
LookSee Surveillance
Robot

Stavros Avdella, Austin Pena,

Tyler Wallace, Jade Zsiros

University of Central Florida, Department of
Electrical and Computer Engineering,

Orlando, Florida, 32816, U.S.A.

Abstract - Current surveillance technology is
growing rapidly more advanced as cameras
improve in quality and computer vision
algorithms become more reliable. However,
variation within the field is relatively limited, and
surveillance options do not exist for all use cases.
As a low-cost alternative to a network of security
cameras or a team of human security guards, we
propose LookSee, a small robot that can wander
an empty home or business, and call for help if an
intruder is detected. LookSee navigates using the
follow-the-gap behavioral navigation algorithm,
and detects people using NIVIDA’s built in deep
learning libraries. All of this is managed by ROS
(Robot Operating System).

Index terms: robotics, reactive paradigm, computer
vision, follow the gap, surveillance

A photo of LookSee.

Introduction

LookSee is a low-cost, consumer-level surveillance
robot intended to patrol an indoor area for the
purposes of a small business. Many small grocers and
offices would like the security of knowing that their
building is safe during hours when regular employees
are not there, but cannot afford to hire a night guard
or install an expensive camera system. LookSee will
be able to be purchased, removed from the box, and
used with minimal setup time for less than 1000
dollars.

LookSee can autonomously patrol indoor facilities
when no employees are present and detect human
intruders. If an intruder is detected, LookSee begins
a video call with an emergency contact, who can
attempt to communicate with the intruder through the
onboard microphone and speakers. A desktop
interface will be available for use by the emergency
contact.

Our group had two primary considerations in mind
for the design of this project: a focus on our
individual specific career interests, and achievability
without physical contact with one another. Due to the
COVID-19 pandemic, we were separated for almost
the entirety of the project. We selected parts that were
either easily attainable or already in our possession,
as many of the parts we initially selected were out of
stock or unable to be shipped. We designed the robot
to have four discrete components: the electrical
system, the computer vision system, the navigation
system, and the user interface, so that each of us
could develop independently and integrate our
components late into the project.

Mechanical Construction

The construction of our robot consisted of 3D printed
parts that were used to mount all of our components.
The base plate is a filament printed DonkeyCar base
plate made specifically for our RC car. Using a resin
printer we made a mount for the Jeston Nano to be
mounted on it as well as mount on the top for Lidar.

Electrical Design

A. PCB

For our PCB, we have designed a driver that has
multiple inputs for all the motors and servos we have.
The processor for this PCB is a PCA9685 chip that is
an I2C-bus controlled, 16-channel controller. The
chip is mainly used for LED applications, as it is
capable of pulse-width modulation (PWM) to reduce
the power delivered by an electrical signal. We use
this technology to control the amount of power
delivered to our motors and servos. This is an
essential part of the project, since we want to have no
delay in our motor output commands. If our
microprocessor had handled this, there would be
output delays.

 We designed the PCB using Autodesk EAGLE.
We laid out the parts and components we needed, and
then put it on a board to lay out our components and
wires. The manufacturer of our PCB was JLCPCB.

 The primary processor of this robot is the Jeston
Nano. The PCB we made acts as the Jetson’s nervous
system, responsible for all motor commands and
functions.

B. Sensors

LookSee has a large variety of sensors to facilitate its
several functions. All of them are connected directly
to the Jetson.

The web camera on our robot is used by ROS, and
has a dedicated topic that all other nodes can see. It is

used by both the computer vision code, which detects
human intruders, and the user interface camera,
which shows the video stream.

Because our video call software. Jitsi Meet, requires a
dedicated camera and cannot draw from the ROS
topic, we have an additional webcam on the robot
that is used only for the video call. It does not serve
as a sensor otherwise.

The LiDAR we selected, the RPLIDAR A1M8, is
also connected directly to the Jetson. We use it for
navigation. We discussed using both the camera and
LiDAR to navigate, but ultimately decided that since
the intention of the robot is to navigate a space that
should be largely devoid of obstacles, a reactive,
LiDAR-only algorithm would suffice. The unit we
selected takes scans only in two dimensions, one at
each of 360 degrees. We selected this LiDAR unit
primarily because of cost. It has served us immensely
well.

