: the PID. The ACK packet is used to tell the sender 

of the Data packet that it was received without errors. The NAK packet is used to tell the 
sender of the Data or IN packet that the receiver cannot receive data or that it has no data 
to send, respectively. The NAK packet cannot be used in a transaction that began with a 

SETUP packet. The STALL packet behaves in the same way as the NAK packet, except it is 
used when the device is in an error state. This packet informs the host that it must 
reconfigure the device. Table 4-9 shows the format of all Handshake packets. Together, 
these packets make up three packet sequences: Output, Input, Setup, and SOF. Certain 
USB transactions may use several of these sequences for one transaction. Only the host 
may begin a transaction through USB; the device cannot. 
 

Field PID 

Size (b) 8 

Notes  

 

Table 4-9: ACK, NAK, STALL, and NYET packet format. 

 



 

 
 

There are four types of USB transactions: Bulk, Control, Interrupt, and Isochronous. Bulk 
transactions are used to transmit large amounts of data without errors. They do not require 
a maximum latency, and they do not happen on a periodic basis. They consist of only one 
Output or Input packet sequence for each transaction, except in the case of errors. When 
transmission errors are detected (because the device did not send a handshake), the 
transaction is retried. The result of a Bulk transaction is indicated by the handshake that 
is given by the device or host. A Bulk transaction from the host to the device uses the 
Output packet sequence. If the handshake is an ACK, then the transaction was successful 

and the next one may begin. If the handshake is a STALL, then the transaction was not 
successful because the endpoint is halted, and no further transactions should take place. 
If the handshake is a NAK or if there is no handshake, then there was an error in the device 
or in the transmission, respectively, so the host should try the transaction again. A Bulk 
transaction from the device to the host uses the Input packet sequence. If the handshake 
is an ACK, then the transaction was successful. If the handshake is a NAK, then the device 

has no data to send or is not ready to send data. If the handshake is a STALL, then the 
transaction was not successful because the endpoint is halted, and no further transactions 
should take place. If there is no handshake either from the host or from the device, then 
the transaction was not successful and should be retried by the host. Bulk transactions 
can use either of the two Data packets. The use of these packets alternates between 
DATA0 and DATA1 for each Bulk transaction on the same endpoint. The order is reset when 
the endpoint receives a configuration event, so the next Bulk transaction after that must 
use the DATA0 packet. 
 
Control transactions are used to send commands or transmit configuration or status data. 
These transactions are not periodic and make sure that data is transmitted without errors. 
Control transactions have three stages: a setup stage, a data stage, and a status stage. 
There are three kinds of control transactions: Read, Write, and Dataless. A Control Read 
transaction consists of one Setup packet sequence for the setup stage, at least one Output 
packet sequence for the data stage, and one Input packet sequence for the status stage. 
Both DATA0 and DATA1 packets are used in Control transactions, and they alternate just 

like those in Bulk transactions. Thus, the first Data packet sequence uses the DATA1 
packet, the next Data packet sequence uses the DATA0 packet, and so on. However, in 

the status stage, the Input packet sequence always uses the DATA1 packet. A Control 
Write transaction behaves in the exact same way as the Control Read transaction, except 
the Output and Input packet sequences are swapped in all stages of the transaction. A 
Dataless Control transaction has no data stage; it consists of only one Setup packet 
sequence for the setup stage and one Input packet sequence for the status stage. Like 
the other kinds of Control transactions, the Input packet sequence of the status stage 
always uses the DATA1 packet. The device may send a STALL packet during the data or 

status stage of the transaction, in which case it must send STALL packets for all following 
transactions except the beginning of a Control transaction, upon receiving a SETUP packet. 

After receiving the SETUP packet, the device is expected to be released from the error 
state it was in, and should operate normally without sending any STALL packets, unless it 
enters another error state. The result of the Control transaction is given by the handshake 
used by the device in the status stage. For Write and Dataless Control transactions, if the 
transaction is complete, the device sends a DATA1 packet during the Input packet 

sequence. If the transaction failed, the device sends a STALL packet during the Input 
packet sequence. If the device is still busy processing the transaction, it sends a NAK 
packet during the Input packet sequence. For a Read Control transaction, the behavior is 



 

 
 

the same, except the case where the transaction is complete. In this case, the device 
sends an ACK packet during the Output packet sequence. Since a Control transaction can 
use multiple Input or Output packet sequences in the data stage, there needs to be a 
method of determining which sequence is the last one. The last sequence is the one where 
the size of the payload of the Data packet is not the maximum size. If the last sequence 
does have this property, then another sequence must be sent with the size of the payload 
being 0. 
 
Interrupt transactions are used to send or receive data that must be handled immediately. 
They are not periodic, and they behave exactly like bulk transactions. Isochronous 
transactions are used to send or receive data quickly and in a periodic fashion. They 
behave like bulk transactions, except no handshakes are transmitted. Neither the Interrupt 
nor the Isochronous transactions are used in the USB-MIDI specification. 
 
Application Layer (Standard) 
 
The application layer implements required protocols for a certain function. USB also 
defines an extensible protocol for the application layer, and it also defines protocols for 
common applications. It defines a set of standard Device Requests for reading and writing 
device characteristics and settings. Standard Device Requests are sent through the 
Default Control Pipe, which always exists. They are transported using Control 
transactions. After the Reset state is released on the bus, the device is in the Default state. 
It cannot do anything and must first be configured by the host before it becomes useful. 
The host then makes a Device Request asking for the device descriptor and uses this 
information to determine the maximum size of the Data packet payload that the device 
supports. Then, the host assigns the device an address using the SET_ADDRESS Device 

Request. Then the host makes several other Device Requests to read other descriptors 
from the device. Finally, it sends a SET_CONFIGURATION Device Request to tell the device 
that it is configured and is now functional. If the device does not support a certain Device 
Request, then it must signal an error through the methods described earlier for Control 
transactions. 
 
Device Requests must be processed within a short amount of time. For standard Device 
Requests the device must complete the status stage of the transaction within 50 ms of the 
last packet sequence. The device must send Input packet sequences within 500 ms of the 
last packet sequence for device-to-host Device Requests, and the device must be able to 
process all packets received within the time it claims to be able to process them for host-
to-device requests. Table X shows the format of a standard Device Request. A standard 
Device Request has five fields: bmRequestType, bRequest, wValue, wIndex, and 
wLength. The bmRequestType field lists the characteristics of the request: the data 

transfer direction, the specification level of the request, and the target of the request. The 
direction establishes whether it involves a Read or Write Control transaction. The 
specification level marks who defines this request; it could be defined as a standard 
request, a device class-specific request, or a custom request. The target can be the device 
itself, one of its logical interfaces, one of its endpoints, or something else. The bRequest 
field contains the ID of the request. This determines the function of the request. The 
wValue and wIndex fields are generic containers for data that may be used for certain 

requests. Finally, the wLength field determines how many bytes of data must be 
transmitted by the host or device in the data stage of the Control transaction.  
 



 

 
 

Offset Field Size (B) Function 

00h bmRequestType 1 Bit 7: Data transfer direction 
● 0: Host-to-Device 
● 1: Device-to-Host 

Bits 5-6: Request type 
● 0: Standard 

● 1: Class 
● 2: Vendor 

● 3: Reserved 
Bits 4-0: Recipient 

● 0: Device 
● 1: Interface 
● 2: Endpoint 

● 3: Other 
● 4-31: Reserved 

01h bRequest 1 ID of the request. 

02h wValue 2 Request value parameter. 

04h wIndex 2 Request index parameter. 

06h wLength 2 Number of bytes to transfer in the data stage. 

 
Table 4-10: Format for standard Device Requests. 

 
USB defines 11 standard Device Requests. Most of them must be supported by all 
devices. If the host sends a Request that the device does not support, then it must return 
a STALL packet as described previously for Control transactions. Table X shows the 

request IDs for the standard USB Device Requests. The GET_STATUS request is used to 
get the status of a device, interface, or endpoint. This request is specifically a device-to-
host request, and it can target the device, an interface, or an endpoint. The wValue field 

is always 0. If the target is the device, the wIndex field must be 0. Otherwise, the wIndex 
field is the interface or endpoint number associated with the interface or endpoint being 
targeted. This request requires that two bytes of data be sent from the device to the host. 
The format of this data depends on the target. If the target is the device, then the data is 
a bit field where bit 0 is set to 1 if the device is self -powered and bit 1 is set to 1 if the 
device is enabled to be able to wake up the host while suspended. All other bits are set to 
0. If the target is an interface, then all bits in the data payload are 0. If the target is an 
endpoint, then the data is a bit field where bit 0 is set to 1 if the endpoint is halted. When 
the endpoint is halted, no data may be transferred through it, and all transactions will result 
in a STALL packet being sent by the device. The host can halt and unhalt the endpoint. 
 

Request Name ID Function 

GET_STATUS 0h Gets the status of the recipient. 

CLEAR_FEATURE 1h Disables a specific feature. 



 

 
 

SET_FEATURE 3h Enables a specific feature. 

SET_ADDRESS 5h Sets the address of the device. 

GET_DESCRIPTOR 6h Gets a specific descriptor if available. 

SET_DESCRIPTOR 7h Optional. Sets the values of a new or existing descriptor. 

GET_CONFIGURATION 8h Gets the configuration value of the device. 

SET_CONFIGURATION 9h Sets the configuration value of the device. 

GET_INTERFACE Ah Gets the current setting of a specific interface. 

SET_INTERFACE Bh Sets an alternative setting for a specific interface. 

SYNCH_FRAME Ch Sets and gets the frame number of an endpoint. 

 
Table 4-11: Enumeration of  IDs for standard Device Requests. 

 
The CLEAR_FEATURE request disables a specific feature of the device, an interface, or an 
endpoint. This request is specifically a host-to-device request, and it can target the device, 
an interface, or an endpoint. The wValue field contains the feature ID that the host wants 
to disable. The wIndex field is 0 if the target is the device. Otherwise, this field contains 

the interface or endpoint number associated with the interface or endpoint being targeted. 
There is no data payload that is transferred for this request. The feature ID can be one of 
several values. Table 4-12 enumerates the available standard features. The 
ENDPOINT_HALT feature indicates whether an endpoint is halted. Disabling this feature 

unhalts the endpoint. The DEVICE_REMOTE_WAKEUP feature indicates whether the device 
can wake-up the host while the connection is in the Suspend state. Disabling this feature 
tells the device that it must not wake-up the host. The TEST_MODE feature indicates 
whether the device is in testing mode. This feature is not valid for full-speed devices. The 
SET_FEATURE request does the opposite of the CLEAR_FEATURE request and has almost 

the same format, except that the MSB of the wIndex field can contain a test mode ID. This 
field will only contain a test mode ID when the wValue field is set to the TEST_MODE feature 

ID. 
 

Feature ID Target 

ENDPOINT_HALT 0 Endpoint 

DEVICE_REMOTE_WAKEUP 1 Device 

TEST_MODE 2 Device 

 
 Table 4-12: Enumeration of  standard features. 

 
The SET_ADDRESS request sets the address of the device. This request is a host-to-device 

request that targets the device. The wValue field contains the new device address. The 



 

 
 

wIndex field is always set to 0. There is no data payload that is transferred for this request. 

By default, the address of a device is 0. The new address goes into effect after the end of 
the status stage of this request. 
 
The GET_DESCRIPTOR request gets a descriptor from the device. This request is a device-

to-host request, and it can only target the device. The wValue field contains the descriptor 
type ID in the MSB and the descriptor index in the LSB. The descriptor index is only valid 
for Configuration and String descriptors since there can be several of them. Otherwise, 
the descriptor index is set to 0. The wIndex field contains the language ID of the string for 
String descriptors, otherwise it is set to 0. The data that is sent by the device is the entire 
descriptor data structure that the host is requesting. Descriptors are data structures that 
describe either a device, an interface, a string, or something else. These descriptors tell 
the host what protocols it must enable to communicate with the device and use its 
functionality. Table 4-13 enumerates the relevant descriptors that are valid for this device. 
The SET_DESCRIPTOR request is optional and sets the contents of a descriptor on the 
device. This request is a host-to-device request, and it can only target the device. This 
request is not used in the USB-MIDI specification. 
 

Name ID 

Device 01h 

Configuration 02h 

String 03h 

Interface 04h 

Endpoint 05h 

 
Table 4-13: Enumeration of  descriptor IDs. 

 
The GET_CONFIGURATION request gets the current configuration ID of the device. This 

request is a device-to-host request, and it can only target the device. The wValue and 
wIndex fields are unused, so they are set to 0. The data that must be transferred is a 
single byte with the device’s current configuration ID. This request is used to determine 
the device’s behavior. A configuration has interfaces and endpoints associated with it, and 
different configurations may have different interfaces and endpoints. The 
SET_CONFIGURATION request sets the current configuration ID of the device. It is a host-

to-device request that only targets the device. The wValue field contains the new 
configuration ID, and the wIndex field contains only 0. There is no other data transmitted 
with this request. This request is used to set the device’s behavior to a specific 
configuration described by the associated Configuration descriptor. 
 
The GET_INTERFACE request gets the current alternative setting of the specified interface. 

This is a device-to-host request that only targets an interface. The wValue field is 0, and 
the wIndex field contains the interface number associated with the targeted interface. The 
data that must be transferred is a single byte with the current alternative setting of the 
interface. A single interface may have several different Interface descriptors associated 



 

 
 

with it; these are called alternative settings. Alternative settings are distinguished by an 
ID, and several can be associated to one interface. The SET_INTERFACE request sets the 
current alternative setting of the specified interface. This is a host-to-device request that 
only targets an interface. The wValue field contains the alternative setting ID of the 

requested alternative setting, and the wIndex field contains the interface number 
associated with the targeted interface. There is no other data that is transferred with this 
request. Setting the alternative setting of an interface changes its properties described by 
an Interface descriptor to those of another related Interface descriptor. These Interface 
descriptors are associated with one interface, but are distinguished by the alternative 
setting ID. 
 
The SYNCH_FRAME request sets the frame number for an endpoint and gets the frame 

number for that endpoint. This is a device-to-host request that targets only an endpoint. 
The wValue field is 0, and the wIndex field contains the endpoint number associated with 
the targeted endpoint. The data that is transferred from the device to the host is a 16-bit 
number containing the current frame number of the endpoint. 
 
The descriptors that are transferred in the GET_DESCRIPTOR request each have a specified 
format and purpose. The Device descriptor contains information about the device including 
the level of USB support, the device’s functionality, the manufacturer of the device, and 
the total number of configurations that it supports. Table 4-14 shows the format of the 
Device descriptor. The bDeviceClass, bDeviceSubClass, and bDeviceProtocol fields 
describe the functionality of the device. These are filled with values defined by USB for 
specific functions. For USB-MIDI, these fields are all set to 0. The idVendor field contains 
an ID associated with a manufacturer. This ID is assigned by the USB Implementers’ 
Forum (USB-IF). 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (12h) 

01h bDescriptorType 1 The descriptor type ID. (1) 

02h bcdUSB 2 The supported version of USB. (0200h) 

04h bDeviceClass 1 The device class code. 

05h bDeviceSubClass 1 The device subclass code. 

06h bDeviceProtocol 1 The device protocol code. 

07h bMaxPacketSize0 1 Maximum size in bytes of a packet for 
the Default Control Pipe. 

08h idVendor 2 Device vendor ID. 

0Ah idProduct 2 Device product ID. 

0Ch bcdDevice 2 Device release number in BCD format. 



 

 
 

0Eh iManufacturer 1 Index of the String descriptor with the 
name of the manufacturer. 

0Fh iProduct 1 Index of the String descriptor with the 
name of the product. 

10h iSerialNumber 1 Index of the String descriptor with the 
device’s serial number. 

11h bNumConfigurations 1 Number of possible configurations. 

 
Table 4-14: Format for a standard Device descriptor. 

 
The Configuration descriptor contains information about the properties of a specific 
configuration of the device. Table 4-15 shows the format of the Configuration descriptor.  
The wTotalLength field contains the total amount of data in bytes that is sent along with 
this Configuration descriptor, including the descriptor itself. When a Configuration 
descriptor is transferred, other descriptors are included in the transfer. A Configuration 
descriptor is always followed by at least one Interface descriptor if the device exposes any 
interface. However, the value of the bNumInterfaces field only reflects the actual number 
of interfaces, and not the number of Interface descriptors that follow the Configuration 
descriptor. This is because several Interface descriptors may be associated with one 
interface, with the number of Interface descriptors reflecting the number of alternative 
settings of that interface. The bConfigurationValue field must be greater than 1 since 
the value 0 is used for unconfigured devices. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (09h) 

01h bDescriptorType 1 The descriptor type ID. (2) 

02h wTotalLength 2 Total size of data that is given by this 
configuration, including the sizes of itself 
and all interface, endpoint, class-
specific, and custom descriptors. 

