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1. Project Summary 
 
The Polyphonic Analog-to-MIDI Converter for Musical Applications is a device that will 
accept an analog signal from either a ¼” TS or XLR3 input and convert it to a MIDI signal 
of up to six voices. It is designed to be used in both a music studio and live performance 
settings. MIDI technology is most often purely digital, with some digital MIDI controllers 
interfacing with a program or instrument that operates on the MIDI standard. While some 
products exist which convert an analog music signal into a digital MIDI stream, they are 
usually monophonic (single-voiced). We aim to develop an analog-to-MIDI device that is 
capable of translating each string of a standard-tuning guitar simultaneously. While the 
main goal is for the device to work with a guitar, it will be designed to work with any 
instrument capable of producing a consistent tone in the 12-tone equal-temperament 
tuning system. 
 
While the MIDI stream is being created, the original instrument signal is simultaneously 
bypassed out of the device. This allows the device to be a single block in the instrument’s 
signal chain and for the signal to pass through to other devices, amplifiers, or interfaces 
and opens up a world of creative possibilities. The Analog-to-MIDI Converter can be used 
to transcribe the notes being played or control a MIDI device playing in parallel with an 
instrument while still allowing the instrument’s voice to be heard. Designed with form, 
function, and compatibility in mind, the Analog-to-MIDI Converter will be lightweight and 
powered by +5V via USB or +9V via DC barrel jack. USB is ubiquitous in studio settings 
where musicians can connect to their desktop or laptop workstation and negative center 
DC barrel jack is a widely used power standard in music technology for performance. The 
most important challenges to overcome in this design are the analog to digital conversion, 
fast fourier transform, and filtering. The ADC must be fast enough to pick up all of the 
notes being played, the fourier transform must be accurate without slowing down the 
program too much, and the filters must be able to identify all of the up to six voices for 
notes which may be only 5 Hz apart. 
 

2. Project Description 
 
Many different technologies, both ancient and modern, are used in the music industry to 
create music. The instruments that musicians use can be either acoustic or electrical, and 
the electrical instruments can be either analog or digital. In the production studio, the 
sounds from all these different instruments are captured electronically for manipulation in 
a software application called a digital audio workstation (DAW). In music production, there 
are many ways to capture and incorporate analog and acoustic instruments into a DAW. 
Most of these solutions involve USB microphones or an audio interface that digitizes your 
analog signal for DAW use. Very few options exist that allow you to use your analog or 
acoustic instruments in the same way that you might use a digital instrument. A digital 
instrument using MIDI protocol will have the notes and other musical information encoded 
into a signal rather than a digital replication of an analog signal. The sounds of acoustic 
instruments are captured with a microphone that converts the sounds into an analog 
electrical signal. Analog electrical instruments also output an analog electrical signal. This 
signal is then digitized and recorded in a computer. Digital instruments send digital signals. 
They can send a digital representation of an analog signal, or they can send messages 
that can tell another system what sounds to produce. For example, a keyboard can send 



 

a message that tells the computer that a note was played. The computer can then output 
the corresponding sound. Unfortunately, only these digital instruments are capable of 
sending messages. Other instruments, like an electric guitar or a flute, cannot do this. 
What this project aims to achieve is to create a device that gives acoustic and analog 
electrical instruments the ability to send messages just like a digital instrument. 
 

2.1. Motivation 
 
Our motivation for this project is to apply what we have learned in our classes at the 
University of Central Florida. This will be one of our first experiences completing a project 
in a team so we will also be building our teamwork and coordination skills to be applied in 
our careers moving forward. Furthermore, we all share an interest in music technology 
which drove us toward this particular project, and we came up with this idea since it can 
be very useful to both musicians and engineers. The ability for this device to take a 
microphone input and convert it to a MIDI stream opens up a world of possibilities where 
any instrument can be used as a MIDI controller. This includes acoustic guitar, trumpet, 
flute, accordion, even voice. If it can be captured by a microphone or a pickup and produce 
a consistent tone, then it is compatible with one of our inputs. 
 
Additionally, in a live music performance setting musicians tend to either play an analog 
instrument or a digital instrument with very few options for blending the two. Percussionists 
have the option to attach digital “trigger” devices to their instruments, connecting them to 
a DAW and allowing them to use the drums to play a digital instrument. There are no clear 
equivalents to such a device for other instruments such as guitar, voice, or acoustic piano. 
This is likely because of the much higher processing power required to decompose an 
analog signal in real time with a fourier transform versus a binary on or off signal that can 
be used for percussion trigger devices. 
 
Another useful application of this device would be note transcription. When musicians 
write down or transcribe their music compositions they will typically use a digital instrument 
such as an electric keyboard or manually program notes into software. If the music is 
written for a different instrument than a piano, it may be very difficult to perform the piece 
on a keyboard to transcribe it and would require the musician knowing how to play the 
instrument. If the musician instead inputs notes manually into the software they have to 
choose the note length, the note, volume, and articulation of the note. This can be 
incredibly inconvenient and time consuming. With this device, you can instead play your 
analog or acoustic instrument of choice directly into the device and into your MIDI 
compatible transcription software. This will allow a musician to play the instrument that 
they are comfortable on and originally composed the music on while automatically 
transcribing their composition. We aim to blend forms of digital and analog music making 
with a Polyphonic Analog to MIDI Converter. Such a device will allow the user to transcribe 
their notes into MIDI format or control a digital instrument in real-time using their analog 
or acoustic instrument of choice. 
 

2.2. Objectives 
 
The primary purpose of this device is to detect more than one note being currently played 
by an instrument in an analog audio signal and transmit that information through a MIDI 
stream. The device will take analog input from a ¼-inch tip-sleeve mono audio jack and 



 

from an XLR3 connection. Most electronic devices with musical applications typically 
transmit analog audio signals through these connections. For example, electric guitars 
typically use a ¼-inch jack, and professional microphones typically use an XLR3 
connection. There are other interfaces that could be implemented into the device, like 
USB, coaxial, and optical. However, the interfaces we have selected are the most common 
in music production applications, and these analog interfaces are simpler to implement 
than those three digital interfaces. It will have a switch to select the source of the input. 
Also, some microphones require a phantom power source from the input port that they 
connect to. The device must be able to supply enough power through the XLR3 port to 
power as many microphones as possible, and there will be a switch that toggles the 
availability of this power source. The device can output a MIDI stream through a MIDI port 
and through a USB port. These are the most popular interfaces through which MIDI 
streams are transmitted. Like the input ports, the device will have another switch to select 
the output port. The device will also have another ¼-inch tip-sleeve jack port and another 
XLR3 port to output an exact copy of the input. The purpose of this is to allow the signal 
to be passed through the device to other systems. This makes integration of this device 
into a system of other audio devices simpler and with less conflicts. There will also be a 
switch to toggle each of these outputs. We will need to buy ports for these interfaces and 
implement electrical circuitry that transmits the signals to and from these ports. We will 
need to use a dedicated integrated circuit for our USB implementation since it is a complex 
standard. 
 
The device must be capable of digitizing audio signals within the range of frequencies that 
MIDI establishes as notes for processing. To prepare the analog signal for the analog-to-
digital converter(ADC), we will have a preamp stage that amplifies the line-in signal to a 
range that is accepted by the ADC. The user can adjust the gain for this preamp using a 
potentiometer on the faceplate of the device in order to improve the accuracy of the device 
for whatever input source they are using and to prevent clipping. This preamp stage will 
also include a bandpass anti-aliasing filter to make the signal easier to work with once it 
is digitized. An ADC is then used to collect samples of the signal, but its sample rate must 
be high enough to digitize the signal accurately at the highest frequencies. The device 
must analyze a chunk of the audio signal and determine which notes are being played, if 
any. Musical notes are related to different sound frequencies, so the device must calculate 
the frequency content of the chunk of signal. A discrete Fourier transform (DFT) is capable 
of converting a chunk of a digital audio signal into a spectrum of frequencies that make up 
the sound. The frequency spectrum lists the magnitudes of each multiple of a fundamental 
frequency, thus also giving information on the loudness of each note the device hears. 
However, the issue with this is that the spectrum has a linear frequency scale, while 
musical notes have a logarithmic frequency scale. The device needs enough frequency 
density in the spectrum to be able to accurately relate frequencies to notes. We will use a 
processor that is powerful enough to perform the DFT in real time on chunks of the audio 
signal. Also, there may be several notes being played at the same time, so the device 
must be capable of detecting more than one note. This is called polyphony. As discussed 
in a later section, other analog to MIDI products exist, but they are exclusively 
monophonic, they can only convert one note at a time. The novel feature of our device will 
be its ability to convert multiple notes at once. 
 
Using the frequency spectrum, the device must accurately determine which notes are 
being played and transmit the corresponding MIDI messages in time. The input will 
typically never be digitized into a mathematically perfect sine wave, even from analog 



 

synthesizer instruments, and especially not from acoustic or electric instruments like the 
guitar. Due to the complexity of typical input signals, the device must be able to distinguish 
between the overtones and the fundamental frequency of each note, and it must also filter 
out noise. Being able to filter out the noise, overtones, and lower resonant frequencies of 
each note is important in accurately determining the notes being played since only the 
fundamental frequencies of each note will be left over. After determining which notes are 
being played, it outputs that information to a MIDI output stream. The device must perform 
the translation from analog audio to MIDI within a very short amount of time. With low 
latency, the device becomes effective for use in live recordings and performances. Timing 
is critical in music production, since the art itself relies on the arrangement of sounds in 
time. If the device outputs an instruction too late, then it will ruin the recording or 
performance because the effect or sound that the device was supposed to trigger would 
have happened at the wrong time. The processor and the DFT implementation will be an 
important factor in determining our latency because the DFT is the most time-consuming 
computation that the processor will perform. 
 
There are other aspects that this device must achieve. It must be portable and small in 
size, since its potential applications include live performances, and the cost decreases 
with a smaller size. For example, if the device takes up too much space on a guitarist's 
pedal board, then it is useless because other tools will have priority over it. The device 
needs to be safe to handle and never get too hot to touch. This requires a smooth plastic 
case, suitable passive cooling systems, and low-power electronics. While we could 
implement an active cooling system with a fan and control circuit, this would make the 
device less portable, increase the size and cost, and create EMI. Reducing the amount of 
EMI that this device produces and experiences is critical because analog audio signals 
are sensitive to interference. This interference creates noise in these signals when they 
are transmitted along unbalanced connections and along the PCB traces, and the noise 
will affect the accuracy of the note translation. The objectives that this product aims to 
achieve are the main goals. The project is successful if these goals are met. 
 
There are also stretch goals for this project that we will attempt to implement but are not 
required for the final product. We would like to make the device capable of recognizing 
the instrument that produced the audio signal and detect and relay note effects such as 
vibrato, tremolo, pitch bend, note slur, etc. Doing this requires much more work on the 
algorithms that analyze the frequency spectrums and accurate detection of these effects 
without interfering in the detection of notes. We would also like to make the device 
configurable through the USB interface. The settings that would be changed are the 
equalizer, input gain, maximum polyphony, pitch range, and effects processing. The user 
would be capable of changing these settings anytime while the device is connected to a 
computer using a simple computer application. Finally, we would like to make the input 
band-pass filter and ADC sampling rate adjustable. This would allow optimized processing 
for low pitch ranges, since digitizing signals with only low frequencies does not require a 
high sample and bandwidth. These goals make the device more versatile and more 
efficient. However, they are not required for the main functionality and are thus considered 
to be stretch goals. 
 

2.3. Requirements Specification 
 
The requirements specification defines the parameters for the device to be considered 
successful. These requirements are either self-imposed for the feature set of the device 



 

or required by the components needed to implement the functions of the device. For 
each requirement there are three value columns, minimum, maximum, and ideal. The 
minimum and maximum columns of the table are the minimum and maximum values that 
each characteristic of the device must have for our project to be considered successful 
for the purposes of Senior Design. This value is lower than the ideal value because we 
realize that we may be limited in the performance of the device by our budget, parts, and 
time. We want to create at least a working prototype of the device that can show that the 
ideal values are potentially possible by using more expensive parts. The ideal value 
column of the table shows the ideal required values we would like to have if we did not 
have any limitations. Some of the minimum and ideal values are the same due to being 
necessary for the device to be functional. 
 

Requirement Description Unit Min Max Ideal 

Polyphony Number of simultaneous notes 
converted 

 6  128 

MIDI Stream 
Latency 

Amount of time between signal 
reception and note output 

ms  100 10 

Device 
Temperature 

Long-term temperature. Must not 
require active cooling. 

℃  30  

Preamp Gain Range of values for linear gain of 
adjustable preamp stage. 

V/V 1.2 600  

Length Length of device. inch  12  

Width Width of device. inch  9  

Height Height of device. inch  6  

Weight Device must be light-weight for 
portability. 

lb   0.5  

¼” Audio Input 
Voltage 
Range 

Voltage range for the ¼” audio input. V -2.5 +2.5  

XLR3 Audio 
Input Voltage 
Range 

Voltage range for the XLR3 audio input. V -2.5 +2.5  

High-pitch 
Sample Rate 

Sample rate for mid range to treble 
range voices. 

kHz 26   

Low-pitch 
Sample Rate  

Sample rate for low range to bass 
range voices. 

kHz 1   

Input 
Impedance 

A high input impedance is typical for 
musical devices. 

kΩ 5   



 

Note Accuracy The number of correct notes detected 
divided by the total number of notes 
detected. 

 0.8  1 

Note Minimum The lowest frequency that the device 
will be able to detect. 

Hz 82.41  27.5 

Device Cost Device cost. USD  450  

Table 2-1: Table of requirements. 

 
We want 6 note polyphony so that the device can capture each voice in a standard, six-
stringed guitar. We are not limited to just the six strings of a guitar, however. This six voice 
limit should also apply to how the device captures other instruments such as six voices of 
a piano or up to six singers singing into a microphone input. A number of the design 
choices we have made are based on this device being compatible with an electric guitar 
(6 note polyphony, 1/4” bypass). A device such as the L.R. Baggs Para Acoustic D.I. is an 
interface device for use with acoustic instruments that can be used on its own or on a 
pedal board. Its dimensions are approximately 6” by 3.5” by 1.5”. These kinds of 
dimensions would be ideal, but we are allowing a slightly larger form factor for our 
minimum acceptable prototype. Delay tends to become noticeable at around 30ms 
[citation needed] so we should aim to keep latency below that, ideally at less than 10ms, 
however for our minimum acceptable prototype we are aiming for a latency under 100ms 
as a proof of concept. Our goal is to convert six notes simultaneously so that this device 
will be fully compatible with a standard six string guitar. We want MIDI and USB output for 
compatibility with the widest range of devices. Simply having a MIDI output jack alone 
would be enough to use the device with other MIDI devices such as digital synthesizers 
and audio interfaces, but including the USB port removes the need for an audio interface 
to connect to a computer. The device will be able to act as a USB compatible MIDI 
controller. We want the dimensions of the device to be fairly small and the weight to be 
light so that it can be portable and useful for live performance applications. If we exceed 
the specified dimensions, we risk the box being too big to gig or inconvenient to place on 
a desk for studio use. We need our note recognition time and note translation time to be 
fast in order to reduce latency and make the device usable in a live performance setting. 
Even in a studio setting, it would be inconvenient to work with a device with too much 
latency. For both applications, low latency is preferable. 
 
We need our components to not generate much heat so that we do not need to implement 
a fan which would add unwanted audible noise. This also applies to both live performance 
and studio recording settings. A fan would generate noise that the audience might hear at 
a live performance and that a microphone might pick up in a recording studio. We need to 
regulate the voltage of both the ¼” and XLR3 inputs to make both of them usable. Our 
implementation of our input jacks must comply with accepted standards for transmitting 
audio signals through them. We need our sample frequency to be sufficiently high to 
capture the highest relevant frequencies of the input signal. Too low of a sampling 
frequency (below Nyquist rate) and we will not capture the signal correctly, potentially 
ending up with aliases that could cause problems in our analysis. Too high of a sampling 
frequency and we risk slowing down the fast fourier transform and introducing unwanted 
latency. We need a high input impedance to use electric instruments without introducing 
“tone suck” to the sound. Tone suck is an informal term used by musicians and music 



 

technology companies to explain the attenuation of high and mid frequencies in their signal 
as it runs through a long cable or other hardware. In this case, the tone suck can be caused 
by the loading effect which would diminish our signal by demanding too much power from 
it. [1] Finally, we need to keep the device under budget. It would be ideal to not spend 
more money than we need to on our project. That would be bad for the team because it 
would mean more money out of our pocket and it would be bad for any potential consumer 
because it would mean a higher price tag on the final product. 
 

2.4. House of Quality Analysis 
 
In the case of the Polyphonic Analog to MIDI Converter, many of the engineering 
requirements are directly related to the customer requirements. Both the engineers and 
the customers want low cost, low latency, and high accuracy. In addition to this, the 
engineers want high processing power and frequency bandwidth while the customer wants 
low power consumption and good portability. 
 

 
 

Figure 2-1: House of quality 

 
Development, manufacturing, and consumption all benefit from lower cost. The cheaper 
the parts, the easier it will be to acquire them for prototyping and testing and the cheaper 
it will be for the end customer. Unfortunately almost every other requirement is at odds 
with low cost with power consumption being the only requirement that is independent of 
cost. Thankfully cost is the simplest requirement to manage in the context of the senior 
design course; if something is not in the budget, simply increase the budget as we are not 
beholden to any sponsors or other constraints. We acknowledge this will not always be 
the case in projects moving forward, but for now we will take any advantage we can. 
 



 

Possibly the most important relationship for the function of the device is that between 
latency and accuracy. They have a strong correlation with one another, as an increase in 
latency will allow room for an increase in accuracy and a decrease in latency will provide 
less time for an accurate algorithm. If latency was not an issue, we could implement the 
most accurate algorithm possible without worrying about how long it takes to execute, but 
because this device has to work in real-time for music performance some concessions 
may need to be made in the FFT and filtering algorithms in order to manage latency. 
 
One of the most important accessibility features of this device is its variety of inputs and 
outputs, including a MIDI out and a USB out. This is to make it compatible with as many 
other MIDI devices and platforms as possible though it may impact cost due to the 
additional hardware required, latency due to the additional step in the signal chain of the 
USB controller, and accuracy as a result of latency being affected. The additional 
hardware is likely to be a simple integrated circuit used to control the USB port, so it will 
not be very expensive or very time consuming to implement, so impact on cost should be 
minimal. Impact on latency should also be low as indicated by the single arrow of 
correlation in the house of quality table. With appropriate planning and part selection, MIDI 
compatibility should not be too difficult to achieve. 
 
Low power consumption is an important feature for both usability and compatibility. We 
want to be able to build this device with no active cooling component. Adding a fan to the 
design can add audible noise which might be heard by those nearby in a performance 
setting or picked up by a room mic in a studio setting which is unacceptable in a music 
environment. The device will be able to accept a microphone input with 48V phantom 
power, meaning that a sensitive condenser microphone may be used as the input. If our 
device is creating audio noise that is being picked up by that microphone, then we have 
failed to deliver a useful product. Additionally, we are constrained on our power use. In 
order to make it easy to power, we are implementing two different powering options: DC 
5V, 0.5A USB power and DC 9V power. USB is standard for use in a production setting 
where you will have a computer nearby and 9V will be useful in situations where you have 
the device on a pedal board with a typical 9V power supply and are cabling to a computer 
or other MIDI device that is not nearby. 9V DC power is a ubiquitous power supply voltage 
for music devices with current output ranging from 100mA to 1500mA. A 9V, 300mA power 
supply will supply an amount of power that is roughly equivalent to what the USB port will 
be able to supply, falling safely within the range of acceptable values for our target 
demographic. We will have to consider in our power budget the many parts used in our 
design and whether the amount of power they consume is worth the reduction in latency 
or increase in accuracy, processing power, or bandwidth that they provide. 
 
Similar to power usage and cost, the portability requirement may negatively affect all of 
our engineering requirements. If we find ourselves running low on space, we may need to 
design our PCB with more layers for more traces which costs more money. We may need 
to use suboptimal parts if they take up less space on our PCB or in our case which could 
impact our latency, processing power, accuracy, and bandwidth. We want a powerful 
microcontroller or microprocessor to carry out our fast Fourier transform and filtering 
algorithms to make them fast and consistent. More powerful parts may come at a higher 
cost, consume more power, and may even be physically larger on the PCB than other 
options but these will likely be the most impactful parts in the design on latency and 
accuracy so they should be prioritized over other parts affecting the cost, power, and 
portability constraints. 



 

 
Finally the frequency bandwidth requirement regards the bandwidth of the input to the 
device. Ideally, a device like this could accept input signals with frequencies across the 
range of human hearing. This is, however, not realistic for a project of this scale so we are 
aiming for a bandwidth that covers the range of notes playable by a standard, six-string 
guitar: 82Hz to 12.6kHz. This range will cover many other instruments as well, 
encompassing most notes on the piano, most notes that are sung, etc. The most obvious 
constraints on input bandwidth is the analog to digital converter and the fast Fourier 
transform. The analog to digital converter must have a sample rate of at least the Nyquist 
rate of the input (twice the highest frequency) in order to accurately capture it in digital 
form. However, the higher the sample rate, the more time-consuming it will be to perform 
the fast Fourier transform and filtering processes. We will have to find a sweet spot for the 
sample rate where it is high enough to capture what we need but low enough to not be 
too taxing on the microprocessor / microcontroller. We will also have to design clever fast 
Fourier transform and filtering algorithms that will allow us to take advantage of a high 
sample rate without compromising our real-time capabilities. 
 

2.5. Device Overview 
 
In summary, our final design will accept an analog input from ¼” or XLR3 input (one or the 
other, toggleable) which will be buffered, amplified, and filtered by our preamp stage. This 
prepared signal is then sent to the processor where it is converted to a digital signal and 
a fast fourier transform is performed to analyze the frequencies of the signal. This data is 
processed to find the root frequencies of the notes being played and up to six frequencies 
that cross the threshold for what the device recognizes to be a note. Finally, this signal is 
converted to MIDI and delivered to an external MIDI device or computer via USB or MIDI 
bus.  
 
Additional features include a potentiometer on the faceplate of the device to adjust input 
gain, allowing the user to control the level and prevent clipping of the signal. The Anti 
aliasing bandpass filter will be made adjustable via toggle switch for treble frequency, bass 
frequency, or full range to improve performance for specific instruments or voices. The 
analog signal output can also be toggled between a buffered output or an output that has 
been affected by the preamp stage. The device will be powerable by both external 9V DC 
power supply and by 5V USB power. A bridge rectifier to protect against and even operate 
with reverse voltage from either power supply.  
 



 

 
 

Figure 2-2: Overview block diagram. 

 

3. Research Related to Project Definition 
 

3.1. Existing Similar Projects and Products 
 

3.1.1. Sonuus G2M V3 
 
There are two current products made by Sonuus that deal with audio to MIDI conversion. 
These products are the G2M V3 and the i2M. Both of these products are very similar in 
their features but differ slightly in their implementations and hardware designs. The 
Sonuus G2M V3 is the third installment in the line of G2M models created by 
Sonuus.This device is a portable plug-and-play device that can connect to any MIDI 
device or computer. The G2M V3 is a major improvement from the previous versions of 
itself because it is able to work with any electric guitar along with bass, voice and wind 
instruments. The previous versions of this product only worked specifically for an electric 
guitar and there was a separate product (B2M) that worked specifically for a bass guitar. 
The device uses a single AA battery for power and has an optional 9V DC power 
adapter that can be used for pedal board integration. The device has an 6.35mm mono 
jack input to connect a guitar, bass or microphone and a MIDI output through a standard 
5 pin MIDI socket or 6.35mm mono jack input to connect to a MIDI device. Some 
features of the G2M V3 include accurate pitch-bend determination, very low latency, built 
in precision tuner to guitar or bass tuning, and long battery life. Figure 3-1 is an image of 
the device. 

 



 

 
 

Figure 3-1: Picture of the Sonuus G2M V3. (Permission for image requested from Sonuus) 

 
A limitation of the G2M V3 is that it can only translate monophonic notes. We would like 
to make a product that is similar to the G2M V3 but with polyphonic capabilities and some 
other changes in the hardware. We want our device to be powered through USB rather 
than by battery like the G2M. The polyphonic capabilities of our device would allow 
instruments like an electric guitar or an acoustic piano to play chords and harmonies that 
will be converted into MIDI. We will have to develop an efficient algorithm for decomposing 
the instrument signal into individual notes in order to keep the latency low enough for use 
in a performance or production setting. 

 

3.1.2. i2M musicport 
 
The i2M musicport is a similar product created by Sonuus that has many of the same 
features as the G2M but with some changes in implementation and hardware. Like the 
G2M, the i2M musicport is a plug-and-play device that takes musical audio from guitar, 
bass, voice or wind instrument and converts it to MIDI. The main difference of the i2M 
musicport from the G2M is that it uses a USB interface for power and MIDI output. Since 
the i2M musicport is USB-powered instead of battery powered, it is much smaller than the 
G2M making it more lightweight and portable. The i2M musicport has a high impedance 
USB audio interface that prevents the degradation of the tone of the musical instruments 
being played which is a problem that can arise from using line inputs. Figure 3-2 shows 
the i2M musicport. 
 



 

 
 

Figure 3-2: Picture of the Sonuus i2M musicport. (Permission for image requested from Sonuus) 

 
Like the G2M V3, the i2M musicport only supports monophonic MIDI conversion. We 
would like to make a device that is closer to the i2M musicport rather than the G2M. The 
device will be more like the i2M musicport because we would like our product to be USB 
powered as well but also having the option to be powered by a 9V DC barrel jack. The 
main difference between our device and the i2M musicport is that we would like our device 
to support polyphonic MIDI conversion. Other differences are that we want our device to 
have both an output for both USB and MIDI cable so that our device can work with as 
many MIDI devices as possible.     
 

3.1.3. Beat Bars: A2M Converter 
 
The A2M converter is a free software developed by Beat Bars that is used for real time 
Audio to MIDI conversion. This software is able to convert guitar real time audio to MIDI 
through a line input or other types of analog musical instruments through a microphone. 
This application works with any instrument that receives MIDI. This software is currently 
in beta so it is still being worked on and improved. Since this software is free it is a good 
option for people who may not be able to afford plug-in products such as the Sonuus 
devices or other costly Audio to MIDI converter softwares. This application is not a plug-
in such as the Sonuus devices or the device that we are creating. One limitation of the 
A2M converter software includes the lack of polyphonic note detection. The device that 
we are developing should improve on this and should be able to recognize polyphony or 
multiple notes played at the same time and translate it to MIDI. Other known limitations of 
the A2M converter include lack of pitch bending feature and that only the first default audio-
in channel of the audio interface is supported. Pitch bending could be a stretch goal for 
our design but is not currently one of the requirements for our device. 
 

3.1.4. IntelliScore Polyphonic Audio to MIDI Converter 
 
The IntelliScore Polyphonic Audio to MIDI converter is a software created by Innovative 
Music Systems Inc. The IntelliScore music recognition software has the ability to take pre 
recorded polyphonic music that is in WAV or MP3 format and convert it to a MIDI file that 
contains the notes played, chord names and overall key. There are many features that 



 

come along with the software such as multiple instrument recognition including drums, 
removal of vocals from music files, and music transcription.The software makes it possible 
for the user to take polyphonic music from an MP3 and use it in MIDI. This software is one 
of the only polyphonic audio to MIDI converters that can be found when looking online. 
The IntelliScore Polyphonic Audio to MIDI converter can be purchased for about 100$. 
Figure 3-3 shows a retail package of the software. 
 

 
 

Figure 3-3: The IntelliScore Audio to MIDI Converter. (Permission for image requested from 
IntelliScorer.) 

 
This software has one main feature that we would also like to implement in our hardware 
device. This feature is the polyphonic audio to MIDI conversion. The main limitation of this 
product is that it is only able to convert pre recorded music audio to MIDI. This makes the 
product useless for live music transcriptions to MIDI. If someone wants to use the 
Intelliscore product to transcribe music that they are playing they would have to record the 
music and convert it to an MP3 or WAV file and then use the product to convert it to MIDI. 
We want our device to be able to convert live music into a MIDI file or stream which would 
cut out the middle of recording the music and converting to MP3 which would take time. 
With live music audio to MIDI conversion our device would be usable during a live 
performance which would be impossible using the IntelliScore product. Another difference 
between this product and our device is that our device will be a physical hardware plug-in 
device, while the IntelliScore product is software that must be downloaded on a computer 
which means it has very limited portability.   
 

3.2. Relevant Technologies 
 

3.2.1. Analog Signal Filtering 
 
Filters for AC analog signals attenuate different frequency ranges found in the signal. In 
the input section of this device, we want to attenuate unnecessary high and low 
frequencies before converting the signal from analog to digital. This will help to clean up 
the signal and make it easier to process digitally. To filter just the high and low frequencies 
we will need some variation of a bandpass filter. There are active and passive filters, active 
having power consumption and typically an amplifier, while passive requires no power and 
can only have a gain of less than 1. For this application we will look into active filters as 
that will provide more versatility with the types of filters we can choose from as well as 



 

keep our signal voltage from dropping. Since we are processing audio, it is most ideal to 
try and maintain the most accurate phase and frequency response outside of the 
attenuated high and low frequencies. To do this we would prefer a sharp cutoff as well as 
a low Q factor to keep the frequency response as flat as possible. Another factor to keep 
in consideration is the power consumption since the filter will be active, although this will 
likely be negligible for a low voltage microphone or instrument input. Figure 3-4 shows 
different active filter types as described by a tutorial on globalspec.com. 
 