The thermal camera we selected was initially picked
for its compatibility with the Raspberry Pi, rather
than its ability to integrate in with ROS. After the
header was soldered (and tested for continuity) we
proceeded onward. Though upon a shift to the
NVIDIA Jetson Nano the library warned that the
sensor may be potentially damaged by the given
library. Though we searched for an alternative
solution to this issue, it appeared that despite the few
libraries that existed; the issue lay with the Melexis
library and EEPROM corruption. (Which contains
unique calibration parameters to the sensor.) So if the
values are corrupted, it damages usability of the
device. Additionally, the lack of integration with
ROS discouraged us from pursuing it in the final
iteration of our project.

Software Design

A. System Structure

The Jetson Nano hosts all the required software for
operation of the platform. There are two main
workspaces, the catkin_ws which hosts all the ROS
code and the webpage_ws which hosts all the
dashboard code.

The catkin_ws has a `src` folder where all the
relevant code to our project is. The `src` folder is
organized into packages, both third party and
packages we wrote ourselves. The custom packages
include robot_bringup (contains required files to
launch the robot), robot_control (contains required
files to control the robot's movement), robot_msgs
(contains all custom msgs, actions, and services),
laser_values (contains code to receive LIDAR data
and follow the gap algorithm). The third party
packages we used are RPLIDAR (used for receiving
LIDAR data and publishing to a topic), i2cpwmboard
(used for communicating with the servo driver), and
ros_deep_learning (used for image detection).

The webpage_ws hosts all the code related to the
dashboard. It contains a HTML and Javascript file
responsible for creating the entire dashboard. The
HTML file loads the roslibjs library, VueJS, and
TailwindCSS all from their respective CDN’s. The
Javascript file contains all the Vue code which makes
the calls to the ROSBridge JSON API and controls
the interactive joystick created in Vue.

On a normal run, several pieces of software must be
started. The first is ROS itself, which allows all of the
other launch files to be used. Next is the web server,
which allows the robot to receive commands over a
web page interface. After that, robot_bringup is
called, which initializes the camera and LiDAR
sensors, as well as the camera detection node. From
there, the phone call software is turned on, as well as
the navigation node, which utilizes the LiDAR that
was initialized in robot_bringup.

Each of these nodes fall almost entirely into two
separate systems. The intruder detection system starts
with the camera, which publishes image data to ROS.
The detectnet node subscribes to this image data and
uses it to scan for recognizable objects each time the
camera refreshes. If an object is detected, information
about that object is written to the detectnet/detections
topic. The alert node subscribes to the
detectnet/detections topic, and scans each detection to
determine whether the detected object was a person.
If it is, the alert node sends a text message to the
currently designated human user with an invite to a
video call.

The other system is navigation. The navigation
system consists first of the LiDAR, which publishes
scan data that is read by the navigation node. The
navigation node processes this data and uses it to
make Twist messages, a type of movement command
data utilized commonly in ROS applications. The
other type of navigation is achieved through the web
server, which contains a virtual joystick the user can
use to drive the robot remotely.

B. ROS

The Robot Operating System, or ROS, is a free and
open-source software that runs on Unix-based
operating systems, primarily Linux. It uses a
publisher-subscriber model to facilitate
communication between user-written code, sensors,
and output devices. LookSee is built to use ROS as
the structure that ties the above modules together.

C. Computer Vision

Object detection using computer vision was done
using NVIDIA’s DetectNet node which is built on
TensorFlow and uses TensorRT for optimization.
When looking for different solutions we used a
Google research paper that compared and contrasted
the different neural network architectures based on
performance [1]. We found that the combination of
the SSD and mobilenet architectures was the most
lightweight and performant pre-trained model that fit
our accuracy and performance requirements. The
Single Shot Detector using the MobileNet for feature
extraction performed the best when it came to the
accuracy metric mean average precision (mAP) and
GPU time in milliseconds for each model. We ended
up using the Single Shot MobileNet v2
(ssd_mobilenet_v2) which has been trained on the
COCO (Common Objects in Context) dataset. It was
able to accurately detect a person just by their legs,
arms, torso, head, etc along with additional objects.