04h bNumInterfaces 1 Number of interfaces for this 
configuration. 

05h bConfigurationValue 1 ID for this configuration. Used for setting 
the configuration. 

06h iConfiguration 1 Index of the String descriptor with the 
name of the configuration. 

07h bmAttributes 1 A bitmap with configuration 
characteristics. 
Bit 7: (must be set to 1) 



 

 
 

Bit 6: Power source 

● 0: Bus-powered 
● 1: Self-powered 

Bit 5: Remote wake-up support 

● 0: Not supported 
● 1: Supported 

Bits 4-0: (must be set to 0) 

08h bMaxPower 1 The maximum amount of power in units 
of 2 mA used by the device in this 
configuration. 

 

Table 4-15: Format for a standard Conf iguration descriptor.  

 
There are two formats for the String descriptor; the String descriptor at index 0 has the 
String Descriptor Zero format, while all other String descriptors have the same format. 
String Descriptor Zero contains information about the languages that the device supports. 
This allows the device to supply different strings with the same index for different 
languages. Table X shows the format of String Descriptor Zero. The language IDs are 
defined by the USB-IF. If the device does not have any string descriptors, then no array 
of language IDs must be included in the descriptor. The normal String descriptor contains 
only an array of Unicode characters. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (3) 

02h wLANGID[N] 2*N An array of supported language IDs. 

 

Table 4-16: Format for String Descriptor Zero. 

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (3) 

02h bString[N] N Unicode encoded string. 

 
Table 4-17: Format for a standard String descriptor. 

 
The Interface descriptor contains information about an alternative setting of an interface. 
If the interface only has one alternative setting, then the interface only has one Interface 
descriptor associated with it. Table 4-18 shows the format of the Interface descriptor. 
Interface descriptors cannot be specifically requested, they must only be transferred 
during a request for a Configuration descriptor and sent after it. The function of the 



 

 
 

bInterfaceClass, bInterfaceSubClass, and bInterfaceProtocol fields are like 

those of the Device descriptor, but these fields may contain different ranges of values 
depending on the functionality of the device and the specification of such codes by the 
USB-IF. For a USB-MIDI device, the bInterfaceClass field is set to 01h for the Audio 

Device Class. The values of the other fields depend on the interface. The Interface 
descriptor is always directly followed by the Endpoint descriptors associated with it. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (09h) 

01h bDescriptorType 1 The descriptor type ID. (4) 

02h bInterfaceNumber 1 The number associated with this 
interface within the scope of the 
configuration. 

03h bAlternateSetting 1 ID of this alternative setting for the 
interface associated with 
bInterfaceNumber. 

04h bNumEndpoints 1 Number of endpoints used by this 
interface excluding the Default Control 
Pipe. 

05h bInterfaceClass 1 Interface class code. 

06h bInterfaceSubClass 1 Interface subclass code. 

07h bInterfaceProtocol 1 Interface protocol code. 

08h iInterface 1 Index of the String descriptor with the 
name of this interface. 

 
Table 4-18: Format for a standard Interface descriptor. 

 
The Endpoint descriptor contains information about an endpoint that is used by an 
interface. Table 4-19 shows the format of the Endpoint descriptor. Endpoint descriptors 
cannot be specifically requested, they must only be transferred during a request for a 
Configuration descriptor and sent directly following the Interface descriptor with which it is 
associated. The Endpoint descriptor cannot be used to describe the Default Control Pipe, 
and endpoints cannot overlap through different interfaces unless the endpoint is used by 
different alternative settings of the same interface. However, they can overlap across 
different configurations. The bInterval field is not valid for endpoints that use Bulk and 

Control transactions, so it must be set to 0. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (09h) 



 

 
 

01h bDescriptorType 1 The descriptor type ID. (5) 

02h bEndpointAddress 1 The address of this endpoint. 
Bit 7: Direction 

● 0: Host-to-device 
● 1: Device-to-host 

Bits 6-4: (must be set to 0) 

Bits 3-0: Endpoint number 

03h bmAttributes 1 A bitmap of the endpoint’s attributes. 
Bits 7-6: (must be set to 0) 
Bits 5-4: Isochronous usage 

Bits 3-2: Isochronous synchronization 
Bits 1-0: Transaction type 

● 00: Control 
● 01: Isochronous 

● 10: Bulk 
● 11: Interrupt 

04h wMaxPacketSize 2 Maximum packet size that this endpoint 
supports. 
Bits 15-13: (must be set to 0) 
Bits 12-11: High-speed only 

Bits 10-0: Maximum packet size in bytes 

06h bInterval 1 Interval in frames that the host should 
attempt transactions. 

 
Table 4-19: Format for a standard Endpoint descriptor. 

 
Most of these requests are valid any time after the device has a unique address assigned 
to it. Only the GET_DESCRIPTOR and SET_ADDRESS requests are valid if the device does 
not have its address set. The GET_INTERFACE and SET_INTERFACE requests are only valid 

when the device is configured. GET_DESCRIPTOR requests may ask for any descriptor at 
any time, except for Interface and Endpoint descriptors. Once the device is configured, it 
should expect to perform other requests and transactions associated with its functionality. 
 
Application Layer (USB-MIDI) 
 
There is a standard for sending a MIDI stream through USB called USB-MIDI. It uses a 
MIDIStreaming interface, which is a subclass of the Audio interface class. In order to use 
the MIDIStreaming interface, the device must also support the AudioControl interface. A 
USB-MIDI device is organized into several of Elements and Jacks. An Element is a source 
or sink of a MIDI data stream. It can have at least one input pin and at least one output 
pin. Each pin carries one MIDI data stream. A Jack connects an Element to the USB host. 
The Element could be one internal to the device or it could be an external device that 
connects to the USB device. A MIDI IN Jack moves a MIDI data stream from the host or 
an external device to the USB device, while a MIDI OUT Jack moves a MIDI data stream 
from the USB device to the host or an external device. A MIDI IN Jack can only have one 



 

 
 

output pin, while a MIDI OUT Jack can have several input pins. Pins are internal  
connections in the USB device between different Elements and Jacks. Both Elements and 
Jacks are called Entities. 
 
In order to support a MIDIStreaming interface, the device must support the AudioControl 
interface. This interface allows the host to control the audio functionality of the device and 
receive the device’s audio-related statuses. The AudioControl interface uses the standard 
Interface descriptor and several other class-specific descriptors to describe itself. For the 
standard AudioControl Interface descriptor, the bNumEndpoints field must be set to 0, the 

bInterfaceClass field must be set to 01h (Audio), the bInterfaceSubClass field must 
be set to 01h (AudioControl), and the bInterfaceProtocol field must be set to 0. The 
AudioControl uses class-specific descriptors to provide more information about the audio 
functionality of the device. All these descriptors are appended to the standard 
AudioControl Interface descriptor. Together they make up the class specific AudioControl 
Interface descriptor. Since these descriptors are class-specific, they must use special 
class-specific descriptor type IDs. Table 4-20 lists these type IDs; their functionality is like 
the standard versions of these descriptor type IDs. These descriptors also use special 
descriptor subtype IDs to specify the AudioControl-specific object that the descriptor 
describes. These subtype IDs are listed in Table 4-21. The only relevant AudioControl 
descriptor is the Header descriptor, since the other descriptors describe objects that only 
apply to audio stream processing and not MIDI data streams. The AudioControl Header 
descriptor is shown in Table 4-22. This descriptor contains extra general information 
related to the audio device and introduces the descriptors that follow it. The AudioControl 
interface does not have any endpoints associated with it because it uses the Default 
Control Pipe. Thus, it does not use any class-specific Endpoint descriptors. 
 

Name ID 

CS_Undefined 20h 

CS_Device 21h 

CS_Configuration 22h 

CS_String 23h 

CS_Interface 24h 

CS_Endpoint 25h 

 

Table 4-20: Enumeration of  class-specific descriptor type IDs. 

 

Name ID 

AC_Descriptor_Undefined 00h 

Header 01h 

Input_Terminal 02h 



 

 
 

Output_Terminal 03h 

Mixer_Unit 04h 

Selector_Unit 05h 

Feature_Unit 06h 

Processing_Unit 07h 

Extension_Unit 08h 

 
Table 4-21: Enumeration of  AudioControl descriptor subtype IDs. 

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (24h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (01h) 

03h bcdADC 2 Version of the supported Audio Device 
Class Specification. (0100h) 

05h wTotalLength 2 Total number of bytes sent with this 
descriptor, including itself and all other 
related descriptors. 

07h bInCollection 1 Number of AudioStreaming and 
MIDIStreaming interfaces that belong to 
this AudioControl interface. 

08h baInterfaceNr[N] N Array of interface numbers of the 
AudioStreaming or MIDIStreaming 
interfaces associated with this 
AudioControl interface. 

 
Table 4-22: Format for an AudioControl Header descriptor. 

 
The MIDIStreaming interface is described with a combination of the standard Interface 
descriptor and several class-specific descriptors. The standard MIDIStreaming Interface 
descriptor has the bInterfaceClass field set to 1 (Audio), the bInterfaceSubClass field 
set to 3 (MIDIStreaming), and the bInterfaceProtocol field set to 0. The 

bNumEndpoints field should be set to at least 1 since it needs at least 1 endpoint to 
transfer data. The MIDIStreaming interface also has special descriptors for it. All these 
descriptors are appended to the standard MIDIStreaming Interface descriptor. Together 
they make up the class specific MIDIStreaming Interface descriptor. These descriptors 
also use special class-specific descriptor type IDs and MIDIStreaming descriptor subtype 
IDs. These subtype IDs are listed in Table 4-23. The format of the class specific 



 

 
 

MIDIStreaming Header descriptor is shown in Table 4-24. This descriptor contains extra 
general information related to the MIDIStreaming interface and introduces the descriptors 
that follow it. 
 

Name ID 

MS_Descriptor_Undefined 00h 

MS_Header 01h 

MIDI_IN_Jack 02h 

MIDI_OUT_Jack 03h 

Element 04h 

 
Table 4-23: Enumeration of  MIDIStreaming descriptor subtype IDs.  

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (07h) 

01h bDescriptorType 1 The descriptor type ID. (24h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (01h) 

03h bcdADC 2 Version of the supported MIDIStreaming 
SubClass Specification. (0100h) 

05h wTotalLength 2 Total number of bytes sent with this 
descriptor, including itself and all other 
related descriptors. 

 
Table 4-24: Format for a MIDIStreaming Header descriptor. 

 
The other MIDIStreaming descriptors that are appended to the standard MIDIStreaming 
Interface descriptor are the MIDI IN Jack, MIDI OUT Jack, and Element descriptors. Only 
the MIDI OUT Jack and Element descriptors are relevant for this device. Table 4-25 shows 
the format for a MIDIStreaming MIDI OUT Jack descriptor. This descriptor describes the 
properties of a MIDI OUT Jack, including its ID, input sources, and type. The type of Jack 
can either be embedded or external; this specifies whether the Jack connects to an 
internal MIDI Element within the USB device or connects to an external one beyond the 
USB device, respectively. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (24h) 



 

 
 

02h bDescriptorSubtype 1 The descriptor subtype ID. (03h) 

03h bJackType 1 Type ID of the Jack. Can be one of: 
● 1h: Embedded 
● 2h: External 

04h bJackID 1 Entity ID of this Jack. 

05h bNrInputPins 1 Number N of input pins that this Jack 
has. 

06h baSourceIDPin 2*N An array of words where the LSB 
contains the Entity ID of the Entity that 
this Jack connects to and the MSB 
contains the output pin number on that 
Entity to which this input pin is 
connected. 

... iJack 1 Index of the String descriptor with the 
name of this Jack. 

 

Table 4-25: Format for a MIDIStreaming MIDI OUT Jack descriptor. 

 
The MIDIStreaming Element descriptor describes the properties of a MIDI Element within 
the scope of the device. It can be an internal or external source or sink of a MIDI data 
stream. It also lists the capabilities of the Element. These are shown in Table 4-26. For 
this device, only the GM1 capability is relevant because GM1 defines the musical note 
scale that we are using. The entire table is shown for reference only, in case the device is 
extended to support a new feature that uses any of these capabilities. The properties that 
the Element descriptor lists are the Entity ID, the number of input and output pins, the MIDI 
stream input sources, the audio stream inputs and outputs, and the Element’s capabilities. 
Table 4-27 shows the format of the Element descriptor. 
 

Name Bit Index Meaning 

CUSTOM 0 Custom capabilities. 

MIDI_CLOCK 1 MIDI CLOCK messages support. 

MTC 2 Synchronization features support. 

MMC 3 MMC messages support. 

GM1 4 General MIDI System Level 1 compatibility. 

GM2 5 General MIDI System Level 2 compatibility. 

GS 6 Roland GS format compatibility. 

XG 7 Yamaha XG format compatibility. 



 

 
 

EFX 8 USB-controlled audio effects processor included. 

MIDI_PATCH_BAY 9 Internal MIDI patcher or router provided. 

DLS1 10 DownLoadable Sounds Standard Level 1 
compatibility. 

DLS2 11 DownLoadable Sounds Standard Level 2 
compatibility. 

 
Table 4-26: Bitmap of  Element capabilities and their meanings. 

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (24h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (04h) 

03h bElementID 1 Entity ID of this Element. 

04h bNrInputPins 1 Number N of input pins that this Element 
has. 

05h baSourceIDPin 2*N An array of words where the LSB 
contains the Entity ID of the Entity that 
this Element connects to and the MSB 
contains the output pin number on that 
Entity to which this input pin is 
connected. 

... bNrOutputPins 1 Number of output pins that this Element 
has. 

... bInTerminalLink 1 The Terminal ID of the Input Terminal to 
which this Element is connected. 

... bOutTerminalLink 1 The Terminal ID of the Output Terminal 
to which this Element is connected. 

... bElCapsSize 1 Size M in bytes of the bmElementCaps 
field. 

... bmElementCaps M A bitmap that contains information on the 
capabilities of the Element. See Table x 
for the format. 

... iElement 1 The index of the String descriptor with 
the name of this Element. 



 

 
 

 

Table 4-27: Format for a MIDIStreaming Element descriptor. 

 
Since a MIDIStreaming interface can have at least one endpoint associated with it for 
transferring MIDI data streams, it must append at least one Endpoint descriptor with its 
associated MIDIStreaming Interface descriptor. The MIDIStreaming Endpoint descriptor 
uses the standard Endpoint descriptor appended with the class specific MIDIStreaming 
Bulk Data Endpoint descriptor. The MIDIStreaming Bulk Data endpoint uses bulk 
transactions, so the associated Endpoint descriptor must describe it as such. Two bytes 
are also appended to the end of the standard Endpoint descriptor; these are set to 0. The 
format of the class specific MIDIStreaming Bulk Data Endpoint descriptor is shown in 
Table 4-28. All it does is associate this endpoint to several MIDI Jacks. There is another 
class specific MIDIStreaming Endpoint descriptor, called the MIDIStreaming Bulk Transfer 
Endpoint descriptor, but it is primarily used for devices that support DLS. Since our device 
does not use DLS, this descriptor is irrelevant. The descriptor subtype of these class 
specific MIDIStream Endpoint descriptors is always 1. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (25h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (01h) 

03h bNumEmbMIDIJack 1 Number N of embedded MIDI Jacks 
associated with this endpoint. 

04h baAssocJackID N An array of bytes where each byte 
contains the Entity ID of a Jack that is 
associated with this endpoint. 

 

Table 4-28: Format for a MIDIStreaming Bulk Data Endpoint descriptor. 

 
The AudioControl interface also defines class-specific requests. However, all of these are 
only relevant for audio stream processing and not for MIDI streams. The MIDIStreaming 
interface also defines class-specific requests. However, there is only one standard 
request, and it is only relevant to the MIDIStreaming Bulk Transfer endpoint. As mentioned 
before this feature does not apply to this device. Thus, none of these class-specific 
requests need to be supported. 
 