 
 

Figure 3-4: List of filter characteristics.[2] 

 
While the Bessel filter has a more linear phase response, it has a very gentle cutoff which 
will not filter out as many frequencies as we would like. On the other hand, Butterworth 
filters have a very steep cutoff and a flat response in the frequencies that aren’t attenuated. 
In our application it seems most ideal to give up a bit of the phase response and in turn 
have a better frequency response. This is because we are analyzing the frequencies using 
a relatively large sample with fourier transform and the phase should not be very important. 
Because of this it would be best to use a variation of a Butterworth bandpass filter. 
Supported MIDI frequencies cut off at ~12,500Hz so our upper cutoff frequency should be 
about 15,000Hz to give a little room for roll off before the cutoff as well as a lower cutoff 
frequency of about 20Hz so that lower bass frequencies of 30-40Hz can be detected. 
 

3.2.2. Analog Amplification & Mixing  
 
We need amplification before our signal goes into the analog to digital converter to get the 
signal within the input specifications of the device. Amplification can also provide buffering 
and filtering applications that will be useful. For our purposes, the most practical way to 
amplify our signals is to use operational amplifiers. Operational amplifiers typically are a 
differential amplifier with feedback which will make it versatile and easy to configure for 
different purposes. Operational amplifiers also can come in IC packages with many 
amplifiers in one chip. This will be ideal as it will allow us to perform many functions with 
one IC in a relatively small surface area on our PCB. 
 
With several Op Amp circuits, we can do filtering, amplification, buffering, and signal 
splitting [4]. Op Amps are easily configured to form as a signal buffer by simply connecting 
the output to the negative terminal of the Op Amp input. This causes the voltage differential 
to be 0 so no amplification occurs. This allows us to isolate the input and output so the 
load doesn’t affect the input and also gives us more ideal impedances to our circuit. This 
should be very useful for splitting and mixing signals. The implementation of this signal 
splitting is called a distribution amplifier. This means it recreates multiples of the same 
signal [3]. Op amps also will be useful for our active analog filters. Even though our filters 



 

will only need to cut out frequencies and not amplify, the Op Amps will allow us to filter 
without hurting the circuit impedance by adding resistors and capacitors for filtering. Most 
importantly, Op Amps can function as our form of amplification of course. In its most simple 
form, an Op amp can be configured to amplify by adding a voltage drop over the feedback 
loop which causes there to be a voltage differential in the inputs. The Op Amp by design 
then amplifies based on that voltage differential. This makes it very easy to control exactly 
how much the Op Amp amplifies the signal as well as what frequencies it amplifies. Using 
this, we may even be able to both amplify and perform our filtering in the same op amp 
circuits, although it may be better to isolate them. 
 
Another use for our Op Amps would be as a comparator. We want to make sure we don’t 
clip the input of our analog to digital converter by going past it’s input voltage range. To 
prevent this we can set a threshold in the analog input that if the input passes, it can shut 
off or reduce the input and then turn on an LED to notify the user that their input is clipping. 
This will be useful because it will protect the ADC as well as notify the user so they can 
adjust the gain on the preamp until it no longer clips. A comparator can be made in a few 
ways with an op amp. One way is to have the differential amplifier set up with an open 
loop, making the gain maximum at all times. This makes it so that when the input passes 
the reference voltage, the output will be the difference between the input and reference 
multiplied all the way up to Vcc+. For us this is 5 volts which will be perfect for powering 
an LED. Then when the input is below the set threshold, the output will multiply the same 
way as before but it will be negative so it will swing down to the low rail which we will be 
using ground for, making the LED not have any power. Simplified, the comparator 
basically acts as a switch allowing us to see if the voltage is above the clipping threshold 
we set, and then turns on an LED as a result.  
 

3.2.3. Analog-to-Digital Conversion and Sampling 
 
Analog to Digital conversion is the process of changing an analog signal into a digital 
signal. For our device we will be converting analog sound signals to digital signals that 
can be converted to MIDI. This process is usually done by a dedicated Analog to Digital 
conversion chip but this process can usually be done by an integrated ADC within a 
microcontroller or digital signal processor. A typical ADC samples an analog signal on 
either the falling or rising edge of a sample clock [5]. During every cycle the ADC measures 
the analog signal and converts it to an approximate digital value. 
 
There are two main factors that contribute to the accuracy of the analog to digital 
conversion which are bit rate and sampling rate. Increasing the bit rate of an ADC 
improves the precision of the approximations in its digital output [5]. The sample rate is 
important due to the Nyquist sampling theorem. The Nyquist sampling theorem states that 
the sampling rate of the ADC must be at least twice as fast as the highest frequency 
component of the waveform being sampled. If the sampling rate is not at least equal to 
twice the highest frequency component, there can be inaccuracies in the sampling due to 
aliases. The minimum sampling rate that we will need to use for the analog to digital 
conversion for our device will depend on the frequency range of possible musical 
instruments that will utilize our device and the maximum musical frequency. The maximum 

note frequency used in MIDI is 12543.854 Hz. We want our device to be able to be used 
with multiple musical instruments including guitar, piano, voice and more. These 
instruments have varying frequency ranges. Table 3-1 shows the frequency ranges of 
some musical instruments and MIDI notes. 



 

 

Musical Instrument Minimum Frequency (Hz) Maximum Frequency (Hz) 

Guitar 82.41  1318.51 

Piano 27.5  4186  

Bass 41 262 

Human voice 87 1047 

Flute 262 1976 

Trumpet 165 988 

Clarinet 165 1568 

MIDI 8.1758 12543.854 

 
Table 3-1: List of frequency ranges for various instruments. 

 
All of the common musical instruments listed in the chart have frequencies that are below 
the maximum frequency of the MIDI note range. This means that the ADC part of our 
device will need to be able to sample at least 25087.708 Hz which is double the max MIDI 
note frequency. If there are musical instruments that play notes at a higher frequency than 
the highest MIDI note frequency it would be irrelevant for the uses of our device since 
MIDI would not have a note available to play in that frequency.  
 

3.2.4. Processors 
 
Processors are electronic circuits that manipulate data from various sources. They are 
typically used to control other circuits or to perform calculations using binary data. There 
are many kinds of processors available, and they can be grouped into categories 
depending on their purpose and functionality. There are microprocessors, which are 
mostly focused on manipulating binary data and controlling external circuits and devices, 
and they are typically high-performance integrated circuits (ICs) with high power 
requirements. There are systems-on-chip (SoCs) and microcontrollers (MCUs), which are 
low-power alternatives to a microprocessor with more functionality and other systems 
included in the chip, like random-access memory (RAM) or a liquid-crystal display driver.  
There are also processors dedicated to specific tasks like graphics processors, digital 
signal processors (DSPs), and ASICs. There is also the field-programmable gate array 
(FPGA), which allows its physical circuitry to be programmed. 
 
What we require for our device is a processor that is capable of performing a fast Fourier 
transform and other digital filtering schemes within a limited amount of time, includes the 
peripherals we need within the chip, is easy to program and test, and consumes low 
power. The processor we choose needs to have internal RAM and writable program 
memory, an ADC, and a USB interface or support for an external one. The processor is 
also responsible for sending the MIDI stream serially through a USB or MIDI port. The 
MIDI standard for the physical interface requires a bit rate of 31.25 kHz, so the 



 

microcontroller must be capable of this bit rate while also performing other tasks. Since 
the MIDI physical and application layers are simple, a MIDI output can easily be 
implemented with just the microcontroller and some basic active and passive components. 
Since USB is a more complex standard, we would need either a dedicated IC that the 
processor supports that interfaces with USB or a processor that is capable of interfacing 
with USB directly. 
 
From our experience with the MSP430 MCU, we know that MCUs can come with ADCs, 
RAM, program memory, and a serial communications system on-chip, so we will consider 
MCUs as a category of processors to select from. We will also consider using a DSP since 
it is specialized for the kind of work the device must do, and some DSPs have the 
peripherals we need included. We will not use a microprocessor since it would use too 
much power, and we will not use an FPGA since they are relatively expensive and require 
much more low-level programming. We will also not consider using an SoC because they 
typically have much more peripherals than we need, consume a medium amount of power, 
and are relatively more expensive than a microcontroller. 
 

3.2.5. Digital Signal Processing 
 
Digital signal processing is the act of performing operations on discretely quantized 
signals. This means that rather than a continuous waveform, the signals are turned into 
discrete voltage levels and processed using discrete logic rather than continuous such as 
calculus. Having a discrete signal allows you to represent it in binary which allows you to 
interpret signals with traditional computer architectures. These operations can be anything 
from interpreting the signal and encoding it into a file or data type or using it as input for 
machines or programs. The signals are often filtered, or modified in some way and then 
output from there. Our applications will process the signal in multiple ways. These include 
filtering, fourier transformation to analyze the signal in the frequency domain, amplitude 
filtering, selective frequency filtering etc.  
 
Fourier transformation is a function that converts a signal to the frequency domain and 
there is a discrete version of it using summation rather than integration [6]. This can be 
implemented in many ways algorithmically but we will focus on a fast fourier transform 
algorithm to efficiently perform the transformation in real time. Filtering can be done 
directly by realizing a transfer function in the Z domain using delays and other functions. 
Signals can also be modified more simply in the frequency domain and then an inverse 
discrete fourier transform can be performed to turn it back into a signal. In our case we 
are converting the signal simply to a midi signal so we can work with the signal in the 
frequency domain and change frequencies and magnitudes as needed in an array data 
structure. 
 
Some important characteristics with digital signals are bit depth and sample rate. Sample 
rate refers to the rate at which discrete samples are taken from the analog signal [7]. The 
faster the sample rate the more accurate the interpreted signal, given a large enough bit 
depth. According to Nyquist sampling theorem, the sample rate has to be at least twice as 
fast as a frequency to be able to mathematically recognize or interpret the digital 
waveform. This means that for us to recognize the highest frequency in MIDI protocol of 
about 12500 Hz we need a sample rate of at least 25kHz. This ensures that we can 
actually recognize any frequencies up to the range MIDI protocol can actually represent. 
Bit depth on the other hand is the amount of voltage level quantizations [7]. For instance 



 

if there was only a bit depth of 1, there could only be 2 volume levels, on and off. A higher 
bit depth means you have a larger dynamic range of the frequencies between soft and 
loud. When listening to audio it is important to have a good bit depth so that all the 
frequencies are represented accurately and reproduce the intended sounds with all of their 
original complexity. Most listening applications try to maintain at least a bit depth of 16 
which gives 216 or 65,536 different volume levels for every frequency. In our case, we only 
need enough volume levels to be able to represent any notes in MIDI and possibly slightly 
more for filtering out low volume noise. MIDI has 128 different magnitude levels ranging 
from 0-127. This means that we should have a bit depth of at least 8 bytes per sample to 
be able to accurately represent the magnitude of notes in MIDI. Figures 3-5 and 3-6 show 
the effects of bit depth and sample rate on the digital representation of an analog signal. 
 

 
 

Figure 3-5: The effect of bit depth on sampling an analog signal. 

 

 
 

Figure 3-6: The effect of increasing sample rate on sampling an analog signal. 
 

3.2.6. Pitch Detection 
 
In music, monophony is a melody that is played by a single instrument or voice that is 
unaccompanied by any other chords or harmonies. An example of this is someone 
humming a tune with no other instrument being played. Polyphony is a melody that uses 
multiple voices or sounds. An example of this would be a choir singing multiple pitches at 
the same time. To achieve pitch detection, the fundamental frequency of the input must 



 

be found. This is what pitch detection algorithms are used for.  Pitch detection algorithms 
can be done by using either time-domain or frequency domain techniques. 
 

Time-Domain Methods 
 
Analyzing the pitch of an input can be done by using time-domain algorithms. This method 
is done by changing the amplitude of the input in the time-domain and looking for repeating 
patterns in the waveforms to figure out its periodicity to find the fundamental frequency. 
The most simple of time-domain methods is the zero crossings approach. This method is 
done by counting the amount of times that a signal crosses the zero level reference. Using 
the zero crossings method is easy and inexpensive but does not have great accuracy [8]. 
Noisy signals cause this method to have inaccurate results which means that it would not 
be good to use for polyphonic signals. Another time-domain method is the method of using 
autocorrelation. This method tries to find similarities between the signal and a shifted 
version of the signal. Autocorrelation is defined by the equation in Figure 3-7.  
 

𝑦(𝑛)  = ∑

𝑀

𝑘=1

𝑢(𝑘)𝑢(𝑘 + 𝑛) 

 
Figure 3-7: Autocorrelation definition. 

 
This technique has a limited pitch range and works best at low to mid frequencies. This 
method can become very expensive due to the use of numerous add-multiply operations. 
Maximum likelihood is another method that can be used in the time-domain for pitch 
detection. Maximum likelihood is done by taking a signal and breaking it up into N 
segments that are of length τ. These segments are then added together. The segments 

add coherently when τ equals τo. Doing this gives the function shown in Figure 3-8. [8] 
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Figure 3-8: Maximum likelihood function. 

 

Maximizing this function gives τo which can be used to find the fundamental frequency for 
pitch detection.[8]. The time domain methods shown can be successful in giving accurate 
pitch detection but for the purposes of our device we will need to use a method that utilizes 
the frequency domain. This is because the methods using the time domain will be too slow 
and expensive for making a device that can detect pitches in a live setting or polyphonic 
signal in general 
 

Frequency Domain Methods 
 
Methods using the frequency domain are more complex than the time domain but in 
general are more accurate and fast. All of the methods that use frequency domain analysis 
to detect pitch use some version of Discrete Fourier Transform (DFT). Discrete Fourier 
Transform is a discrete version of fourier transform of a continuous time signal that uses 



 

finite sum instead of an infinite integral which would be used in a continuous time fourier 
transform. The definition of the Discrete Fourier Transform is shown in Figure 3-9. 
 

 
 

Figure 3-9: Discrete Fourier transform.[9] 

 
This equation requires no calculus in its computation unlike the continuous fourier 
transform that uses an infinite integral. DFT is needed for digital signal processing 
because the spectra that is analyzed in digital signal processing is sampled which makes 
it discrete rather than continuous. For the purposes of pitch detection, the best version of 
the Discrete Fourier Transform to use is the Fast Fourier Transform or FFT. FFT is an 
efficient implementation of the Discrete Fourier Transform that will be used for the pitch 
detection algorithm for the device. 
 

3.2.7. Fast Fourier Transform 
 
A fast Fourier transform (FFT) is an algorithm that calculates the discrete Fourier transform 
(DFT) more quickly and efficiently. As mentioned before, the DFT transforms temporal 
data into frequency data in a discrete manner. This makes it easy to analyze the frequency 
makeup of the signal. The DFT can be calculated just like this, but its run-time would be 
O(n2) because of the summation of N terms and the use of this algorithm to calculate X 
for all k from 0 to N - 1. All known FFT algorithms have a run-time of O(nlogn), which is a 
considerable improvement.[10] The FFT algorithm we plan to implement is called the 
Cooley-Tukey FFT algorithm. It relies on N being a power of two and uses this property to 
reduce the number of complex additions and multiplications.[11] By expanding the sum, 
grouping terms with even or odd multiples of n in the exponent, factoring out like terms 
from each group, and repeating, the DFT will look something like Figure 3-10. 
 

 
 

Figure 3-10: An example binary tree representing X(k) for N = 4. 
 
This is a binary tree with log2 N levels, where, at each node, the node’s left child is added 
to the product of the node’s right child and a coefficient, where s is the current depth within 



 

the tree starting from 0 at the bottom, denoting the stage of the calculation. At the deepest 
level, the nodes are equal to values of x(n), where n corresponds to the directions taken 
to reach that node. A left turn represents a 0, and a right turn represents a 1, starting from 
the root node. The order is interpreted such that the last turn represents the most 
significant bit (ex. left-right-right = 1102 = 6). This is also known as bit-reversed ordering, 
because the new order reflects the previous one, but with the bits of the indices reversed. 
After doing this, the run-time would still be O(n2) because, for any N, the total number of 
complex additions and multiplications has only decreased by 1. The number of operations 
can further be reduced by exploiting the periodic nature of the coefficient.[12] This 
coefficient is shown in Figure 3-11. 
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Figure 3-11: The coefficient used in the FFT. 

 
In the case of N = 4, the coefficient in the second level (s = 1) can take on two unique 
values: 1 when k is even, and -1 when k is odd, for any k. The coefficient in the first level 
(h = 0) can take on four unique values: 1, i, -1, and -i, for any k. Essentially, for each stage, 
each node in the level needs to be calculated only 2s times to get X(k) for all k.[9] Figure 
3-12 shows a graph of the entire FFT for N = 4. 
 

 
 

Figure 3-12: Example FFT graph for N = 4. 
 
This is how the Cooley-Tukey FFT algorithm works. The reordering of the input data 
simplifies the implementation and allows the entire calculation to be split up into blocks of 
“butterfly” operations.[12] Figure 3-13 shows a visual representation of a butterfly 
operation. A butterfly operation takes a left input and a right input. 
 



 

 
 

Figure 3-13: A visual representation of a butterfly operation. 

 
It first multiplies the right input by the coefficient, then puts the sum of both inputs in the 
left output and the difference between both inputs in the right output. Each stage has N / 
2s+1 sets of 2s unique butterfly operations, where uniqueness refers to the coefficient used 
in the operation.[12] It is important to note that the number of stages is equal to log2 N. 
Figure 3-14 shows a graph of the general form for an FFT. 
 

 
 

Figure 3-14: A visual representation of an FFT. 



 

There is another optimization that can double the speed of our FFT implementation. Since 
our discrete signal only has real values, the summation can be split into two summations, 
one for cosine and another for sine.[13] This eliminates all complex math since the real 
and imaginary parts can be calculated separately without needing each other. To 
implement this optimization, each complex coefficient within every butterfly operation is 
replaced by a sine or cosine of the argument of the complex coefficient, depending on 
which summation is being processed. 
 

3.2.8. Enclosure, Shielding, and signal Interference 
 
Signal interference proves to be much more of a problem in analog circuits, especially 
audio, as compared to digital circuits. If noise causes a voltage level in a digital circuit to 
fluctuate, there are only 2 voltage levels so the interference would have to be very large 
to read a 0 as a 1 or vice versa. When processing analog signals and audio, noise can be 
picked up and amplified or distort a signal. In some audio applications like speaker 
systems or studio recording noise can be a large issue. In our case, noise will not be nearly 
as important to avoid since most noise is in high frequency ranges beyond that we will be 
detecting. Although high frequency can be interpreted as a lower frequency harmonic by 
the analog to digital converter if the voltage is high enough. There can also be lower 
frequency noise that could potentially be detected as a note or mess up the detection of 
notes that we need to avoid. 
 
Noise and interference can come from many sources. Some of these include 
Electromagnetic waves like radio waves, digital signal lines like clocks, improper 
grounding which can cause ground loops, and power supply ripple. Each of these can 
typically cause different types or amounts of interference but precautions should be taken 
to minimize all of these sources of noise. Outside interference from EM waves can be 
minimized greatly through EMI-RFI shielding. This simply involves physically encasing the 
device with an electrically conductive material to reflect and absorb EMI. For this to be 
fully effective, the conductive material must be grounded so that it can provide a path for 
the interference to go. Without this it could build a voltage on the conductive material and 
cause interference. We must ensure that the shielding has a very low impedance path to 
ground so no voltage can build up. This can be ensured by avoiding connectors with any 
measurable impedance and sticking with a direct connection to ground with low 
impedance such as a solder joint. The most simple ways to protect the device with 
shielding would be to use a conductive enclosure or to use a non-conductive enclosure 
with a conductive lining or exterior layer. This could be achieved with an aluminum 
enclosure or plastic enclosure lined with copper coated shielding tape for instance. 
 
Other interference that can occur include capacitive and inductive coupling. Capacitive 
coupling is when there is fluctuations in the voltage on a line and it generates an electric 
field that can affect other lines. This can be largely avoided by shielding on the lines that 
are most likely to cause issues. Most of our lines will have low voltages and not cause 
much capacitive coupling but if we have any AC power input, it is best we isolate those 
from signal lines and shield them with conductive material to prevent them from causing 
interference. Inductive coupling occurs when there is a current in a line and the flow of 
charge generates a magnetic field. Fluctuations in the magnetic field from changes in the 
flow of charge can induce currents into other wires or lines. Magnetic fields can go through 
normal conductive shielding so other measures have to be taken to prevent inductive 
coupling. One of the most simple ways to reduce this is to separate any lines most likely 



 

to cause inductive coupling from other lines. This would also most likely be our power lines 
so we should attempt to isolate power from signal lines as much as possible in our design. 
Also, another way to reduce inductive coupling is to reduce loop area which can be done 
by twisting pairs of cables, like our power and ground. This reduces the magnetic field 
generated by the loop and as a result the inductive coupling. 
 
Some noise can come from grounding issues. Ideally ground is a perfect reference voltage 
with no fluctuations but doesn’t always present that way in reality. If you ground from 
different paths to different points, there will always be different impedances and voltage 
levels along those paths, even if all the paths connect to ground. If the grounding scheme 
is made in a way that causes differences in voltages between ground nodes, there can be 
current between nodes on the ground line and noise in the circuit can occur. This is called 
a ground loop. One of the most common ways to attempt to reduce issues like this is a 
signal point grounding scheme. This is also sometimes called a star grounding scheme. 
This means that all paths to the ground go to a single physical point, forcing every line to 
end at nearly the same voltage. The downside of this is that it can require a lot of extra 
wiring or pcb traces. Figure 3-15 shows two different grounding schemes. 
 
Lastly, there can be interference between analog and digital lines. This occurs mostly 
through capacitive coupling as described above. This is a common issue with circuits that 
include both analog and digital signals such as ours. Analog signals are particularly prone 
to capacitive coupling from digital signals. This is because digital signals change voltage 
very fast with a high slope and that causes a stronger electric field to be generated. Our 
device will likely have many different digital signal lines throughout and only a few analog 
in the input section before digital conversion. This means we should attempt to isolate the 
analog signals from the digital signals as much as possible. One of the most common 
culprits of capacitive coupling from a digital signal is the clock signal. This can change 
very rapidly and cause a large amount of noise. One way to shield the analog signals in 
the pcb is to put a ground path or layer between the analog and digital paths for coupled 
or induced noise to travel through. 
 

 
 

Figure 3-15: A diagram showing different grounding schemes. 
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3.2.9. DC-DC Conversion 
 
To power our device, multiple DC-DC converters will need to be used. DC-DC conversion 
is a type of circuit that converts one DC voltage to a different one. Most electronic devices 
require DC-DC conversion because of different voltage requirements throughout their 
designs.There are three types of DC-DC converters which are Buck converters, Boost 
Converters and Boost-Buck Converters. Each of these DC-DC converters are a type of 
switch mode power supply circuit which is a circuit that uses semiconductor devices for 
switching methods to get a required output voltage rather than using a typical linear 
regulator. A Buck Converter or Step-Down Converter converts a DC voltage input to a 
lower DC voltage output. A Boost Converter or Step-up Converter converts a DC voltage 
input to a higher DC voltage output. The last type of DC-DC converter, the Boost-Buck 
converter is a circuit that can switch between being used as a boost or a buck converter. 
For our device we will need both boost and buck converters. A boost-buck converter will 
not be needed because there are no parts of our system that will need a voltage that 
varies. 
 

Boost Converter 
 
There are two boost converters that will be needed for this device. One boost converter 
that will be needed for the device is a 5 Volts to 48 Volts DC-DC converter. This DC-DC 
converter is needed because we want our device to be able to supply 48 Volts of phantom 
power. This is a desirable feature of our device because 48 Volts phantom power is the 
most commonly used power supply used for condenser microphones which would be used 
by users of our device to record voice or other instruments to transmit to MIDI. The 5 Volt 
input would be coming from either the USB which supplies 5 Volts regularly or from the 9 
Volt DC barrel jack input that has been converted to 5 volts by the 9V to 5V DC-DC 
converter.  
 
The boost converters that we use need to step up voltage while also stepping down current 
so that the circuit does not have a power output that is too high. Common configurations 
of boost converter circuits utilize different types of semiconductor devices such as diodes 
and transistors and at least one element is used for energy storage such as a capacitor 
or inductor [17]. Boost converter circuits usually work by switching the circuit on and off 
which changes the duty cycle of the circuit. The configuration of the circuit results in the 
steady state output voltage equation of Vout = 1/(1-D)*Vin, where D is the duty cycle which 
is the ratio of time that the circuit is on and the total time that the circuit is on or off [17]. 
This can be seen in the equation D = ton/(ton+toff) [17]. This means that the output voltage 
can be regulated by controlling the duty cycle. Based on the equation the output voltage 
will always be greater than the input voltage which is what makes it a boost converter. 
 

Buck Converter 

https://www.dataforth.com/protecting-signal-lines-against-electromagnetic-interference.aspx
https://www.dataforth.com/protecting-signal-lines-against-electromagnetic-interference.aspx
https://www.polycase.com/techtalk/electronics-tips/does-your-enclosure-need-emi-rfi-shielding.html
https://www.polycase.com/techtalk/electronics-tips/does-your-enclosure-need-emi-rfi-shielding.html
https://www.industrial-electronics.com/measurement-testing-com/EMI-Grounding.html


 

 
We will need two buck converters for our device. One buck converter that will be needed 
for the device is a 9 volts to 5 volts DC-DC converter. This DC-DC converter is needed 
because we want our device to have the option to be powered by a 9 Volt DC barrel jack. 
This is a desirable accessory for our device because a negative center DC barrel jack is 
a very common power standard used in music technology for performance so we want to 
provide this option of power supply to users of the device that want to use the device on 
stage. Since we also want to give the user the option to power the device through USB, 
we need to convert the 9 Volts of input voltage from the DC barrel jack to 5 volts which is 
the voltage that would be coming from a computer if it was being powered by USB. The 
other buck converter that we will need is a 5 volts to 3.3 volts DC-DC converter. This DC-
DC converter is needed to convert the 5 volts from the USB or 9 to 5 volt converter to 3.3 
volts to power the microcontroller or processor we are using.  

Buck converters use the same parts as boost converters but just configured in a different 

way to produce a different result. Like in the boost converter circuit, the buck converter 

circuit uses a semiconductor device like a BJT transistor or MOSFET as a switch and 

will usually also utilize diodes, capacitors and inductors [17]. The Buck converter does 

not have the same problem of trying to keep the output current low since the output 

voltage should be lower than the input meaning that having a high power output should 

not be a problem. Like the boost converter circuits, buck converters usually work by 

switching the circuit on and off which changes the duty cycle of the circuit. The steady 

state output voltage of the buck converter is given by the equation, Vout = D*Vin, where 

D is the duty cycle [17]. This guarantees that the output voltage is less than the input 

voltage because the duty cycle must always be less than one. 

 

 
 

Power Multiplexing 
 
The device has two ways of supplying the main power needed for the device. These 
methods are either through 5V USB or 9V DC barrel jack which will be converted to 5 Volts 
through DC-DC conversion. There will need to be a logic circuit built to determine whether 
power will be supplied to the device from the 5V USB or 9V barrel jack.This part of the 
device will be needed to supply power to other parts of the device such as the MCU. Also, 
this part of the device will need to be able to supply 5 volts for the 5V to 48V DC-DC 
converter used for phantom power supply. 
 
To make this logic circuit, we will need to make a type of switching circuit that can switch 
between which supply voltage is being used. When the 5V USB is plugged in, the 5V from 
the 9V barrel jack should be disconnected and when the 5V from the 9V barrel jack is 
connected the 5V USB should be disconnected. If both inputs are plugged in at the same 
time only the 5V USB part of the circuit should stay connected. We made this decision 
because using the 5V USB part of the circuit wastes less power than using the 9V barrel 
jack part of the circuit. There are multiple ways to implement this switching circuit. Two 
possible ways to build a switching circuit that will be explored are using discrete parts like 
diodes and MOSFETs or using an integrated circuit. Using discrete parts to build this 
switching circuit can become complicated and will increase the space needed for this part 



 

of the power design. Using an integrated switching circuit will make this process much 
simpler and will reduce the footprint of this part of the design.Using diodes for switching is 
very cheap and simple. An example of this type of circuit is shown in Figure 3-16. The 
drawback of using diodes to get this done is that there will be around a .6V drop in voltage 
from the diode which would lower the output voltage we want from this circuit. A schottky 
diode can be used to reduce this voltage drop, but there would still be a voltage drop of 
around 300mV. We do not want this voltage drop so we will not be using diodes for the 
switching logic in our design. 
 

 
 

Figure 3-16. Simple diode switching circuit 
 
Another option for the switching circuit would be to use MOSFETs. Using discrete 
MOSFETs for the switching circuits fix the dropout voltage problem but brings added 
complexity to the design. This would need a lot of space to design which could potentially 
increase our PCB cost. The best option for our switching circuit would be to use an IC. 
This would be more expensive than using schottky diodes but would reduce the voltage 
drop significantly. The types of ICs that we would need to use for this application are called 
ideal diodes or ORing MOSFET controllers. These ICs are designed to be able to control 
which input voltage is selected for use on a load and provide protection to power sources 
by minimizing reverse currents that go back into the supply. Using an ideal diode or Oring 
MOSFET controller instead of building a circuit with discrete MOSFET parts would 
significantly reduce the space used as well. When using these types of controllers there 
are two ways to control which voltage is chosen, highest voltage or highest priority. Since 
both of the input voltages we are using are the same at 5V we will look to make a circuit 
with one of these ICs that makes the highest priority the USB voltage in the case that both 
inputs are plugged in. 
 