Mean Average Precision (mAP) of Different CNN Architectures

[1]

GPU Time Measurement of Different CNN Architectures [1]

The NVIDIA ROS integration of the detectnet
software provided the detections and the output video
as topics in ROS that other code could subscribe to.
This allowed for a simple and seamless
implementation.

D. Navigation

a. Reactive paradigm

LookSee is designed with the Reactive Navigation
paradigm in mind. Reactive navigation uses
immediate sensor input to decide the corresponding
driving command given the environment and decision
making parameters. These set cases should wholly
manage the swath of conditions the robot may
encounter in the surrounding world.

We considered using a more robust hybrid
architecture such as HectorSLAM. However, we
ultimately decided that as the robot is seeking
intruders anywhere in a building, a “roaming”
behavior pattern is completely adequate for this use
case, and could improve the security of the system
due to its semi-random drive pattern. Additionally,
we implemented the Follow the Gap algorithm with
our own code, while implementation of any kind of

mapping algorithm would have likely involved
mostly downloading prewritten code online.

b. Follow the Gap

LookSee was initially conceived with the concept
that we should seek the largest gap (Find the Gap)
between two objects, (eg. a wall, and a hallway) and
by virtue of the sensor readouts having the largest
discrepancy in range there existed some gap for us to
proceed towards and navigate through. Although
simple in concept it seemed fairly robust. This,
however, has quite a few pitfalls for our particular
use case. Chiefly, it doesn’t account for
non-holonomic use cases. When controllable degrees
of freedom are equal to the total degrees of freedom,
it is perfectly acceptable to make a linear pursuit
towards a point, and then adjust to the next desired
position. To conceptualize, you can think of the
difference between how a car might parallel park in
comparison to a Roomba or Turtlebot would parallel
park.

 Intuitively, heading for the longest possible distance
readout between the widest gap available seems
great. However, this also fails to account for the
width of the car, and how closely you may be cutting
near a wall. In order to prevent the robot from
crashing into the corners of nearby objects we
initially thought that by simply extending the wall of
the nearest point to by a bubble (an inflated size
increased by the radius of the robot) would solve our
issue, effectively preventing any bumps into the
nearest object but this turned out to rather ineffective.
Better yet, it was decided we should translate all
readouts into the configuration space of the robot; all
discrepancies would flag LookSee to overwrite the
nearest distance value over the further distance value,
effectively identifying walls (via the existence of a
discrepancy) and also every obstacle would have a
bubble and effectively have an equivalent
representation where our robot is now just a point
object. Meaning if our point robot representation can
fit through two inflated obstacles, we are effectively
sure that the car will pass the obstacle. In order to
solve this for our particular case, a set amount of
angle ranges (equal to roughly radius of the robot)
would be zeroed in a safety bubble adjacent to any

discrepancy greater than half a meter as identified by
our lidar. From this new filtered array the furthest
point from the robot is chosen as the goal. Then, the
steering angle is set towards that point and the
vehicle is driven in that direction.

c. LiDAR Logic Visualization

The find-the-gap code classifies and moves points in
several stages. In order to better understand the logic
behind the algorithm, as well as debug, a visualizer
was written to display the points at each stage of the
algorithm, color-coded by their purpose to the robot.

The visualizer was written using GLUT, the OpenGL
Utility Toolkit, which allowed the graphics to be
published to the screen inline with the rest of the
code.

This is an example visualization. It shows the points
that have been detected by the LiDAR. The black
points are walls, the red points are potential driving
goals, and the blue point is the goal that the robot
would select if it were driving at the time of this
screenshot.

E. User Interface

ROSBridge is a ROS component that creates a JSON
API for a ROS system so non-ROS programs can
interact with it.

We used ROSBridge and utilized the exposed API
using roslibjs, a javascript library for making ROS
API calls.

A frontend dashboard was created using VueJS and
TailwindCSS which made calls to the exposed
ROSBridge API through roslibjs. A joystick was
created using VueJS which published ROS Twist
messages to the robot_driver node with a
corresponding velocity and angle component. This
can be used to control the motion of the robot.