USB-MIDI has a special feature called virtual cables. This feature allows the transport of 
16 logical MIDI streams through one Bulk endpoint. Each cable number corresponds to 
the index of the MIDI Jack associated with the endpoint, as listed in the MIDIStreaming 
Bulk Data Endpoint descriptor. In order to transfer a MIDI stream from the device to the 
host, the host must initiate a Bulk transaction through the MIDIStreaming Bulk Data 
endpoint. The data that is transferred is a sequence of 4-byte MIDIStreaming packets that 
wrap around three bytes of a MIDI stream. Typically, the three bytes correspond to one 
MIDI message. However, for System Exclusive messages, every three bytes of the 
message is contained within a MIDIStreaming packet, since those messages have 



 

 
 

arbitrary length. The format of the MIDIStreaming packet is shown in Table 4-29. The 
Code Index number (CIN) describes the function of the message. For CINs 8h through Eh, 

these bits correspond to the message code in the status byte of the message. CINs 2h 
through 7h are used for System messages. CIN Fh is used to send a single byte in the 
packet. Table 4-30 lists the available CINs and their function. Support for the Running 
Status feature of MIDI is unspecified. 
 

Byte 0 Byte 1 Byte 2 Byte 3 

Bits 0-3: 
Cable number 
 
Bits 4-7: 
CIN 

MIDI byte 0. 
Typically the status 
byte for every 
message other than 
System Exclusive 
messages. 

MIDI byte 1. 
Typically the first 
data byte. If the 
message does not 
have one then this 
field is set to 0. 

MIDI byte 2. 
Typically the 
second data byte. If 
the message does 
not have one then 
this field is set to 0. 

 
Table 4-29: Format for a MIDIStreaming MIDI data packet. 

 

CIN Payload Size (B) Function 

2h 2 2-byte System Common message. 

3h 3 3-byte System Common message. 

4h 3 Beginning or middle part of a System Exclusive message. 

5h 1 1-byte System Common message or last byte of a System 
Exclusive message. 

6h 2 Last 2 bytes of a System Exclusive message. 

7h 3 Last 3 bytes of a System Exclusive message. 

8h 3 Note Off message. 

9h 3 Note On message. 

Ah 3 Polyphonic Key Pressure message. 

Bh 3 Controller Change 

Ch 2 Program Change 

Dh 2 Channel Key Pressure 

Eh 3 Pitch Bend 

Fh 1 Single byte. 

 

Table 4-30: Enumeration of  CIN functions. 



 

 
 

 
 
 

4.1.6. Design Impact of Relevant Standards 
 
The standards that we have chosen to adhere to are all for the benefit of making the device 
more accessible to the widest range of applications with the greatest variety of other 
devices. By outputting our MIDI signal through both a MIDI port and a USB port, we can 
interface with 1) other MIDI devices such as digital synthesizers and digital pianos via 
MIDI cable and 2) computers and digital audio workstations via USB. These two standards 
give us all the variety we need in our outputs to interface with any device that a potential 
user could want to interface with. 
 
Similarly, the choice to use quarter-inch tip-sleeve and XLR3 with phantom power is one 
with consideration for accessibility. The two types of devices that we foresee a user 
connecting to the input of this device are either an electric instrument, such as electric 
guitar or electric piano, or a microphone. Most electric instruments use a mono quarter-
inch tip-sleeve audio cable to transmit their signal. There are also quarter-inch cable 
standards of tip-ring-sleeve (TRS) and tip-ring-ring-sleeve (TRRS) for balanced signals or 
stereo audio and stereo audio with a separate channel for microphone input. These 
options seem unnecessary as they are typically used for devices such as headphones, 
speakers, and mixers. Including balanced TRS or TRRS compatibility will not make our 
input more accessible because the input devices one would use with this device do not 
use that standard. 
 
The XLR3 jack is the most common standard for microphone inputs or for “direct out” or 
“line out” outputs on amplifiers. In order to capture vocals or acoustic instruments, the 
device should be able to accept a microphone input. There are, however, many different 
types of microphones such as dynamic, ribbon, or condenser. Most types of microphone 
will work on their own just by plugging them in, but most condenser microphones need to 
be supplied with 48V phantom power. By implementing a 48V phantom power toggle 
switch, we can support any kind of XLR3-compatible microphone the user has available. 
After XLR3, the next most common microphone standard is USB, to be plugged directly 
into a computer. We have decided not to support these kinds of microphones. 
 

4.2. Realistic Design Constraints 
 
There are numerous constraints that need to be considered when designing and building 
our device. These include but are not limited to economic, time, environmental, social, 
political, ethical, safety, manufacturability, and sustainability constraints. 
 

4.2.1. Economic and Time Constraints 
 
The economic constraints that are considered when designing our device is that we do 
not have a sponsor for our project. Most of the group are low-budget college students that 
would not like to spend a great amount of money on building the device. Due to this, we 
set a maximum budget on building the device to 450$. Due to the nature of the device, 
this is a realistic budget that should allow us to build a functionable design that meets our 
requirements specifications. This maximum budget is also desirable because it limits the 



 

 
 

maximum cost of the device for each group member to 112.50$ each. This economic 
constraint does limit us in the quality of functionality of our device. To keep our budget 
low, we may eliminate potential features that we may have wanted in our device initially. 
This means that we must take pricing into account when choosing our microcontroller, 
power supply, PCB, and all other parts of the device.  
 

Component/Device Budget Component/Device Budget 

PCB 200$ Case 30$ 

Microphone Free Passive components 30$ 

Power Supply Free DC-DC converters 50$ 

Analog-to-Digital 
Converter 

10$ Input/output interfaces 30$ 

Processor 20$ Voltage regulators and 
active components 

50$ 

USB cable 2$ 48 V Phantom Power 
Output 

25$ 

MIDI cable 3$ Total 450$ 

 
Table 4-31: Expected budget breakdown 

 
There are multiple time constraints that are considered when designing and building our 
device. One time constraint is that some of the members of the group working on the 
device have jobs and other classes/projects that will keep them busy through senior 
design. To mitigate this constraint, we make sure to meet at times weekly where each 
member is not busy. This constraint can mean that some members of the group may not 
be able to work on the project for as much time as they would like. Another time constraint 
is the amount of time it may take for us to receive parts that we order for our device. There 
could be delays in the shipping time for the parts we select. If a part that we order is not 
available in the time that we need it, then we can mitigate this problem by exploring 
different suppliers and options for the part needed. 
 

4.2.2. Environmental, Social, and Political Constraints 
 
The main environmental constraint that needs to be considered for our senior design 
project is the COVID-19 pandemic. Due to COVID-19, we are not meeting in person and 
we are all meeting online to design the device. We also do not have the access to the 
Senior Design lab or other on-campus amenities during Senior Design 1. Some members 
of the group have moved back to their original residence and are not in Orlando for Senior 
Design 1. This makes it difficult to plan and work together on the project. The COVID-19 
pandemic could also influence the manufacturing of parts that we need for our device. 
COVID-19 started in China and has had a detrimental effect on products coming out of 
China. China is one of the main manufacturers of electronic parts so we may have to 



 

 
 

consider parts from other manufacturers. Without access to the Senior Design Lab it will 
make it difficult to test and prototype circuits needed for our device. An oscilloscope testing 
kit has been sent to one of our group members which will allow us to test circuits we will 
need for the device. Social constraints also played a role in the design of the device. The 
social constraints that we considered when designing our device mostly deal with devices 
being used for musical purposes. We want the device to be compatible with as many MIDI 
devices as possible. For this reason, we needed to implement both XLR3 inputs and 
outputs and ¼-inch jack inputs and outputs. Both connector types are commonly used 
with MIDI devices, guitars and microphones which can be used with the device.  
 

4.2.3. Ethical, Health, and Safety Constraints 
 
Usually when dealing with devices that record audio, they are not allowed to continuously 
record without the user’s permission. This is a privacy concern that many developers of 
anything that can record audio have to deal with. Our device needs to have a microphone 
attached to the device that is provided by the user, so the device user does not need to 
worry about the device secretly recording audio. All MIDI transcriptions that are made by 
the user will be used only by the user and there will be no way for the developers to be 
able to take any recording from the device. We want our device to be completely safe for 
all people to use, so we have implemented some health and safety constraints for the 
device. We need to make sure our device is built fundamentally sound so that it is safe to 
use without any malfunctions that could harm the user. This is done by testing all the 
circuits that will be used for power before we implement them into the device. As an 
additional safety measure, we must make sure to design our device such that it does not 
produce any unintended interference. Almost all consumer electronics sold in the United 
States is subject to part 15 of the FCC CFR title 47. Subpart B of this section explains the 
rules that apply to consumer electronics which may act as “unintentional radiators” of radio 
wave noise. We don’t want any part of our device from the case to the PCB to be acting 
as an antenna and spreading radio interference in a way that conflicts with these rules. 
[30] 
 

4.2.4. Manufacturability and Sustainability Constraints 
 
Manufacturability constraints need to be considered when choosing parts for the 
construction of the device. We will have to research standard techniques for PCB design, 
stackup, material (rigid, flex, rigidized flex, etc.), and other board parameters before we 
can have our PCB manufactured. Multiple factors go into the decision making process of 
which manufacturers we will use to get our parts for the device. Some of these factors 
include cost, availability, and quality. Single unit and bulk pricing both need to be 
considered when buying parts for the device. If we were to put the device on the market 
we would buy in bulk for the parts we use to maximize profits. In terms of availability, most 
of the parts should be easily attainable for the construction of the device. To lower the cost 
of the device we are using some parts that certain members of the group already own. 
Another constraint that we could face in availability in manufacturing of parts is that many 
manufacturing plants may not be working now due to the coronavirus pandemic. This 
means we may have to look at more potential manufacturers than we may have had to 
before the pandemic. It also means that there could be delays in the manufacturing in the 
parts we need. These are circumstances that we will need to consider when purchasing 
parts for the device.  



 

 
 

 
In terms of sustainability, we want our product to last for a long time without any 
malfunctions. One sustainability constraint that we have placed on ourselves for the device 
is for the device to have a low heat output. We do not want our device to require active 
cooling because this can interfere with quality of the MIDI translation done by the device. 
We also do not want our device to overheat and potentially harm the device or user. There 
should be little to no electromagnetic noise created by the device, to protect the 
functionality of the device. In the event of a part failing in the design, we would want to be 
able to diagnose the problem and repair the device. In order to do this, we must design 
our PCB with test points that will allow us to take measurements that yield meaningful data 
regarding the function and wellbeing of specific parts. We will also have to consider 
component availability or scarcity when selecting our parts in order to ensure that the 
board will be repairable in the future. 
 

5. Hardware Design Details 
 
The hardware design can be broken down into three sections: the power section, the 
analog audio circuitry section, and the note transcription section. Each section consists of 
several smaller blocks that will perform the various tasks needed to operate the device. 
The power section consists of two voltage protection circuits and two voltage converters 
which will provide power to the device at 5 volts and 48 volts. Power will be drawn from 
either an external 9V supply or from 5V USB power if a USB connection is present. 9V 
power will be regulated and stepped down to 5V and regulated to power the logic circuitry 
in the note transcription section. 5V power will also be stepped up to 48V for the optional 
phantom power that can be toggled on and delivered to a microphone plugged into the 
XLR3 jack. The analog audio circuitry section handles all the inputs and outputs for the 
instrument signal. There are two inputs and two outputs, one for ¼” tip and shield cable 
and one for XLR3. There will also be a block that handles the selection, routing, and mixing 
of the input signal to match whatever feature set is implemented in the final product, be it 
a toggle between the two inputs, simultaneous input from both jacks, or some other 
implementation. Finally, there will be a preamplifier stage that prepares our instrument 
signal for the note transcription section. 
 
Managing power constraints is an important aspect of any electrical design. We need a 
good estimate of how much power is going to be required by each of our hardware blocks 
to ensure that our 9V barrel jack / 5V USB power scheme is viable. In order to track this, 
we will use two tools: a power diagram and a power budget spreadsheet. The power 
diagram is a flow chart, showing the sources (9V DC barrel jack and 5V DC USB port) and 
every component they are responsible for powering. In the case of this device, both the 
5V USB port and the 9V barrel jack will have to be capable of powering the entire device. 
Once we have more information about the specific components being used in the design, 
we will be able to fill in the power requirements of each block (currently denoted by “?W”). 
Our current estimate is that 2W will be required for our design to function. This is a very 
rough estimate based on our microprocessor options drawing somewhere in the ballpark 
of 200mA current from our 5V source. Doubling that to 400mA gives us some idea of how 
much power will be drawn by the entire device, giving us the 2W estimate. 
 



 

 
 

 
 

Figure 5-1: The hardware block diagram. 

 
In addition to the power diagram, we have the power budget, which is a part-by-part 
analysis of how much power is being consumed by what and how much power must be 
delivered by each source. Again, this is a tool that will become more useful as we are able 
to populate it with the specific parts we are using in our design. For now, it is filled with the 
names of the hardware blocks. When it is completely filled out it will be a list of every 
electrical component on our bill of materials, showing the number of each part used in the 
device, the current drawn by each part, and the power consumed by each part. We then 



 

 
 

can estimate the efficiency of these parts and of the power supply to get our final number 
for the power required. 
 

9V 

Supply     

Part 
Identif ier Part Name 

Supply Current Per 
Part (A) Supply Voltage (V) Power (W) 

U? 9V to 5V Converter 55mA 9V 0.5W 

 

Table 5-1: 9V Power budget. 

 

5V 
Supply     

Part 
Identif ier Part Name 

Supply Current Per 
Part (A) Supply Voltage (V) Power (W) 

U? Preamplif ier 6mA 5V 30mW 

D? 

Preamplif ier “Clipping” 

Diode 6mA 5V 30mW 

U? MIDI Controller 5mA 5V 25mW 

U? USB Controller 5uA 5V 25uW 

U? 5V to 48V Converter 60mA 5V 0.3W 

U? 5V to 3.3V Converter 2.1mA 5V 10.5mW 

 
Table 5-2: 5V Power budget. 

 

3.3V 

Supply     

Part 
Identif ier Part Name 

Supply Current 
Per Part (A) Supply Voltage (V) Power (W) 

U? MSP430FR5994 3mA 3.3V 10mW 

 

Table 5-3: 3.3V Power budget. 

 

48V 

Supply     

Part 
Identif ier Part Name 

Supply Current Per 
Part (A) Supply Voltage (V) Power (W) 

J? XLR3 Input Jack 50mA 48V 0.24W 

 

Table 5-4: 48V Power budget. 

 



 

 
 

 
 

Figure 5-2: Power Diagram 

 

5.1. Power Circuits 
 
Power Switching Circuit 
 
By using two LTC4411s we can prioritize the USB input voltage over the input voltage 
from the DC barrel jack. Figure 5-3 shows an example of a circuit that uses 2 LTC4411s 
that prioritizes the USB voltage and can switch between both voltages depending on which 
is plugged in. Figure 5-4 shows the voltages from both inputs as well as the voltage at the 
output. The circuit was simulated for three conditions which are all shown on the graph. 
These conditions are 5V USB ON Jack 5V OFF, USB 5V OFF and Jack 5V OFF, and both 
OFF. As seen in Figure 5-4 there is a constant Vout slightly below 5V if one of the power 
sources is turned on.  The small voltage drop should be negligible for the purposes of 
powering the device. Figure 5-5 shows the currents from both power sources during the 
simulation. This shows that when both power sources are turned on, only the 5V from USB 
is delivering current. 
 



 

 
 

 
 

Figure 5-3: Power Switching Circuit 

 

 
 

Figure 5-4. Voltage graph of  inputs and output 

 

 
 

Figure 5-5. Input Current f rom Power Supplies 

 



 

 
 

A simpler design would be to follow the example one in the chip’s datasheet. It is simpler 
and cheaper. Figure X is a schematic of the design, and Figure X is a simulation showing 
the functionality. This design has the same functionality as the previous design, and it also 
outputs a logic signal depending on the current source of the 5V power rail. For this design 
to work, the 5V power output from the 9V to 5V converter must be at least 5.75V in this 
simulation. However, this higher voltage heavily depends on the voltage drop of the 
Schottky diode, which depends on the load on the 5V power rail. A 50-ohm load, as used 
in the simulation, will cause the voltage drop to be greater than if the load were a 500 ohm 
one. The output voltage of the 9V to 5V converter can be adjusted by tuning the RFBT1 
resistor; increasing the resistance will increase the voltage of the output. Coordinated 
selection of the diode and resistance value is very important. 
 

 
 

Figure X: Schematic of  new power switching circuit. 

 

 
 

Figure X: Simulation results. 5VBUS (red), 5VJACK (green), and OUT current (blue) are shown. 