3.2.10. Voltage Protection 
 
It is possible for our device to be connected to a power source with the voltage reversed 
with ground connected to supply voltage and visa versa. This can happen if our negative 
pin barrel jack is connected to a 9V DC supply that is grounded on the shield or if the USB 
port of the device is connected to another USB device that is polarized in a nonstandard 
way. There are two ways in which we can protect our circuit from reverse voltage. The first 
protection technology is to use a single diode on each of our inputs to prevent current from 
flowing the wrong direction. It is a simple solution with the downside of the 0.7V drop 
across the diode. This cost is minimal as the 9V source already must be downconverted 



 

to 5V and the 5V source can simply be amplified back up to 5V after the diode. Another 
downside is that the device will not work under reverse voltage conditions. Our second 
option does allow the device to work under reverse voltage conditions. It is the diode 
bridge rectifier. By putting a rectifier on each of our inputs, we can correct the polarity of 
our voltage source and continue operating. This comes at an increased cost since the 
voltage source sees two diodes in series with the rectifier, whether it is in reverse voltage 
or not, so there is a drop of approximately 1.3V. This, again, is a cost that can be 
compensated for by adjusting our 9V to 5V DC-DC converter to accept 7V to 8V and output 
5V and using a noninverting amplifier to adjust our 5V source back up to 5V after the 
diodes. This option is better, as it allows the device to operate under reverse voltage 
conditions with similar drawbacks to the simple single protection diode. This scheme is 
illustrated in the LTSpice drawing in Figure 3-17. 
 

 
 

Figure 3-17: Schematic of diode bridge rectifiers used on 5V and 9V inputs. 
 
This implementation is not without drawbacks, however, as now the current from each 
power supply must pass through two diodes. This would cause an approximate 1.3V drop, 
which is very efficient. Rather than implementing either of these diode protection methods, 
we should instead opt to use ICs with built-in reverse current protection in our DC-DC 
converters. This way, the loss of power is minimal as it is all contained within the regulator 
circuits that are already handling the change of voltage. This is the implementation we will 
choose. More can be read about this in the documentation for the chips selected in the 
DC-DC conversion section 3.2.9. 
 

In addition to reverse voltage, we must also be concerned with over voltage. It would be 
very easy for the user to accidentally plug in a 12V or 18V power supply into the 9Vin 
barrel jack of the device and it is also possible that the user may plug the USB port in to a 
nonstandard USB power supply that runs on some voltage greater than 5V. Two zener 
diodes can be used to protect against this over voltage condition. By connecting a 9V 
zener diode across the 9V input and ground and a 5V zener diode across the 5V input 
and ground, we can ensure that our device does not receive more voltage than expected. 
Further protection is required on each of the power rails. Decoupling capacitors will be 
placed on the power lines close to the pins of our ICs to minimize inductance of the line  
and to provide cleaner, less noisy power for our fast-switching IC signals.  



 

 

3.3. Strategic Components and Parts Selection 
 
This section is dedicated to explaining our methods for choosing the processor, op-amps, 
DC-DC converters, and USB controller that the device will use. It includes explanations 
for each method and comparison tables. In general, we choose the parts that satisfy the 
bare minimum requirements while also allowing the ability to add additional features and 
improvements. 
 

3.3.1. Processor Selection 
 
The main aspects of the processor that are being considered in selection are: throughput, 
memory, ADC support, USB support, serial peripherals, power consumption, and 
programmability. We will choose from two classes of processor: an MCU and a DSP. We 
could use a microprocessor or system-on-chip as our processor, however, they typically 
are more feature-rich, more complex, and more expensive, and we do not require more 
features than what a simpler device provides. Since the processor is the core element of 
our device, it is important that we choose one that gives us room for additional features. 
Just using the bare minimum will hinder us from that and make it harder to implement 
required features and improve existing ones. 
 
Since our choice of processor heavily depends on the FFT, we first need to figure out its 
parameters: the number of frequency indices, N, and the buffer frequency, f0. The number 
of frequency indices determine how many different frequencies the FFT can distinguish, 
and the buffer frequency determines which frequencies correspond to each frequency 
index. The MIDI note scale is based on the 12-tone equal temperament scale, which is a 
logarithmic scale that assigns note names to specific frequencies. There are 128 possible 
notes in MIDI, but note information alone does not account for pitch effects like vibrato, 
slurring, and pitch bend. The hardware should be capable of detecting at least the 128 
frequencies that correspond to notes, with the option of implementing the detection of pitch 
effects and the sending of MIDI messages with this information. Thus, we will use a 
modified logarithmic scale as shown in Figure 3-18 based on the MIDI scale with extra 
bins in between each note bin and at the beginning and end of the scale. Our scale has 
two adjustable parameters: the starting note, M, and the number of intervals between two 
note bins, K. The MIDI scale under this scale has M at C-1 and K at 1. 
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Figure 3-18: The logarithmic frequency scale for note detection. 

 
Ideally, we want the parameters of the scale to be specific values. To determine K, we 
must determine how many cents there should be in between bins. A cent is one hundredth 
of a semitone. The typical vibrato effect can bend the pitch of a note from around ±34 to 
±123 cents, and the average adult can reliably hear differences between two pitches down 
to a 25-cent difference.[18] A reasonable pitch interval for pitch detection would then be 
12.5 cents, since it is around half of 25 and 34, and it is one eighth of 100. With 128 notes 
and intervals of 12.5 cents, 1024 pitch bins will be in the logarithmic scale. A pitch interval 
of 12.5 cents corresponds to a K of 8. The M parameter depends on the physical limitations 



 

of our note detection system. Since detection of very low frequencies requires a high buffer 
period, the lowest frequency bins will be removed from the scale such that the lowest 
frequency is higher and all other bins above the cutoff remain the same. The M parameter 
is the number of semitones above C-1, so an M of 40 makes the first frequency bin 82.4 
Hz, which is the note E2. 
 
Since the FFT operates on a linear frequency scale, we must find a linear scale such that 
the difference between each linear bin and each logarithmic bin is small enough to not 
mismatch frequencies. The FFT linear scale as shown in Figure 3-19 starts at 0 and 
increases at a constant rate. This rate is determined by the buffer frequency, which also 
happens to be the frequency at n = 1. It also has an adjustable number of bins equal to a 
power of two. It is important to note that the number of bins in the linear scale is half the 
number of frequency indices produced by the FFT. This is due to the Nyquist limit. We 
define a measure called alignment for each logarithmic frequency bin. It is the ratio of the 
lowest frequency over the highest frequency of a pair of frequencies in different scales. 
The alignment that is assigned to each logarithmic bin is the greatest alignment it has 
when comparing it to the linear frequency bins. 
 

𝑓𝑙𝑖𝑛(𝑛) = 𝑛 × 𝑓0 
 

Figure 3-19: The linear frequency scale of an FFT. 

 
The alignment between the linear and logarithmic scales is the lowest alignment for all the 
frequency bins. By varying the number of linear bins and the linear slope, we can find a 
set of linear frequency scales that are well aligned to the logarithmic scale we will use. We 
will vary the number of linear bins in between 210 and 220, K in between 1 and 8, and the 
buffer frequency in between 0 and a semitone above the lowest logarithmic scale 
frequency. The goal is to find a linear scale that has a low bin count, has a high buffer 
frequency, and has an alignment greater than the minimum. This is done for various 
logarithmic frequency scales with different M and K. Figure 3-20 is a flowchart of the 
algorithm used to find these linear scales. 



 

 



 

 



 

 
 

Figure 3-20: A flowchart of the algorithm used to determine the linear scales. 
 
Tables 3-2, 3-3, and 3-4 show the results of the algorithm. The results for K above 2 are 
not shown, as the results are much worse than those for K = 2, whose results are already 
poor. The best option for minimizing latency would be to have the lowest note at E2, the 
number of frequency bins at 2048, and f0 at 7.263 Hz. This corresponds to N being 4096 
and the buffer period being 137 ms. The buffer period is the amount of time the processor 
must spend collecting samples. This buffer period is too high to keep the MIDI stream 
latency below 100 ms, but we can cut it in half by sampling only half the period and padding 
the other half with zeroes or a modified duplicate of the signal. Thus we would only spend 
68.8 ms collecting samples. There are also other methods of reducing this number that 
will be discussed in the section on our FFT implementation. The product of f0 and N 
determine the required sampling rate. In this case, it is 29.75 kHz. Any deviation from this 
sampling rate will require further testing. 
 

Lowest Note (M) Exponent of Minimum Bin 
Count 

f0 (Hz) Alignment 

E2 (40) 11 7.263 0.943875 

C2 (36) 12 5.764 0.943902 

A1 (33) 12 4.847 0.943909 

E1 (28)  12 3.631 0.943928 



 

C1 (24) 13 2.881 0.944153 

A0 (21) 13 2.423 0.943977 

F0 (17) 13 1.923 0.943997 

C0 (12) 14 1.441 0.944182 

C-1 (0) 15 0.720 0.944197 

 
Table 3-2: Results of finding appropriate linear scales for K = 1 and a minimum alignment of 

0.943874 (max. 1 semitone offset). 

 

Lowest Note (M) Exponent of Minimum Bin 
Count 

fslope (Hz) Alignment 

E2 (40) 12 3.427 0.943881 

C2 (36) 13 2.719 0.944149 

A1 (33) 13 2.286 0.944282 

E1 (28)  13 1.713 0.943978 

C1 (24) 14 1.360 0.944179 

A0 (21) 14 1.144 0.943906 

F0 (17) 14 0.908 0.943965 

C0 (12) 15 0.679 0.944890 

C-1 (0) 16 0.340 0.944897 

 
Table 3-3: Results of finding appropriate linear scales for K = 2 and a minimum alignment of 

0.943874 (max. 1 semitone offset). 
 

Lowest Note (M) Exponent of Minimum Bin 
Count 

fslope (Hz) Alignment 



 

E2 (40) 12 3.142 0.971794 

C2 (36) 13 2.494 0.971791 

A1 (33) 13 2.097 0.971895 

E1 (28)  13 1.571 0.971907 

C1 (24) 14 1.247 0.971826 

A0 (21) 14 1.019 0.971608 

F0 (17) 14 0.832 0.972197 

C0 (12) 15 0.605 0.973053 

C-1 (0) 16 0.302 0.974673 

 
Table 3-4: Results of finding appropriate linear scales for K = 2 and a minimum alignment of 

0.971532 (max. ½ semitone offset). 
 
Throughput 
 
The throughput is the most important characteristic of the processor that must be 
considered. There must be a maximum of 100 ms between when a sound is heard and 
when the related MIDI notes are output. If the processor spends 68.8 ms collecting 
samples, then it can only spend up to 31.2 ms processing the data. Thus, the processor 
should be able to perform a fast Fourier transform (FFT) with a set of samples within 25 
ms. This gives enough time to perform the filtering methods, signal sampling, and data 
transfer in a short time. This requires high enough throughput, and can be achieved 
through high clock speeds, large word size, Single Instruction Multiple Data (SIMD) 
operations, and low clocks per instruction. 
 
The maximum time-complexity of the FFT algorithm is O(N log N), where N is the number 
of samples. This means that it takes N log2 N steps to perform the FFT. Each step will 
require a certain amount of specific instructions; by figuring out the instructions required 
for each step, the total number of each instruction can be calculated. Table 3-5 lists the 
instructions used in implementing the FFT and describes their function. We will define one 
step as half of a complex butterfly operation, since the number of those operations is half 
the time-complexity of the algorithm. Each complex butterfly operation consists of 1 
complex multiplication, 1 complex addition, and 1 complex subtraction. However, as 
mentioned before, we can split all complex butterfly operations into two real butterfly 
operations, so one step is also one real butterfly operation. Within each real butterfly 
operation there is 1 real multiplication, 1 real addition, and 1 real subtraction. 



 

 

Instruction Description 

add x,y Adds two signed integers x and y and 
stores the sum in x. 

addi x,N Adds a constant to x and stores the sum in 
x. 

sub x,y Subtracts two signed integers x and y and 
stores the difference in x. 

or x,y ORs each bit of x with the corresponding 
bit of y and stores the result in x. 

srl x,N Shifts x’s bits N times to the right without 
preserving the sign bit. The result is stored 
in x. 

sla x,N Shifts x’s bits N times to the left while 
preserving the sign bit. The result is stored 
in x. 

mul x,y Multiplies two signed integers x and y, 
creating a product with twice the size of 
each factor. The top half is stored in x and 
the bottom half is stored in y. 

mov x,y Copies the value of y into x. 

lw x,A Copies the value at address A into x. 

sw x,A Copies the value of x into address A. 

cmp x,y Compares the values of x and y, setting 
flags. 

jeq A Checks if the last comparison was 
between two equal numbers and jumps to 
A if that is true. 

jmp A Jumps to address A. 

 
Table 3-5: Table of instruction names and descriptions. 

 
Since most microcontrollers do not support floating-point operations, these real operations 
will be implemented using fixed-point math. Real additions and subtractions can be done 
with the same integer instructions. However, a real multiplication requires more 
instructions. A real multiplication can be done with an integer formatted as a fixed-point 
fractional number, with N bits used as the fractional part. This formatting is referred to as 
QM.N format, where one bit is used as the sign bit, M bits are used for the integral part, 



 

and N bits are used for the fractional part.[11] We will also need to consider the instructions 
required to iterate through parts of the entire calculation. As shown by Figure 3-14, there 
are 3 nested iterations: one iteration over stages, one iteration over butterfly operations 
with different coefficients, and another one over different sets of butterfly operations with 
the same coefficient. Thus, our implementation would also require three nested for-loops. 
Since the coefficients in every butterfly operation will not change, there is no need to 
calculate sines and cosines for each one, so they are treated as constants. Also, we 
assume that samples are already written to the buffer in bit-reversed order, so we would 
not need to reorder them. Table 3-6 shows the implementation of real multiplication and 
for-loops using instructions. 
 

Statement Real Multiply For-Loop 

Instruction 
Sequence 

mul x,y 
srl y,Q 
sla x,N-Q 
or x,y 

for: 
cmp x,y 
jeq endfor 
… 
addi x,1 
jmp for 
... 

Instruction 
Count 

4 4 

Notes Assuming x and y are 
each N bits and the 
product is a 2N-bit 
integer, with x holding 
the higher half and y 
holding the lower half. Q 
is the number of bits in 
the fractional part. 

This operation is 
implemented like this in 
most architectures, with 
slight potential differences 
in instructions, order, and 
number. 

 
Table 3-6: A table showing the instructions for each operation. 

 
We expect N/2 log N for-loop statements to be executed (log N for the outer stage loop, 
N/2 for both inner loops), and 2 load word, 2 move, and 2 store word instructions per pair 
of real butterfly operations (N log N). Also, we expect two extra load word instructions for 
each iteration over butterfly operations with different coefficients to load the sine and 
cosine coefficients (2(N - 1)). With knowledge of the instructions required for each 
operation and the number of operations required for one complete FFT, we can calculate 
the number of each instruction required to perform the entire FFT. Table 3-7 shows the 
results of this calculation. This analysis may be inaccurate for processors with SIMD 
instructions, since the processor may be able to achieve the results of multiple instructions 
with just one instruction, making the results of this method an overestimate. However, this 
method is still useful as it gives an upper bound for the execution time in this case. A DSP 
is designed to do these kinds of operations quickly and efficiently, however they come at 
a greater cost. We will discuss the details of the runtime of the FFT for each processor we 
consider. 
 



 

Operation Number of 
Operations 

Instructions 
per Operation 

Instruction Number of 
Instructions 

For-Loop 22528 4 cmp 22528 

jeq 22528 

jmp 22528 

addi 22528 

Real Add 45056 1 add 45056 

Real Subtract 45056 1 sub 45056 

Real Multiply 45056 4 mul 45056 

srl 45056 

sla 45056 

or 45056 

Load Word 53246 1 lw 53246 

Store Word 45056 1 sw 45056 

Move 45056 1 mov 45056 

Total 315392  503806 

 
Table 3-7: Operation and instruction tally for the FFT when N = 4096. 

 
Memory 
 
The ADC sample rate must be a multiple of 29.75 kHz for the FFT to be accurate with the 
lowest sampling period. MIDI uses 7 bits for note velocity (equivalent to volume), so we 
only need to distinguish 128 different magnitudes on the frequency spectrum. We will only 
capture 8 bits per sample, but we will need 16 bits to store the real numbers used in the 
calculation. If N = 4096, and each sample uses 16 bits, we need 8 kB of memory to store 
this buffer. The size of RAM must accommodate at least two of these buffers. A faster or 
more complex implementation of the FFT may require more space. Also, the FFT needs 
a buffer large enough to store the twiddle factors: around 2 * 2 * 4096 / 2 bytes. We need 
a buffer to store the 8-bit magnitudes of each MIDI note and some spare stack space. The 
table below lists how much memory we will need. In total, we would use at least 30 kB of 
memory just for the FFT. To give room for additional or improved features, the total size 



 

of RAM should be at least 64 kB. The constant coefficients (twiddle factors) can be stored 
in the processor’s ROM. Some MCUs are capable of using some of their program storage 
as writable non-volatile RAM. We will take this into account when determining the memory 
specifications of each processor. 
 

Purpose Sample 
buffers 

(kB) 

Twiddle 
Factors 

(kB) 

Note 
Magnitude

s (kB) 

Stack 
space 
(kB) 

Misc. 
(kB) 

Total 
(kB) 

Space Required 16 8 0.125 2 4 30.125 

 
Table 3-8: A table showing the memory requirements of the processor. 

 
Analog-to-Digital Converter 
 
The processor we use must include an ADC that is capable of sampling all signals whose 
frequencies are within the MIDI range without aliasing. The maximum sampling rate is the 
most important aspect of the ADC, since it limits the bandwidth of signals that can be 
converted; it must be at least a multiple of 29.75 kHz. An ADC that can also operate at a 
much lower sampling rate is a bonus, since that allows us to work with low frequencies 
more efficiently. The number of values the ADC can detect is not very important, as the 
MIDI protocol uses 7 bits for note velocity, which relates to volume, and most MCUs and 
DSPs use at least 8 to 10 bits per sample. The ADC should have a high input voltage 
range, though, since this gives a good signal-to-noise ratio. Although we could choose to 
buy a processor and ADC separately, this would likely increase our costs. We would need 
more space on the PCB for both parts, and more complexities would be introduced into 
the design. Also, most MCUs and DSPs have an integrated ADC, so it is best to take 
advantage of that. 
 
USB and MIDI 
 
USB is a complex serial transmission interface that defines multiple protocol layers of the 
TCP/IP model, so it would be best to have either a separate IC to handle the interface or 
integrated capability within the processor itself. If the processor does have USB support, 
it must have USB 2.0 support with at least full-speed transmission capabilities to support 
the USB-MIDI specification. [18] This implies that the clock speed is greater than 12 MHz. 
For our MIDI implementation, the processor only needs general-purpose input/output 
(GPIO) pins. These three serial interfaces are not required if the processor includes a USB 
interface, since they would only be used to communicate with an external USB controller. 
 
Programmability 
 
The processor we choose must be easily programmable. There must be a software 
development application available for the processor that allows us to write C or C++ source 
code and allows us to use the special or required features of the processor. There must 
be libraries available for implementing the math-focused parts of our software on the 
processor. There must be cheap hardware available that can connect to a desktop 
computer and the processor on the PCB to program the processor. If no such hardware 
exists, there must be sufficient documentation to be able to implement a programmer on 



 

an MSP430, and the programming protocol must be simple enough to implement. The 
best case would be for all the necessary development tools to be available at a low price, 
and a processor that would require our own implementation of its programmer will be low 
on the list of best choices. 
 

Selection 
 
When looking at the datasheets for processors, we are interested in parameters that 
correspond to our requirements; these are listed in the processor specification tables for 
eleven different processors. The clock frequency, instruction set architecture (ISA), 
availability of SIMD instructions, and inclusion of an FPU are related to the throughput of 
the processor. The cycles-per-instruction of the processor is also important, but there are 
more details for consideration, so the estimations of execution time will only be done for a 
small set of best candidates. The memory parameters for each processor must be 
reasonably high. While we do need at least 32 kB to implement the raw FFT, we plan on 
optimizing its runtime and memory requirements by at least one fourth, so a processor 
with less RAM is acceptable. Also, we are looking at whether the processor can read 
constant data from its ROM, whether it can write configuration data to its ROM, and 
whether it can use its ROM as RAM (quick reads and writes). If the ROM can be written 
to by the processor itself, then we do not need an external non-volatile memory for storing 
configuration data. Almost all processors in the tables that have ROMs are capable of this. 
If the ROM can reliably be used as RAM then the actual RAM for that processor is the 
sum of the memory sizes of both the ROM and RAM. The ADC parameters are also 
included in the tables of processor specifications. All processors have ADCs that are 
suitable for our application. Most of them also support I2C, SPI, and UART. As for the 
programmability, our main focus in the tables is the availability and cost of a programmer 
for each processor. The estimated maximum power requirements are also included with 
the VIN and estimated maximum current fields. This is important if we want to keep the 
temperature low with passive cooling. All of these parameters were collected from the 
datasheets and user manuals of each processor. 
 
Beginning with the TI MSP430 MCUs, we considered the MSP430G2553 and the 
MSP430FR6989 at first because we had used them before and we had programmers for 
those chips. However, the MSP430G2553 clearly lacks the memory requirements as it 
only has 512 bytes of RAM. For the MSP430FR6989, the memory size is also rather low, 
and each chip is $6.08. Since we are buying at least 3 of every IC, the total cost would be 
$18.24. Considering the fact that there is nothing remarkable about this processor, it is not 
cost-effective. The MSP430FR5992 is an interesting one because it has a DSP 
coprocessor that can perform the FFT without using the CPU’s resources. The 
programmer for this chip is also relatively cheap at $16.99. The only downside is that it 
has 8 kB, which gives us less room for performing the FFT. One of the cheapest MCUs 
that we found is the Atmel ATSAMD20E18. It has a much higher clock speed and more 
overall memory than the MSP430 MCUs. It surpasses the basic requirements, but 
unfortunately, the programmer for this MCU costs $69.00, which is high above our budget 
for the processor. There are three other processors whose programmers are very 
expensive: the TI TMS320C5533 DSP, the Cypress S6E1C32B0A MCU, and the SiLabs 
EFM32LG842F256G-F-QFP64R. These processors would be good choices, since all 
three have a high clock speed and implement a USB 2.0 interface, and the TI DSP has 
SIMD instructions for DSP tasks and plenty of memory. 
 



 

We found another Cypress MCU, the CY9BF564K, but it is marked as obsolete by 
Cypress, and we cannot find enough documentation on how to develop for and program 
it. While it does have a high clock speed, 32 kB of RAM, and USB 2.0 support, we will not 
consider using it for that reason. Also, it uses up to 238 mW of power, which is at least an 
order of magnitude above most of the others. We considered another DSP: the AKM 
AK7755EN. The problem with it is that we cannot find enough information to know how to 
program and develop for it. It is also the second most expensive chip in the list. The last 
two MCUs, the ST STM32G071KB and the Microchip dsPIC33EP128MC202, have high 
clock speeds and an acceptable amount of memory. While the Microchip MCU has only 
16 kB of RAM, it has specialized DSP instructions that can be used to perform the FFT 
much faster. Tables 3-9-A through 3-9-E list the relevant specifications and qualities of 
each processor that we have considered. Out of all these eleven processors, we have 
selected three best candidates for further throughput analysis: the TI MSP430FR6989, the 
ST STM32G071KB, and the Microchip dsPIC33EP128MC202. 
 

Processor TI MSP430G2553 TI MSP430FR6989 TI MSP430FR5992 

Clk. Freq. (MHz) 16 16 16 

VIN (V) 3.3 3.3 3.3 

Max. Current (mA) 4.3 2.68 3.00 

ISA TI MSP430 TI MSP430 TI MSP430X 

SIMD Instructions No No Yes 

FPU No No Unknown 

Min. ADC Bit Depth 10 12 12 

Sample Rate (ksps) 200 200 200 

ADC Range (V) 0 - 3.3 0 - 3.3 0 - 3.3 

Serial Interfaces I2C, SPI, UART I2C, SPI, UART I2C, SPI, UART 

ROM (kB) 16 128 128 

RAM (kB) 0.5 2 8 

Writable ROM Yes Yes Yes 

ROM as RAM Yes Yes Yes 

Debug Interface JTAG JTAG JTAG 

Unit Cost (USD) 1.77 6.08 4.10 

Programmer MSP- MSP- MSP430FR5994 



 

EXP430G2ET 
LaunchPad 

Development Kit 

EXP430FR6989 
LaunchPad 

Development Kit 

LaunchPad 
Development Kit 

Prgm. Cost (USD) 0.00 0.00 16.99 

Other Costs (USD) 0.00 0.00 0.00 

Total Cost (USD) 5.31 18.24 29.29 

Notes Development kit 
already owned. 

Development kit 
already owned. 

Includes hardware 
multiplier. 

Includes DSP 
coprocessor with 

FFT support. 

 
Table 3-9-A: Processor specifications for the MSP430 MCUs being considered. 

 

Processor TI TMS320C5533 AKM AK7755EN 

Clk. Freq. (MHz) 100 18.6, 123 

VIN (V) 1.3, 3.3 1.2 & 3.3 

Max. Current (mA) 16.9 68.5 

ISA ? ? 

SIMD Instructions Yes ? 

FPU Unknown Yes 

Min. ADC Bit Depth 10 or None 24 

Sample Rate (ksps) 62.5/64 96 

ADC Range (V) ? 0 - 3.3 

Serial Interfaces I2C, SPI, UART, USB 2.0 I2C, SPI 

ROM (kB) 128 0 

RAM (kB) 320 63 

Writable ROM ? N/A 

ROM as RAM ? N/A 

Debug Interface JTAG No 

Unit Cost (USD) 3.95 5.64 



 

Programmer TMDX5535EZDSP ? 

Prgm. Cost (USD) 249.00 ? 

Other Costs (USD) 0.00 ? 

Total Cost (USD) 260.85 16.92 

Notes Only available as BGA. 
Powering the chip is more 

complicated than other chips. 

Clock frequency varies with 
sample rate. Includes 

amplifier & analog mixer. 
Evaluation kit only available 

through inquiry. Only 
available as QFN. 

 
Table 3-9-B: The processor specifications for both DSPs being considered. 

 

Processor Cypress CY9BF564K Cypress S6E1C32B0A 

Clk. Freq. (MHz) 160 40.8 

VIN (V) 3.3 or 5 3.3 

Max. Current (mA) 72 5.9 

ISA ARM Cortex-M4F ARM Cortex-M0+ 

SIMD Instructions Yes No 

FPU Yes No 

Min. ADC Bit Depth 12 12 

Sample Rate (ksps) 2000? 500? 

ADC Range (V) 0 - 5 0 - 3.3 

Serial Interfaces I2C,SPI, UART, USB 2.0 I2C, SPI, UART, USB 2.0 

ROM (kB) 288 128 

RAM (kB) 32 16 

Writable ROM Yes Yes 

ROM as RAM Partial No 

Debug Interface SWJTAG SWD 

Unit Cost (USD) 1.42 0.85 



 

Programmer ? FM0-64L-S6E1C3 MCU 
Starter Kit 

Prgm. Cost (USD) ? 49.00 

Other Costs (USD) ? ? 

Total Cost (USD) 4.26 51.55 

Notes Obsolete. Hard to find 
documentation. ROM code 
cannot run during writing. 

Supported unlike previous 
Cypress chip. 

 
Table 3-9-C: The processor specifications for the Cypress MCU’s being considered. 

 

Processor Atmel ATSAMD20E18 SiLabs EFM32LG842F256G-
F 

Clk. Freq. (MHz) 48 48 

VIN (V) 3.3 3.3 

Max. Current (mA) 6.16 10.8 

ISA ARM Cortex-M0+ ARM Cortex-M3 

SIMD Instructions No No 

FPU No No 

Min. ADC Bit Depth 8 12 

Sample Rate (ksps) 320 1000 

ADC Range (V) 0 - 3.3 0 - 3.3? 

Serial Interfaces I2C, SPI, USART I2C, UART, USB 2.0 

ROM (kB) 256 256 

RAM (kB) 32 32 

Writable ROM Yes Yes 

ROM as RAM Partial No 

Debug Interface SWD SWD 

Unit Cost (USD) 1.24 4.21 



 

Programmer SAM D20 Xplained Pro 
Evaluation Kit 

EFM32LG-STK3600 

Prgm. Cost (USD) 69.00 99.00 

Other Costs (USD) ? ? 

Total Cost (USD) 72.72 111.63 

Notes Can only write to ROM in 
chunks. 

 

 
Table 3-9-D: The processor specifications for other MCUs with expensive development kits. 

 

Processor ST STM32G071KB Microchip 
dsPIC33EP128MC202 

Clk. Freq. (MHz) 64 60 

VIN (V) 3.3 3.3 

Max. Current (mA) 7.7 40 

ISA ARM Cortex-M0+ dsPIC33E 

SIMD Instructions No No 

FPU No No 

Min. ADC Bit Depth 12 10 

Sample Rate (ksps) 2000 1100 

ADC Range (V) 0 - 3.3 0 - 3.3 

Serial Interfaces I2C, UART I2C, SPI, UART 

ROM (kB) 128 128 

RAM (kB) 36 16 

Writable ROM ? Yes 

ROM as RAM ? No 

Debug Interface SWD JTAG 

Unit Cost (USD) 3.39 2.56 

Programmer ST-LINK/V2 TEMLP001 LProg 



 

Programmer 

Prgm. Cost (USD) 22.61 20.00 

Other Costs (USD) ? ? 