The web page is hosted using a python SimpleHTTP
server and is accessed by visiting the IP address of
the robot and the exposed port on an external device
connected to the local network. Then the UI connects
to the ROSBridge API by providing it with the
ROSBRidge address URL which is automatically
filled in for you. Once connected the controls and
video feed appear and allow you to control the robot.

The original plan was to use LIGHTTPD web server,
but as responsibilities were shuffled around on the
team, one member discovered ROSBridge and
realized that the available virtual joystick it provides
would be much preferred to the buttons that would be
necessary if the other web server was chosen.

The idea with the web server interface is to allow the
human user to take over driving of the robot if they
see something that they would like to investigate on
the camera feed. For example, if the human user is
watching the robot over video, and notices that a
piece of furniture has been knocked over, they can
take over manual driving to find the source of the
problem. If the user stops using the virtual joystick,
autonomous driving will resume one minute later.

F. Phone Call Interface

Two pieces of proprietary software have been
selected to facilitate our video call interface: Jitsi
Meet and Twilio. Jitsi Meet is an open-source video
call software that can run easily on a Raspberry Pi,
which was the first computer we were using, and
Twilio is a professional programmable phone
autodialing service. LookSee has its own phone
number through Twilio, (508)-452-6291, and when

an intruder is detected, it will text the user to invite
them to a video call. It does this a maximum of one
time per two minutes. This was achieved through a
ROS node programmed in Python that listens to the
image detection topic.

At this point, LookSee does not make phone calls.
This was a tradeoff that ultimately required us to
sacrifice some functionality. In order to send the user
the link to the video meeting, a text message simply
had to be used. A phone call from the robot would be
more intrusive, and therefore more useful, but would
not allow the ease of being able to click a link. The
original plan for the robot was to use the Skype
developer API, which allows direct video calling, but
since its capability on Linux operating systems is
limited, we decided to prioritize the stability offered
by Jitsi Meet and Twilio.

Conclusion

A. Lessons Learned

We faced many challenges of various degrees over
the course of the construction of this robot. The
biggest challenges we believe were most informative
are detailed below.

The most obvious challenge was that this robot was
constructed amid the 2020 COVID-19 pandemic. The
members of this team met exactly one time in person,
and all other development was achieved by writing
code on separate computers and sending over email,
or passing the robot from member to member. Each
member had possession of the robot one time, with
the exception of Tyler Wallace, who had it twice.
During this time with the robot, each member had to
effectively make certain that their component was
ready and complete, under the assumption that they
would get no more development time.

We would absolutely never recommend that any
other team do this. We were able to achieve the base
version of the robot that we originally envisioned, but
only because we carefully planned out exactly who
would be responsible for each component, and
designed the project with minimal codependency in
mind. Even then, responsibilities shifted over the

course of the project, and the order that components
were added to the robot was not necessarily intuitive.

Unrelated to the pandemic, we learned that the
Raspberry Pi 4 was inadequate for the processing
requirements of this robot and had to switch to an
Nvidia Jetson Nano. The Nano was a very good piece
of equipment that served us well, but did cause some
logistical issues because the entire team had been
developing software on Raspberry Pi 4s up until that
point. The change in Linux versions after the
selection of components was not at all ideal.
However, ultimately, the change was more than
worth it. The robot is able to run several very
intensive software processes simultaneously.

An original plan we had for the robot was to identify
human intruders using a combination of computer
vision and thermal vision. The idea was to identify
potential locations where a human could be in an
image, and seek the temperature reading at the
corresponding location to improve the estimate of
whether a human was there. This turned out to be
completely unnecessary. The deep learning ROS
node we are using had better than 95% accuracy at
detecting people, and only had trouble if a person
passed within one foot of the camera. There was no
need to verify the camera results with thermal data.

B. Results

The robot performs extremely well under ideal
conditions. However, not all conditions are ideal.
This section details the actual performance of each
component of the robot.

Computer Vision. The object detection on this robot
is effectively perfect. During testing, it was only
unable to recognize a person if that person was within
one foot of the camera. However, it would
occasionally recognize objects that are typically
associated with people, such as shoes, and raise an
intruder alert falsely. In a business setting, where
shoes are unlikely to be laying around, this would
probably not be a problem.