 

 
 

 
Power Circuit 
 
Since we have multiple DC-DC converter circuits throughout our power circuit, we have 
split it up into 3 schematics. The first part of the power circuit is shown in Figure 5-5. This 
schematic shows the power source inputs to the power switching section of our circuit. 
This schematic can also be divided into 3 sections. The first section on the top of the 
schematic is the two power sources from the USB connector and the 9V DC Barrel Jack 
connector. The USB connector has 4 pins, but for this schematic we only need to use 2 
which are the VBUS and GND pins which go to the power switching section and ground 
respectively. The other two pins are data pins which will need to be connected to the USB 
Transceiver. The 9V DC Barrel Jack has two pins that are used as well. As seen in the 
schematic one of the pins goes to ground and the other goes that is used for voltage. The 
next section of the schematic is the 9V to 5V DC-DC converter that we designed using the 
TI Webench tool. This can be seen in the right side of the schematic. The 9V to 5V DC-
DC converter takes the 9V from the pin from the DC Barrel jack and outputs 5Vto the 
power switching section. The last section of the first schematic is the power switching 
section which can be seen on the left of the schematic. This uses two power switching ICs 
and to switch between 5V from USB and 5V from the 9V to 5V DC-DC converter output. 
This section outputs approximately 5V to the net labeled 5VBUS which will be used to 
power most of our device. The 5VBUS net will be used to power the other subsections of 
our power circuit and be used as the Vcc for any other parts of our design. 
 

 
 

Figure 5-6. 1st subsystem of  power circuit 

 
The 2nd subsystem of the power circuit is shown in Figure 5-7. This schematic is the 5 to 
3.3V DC-DC converter that we designed using the TI Webench tool. This part of the circuit 
takes 5V from the 5VBUS net as an input and outputs 3.3V that is used to power the 
microcontroller that we selected for the device. The final subsystem of the power circuit is 
shown in Figure 5-8. This schematic is the 5V to 48V DC-DC converter that we designed 
using the TI Webench tool. This part of the circuit takes 5V from the 5VBUS net as an 
input and outputs 48V that is used for the phantom power needed to power the condenser 
microphones that would be used with the device. 



 

 
 

 

 
 

Figure 5-7. 2nd subsystem of  power circuit 

 

 
 

Figure 5-8. 3rd subsystem of  power circuit 
 

5.2. Analog Preamplifier 
 
The first section of the device is the analog input section. When the analog signal from 
either ¼” line in or XLR3 microphone is input into the device, the signal must be prepared 
and handled in various ways before it reaches our analog to digital converter. The main 
functions of the preamp section are the microphone input and phantom power circuit, the 
¼” line input, an amplifier, several buffers to split the signal into different outputs, and an 
active bandpass filter. All these sections comprise the entirety of the analog small signals 
in this device. 
 
The first stage of the preamp is the input of either the ¼” line in or XLR3 microphone input. 
These are toggleable by a switch on the front panel of the device. When selected, the ¼” 
input feeds directly into the first amplifier stage while the XLR3 input first goes through a 
phantom power circuit. The phantom power circuit feeds power at 48 volts through the 



 

 
 

microphone to power active microphones like condenser type microphones. The phantom 
power circuit is standard in the industry and involves feeding the DC power to differential 
microphone lines which is then taken out on the receiving end. The differential lines are 
then combined with an op amp in differential mode which causes any received noise 
during transmission to phase cancel since both lines will receive approximately the same 
noise but are subtracted from each other at the end. The 48V phantom power is also 
toggleable by a switch so that passive microphones will be usable as well. See Figure 5-
8 to see the phase cancelation of line noise in the microphone lines. The red signal is the 
positive input V/2 with the noise graphed on top of it and the blue signal is the negative 
input -V/2 with the noise graphed on top as well. The green signal represents the noise. 
The first signal (V/2+Noise) is subtracted by (-V/2+Noise) which gives the input signal of 
V without the noise gained in the microphone cable. The final signal V is represented by 
the purple sine wave.  
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Figure 5-9: Phase cancelation of  line noise in the microphone lines 

 
The next stage of this circuit involves splitting the signal into 3. This is done so that the 
analog input signal can pass through the device unaltered through both an XLR3 output 
and ¼” line output. This allows you to simultaneously use your analog signal at the same 
time as the MIDI signal the device creates and outputs generates. The signal splitting is 
simply achieved by splitting the line through 2 different op amp buffers while the 3rd goes 
to the next stage of the circuit. These buffers are simply made by connecting the negative 
feedback to the output causing the differential across the input to be 0, making the gain of 



 

 
 

the amplifier 0. This allows us to help isolate the electrical lines from each other so that 
loads will cause minimal effects on each other. The two lines that go out to either the XLR3 
output or ¼” output finally go through a coupling capacitor to get rid of the Vcc/2 DC offset 
before going through the pass-through output. 
 

 
 

Figure 5-10: Preamp Stage 1 

 
These two different togglable inputs then feed into a non-inverting amplifier. The op amps 
in this circuit use a single voltage input of 5 volts and a ground reference. This means we 
give the first amplifier a virtual ground of Vcc/2 so the rest of the circuit has a DC offset of 
2.5 volts before the DC offset is decoupled by a capacitor in the output. This is so that we 
can use a single supply voltage and still give the signal headspace for voltage swing 
between 0-5 volts. Otherwise, we would have to use a dual rail power supply which is not 
preferable. This first amplifier then sets the gain level of the input signal. This is adjustable 
by a potentiometer to “dial” in the gain with your particular instrument or signal, and it also 
switches ranges of gain when switching between XLR3 or ¼” inputs. This is because the 
level of microphone outputs is significantly less voltage than line level instrument outputs 
such as an electric guitar or other instruments with pickups. This is done by wiring the 
potentiometer to function as a variable resistor in the negative feedback loop by wiring the 
middle and a side pin in series with a resistor. This makes it so that when the potentiometer 
is rotated fully clockwise, the resistance is the resistance of the potentiometer and resistor 
in series. When rotated fully counterclockwise, the resistance is that of just the resistor. 
This makes the gain the highest when rotated clockwise and lowest when rotated 
counterclockwise. The range of gain is adjusted by adding in another resistor in the 



 

 
 

feedback loop when the switch to select between ¼” and XLR3 is toggled. This combined 
controls the proper gain levels needed for the analog to digital converter.  
 
The gain levels that we need to achieve are based on both the input range of the ADC 
and the input level of the microphone or instrument. Microphone voltage levels typically 
can range from 5 - 50 mV peak to peak and line levels (the ¼” input) are typically .3 - 2 
volts peak to peak. We want to try to maximize the voltage going into the range of the 
ADC. This is because it will minimize the noise to signal ratio with the louder we make our 
signal. The ADC input range is 0 - 3v peak to peak so we want to come as close to the 
edges of this range as we can without risking clipping. For the line in input, at the top of 
its range we have ~ 2V PP so we need a gain of 1.5 to get to 3V pp. Then at the bottom 
of its range we have .3 volts, so we need a factor of 10 to get to 3V PP. This means for 
the line in input, we need a configuration of the potentiometer and resistors to give a 
variable gain of 1.5 - 10 V/V.  For the microphone (XLR3) input, at the top of his range we 
have 50 mV which requires a voltage gain of 60 to get to 3 V. At the bottom of its range, 
we have 5 mV which requires a gain of 600 to get 3 V peak to peak. This overall means 
we need a range of gain of 60 - 600 V/V for the microphone input. One thing to keep in 
mind is that we should give a little “wiggle room” with the gain range so that if we have a 
voltage at the top of the range, we can lower it a little to ensure it doesn’t clip the ADC 
input. Let us choose a factor of ⅙ to lower the minimum gain by. This gives a range of 
gain of 1.25 - 10 for the ¼” line in input and 50 - 600 for the XLR3 microphone input. The 

voltage gain of a non-inverting amplifier is 𝐴𝑣 = 1 +
𝑅𝐴

𝑅𝐵
and we will use this to calculate 

what resistor and potentiometer values to use. Let’s set 𝑅𝐵to 10k to find 𝑅𝐴for both the 

microphone and line-in inputs. The gain of the last stage of the amplifier will be ~1.25 to 

set the minimum gain so our equation is now 𝐴𝑣 = 1.25(1 +
𝑅𝐴

10𝑘
). 

 
 
For the low end of the gain for the line-in: 𝑅𝐴 = 0 𝛺, 𝑅𝐵 = 10 𝑘𝛺 

1.25 = 1.25(1 +
0

10𝑘
) 

 

For the high end of the gain for the line-in: 𝑅𝐴 = 70 𝑘𝛺, 𝑅𝐵 = 10 𝑘𝛺 

10 = 1.25(1 +
70𝑘

10𝑘
) 

 
For the low end of the gain for the microphone input: 𝑅𝐴 = 390 𝑘𝛺, 𝑅𝐵 = 10 𝑘𝛺 

50 = 1.25(1 +
390𝑘

10𝑘
) 

 
For the high end of the gain for the microphone: 𝑅𝐴 = 4.79 𝑀𝛺, 𝑅𝐵 = 10 𝑘𝛺 

600 = 1.25(1 +
4.79𝑀

10𝑘
) 

 



 

 
 

With 𝑅𝐵 set to 10k, there is the issue that the line in needs a range of ~70 k𝛺and 

microphone in needs a range of ~ 4.4 M𝛺. This is not possible if we are keeping things 
simple and using the potentiometer as a variable resistor. What we can do to bring these 

ranges to the same scale is to change 𝑅𝐵for each of the inputs to compensate for the 

different resistance ranges. 500k is a readily available potentiometer value so lets first 

scale the microphone values to fit this. We can build a system where we have 𝑅𝐴low as 

the offset of the gain as the static resistor that is added and then the 500k potentiometer 
added for the maximum gain. 
 

𝑅𝐴 𝐻𝑖𝑔ℎ = 500𝑘 + 𝑅𝐴 𝐿𝑜𝑤, 600 = 1.25(1 +
500𝑘+𝑅𝐴 𝐿𝑜𝑤

𝑅𝐵
),50 = 1.25(1 +

𝑅𝐴 𝐿𝑜𝑤

𝑅𝐵
) 

This gives us 𝑅𝐴 𝐿𝑜𝑤 = 44,318 𝛺, 𝑅𝐵 = 1,136 𝛺 
 
Now lets scale the line in values to the 500k potentiometer as well, this time where the 
lowest resistance value will be 0 for a gain of 0 (1.25 after the final stage):: 
 

𝑅𝐴 𝐻𝑖𝑔ℎ = 500𝑘, 10 = 1.25(1 +
500𝑘

𝑅𝐵
),1.25 = 1.25(1 +

0

𝑅𝐵
) 

This gives us  𝑅𝐵 = 1 = 77,429 𝛺 
 
Now with these new values, this should correctly scale the gain levels and ranges for each 
of the inputs on a simple 3 pole 3 throw switch. When this switch is flipped it will add the 
resistance offset for the microphone input and change 𝑅𝐵 to change the gain scaling. It 
will also switch which input is being used. 
 

 
 

Figure 5-11. - Preamp Stage 2 

 
When considering the gain, we also must consider how the user can know if their gain 
level is clipping or not so they can adjust with the potentiometer as necessary. This can 
be solved by adding a circuit in the preamp that detects the voltage levels before the ADC. 



 

 
 

When the voltage reaches a threshold of over ~2.8 V then it will switch on an LED which 
will be visible on the outside of the enclosure. This can be implemented with an op amp 
configured to be a comparator utilizing the open loop. This means that when the input 
passes 2.8 volts, the output of the op amp will be 5 volts and under the output will be 
ground. This makes it so that it can power the LED when it is above 2.8 Volts and ground 
it out when below. Since op amps cause minimal loading effect and next to no current 
draw, we can have the signal line split directly off into this circuit before the ADC. We can 
make our reference voltage simply by making a voltage divider from our 5-volt power rail. 
Lastly, there is a current limiting resistor going into the LED from the driving op amp to set 
the amount of current draw from the LED. This resistor will be much less than what we 
expect to make up for a loss of brightness. This is needed because with an AC signal, our 
LED will be on only during the time if it is clipping. If we increase the brightness, then it 
will appear to be on the whole time at a normal brightness by increasing the average 
power. There is also a buffer in this stage to isolate the next stage as well as improve any 
impedance issues caused by the previous stage. 
 

 
Figure 5-12. - Preamp stage 3 

 
The last stage before the analog input signal reaches the analog to digital converter is an 
active bandpass filter. This filter is to reduce unwanted frequencies that are outside of 
musical range so that we have less noise when processing the signal digitally. The 
frequencies we chose as the corner points of the band pass are ~20 Hz for the low end 
and ~16 kHz for the high end. This is because the lowest note on a standard bass guitar 
is ~40 Hz and a corner frequency will remove low resonance without altering the gain of 
40 Hz much at all. The highest note recognizable by MIDI protocol is ~15 kHz so we chose 



 

 
 

~16 kHz as the upper corner frequency for the same reasons. Ideally this bandpass will 
filter 100% of frequencies out of the range that we need so we need a steep drop off  on 
our filter. To do this we chose an active 3-stage Butterworth filter for both the high pass 
and low pass parts of the bandpass. This gives a very flat bandpass which is closer to our 
ideal response. This is because an ideal 3rd order filter gives an 80dB per decade roll off 
rate and Butterworth filters approximate this roll off well. The simplest way to calculate the 
cutoff points of a multistage filter is to use the same resistor and capacitor values for each 

stage. This gives a corner frequency of 𝑓𝐶 = 
1

2𝜋𝑅𝐶
for each pass. 

 

For the high pass of ~20 Hz: 𝑅 = 75 𝑘𝛺, 𝐶 = 100 𝑛𝐶 

21.22 𝐻𝑧 =
1

2𝜋(75𝑘)(100𝑛)
 

 

For the low pass of ~16 kHz: 𝑅 = 10 𝑘𝛺, 𝐶 = 1 𝑛𝐶 

15,915.49 𝐻𝑧 =
1

2𝜋(10𝑘)(1𝑛)
  

 
One issue we found when simulating the preamp is that the slew rate of the op amp caused 
decay of higher frequencies when at very high gain levels. This means when using the 
microphone input, we would be losing some magnitude on the high end of frequencies we 
want to detect. To negate this slightly, we decided to change the low pass to be a little 
gentler to counteract the effect of the op amp slew rate. We decided on 6.8k for the 
resistance. 
 

For the low pass of ~23 kHz: 𝑅 = 6.8 𝑘𝛺, 𝐶 = 1 𝑛𝐶 

23,405.14 𝐻𝑧 =
1

2𝜋(6.8𝑘)(1𝑛)
 

 
This active bandpass filter stage also has a bit of voltage gain. Since we determined the 
minimum voltage gain for all input types to be 1.25 into the ADC, we want to make the last 
stage of the bandpass amplify the signal by that much. The gain of a non-inverting op amp 

(which the last stage is), is easily calculated as 𝐴𝑣 = 1 +
𝑅𝐴

𝑅𝐵
where 𝑅𝐴is the resistor in 

the negative feedback loop and 𝑅𝐵 is the resistor connecting from the negative feedback 

loop to the ground.   
 

For a voltage gain of ~1.25: 𝑅𝐴 = 2.4 𝑘𝛺, 𝑅𝐵 = 10 𝑘𝛺 

1.24 = 1 +
2.4𝑘

10𝑘
  

 



 

 
 

 
Figure 5-13. - Preamp stage 4 

 
One last thing needs to be done before the signal is passed on to the analog to digital 
converter, is setting the dc offset of the signal. We must make our signals have a DC offset 
at the center of the ADC voltage range since it only takes positive signals. The DC bias 
must be between the max ADC voltage of 3.3 and minimum of 0 volts. This means our 
ideal DC offset is 1.65 volts. This is done by adding a virtual ground reference point to the 
signal by adding a pull up resistor, which will bias the signal to 1.2 volts. This reference 
point is given by the ADC to ensure a consistent bias. 
 
We simulated a frequency sweep of the designed circuit before the gain design and low 
pass adjustments to see the frequency response and it follows our desired cutoff points of 
nearly exactly 20Hz and 16kHz. It also appears to give a very stable passband gain and 
phase response. In the simulation in figure X, the red line is the phase and gain response 
in the frequency domain of the input. The green lines are the gain and phase response of 
the final output to the ADC in the frequency domain. Not shown are the outputs to the 
passthrough outputs which are nearly flat in response but have a slight roll off on very low 
frequencies, mostly below 5 Hz.  
 