Total Cost (USD) 32.78 27.68 

Notes  Includes single-cycle multiply, 
multiply-accumulate, and 

multiply-subtract instructions. 

 
Table 3-9-E: The processor specifications for other MCUs with cheaper development kits. 

 
To estimate the throughput of each processor, we must determine the amount of time 
required to execute each kind of instruction. This is done by taking into account the clock 
speed and the number of cycles per instruction. Table 3-10 lists each processor and the 
number of clock cycles spent executing each instruction. This analysis does not 
completely take into account any special instructions or hardware that may decrease the 
time of the FFT as a whole. There are important details that the table does not include that 
affect the throughput. The TI MCU’s version of the addi instruction takes 4 clock cycles to 
execute, but it can be reduced to 1 by using the add instruction with the constant generator 
register as an argument. The MCU does not have a multiply instruction, but instead it has 
a hardware multiplier circuit that can be configured with two sw-like instructions, and it 
takes three more cycles until the multiplication is finished. This MCU can also perform 
multiply-accumulate operations with the multiplier using the same amount of time. The TI 
MCU does not have instructions to shift left or right the bits in a register in one cycle. Each 
right shift by N in the FFT is paired with a left shift by 16 - N, so in total each pair of these 
instructions takes 16 cycles. The ST MCU has a high clock speed but requires wait states 
when accessing the ROM. However, the MCU has an instruction buffer and cache that 
can store instructions, thus keeping the effective clock speed at 64 MHz most of the time. 
The effective clock speed decreases after branching and fetching long instructions, 
however. Although the Microchip MCU has special instructions for DSP that are single-
cycle, such as multiply-accumulate and multiply-subtract, they do not appear to be useful 
for an FFT implementation because the same number of instructions is required with or 
without using those special instructions. 
 

 Individual Instruction Execution Cycles 

Processor cmp jeq jmp add addi sub mul 

MSP430FR5992 1 2 2 1 4 1 5 

STM32G071KB[15] 1 1-2 2 1 1 1 1 

dsPIC33EP128MC202 1 1 or 4 4 1 1 1 1 

 srl sla or lw sw mov  



 

MSP430FR5992 1-16 1-16 1 2 3 1 

STM32G071KB[15] 1 1 1 1 or 2 1 or 2 1 

dsPIC33EP128MC202 1 1 1 1 or 4 1 or 4 1 

 
Table 3-10: Comparison of individual instruction execution cycles for processors 

 
Table 3-11 shows the estimated execution times for a 4096-point FFT based on the 
instructions used and the number of cycles per instruction. The MSP430FR5992 has the 
slowest execution time for the FFT due to its low clock speed and lack of a single-cycle 
bit shift instruction. The STM32G071KB and the dsPIC33EP128MC202 have similar 
execution times for each instruction. However, the ST MCU has a higher clock speed, so 
the execution time of the FFT is much quicker than the Microchip MCU. 
 

Processor Clock Speed 
(MHz) 

Total Cycles 
Spent 

FFT Execution 
Time (ms) 

MSP430FR5992 16 1570812 98.2 

STM32G071KB 64 624636 9.76 

dsPIC33EP128MC202 40 669692 16.7 

 
Table 3-11: Comparison of FFT Execution Times 

 
An important feature that the TI MCU has is a DSP coprocessor that is designed to do an 
FFT quickly and efficiently. TI has published benchmarks of processors with this feature 
on performing an FFT. [16] By extrapolating their data, we estimate that the TI MCU would, 
using this feature, be able to perform a complex FFT with N = 2048 in 2.82 ms, which 
corresponds to a real FFT with N = 4096 in the same time. This relationship between the 
complex and real FFTs is explained in the section on designing the FFT algorithm. 
Although this coprocessor cannot do a complex FFT with N = 2048, we are able to reduce 
the N of our FFTs. This will also be explained later. Since the TI MCU is much faster at 
doing the FFT than the other processors, we will use the TI MSP430FR5992 in our project. 
 
Final choice: TI MSP430FR5992 
 

3.3.2. Operational Amplifiers Selection 
 
We will be utilizing operational amplifiers in multiple parts of our project for buffering, 
amplification, and filtering. There are very many different kinds of Op Amps to choose from 
and a very large amount of specifications that define them. For our purposes, we want to 
choose the best for an audio application since these Op amps will mostly be on the analog 
input section of our device. Some important characteristics to look at when choosing our 
Op amps will be gain, input and output impedance, noise/Total Harmonic distortion, 
input/output voltage ranges, and slew rate. Gain is always one of the most important 



 

factors of an amplifier but in this case most Op Amps will be able to have a range of gain 
well beyond what we need. We should be able to configure nearly any op amp to have a 
small to moderate amount of gain so this characteristic won’t be important to analyze in 
our selection. For voltage amplification, which is what we will be doing, it is ideal to have 
a very high input impedance and a very low output impedance. High input impedance 
minimizes any voltage loss while low output impedance will minimize any loading effects 
and guarantees the load gets most of the signal. Most op amps should have sufficient 
input and output impedance for our applications but it is still an important factor we will be 
comparing. 
 
Probably the most important characteristic for us will be the noise and total harmonic 
distortion levels. These specifications describe how much the signal is distorted from the 
input to the output since all components are non ideal and will change the signal to some 
extent. Since we are working with audio which is much more sensitive to distortion then 
say a binary digital signal, we want to minimize distortion and noise as much as possible. 
The output voltage for any modern op amp will be much higher than any voltage we will 
need to input to our analog to digital converter so this specification will not be the most 
important. The input voltage however may be important as we need to make sure that it 
can take input from most microphones and instruments without distorting or clipping. The 
slew rate of an op amp is the rate of change of the output voltage as caused by a change 
in the input voltage. For instance if the input voltage changes by 2V in 1 ms and the voltage 
gain was 1, the slew rate would dictate how fast the output could mimic the input. If the 
slew rate was too low it may take longer than 1 ms to change 2V in the output and distort 
the wave form. As such, it is best to have a slew rate as high as possible to minimize 
distortion, particularly in the high frequencies. Since we don’t need frequencies beyond 
human hearing and possibly even instrumentation levels, it is possible that the slew rate 
won’t be incredibly important but it is still best to try and minimize the distortion of the 
signal. Lastly, price may be a factor in our selection depending on how expensive or 
affordable an op is. If one op amp is only slightly better specification wise but much more 
expensive, it may not be the best choice for our project. We will be comparing several dual 
op amps commonly used in analog audio and preamp circuits to make our selection. Most 
of these have a similar quad op amp equivalent that we may use instead to save PCB 
space if needed. 
 
When comparing the input impedances, they should be sufficiently high on all of the op 
amps but the TL072 and OPA2134 are exceptional and closer to the ideal impedance of 
infinity. Similarly the output impedances on all of the op amps are sufficient but exceptional 
on the OPA2134 and NE5532. The amount of voltage noise is especially high on the 
TL072 and it also has the most total harmonic distortion. The noise is low on the other 
three op amps but the THD is very low on the OPA2134 and NE5532. The input voltage 
range is relative to the supply voltage for all of the op amps as the supply voltage affects 
the bias and thus the amount of voltage swing possible before clipping. For all of the op 
amps the supply voltage range is above 18 volts which is way more than the peak voltage 
line level that we could see from an instrument or microphone of 1-2 volts. The slew rate 
is the best on OPA2134 and TL072 which will make the high frequency response better. 
Lastly, the price of all the op amps are relatively affordable with the exception of the 
OPA2134. 
 



 

 TI TL072 Burr Brown 
OPA2134 

TI NE5532 TI LM833 

Input 
Impedance 
𝛺 |pF 

1012| ? 1013| 2 3 ⋅ 104−5 | ? 1.75 ⋅ 105 | 12 

Output 
Impedance 
𝛺 |pF 

~100 | ? .01 | ? .3 | ? 37 | ? 

Voltage Noise 
𝑛𝑉

√𝐻𝑧
(1 kHz) 

18 8 5 4.5 

THD 
% 

.003 .00008 ~.0001 .002 

Input Voltage 
Range (V) 

(𝑉𝑐𝑐-) - .3 to      

(𝑉𝑐𝑐+) + 36 

(𝑉𝑐𝑐-) - .7 to      

(𝑉𝑐𝑐 +) + .7 

(𝑉𝑐𝑐-) to (𝑉𝑐𝑐 +) (𝑉𝑐𝑐-) to (𝑉𝑐𝑐 +) 

Slew Rate 

𝑉

𝜇𝑆
 

13 20 9 7 

Price 
$ 
(As listed on 
DigiKey 
Electronics) 

0.41 4.26 .48 1.02 

 
Table 3-12: A list of op-amps and their properties. 

 
Overall the OPA2134 has the best specifications in every category we analyzed but the 
price is slightly prohibitive as we need multiple of these integrated circuits for all of our 
buffering, splitting, and filtering purposes. The low output impedance, price, noise, and 
THD makes the NE5532 seem like the second best option. The slew rate is on the lower 
side but since we are working with lower frequencies in musical notes ( <= 20 kHz)  the 
slew rate is not the most important factor. [23] 
 
Final choice: TI NE5532 
 



 

3.3.3. DC-DC Converters 
 
Our device is powered entirely by external DC power sources, connected by either a barrel 
jack for a 9V source or by USB for 5V. The device uses 5V power for the processor and 
other logic components, 3.3V to power the microcontroller and 48V for the microphone 48 
volt phantom power supply. In order to get the voltage levels we need from both sources, 
we need a 9V to 5V DC-DC converter,a 5V to 48V DC-DC converter, and a 5V to 3.3V 
DC-DC converter 
 

9V to 5V DC-DC converter 
 
To build the 9 to 5 volt DC-DC converter needed for our device, we will be utilizing the TI 
WEBENCH power designer. This application uses TI DC-DC converter chips to create 
customized circuits based on the voltage and current requirements of the user. We looked 
at DC-DC converter circuits for 9 volt input and 5 volt output with a 500 mA max output 
current. When looking at the DC-DC converter chips that were suggested by TI we 
compared them using the following parameters: cost, BOM count, max output current, 
input voltage range, output voltage range, efficiency, footprint and frequency. The cost 
parameter is split into two categories: IC cost and BOM cost. The BOM cost refers to the 
total cost of all of the parts that would be included in the bill of materials to build the circuit. 
The BOM Count is the amount of parts needed to build the circuit which usually includes 
resistors, capacitors, inductors and other materials along with the IC. An increase in the 
BOM count will usually result in an increase of the BOM cost for the circuit. The IC cost is 
just the cost of the IC chip without any other parts of the circuit which would be needed to 
make the DC-DC converter. Some ICs that were implemented in the designs that fulfilled 
our voltage and current requirements include the LMR50410X, TPS621351, TPS563231, 
and LMR14010A. A table with a comparison between the ICs is shown in Table 3-13.  
 

 LMR50410X TPS563231 TPS621351 LMR14010A 

IC Cost  $0.45 $0.22 $0.73 $0.40 

BOM Cost  $0.83 $0.97 $1.50 $0.92 

BOM Count 9 11 8 8 

Max Output 
current 

1 A 3 A 4 A 1 A 

Input Voltage 
Range 

Min:  4 V 
Max: 36V 

Min: 4.5 V 
Max: 17 V 

Min: 3 V 
Max: 17 V 

Min: 4 V 
Max: 40 V 

Output Voltage 
Range  

Min: 1 V 
Max: 28V 

Min: 0.6 V 
Max: 7 V 

Min: 0.8 V 
Max: 12 V 

Min: 0.77 V 
Max: 38.4 V 

Efficiency 93.8% 95.7% 92.4% 92.7% 

Short Circuit 
Protection 

Yes Yes Yes Yes 



 

Footprint  116 mm2 167 mm2 66 mm2 194 mm2 

Frequency 700 kHz 696.12 kHz 2.44 MHz 700 kHz 

 
Table 3-13: Comparison of 9V-to-5V DC-DC converters. 

 
The desirable features that we are looking for in our 9 to 5 volt DC-DC converter include 
low cost, high efficiency and low footprint. All of the ICs have very low BOM costs with the 
TPS621351 being the highest at $1.50. This makes this parameter not that important since 
none of these chips are too expensive. The input voltage ranges and output voltage 
ranges for all of the ICs in the table are satisfactory for the device. The frequency of each 
IC is shown but should not be a factor in choosing which one to use. It should be noted 
that all of the DC-DC converter chips include short circuit protection which is helpful. In 
terms of efficiency, all of the ICs have very high efficiencies with the TPS621351 having 
the lowest efficiency at 92.4% and the TPS563231 being the highest at 95.7%. This means 
that there is only a maximum difference of 3.3% in efficiency between all of the circuits. In 
terms of footprint, all of the footprints for each of the ICs are low with none of the footprints 
being smaller than 194 mm2. One of the ICs had a significantly smaller footprint than the 
others. This IC was the TPS621351 which had a footprint of 66 mm2. All of the footprints 
should be more than small enough for use in our device. The choice for which IC to use 
for the 9 to 5 volt DC-DC converter came between the TPS563231 and the TPS621351. 
The TPS563249 has the highest efficiency but a larger footprint while the TPS621351 has 
the smallest footprint but a lower efficiency than the TPS563231. Since both footprints 
should be small enough for use in our device, we decided to use the TPS563231 since it 
had the best efficiency. The circuit design for the TPS563231 provided by WEBENCH is 
shown in Figure 3-21. 
 
Final Choice: TPS563231 
 

 
 

Figure 3-21. TPS563231 Circuit Design 
 
5V to 3.3V DC-DC converter 
 



 

The processor we’re using requires two different voltage levels: 5V Vcc and 3.3V logic 
level. This means we need a DC-DC converter on the 5V line to step it down to 3.3V to 
deliver to any pins on the processor that need it. Once again, we are using TI WEBENCH 
for this design. After inputting the power requirements of this converter, WEBENCH gave 
me 396 potential circuits. Even after narrowing down the options to only those designs 
with BOM count of 12 components or less, cost of $4.30 or less, and efficiency of 88% or 
higher there are 102 options available. Valuing efficiency the most, we can sort the results 
by highest efficiency and take the top four options to compare. The schematics of each 
DC-DC converter are shown in figures 33A through 33D and figure 33T is a table 
comparing all of the parameters of each circuit. All four options are from TI’s TPS6282x 
line of chips, so they are very similar in performance and cost. Even expanding my search 
to the top eight results when sorting by efficiency, all of the ICs used are from this line. TI 
seems to believe this is the correct chip for the job, so all that’s left is to narrow it down to 
the specific model that is best for our device. Table 3-14 shows a comparison between 
the ICs that were analyzed. 
 

 TPS62823 TPS62822 TPS62825 TPS62826 

IC Cost $0.45 $0.41 $0.41 $0.51 

BOM Cost  $3.20 $3.10 $3.10 $3.20 

BOM Count 8 8 8 8 

Max Output 
current 

3 A 2 A 2 A 3 A 

Input Voltage 
Range 

Min:  2.4 V 
Max: 5.5V 

Min: 2.4 V 
Max: 5.5 V 

Min: 2.4 V 
Max: 5.5 V 

Min: 2.4 V 
Max: 5.5 V 

Output Voltage 
Range  

Min: 0.6 V 
Max: 4 V 

Min: 0.6 V 
Max: 4 V 

Min: 0.6 V 
Max: 4 V 

Min: 0.6 V 
Max: 4 V 

Efficiency 96.4% 95.9% 95.9% 95.9% 

Short Circuit 
Protection 

Yes Yes Yes Yes 

Footprint  113 mm2 113 mm2 111 mm2 111 mm2 

Frequency 2.06 MHz 2.07 MHz 2.07 MHz 2.07 MHz 

 
Table 3-14: Comparison of 5V to 3.3V DC-DC converters. 

 
Being all from the same family of chips, there are few parameters where these ICs vary. 
TPS62823 is more efficient than the other options but only by 0.5%. With this being a 
theoretical, calculated efficiency rather than measured from a test board, we can ignore 
the difference in efficiency. TPS62825 and TPS62826 have a smaller footprint than the 
other two options, but only by 2 square millimeters. With so many similarities, it is difficult 
to find any substantial reason to choose one design over another, so we will simply use 
the cheapest one with the smallest footprint. This gives us the TPS62825 as our IC of 



 

choice. The circuit design for the TPS62825 provided by WEBENCH is shown in Figure 
3-22. 
 
Final Choice: TPS62825 
 

 
 

Figure 3-22: TPS62825 circuit design 
 

5V to 48V DC-DC converter 
 
We will also utilize the TI WEBENCH power designer online tool to design our 5 to 48V 
DC-DC converter. For this boost converter we require a 10 mA output current because 
48V phantom power requires a low current. When looking at the DC-DC converter chips 
that were suggested by TI we compared them using the same parameters we used to 
compare for the buck converter. Some ICs that were implemented in the designs that 
fulfilled our voltage and current requirements include the LM3478, LM3488, TPS61390, 
LM2587-ADJ, and TPS40210. 
 
The LM3478 and LM3488 have approximately all of the same parameters, the only 
difference being slight change in frequencies. For comparison of the possible DC-DC 
converter chip we will use, we left out the LM3488 since there is virtually no difference 
between it and the LM3478 chip. A table with a comparison between the ICs can be seen 
below. The TPS40210 has an unspecified BOM Cost and Footprint because one of the 
parts used for theDC -DC converter circuit has an unavailable cost and footprint. Adding 
up the other quantities from the other parts on the BOM we could estimate these values 
to be at least 3.84$ and 249mm2. A table with a comparison between the ICs is shown in 
Table 3-15.  
 

 LM3478 TPS61390 LM2587-ADJ TPS40210 

IC Cost  $0.73 $1.32 $3.82 $0.66 

BOM Cost  $1.77 $1.68 $5.42 >$3.84 

BOM Count 16 21 9 21 

Max Output 
current 

20 A 0.04 A 5 A 20 A 

Input Voltage Min: 2.97 V  Min: 2.5 V Min: 4 V Min: 4.5 V 



 

Range Max: 40 V Max: 40 V Max: 40 V Max: 25 V 

Output Voltage 
Range  

Min:1.27 V  
Max: 300 V 

Min:20 V 
Max:85 V 

Min: 4 V 
Max: 60 V 

Min: 5 V 
Max: 300 V 

Efficiency 81.6% 70.4% 76.7% 78.6% 

Short Circuit 
Protection 

Yes Yes Yes Yes 

Footprint  470 mm2 97 mm2 674 mm2 >249mm2 

Frequency 541.73 kHz 700 kHz 100 kHz 272.12 kHz 

 
Table 3-15: Comparison of 5V-to-48V DC-DC converters. 

 
For the purposes of powering our device we are looking for low cost, high efficiency and 
low footprint. The input voltage ranges and output voltage ranges for all of the ICs are 
satisfactory for our device. While none of the BOM costs are out of our budget, the circuit 
with the LM2587-ADJ had the greatest cost by far while also having the largest footprint. 
This circuit also had the second lowest efficiency, making it undesirable for us to use. All 
of the boost converters include short circuit protection like the buck converters looked at 
previously. This chip did have the lowest frequency but the frequency of the chip should 
not matter much for the construction of our device. The uncertainty from not knowing the 
exact cost of the TPS40210 made us withdraw it from consideration considering it did not 
lead in any of the categories that we were using for comparison. This left us with the 
LM3488 and the TPS61390 for consideration for our 5 to 48 volt DC-DC converter. The 
advantage of the LM3488 is that it has the highest efficiency but with the drawback of a 
larger footprint. The advantage of the TPS61390 is that it has the smallest footprint of all 
of the circuits. Both of these ICs have similar low costs. The problem with the TPS61390 
is that it has the lowest efficiency in the table. We decided that the greater efficiency of 
the LM3478 outweighed its larger footprint for use in our device and that the low efficiency 
of the TPS61390 was not worth using for the smaller footprint. The circuit design provided 
by WEBENCH is shown in Figure 3-23.  

Final Choice: LM3478 
 



 

 
 

Figure 3-23. LM3478 Circuit Design 

 

3.3.4. USB Controller 
 
We need to use an external USB controller because the processor we selected does not 
have USB support. While most USB controllers exist as an MCU that can communicate 
through USB, there are simpler systems called USB transceivers that allow an MCU to 
transmit data through a USB connection. Since USB transceivers must conform to the 
USB standard, there is not much room for differences on the USB side in different 
transceivers. Some transceivers offer extra functionality to improve the implementation of 
a USB port. For example, some transceivers may include termination resistors within the 
IC, and some others may include a 3.3 V regulator. Since MIDI is a very low data rate 
protocol, the USB connection will not be utilized very often, so the speed at which the 
MCU can control the transceiver is not an issue. If such an issue arises, then an external 
clock source and some shift registers would be required. Table 3-16 shows some simple 
and cheap USB transceivers found on DigiKey. 
 

IC Micrel MIC2550A Fairchild USB1T20 

USB Spec. USB 2.0 USB 2.0 

Speed Rating Low- and Full-speed Low- and Full-speed 

Vin (V) 3.3 3.3 

Features Edge rate control 
Suspend mode 

3.3V regulator from VBUS 

Edge rate control 
Suspend mode 

Cost (USD) 0.51 0.99 

Datasheet http://ww1.microchip.com/downlo https://www.onsemi.com/pub/Col

http://ww1.microchip.com/downloads/en/DeviceDoc/mic2550a.pdf
https://www.onsemi.com/pub/Collateral/USB1T20-D.pdf


 

ads/en/DeviceDoc/mic2550a.pdf lateral/USB1T20-D.pdf 

 
The Micrel MIC2550A and Fairchild USB1T20 are very similar in functionality. However, 
the MIC2550A is capable of sourcing VBUS and outputting a 3.3 V power source. This 
may be useful in reducing the space used for power circuitry. Since the MIC2550A is the 
cheapest and has this special feature, we will use this IC. 
 
Final choice: Micrel MIC2550A 
 

3.3.5. Input and Output Ports 
 
There are six ports on the device for the analog inputs and outputs, MIDI, 9V power, and 
USB. There will be two ¼” jacks and two XLR3 jacks for instrument and microphone 
cables, a five pin jack for MIDI signal, a barrel jack for the 9V power and a USB port for 
USB 2.0 data and 5V power. 
 

Analog Input and Output Ports Selection 
 
In order to make our prototype as easy to build as possible, we are deciding to attach the 
analog input and output ports to the case of the device and cable them to the board. We 
will solder wires to the terminals on the ports and use simple solder pads or through holes 
to solder the wires to the board. With this implementation in mind, we have a few options 
for these jacks. A simple search on Digikey yields the options for ¼”  in Table 3-17. 
 

Part Number 12A 112AX 4833.2230 

Manufacturer Switchcraft Switchcraft Schurter 

Price per 1 part 
(DigiKey) 

$3.18 $2.68 $2.05 

Voltage Rating Mono Mono Mono 

Manufacturer 
Datasheet Link 

http://www.switchcr
aft.com/Drawings/1
2A_CD.pdf 

http://www.switchcr
aft.com/Drawings/1
10x-
m110x_series_cd.p
df 

https://us.schurter.c
om/bundles/sncesc
hurter/epim/_ProdP
ool_/newDS/en/typ
_4833.2230.pdf 

 

Table 3-17: ¼” Jack Comparison 

 
These options are all mono audio jacks that can be mounted to the sides of the device 
and wired in to the board. There are only a couple of things that distinguish them from one 
another. First is the form factor of the jack, with the 12A being small with three metal 
terminals and the 112AX and 4833.2230 having plastic cases with three and four metal 
terminals, respectively. The number of terminals is also a difference as the Schurter is the 
only jack with four terminals, two for tip and two for shield, whereas the Switchcraft jacks 
both have three terminals, two for tip and one for shield. Only two connections are 

http://ww1.microchip.com/downloads/en/DeviceDoc/mic2550a.pdf
https://www.onsemi.com/pub/Collateral/USB1T20-D.pdf
http://www.switchcraft.com/Drawings/12A_CD.pdf
http://www.switchcraft.com/Drawings/12A_CD.pdf
http://www.switchcraft.com/Drawings/12A_CD.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
http://www.switchcraft.com/Drawings/110x-m110x_series_cd.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf
https://us.schurter.com/bundles/snceschurter/epim/_ProdPool_/newDS/en/typ_4833.2230.pdf


 

necessary as these are all mono jacks. The terminals on the Switchcraft options are made 
with a hole in them for ease of soldering wire to them. The terminals on the Schurter jack 
are pins that are designed to be placed directly into through holes on the PCB which may 
make soldering wires to those terminals. Considering all of these factors, the best choice 
is the Switchcraft 112AX. The design of its terminals to facilitate easy wire soldering and 
its lower cost compared to the Switchcraft 12A make it the most attractive option. 
 
Final Choice: Switchcraft 112AX 
 
A decision must also be made as to which XLR3 jacks we will use in our design. These 
will also be panel-mount connectors attached to the sides of the device and we will solder 
wires to connect them to pads or through holes on the PCB. A Digikey search for panel-
mount XLR3 connectors yields a number of results. A selection of these results is shown 
in Table 3-18. 
 

Part Number IO-XLR3-F-BK-JL IO-XLR3-F-EV XLR331F77 

Manufacturer IO Audio 
Technologies 

IO Audio 
Technologies 

ITT Cannon, LLC 

Price per 1 part 
(DigiKey) 

$4.13 $2.19 $17.28 

Voltage Rating 125VAC 50VAC 133VAC 

Current Rating 15A 6A 3A 

Manufacturer 
Datasheet 

https://ioaudiotech.c
om/datasheet/IO-
XLR3-X-BK-JL.pdf 

https://ioaudiotech.c
om/datasheet/IO-
XLR3-X-EV.pdf 

https://ittcannon.co
m/Core/medialibrar
y/ITTCannon/websit
e/Literature/Catalog
s-Brochures/ITT-
Cannon-AudioXL-
Catalog.pdf 

 
Table 3-18: XLR3 Port Selection 

 
Most of the options available on digikey are by IO Audio Technologies, but for the sake of 
completeness the ITT Cannon XLR331F77 will also be considered. The power ratings of 
all three options exceed values that we would require for the audio signals passing through 
them. The two IO Audio Technologies options in table 5.2.1b are from the same line of 
parts, the main difference being the intended implementation of the two parts. The “BK-
JL” jack is almost twice the price of the “F-EV” jack, though it is the part that is intended to 
be used for our implementation of soldering wires to the terminals on the plug and 
connecting them to solder pads or through holes on the PCB. The ITT Cannon jack is also 
designed for this kind of implementation, however its price is over four times that of the 
“BK-JL” IO Audio plug. Being that the IO-XLR3-F-BK-JL is reasonably priced and designed 
with our implementation in mind, it seems like the reasonable choice. 
 
Final Choice: IO-XLR3-F-BK-JL 

https://ioaudiotech.com/datasheet/IO-XLR3-X-BK-JL.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-BK-JL.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-BK-JL.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-EV.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-EV.pdf
https://ioaudiotech.com/datasheet/IO-XLR3-X-EV.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf
https://ittcannon.com/Core/medialibrary/ITTCannon/website/Literature/Catalogs-Brochures/ITT-Cannon-AudioXL-Catalog.pdf


 

 
Digital and Power Jacks Selection 

 
The three remaining ports are for a 9V DC barrel jack, a five pin MIDI port, and a USB port 
for programming the processor and sending MIDI signals. All three of these ports will be 
mounted directly onto the PCB and will be accessible through the back panel of the device. 
 
Our USB port, used to provide 5VDC power to the device and transmit MIDI data, will 
comply with the USB 2.0 standard, but not the USB 3.0 standard. Because USB 3.0 ports 
are visibly different from USB 2.0 ports, we will have to select a USB 2.0 port to use in our 
design. In music technology, both USB A and USB B ports are common with micro A ports 
being used frequently to power devices and transmit data and B ports being used 
frequently in MIDI devices and USB microphones. A quick Digikey search for right angle 
SMT and through hole USB 2.0 connectors yields many results to choose from. These 
results were sorted by price and availability and three viable options have been selected, 
listed in Table 3-19. 
 

Part Number UJ2-BH-1-TH USB-A-S-RA UE27AC5410H 

Manufacturer CUI Devices Adam Tech Amphenol ICC 

Price $0.54 $0.55 $0.58 

Voltage Rating 30VAC 30VAC 30VAC 

Current Rating 1A 1.5A 1A / contact 

Connector Type USB-B USB-A USB-A 

Datasheet https://www.cuidevi
ces.com/product/re
source/uj2-bh-th.pdf 

http://www.adam-
tech.com/download
er.php?p=USB-A-
S-RA.pdf 

https://signin.amph
enolcanada.com/Pr
oductSearch/drawin
gs/AC/UE27ACX4X
0X.pdf 

 
Table 3-19: USB Port Selection 

 
All three of these options are solid as far as voltage and current ratings; adherence to the 
USB standard ensures this. They are also all right angle through-hole connectors, which 
is fine for our form factor requirements. The only meaningful differences are the fact that 
the UJ2-BH-1-TH is a B-type connector with the other two being A-type connectors and 
the small difference in price between the three. Not only is the UJ2-BH-1-TH the cheapest 
part, but it is a USB-B connector, which is the most common type for MIDI and other audio 
devices. For this reason, the UJ2-BH-1-TH is our USB connector of choice. 
 