Computing Power. The Jetson’s computing capacity
is entirely adequate to run all of the software

components with no significant slowdowns or
bottlenecks. However, running all software
components will cause the robot to overheat within
30 minutes, usually around 20. Without running the
computer vision nodes, the Jetson can run effectively
indefinitely with no cooling problems. For a
commercial version of LookSee, a more robust heat
management system would be absolutely necessary to
be able to run LookSee at its intended duration.

Navigation. The Follow-the-Gap algorithm was
immensely successful. LookSee can drive around a
room with a changing layout as long as its batteries
allow without getting stuck or running into anything,
and we haven’t found a configuration of walls that
causes it to be unable to continue driving. However,
the navigation computation does have a little bit of
lag. Due to the relatively slow speed of the robot, as
well as its constant updating, this is unnoticeable
under normal conditions, but if an obstacle were to be
suddenly dropped in its path, the robot can take up to
3 seconds to react. There are not many situations that
would cause this to be a problem, but those that
would could indeed cause damage to LookSee.

User Interface. The user interface does not have any
severe issues.

Phone Call Software. The ROS node that decodes
the detection data and texts the user when a person is
detected has no issues.

C. Future Development

The concept of LookSee certainly has greater
potential than what is achievable in a single Senior
Design course. We have a few features that, given
more time, we would consider worthwhile to
implement.

Video Backup. The most useful feature for potential
commercial sale of the robot would be to back up key
video footage to internal or external storage for later
review. We didn’t implement this because we
decided to prioritize the components that did not lean
heavily on full robot integration.

Tamper Detection. An original stretch goal for the
project, the installation of a gyroscope would allow
the robot to detect when unexpected movement
happens, such as being picked up, and either begin
recording video, call the user, or both.

Mapping and Route Planning. At this point, the
robot’s reactive behavior suits its use case perfectly
well, but there are some benefits to preplanning a
path. Implementing mapping would allow the robot
to return to a set point at shutdown, and ensure that it
scans all rooms, although it would sacrifice an
element of unpredictability.

Smart Start. Mobile robots require a lot of battery
power, and LookSee is no exception. To stay at its
current price point, a significant increase in battery
capacity is not feasible. To retain battery, a future
iteration of LookSee could drive for a short period at
a set time, and begin driving again either at intervals
or when a noise is heard.

Team Members

Jade Zsiros is a senior Computer Engineering
student at the University of Central Florida. She is a
current Telemetry Engineering Intern at the National
Aeronautics and Space Administration, where she has
been offered a full-time position after her graduation.
She previously worked as an intern at Aerojet
Rocketdyne. At UCF, she was an officer and later
president of the Robotics Club for three years, during
which time she led an autonomous IGVC team and a
prototyping team. She did LookSee’s system design,
phone call software, and worked on the navigation
with Austin.

Austin Pena is a senior Computer Engineering
student at the University of Central Florida. Though
the opportunity to work as a CNC programmer is
available to him. He's hoping to find a more degree
oriented job somewhere sunny with good waves. He
programmed LookSee’s navigation.

Stavros Avdella is a senior Computer Engineering
student at the University of Central Florida. He is
further pursuing his education with a Masters in
Engineering Management. His hopes are to become a

project manager for a hardware development
company. He did the mechanical and electrical design
and assembly for LookSee.

Tyler Wallace is a senior Computer Engineering
student at the University of Central Florida. Tyler
works part time for University of Central Florida as a
full stack web developer and is pursuing jobs in the
fields of software development and robotics. He
programmed the web server, web site, and
implemented the computer vision for LookSee.

References

[1] Jonathan Huang and Vivek Rathod and Chen Sun
and Menglong Zhu and Anoop Korattikara and
Alireza Fathi and Ian Fischer and Zbigniew Wojna
and Yang Song and Sergio Guadarrama and Kevin
Murphy, . "Speed/accuracy trade-offs for modern
convolutional object detectors". CoRR
abs/1611.10012. (2016).

[2] Nathan Otterness. “The ‘Disparity Extender’
Algortihm, and F1Tenth”. Web. 2019.