 
 



 

 
 

 
 

Figure 5-14: Simulation of  analog preamp section. 
 

5.3. MIDI Output 
 
Our processor will communicate with MIDI-controllable instruments through a 5-pin MIDI 
port. This port is soldered directly onto the PCB and will be accessible by the user through 
the backplate of the device’s case. This port is connected to a UART port on the processor 
and the UART out signal is buffered and sent through a 220 Ohm resistor on its way to 
the port. This UART connection is the only connection that the MIDI port needs to make 
with the processor. The full MIDI output hardware diagram is shown in Figure 5-15 

 



 

 
 

 
 

Figure 5-15: MIDI Output Schematic 

 

 
 

Figure 5-16: MIDI Transmitter Diagram and Pin Assignment 

 

5.4. USB Controller Connections 
 
The USB controller has 8 pins that are used. Four of these pins are connected directly to 
the pins on the USB port. Two of these pins are connected directly to a power source. The 
rest are connected to the MCU either directly or through a pair of shift registers. This 
depends on whether the results of testing show that the MCU can drive the transceiver at 
12 MHz. Table 5-5 shows the functions and the connections associated with each pin. 
Unlisted pins are to remain unconnected. The names in the connection column are names 
of nets that will be used in the schematic for the digital circuits. 



 

 
 

 

Functions Purposes Nets Pins 

VSS 
Ground 

Logic Low 
GND 14 

VDD 
Power 

Logic High 
5VUSBCTLIN 1 

VUSB3V3 3.3 V Output 3V3USBCTLOUT 11 

USB D+ USB Data + Wire USBDP 13 

USB D- USB Data - Wire USBDM 12 

Digital I/O 
Send & Receive 

Signals 

POWERSRC 

2, 3, 5, 6 USBCONN 

USBSUSP 

SPI Clock 

Receive MIDI Data 

SPICLK 10 

SPI MOSI SPIMOSI 9 

SPI MISO SPIMISO 8 

SPI Slave Select GND 7 

VPP Programming Voltage VPPUSBCTL 4 

ICSP Clock Programming Clock ICSPCLK 9 

ICSP Data Programming Data ICSPDATA 10 

 
Table 5-5: List of  connections for the USB transceiver. 

 

5.5. Processor Connections 
 
The MCU has in total 80 pins, of which few need to be used. There are four power pins, 
each of which need to be connected to 3.3 V. We only need to use a maximum of 8 I/O 
pins, 1 ADC input pin, 1 voltage reference pin, 1 UART transmitter pin, 1 set of SPI pins, 
and the programming and debugging pins. The I/O pins are used to send or receive signals 
from other systems within the device (such as the power multiplexing circuits). The ADC 
input pin receives the buffered and amplified audio signal. The voltage reference pin 
outputs a 1.2 V reference that is used by the analog preamplifier. The UART transmitter 
pin is used to output serial data that is fed back into the MCU, inverted, then sent out 
through the MIDI output port. All unused data pins are to be left unconnected. Table 5-6 
shows the functions and the connections associated with the pins that we will use. Pins 
that are not listed are not used and must remain unconnected. The POWERSRC net is used 



 

 
 

by the power multiplexing circuit to report whether the barrel jack power input or the USB 
connection is the source of power. The USBCONN net is used by the USB controller to notify 
the MCU that the USB port is connected, and that MIDI data can be sent through it. The 
USBSUSP net is used by the USB controller to notify the MCU that the USB connection is 

suspended and that it must decrease its power consumption. The MIDIDATA net carries 
the inverted UART output signal (UARTDATA). Every pin is listed in order of the function 

name given to each pin in the datasheet. The digital I/O pins are arranged vertically in sets 
of up to 8 pins, where each set is one physical 8-bit port. The SPI pins are arranged 
horizontally such that each vertical set of 3 pins is one SPI port. 
 

Functions Purposes Nets Pins 

VSS 
Ground 

Logic Low 
GND 60, 19, 39 

VCC 
Power 

Logic High 
3.3VFORMCU 61, 20, 40 

UART Transmitter Send Thru MIDI UARTDATA 41, 35, 65, 8 

SPI Clock 

Send Thru USB 

SPICLK 18, 64, 67, 10, 43, 55, 25, 71 

SPI MOSI SPIMOSI 41, 35, 65, 8, 51, 53, 13, 69 

SPI MISO SPIMISO 42, 36, 66, 9, 52, 54, 14, 70 

Digital I/O 
Receive Signals 

POWERSRC 1, 2, 3, 16, 17, 18, 51, 52 
41, 42, 43, 63, 64, 35, 36, 62 

4, 5, 6, 7, 47, 48, 49, 50 
31, 32, 33, 34, 57, 58, 59, 12 
53, 54, 55, 56, 65, 66, 67, 68 
8, 9, 10, 11, 69, 70, 71, 72 

13, 14, 25, 26, 27, 28, 29, 30 
15, 44, 45, 46 

USBCONN 

USBSUSP 

UARTDATA 

Send Signals MIDIDATA 

Analog I/O Analog Audio PREAMPOUT 
1, 2, 3, 16, 17, 18, 63, 64, 31, 

32, 33, 34, 4, 5, 6, 7, 27, 28, 29, 
30 

AVSS Analog Low GND 79 

AVCC Analog High 3.3VFORMCU 80 

Internal Reference 
Output 

1.2 V 
Reference 

1V2REF 2 

Test 
SBW Debug Clock 

Debugging 
Programming 

SBWDCLK 37 

Reset Reset SBWDDATA 38 



 

 
 

SBW Debug Data Debugging 
Programming 

 
Table 5-6: Notable pins functions and connections 

 

5.6. Complete Integrated System 
 
Over the course of this project, all four group members contributed schematics for their 
hardware designs which were combined into a single EAGLE schematic document. The 
hardware blocks that make up the Polyphonic Analog to MIDI Converter were sorted into 
four pages: Connectors, Power, Preamp, and MCU. Though, the connectors page ended 
up rather sparse, as most connectors ended up on either the Preamp or MCU pages for 
convenience. The schematics are shown in the following figures. 
 

 
 

Figure 9-1: The connectors page shows the wire pads that are used to attach the ¼” jacks to the 

board. Three XLR pads are also shown but were not used in the f inal design. 

 



 

 
 

 
 

Figure 9-2: The 9V to 5V power converter on the power page, based around 
the TPS563231DRLR chip. 

 

 
 

Figure 9-3: The 5V to 3V3 converter on the power page, based around the TPS62825DMQR 
chip. 

 



 

 
 

 
 

Figure 9-4: The 5V to 48V converter on the power page for phantom power, based on the 

LM3478MM chip. 

 

 
 

Figure 9-5: The phantom power circuit on the power page, to deliver 48V power to the XLR lines 

for condenser microphones. 

 



 

 
 

 
 

Figure 9-6: The power select circuit on the power page, connected to the USB 5Vin and to the 
output of  the 9V to 5V circuit. Based on the LTC4411ES5TRPBF chip.  

 

 
 

Figure 9-7: Input of  the preamp section and op-amp buf fer passthroughs. Originally two inputs 

were going to be selectable for ¼” and XLR. 

 



 

 
 

 
 

Figure 9-8: Noninverting amplif ier in the preamp section. 

 

 
 



 

 
 

Figure 9-9: Buf fer, Clipping-detect LED circuit, and f irst stage of  multi-stage active bandpass f ilter 

in the preamp section. 

 

 
 

Figure 9-10: Second stage and output of  active band-pass f ilter in the preamp section. 

 

 
 



 

 
 

Figure 9-11: XLR input circuit in the preamp section. This dif ferential amplif ier takes the balanced 

signal of  the XLR input and outputs a single signal.  

 

 
 

Figure 9-12: Voltage divider in the preamp section. Generates the 2.9V and 3.8V used for 

references in the preamp section. 

 



 

 
 

 
 

Figure 9-13: MCU and supporting circuitry, including power capacitors, JTAG programming pin 

header, and MIDI output transistor circuit. 

 

 
 

Figure 9-14: USB controller and pin headers for programming on MCU sheet.  

 
Some of the schematics that were imported to EAGLE came from LT Spice and TI 
Webench had issues. Net ties that were present in Webench disappeared in EAGLE and 
placeholder parts from LT Spice had to be replaced. On top of that, revisions had to be 
imported from LT Spice throughout the entire length of the project as collaborators sent in 
revised schematics. This led to some issues with the schematic, most of which were 
discovered and corrected but a few remained in the final version. This includes the 
misplaced net tie in Figure 9-2 which should have had the inductor L2 attached to pin 2 of 
the chip U16 or the lack of a 3.8V reference in the preamp circuit. These mistakes were 
corrected using wires to connect parts to different nets. 
 
The design that we came up with for this board contains hardware that was not used in 
the final presentation of the device, namely the XLR input circuit, USB controller, and the 
power section. The parts listed in our BOM in table 9.1 reflect this fully featured version of 
the device. 
 



 

 
 

Part Value De vice Package De scription 

C 1 C0805C105K4RACTU C0805C105K4RACTU CAPC2012X88N SMD 0805 CERAMIC X7R -55^+125 1 

UF +/-10? 16V Check prices 

C 2 CL31C222JHHNFNE CL31C222JHHNFNE 1206 CL31C222JHHNFNE 

C 3 GCM21BR71H224KA37K GCM21BR71H224KA37K CAPC2012X140N Check prices 

C 4 CL31C222JHHNFNE CL31C222JHHNFNE 1206 CL31C222JHHNFNE 

C 5 10u CL21A106KOQNNNG CAPC2012X140N Check prices 

C 6 4.7u C-USC0805 C0805 CAPACITOR, American symbol 

C 11 CL21B474KOFNNNG CL21B474KOFNNNG CAPC2012X135N 
 

C 13 CL21B105KPFNNNE CL21B105KPFNNNE C0805K 
 

C 16 CL21B105KPFNNNE CL21B105KPFNNNE C0805K 
 

C 17 885012007008 885012007008 WCAP-

CSGP_885012007008 
WCAP-CSGP Ceramic Capacitors 

C 18 GCM21BR71H224KA37K GCM21BR71H224KA37K CAPC2012X140N Check prices 

C 19 GCM21BR71H224KA37K GCM21BR71H224KA37K CAPC2012X140N Check prices 

C 22 CL21B105KPFNNNE CL21B105KPFNNNE C0805K 
 

C 23 0.1uF CC0805JRX7R7BB104 C0805K 
 

C 24 CL21B105KPFNNNE CL21B105KPFNNNE C0805K 
 

C 25 0.1uF CC0805JRX7R7BB104 C0805K 
 

C 26 CL21B105KPFNNNE CL21B105KPFNNNE C0805K 
 

C 27 0.1uF CC0805JRX7R7BB104 C0805K 
 

C 28 CL21B105KPFNNNE CL21B105KPFNNNE C0805K 
 

C 29 0.1uF CC0805JRX7R7BB104 C0805K 
 

C 30 12065A202JAT2A 12065A202JAT2A CAPC3216X127N Cap Ceramic 0.002uF 50V C0G 5% 

SMD 1206 125???•Ž T/R Check prices 

CBOOT1 0.1uF CC0805JRX7R7BB104 C0805K 
 

C BYP 0.1uF CC0805JRX7R7BB104 C0805K 
 

C C OMP 885012008050 885012008050 WCAP-

CSGP_885012008050 
WCAP-CSGP Ceramic Capacitors 

CCOMP2 560pF CL21C561JBANNNC C0805K 
 

C FF 120pF CC0805JRNPO9BN121 C0805K 
 

C FILT 885012007010 885012007010 WCAP-

CSGP_885012007010 
WCAP-CSGP Ceramic Capacitors 

C I N C0805C475K8PACTU C0805C475K8PACTU CAPC2012X88N Cap Ceramic 4.7uF 10V X5R 10% SMD 

0805 85?C Plastic T/R Check prices 

C I N1 CL21A106KOQNNNG CL21A106KOQNNNG CAPC2012X140N Check prices 

C I N2 CL21A226MQQNNNE CL21A226MQQNNNE CAP_CL21_SAM 
 

C I N3 CL21A106KOQNNNG CL21A106KOQNNNG CAPC2012X140N Check prices 

C I NX1 0.1uF CC0805JRX7R7BB104 C0805K 
 

C O UT CL21A226MQQNNNE CL21A226MQQNNNE CAP_CL21_SAM 
 



 

 
 

C O UT1 CL21A226MQQNNNE CL21A226MQQNNNE CAP_CL21_SAM 
 

C O UT2 150u UUD1H151MNL1GS U2-R_NCH 
 

C O UT3 CL21A226MQQNNNE CL21A226MQQNNNE CAP_CL21_SAM 
 

C O UT4 CL21A226MQQNNNE CL21A226MQQNNNE CAP_CL21_SAM 
 

C O UT_1 0.1uF CC0805JRX7R7BB104 C0805K 
 

C X LR1 C0805C106K8PACTU C0805C106K8PACTU CAPC2012X88N 
 

C X LR2 C0805C104M3RACTU C0805C104M3RACTU CAPC2012X88N .1UF 25V 20% 080 

C X LR3 C0805C104M3RACTU C0805C104M3RACTU CAPC2012X88N .1UF 25V 20% 080 

C X LR4 C0805C104M3RACTU C0805C104M3RACTU CAPC2012X88N .1UF 25V 20% 080 

D1 SK220ATR SK220ATR DIO_ES1J 
 

D2 1N4728 1N4728 DO41Z10 Z DIODE 

D3 1N4728 1N4728 DO41Z10 Z DIODE 

D5 1N4728 1N4728 DO41Z10 Z DIODE 

D6 1N4728 1N4728 DO41Z10 Z DIODE 

D7 1N4728 1N4728 DO41Z10 Z DIODE 

D8 1N4728 1N4728 DO41Z10 Z DIODE 

D9 SCHOTTKY SCHOTTKY DO-214AC DIODE 

J2 PJ-037A PJ-037A CUI_PJ-037A 2.0 mm Center Pin, 2.5 A, Right Angle, 

Through Hole, Dc Power Jack 

Connector Buy Part 

J3 SDS-50J SDS-50J CUI_SDS-50J Check prices 

L 1 0.47uH WE-

HCI_7050_744314047 
WE-HCI_7050 WE-HCI SMD Flat Wire High Current 

Inductor 

L 2 CVH252009-1R5M CVH252009-1R5M INDC2520X100N INDUCTOR, 1.5UH, 1.5A, +20%, 

50MHZ Check prices 

L 3 LQH32CN330K53L LQH32CN330K53L IND_LQH32CN330K53L Wire Wound Ferrite Inductor for 

Power Lines For Automotive Check 

prices 

L ED1 ASMT-AR00-ARS00 ASMT-AR00-ARS00 LED_ARS00 
 

M1 Value CSD18543Q3A DNH0008A 
 

PAD1 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD2 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD3 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD4 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD5 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD6 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD7 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD8 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD9 WIREPADSMD5-2,5 WIREPADSMD5-2,5 5-2,5 Wire PAD connect wire on PCB 

PAD13 WIREPADSMD2,54-5,08 WIREPADSMD2,54-5,08 SMD2,54-5,08 Wire PAD connect wire on PCB 



 

 
 

PAD14 WIREPADSMD2,54-5,08 WIREPADSMD2,54-5,08 SMD2,54-5,08 Wire PAD connect wire on PCB 

PAD15 WIREPADSMD2,54-5,08 WIREPADSMD2,54-5,08 SMD2,54-5,08 Wire PAD connect wire on PCB 

PAD16 WIREPADSMD2,54-5,08 WIREPADSMD2,54-5,08 SMD2,54-5,08 Wire PAD connect wire on PCB 

PAD17 WIREPADSMD2,54-5,08 WIREPADSMD2,54-5,08 SMD2,54-5,08 Wire PAD connect wire on PCB 

PAD18 WIREPADSMD2,54-5,08 WIREPADSMD2,54-5,08 SMD2,54-5,08 Wire PAD connect wire on PCB 

PAD19 WIREPADSMD2,54-5,08 WIREPADSMD2,54-5,08 SMD2,54-5,08 Wire PAD connect wire on PCB 