Final Choice: UJ2-BH-1-TH 
 
The MIDI port is a circular, five-pin, female connector with the holes arranged in a 
semicircle. We found two suitable options from DigiKey and elsewhere. They are both 
board-mount and angled 90 degrees which is ideal. The options are listed in Table 3-20. 

https://www.cuidevices.com/product/resource/uj2-bh-th.pdf
https://www.cuidevices.com/product/resource/uj2-bh-th.pdf
https://www.cuidevices.com/product/resource/uj2-bh-th.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf
https://signin.amphenolcanada.com/ProductSearch/drawings/AC/UE27ACX4X0X.pdf


 

 

Part Number SDS-50J TEDIN-D501 

Manufacturer CUI Devices Tayda Electronics 

Price $2.63 $0.32  

Voltage Rating 100VAC 100VAC 

Current Rating 2A 2A 

Datasheet https://www.cuidevices.co
m/product/resource/sds-
j.pdf 

https://www.taydaelectronic
s.com/datasheets/files/A-
1010.pdf 

 
Table 3-20: MIDI Port Selection 

 
These two parts are more or less identical, functionally. Even their PCB footprints are both 
approximately 15mm by 15mm. Their voltage and current ratings are identical. The only 
major difference is their price, where the CUI Devices SDS-50J is nearly nine times the 
price of the Tayda Electronics TEDIN-D501. Due to the price difference, we have selected 
the TEDIN-D501 to be our MIDI port. 
 
Final Choice: TEDIN-D501 
 
Finally, a barrel jack must be selected for our 9V power supply. For the most part, one 
barrel jack will be as good as any other. It is a simple connector that is hard to get wrong. 
The form factor we are looking for is a right angle connector that will mount directly onto 
the PCB. A quick DigiKey search yields over 200 options, all of which are basically the 
same. We have selected four options from four different suppliers to compare in table 
5.2.2c. All of these options surpass the voltage and current requirements that we have of 
9VDC and 0.5Amax. They all have fairly similar form factors, though the metal shield on 
the outside of the 54-00127 may be visible to the user from the panel on the side of the 
device which is a small concern.  
 

Part Number PJ-037A EJ508A RASM722X 54-00127 

Manufacturer CUI Devices MPD (Memory 
Protection 
Devices) 

Switchcraft Inc. Tensility 
International 
Corp 

Price $0.58 $1.27 $1.77 $0.82 

Voltage Rating 24VDC 12VDC 250VAC 48VDC 

Current Rating 2.5A 5A 5A 6A 

Datasheet https://www.cui
devices.com/pr

https://www.me
moryprotection

http://www.swit
chcraft.com/Sp

http://www.tens
ility.com/pdffile

https://www.cuidevices.com/product/resource/sds-j.pdf
https://www.cuidevices.com/product/resource/sds-j.pdf
https://www.cuidevices.com/product/resource/sds-j.pdf
https://www.taydaelectronics.com/datasheets/files/A-1010.pdf
https://www.taydaelectronics.com/datasheets/files/A-1010.pdf
https://www.taydaelectronics.com/datasheets/files/A-1010.pdf
https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.tensility.com/pdffiles/54-00127.pdf
http://www.tensility.com/pdffiles/54-00127.pdf


 

oduct/resource/
pj-037a.pdf 

devices.com/d
atasheets/EJ50
8A-
datasheet.pdf 

ecification.aspx
?Parent=581 

s/54-00127.pdf 

 
Table 3-21: 9V DC Barrel Jack Selection  

 
One possible user error to account for is that the user may plug in a power supply that is 
the incorrect voltage. If this happens, we want to be able to protect as much of the device 
as we can, including the power jack itself. We are using a 9V power supply in our design 
because it is by far the most common voltage level for power supplies used in music 
technology (i.e. guitar pedals or preamplifiers) but 12V and 18V supplies are also 
somewhat common to the point where power supplies made for music devices such as 
the MXR DC ISO-BRICK or the Voodoo Lab Pedal Power 2 have 18V jacks or toggle 
switches built in. For this reason, the EJ508A is not a suitable choice, as it is not rated to 
withstand voltages greater than 12V and may be damaged if the user accidentally plugs 
in an 18V supply. 
 
The remaining two options are the PJ-037A and RASM722X. They are both good options 
in both form factor and ratings, so price will be the final determining factor. The PJ-037A 
is cheaper at $0.58, roughly a third of the price of the RASM722X. For this reason, the PJ-
037A is our barrel jack of choice. 
 
Final Choice: PJ-037A 
 

3.3.6. Power Multiplexing ICs 
 
Some potential ICs that we could use for power multiplexing are the LM74700, TPS2419, 
LTC4236, and the LTC4411. The LM74700 is the cheapest of all of the ICs but after 
looking into its datasheet we found that this IC is more well suited for circuits with higher 
current and power needs. Both the LM74700 and LTC4236 are TI products and do not 
provide an easy way to simulate the designs without a CAD PSPICE simulator. The other 
two ICs, LTC4236 and LTC4411 are both produced by Linear Technologies which 
provides a free circuit simulator in LTSpice which has all of the LT ICs programmed in 
already. The LTC4236 has the most expensive cost and looks to be the most complicated 
to design for because of its 28 pins. This many pins on the IC seems unnecessary for our 
power switching circuit. After looking at the parameters for each of these ICs, we came to 
the conclusion that using the LTC4411 would be the best for our power select circuit. The 
LTC4411 is on the more expensive side of the ICs but is the smallest in footprint. The 
LTC4411 significantly lowers the voltage drop to 28mV. It has a 2.6 to 5.5V operating 
range which is perfect for our 5V inputs. 
 

 LM74700 TPS2419 LTC4236 LTC4411 

IC cost 0.62$ 1.02$ 10.60$ 4.14$ 

Vin Min: 4.2V 
Max: 40V 

Min: 0.8V 
Max: 16.5V  

Min: 2.9V 
Max: 18V 

Min: 2.6V 
Max: 5.5V 

https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.cuidevices.com/product/resource/pj-037a.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
https://www.memoryprotectiondevices.com/datasheets/EJ508A-datasheet.pdf
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.switchcraft.com/Specification.aspx?Parent=581
http://www.tensility.com/pdffiles/54-00127.pdf


 

Iq (Typ)  0.3 mA 1.2 mA 2.7 10 uA 

Iq (Max) 0.4 mA 7 mA  4 mA N/A 

Footprint  2.9 x 1.6 mm 19 mm2 4.00 x 5.00 mm 1 mm 

Features Integrated 
FET, Analog 
Current 
Monitor, 
Adjustable 
Current Limit, 
ON/OFF 
Control  

ON/OFF 
Control 

Ideal Diode-OR 
and In-Rush 
Current Control 
for Redundant 
Supplies, Low 
Loss 
Replacement 
for Power 
Schottky 
Diodes. 

Low loss 
replacement 
Oring Diodes, 
Small 
regulated 
Forward 
Voltage 
(28mV), 

 
Table 3-22: Comparison of Power Switching ICs 

 

4. Related Standards and Constraints 
 

4.1. Standards 
 
In order to create a product that is compatible with the greatest number of other MIDI 
devices and MIDI-compatible interfaces and computers, we will adhere to the standards 
shown in Figure 4-1. 
 

Standard Name Description 

USB 2.0 Communication with computer, +5V 
power in. 

MIDI 1.0 Defines physical layer and transmission 
protocol for musical data. 

XLR3 Microphone in, signal out. 

Phantom Power Power for condenser microphones. 

TS ¼” Connector Tip + Sleeve connector for instrument 
cable. 

Sleeve+ Tip/Center- 2.1mm Barrel Jack +9V power jack. 

Serial Wire Debug Debugging interface for microcontrollers. 

 
Table 4-1: Table of standards. 

 



 

4.1.1. ¼-Inch Audio Jack Port and Connector  
 
The ¼ jack connector is one of the most common connectors used on musical devices. 
This jack is a quarter inch or 6.3mm and is the connection usually used for electric guitars. 
A common application for our device will be converting analog audio from an electric guitar 
to a MIDI stream so it is necessary for our device to have a ¼ jack input. We will also have 
a ¼” output jack for the bypassed instrument signal, so that the instrument can still be 
connected to an amplifier, PA system, or direct input box. The ¼” jack we will be using will 
follow the tip-sleeve (TS) standard rather than the tip-ring-sleeve (TRS) or tip-ring-ring-
sleeve (TRRS) standards. This is because TS is used for any normal guitar or most other 
electric instruments that produce a mono (not stereo) signal. TRS and TRRS are mainly 
used for headphones or mixers. 
 

4.1.2. XLR3 Audio Port and Connector  
 
The XLR3 connector is a 3 pin connector that is the most common style XLR connector 
used for audio. Most professional microphones use a XLR3 connector. This makes it 
important for us to implement a XLR3 input into our device because the device needs to 
be able to connect to good microphones to be able to pick up voice and other musical 
instruments that are not electric guitars. Since XLR3 is the one of the most common 
connectors used in audio, the device will also have a XLR3 output. 
 

  
 

Figure 4-2: XLR 3 Connector Diagram. (Made by Omegatron under a Creative Commons 
License) 

 

4.1.3. 48-Volt Phantom Power 
 
In order for the Polyphonic Analog to MIDI Converter to support all types of microphones, 
we need to incorporate 48 Volt phantom power into our design. Phantom power is a means 
of powering condenser microphones without the use of an external power supply. This 
lack of dedicated power supply unit is where the “phantom” name comes from. Instead, 
power is carried along the same lines as signal. The implementation of phantom power is 
fairly straightforward. A simple voltage divider using 6.8k Ohm resistors delivers power 
from the 48 V DC supply to the microphone’s preamp via the signal pins of its XLR3 jack. 
When the mic signal + phantom power reaches the mixer input, coupling capacitors are 
used to remove the DC component. The remaining microphone signal is sent to an op-
amp which combines the two differential signals into a single signal. This implementation 
is essentially an industry standard and a schematic can be seen in Figure 4-2. Our greatest 



 

concerns regarding the design of our phantom power circuit are the reliability of the step-
up DC converter to turn 5 volts into 48 volts and the ability to maintain a steady 5mA so 
as to not deliver too much power and damage the microphone. 

 

 
 

Figure 4-2: Phantom Power standard circuit. 

 

4.1.4. Musical Instrument Digital Interface (MIDI) 
 

Physical and Link Layers 
 
MIDI is a very simple interface to implement with just a digital output pin and some passive 
and active components. MIDI uses asynchronous data transmission. MIDI is transmitted 
as bytes at 31.25 kilobits per second. The interface uses a start bit, 8 data bits and a stop 
bit. This means for each serial byte there are a total of 10 bits that are sent for a period of 
320 microseconds. MIDI has this low data transfer rate because MIDI usually only needs 
to do basic instructions of which MIDI notes to play and changing its timing, velocity and 
etc. 
 

Application Layer 
 
There are only 16 messages (based on the status byte) defined in MIDI. They are grouped 
into five categories: Channel Voice, Channel Mode, System Real-Time, System Common, 
and System Exclusive. The last three sets of messages generally do not apply to this 
device because they are used by sequencers and/or devices that have custom messages. 
Every message begins with a status byte and ends with at least zero data bytes, except 



 

for System-Exclusive messages, which append an End-of-Exclusive status byte. The 
values of every status and data byte are 7-bit values. However, the most significant bit of 
each status byte is always 1, while for each data byte it is always 0, giving a total of 8 bits 
and differentiating the purpose of each byte. A status byte contains a 3-bit code specifying 
the type of message and a 4-bit number used to address the channel that the message 
applies to. This does not apply to the System messages, which all have the code Fh, since 

the 4-bit number is used instead to specify the functionality of the message. There are 7 
different Channel messages. They all have a maximum of two data bytes. Table 4-2 shows 
their formats. 
 

Name Code Data 0 Data 1 

Note Off 8h Note number Note velocity 

Note On 9h Note number Note velocity 

Polyphonic Key Pressure Ah Note number Note pressure 

Controller Change Bh Controller ID Controller value 

Program Change Ch Program number N/A 

Channel Key Pressure Dh Channel pressure N/A 

Pitch Bend Eh Pitch change (LSB) Pitch change (MSB) 

 
Table 4-2: All Channel messages 

 
Control messages are sent by the MIDI controller to adjust the various parameters that 
affect the notes being played by the controlled instrument. These control signals are for 
varying the effects that are applied to the note, adjusting volume, and ending notes among 
other things. Control messages consist of a status byte and two data bytes which are the 
type and value (0 to 127) of the control adjustment. Table 4-3 enumerates the IDs of all 
control types and describes their function. [25] 
 

ID Name Function 

00h Bank Select Used for switching between instrument sets, 
expanding the range of the Program 
Change message 

01h Modulation Wheel Expression value used to apply some effect 
to the sound with controller 

02h Breath Controller Expression value used for Breath Controller 
peripheral devices to play MIDI as a wind 
instrument, can also be used by other 
controllers 

04h Foot Controller Expression value used for foot pedal 



 

controller, can send continuous stream of 
signals 

05h Portamento Time Controls speed at which one note slides into 
another 

06h Data Entry Controls NRPN or RPN parameter values 

07h Channel Volume Controls volume 

08h Channel Balance Left and right balance for stereo 

0Ah Channel Pan Left and right balance for mono 

0Bh Expression This is a percentage of volume 

0Ch Effect Control 1 Controls a parameter of some effect 

0Dh Effect Control 2 Controls a parameter of some effect 

10h-13h General-Purpose  

20h-3Fh Controllers’ LSB For controllers 00h-1Fh. Expands their 

precision to 16-bits. 

40h Damper Pedal Sustain toggle 

41h Portamento Switch Portamento toggle 

42h Sostenuto Sostenuto toggle 

43h Soft Pedal Soft/Hard note toggle 

44h Legato footswitch Legato toggle 

45h Hold 2 Used to hold notes 

46h Sound Variation Controls how sound is made 

47h Harmonic Intensity Shaping of voltage controlled filter 

48h Release Time Control release of voltage controlled 
amplifier 

49h Attack Time Controls time it takes for sound to reach 
maximum amplitude 

4Ah Brightness Cutoff frequency of voltage controlled filter 

4Bh-4Fh Other Sound Controllers  

50h-53h General-Purpose  



 

54h Portamento Control Controls amount of portamento 

5Bh External Effects Depth Controls some effect, usually reverb 

5Ch Tremolo Depth Controls tremolo or other effect 

5Dh Chorus Depth Controls chorus or other effect 

5Eh Detune Depth Controls detune or other effect 

5Fh Phaser Depth Controls phaser or other effect 

60h Data Increment Increments data for RPN and NRPN 

61h Data Decrement Decrements data for RPN and NRPN 

62h Nonstandard Parameter 
Number (LSB) 

Sets NRPN parameter 

63h Nonstandard Parameter 
Number (MSB) 

Sets NRPN parameter 

64h Standard Parameter Number 
(LSB) 

Sets RPN parameter 

65h Standard Parameter Number 
(MSB) 

Sets RPN parameter 

78h Panic Mutes all notes regardless of timing or 
sustain 

79h Reset All Resets all controllers to default 

7Ah Keyboard Connect Toggles connection of keyboard or 
workstation 

7Bh All Notes Off Mutes all notes but not those affected by 
sustain 

7Ch Omni-Mode Off Set omni-mode off 

7Dh Omni-Mode On Set omni-mode on 

7Eh Monophonic Mode One note at a time 

7Fh Polyphonic Mode Several notes at once 

 
Table 4-3: Enumeration of controllers 

 

4.1.5. Universal Serial Bus (USB) 
 



 

USB is a standard that is used very commonly in various electronic devices and 
applications. Its main purpose is to standardize the way separate devices connect to and  
communicate with a computer. Since we will be using USB as a MIDI stream output and 
as a configuration input, it is very important to understand the USB standard and the 
protocols it defines. All information about USB in this section is taken directly from the 
document on the USB 2.0 specification, called “Universal Serial Bus Specification”, 
revision 2.0. Only information relevant to this project is included. USB defines protocols 
for every layer of the 5-layer TCP/IP networking stack, from the physical layer to the 
application layer. The topic of USB is split by layer. In summary, USB is a serial bus 
architecture with one bus master and several slaves arranged in a tiered star topology. 
The bus master is the computer, and it initiates all transactions. The bus slaves cannot 
manipulate the bus unless requested to by the computer. A bus slave can behave as a 
hub, which connects the device it serves to all other devices connected to it. Hubs make 
up the structure of the bus system. 
 

Physical Layer 
 

The physical layer describes the physical hardware on which data is sent between two 
different systems. USB defines the physical layer of the connection. It includes 
specifications for ports, connectors, cables, and wires. For USB 2.0, there are two different 
attributes for ports, type and size. There are two different types of ports: A and B. Devices 
with A ports can have devices under them in the hierarchy; this applies to computers and 
USB hubs. Devices with B ports connect to a device above them in the hierarchy; this 
applies to peripheral devices like storage drives and keyboards. This port type system 
ensures that devices are connected in the correct orientation. There are three different 
sizes of ports: normal, mini, and micro. The only purpose of the different sizes is for fitting 
in different size constraints, except for the mini and micro ports, which also support USB 
On-the-Go (OTG) functionality. Figure USB shows what these different USB connectors 
look like. Each port has four to five pins, with four of them being common to all ports. The 
VBUS pin is used to supply 5 volts power to the peripheral device. There is a limit to how 
much power a peripheral device can use: 100 mA for low-power devices, 500 mA for high-
power devices. The amount of power supplied by the computer is negotiated after the 
device is connected; by default it is low. 
 
USB 2.0 defines three speeds for data transmission across the connection: low-speed, 
full-speed, and high-speed. Table USB shows the data transfer rates of the different USB 
speeds. When devices are connected  to a port that supports a different speed, the highest 
common speed among both is used. The speed also affects the operation of other layers 
of the USB specification. While full-speed and high-speed devices may use a separate 
cable to connect their USB ports, a low-speed device must either hardwire its own cable 
and connector within the device or use a custom cable with a custom device-side 
connector that meets the USB specifications for a low-speed cable. This device will be 
using full-speed communication, so this restriction does not apply to the device. 
 

Link Layer 
 
The link layer is responsible for transmitting binary data between two ends of a physical 
link. USB also defines the link layer protocol; it specifies the data rate, voltage ranges, and 
bit encodings on the physical wires. The discussion on the link layer will focus on that for 
full-speed devices, since our device will operate at full speed. Full-speed connections have 



 

a clock cycle speed of 12 MHz, thus one cycle lasts 83.3 ns. Since there is no clock signal 
transmitted through the connection, this is the maximum rate at which the wire states can 
change. The jitter time is the maximum deviation in the length of a multiple of cycles and 
is measured in between state transitions. For full-speed connections, the jitter time 
between consecutive differential data transitions (from J to K or K to J) must be within ± 
2.0 ns and within ± 1.0 ns for paired differential data transitions (JK to JK or KJ to KJ). To 
mark the device as a full-speed device, the D+ line has a pull-up resistor of 1.5 kΩ 
connected to 3.3 V sourced from VBUS. 
 
Each line can have a high-voltage and low-voltage state. The high-voltage state is 3.3 V 
and the low-voltage state is 0 V. Together they have 4 possible states: Differential 1, 
Differential 0, Single-ended 0 (SE0), and Single-ended 1 (SE1). The SE1 state is an invalid 
state. The actual data and bus status states are defined using these wire states. The two 
data states are the J and K state, where the J state represents a logic 1. These states are 
used to send raw binary data across the link. The J state for full-speed devices is a 
Differential 1. The K state for full-speed devices is a Differential 0. The bus status states 
are the Idle, Start-of-Packet (SOP), End-of-Packet (EOP), Reset, Suspend, and Resume 
states. The Idle state is when neither line is being driven, which is equivalent to the J state 
because of the pull-up resistor. The SOP state is a transition from the Idle state to the K 
state, and it is used to mark the start of a packet transfer. The EOP state is when the wires 
are at the SE0 state for about two cycles followed by the J state for one cycle. This state 
is used to mark the end of a packet transfer. The SE0 for the EOP state must last for 
between 160 ns and 175 ns for full-speed connections, but it may be as short as 82 ns. 
The device must wait for between 2 and 6.5 cycles before manipulating the connection 
after the EOP to allow the host’s bus drivers to be turned off. The Reset state is when the 
wires are at the SE0 state for at least 10 ms, but the device can treat the SE0 state as a 
Reset state if it lasts for at least 2.5 µs. This state tells the device that the connection state 
is reset and that it should prepare to receive information about the host and introduce itself 
to it. The Suspend state is an Idle state that lasts for more than 3 ms. This state suspends 
the device, which limits the maximum amount of current draw from VBUS to 500 uA. The 
Resume state is any state that is not an Idle state, which is typically the K state. This 
applies only when the device is suspended, and it is used to bring the device out of 
suspension. This state must last for at least 20 ms and must end with the EOP state. Table 
4-4 lists these states and their properties. 
 

Name Definition 

Line States 

High ~3.3 V 

Low 0 V 

Wire-Pair States 

Differential 
0 

D+: High & D-: Low 

Differential D+: Low & D-: High 



 

1 

SE0 D+: Low & D-: Low 

SE1 D+: High & D-: High 

Data Logic States 

J Differential 1 

K Differential 0 

Bus Status States 

Idle J state & wires not explicitly driven. 

SOP Transition from J to K state. 

EOP SE0 for ~2 cycles, J state for 1 cycle. 

Reset SE0 for at least 2.5 µs. 

Suspend Idle state for more than 3 ms. 

Resume Transition from Suspend state to other 
state. 

 
Table 4-4: Different states of the full-speed USB connection at different levels. 

 
Binary data is transmitted in sets called packets; they are transmitted only in between the 
SOP and EOP states using J and K states. Bits are encoded using the NRZI format, where 
a 1 is represented by no change in state and a 0 is represented by a change in state. A 0 
is added after six consecutive 1s before the following bits are sent. This is to maintain 
synchronization even when several 1s are being transmitted. Thus, when receiving data, 
a 0 after six 1s should be ignored. If seven 1s are received, then the packet is corrupt and 
must be discarded. Each bit in a byte is sent with the least-significant bit first and the most-
significant bit last. Each multi-byte datum is sent in little-endian order. Each packet is 
preceded by an 8-bit SYNC pattern. The SOP state is actually the first bit transmitted of 
the SYNC pattern. For full-speed connections, the pattern is three pairs of K and J states 
with 2 K states at the end (i.e. 10000001). 
 

Network Layer 
 
The network layer is responsible for the proper transmission of data across several 
different network nodes. Essentially, it establishes a system for sending and receiving data 
to and from the correct destination and source through multiple different devices. Since 
our device communicates only with the host computer, the network layer implementation 
is very simple. However, the host has multiple devices connected to it, and it must be able 
to send packets to the correct device. When a device is first connected to a USB port, its 



 

address is the default address of 0. The host assigns the device an address when the host 
discovers it. The device should only respond to requests whose address matches its own. 
In the hierarchy of USB devices, the host is always at the top. Below it are the USB hubs 
and peripheral devices. Each node of the hierarchy can connect to a hub or device below 
it, except for peripheral devices, which can only connect to a higher-level node. This 
hierarchy is limited to seven levels, including the host’s level. Each node has its own 
unique address. 
 

Transport Layer 
 
The transport layer manages data transmission between connected devices. It provides 
the backbone for application-specific data transfer by addressing the correct application 
that data must be transmitted to or from, and organizing that data transfer. To ensure that 
data is transferred to the correct application, USB uses a system of endpoints. Endpoints 
split data that is transferred through USB into logical data streams. Each full-speed USB 
device has a set of input and output endpoints and a maximum of 16 of each. Thus, an 
input transaction and an output transaction on endpoints with the same endpoint number 
are actually transactions on two different endpoints. Each endpoint has an associated 
number and specific properties that describe its functionality. Some properties of an 
endpoint are the required bandwidth, maximum latency, error-handling requirements, 
maximum packet size, and transaction type. By default, there is always a pair of input and 
output endpoints with endpoint number 0. This is called the Default Control Pipe, and it is 
primarily used for USB-defined Control transactions. 
 
To organize data transfer between the host and the device, USB defines sixteen packets 
that may be transmitted between them. They are split into four categories: Token, Data, 
Handshake, and Special. Token packets mark the purpose of a transaction and the device 
being accessed. Data packets carry only binary data. Handshake packets inform the host 
or device of the result of a transaction. Special packets have special purposes. Table X 
shows the packet IDs (PIDs) of each packet and its function. The functions are only 
described in relation to the device. 
 

Category Name PID Function 

Token OUT 1h Tells the device that it must receive a data packet. 

IN 9h Tells the device that it must send a data packet. 

SOF 5h Marks the start of a frame with a new frame number. 

SETUP Dh Used to set an endpoint’s synchronization bits. 

Data DATA0 3h Contains binary data. Even PID version. 

DATA1 Bh Contains binary data. Odd PID version. 



 

DATA2 7h Only used in high-speed connections. 

MDATA Fh Only used in high-speed connections. 

Handshake ACK 2h The received data packet did not have errors. 

NAK Ah The device cannot send or receive data. 

STALL Eh The endpoint is in an error or halted state. 

NYET 6h Only used in high-speed connections. 

Special These packets are only used in high-speed connections or between a 
host and a hub. 

 
Table 4-5: List of packets and their functions. 

 

 
There are four Token packets: OUT, IN, SETUP, and SOF. The OUT, IN, and SETUP packets 

are used to send or receive data to or from the device. All three of these packets have 
four fields: the PID, the device address, the device endpoint, and the CRC-5 of the address 
and endpoint fields. All data transactions begin with one of these packets. The OUT packet 

is always followed by any data packet sent by the host, while the SETUP packet is always 

followed by a DATA0 packet specifically. The IN packet is always followed by either a data, 

a NAK, or a STALL packet sent by the device, or no packet if the IN packet contains errors. 

Table X shows the format of these packets. 
 

Field PID Address Endpoint CRC5 

Size (b) 8 7 4 5 

Notes The CRC5 field contains the 
CRC-5 of the Address and 
Endpoint fields. 

 
Table 4-6: OUT, IN, and SETUP packet format. 

 

 
The Start-of-Frame (SOF) packet marks the start of a time frame. For full-speed devices, 

a frame is defined to be 1 ms. Thus, the host will send an SOF packet every millisecond to 

establish time frames. This will also keep the device from going into the Suspend state. 
No reply is expected for this packet. Table 4-7 shows the format of the SOF packet. The 
Data packets all have three fields: the PID, the data payload, and the CRC-16 of the 
payload. Only the DATA0 and DATA1 packets are used in full-speed communication. The 

size of the payload is not fixed, but the maximum size for full-speed is 1023 bytes. Any of 



 

the Data packets must only be sent by the host after an OUT or SETUP packet, and they 

must only be sent by the device after an IN packet. Data packets may be followed by an 

ACK, NAK, or STALL packet sent by the recipient of the transaction, or no packet at all if the 

Data packet or the OUT packet that preceded it contains errors. However, if the Data 
packet was preceded by a SETUP packet, the device must reply with an ACK packet, 
except when the endpoint is not a control endpoint, in which case it does not reply. Table 
4-8 shows the format of the Data packets used in full-speed connections. 
 

Field PID FrameNumber CRC5 

Size (b) 8 11 5 

Notes The CRC5 field contains the 
CRC-5 of the FrameNumber 
field. 

 
Table 4-7: SOF packet format. 

 

Field PID Payload CRC16 

Size (b) 8 0-1023 16 

Notes The CRC16 field 
contains the CRC-16 of 
the Payload field. 

 
Table 4-8: DATA0 and DATA1 packet format. 

 
There are three Handshake packets used in full-speed connections: ACK, NAK, and 
STALL. All of these packets only have one field: the PID. The ACK packet is used to tell 
the sender of the Data packet that it was received without errors. The NAK packet is used 
to tell the sender of the Data or IN packet that the receiver cannot receive data or that it 
has no data to send, respectively. The NAK packet cannot be used in a transaction that 
began with a SETUP packet. The STALL packet behaves in the same way as the NAK 
packet, except it is used when the device is in an error state. This packet informs the host 
that it must reconfigure the device. Table 4-9 shows the format of all Handshake packets. 
Together, these packets make up three packet sequences: Output, Input, Setup, and SOF. 
Certain USB transactions may use several of these sequences for one transaction. Only 
the host may begin a transaction through USB; the device cannot. 
 

Field PID 

Size (b) 8 

Notes  

 
Table 4-9: ACK, NAK, STALL, and NYET packet format. 

 



 

There are four types of USB transactions: Bulk, Control, Interrupt, and Isochronous. Bulk 
transactions are used to transmit large amounts of data without errors. They do not require 
a maximum latency, and they do not happen on a periodic basis. They consist of only one 
Output or Input packet sequence for each transaction, except in the case of errors. When 
transmission errors are detected (because the device did not send a handshake), the 
transaction is retried. The result of a Bulk transaction is indicated by the handshake that 
is given by the device or host. A Bulk transaction from the host to the device uses the 
Output packet sequence. If the handshake is an ACK, then the transaction was successful 
and the next one may begin. If the handshake is a STALL, then the transaction was not 
successful because the endpoint is halted, and no further transactions should take place. 
If the handshake is a NAK or if there is no handshake, then there was an error in the 
device or in the transmission, respectively, so the host should try the transaction again. A 
Bulk transaction from the device to the host uses the Input packet sequence. If the 
handshake is an ACK, then the transaction was successful. If the handshake is a NAK, 
then the device has no data to send or is not ready to send data. If the handshake is a 
STALL, then the transaction was not successful because the endpoint is halted, and no 
further transactions should take place. If there is no handshake either from the host or 
from the device, then the transaction was not successful and should be retried by the host. 
Bulk transactions can use either of the two Data packets. The use of these packets 
alternates between DATA0 and DATA1 for each Bulk transaction on the same endpoint. 
The order is reset when the endpoint receives a configuration event, so the next Bulk 
transaction after that must use the DATA0 packet. 
 
Control transactions are used to send commands or transmit configuration or status data. 
These transactions are not periodic and make sure that data is transmitted without errors. 
Control transactions have three stages: a setup stage, a data stage, and a status stage. 
There are three kinds of control transactions: Read, Write, and Dataless. A Control Read 
transaction consists of one Setup packet sequence for the setup stage, at least one Output 
packet sequence for the data stage, and one Input packet sequence for the status stage. 
Both DATA0 and DATA1 packets are used in Control transactions, and they alternate just 
like those in Bulk transactions. Thus, the first Data packet sequence uses the DATA1 
packet, the next Data packet sequence uses the DATA0 packet, and so on. However, in 
the status stage, the Input packet sequence always uses the DATA1 packet. A Control 
Write transaction behaves in the exact same way as the Control Read transaction, except 
the Output and Input packet sequences are swapped in all stages of the transaction. A 
Dataless Control transaction has no data stage; it consists of only one Setup packet 
sequence for the setup stage and one Input packet sequence for the status stage. Like 
the other kinds of Control transactions, the Input packet sequence of the status stage 
always uses the DATA1 packet. The device may send a STALL packet during the data or 
status stage of the transaction, in which case it must send STALL packets for all following 
transactions except the beginning of a Control transaction, upon receiving a SETUP 
packet. After receiving the SETUP packet, the device is expected to be released from the 
error state it was in, and should operate normally without sending any STALL packets, 
unless it enters another error state. The result of the Control transaction is given by the 
handshake used by the device in the status stage. For Write and Dataless Control 
transactions, if the transaction is complete, the device sends a DATA1 packet during the 
Input packet sequence. If the transaction failed, the device sends a STALL packet during 
the Input packet sequence. If the device is still busy processing the transaction, it sends 
a NAK packet during the Input packet sequence. For a Read Control transaction, the 
behavior is the same, except the case where the transaction is complete. In this case, the 



 

device sends an ACK packet during the Output packet sequence. Since a Control 
transaction can use multiple Input or Output packet sequences in the data stage, there 
needs to be a method of determining which sequence is the last one. The last sequence 
is the one where the size of the payload of the Data packet is not the maximum size. If the 
last sequence does have this property, then another sequence must be sent with the size 
of the payload being 0. 
 
Interrupt transactions are used to send or receive data that must be handled immediately. 
They are not periodic, and they behave exactly like bulk transactions. Isochronous 
transactions are used to send or receive data quickly and in a periodic fashion. They 
behave like bulk transactions, except no handshakes are transmitted. Neither the Interrupt 
nor the Isochronous transactions are used in the USB-MIDI specification. 
 

Application Layer (Standard) 
 
The application layer implements required protocols for a certain function. USB also 
defines an extensible protocol for the application layer, and it also defines protocols for 
common applications. It defines a set of standard Device Requests for reading and writing 
device characteristics and settings. Standard Device Requests are sent through the 
Default Control Pipe, which always exists. They are transported using Control 
transactions. After the Reset state is released on the bus, the device is in the Default state. 
It cannot do anything and must first be configured by the host before it becomes useful. 
The host then makes a Device Request asking for the device descriptor and uses this 
information to determine the maximum size of the Data packet payload that the device 
supports. Then, the host assigns the device an address using the SET_ADDRESS Device 

Request. Then the host makes several other Device Requests to read other descriptors 
from the device. Finally, it sends a SET_CONFIGURATION Device Request to tell the device 

that it is configured and is now functional. If the device does not support a certain Device 
Request, then it must signal an error through the methods described earlier for Control 
transactions. 
 
Device Requests must be processed within a short amount of time. For standard Device 
Requests the device must complete the status stage of the transaction within 50 ms of the 
last packet sequence. The device must send Input packet sequences within 500 ms of the 
last packet sequence for device-to-host Device Requests, and the device must be able to 
process all packets received within the time it claims to be able to process them for host-
to-device requests. Table X shows the format of a standard Device Request. A standard 
Device Request has five fields: bmRequestType, bRequest, wValue, wIndex, and 

wLength. The bmRequestType field lists the characteristics of the request: the data 

transfer direction, the specification level of the request, and the target of the request. The 
direction establishes whether it involves a Read or Write Control transaction. The 
specification level marks who defines this request; it could be defined as a standard 
request, a device class-specific request, or a custom request. The target can be the device 
itself, one of its logical interfaces, one of its endpoints, or something else. The bRequest 

field contains the ID of the request. This determines the function of the request. The 
wValue and wIndex fields are generic containers for data that may be used for certain 

requests. Finally, the wLength field determines how many bytes of data must be 

transmitted by the host or device in the data stage of the Control transaction.  
 



 

Offset Field Size (B) Function 

00h bmRequestType 1 Bit 7: Data transfer direction 

● 0: Host->Device 
● 1: Device->Host 

Bits 5-6: Request type 

● 0: Standard 

● 1: Class 

● 2: Vendor 

● 3: Reserved 

Bits 4-0: Recipient 

● 0: Device 

● 1: Interface 

● 2: Endpoint 

● 3: Other 

● 4-31: Reserved 

01h bRequest 1 ID of the request. 

02h wValue 2 Request value parameter. 

04h wIndex 2 Request index parameter. 

06h wLength 2 Number of bytes to transfer in the data 
stage. 

 
Table 4-10: Format for standard Device Requests. 

 
USB defines 11 standard Device Requests. Most of them must be supported by all 
devices. If the host sends a Request that the device does not support, then it must return 
a STALL packet as described previously for Control transactions. Table X shows the 
request IDs for the standard USB Device Requests. The GET_STATUS request is used to 

get the status of a device, interface, or endpoint. This request is specifically a device-to-
host request, and it can target the device, an interface, or an endpoint. The wValue field 

is always 0. If the target is the device, the wIndex field must be 0. Otherwise, the wIndex 

field is the interface or endpoint number associated with the interface or endpoint being 
targeted. This request requires that two bytes of data be sent from the device to the host. 
The format of this data depends on the target. If the target is the device, then the data is 
a bit field where bit 0 is set to 1 if the device is self-powered and bit 1 is set to 1 if the 
device is enabled to be able to wake up the host while suspended. All other bits are set to 
0. If the target is an interface, then all bits in the data payload are 0. If the target is an 
endpoint, then the data is a bit field where bit 0 is set to 1 if the endpoint is halted. When 
the endpoint is halted, no data may be transferred through it, and all transactions will result 
in a STALL packet being sent by the device. The host can halt and unhalt the endpoint. 
 

Request Name ID Function 

GET_STATUS 0h Gets the status of the recipient. 



 

CLEAR_FEATURE 1h Disables a specific feature. 

SET_FEATURE 3h Enables a specific feature. 

SET_ADDRESS 5h Sets the address of the device. 

GET_DESCRIPTOR 6h Gets a specific descriptor if available. 

SET_DESCRIPTOR 7h Optional. Sets the values of a new or existing 
descriptor. 

GET_CONFIGURATIO
N 

8h Gets the configuration value of the device. 

SET_CONFIGURATIO
N 

9h Sets the configuration value of the device. 

GET_INTERFACE Ah Gets the current setting of a specific interface. 

SET_INTERFACE Bh Sets an alternative setting for a specific interface. 

SYNCH_FRAME Ch Sets and gets the frame number of an endpoint. 

 
Table 4-11: Enumeration of IDs for standard Device Requests. 

 

 
The CLEAR_FEATURE request disables a specific feature of the device, an interface, or 
an endpoint. This request is specifically a host-to-device request, and it can target the 
device, an interface, or an endpoint. The wValue field contains the feature ID that the host 
wants to disable. The wIndex field is 0 if the target is the device. Otherwise, this field 
contains the interface or endpoint number associated with the interface or endpoint being 
targeted. There is no data payload that is transferred for this request. The feature ID can 
be one of several values. Table 4-12 enumerates the available standard features. The 
ENDPOINT_HALT feature indicates whether an endpoint is halted. Disabling this feature 
unhalts the endpoint. The DEVICE_REMOTE_WAKEUP feature indicates whether the 
device is allowed to wake-up the host while the connection is in the Suspend state. 
Disabling this feature tells the device that it must not wake-up the host. The TEST_MODE 
feature indicates whether the device is in testing mode. This feature is not valid for full-
speed devices. The SET_FEATURE request does the opposite of the CLEAR_FEATURE 
request and has almost the same format, except that the MSB of the wIndex field can 
contain a test mode ID. This field will only contain a test mode ID when the wValue field 
is set to the TEST_MODE feature ID. 
 

Feature ID Target 

ENDPOINT_HALT 0 Endpoin
t 

DEVICE_REMOTE_WAKEU
P 

1 Device 



 

TEST_MODE 2 Device 

 
 Table 4-12: Enumeration of standard features. 

 
The SET_ADDRESS request sets the address of the device. This request is a host-to-
device request that targets the device. The wValue field contains the new device address. 
The wIndex field is always set to 0. There is no data payload that is transferred for this 
request. By default, the address of a device is 0. The new address goes into effect after 
the end of the status stage of this request. 
 
The GET_DESCRIPTOR request gets a descriptor from the device. This request is a 
device-to-host request, and it can only target the device. The wValue field contains the 
descriptor type ID in the MSB and the descriptor index in the LSB. The descriptor index is 
only valid for Configuration and String descriptors since there can be several of them. 
Otherwise, the descriptor index is set to 0. The wIndex field contains the language ID of 
the string for String descriptors, otherwise it is set to 0. The data that is sent by the device 
is the entire descriptor data structure that the host is requesting. Descriptors are data 
structures that describe either a device, an interface, a string, or something else. These 
descriptors tell the host what protocols it must enable to communicate with the device and 
use its functionality. Table 4-13 enumerates the relevant descriptors that are valid for this 
device. The SET_DESCRIPTOR request is optional and sets the contents of a descriptor 
on the device. This request is a host-to-device request, and it can only target the device. 
This request is not used in the USB-MIDI specification. 
 

Name ID 

Device 01h 

Configuratio
n 

02h 

String 03h 

Interface 04h 

Endpoint 05h 

 
Table 4-13: Enumeration of descriptor IDs. 

 
The GET_CONFIGURATION request gets the current configuration ID of the device. This 
request is a device-to-host request, and it can only target the device. The wValue and 
wIndex fields are unused, so they are set to 0. The data that must be transferred is a single 
byte with the device’s current configuration ID. This request is used to determine the 
device’s behavior. A configuration has interfaces and endpoints associated with it, and 
different configurations may have different interfaces and endpoints. The 
SET_CONFIGURATION request sets the current configuration ID of the device. It is a 
host-to-device request that only targets the device. The wValue field contains the new 
configuration ID, and the wIndex field contains only 0. There is no other data transmitted 



 

with this request. This request is used to set the device’s behavior to a specific 
configuration described by the associated Configuration descriptor. 
 
The GET_INTERFACE request gets the current alternative setting of the specified 
interface. This is a device-to-host request that only targets an interface. The wValue field 
is 0, and the wIndex field contains the interface number associated with the targeted 
interface. The data that must be transferred is a single byte with the current alternative 
setting of the interface. A single interface may have several different Interface descriptors 
associated with it; these are called alternative settings. Alternative settings are 
distinguished by an ID, and several can be associated to one interface. The 
SET_INTERFACE request sets the current alternative setting of the specified interface. 
This is a host-to-device request that only targets an interface. The wValue field contains 
the alternative setting ID of the requested alternative setting, and the wIndex field contains 
the interface number associated with the targeted interface. There is no other data that is 
transferred with this request. Setting the alternative setting of an interface changes its 
properties described by an Interface descriptor to those of another related Interface 
descriptor. These Interface descriptors are associated with one interface, but are 
distinguished by the alternative setting ID. 
 
The SYNCH_FRAME request sets the frame number for an endpoint and gets the frame 
number for that endpoint. This is a device-to-host request that targets only an endpoint. 
The wValue field is 0, and the wIndex field contains the endpoint number associated with 
the targeted endpoint. The data that is transferred from the device to the host is a 16-bit 
number containing the current frame number of the endpoint. 
 
The descriptors that are transferred in the GET_DESCRIPTOR request each have a 
specified format and purpose. The Device descriptor contains information about the device 
including the level of USB support, the device’s functionality, the manufacturer of the 
device, and the total number of configurations that it supports. Table 4-14 shows the 
format of the Device descriptor. The bDeviceClass, bDeviceSubClass, and 
bDeviceProtocol fields describe the functionality of the device. These are filled with values 
defined by USB for specific functions. For USB-MIDI, these fields are all set to 0. The 
idVendor field contains an ID associated with a manufacturer. This ID is assigned by the 
USB Implementers’ Forum (USB-IF). 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (12h) 

01h bDescriptorType 1 The descriptor type ID. (1) 

02h bcdUSB 2 The supported version of USB. (0200h) 

04h bDeviceClass 1 The device class code. 

05h bDeviceSubClass 1 The device subclass code. 

06h bDeviceProtocol 1 The device protocol code. 

07h bMaxPacketSize0 1 Maximum size in bytes of a packet for the 



 

Default Control Pipe. 

08h idVendor 2 Device vendor ID. 

0Ah idProduct 2 Device product ID. 

0Ch bcdDevice 2 Device release number in BCD format. 

0Eh iManufacturer 1 Index of the String descriptor with the 
name of the manufacturer. 

0Fh iProduct 1 Index of the String descriptor with the 
name of the product. 

10h iSerialNumber 1 Index of the String descriptor with the 
device’s serial number. 

11h bNumConfiguration
s 

1 Number of possible configurations. 

 
Table 4-14: Format for a standard Device descriptor. 

 
The Configuration descriptor contains information about the properties of a specific 
configuration of the device. Table 4-15 shows the format of the Configuration descriptor.  
The wTotalLength field contains the total amount of data in bytes that is sent along with 
this Configuration descriptor, including the descriptor itself. When a Configuration 
descriptor is transferred, other descriptors are included in the transfer. A Configuration 
descriptor is always followed by at least one Interface descriptor if the device exposes any 
interface. However, the value of the bNumInterfaces field only reflects the actual number 
of interfaces, and not the number of Interface descriptors that follow the Configuration 
descriptor. This is because several Interface descriptors may be associated with one 
interface, with the number of Interface descriptors reflecting the number of alternative 
settings of that interface. The bConfigurationValue field must be greater than 1 since the 
value 0 is used for unconfigured devices. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (09h) 

01h bDescriptorType 1 The descriptor type ID. (2) 

02h wTotalLength 2 Total size of data that is given by this 
configuration, including the sizes of itself 
and all interface, endpoint, class-specific, 
and custom descriptors. 

04h bNumInterfaces 1 Number of interfaces for this 
configuration. 

05h bConfigurationValu 1 ID for this configuration. Used for setting 



 

e the configuration. 

06h iConfiguration 1 Index of the String descriptor with the 
name of the configuration. 

07h bmAttributes 1 A bitmap with configuration 
characteristics. 
Bit 7: (must be set to 1) 

Bit 6: Power source 

● 0: Bus-powered 
● 1: Self-powered 

Bit 5: Remote wake-up support 

● 0: Not supported 

● 1: Supported 

Bits 4-0: (must be set to 0) 

08h bMaxPower 1 The maximum amount of power in units 
of 2 mA used by the device in this 
configuration. 

 
Table 4-15: Format for a standard Configuration descriptor. 

 
There are two formats for the String descriptor; the String descriptor at index 0 has the 
String Descriptor Zero format, while all other String descriptors have the same format. 
String Descriptor Zero contains information about the languages that the device supports. 
This allows the device to supply different strings with the same index for different 
languages. Table X shows the format of String Descriptor Zero. The language IDs are 
defined by the USB-IF. If the device does not have any string descriptors, then no array 
of language IDs must be included in the descriptor. The normal String descriptor contains 
only an array of Unicode characters. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (3) 

02h wLANGID[N] 2*N An array of supported language IDs. 

 
Table 4-16: Format for String Descriptor Zero. 

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (3) 

02h bString[N] N Unicode encoded string. 



 

 
Table 4-17: Format for a standard String descriptor. 

 
The Interface descriptor contains information about an alternative setting of an interface. 
If the interface only has one alternative setting, then the interface only has one Interface 
descriptor associated with it. Table 4-18 shows the format of the Interface descriptor. 
Interface descriptors cannot be specifically requested, they must only be transferred 
during a request for a Configuration descriptor and sent after it. The function of the 
bInterfaceClass, bInterfaceSubClass, and bInterfaceProtocol fields are similar to those of 
the Device descriptor, but these fields may contain different ranges of values depending 
on the functionality of the device and the specification of such codes by the USB-IF. For 
a USB-MIDI device, the bInterfaceClass field is set to 01h for the Audio Device Class. The 
values of the other fields depend on the interface. The Interface descriptor is always 
directly followed by the Endpoint descriptors associated with it. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (09h) 

01h bDescriptorType 1 The descriptor type ID. (4) 

02h bInterfaceNumber 1 The number associated with this 
interface within the scope of the 
configuration. 

03h bAlternateSetting 1 ID of this alternative setting for the 
interface associated with 
bInterfaceNumber. 

04h bNumEndpoints 1 Number of endpoints used by this 
interface excluding the Default Control 
Pipe. 

05h bInterfaceClass 1 Interface class code. 

06h bInterfaceSubClass 1 Interface subclass code. 

07h bInterfaceProtocol 1 Interface protocol code. 

08h iInterface 1 Index of the String descriptor with the 
name of this interface. 

 
Table 4-18: Format for a standard Interface descriptor. 

 
The Endpoint descriptor contains information about an endpoint that is used by an 
interface. Table 4-19 shows the format of the Endpoint descriptor. Endpoint descriptors 
cannot be specifically requested, they must only be transferred during a request for a 
Configuration descriptor and sent directly following the Interface descriptor with which it is 
associated. The Endpoint descriptor cannot be used to describe the Default Control Pipe, 
and endpoints cannot overlap through different interfaces unless the endpoint is used by 



 

different alternative settings of the same interface. However, they can overlap across 
different configurations. The bInterval field is not valid for endpoints that use Bulk and 
Control transactions, so it must be set to 0. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (09h) 

01h bDescriptorType 1 The descriptor type ID. (5) 

02h bEndpointAddress 1 The address of this endpoint. 
Bit 7: Direction 

● 0: Host-to-device 

● 1: Device-to-host 

Bits 6-4: (must be set to 0) 

Bits 3-0: Endpoint number 

03h bmAttributes 1 A bitmap of the endpoint’s attributes. 
Bits 7-6: (must be set to 0) 

Bits 5-4: Isochronous usage 

Bits 3-2: Isochronous synchronization 

Bits 1-0: Transaction type 

● 00: Control 

● 01: Isochronous 

● 10: Bulk 

● 11: Interrupt 

04h wMaxPacketSize 2 Maximum packet size that this endpoint 
supports. 
Bits 15-13: (must be set to 0) 

Bits 12-11: High-speed only 

Bits 10-0: Maximum packet size in bytes 

06h bInterval 1 Interval in frames that the host should 
attempt transactions. 

 
Table 4-19: Format for a standard Endpoint descriptor. 

 
Most of these requests are valid anytime after the device has a unique address assigned 
to it. Only the GET_DESCRIPTOR and SET_ADDRESS requests are valid if the device 
does not have its address set. The GET_INTERFACE and SET_INTERFACE requests 
are only valid when the device is configured. GET_DESCRIPTOR requests may ask for 
any descriptor at any time, except for Interface and Endpoint descriptors. Once the device 
is configured, it should expect to perform other requests and transactions associated with 
its functionality. 
 

Application Layer (USB-MIDI) 
 



 

There is a standard for sending a MIDI stream through USB called USB-MIDI. It uses a 
MIDIStreaming interface, which is a subclass of the Audio interface class. In order to use 
the MIDIStreaming interface, the device must also support the AudioControl interface. A 
USB-MIDI device is organized into several of Elements and Jacks. An Element is a source 
or sink of a MIDI data stream. It can have at least one input pin and at least one output 
pin. Each pin carries one MIDI data stream. A Jack connects an Element to the USB host. 
The Element could be one internal to the device or it could be an external device that 
connects to the USB device. A MIDI IN Jack moves a MIDI data stream from the host or 
an external device to the USB device, while a MIDI OUT Jack moves a MIDI data stream 
from the USB device to the host or an external device. A MIDI IN Jack can only have one 
output pin, while a MIDI OUT Jack can have several input pins. Pins are internal 
connections in the USB device between different Elements and Jacks. Both Elements and 
Jacks are called Entities. 
 
In order to support a MIDIStreaming interface, the device must support the AudioControl 
interface. This interface allows the host to control the audio functionality of the device and 
receive the device’s audio-related statuses. The AudioControl interface uses the standard 
Interface descriptor and several other class-specific descriptors to describe itself. For the 
standard AudioControl Interface descriptor, the bNumEndpoints field must be set to 0, the 
bInterfaceClass field must be set to 01h (Audio), the bInterfaceSubClass field must be set 
to 01h (AudioControl), and the bInterfaceProtocol field must be set to 0. The AudioControl 
uses class-specific descriptors to provide more information about the audio functionality 
of the device. All of these descriptors are appended to the standard AudioControl Interface 
descriptor. Together they make up the class-specific AudioControl Interface descriptor. 
Since these descriptors are class-specific, they must use special class-specific descriptor 
type IDs. Table 4-20 lists these type IDs; their functionality is similar to the standard 
versions of these descriptor type IDs. These descriptors also use special descriptor 
subtype IDs to specify the AudioControl-specific object that the descriptor describes. 
These subtype IDs are listed in Table 4-21. The only relevant AudioControl descriptor is 
the Header descriptor, since the other descriptors describe objects that only apply to audio 
stream processing and not MIDI data streams. The AudioControl Header descriptor is 
shown in Table 4-22. This descriptor contains extra general information related to the 
audio device and introduces the descriptors that follow it. The AudioControl interface does 
not have any endpoints associated with it because it uses the Default Control Pipe. Thus, 
it does not use any class-specific Endpoint descriptors. 
 

Name ID 

CS_Undefined 20h 

CS_Device 21h 

CS_Configuration 22h 

CS_String 23h 

CS_Interface 24h 

CS_Endpoint 25h 

 



 

Table 4-20: Enumeration of class-specific descriptor type IDs. 

 

Name ID 

AC_Descriptor_Undefined 00h 

Header 01h 

Input_Terminal 02h 

Output_Terminal 03h 

Mixer_Unit 04h 

Selector_Unit 05h 

Feature_Unit 06h 

Processing_Unit 07h 

Extension_Unit 08h 

 
Table 4-21: Enumeration of AudioControl descriptor subtype IDs. 

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (24h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (01h) 

03h bcdADC 2 Version of the supported Audio Device 
Class Specification. (0100h) 

05h wTotalLength 2 Total number of bytes sent with this 
descriptor, including itself and all other 
related descriptors. 

07h bInCollection 1 Number of AudioStreaming and 
MIDIStreaming interfaces that belong to 
this AudioControl interface. 

08h baInterfaceNr[N] N Array of interface numbers of the 
AudioStreaming or MIDIStreaming 
interfaces associated with this 
AudioControl interface. 

 
Table 4-22: Format for an AudioControl Header descriptor. 

 



 

The MIDIStreaming interface is described with a combination of the standard Interface 
descriptor and several class-specific descriptors. The standard MIDIStreaming Interface 
descriptor has the bInterfaceClass field set to 1 (Audio), the bInterfaceSubClass field set 
to 3 (MIDIStreaming), and the bInterfaceProtocol field set to 0. The bNumEndpoints field 
should be set to at least 1 since it needs at least 1 endpoint to transfer data. The 
MIDIStreaming interface also has special descriptors for it. All of these descriptors are 
appended to the standard MIDIStreaming Interface descriptor. Together they make up the 
class-specific MIDIStreaming Interface descriptor. These descriptors also use special 
class-specific descriptor type IDs and MIDIStreaming descriptor subtype IDs. These 
subtype IDs are listed in Table 4-23. The format of the class-specific MIDIStreaming 
Header descriptor is shown in Table 4-24. This descriptor contains extra general 
information related to the MIDIStreaming interface and introduces the descriptors that 
follow it. 
 

Name ID 

MS_Descriptor_Undefined 00h 

MS_Header 01h 

MIDI_IN_Jack 02h 

MIDI_OUT_Jack 03h 

Element 04h 

 
Table 4-23: Enumeration of MIDIStreaming descriptor subtype IDs. 

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. (07h) 

01h bDescriptorType 1 The descriptor type ID. (24h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (01h) 

03h bcdADC 2 Version of the supported MIDIStreaming 
SubClass Specification. (0100h) 

05h wTotalLength 2 Total number of bytes sent with this 
descriptor, including itself and all other 
related descriptors. 

 
Table 4-24: Format for a MIDIStreaming Header descriptor. 

 

 
The other MIDIStreaming descriptors that are appended to the standard MIDIStreaming 
Interface descriptor are the MIDI IN Jack, MIDI OUT Jack, and Element descriptors. Only 
the MIDI OUT Jack and Element descriptors are relevant for this device. Table 4-25 shows 
the format for a MIDIStreaming MIDI OUT Jack descriptor. This descriptor describes the 



 

properties of a MIDI OUT Jack, including its ID, input sources, and type. The type of Jack 
can either be embedded or external; this specifies whether the Jack connects to an 
internal MIDI Element within the USB device or connects to an external one beyond the 
USB device, respectively. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (24h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (03h) 

03h bJackType 1 Type ID of the Jack. Can be one of: 
● 1h: Embedded 
● 2h: External 

04h bJackID 1 Entity ID of this Jack. 

05h bNrInputPins 1 Number N of input pins that this Jack 
has. 

06h baSourceIDPin 2*N An array of words where the LSB 
contains the Entity ID of the Entity that 
this Jack connects to and the MSB 
contains the output pin number on that 
Entity to which this input pin is 
connected. 

... iJack 1 Index of the String descriptor with the 
name of this Jack. 

 
Table 4-25: Format for a MIDIStreaming MIDI OUT Jack descriptor. 

 
The MIDIStreaming Element descriptor describes the properties of a MIDI Element within 
the scope of the device. It can be an internal or external source or sink of a MIDI data 
stream. It also lists the capabilities of the Element. These are shown in Table 4-26. For 
this device, only the GM1 capability is relevant because GM1 defines the musical note 
scale that we are using. The entire table is shown for reference only, in case the device is 
extended to support a new feature that uses any of these capabilities. The properties that 
the Element descriptor lists are the Entity ID, the number of input and output pins, the MIDI 
stream input sources, the audio stream inputs and outputs, and the Element’s capabilities. 
Table 4-27 shows the format of the Element descriptor. 
 

Name Bit Index Meaning 

CUSTOM 0 Custom capabilities. 

MIDI_CLOCK 1 MIDI CLOCK messages support. 



 

MTC 2 Synchronization features support. 

MMC 3 MMC messages support. 

GM1 4 General MIDI System Level 1 compatibility. 

GM2 5 General MIDI System Level 2 compatibility. 

GS 6 Roland GS format compatibility. 

XG 7 Yamaha XG format compatibility. 

EFX 8 USB-controlled audio effects processor included. 

MIDI_PATCH_BA
Y 

9 Internal MIDI patcher or router provided. 

DLS1 10 DownLoadable Sounds Standard Level 1 compatibility. 

DLS2 11 DownLoadable Sounds Standard Level 2 compatibility. 

 
Table 4-26: Bitmap of Element capabilities and their meanings. 

 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (24h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (04h) 

03h bElementID 1 Entity ID of this Element. 

04h bNrInputPins 1 Number N of input pins that this Element 
has. 

05h baSourceIDPin 2*N An array of words where the LSB 
contains the Entity ID of the Entity that 
this Element connects to and the MSB 
contains the output pin number on that 
Entity to which this input pin is 
connected. 

... bNrOutputPins 1 Number of output pins that this Element 
has. 

... bInTerminalLink 1 The Terminal ID of the Input Terminal to 
which this Element is connected. 

... bOutTerminalLink 1 The Terminal ID of the Output Terminal 



 

to which this Element is connected. 

... bElCapsSize 1 Size M in bytes of the bmElementCaps 
field. 

... bmElementCaps M A bitmap that contains information on the 
capabilities of the Element. See Table x 
for the format. 

... iElement 1 The index of the String descriptor with 
the name of this Element. 

 
Table 4-27: Format for a MIDIStreaming Element descriptor. 