R 1 RT0805FRE072K4L RT0805FRE072K4L RESC2012X60N Res Thin Film 0805 2.4K Ohm 1% 

1/8W ±50ppm/°C Molded SMD SMD 

Paper T/R Check prices 

R 2 CRG0805F7K5 CRG0805F7K5 RESC2012X65N CRG0805 1% 7K5 

R 3 CRG0805F7K5 CRG0805F7K5 RESC2012X65N CRG0805 1% 7K5 

R 4 CRG0805F7K5 CRG0805F7K5 RESC2012X65N CRG0805 1% 7K5 

R 5 RK73H2ATTD7322F RK73H2ATTD7322F RESC2012X60N Res Thick Film 0805 73.2K Ohm 1% 

0.25W(1/4W) ±100ppm/°C Pad SMD 

Automotive T/R Check prices 

R 6 RK73B2ATTD363J0805 RK73B2ATTD363J0805 R0805 Res Thick Film 0805 36K Ohm 5% 

0.25W(1/4W) ?200ppm/?C SMD 

Automotive T/R Check prices 

R 7 500k 3314J-1-103E POT_3314J 
 

R 8 RK73B2ATTD182J0805 RK73B2ATTD182J0805 R0805 Res Thick Film 0805 1.8K Ohm 5% 

0.25W(1/4W) ?200ppm/?C SMD 

Automotive T/R Check prices 

R 9 RMCF0805JT18K0 RMCF0805JT18K0 RESC2012X65N Check prices 

R 10 RK73H2ATTD3302F RK73H2ATTD3302F RESC2012X60N 33 kOhms ±1% 0.25W, 1/4W Chip 

Resistor 0805 (2012 Metric) 

Automotive AEC-Q200, Moisture 

Resistant Thick Film Check prices 

R 12 RMCF0805JT18K0 RMCF0805JT18K0 RESC2012X65N Check prices 

R 13 RK73H2ATTD3302F RK73H2ATTD3302F RESC2012X60N 33 kOhms ±1% 0.25W, 1/4W Chip 

Resistor 0805 (2012 Metric) 

Automotive AEC-Q200, Moisture 

Resistant Thick Film Check prices 

R 15 RMCF0805JT18K0 RMCF0805JT18K0 RESC2012X65N Check prices 

R 16 RK73H2ATTD3302F RK73H2ATTD3302F RESC2012X60N 33 kOhms ±1% 0.25W, 1/4W Chip 

Resistor 0805 (2012 Metric) 

Automotive AEC-Q200, Moisture 

Resistant Thick Film Check prices 

R 17 RMCF0805JT18K0 RMCF0805JT18K0 RESC2012X65N Check prices 

R 18 RK73H2ATTD7322F RK73H2ATTD7322F RESC2012X60N Res Thick Film 0805 73.2K Ohm 1% 

0.25W(1/4W) ±100ppm/°C Pad SMD 

Automotive T/R Check prices 

R 19 RMCF0805JT1K10 RMCF0805JT1K10 RESC2012X65N Check prices 

R 20 RMCF2512JT91R0 RMCF2512JT91R0 RESC6332X70N 
 

R 21 RMCF1206JG10R0 RMCF1206JG10R0 RESC3216X70N Check prices 

R 22 RMCF1206JG10R0 RMCF1206JG10R0 RESC3216X70N Check prices 

R 23 ERJ-P06J682V ERJ-P06J682V RESC2012X70N 6.8K OHM 5% 1/2W Check prices 



 

 
 

R 24 ERJ-P06J682V ERJ-P06J682V RESC2012X70N 6.8K OHM 5% 1/2W Check prices 

R 25 RMCF0805JT47K0 RMCF0805JT47K0 RESC2012X65N Check prices 

R 26 RMCF0805JT220R RMCF0805JT220R RESC2012X65N Check prices 

R 27 RMCF0805JT220R RMCF0805JT220R RESC2012X65N Check prices 

R 28 82k RMCF0805JT82K0 RESC2012X65N 
 

R 29 CRGH0805J10K CRGH0805J10K RESC2012X65N Res Thick Film 0805 10K Ohm 5% 

1/3W ±100ppm/°C Molded SMD SMD 

T/R Check prices 

R C OMP RMCF0805FT80K6 RMCF0805FT80K6 RESC2012X65N Check prices 

R FADJ RMCF0805FT26K7 RMCF0805FT26K7 RESC2012X65N Check prices 

R FB1 CRGH0805J10K CRGH0805J10K RESC2012X65N Res Thick Film 0805 10K Ohm 5% 

1/3W ±100ppm/°C Molded SMD SMD 

T/R Check prices 

R FB2 RMCF0805FT365K RMCF0805FT365K RESC2012X65N Check prices 

R FBB RMCF0805JT100K RMCF0805JT100K RESC2012X65N Check prices 

R FBB1 CRGH0805J10K CRGH0805J10K RESC2012X65N Res Thick Film 0805 10K Ohm 5% 

1/3W ±100ppm/°C Molded SMD SMD 

T/R Check prices 

R FBT RMCF0805FT453K RMCF0805FT453K RESC2012X65N Check prices 

R FBT1 RK73H2ATTD7322F RK73H2ATTD7322F RESC2012X60N Res Thick Film 0805 73.2K Ohm 1% 

0.25W(1/4W) ±100ppm/°C Pad SMD 

Automotive T/R Check prices 

R FILT RMCF1206JT100R RMCF1206JT100R RESC3216X70N Check prices 

R PG RMCF0805JT100K RMCF0805JT100K RESC2012X65N Check prices 

R PU2 RESC2010X45N RESC2010X45N RESC2010X45N 
 

R SENSE PF1206FRF070R03L PF1206FRF070R03L YAG_PF1206_YAG 
 

R X LR1 RMCF0805JT100K RMCF0805JT100K RESC2012X65N Check prices 

R X LR2 RMCF0805JT100K RMCF0805JT100K RESC2012X65N Check prices 

R X LR3 RMCF0805JT100K RMCF0805JT100K RESC2012X65N Check prices 

R X LR4 RMCF0805JT100K RMCF0805JT100K RESC2012X65N Check prices 

R X LR5 CRGH0805J10K CRGH0805J10K RESC2012X65N Res Thick Film 0805 10K Ohm 5% 

1/3W ±100ppm/°C Molded SMD SMD 

T/R Check prices 

SV2 
 

MA03-1 MA03-1 PIN HEADER 

SV3 
 

MA03-1 MA03-1 PIN HEADER 

SV4 
 

MA03-1 MA03-1 PIN HEADER 

SV5 
 

MA06-1 MA06-1 PIN HEADER 

SV6 
 

MA07-2 MA07-2 PIN HEADER 

T1 2N2222 2N2222 TO18 NPN TRANSISTOR 

U$2 1003P3T1B1M1QE 1003P3T1B1M1QE NOFP 
 

U3 TPS62825DMQR TPS62825DMQR DMQ0006A_TEX 
 

U4 LTC4411ES5TRPBF LTC4411ES5TRPBF S_5_ADI 
 



 

 
 

U5 LM3478MM LM3478MM MUA08A 
 

U6 NE5532D NE5532D SOIC127P599X175-8N Check prices 

U7 PIC16F1454-I/ST PIC16F1454-I/ST TSSOP14_MC_MCH 
 

U8 Value MSP430FR5992IPNR PN0080A_N 
 

U9 NE5532D NE5532D SOIC127P599X175-8N Check prices 

U10 NE5532D NE5532D SOIC127P599X175-8N Check prices 

U11 NE5532D NE5532D SOIC127P599X175-8N Check prices 

U16 Value TPS563231DRLR DRL0006A 
 

X 2 USB-B-H USB-B-H USB-B-H USB Connectors 

 
Table 9.1: PAMC Bill of  Materials 

 

5.7. PCB Design 
 
The parts we are using on our PCB are small and simple to connect for the most part. Our 
processor only has 64 pins and only a fraction of those pins are being used, so routing 
traces away from the processor will be relatively simple. We should only need one or two 
signal layers to lay out all of the parts and traces that we need, so a standard four layer 
stackup will be perfect for our design. Four layers will also provide us with a total thickness 
of about 1.6mm. This is good for sturdiness as the board will have several connectors 
mounted to it that the user will be plugging into and unplugging from regularly. The 
proposed stackup is shown in Figure 5-16. 
 

 
 

Figure 5-17: Four Layer PCB Stackup 

 
There are some important advantages to designing the board stackup like this, with 
ground planes on the top and bottom of the board and signal and power layers sandwiched 
inside. Crosstalk is a serious issue for ICs operating at a megahertz frequency. It is 
recommended to reduce cross coupling to approximately 10% that signal traces on the 
surface of a PCB are spaced apart by twice the distance from the nearest ground plane. 
By making the traces internal and surrounded by the PCB’s dielectric material, the traces 
need only be spaced apart by a distance equivalent to the distance from the nearest 
ground plane. Additionally, having two signal and power layers one right after the other is 
not a big issue for this stackup because in a standard four layer PCB, the dielectric core 
between layers one and two is thicker than the other two dielectric layers. Another 
advantage to this design over a stackup where the signal layers are on the top and bottom 
surfaces of the board is that it is easier for a trace to change layers. There is no need to 
drop vias awkwardly through ground and power planes when the signal layers are 
adjacent. 



 

 
 

 
The PCB design was relatively straightforward once the schematic was created. EAGLE 
allows the user to generate a PCB file from a schematic that contains all parts of the 
schematic. Each hardware block was laid out individually and then combined on the PCB. 
The individual hardware blocks are: The preamp, MCU, MIDI output circuit, phantom 
power circuit, 9V to 5V converter, 5V to 3V3 converter, 5V to 48V converter, power select 
circuit, and USB controller. In addition to these blocks, there were three PCB-mounted 
connectors and seven wire pads to be placed. The board was two layers and as much 
routing as possible was done on the top surface of the board to make the ground as 
consistent as possible on the bottom surface. Unfortunately, some bottom layer routing 
was required for complicated hardware blocks such as the USB controller and the preamp, 
but the grounding on the board ended up being enough regardless. 
 
We ordered our PCB from 4PCB in Colorado. They offered a two-layer board express 
option that we took advantage of and we ordered four copies to ensure that we would not 
run out due to hardware failures or other unfortunate circumstances. We were behind 
schedule for ordering the PCB, so we could not afford to take the chance of needing to 
reorder. Once we had the boards, two local companies assisted us in assembly. Our first 
board was assembled with the help of Quality Manufacturing Services in Oviedo. They 
offer free services to UCF students to mount difficult parts onto the PCB. Our second 
board was assembled in part by the manufacturing team at Astronics Test Systems in 
Central Florida Research Park who we have connections to. The assistance we received 
from both companies was key to our success in PCB assembly and integration, as we lack 
the technical skill and equipment to solder QFN packages and fine-pitch ICs like our 80-
pin MSP430. 
 
 

6. Software Design Details 
 
The software design can be broken down into 4 main components. These components 
are the input section, the Fourier transform section, filtering, and frequency analysis 
section, and finally the output section. Each of these sections will rely on different 
technologies but all serve the purpose of digital signal processing. This processing starts 
with the digitally converted input signal from our microphone or instrument and ends with 
a MIDI signal in the output along a MIDI cable or USB cable using MIDI protocol. The input 
section involves processing the input from the analog to digital converter and storing the 
input as samples in memory. The actual implementation of this will vary depending on our 
final hardware choices. If we have a discrete analog to digital converter, we will have to 
write a low-level driver to decode the protocol of the analog to digital converter and make 
the data usable by the microcontroller. If the analog to digital converter is built into the 
microcontroller then we might not have to write a low-level driver as it may include 
functionality to interpret the input on the chip. Either way we will have to write a high-level 
driver to be able to save data from the analog to digital converter in a usable memory 
space as a usable data type. Ideally our processor will have enough memory to store all 
of our samples without needing external memory as that will add added complexity. The 
samples will be saved for the next Fourier transform simultaneously as the current set of 
samples is being processed. This will require twice the memory but will allow us to 
continuously sample the input and not have to sample, process, sample, process etc. This 
could make it miss new notes or when a note ends etc. while the block of samples is being 



 

 
 

processed. The samples must be saved in blocks at least large enough to recognize our 
lowest required notes. 
 
The goal of the Fourier transform section is to convert the digital signal from the time 
domain to the frequency domain. This is so that we can process the frequencies and 
determine the notes being played. The Fourier transform section first adds zeros into the 
set of samples to pad the signal and provide a higher resolution in the frequency domain. 
This will allow us to more accurately identify the bandwidth of peaks and the magnitudes 
of peaks in the frequency domain. The implementation of the Fourier transform algorithm 
is a fast Fourier transform similar to the Cooley-Tukey Fast Fourier transform. This will be 
done using the most efficient means possible to improve calculation speeds, so using 
bitwise manipulations for instance rather than higher level abstractions that require more 
data and time. This will result in an array of frequencies and their magnitudes. In the next 
section we take our input that is now in the frequency domain and analyze it to determine 
what notes are being played by the input instrument. The first and most easy thing to do 
is to filter any frequencies below a low magnitude threshold. This will get rid of any 
frequencies that have a magnitude so low they are irrelevant so they do not affect our 
analysis in any way. 
 
After this the magnitudes will be normalized to accurately represent the input magnitudes 
of the frequencies. After this we filter out frequency bands that have a large Q factor with 
no largely defined peak. With an instrument, the played note will have a very defined 
frequency without a large amount of fluctuation so the peaks will have a very small Q 
factor. So any frequency bands with a low Q factor will be very unlikely to be a note and 
instead be noise or unwanted resonance. Finally, we should be left with any defined 
frequency peaks and we can determine the musical note(s)  being played. These up to six 
output notes will be constantly kept in an easily accessible space in memory like a register 
for instance so they can be consistently be output as a stream to our MIDI and usb outputs. 
Finally, we have our output section of the software. In this section we need to take the 
notes we determined that were being played and output them via a MIDI protocol through 
both a MIDI and a USB output. To do this we need to write a driver to convert the data to 
the MIDI protocol and possibly for the USB as well depending on the functions of our USB 
controller. 
 



 

 
 

 
 

Figure 6.1: Sof tware block diagram. 

 

6.1. ADC Driver and Sample Buffer Generation 
 
The ADC must be set to collect samples at a fixed rate and notify the program when a 
sample buffer is filled. The ADC is configured at the start of the program to repeatedly 
collect 12-bit samples at roughly 12.8 kHz. The sample rate is determined by a timer that 
increments every nanosecond, so the actual sample rate will be slightly off. When the 
timer reaches its maximum value, it will toggle the state of an output signal. At every rising 



 

 
 

edge of the timer, the ADC will take a sample, and at every falling edge, it will convert the 
analog sample into a digital one. Whenever the ADC has a sample ready, it will call a 
function that puts it into the sample buffer. This same function is responsible for swapping 
buffers when the current one is full and notifying the main thread that a new sample buffer 
is ready for processing. Also, each sample is shifted and scaled to accommodate the 
mismatch between the preamp output voltage range and center and what the MCU 
expects. 
 

6.2. Frequency Spectra Generation 
 
It is possible to use an FFT algorithm for complex inputs to obtain a transform for real-
valued inputs. The result of doing this is a transform with double the points of the 
underlying complex transform.[31] The MCU’s DSP coprocessor is designed to only 
perform complex FFTs, so we will use this trick to efficiently perform the FFT. TI provides 
a library that implements the FFT in this manner. Only a couple of lines of code within that 
function were required to make it output frequency bin N/2 instead of frequency bin 0. 
Another thing to notice is that a normal FFT across the entire frequency range that we are 
working with is very inefficient because there is plenty of unneeded density at the high 
frequencies. A more efficient method would be to split the FFT into two parts, an FFT with 
half the bandwidth and half the points, and another FFT with half the bandwidth and a 
small number of points that covers the high frequencies. This can be repeated for every 
octave, giving a total of 10 FFTs. If we use 64 points for every octave, then we have a 
much faster algorithm, like a 640-point FFT in the worst-case scenario. 
 
To be able to do this, the signal buffer must be split into 10 buffers, with each successive 
buffer holding every other sample of the previous buffer. Also, the digital signal must pass 
through a low-pass filter before being added to the other buffers. This eliminates aliases 
that will arise due to undersampling. Using the algorithm introduced in Section 3.3.1, we 
can determine the number of points and the buffer frequency for the FFT in order to 
capture one octave range of notes. For this test, we set M = 116 (G#8), K = 1, and the 
minimum alignment to ⅓ of a semitone. The result is that the minimum number of 
frequency spectrum bins we can use is 32, and the highest buffer frequency is 502.045 
Hz. This means that a 64-point FFT is required to capture one octave range of notes. The 
resulting sampling frequency required to fill the buffer is 32.13 kHz. However, it is 
important to note that only 12 bins are used in this spectrum; in fact, the higher bins contain 
higher notes above G9. At the highest octave, we can use these bins to contain notes, so 
it would be best to rebase the buffer frequency of the FFT so that the higher bins are useful 
for the highest octave range. By shifting the first note in the octave range from G#8 to F8, 
the higher bins in the highest octave range will contain notes up to G9. 
 
The final version of the Frequency Spectrum Generator (FSG) uses three FFT stages that 
work similarly as mentioned before. The top stage uses a 512-point FFT on the original 
sample buffer as received from the ADC. This stage is responsible for capturing the mid 
to high frequencies. The stage below that uses a 64-point FFT on a filtered and 
downsampled version of the original sample buffer. The filter used is an elliptic low-pass 
IIR filter with a cutoff frequency below 1/16th the original sampling frequency; 16 is the 
downsample factor, and the sampling frequency for this stage is 800 Hz. The final stage 
uses a 64-point FFT on a filtered and downsampled version of the previous stage’s sample 
buffer. The same kind of filter is used, but the cutoff frequency is instead below ½ the 
sampling frequency of the previous stage; 2 is the downsample factor, and the sampling 



 

 
 

frequency for this stage is 400 Hz. After downsampling, the resulting samples are boosted 
(multiplied by 2). 
 
After the FFTs are done, the magnitudes are calculated for each bin and stored separately 
into spectra buffers. These buffers are then passed to the note detection algorithm. Figure 
X shows a flowchart of a previous version of FSG. Although it is outdated, its functionality 
is very similar to that of the final version. 
 

 
 

Figure 6-6: Flowchart of  a previous version of  the FSG. 

 

6.3. Note, Magnitude, and Effects Determination 
 
The note determination algorithm using the frequency spectrum given by the FFT is nearly 
entirely composed of filtering out unwanted frequencies. By the end of this algorithm, there 
will ideally only be frequency peaks remaining that represent the notes input by the user 
via their instrument. The inputs of this algorithm are the frequency spectrum array which 
is an array of magnitudes correlating to frequencies in order from our lowest frequency to 
our highest frequency detected by our FFT. The space between these magnitude values 
is all the same in Hz so there does not need to be another array for the correlating 
frequencies of the magnitudes. Instead, the index of the value in the magnitude array and 
the space between the frequency can be multiplied and added to the offset of the first 



 

 
 

frequency, to give the frequency of that specific magnitude bin. This saves room in 
memory and possibly can save time required to access memory every time we need this 
information. Other values used in the algorithm are a slope value used to determine an 
approximate Q factor threshold as well as a magnitude threshold to filter out low magnitude 
noise and harmonics. We also will have an array referring to either the indices or memory 
locations of the magnitude bins that correlate to the actual frequencies of the 12-tone 
music system, along with a few temporary arrays for calculations. With this relatively small 
amount of information on top of the frequency spectrum we will be able to process and 
determine the notes, relying mostly on our algorithm. 
 
The algorithm goes through several different stages before the final notes can be 
determined. The first stage filters out all frequencies with low magnitudes that are 
irrelevant and clearly not a played note. The next stage normalizes the magnitude of the 
transform to properly represent the unit sine wave and scale the input magnitudes to more 
properly represent the magnitude of the notes being played. Then the next stage goes 
through each detected peak and estimates the Q factor by finding the average slope of 
the peak. If the peak has a low Q factor, then it is not a clearly defined note and is removed. 
Then we have another stage that removes harmonics of fundamental frequencies. Finally, 
only the notes being played should be remaining and the defined semi-tones closest to 
the peaks’ frequencies are output to the MIDI drivers. 
 
The first stage is by far the simplest in both theory and implementation. All that needs to 
be done is loop through each of the indices in the magnitude array and compare the value 
to that of the magnitude threshold we set. If the value of the magnitude is less than that of 
the threshold, remove the value by setting it to zero. This threshold value is not something 
that we can calculate easily but rather something that will require testing to determine. 
Theoretically, this will remove any magnitudes and frequencies that are a result of low 
magnitude resonance, noise, and harmonics. This should help clean up the signal and 
leave only significant frequencies such as large resonance as a result of an instruments 
design such as an acoustic guitar, or some harmonics which will have much higher peaks 
than noise. 
 
The second stage is like the first stage in that it is linear, and in fact it is technically done 
at the same time while looping through the indices of the magnitude array. This stage is 
also simple and all that needs to be done is multiply (or divide) each magnitude by a factor 
after the previous stage. This factor is determined based on the sample rate and number 
of samples. This is necessary because a normal discrete Fourier transform does not 
account for magnitude normalization and gives magnitudes not representing the 
magnitudes of the input waves. For instance, if a discrete Fourier transform had for 
instance 8 cycles of a wave in one sample buffer, then it would add the magnitude of that 
wave 8 times over, greatly exaggerating it. After this stage is complete, we now have no 
low magnitude noise and an accurate representation of the remaining magnitudes.  
 
Figure 6-2 shows a discrete Fourier transform of the function: 
 

𝑋(𝑡)  =  10𝑐𝑜𝑠(2𝜋100𝑡) + 20𝑐𝑜𝑠(2𝜋200𝑡) + 30𝑐𝑜𝑠(2𝜋300𝑡) 

 

Using a sample rate of 800 Hz, 800 samples, and 4000 zeroes padded and not 
normalized. 
 



 

 
 

 
 

Figure 6-2: DFT example 1 
 

 
As you can see, the magnitudes are far off from the input magnitudes of 10, 20 and 30. 
Figure 6-3. shows the normalized version of the same discrete Fourier transform and 

input function. 

 

 
 

Figure 6-3: Normalized version of  DFT example. 
 

The third is the Q factor based filtering. Depending on the instrument and input method, 
there may be many different peaks that are large in magnitude that aren’t notes played by 
the user on their instrument. This can come from resonance, or very loud noise. 
Resonance and overtones like these are usually what defines an instruments timbre and 
sound characteristics. These are not only not necessary to convert the signal to MIDI 



 

 
 

protocol, but detrimental since we don’t want to recognize anything but the fundamental 
frequency of the note played. These peaks of frequencies will typically have a much 
smaller Q factor than the fundamental frequency. This is something that we will take 
advantage of so that we can remove these leaving us with only the fundamental 
frequencies. To do this we loop through every semitone in our detectable range of  
frequencies. In this loop, we find the peak in the range of halfway between the semitone 
before and after the current one. Then we f ind the average slope based on several bins 
before and after the peak and compare it to our threshold. If the slope is too low to be 
considered a note, then the peak and closest bins have their magnitude set to zero. In 
Figure 6-4. it can be seen that there are several wide peaks other than the obvious peak 
at about 300 Hz. The 300 Hz is the fundamental frequency of a plucked guitar note and 
the low Q factor peaks are from resonance of the guitar. These are exactly the type of 
peaks that this stage of the algorithm is going to filter out. 
 

 
 

Figure 6-4: Q Factor based f iltering example. 

 
The fourth stage is the most difficult and one of the most important. This stage deals with 
determining the fundamental frequencies given a frequency spectrum with many 
harmonics. This is very important because basically every acoustic instrument will create 
harmonics of the fundamental frequency and often these will have a very sharp peak and 
often very high magnitude on a frequency spectrum. Often these harmonics can even 
have a higher peak than the fundamental frequency itself. This means that we must 
remove these harmonics otherwise they will be detected as notes by our algorithm. 
Harmonics are always multiples of the fundamental frequency, making them easy to find 
but are still difficult to remove. This is especially because different simultaneous notes 
might have overlapping harmonics and can cause issues in the magnitudes of some of 
the harmonics. There are some very complicated methods of trying to remove harmonics 
including analysis in different spectrums such as the cepstrum analysis which includes 
multiple layers of scale changes and transforms. The issues with this are that it would take 
way too much processing to be able to feasibly do it in real time. Instead, we will have to 
compromise and use a simpler, but less accurate method. This method is called the 
harmonic product spectrum. This transform/method utilizes the fact that harmonics are 
multiples of the fundamental frequency.  
 



 

 
 

It works by dividing the frequency spectrum by ½, ⅓, ¼ and so on. This will cause the first, 
second, third, and so on harmonics to move down to another multiple of the fundamental. 
For instance, if you divide the first harmonic, which is the twice the fundamental, by two, 
you get the fundamental. Then you take these divided frequency spectrums and multiply 
them all. This will cause higher harmonics to be completely canceled by 0’s since say 5 
kHz would be moved down to 1 kHz and if there is no 25 kHz to “replace” the 5 kHz it will 
leave a magnitude of zero in its place. This will cancel out a lot of higher harmonics and 
leave the fundamental with the highest peak in the new spectrum. This works because the 
fundamental frequency is a common denominator of the harmonics and dividing the 
harmonics leaves you with the fundamental. In implementation, there will be the original 
frequency spectrum, a temporary copy of it, and the new spectrum to be used as the 
harmonic product spectrum. The temporary spectrum will be populated by iterating 
through the original spectrum and dividing each frequency by ½ to start with and filling the 
closest frequency bin to ½ of the frequency divided from. The harmonic product spectrum, 
which starts as a copy of the original spectrum, is then multiplied through iteration by the 
temporary divided spectrum. This is then repeated for dividing by ⅓, ¼, and so on until 
the 5th harmonic. Any point past then is unnecessary as the magnitude will most likely be 
negligible. After all of this, we now have a finished harmonic product spectrum in which 
we can do our final analysis on. 
 
The very last stage is where the algorithm filters the harmonic product spectrum by 
magnitude and results in the final determined notes. The remaining peaks which are the 
actual played notes at this point, and then assigns them to their closest semi-tones. This 
is simply done by checking the semitone bin lower than the peak and seeing if it is closer 
than the semitone bin above the peak. This is done up to six times to choose the six 
maximum notes played at a time. If there are more than 6 notes detected, the 6 of highest 
magnitude are converted to MIDI 
 
The implementation of these stages and the algorithm can be seen in fig. 6-4. In 
implementation there are many loops since many different bins of data must be dealt with. 
Fortunately, nearly all these computations are in linear time, so it will have a small amount 
of latency as compared to the FFT which will be the majority of our latency.  
 



 

 
 

 



 

 
 

 
Figure 6-5: Note detection Algorithm Flowchart. 

 

6.4. MIDI Stream Generation 
 
The generation of a MIDI stream from the note detection algorithm outputs is simple. The 
generator remembers the previous state of each note and compares that to the note 
detection algorithm output. If there is a change from off to on, a Note On message with a 
velocity of 127 is generated for that note, turning it on. If there is a change from on to off, 
a Note On message with a velocity of 0 is generated for that note, turning it off. Figure x 
is a flowchart showing the process of generating data for the MIDI stream. 
 



 

 
 

 
 

Figure 6-7: Flowchart of  the MIDI stream generator. 

 

6.5. MIDI Driver 
 
The MIDI driver is responsible for sending MIDI messages through the physical MIDI port. 
An inverted UART data stream must be sent to the NPN transistor that drives the output 
lines. The UART data stream can be generated with the built-in peripheral of the MCU; it 
is configured to have a baud rate of 31.25 kHz, sourced from a 1 MHz clock. It is very 
important that it is sourced from this clock because it keeps the baud rate as accurate as 
possible; any errors from using a different clock will cause incorrect data to be received 
by any external device connected to the MIDI output port. The UART will attempt to send 
anything within its output buffer if it is not empty; filling the buffer when it is empty will 
cause the UART to start sending data. The buffer is 64 bytes long, which accommodates 
the maximum number of generated bytes possible from the MIDI stream generator, 24. 
 
To invert the UART data stream, the UART output is fed back into a digital input pin. The 
interrupt handler for this pin will call a function that inverts the output of an output pin that 
is connected to the base of the transistor. Since the input pin will only send an interrupt on 
either a rising edge or a falling edge, the setting for this behavior is toggled after each 
interrupt. The initial states of the input and output pins are 1 and 0, respectively. Also, the 
input pin is initialized to send an interrupt at the falling edge. 
 



 

 
 

6.6. USB Driver 
 
Unfortunately, due to time constraints and mistakes in the design, the USB driver was 
never implemented. However, the intended behavior of the MCU would have been to send 
MIDI messages through SPI as well as UART at a rate of 1 Mbps. The USB controller 
would receive these MIDI messages and store them to send later in a Bulk transfer to the 
USB host. It would only send 0s through SPI. The other USB controller functionality remain 
undefined and unimplemented. 
 

7. Prototype Testing and Building 
 
In this section we list the procedures we did for building prototypes of each part of the 
device. We also list test procedures to verify the functionality of each hardware and 
software block. 
 

7.1. Prototype Building 
This subsection covers the construction and development of different pieces of the 
Analog-to-MIDI converter. 
 
 

7.1.1. Power Circuits 
 
Since the power ICs are very small surface-mount chips, we could not easily set up a 
breadboard prototype to test them and their circuits. We had to wait until we got the PCB 
to test these circuits. Although we were able to simulate the power circuits with good 
results, almost all of them failed when they were assembled on the PCB, mostly due to an 
unnoticed mistake in the 9V to 5V converter circuit. The only circuit that appeared to work 
was the 5V power select circuit, which was able to supply 5V from USB. 
 

7.1.2. Preamp Prototype 
 
The preamp prototype was built before our bill of materials for the board was finalized. We 
did this to ensure that the preamp was functional before we finalized the PCB design and 
BOM. This preamp prototype also served for us to be able to test our MCU and note 
detection code with the MCU development board. Since the preamp prototype was built 
before our BOM and parts order were made, we used a breadboard and through hole 
components that we already had. Since we were using a limited supply of parts to 
prototype the preamp, we subbed parts and values very similar equivalents. For example, 
the op amps used TL072 instead of the NE5532 that we selected for use on the final 
board. While both op amps do have subtle differences, the overall functionality as far as 
buffering, filtering, and amplification were nearly the same so the TL072 op amps worked 
well in our prototype. Similarly, we had to substitute for many of the resistor and capacitor 
values with series and parallel combinations that gave us close approximations. While 
these substitutions were not exact, they only shifted filtering by a few Hz or gain by a small 
percentage which was not important as to testing the overall functionality of the preamp. 
This is because the preamp does not aim to have exact gain values rather than a range 
of values for the user to be able configure in conjunction with the LED clipping indicator. 

 



 

 
 

 
 

Figure 7.1: Preamp Prototype 

 
We for testing of the prototype preamp, we used the Digilent Analog Discovery 2 kit which 
was sent to us, along with an external 9-volt power supply. We used the function generator 
on the Analog Discovery 2 to apply an input signal to the preamp and the oscilloscope on 
the same device to measure the output of the device. We also used the power supply on 
the Analog Discovery 2 for the bias voltage at the end of the preamp circuit. 
 
When initially testing we struggled getting any signal at all, but we were able to find the 
source of the issue by testing the signal at different points throughout the circuit and found 
some incorrect connections on the bread board. After debugging the initial issues, we 
found that we were just getting a DC voltage that seemed to be clamped to about 7.8 volts, 
1.2 volts off the power rail we were using, and the LED clipping indicator was constantly 
going off. After some research we realized two issues with our initial circuit design, first 
that the op amps we chose and the TL072 we used to prototype can’t output entirely rail 
to rail. This means they could only go about 1.5-1.2 volts from the voltage rails powering 
the op amp. This means that we had to had to change the voltage range and bias a bit to 
compensate. This gives us about a 2-volt maximum peak to peak voltage given voltage 
rails of 5 volts and ground on the final board. After testing and trying different bias values 
we found 2.9 Volts to work well since there was a bit of a voltage drop on the bias resistors 
and that we found we were clipping the bottom side of the signal more often than the top.  



 

 
 

 
After debugging the first issue we still found that we were getting the 7.8 volts output on 
the prototype board. After a bit of trouble shooting, we realized that this was because we 
didn’t include a DC coupling capacitor on the connection between the negative op amp 
input and virtual ground on the voltage amplifier section. This was causing the DC bias of 
the signal to also get multiplied in the voltage gain section, giving us the maximum output 
value of the op amp, which was about Vcc+ - 1.2. After this fix, the preamp seemed to be 
working as intended so we tested it by making sure the whole range of input voltages 
worked in conjunction with the XLR/1/4” input switch. Below are figures showing the 
functioning LED clipping indicator as well as a sample of output. 
 

 
 

Figure 7.2: Active Clipping indicator LED on the Preamp Prototype 

 

 
 



 

 
 

Figure 7.3 Oscilloscope reading of  output on the Preamp Prototype with a 300mV peak input 

 

This now improved version of the preamp prototype was then used in conjunction with our 
MCU development board to test input signals from a guitar for ADC, FFT, and note 
detection prototyping. 
 