 

 
Since a MIDIStreaming interface can have at least one endpoint associated with it for 
transferring MIDI data streams, it must append at least one Endpoint descriptor with its 
associated MIDIStreaming Interface descriptor. The MIDIStreaming Endpoint descriptor 
uses the standard Endpoint descriptor appended with the class-specific MIDIStreaming 
Bulk Data Endpoint descriptor. The MIDIStreaming Bulk Data endpoint uses bulk 
transactions, so the associated Endpoint descriptor must describe it as such. Two bytes 
are also appended to the end of the standard Endpoint descriptor; these are set to 0. The 
format of the class-specific MIDIStreaming Bulk Data Endpoint descriptor is shown in 
Table 4-28. All it does is associate this endpoint to several MIDI Jacks. There is another 
class-specific MIDIStreaming Endpoint descriptor, called the MIDIStreaming Bulk Transfer 
Endpoint descriptor, but it is primarily used for devices that support DLS. Since our device 
does not use DLS, this descriptor is irrelevant. The descriptor subtype of these class-
specific MIDIStream Endpoint descriptors is always 1. 
 

Offset Field Size (B) Function 

00h bLength 1 Size of the descriptor in bytes. 

01h bDescriptorType 1 The descriptor type ID. (25h) 

02h bDescriptorSubtype 1 The descriptor subtype ID. (01h) 

03h bNumEmbMIDIJack 1 Number N of embedded MIDI Jacks 
associated with this endpoint. 

04h baAssocJackID N An array of bytes where each byte 
contains the Entity ID of a Jack that is 
associated with this endpoint. 

 
Table 4-28: Format for a MIDIStreaming Bulk Data Endpoint descriptor. 

 

 
The AudioControl interface also defines class-specific requests. However, all of these are 
only relevant for audio stream processing and not for MIDI streams. The MIDIStreaming 
interface also defines class-specific requests. However, there is only one standard 



 

request, and it is only relevant to the MIDIStreaming Bulk Transfer endpoint. As mentioned 
before this feature does not apply to this device. Thus, none of these class-specific 
requests need to be supported. 
 
USB-MIDI has a special feature called virtual cables. This feature allows the transport of 
16 logical MIDI streams through one Bulk endpoint. Each cable number corresponds to 
the index of the MIDI Jack associated with the endpoint, as listed in the MIDIStreaming 
Bulk Data Endpoint descriptor. In order to transfer a MIDI stream from the device to the 
host, the host must initiate a Bulk transaction through the MIDIStreaming Bulk Data 
endpoint. The data that is transferred is a sequence of 4-byte MIDIStreaming packets that 
wrap around three bytes of a MIDI stream. Typically, the three bytes correspond to one 
MIDI message. However, for System Exclusive messages, every three bytes of the 
message is contained within a MIDIStreaming packet, since those messages have 
arbitrary length. The format of the MIDIStreaming packet is shown in Table 4-29. The 
Code Index number (CIN) describes the function of the message. For CINs 8h through Eh, 

these bits correspond to the message code in the status byte of the message. CINs 2h 

through 7h are used for System messages. CIN Fh is used to send a single byte in the 

packet. Table 4-30 lists the available CINs and their function. Support for the Running 
Status feature of MIDI is unspecified. 
 

Byte 0 Byte 1 Byte 2 Byte 3 

Bits 0-3: 
Cable number 
 
Bits 4-7: 
CIN 

MIDI byte 0. 
Typically the status 
byte for every 
message other than 
System Exclusive 
messages. 

MIDI byte 1. 
Typically the first 
data byte. If the 
message does not 
have one then this 
field is set to 0. 

MIDI byte 2. 
Typically the 
second data byte. If 
the message does 
not have one then 
this field is set to 0. 

 
Table 4-29: Format for a MIDIStreaming MIDI data packet. 

 

 

CIN Payload Size (B) Function 

2h 2 2-byte System Common message. 

3h 3 3-byte System Common message. 

4h 3 Beginning or middle part of a System Exclusive message. 

5h 1 1-byte System Common message or last byte of a System 
Exclusive message. 

6h 2 Last 2 bytes of a System Exclusive message. 

7h 3 Last 3 bytes of a System Exclusive message. 

8h 3 Note Off message. 



 

9h 3 Note On message. 

Ah 3 Polyphonic Key Pressure message. 

Bh 3 Controller Change 

Ch 2 Program Change 

Dh 2 Channel Key Pressure 

Eh 3 Pitch Bend 

Fh 1 Single byte. 

 
Table 4-30: Enumeration of CIN functions. 

 
 
 

4.1.6. Design Impact of Relevant Standards 
 
The standards that we have chosen to adhere to are all for the benefit of making the device 
more accessible to the widest range of applications with the greatest variety of other 
devices. By outputting our MIDI signal through both a MIDI port and a USB port, we are 
able to interface with 1) other MIDI devices such as digital synthesizers and digital pianos 
via MIDI cable and 2) computers and digital audio workstations via USB. These two 
standards give us all the variety we need in our outputs to interface with any device that a 
potential user could want to interface with. 
 
Similarly, the choice to use ¼” tip-sleeve and XLR3 with phantom power is one with 
consideration for accessibility. The two types of devices that we foresee a user connecting 
to the input of this device are either an electric instrument, such as electric guitar or electric 
piano, or a microphone. Most electric instruments use mono, ¼” tip-sleeve audio cable to 
transmit their signal. There are also ¼” cable standards of tip-ring-sleeve (TRS) and tip-
ring-ring-sleeve (TRRS) for balanced signals or stereo audio and stereo audio with a 
separate channel for microphone input. These options seem unnecessary as they are 
typically used for devices such as headphones, speakers, and mixers. Including balanced 
TRS or TRRS compatibility will not make our input more accessible because the input 
devices one would use with this device do not use that standard. 
 
The XLR3 jack is the most common standard for microphone inputs or for “direct out” or 
“line out” outputs on amplifiers. In order to capture vocals or acoustic instruments, the 
device should be able to accept a microphone input. There are, however, many different 
types of microphones such as dynamic, ribbon, or condenser. Most types of microphone 
will work on their own just by plugging them in but most condenser microphones need to 
be supplied with 48V phantom power. By implementing a 48V phantom power toggle 
switch, we can support any kind of XLR3-compatible microphone the user has available. 
After XLR3, the next most common microphone standard is USB, to be plugged directly 
into a computer. We have decided not to support these kinds of microphones. 
 



 

4.2. Realistic Design Constraints 
 
There are numerous constraints that need to be considered when designing and building 
our device. These include but are not limited to economic, time, environmental, social, 
political, ethical, safety, manufacturability and sustainability. 
 

4.2.1. Economic and Time Constraints 
 
The economic constraints that are considered when designing our device is that we do 
not have a sponsor for our project. Most of the group are low-budget college students that 
would not like to spend a great amount of money on building the device. Due to this, we 
set a maximum budget on building the device to 450$. Due to the nature of the device, 
this is a realistic budget that should allow us to build a functionable design that meets our 
requirements specifications. This maximum budget is also desirable because it limits the 
maximum cost of the device for each group member to 112.50$ each. This economic 
constraint does limit us in the quality of functionality of our device. To keep our budget 
low, we may eliminate potential features that we may have wanted in our device 
initially.This means that we must take pricing into account when choosing our 
microcontroller, power supply, PCB, and all other parts of the device.  
 

Component/Device Budget Component/Device Budget 

PCB 200$ Case 30$ 

Microphone Free Passive components 30$ 

Power Supply Free DC-DC converters 50$ 

Analog-to-Digital 
Converter 

10$ Input/output interfaces 30$ 

Processor 20$ Voltage regulators and 
active components 

50$ 

USB cable 2$ 48 V Phantom Power 
Output 

25$ 

MIDI cable 3$ Total 450$ 

 
Table 4-31: Expected budget breakdown 

 
There are multiple time constraints that are considered when designing and building our 
device. One time constraint is that some of the members of the group working on the 
device have jobs and other classes/projects that will keep them busy through senior 
design. To mitigate this constraint, we make sure to meet at times weekly where each 
member is not busy.This constraint can mean that some members of the group may not 
be able to work on the project for as much time as they would like. Another time constraint 
is the amount of time it may take for us to receive parts that we order for our device. There 
could be delays in the shipping time for the parts we select. If a part that we order is not 



 

available in the time that we need it we can mitigate this problem by exploring different 
suppliers and options for the part needed. 
 

4.2.2. Environmental, Social, and Political Constraints 
 
The main environmental constraint that needs to be considered for our senior design 
project is the COVID-19 pandemic. Due to COVID-19, we are not meeting in person and 
we are all meeting online to design the device. We also do not have the access to the 
Senior Design lab or other on-campus amenities during Senior Design 1. Some members 
of the group have moved back to their original residence and are not in Orlando for Senior 
Design 1. This makes it difficult to plan and work together on the project. The COVID-19 
pandemic could also have an effect on the manufacturing of parts that we need for our 
device. COVID-19 started in China and has had a detrimental effect on  products coming 
out of China. China is one of the main manufacturers of electronic parts so we may have 
to consider parts from other manufacturers. Without access to the Senior Design Lab it 
will make it difficult to test and prototype circuits needed for our device. An oscilloscope 
testing kit has been sent to one of our group members which will allow us to test circuits 
we will need for the device. Social constraints also played a role in the design of the 
device.The social constraints that we considered when designing our device mostly deal 
with devices being used for musical purposes. We want the device to be compatible with 
as many MIDI devices as possible. For this reason we needed to implement both XLR3 
and inputs and outputs ¼ jack inputs and outputs. Both of these connector types are 
commonly used with MIDI devices, guitars and microphones which can be used with the 
device.  
 

4.2.3. Ethical, Health, and Safety Constraints 
 
Usually when dealing with devices that record audio, they are not allowed to continuously 
record without the user’s permission. This is a privacy concern that many developers of 
anything that can record audio have to deal with. Our device needs to have a microphone 
attached to the device that is provided by the user, so the device user does not need to 
worry about the device secretly recording audio. All MIDI transcriptions that are made by 
the user will be only used by the user and there will be no way for the developers to be 
able to take any recording from the device. We want our device to be completely safe for 
all people to use, so we have implemented some health and safety constraints for the 
device. We need to make sure our device is built fundamentally sound so that it is safe to 
use without any malfunctions that could harm the user. This is done by testing all the 
circuits that will be used for power before we implement them into the device. As an 
additional safety measure, we must make sure to design our device such that it does not 
produce any unintended interference. Almost all consumer electronics sold in the United 
States is subject to part 15 of the FCC CFR title 47. Subpart B of this section explains the 
rules that apply to consumer electronics which may act as “unintentional radiators” of radio 
wave noise. We don’t want any part of our device from the case to the PCB to be acting 
as an antennae and spreading radio interference in a way that conflicts with these rules. 
[30] 
https://en.wikipedia.org/wiki/Title_47_CFR_Part_15 
 

4.2.4. Manufacturability and Sustainability Constraints 
 

https://en.wikipedia.org/wiki/Title_47_CFR_Part_15


 

Manufacturability constraints need to be considered when choosing parts for the 
construction of the device. We will have to research standard techniques for PCB design, 
stackup, material (rigid, flex, rigidized flex, etc.), and other board parameters before we 
can have our PCB manufactured. Multiple factors go into the decision making process of 
which manufacturers we will use to get our parts for the device. Some of these factors 
include cost, availability, and quality. Single unit and bulk pricing both need to be 
considered when buying parts for the device. If we were to put the device on the market 
we would buy in bulk for the parts we use to maximize profits. In terms of availability, most 
of the parts should be easily attainable for the construction of the device. To lower the cost 
of the device we are using some parts that certain members of the group already own. 
Another constraint that we could face in availability in manufacturing of parts is that many 
manufacturing plants may not be working at the moment due to the coronavirus pandemic. 
This means we may have to look at more potential manufacturers than we may have had 
to before the pandemic. It also means that there could be delays in the manufacturing in 
the parts we need. These are circumstances that we will need to consider when 
purchasing parts for the device.  
 
In terms of sustainability, we want our product to last for a long time without any 
malfunctions. One sustainability constraint that we have placed on ourselves for the device 
is for the device to have a low heat output. We do not want our device to require active 
cooling because this can interfere with quality of the MIDI translation done by the device. 
We also do not want our device to overheat and potentially harm the device. There should 
be little to no electromagnetic noise created by the device, to protect the functionality of 
the device. In the event of a part failing in the design, we would want to be able to diagnose 
the problem and repair the device. In order to do this, we must design our PCB with test 
points that will allow us to take measurements that yield meaningful data regarding the 
function and wellbeing of particular parts. We will also have to consider component 
availability or scarcity when selecting our parts in order to ensure that the board will be 
repairable in the future. 
 

5. Hardware Design Details 
 
The hardware design can be broken down into three sections: the power section, the 
analog audio circuitry section, and the note transcription section. Each section consists of 
several smaller blocks that will perform the various tasks needed to operate the device. 
The power section consists of two voltage protection circuits and two voltage converters 
which will provide power to the device at 5 volts and 48 volts. Power will be drawn from 
either an external 9V supply or from 5V USB power if a USB connection is present. 9V 
power will be regulated and stepped down to 5V and regulated to power the logic circuitry 
in the note transcription section. 5V power will also be stepped up to 48V for the optional 
phantom power that can be toggled on and delivered to a microphone plugged into the 
XLR3 jack. The analog audio circuitry section handles all of the inputs and outputs for the 
instrument signal. There are two inputs and two outputs, one for ¼” tip and shield cable 
and one for XLR3. There will also be a block that handles the selection, routing, and mixing 
of the input signal to match whatever feature set is implemented in the final product, be it 
a toggle between the two inputs, simultaneous input from both jacks, or some other 
implementation. Finally, there will be a preamplifier stage that prepares our instrument 
signal for the note transcription section. 
 



 

Managing power constraints is an important aspect of any electrical design. We need a 
good estimate of how much power is going to be required by each of our hardware blocks 
to ensure that our 9V barrel jack / 5V USB power scheme is viable. In order to track this 
we will use two tools: a power diagram and a power budget spreadsheet. The power 
diagram is a flow chart, showing the sources (9V DC barrel jack and 5V DC USB port) and 
every component they are responsible for powering. In the case of this device, both the 
5V USB port and the 9V barrel jack will have to be capable of powering the entire device. 
Once we have more information about the specific components being used in the design, 
we will be able to fill in the power requirements of each block (currently denoted by “?W”). 
Our current estimate is that 2W will be required for our design to function. This is a very 
rough estimate based on our microprocessor options drawing somewhere in the ballpark 
of 200mA current from our 5V source. Doubling that to 400mA gives us some idea of how 
much power will be drawn by the entire device, giving us the 2W estimate. 
 



 

 
 

Figure 5-1: The hardware block diagram. 

 
In addition to the power diagram, we have the power budget, which is a part-by-part 
analysis of how much power is being consumed by what and how much power must be 
delivered by each source. Again, this is a tool that will become more useful as we are able 
to populate it with the specific parts we are using in our design. For now, it is filled with the 
names of the hardware blocks. When it is completely filled out it will be a list of every 
electrical component on our bill of materials, showing the number of each part used in the 
device, the current drawn by each part, and the power consumed by each part. We then 



 

can estimate the efficiency of these parts and of the power supply to get our final number 
for the power required. 
 

9V 
Supply     

Part 
Identifier Part Name 

Supply Current Per 
Part (A) Supply Voltage (V) Power (W) 

U? 9V to 5V Converter 55mA 9V 0.5W 

 
Table 5-1: 9V Power budget. 

 

5V 
Supply     

Part 
Identifier Part Name 

Supply Current Per 
Part (A) Supply Voltage (V) Power (W) 

U? Preamplifier 6mA 5V 30mW 

D? 
Preamplifier “Clipping” 
Diode 6mA 5V 30mW 

U? MIDI Controller 5mA 5V 25mW 

U? USB Controller 5uA 5V 25uW 

U? 5V to 48V Converter 60mA 5V 0.3W 

U? 5V to 3.3V Converter 2.1mA 5V 10.5mW 

 
Table 5-2: 5V Power budget. 

 

3.3V 
Supply     

Part 
Identifier Part Name 

Supply Current 
Per Part (A) Supply Voltage (V) Power (W) 

U? MSP430FR5994 3mA 3.3V 10mW 

 
Table 5-3: 3.3V Power budget. 

 

48V 
Supply     

Part 
Identifier Part Name 

Supply Current Per 
Part (A) Supply Voltage (V) Power (W) 

J? XLR3 Input Jack 50mA 48V 0.24W 

 
Table 5-4: 48V Power budget. 

 



 

 
 

Figure 5-2: Power Diagram 

 

5.1. Power Circuits 
 

Power Switching Circuit 

 

By using two LTC4411s we are able to prioritize the USB input voltage over the input 
voltage from the DC barrel jack. Figure 5-3 shows an example of a circuit that uses 2 
LTC4411s that prioritizes the USB voltage and is able to switch between both voltages 
depending on which is plugged in. Figure 5-4 shows the voltages from both inputs as well 
as the voltage at the output. The circuit was simulated for three conditions which are all 
shown on the graph. These conditions are 5V USB ON Jack 5V OFF, USB 5V OFF and 
Jack 5V OFF, and both OFF. As seen in Figure 5-4 there is a constant Vout slightly below 
5V as long as one of the power sources is turned on.  The small voltage drop should be 
negligible for the purposes of powering the device. Figure 5-5 shows the currents from 
both power sources during the simulation. This shows that when both of the power sources 
are turned on, only the 5V from USB is delivering current.  



 

 

Figure 5-3: Power Switching Circuit 

 

Figure 5-4. Voltage graph of inputs and output 

 

Figure 5-5. Input Current from Power Supplies 

Power Circuit 



 

Since we have multiple DC-DC converter circuits throughout our power circuit, we have 

split it up into 3 schematics. The first part of the power circuit is shown in Figure 5-5. This 

schematic shows the power source inputs to the power switching section of our circuit. 

This schematic can also be divided into 3 sections. The first section on the top of the 

schematic is the two power sources from the USB connector and the 9V DC Barrel Jack 

connector. The USB connector has 4 pins, but for this schematic we only need to use 2 

which are the VBUS and GND pins which go to the power switching section and ground 

respectively. The other two pins are data pins which will need to be connected to the USB 

Transceiver. The 9V DC Barrel Jack has two pins that are used as well. As seen in the 

schematic one of the pins goes to ground and the other goes that is used for voltage. The 

next section of the schematic is the 9V to 5V DC-DC converter that we designed using the 

TI Webench tool. This can be seen in the right side of the schematic. The 9V to 5V DC-

DC converter takes the 9V from the pin from the DC Barrel jack and outputs 5Vto the 

power switching section. The last section of the first schematic is the power switching 

section which can be seen on the left of the schematic. This uses two power switching ICs 

and to switch between 5V from USB and 5V from the 9V to 5V DC-DC converter output. 

This section outputs approximately 5V to the net labeled 5VBUS which will be used to 

power the majority of our device. The 5VBUS net will be used to power the other 

subsections of our power circuit and be used as the Vcc for any other parts of our design. 

 

Figure 5-6. 1st subsystem of power circuit 

The 2nd subsystem of the power circuit is shown in Figure 5-7. This schematic is the 5 

to 3.3V DC-DC converter that we designed using the TI Webench tool. This part of the 

circuit takes 5V from the 5VBUS net as an input and outputs 3.3V that is used to power 

the microcontroller that we selected for the device. The final subsystem of the power 

circuit is shown in Figure 5-8.This schematic is the 5V to 48V DC-DC converter that we 

designed using the TI Webench tool. This part of the circuit takes 5V from the 5VBUS 



 

net as an input and outputs 48V that is used for the phantom power needed to power the 

condenser microphones that would be used with the device.  

Figure 5-7. 2nd subsystem of power circuit 

 

Figure 5-8. 3rd subsystem of power circuit  

 

5.2. Analog Preamplifier 
 

The first section of the device is the analog input section. When the analog signal from 
either ¼” line in or XLR3 microphone is input into the device, the signal must be prepared 
and handled in various ways before it reaches our analog to digital converter. The main 
functions of the preamp section are the microphone input and phantom power circuit, the 
¼” line input, an amplifier, several buffers to split the signal into different outputs, and an 
active bandpass filter. All of these sections comprise the entirety of the analog small 
signals in this device. 
 
The first stage of the preamp is the input of either the ¼” line in or XLR3 microphone input. 
These are toggleable by a switch on the front panel of the device. When selected, the ¼” 



 

input feeds directly into the first amplifier stage while the XLR3 input first goes through a 
phantom power circuit. The phantom power circuit feeds power at 48 volts through the 
microphone to power active microphones like condenser type microphones. The phantom 
power circuit is standard in the industry and involves feeding the DC power to differential 
microphone lines which is then taken out on the receiving end. The differential lines are 
then combined with an op amp in differential mode which causes any received noise 
during transmission to phase cancel since both lines will receive approximately the same 
noise but are subtracted from each other at the end. The 48 volt phantom power is also 
toggleable by a switch so that passive microphones will be usable as well. See Figure 5-
8 to see the phase cancelation of line noise in the microphone lines. The red signal is the 
positive input V/2 with the noise graphed on top of it and the blue signal is the negative 
input -V/2 with the noise graphed on top as well. The green signal represents the noise. 
The first signal (V/2+Noise) is subtracted by (-V/2+Noise) which gives the input signal of 
V without the noise gained in the microphone cable. The final signal V is represented by 
the purple sine wave.  
 

(
𝑉

2
+ 𝑁𝑜𝑖𝑠𝑒) − (

−𝑉

2
+ 𝑁𝑜𝑖𝑠𝑒) = 𝑉 

 

 
 

Figure 5-9: Phase cancelation of line noise in the microphone lines 

The next stage of this circuit involves splitting the signal into 3. This is done so that the 
analog input signal can pass through the device unaltered through both an XLR3 output 
and ¼” line output. This allows you to simultaneously use your analog signal at the same 
time as the MIDI signal the device creates and outputs generates. The signal splitting is 
simply achieved by splitting the line through 2 different op amp buffers while the 3rd goes 
to the next stage of the circuit. These buffers are simply made by connecting the negative 



 

feedback to the output causing the differential across the input to be 0, making the gain of 
the amplifier 0. This allows us to help isolate the electrical lines from each other so that 
loads will cause minimal effects on each other. The two lines that go out to either the XLR3 
output or ¼” output finally go through a coupling capacitor to get rid of the Vcc/2 DC offset 
before going through the pass-through output. 
 
 

 
Figure 5-10: Preamp Stage 1 

 
These two different togglable inputs then feed into a non-inverting amplifier. The op amps 
in this circuit use a single voltage input of 5 volts and a ground reference. This means we 
give the first amplifier a virtual ground of Vcc/2 so the rest of the circuit has a DC offset of 
2.5 volts before the DC offset is decoupled by a capacitor in the output. This is so that we 
can use a single supply voltage and still give the signal headspace for voltage swing 
between 0-5 volts. Otherwise we would have to use a dual rail power supply which is not 
preferable. This first amplifier then sets the gain level of the input signal. This is adjustable 
by a potentiometer to “dial” in the gain with your particular instrument or signal, and it also 
switches ranges of gain when switching between XLR3 or ¼” inputs. This is because the 
level of microphone outputs are significantly less voltage than line level instrument outputs 
such as an electric guitar or other instruments with pickups.This is done by wiring the 
potentiometer to function as a variable resistor in the negative feedback loop by wiring the 
middle and a side pin in series with a resistor. This makes it so that when the potentiometer 
is rotated fully clockwise, the resistance is the resistance of the potentiometer and resistor 
in series. When rotated fully counter clockwise, the resistance is that of just the resistor. 
This makes the gain the highest when rotated clockwise and lowest when rotated 
counterclockwise. The range of gain is adjusted by adding in another resistor in the 



 

feedback loop when the switch to select between ¼” and XLR3 is toggled. This combined 
controls the proper gain levels needed for the analog to digital converter.  
 
The gain levels that we need to achieve are based on both off of the input range of the 
ADC and the input level of the microphone or instrument. Microphone voltage levels 
typically can range from 5 - 50 mV peak to peak and line levels (the ¼” input) are typically 
.3 - 2 Volts peak to peak. We want to try to maximize the voltage going into the range of 
the ADC. This is because it will minimize the noise to signal ratio with the louder we make 
our signal. The ADC input range is 0 - 3v peak to peak so we want to come as close to 
the edges of this range as we can without risking clipping. For the line in input, at the top 
of it’s range we have ~ 2V PP so we need a gain of 1.5 to get to 3V pp. Then at the bottom 
of its range we have .3 volts so we need a factor of 10 to get to 3V PP. This means for the 
line in input, we need a configuration of the potentiometer and resistors to give a variable 
gain of 1.5 - 10 V/V.  For the microphone (XLR3) input, at the top of his range we have 50 
mV which requires a voltage gain of 60 to get to 3 V. At the bottom of its range we have 5 
mV which requires a gain of 600 to get 3 V peak to peak. This overall means we need a 
range of gain of 60 - 600  V/V for the microphone input. One thing to keep in mind is that 
we should give a little “wiggle room” with the gain range so that if we have a voltage at the 
top of the range we can lower it a little to ensure it doesn’t clip the ADC input. Let's choose 
a factor of ⅙ to lower the minimum gain by. This gives a range of gain of 1.25 - 10 for the 
¼” line in input and 50 - 600 for the XLR3 microphone input. The voltage gain of a non-

inverting amplifier is 𝐴𝑣 = 1 +
𝑅𝐴

𝑅𝐵
and we will use this to calculate what resistor and 

potentiometer values to use. Lets set 𝑅𝐵to 10k to find 𝑅𝐴for both the microphone and 

line-in inputs. The gain of the a last stage of the amplifier will be ~1.25 to set the minimum 

gain so our equation is now 𝐴𝑣 = 1.25(1 +
𝑅𝐴

10𝑘
). 

 
 
For the low end of the gain for the line-in: 𝑅𝐴 = 0 𝛺, 𝑅𝐵 = 10 𝑘𝛺 

1.25 = 1.25(1 +
0

10𝑘
) 

 
For the high end of the gain for the line-in: 𝑅𝐴 = 70 𝑘𝛺, 𝑅𝐵 = 10 𝑘𝛺 

10 = 1.25(1 +
70𝑘

10𝑘
) 

 
For the low end of the gain for the microphone input: 𝑅𝐴 = 390 𝑘𝛺, 𝑅𝐵 = 10 𝑘𝛺 

50 = 1.25(1 +
390𝑘

10𝑘
) 

 
For the high end of the gain for the microphone: 𝑅𝐴 = 4.79 𝑀𝛺, 𝑅𝐵 = 10 𝑘𝛺 

600 = 1.25(1 +
4.79𝑀

10𝑘
) 

 



 

With 𝑅𝐵 set to 10k, there is the issue that the line in needs a range of ~70 k𝛺and 

microphone in needs a range of ~ 4.4 M𝛺. This is not possible if we are keeping things 
simple and using the potentiometer as a variable resistor. What we can do to bring these 

ranges to the same scale is to change 𝑅𝐵for each of the inputs to compensate for the 

different resistance ranges. 500k is a readily available potentiometer value so lets first 

scale the microphone values to fit this. We can build a system where we have 𝑅𝐴low as 

the offset of the gain as the static resistor that is added and then the 500k potentiometer 
added for the maximum gain. 
 

𝑅𝐴 𝐻𝑖𝑔ℎ = 500𝑘 + 𝑅𝐴 𝐿𝑜𝑤, 600 = 1.25(1 +
500𝑘+𝑅𝐴 𝐿𝑜𝑤

𝑅𝐵
),50 = 1.25(1 +

𝑅𝐴 𝐿𝑜𝑤

𝑅𝐵
) 

This gives us 𝑅𝐴 𝐿𝑜𝑤 = 44,318 𝛺, 𝑅𝐵 = 1,136 𝛺 

 
Now lets scale the line in values to the 500k potentiometer as well, this time where the 
lowest resistance value will be 0 for a gain of 0 (1.25 after the final stage):: 
 

𝑅𝐴 𝐻𝑖𝑔ℎ = 500𝑘, 10 = 1.25(1 +
500𝑘

𝑅𝐵
),1.25 = 1.25(1 +

0

𝑅𝐵
) 

This gives us  𝑅𝐵 = 1 = 77,429 𝛺 

 
Now with these new values, this should correctly scale the gain levels and ranges for each 
of the inputs on a simple 3 pole 3 throw switch. When this switch is flipped it will add the 
resistance offset for the microphone input and change 𝑅𝐵 to change the gain scaling. It 

will also switch which input is being used. 
 

 
Figure 5-11. - Preamp Stage 2 

 
When considering the gain we also have to consider how the user can know if their gain 
level is clipping or not so they can adjust with the potentiometer as necessary. This can 
be solved by adding a circuit in the preamp that detects the voltage levels before the ADC. 



 

When the voltage reaches a threshold of over ~2.8 V then it will switch on an LED which 
will be visible on the outside of the enclosure. This can be implemented with a op amp 
configured to be a comparator utilizing the open loop.This means that when the input 
passes 2.8 volts, the output of the op amp will be the Vcc of 5 volts and under the output 
will be ground. This makes it so that it can power the LED when it is above 2.8 Volts and 
ground it out when below. Since op amps cause minimal loading effect and next to no 
current draw, we can have the signal line split directly off into this circuit before the ADC. 
We can make our reference voltage simply by making a voltage divider from our 5 volt 
power rail. Lastly, there is a current limiting resistor going into the LED from the driving op 
amp to set the amount of current draw from the LED. This resistor will be much less than 
what we expect to make up for a loss of brightness. This is needed because with an AC 
signal, our LED will be on only during the time if it is clipping. If we increase the brightness 
then it will appear to be on the whole time at a normal brightness by increasing the average 
power. There is also a buffer in this stage to isolate the next stage as well as improve any 
impedance issues caused by the previous stage. 
 