7.1.3. Microcontroller Circuit and Digital Port Controllers 
 
The MCU circuit and USB controller circuit were designed with reference to their 
respective datasheets. Each IC for these circuits came in a small surface mount package, 
making it difficult to use a breadboard to prototype the connections. However, for the MCU 
circuit, we were able to use the MSP-EXP430FR5994 LaunchPad evaluation board as a 
stand-in for the MCU IC. The MIDI output circuit was easy to prototype using discrete 
through-hole parts. After assembling it according to the schematic, the circuit was 
confirmed to work very well. 
 

7.1.4. MCU Peripheral Drivers, FSG, and MIDI Stream Generation 
 
We were also able to use the evaluation board to write and test the code for the MCU. 
This board was also used to program the live MCU on the PCB. The code was originally 
written without configurability in mind for I/O ports and peripheral settings. This made the 
code harder to modify when prototyping and testing. Over time, the configurability of the 
code was greatly improved. Roughly each block in the software block diagram was given 
its own source file, and functionality for each block was implemented in isolation from other 
blocks. This means that the functionality of one block is not very dependent on that of 
another block, which leads to less bugs and easier programming and debugging. The only 
cases where functionality is dependent between several blocks are between the frequency 
spectrum array and the note detection algorithm, and the note detection algorithm and the 
MIDI stream generation. 
 
Code for debugging the system was written to help speed up development and confirm 
that everything was working properly. It can be enabled or disabled and configured if 
necessary. The debugging code helps test the ADC sample rate, FSG latency, FSG 
correctness, total latency, and MIDI output correctness. Writing code that configures the 
peripherals was straightforward after reading about them in the user manual and using the 
debugging code to gauge their functions. 
 

7.1.5. Note Detection Algorithm Prototype 
 
The first note detection prototype first started out as a proof of concept in the C 
programming language. We wanted to make sure that our Harmonic Product spectrum 
and other parts of the note detection algorithm worked as intended. To do this we wrote 
code that would perform the algorithm we had designed but using a lot of hard coded 
input, lookup tables for frequencies, and useful operations and data types like divisions 
and floating point for instance. This allowed us to program it in a comfortable environment 
before we tried to optimize code for the MSP430FR5992. There were also some 
differences in the algorithm like the use of a single 2048 frequency array rather than the 
multiple tiered arrays we ended up deciding on. 
 



 

 
 

We tested this initial prototype code using MATLAB to perform the FFT and then plugged 
in the data directly to the code. We read the output simply by printing out the detected 
note frequencies and magnitudes. These methods worked well to prove that our algorithm 
ideas worked well but the code would have to be entirely rewritten to work on the MSP430 
and meet our latency requirements. Below are figures to display MATLAB output we were 
using for the initial note detection as well as results for a C major acoustic guitar chord. 
 

 
 

Figure 7.4: Matlab Output for use in note detection prototype 

 

 
 

Figure 7.5 Note detection Output for C major chord 

 

Following our initial note detection prototype, we moved on to making a highly optimized 
version that could run on our microcontroller. Our microcontroller uses C code, so we were 
able to use the same development environment to continue prototyping the code. We 
started with making a new function to aggregate the input from the 3-tiered FFT system 
we decided to use. After this, we focused on completely reworking the harmonic product 
spectrum code from the ground up. We didn’t want the MCU to have to divide and find the 



 

 
 

closest bins over and over so instead we wrote a script to find where our FFT bin 
placements divide into for the HPS and wrote a long and tedious series of loops to hard 
code in these bin placements for multiplication. This was very tedious to do but allowed 
us to avoid the time and memory usage associated with having a lookup table for bin 
placements and significantly reduce latency of calculating them every iteration of the 
algorithm. After much testing, this approach seemed to work well but we were getting an 
uneven frequency response across the range of the harmonic product spectrum. Part of 
this was because we were placing the bins in the closest division even when the placement 
didn’t line up perfectly. To fix this we used right shifts to split proportions of a harmonic bin 
into a fundamental bin based on how close it was when between two bins. This gave a 
much more linear response across the range of harmonics and fundamentals rather than 
favoring certain divisions that resulted in many harmonic bins being multiplied into the 
same fundamental bin fully. 
 
At this point we were using sample data gathered by our prototype preamp and MCU 
development board. This allowed us to get input to work with that should be nearly the 
same as our finalized device. We found that we still had an uneven frequency response 
in our harmonic product spectrum. We found that in part this was due to the several 
different bin spacings all aggregated into one spectrum. This meant that at some points 
more bins got multiplied into fundamental bins than other points but at a consistent rate 
due to our bin spacing. We were able to remedy this by running test input with a flat 
frequency response and adjusting the frequency response until it was even across the 
whole spectrum. At this point our response was as flat as it should be, but we were noticing 
a trend, the harmonic content of guitar notes was different, making the harmonic product 
spectrum magnitudes inconsistent. Particularly, the higher the note, the lower the 
harmonic content. To fix this issue, we analyzed the harmonic content of many single 
guitar notes through our input, and then for each harmonic on each fundamental bin 
compensated so that every bin should have an equal harmonic content when played on 
guitar. This was tedious to do manually but gave us very good results and, in the future, 
could be automated to work with harmonic responses of other instruments as well. 
 
One of the last issues when prototyping the note detection code was that the range of 
input magnitudes varied greatly, resulting in an exponentially large variance in output 
magnitudes. We decided to see if there was a correlation between input RMS and this 
variance and found that there was. So, to solve this, we plotted the input RMS of many 
different samples of guitar notes and chords against the estimated threshold needed to 
properly detect those notes and chords. This gave us a clear exponential graph that we fit 
an exponential curve to. We took this exponential curve and turned it into a set of discrete 
threshold values to choose based on the input RMS of the signal. This effectively gave us 
an output detection threshold that scaled with the input RMS, making our device work with 
a range of input magnitudes. This was very important to the devices overall function 
because notes and chords can very different RMS values, not to mention notes can 
fluctuate a lot in volume over their lifetime. Similarly, the musician can play notes with 
many different magnitudes. Had we not come up with this solution our device would hardly 
work in a usable way. 
 

7.2. Prototype Testing 
 
Each test listed here should be done in order. 
 



 

 
 

7.2.1. Continuity Test 
 
This test checks for continuity between power rails and ground. This test should be 
performed many times throughout the assembly process. 
 
Equipment: 

• Digital multimeter with continuity check setting 
 

Step Description Pass Condition 

1 Set the multimeter to check continuity. - 

2 Fix the negative terminal of the multimeter to ground. 
Consult the schematic for probe points for ground. 

- 

3 Using the positive terminal, probe each power rail (9V, 5V, 
3.3V, 48V). Consult the schematic for suitable probe points. 

- 

4 If at any point the multimeter beeps, that means that there is 
a short between the probed power rail and ground. The last 
circuit or component added to the board should be checked 
for validity and proper assembly. 

No beep 

 
Table 7.1: Procedure for the Continuity Test 

 

7.2.2. Voltage Test 
 
This test checks for the correct voltage on each power rail, 9V, 5V, 3.3V, and 48V. This 
test should be performed many times throughout the assembly process. Failure at any 
step suggests serious mistakes in the schematic or assembly, and digital components will 
have likely been damaged. 
 
Equipment: 

• Digital Multimeter (DMM) 

• 9V power supply with barrel jack cable termination 

• 5V USB power Supply 

• USB cable 
 

Step   Description Pass Condition 

1 Plug the 9V power supply into the barrel jack of the MIDI 
Translation Device. 

- 

2 Set the DMM to read voltage. Touch the leads to the GND 
and 9Vin test points and check the reading. 

9V 

3 Touch the DMM leads to the GND and +9V test points and 
check the reading. 

6.7V – 9V 



 

 
 

4 Touch the DMM leads to the GND and Vcc test points and 
check the reading. 

5V 

5 Touch the DMM leads to the GND and 3.3V test points and 
check the reading. 

3.3V 

6 Touch the DMM leads to the GND and 48V test points and 
check the reading. 

48V 

7 Unplug the 9V power supply from the device. Plug in the 5V 
USB power supply to the USB port of the device. 

- 

8 Touch the DMM leads to the GND and 5Vin test points and 
check the reading. 

5V 

9 Touch the DMM leads to the GND and Vcc test points and 
check the reading. 

5V 

10 Touch the DMM leads to the GND and 3.3V test points and 
check the reading. 

3.3V 

11 Touch the DMM leads to the GND and 48V test points and 
check the reading. 

48V 

12 Unplug the 5V power supply from the USB port of the device 
and turn off the DMM. 

- 

 
Table 7.2: Procedure for the Power Test 

 

7.2.3. Preamp Oscilloscope Test 
This test is designed to check the functionality, voltage gain levels, and bandwidth of the 

preamp section. 

 

Equipment: 

• Function generator 

• Oscilloscope 

• 9V or 5V Power source 

 

Step   Description Pass Condition 

1 Connect power source directly if testing preamp prototype or 
connect power source to the MIDI-to-Analog converter. 

- 

2 Connect the function generator input to the input of the 
preamp and ground to the ground line. 

- 

3 Connect the Oscilloscope probe to the output of the preamp 
section and the ground to the ground line 

- 



 

 
 

4 Set switch to ¼” input mode and potentiometer to minimum 
gain. 

- 

5 Apply a 300mV peak to peak 1kHz sin wave with the function 
generator and read the oscilloscope output.  

300 mV pp sin 
wave biased to 

1.1V 

6 Turn the gain potentiometer to the maximum. LED indicator is 
shining 

7 Turn the gain potentiometer down until the LED indicator just 
barely stops shining and read the oscilloscope output. 

~2V pp sin 
wave centered 

at 1-1.1V 

8 Repeat steps 6-7 using a 1V pp 1kHz sin wave and a 2V pp 
1kHz sin wave. 

Steps 6-7 pass 
conditions 

Table 7.3: Preamp Oscilloscope Test 

 

 
 
 

7.2.4. MIDI Output Test 
 
This test checks for valid MIDI output on the MIDI port. Any failures in this test suggest 
that improvements are needed in the MIDI port driver code or the MIDI output circuit. 
 
Equipment:  

• Digital logic analyzer 

• Electric guitar 

• ¼” Cable 

• MIDI cable 

• 9V power supply with barrel jack cable termination or 5V USB power supply 
 

Step Description Pass Condition 

1 Connect the power source and electric guitar to the device. - 

2 Connect the MIDI cable to the output port of the device and 
the input port of an external device. 

- 

3 Use the digital logic analyzer to probe the collector of the 
transistor. 

- 

4 Play a single note on the electric guitar and record the digital 
logic at the collector.  

- 

5 Check if the bit sequence matches the intended bit 
sequence of the MIDI message. 

Correct MIDI 
message sent 



 

 
 

6 Check if the period of each bit is consistently 32 
microseconds. 

Bit period of 32 
μs 

 
Table 7.4: Procedure for the MIDI Output Test 

 
 

7.2.5. Guitar Note Detection Test 
 
Equipment: 
• Electric guitar 

• ¼” Cable 

• MIDI-to-USB cable 
 

Step Description Pass Condition 

1 Set up the MIDI Translation Device so that you can see its 
output. 

- 

2 Attach the electric guitar to the ¼” input jack of the MIDI 
Translation Device, making sure to send the signal through 
the tip of the cable and attach the sleeve to ground. 

- 

3 Play an E2 on the guitar. Observe the output from the MIDI 
Translation Device. 

Output of E2 

4 Play a G3 on the guitar. Observe the output from the MIDI 
Translation Device. 

Output of G3 

5 Play an A4 on the guitar. Observe the output from the MIDI 
Translation Device. 

Output of A4 

6 Play a C5 on the guitar. Observe the output from the MIDI 
Translation Device. 

Output of C5 

7 Play an E6 on the guitar. Observe the output from the MIDI 
Translation Device. 

Output of E6 

8 Disconnect the function generator from the ¼” input jack of 
the MIDI Translation Device. 

- 

 
Table 7.5 Procedure for the Guitar Note Detection Test 

 

8. Administrative Content 
 
During Senior Design 1, most of the milestones have to do with documentation deadlines 
rather than actual testing, implementation, etc. In Senior Design 2 we will be implementing 
and testing our design. See Tables 8.1 and 8.2 below for details. 
 



 

 
 

Senior Design 1 
 

No. Task Deadline Status 

1 Pick Project Idea, Assign roles  5/22/2020 Completed 

2 Initial Project Documentation- Divide and 
Conquer 

5/29/2020 Completed 

3 Updated Divide and Conquer document 6/5/2020 Completed 

4 60-page draft 7/3/2020 Completed 

5 100-page draft 7/17/2020 Completed 

6 120-page Final Document  7/28/2020 In Progress 

7 Breadboard testing  7/28/2020 Not Started 

8 Begin ordering parts 7/28/2020 Not Started 

 

Table 8.1: Senior Design 1 Milestones 

 

Senior Design 2 
 

No. Task Deadline Status 

1 Implemented Note Detection & Test Software 8/18/2020 Not Started 

2 Finish first draft of drivers 8/18/2020 Not Started 

3 Testing Parts  8/25/2020 Not Started 

4 Possible Redesign 9/15/2020 Not Started 

5 Finalized Design 10/6/2020 Not Started 

6 Final Prototype working  11/17/2020 Not Started 

7 SD Showcase TBA Not Started 

 
Table 8.2: Senior Design 2 Milestones 

 

9. User Instructions 
 
The instructions in this section refer to the version of the device used in the final 
presentation and showcase demonstration. Any features that are not present in this 
version of the device, such as USB, XLR, or on-board power, will be omitted from these 
instructions. 



 

 
 

 
Getting Started 
 
In order to use the Polyphonic Analog to MIDI Converter (PAMC), you will need: A 5V 
power supply, a 3.3V power supply, a MIDI to USB cable, one or two ¼” instrument cables, 
and an electric guitar. Please attach the 5V power supply to pin 1 of header SV2, attach 
3.3V to pin 2 of header SV6, and attach ground to pin 9 of header SV6. Once these 
connections are made, the device should start up. Connect the MIDI end of the MIDI to 
USB cable to the MIDI out port on the device and plug the USB end into your computer. 
Your digital audio workstation (DAW) should now recognize that a MIDI device is available 
to use. Finally, plug your guitar into the input of the device using a ¼” instrument cable. 
Optional: Use a second ¼” cable to connect the passthrough port of the device to an 
amplifier and hear your guitar signal at the same time as the MIDI output of the device. 
 
Using the Device 
 
Simply open a MIDI-controllable instrument in your DAW and begin playing notes on your 
guitar. The PAMC should convert your signal into MIDI for the DAW to read. If nothing is 
happening, try unplugging the power from the PAMC and plugging it back in to restart the 
device. If you are getting more than one MIDI note for each single note you play, try using 
the potentiometer to adjust the gain until you are getting one MIDI note for each one note 
played.  



 

 
 

Appendix A: Glossary of Music Terminology 
 
Digital Audio Workstation (DAW) 
 A computer program or digital device used to record and edit music. 
 
12-Tone Equal Temperament 
 A musical pitch system that divides octaves into twelve pitches that are equally 
spaced on a logarithmic scale 
 
Pitch 
 Frequency of a note in Hertz, usually notated with a letter and octave number (ex. 
A2 or C3) 
 
Octave 
 Range of pitches from one note to the next note of the same name or from a note 
of pitch n Hertz to 2n Hertz (ex. From A2 to A3 or 110 Hz to 220 Hz) 
 
Portamento 
 Smooth glide transition from one note to another 
 
Sustain 
 Holds musical note until sustain is released 
 
Sostenuto 
 Sustain that only affects notes played at the time that sustain is activated 
 
Legato 
 Smooth, even, connected note style 
 
Attack 
 Beginning of a note, time it takes for a note to reach maximum amplitude 
 
Decay 
 Ending of a note, time it takes for a note to soften and end after it is released 
 
Reverb 
 Reverberation echo effect 
 
Tremolo 
 Trembling effect, adjusts amplitude of signal up and down 
 
Chorus 
 Effect where an additional note is played at approximately the same pitch and with 
approximately the same timbre 
 
Phaser 
 Effect where a filter is applied to produce peaks at different frequencies of the 
signal 
 



 

 
 

Detune 
 Effect that puts a note out of pitch 
 
Omni-Mode 
 Mode where MIDI device is listening for incoming signals on any MIDI channel  
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