 
Figure 5-12. - Preamp stage 3 

 
The last stage before the analog input signal reaches the analog to digital converter is an 
active bandpass filter. This filter is to reduce unwanted frequencies that are outside of 
musical range so that we have less noise when processing the signal digitally. The 
frequencies we chose as the corner points of the band pass are ~20 Hz for the low end 
and ~16 kHz for the high end. This is because the lowest note on a standard bass guitar 
is ~40 Hz and a corner frequency will remove low resonance without altering the gain of 
40 Hz much at all. The highest note recognizable by MIDI protocol is ~15 kHz so we chose 



 

~16 kHz as the upper corner frequency for the same reasons. Ideally this bandpass will 
filter 100% of frequencies out of the range that we need so we need a steep drop off on 
our filter. To do this we chose an active 3 stage butterworth filter for both the high pass 
and low pass parts of the bandpass. This gives a very flat bandpass which is closer to our 
ideal response. This is because an ideal 3rd order filter gives a 80dB per decade roll off 
rate and butterworth filters approximate this roll off well. The most simple way to calculate 
the cutoff points of a multistage filter is to use the same resistor and capacitor values for 

each stage. This gives a corner frequency of 𝑓𝐶 =  
1

2𝜋𝑅𝐶
for each pass. 

 

For the high pass of ~20 Hz: 𝑅 = 75 𝑘𝛺, 𝐶 = 100 𝑛𝐶 

21.22 𝐻𝑧 =
1

2𝜋(75𝑘)(100𝑛)
 

 

For the low pass of ~16 kHz: 𝑅 = 10 𝑘𝛺, 𝐶 = 1 𝑛𝐶 

15,915.49 𝐻𝑧 =
1

2𝜋(10𝑘)(1𝑛)
  

 
One issue we found when simulating the preamp is that the slew rate of the op amp 
caused decay of higher frequencies when at very high gain levels. This means when 
using the microphone input we would be losing some magnitude on the high end of 
frequencies we want to detect. To negate this slightly, we decided to change the low 
pass to be a little more gentle to counteract the effect of the op amp slew rate. We 
decided on 6.8k for the resistance. 
 

For the low pass of ~23 kHz: 𝑅 = 6.8 𝑘𝛺, 𝐶 = 1 𝑛𝐶 

23,405.14 𝐻𝑧 =
1

2𝜋(6.8𝑘)(1𝑛)
 

 
This active bandpass filter stage also has a bit of voltage gain. Since we determined the 
minimum voltage gain for all input types to be 1.25 into the ADC, we want to make the 
last stage of the bandpass amplify the signal by that much. The gain of a non-inverting 

op amp (which the last stage is), is easily calculated as 𝐴𝑣 = 1 +
𝑅𝐴

𝑅𝐵
where 𝑅𝐴is the 

resistor in the negative feedback loop and 𝑅𝐵 is the resistor connecting from the 

negative feedback loop to the ground.   
 

For a voltage gain of ~1.25: 𝑅𝐴 = 2.4 𝑘𝛺, 𝑅𝐵 = 10 𝑘𝛺 

1.24 = 1 +
2.4𝑘

10𝑘
  

 



 

 
Figure 5-13. - Preamp stage 4 

 
One last thing needs to be done before the signal is passed on to the analog to digital 
converter, is setting the dc offset of the signal. We have to make our signals have a DC 
offset at the center of the ADC voltage range since it only takes positive signals. The DC 
bias must be between the max ADC voltage of 3 and minimum of 0 volts. This means our 
ideal DC offset is 1.5 volts. This is done by adding a virtual ground reference point to the 
signal by adding a pull up resistor, which will bias the signal to 1.5 volts. This reference 
point is given by the ADC to ensure a consistent bias. 
 
We simulated a frequency sweep of the designed circuit before the gain design and low 
pass adjustments to see the frequency response and it follows our desired cutoff points of 
nearly exactly 20Hz and 16kHz. It also appears to give a very stable passband gain and 
phase response. In the simulation in figure X, the red line is the phase and gain response 
in the frequency domain of the input. The green lines are the gain and phase response of 
the final output to the ADC in the frequency domain. Not shown are the outputs to the pass 
through outputs which are nearly flat in response but have a slight roll off on very low 
frequencies, mostly below 5 Hz.  
 

 
 



 

 
 

Figure 5-14: Simulation of analog preamp section. 
 

5.3. MIDI Output 
 
Our processor will communicate with MIDI-controllable instruments through a 5-pin MIDI 
port. This port is soldered directly onto the PCB and will be accessible by the user through 
the backplate of the device’s case. This port is connected to a UART port on the processor 
and the UART out signal is buffered and sent through a 220 Ohm resistor on its way to 
the port. This UART connection is the only connection that the MIDI port needs to make 
with the processor. The full MIDI output hardware diagram is shown in Figure 5-14 

 



 

 
Figure 5-14: MIDI Output Schematic 

 

 
Figure 5-15: MIDI Transmitter Diagram and Pin Assignment 

 

5.4. USB Controller Connections 
 
The USB transceiver has 12 pins that are used. Four of these pins are connected directly 
to the pins on the USB port. Two of these pins are connected directly to a power source. 
The rest are connected to the MCU either directly or through a pair of shift registers. This 
depends on whether the results of testing show that the MCU is capable of driving the 
transceiver at 12 MHz. Table 5-5 shows the functions and the connections associated with 
each pin. Unlisted pins are to remain unconnected. The names in the connection column 
are names of nets that will be used in the schematic for the digital circuits. 
 

Pin Function Connection 



 

1 Logic power 3V3FORMCU 

2 Speed setting 3V3FORMCU 

3 Data received signal USBDATA 

4 MCU D+ wire buffered 
interface 

DATAD+ 

5 MCU D- wire buffered interface DATAD- 

7 Ground GND 

8 Suspend signal USBSUSP 

9 Signal output if logic low USBRW 

10 USB D+ wire pin USBD+ 

11 USB D- wire pin USBD- 

12 3.3 V power source 3V3FORMCU 

14 USB VBUS wire pin USBVBUS 

 
Table 5-5: List of connections for the USB transceiver. 

 

5.5. Processor Connections 
 
The MCU has in total 80 pins, of which few need to be used. There are four power pins, 
each of which need to be connected to 3.3 V. We only need a maximum of 16 I/O pins, 1 
ADC input pin, and 2 sets of pins for UART. The I/O pins are used to control the USB 
transceiver and receive signals from the transceiver and other systems within the device 
(such as the power multiplexing circuits). The ADC input pin receives the buffered and 
amplified audio signal. The UART pins are used to transmit data through the MIDI output 
port and possibly the USB transceiver. All unused data pins are to be left unconnected. 
Table 5-6 shows the functions and the connections associated with the pins that we will 
use. Pins that are not listed are not used, and must remain unconnected. The POWERSRC 

net is used for the power multiplexing circuit if it is capable of reporting the source of power. 
 

Pin Function Connection 

3 ADC input PREAMPOUT 

4 Port 3.0, digital I/O USBDATA 

5 Port 3.1, digital I/O USBSUSP 

6 Port 3.2, digital I/O USBRW 



 

7 Port 3.3, digital I/O POWERSRC 

8 UART A3 transmitter MIDIDATA 

9 UART A3 receiver GND 

13 Port 7.0, digital I/O USBD+ 

14 Port 7.1, digital I/O USBD- 

19 Logic low GND 

20 Logic high 3V3FORMCU 

25 Port 7.2, digital I/O ? 

26 Port 7.3, digital I/O ? 

27 Port 7.4, digital I/O ? 

28 Port 7.5, digital I/O ? 

29 Port 7.6, digital I/O ? 

30 Port 7.7, digital I/O ? 

35 UART A1 transmitter ? 

36 UART A1 receiver ? 

37 Test pin, Spy-Bi-Wire debug clock port SBWCLK 

38 Reset pin, Spy-Bi-Wire debug data 
port 

SBWDATA 

39 Logic low GND 

40 Logic high 3V3FORMCU 

60 Logic low GND 

61 Logic high 3V3FORMCU 

73 Analog minimum GND 

76 Analog minimum GND 

79 Analog minimum GND 

80 Analog maximum 3V3FORMCU 

 
Table 5-6: Notable pins functions and connections 



 

5.6. PCB Design 

The parts we are using on our PCB are fairly small and simple to connect for the most 

part. Our processor only has 64 pins and only a fraction of those pins are being used, so 

routing traces away from the processor will be relatively simple. We should only need one 

or two signal layers to lay out all of the parts and traces that we need, so a standard four 

layer stackup will be perfect for our design. Four layers will also provide us with a total 

thickness of about 1.6mm. This is good for sturdiness as the board will have several 

connectors mounted to it that the user will be plugging into and unplugging from regularly. 

The proposed stackup is shown in Figure 5-16. 

 

 
Figure 5-16: Four Layer PCB Stackup 

 

 

There are some important advantages to designing the board stackup like this, with 

ground planes on the top and bottom of the board and signal and power layers sandwiched 

inside. Crosstalk is a serious issue for ICs operating at a megahertz frequency. It is 

recommended to reduce cross coupling to approximately 10% that signal traces on the 

surface of a PCB are spaced apart by twice the distance from the nearest ground plane. 

By making the traces internal and surrounded by the PCB’s dielectric material, the traces 

need only be spaced apart by a distance equivalent to the distance from the nearest 

ground plane. Additionally, having two signal and power layers one right after the other is 

not a big issue for this stackup because in a standard four layer PCB, the dielectric core 

between layers one and two is thicker than the other two dielectric layers. Another 

advantage to this design over a stackup where the signal layers are on the top and bottom 

surfaces of the board is that it is easier for a trace to change layers. There is no need to 

drop vias awkwardly through ground and power planes when the signal layers are 

adjacent. 

 

 
 

6. Software Design Details 
 
The software design can be broken down into 4 main components. These components 
are the input section, the fourier transform section, filtering and frequency analysis section, 
and finally the output section. Each of these sections will rely on different technologies but 
all serve the purpose of digital signal processing. This processing starts with the digitally 



 

converted input signal from our microphone or instrument and ends with a MIDI signal in 
the output along a MIDI cable or USB cable using MIDI protocol. The input section involves 
processing the input from the analog to digital converter and storing the input as samples 
in memory. The actual implementation of this will vary depending on our final hardware 
choices. If we have a discrete analog to digital converter we will have to write a low level 
driver to decode the protocol of the analog to digital converter and make the data usable 
by the microcontroller. If the analog to digital converter is built into the microcontroller then 
we might not have to write a low level driver as it may include functionality to interpret the 
input on the chip. Either way we will have to write a high level driver to be able to save 
data from the analog to digital converter in a usable memory space as a usable data type. 
Ideally our processor will have enough memory to store all of our samples without needing 
external memory as that will add added complexity. The samples will be saved for the next 
fourier transform simultaneously as the current set of samples is being processed. This 
will require twice the memory but will  allow us to continuously sample the input and not 
have to sample, process, sample, process etc. This could make it miss new notes or when 
a note ends etc. while the block of samples is being processed. The samples must be 
saved in blocks at least large enough to recognize our lowest required notes. 
 
The goal of the Fourier transform section is to convert the digital signal from the time 
domain to the frequency domain. This is so that we can process the frequencies and 
determine the notes being played. The fourier transform section first adds zeros into the 
set of samples to pad the signal and provide a higher resolution in the frequency domain. 
This will allow us to more accurately identify the bandwidth of peaks and the magnitudes 
of peaks in the frequency domain. The implementation of the fourier transform algorithm 
is a fast fourier transform similar to the Cooley-Tukey Fast fourier transform. This will be 
done using the most efficient means possible to improve calculation speeds, so using 
bitwise manipulations for instance rather than higher level abstractions that require more 
data and time. This will result in an array of frequencies and their magnitudes. In the next 
section we take our input that is now in the frequency domain and analyze it to determine 
what notes are actually being played by the input instrument. The first and most easy thing 
to do is to filter any frequencies below a low magnitude threshold. This will get rid of any 
frequencies that have a magnitude so low they are irrelevant so they do not affect our 
analysis in any way. 
 
After this the magnitudes will be normalized to accurately represent the input magnitudes 
of the frequencies. After this we filter out frequency bands that have a large Q factor with 
no largely defined peak. With an instrument, the played note will have a very defined 
frequency without a large amount of fluctuation so the peaks will have a very small Q 
factor. So any frequency bands with a low Q factor will be very unlikely to be a note and 
instead be noise or unwanted resonance. Finally, we should be left with  any defined 
frequency peaks and we can determine the musical note(s)  being played. These up to six 
output notes will be constantly kept in an easily accessible space in memory like a register 
for instance so they can be consistently be output as a stream to our MIDI and usb outputs. 
Finally we have our output section of the software. In this section we need to take the 
notes we determined that were being played and output them via a MIDI protocol through 
both a MIDI and a USB output. To do this we need to write a driver to convert the data to  
the MIDI protocol and possibly for the USB as well depending on the functions of our USB 
controller. 
 



 

 
 

Figure 6.1:Software block diagram. 

 

6.1. FFT Implementation and Frequency Spectrum 
 
It is possible to use an FFT algorithm for complex inputs to obtain a transform for real-
valued inputs. The result of doing this is a transform with double the points of the 
underlying complex transform.[31] The MCU’s DSP coprocessor is designed to only 
perform complex FFTs, so we will use this trick to efficiently perform the FFT. Another 
thing to notice is that a normal FFT across the entire frequency range that we are working 



 

with is very inefficient because there is plenty of unneeded density at the high frequencies. 
A more efficient method would be to split the FFT into two parts, an FFT with half the 
bandwidth and half the points, and another FFT with half the bandwidth and a small 
number of points that covers the high frequencies. This can be repeated for every octave, 
giving a total of 10 FFTs. If we use 64 points for every octave, then we have a much faster 
algorithm, similar to a 640-point FFT. 
 
To be able to do this, the signal buffer must be split into 10 buffers, with each successive 
buffer holding every other sample of the previous buffer. Also, the digital signal must pass 
through a low-pass filter before being added to the other buffers. This eliminates aliases 
that will arise due to undersampling. 
 

6.2. Note, Magnitude, and Effects Determination 
 
The note determination algorithm using the frequency spectrum given by the FFT is nearly 
entirely composed of filtering out unwanted frequencies. By the end of this algorithm, there 
will ideally only be frequency peaks remaining that represent the notes input by the user 
via their instrument. The inputs of this algorithm are the frequency spectrum array which 
is an array of magnitudes correlating to frequencies in order from our lowest frequency to 
our highest frequency detected by our FFT. The space between these magnitude values 
is all the same in Hz so there does not need to be another array for the correlating 
frequencies of the magnitudes. Instead, the index of the value in the magnitude array and 
the space between the frequency can be multiplied and added to the offset of the first 
frequency, to give the frequency of that specific magnitude bin. This saves room in 
memory and possibly can save time required to access memory every time we need this 
information. Other values used in the algorithm are a slope value used to determine an 
approximate Q factor threshold as well as a magnitude threshold to filter out low magnitude 
noise and harmonics. We also will have an array referring to either the indices or memory 
locations of the magnitude bins that correlate to the actual frequencies of the 12 tone 
music system, along with a few temporary arrays for calculations. With this relatively small 
amount of information on top of the frequency spectrum we will be able to process and 
determine the notes, relying mostly on our algorithm. 
 
The algorithm goes through several different stages before the final notes can be 
determined. The first stage filters out all frequencies with low magnitudes that are 
irrelevant and clearly not a played note. The next stage normalizes the magnitude of the 
transform to properly represent the unit sine wave and  also scale the input magnitudes to 
more properly represent the magnitude of the notes being played. Then the next stage 
goes through each detected peak and estimates the Q factor by finding the average slope 
of the peak. If the peak has a low Q factor then it is not a clearly defined note and is 
removed. Then we have another stage that removes harmonics of fundamental 
frequencies. Finally only the notes being played should be remaining and the defined 
semi-tones closest to the peaks’ frequencies are output to the MIDI drivers. 
 
The first stage is by far the most simple in both theory and implementation. All that needs 
to be done is loop through each of the indices in the magnitude array and compare the 
value to that of the magnitude threshold we set. If the value of the  magnitude is less than 
that of the threshold, remove the value by setting it to zero. This threshold value is not 
something that we can calculate easily but rather something that will require testing to 
determine. Theoretically, this will remove any magnitudes and frequencies that are a result 



 

of low magnitude resonance, noise, and harmonics. This should help clean up the signal 
and leave only significant frequencies such as large resonance as a result of an 
instruments design such as an acoustic guitar, or some harmonics which will have much 
higher peaks than noise. 
 
The second stage is similar to the first stage in that it is linear, and in fact it is technically 
done at the same time while looping through the indices of the magnitude array. This stage 
is also simple and all that needs to be done is multiply (or divide) each magnitude by a 
factor after the previous stage. This factor is determined based on the sample rate and 
amount of samples. This is necessary because a normal discrete fourier transform does 
not account for magnitude normalization and gives magnitudes not representing the 
magnitudes of the input waves. For instance, if a discrete fourier transform had for instance 
8 cycles of a wave in one sample buffer, then it would add the magnitude of that wave 8 
times over, greatly exaggerating it. After this stage is complete we now have no low 
magnitude noise and an accurate representation of the remaining magnitudes.  
 
Figure 6-2 shows a discrete fourier transform of the function: 
 

𝑋(𝑡)  =  10𝑐𝑜𝑠(2𝜋100𝑡) + 20𝑐𝑜𝑠(2𝜋200𝑡) + 30𝑐𝑜𝑠(2𝜋300𝑡) 

 

Using a sample rate of 800 Hz, 800 samples, and 4000 zeroes padded and not 
normalized. 
 

 
 

Figure 6-2: DFT example 1 
 

 
As you can see, the magnitudes are far off from the input magnitudes of 10, 20 and 30. 
Figure 6-3. shows the normalized version of the same discrete fourier transform and 

input function. 

 



 

 
 

Figure 6-3: Normalized version of DFT example. 
 

The third is the Q factor based filtering. Depending on the instrument and input method, 
there may be many different peaks that are large in magnitude that aren’t notes played by 
the user on their instrument. This can come from resonance, or very loud noise. 
Resonance and overtones like these are usually what defines an instruments timbre and 
sound characteristics. These are not only not necessary to convert the signal to MIDI 
protocol, but detrimental since we don’t want to recognize anything but the fundamental 
frequency of the note played. These peaks of frequencies will typically have a much 
smaller Q factor than the fundamental frequency. This is something that we will take 
advantage of so that we can remove these leaving us with only the fundamental 
frequencies. To do this we loop through every semitone in our detectable range of 
frequencies. In this loop, we find the peak in the range of halfway between the semitone 
before and after the current one. Then we find the average slope based on several bins 
before and after the peak and compare it to our threshold. If the slope is too low to be 
considered a note then the peak and closest bins have their magnitude set to zero. In 
Figure 6-4. it can be seen that there are several wide peaks other than the obvious peak 
at about 300 Hz. The 300 Hz is the fundamental frequency of a plucked guitar note and 
the low Q factor peaks are from resonance of the guitar. These are exactly the type of 
peaks that this stage of the algorithm is going to filter out. 
 



 

 
 

Figure 6-4: Q Factor based filtering example. 

 
The fourth stage is the most difficult and one of the most important. This stage deals with 
determining the fundamental frequencies given a frequency spectrum with many 
harmonics. This is very important because basically every acoustic instrument will create 
harmonics of the fundamental frequency and often these will have a very sharp peak and 
often very high magnitude on a frequency spectrum. Often these harmonics can even 
have a higher peak than the fundamental frequency itself. This means that we have to 
remove these harmonics otherwise they will be detected as notes by our algorithm. 
Harmonics are always multiples of the fundamental frequency, making them easy to find 
but are still difficult to remove. This is especially because different simultaneous notes 
might have overlapping harmonics and can cause issues in the magnitudes of some of 
the harmonics. There are some very complicated methods of trying to remove harmonics 
including analysis in different spectrums such as the cepstrum analysis which includes 
multiple layers of scale changes and transforms. The issues with this is that it would take 
way too much processing to be able to feasibly do it in real time. Instead we will have to 
compromise and use a more simple, but less accurate method. This method is called the 
harmonic product spectrum. This transform/method utilizes the fact that harmonics are 
multiples of the fundamental frequency.  
 
It works by dividing the frequency spectrum by ½, ⅓, ¼ and so on. This will cause the first, 
second, third, and so on harmonics to move down to another multiple of the fundamental. 
For instance if you divide the first harmonic, which is the twice the fundamental, by two, 
you get the fundamental. Then you take these divided frequency spectrums and multiply 
them all. This will cause higher harmonics to be completely canceled by 0’s since say 5 
kHz would be moved down to 1 kHz and if there is no 25 kHz to “replace” the 5 kHz it will 
leave a magnitude of zero in its place. This will cancel out a lot of higher harmonics and 
leave the fundamental with the highest peak in the new spectrum. This works because the 
fundamental frequency is a common denominator of the harmonics and dividing the 
harmonics leaves you with the fundamental. In implementation, there will be the original 
frequency spectrum, a temporary copy of it, and the new spectrum to be used as the 
harmonic product spectrum. The temporary spectrum will be populated by iterating 
through the original spectrum and dividing each frequency by ½ to start with and filling the 
closest frequency bin to ½ of the frequency divided from. The harmonic product spectrum, 
which starts as a copy of the original spectrum, is then multiplied through iteration by the 



 

temporary divided spectrum. This is then repeated for dividing by ⅓, ¼, and so on until 
the 5th harmonic. Any point past then is unnecessary as the magnitude will most likely be 
negligible. After all of this, we now have a finished harmonic product spectrum in which 
we can do our final analysis on. 
 
The very last stage is where the algorithm filters the harmonic product spectrum by 
magnitude and results in the final determined notes. The remaining peaks which are the 
actual played notes at this point, and then assigns them to their closest semi-tones. This 
is simply done by checking the semitone bin lower than the peak and seeing if it is closer 
than the semitone bin above the peak.This is done up to six times to choose the six 
maximum notes played at a time. If there are more than 6 notes detected, the 6 of highest 
magnitude are converted to MIDI 
 
The implementation of these stages and the algorithm as a whole can be seen in fig. 6-4. 
In implementation there are many loops since many different bins of data must be dealt 
with. Fortunately, nearly all of these computations are in linear time, so it will have a small 
amount of latency as compared to the FFT which will be the majority of our latency.  
 



 

 



 

 
Figure 6-5: Note detection Algorithm Flowchart. 

 

7. Testing and Prototype Selection 
 
Test 1: Sine Wave Detection 
 
Equipment: 

- Function Generator 
- ¼” Cable 
- XLR Cable 

 
 

Step Description Pass Condition 

1 Set up the MIDI Translation Device so that you can see its 
output. 

- 

2 Attach the function generator to the ¼” input jack of the MIDI 
Translation Device, making sure to send the signal through 
the tip of the cable and attach the sleeve to ground. 

- 

3 Generate an 82.4 Hz sine wave with the function generator. Output of E2 



 

Observe the output from the MIDI Translation Device. 

4 Generate a 196 Hz sine wave with the function generator. 
Observe the output from the MIDI Translation Device. 

Output of G3 

5 Generate a 440 Hz sine wave with the function generator. 
Observe the output from the MIDI Translation Device. 

Output of A4 

6 Generate a 523.25 Hz sine wave with the function generator. 
Observe the output from the MIDI Translation Device. 

Output of C5 

7 Generate a 1318.5 Hz sine wave with the function generator. 
Observe the output from the MIDI Translation Device. 

Output of E6 

8 Disconnect the function generator from the ¼” input jack of 
the MIDI Translation Device. 

- 

9 Connect the function generator to the XLR input jack of the 
MIDI Translation Device, making sure to connect the function 
generator output 1 to pin 2 of the XLR jack, output 2 to pin 3, 
and attach pin 1 to ground. 

- 

10 Generate an 82.4 Hz sine wave on channel 1 of the function 
generator and the same sine wave phase shifted 180 
degrees on channel 2 of the function generator. Observe the 
output from the MIDI Translation Device. 

Output of E2 

11 Generate an 196 Hz sine wave on channel 1 of the function 
generator and the same sine wave phase shifted 180 
degrees on channel 2 of the function generator. Observe the 
output from the MIDI Translation Device. 

Output of G3 

12 Generate an 440 Hz sine wave on channel 1 of the function 
generator and the same sine wave phase shifted 180 
degrees on channel 2 of the function generator. Observe the 
output from the MIDI Translation Device. 

Output of A4 

13 Generate an 523.25 Hz sine wave on channel 1 of the 
function generator and the same sine wave phase shifted 
180 degrees on channel 2 of the function generator. Observe 
the output from the MIDI Translation Device. 

Output of C5 

14 Generate an 1318.5 Hz sine wave on channel 1 of the 
function generator and the same sine wave phase shifted 
180 degrees on channel 2 of the function generator. Observe 
the output from the MIDI Translation Device. 

Output of E6 

15 Disconnect the function generator from the XLR input jack. - 

 
Table 7.1 Sine Wave Detection Test 

Test 2: Power Test 



 

 
Equipment: 

- Digital Multimeter (DMM) 
- 9V power supply with barrel jack cable termination 
- 5V USB power Supply 
- USB cable 

 

Step Description Pass Condition 

1 Plug the 9V power supply into the barrel jack of the MIDI 
Translation Device. 

- 

2 Set the DMM to read voltage. Touch the leads to the GND 
and 9Vin test points and check the reading. 

9V 

3 Touch the DMM leads to the GND and +9V test points and 
check the reading. 

6.7V - 9V 

4 Touch the DMM leads to the GND and Vcc test points and 
check the reading. 

5V 

5 Touch the DMM leads to the GND and 3.3V test points and 
check the reading. 

3.3V 

6 Touch the DMM leads to the GND and 48V test points and 
check the reading. 

48V 

7 Unplug the 9V power supply from the device. Plug in the 5V 
USB power supply to the USB port of the device. 

- 

8 Touch the DMM leads to the GND and 5Vin test points and 
check the reading. 

5V 

9 Touch the DMM leads to the GND and Vcc test points and 
check the reading. 

5V 

10 Touch the DMM leads to the GND and 3.3V test points and 
check the reading. 

3.3V 

11 Touch the DMM leads to the GND and 48V test points and 
check the reading. 

48V 

12 Unplug the 5V power supply from the USB port of the device 
and turn off the DMM. 

- 

14 Generate an 1318.5 Hz sine wave on channel 1 of the 
function generator and the same sine wave phase shifted 
180 degrees on channel 2 of the function generator. Observe 
the output from the MIDI Translation Device. 

Output of E6 

15 Disconnect the function generator from the XLR input jack. - 



 

 
Table 7.2: Power Test 

 
 

8. Administrative Content 
 
During Senior Design 1, most of the milestones have to do with documentation deadlines 
rather than actual testing, implementation, etc. In Senior Design 2 we will be implementing 
and testing our design. See Tables 8.1 and 8.2 below for details. 
 

Senior Design 1 
 

No. Task Deadline Status 

1 Pick Project Idea, Assign roles  5/22/2020 Completed 

2 Initial Project Documentation- Divide and 
Conquer 

5/29/2020 Completed 

3 Updated Divide and Conquer document 6/5/2020 Completed 

4 60 page draft 7/3/2020 Completed 

5 100 page draft 7/17/2020 Completed 

6 120 page Final Document  7/28/2020 In Progress 

7 Breadboard testing  7/28/2020 Not Started 

8 Begin ordering parts 7/28/2020 Not Started 

 
Table 8.1: Senior Design 1 Milestones 

 

Senior Design 2 
 

No. Task Deadline Status 

1 Implemented Note Detection & Test Software 8/18/2020 Not Started 

2 Finish first draft of drivers 8/18/2020 Not Started 

3 Testing Parts  8/25/2020 Not Started 

4 Possible Redesign 9/15/2020 Not Started 

5 Finalized Design 10/6/2020 Not Started 

6 Final Prototype working  11/17/2020 Not Started 



 

7 SD Showcase TBA Not Started 

 
Table 8.2: Senior Design 2 Milestones 

  



 

Appendix A: Glossary of Music Terminology 
 
 
Digital Audio Workstation (DAW) 
 A computer program or digital device used to record and edit music. 
 
12-Tone Equal Temperament 
 A musical pitch system that divides octaves into twelve pitches that are equally 
spaced on a logarithmic scale 
 
Pitch 
 Frequency of a note in Hertz, usually notated with a letter and octave number (ex. 
A2 or C3) 
 
Octave 
 Range of pitches from one note to the next note of the same name or from a note 
of pitch n Hertz to 2n Hertz (ex. From A2 to A3 or 110 Hz to 220 Hz) 
 
Portamento 
 Smooth glide transition from one note to another 
 
Sustain 
 Holds musical note until sustain is released 
 
Sostenuto 
 Sustain that only affects notes played at the time that sustain is activated 
 
Legato 
 Smooth, even, connected note style 
 
Attack 
 Beginning of a note, time it takes for a note to reach maximum amplitude 
 
Decay 
 Ending of a note, time it takes for a note to soften and end after it is released 
 
Reverb 
 Reverberation echo effect 
 
Tremolo 
 Trembling effect, adjusts amplitude of signal up and down 
 
Chorus 
 Effect where an additional note is played at approximately the same pitch and with 
approximately the same timbre 
 
Phaser 
 Effect where a filter is applied to produce peaks at different frequencies of the 
signal 



 

 
Detune 
 Effect that puts a note out of pitch 
 
Omni-Mode 
 Mode where MIDI device is listening for incoming signals on any MIDI channel  
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