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Abstract - Current surveillance technology is 
growing rapidly more advanced as cameras 
improve in quality and computer vision 
algorithms become more reliable. However, 
variation within the field is relatively limited, and 
surveillance options do not exist for all use cases. 
As a low-cost alternative to a network of security 
cameras or a team of human security guards, we 
propose LookSee, a small robot that can wander 
an empty home or business, and call for help if an 
intruder is detected. LookSee navigates using the 
follow-the-gap behavioral navigation algorithm, 
and detects people using NIVIDA’s built in deep 
learning libraries. All of this is managed by ROS 
(Robot Operating System). 
 
Index terms: robotics, reactive paradigm, computer 
vision, follow the gap, surveillance 
 

 
A photo of LookSee.  

 
Introduction 
 
LookSee is a low-cost, consumer-level surveillance 
robot intended to patrol an indoor area for the 
purposes of a small business. Many small grocers and 
offices would like the security of knowing that their 
building is safe during hours when regular employees 
are not there, but cannot afford to hire a night guard 
or install an expensive camera system.  LookSee will 
be able to be purchased, removed from the box, and 
used with minimal setup time for less than 1000 
dollars. 
 
LookSee can autonomously patrol indoor facilities 
when no employees are present and detect human 
intruders.  If an intruder is detected,  LookSee begins 
a video call with an emergency contact,  who can 
attempt to communicate with the intruder through the 
onboard microphone and speakers.  A desktop 
interface will be available for use by the emergency 
contact. 
 
Our group had two primary considerations in mind 
for the design of this project: a focus on our 
individual specific career interests, and achievability 
without physical contact with one another. Due to the 
COVID-19 pandemic, we were separated for almost 
the entirety of the project. We selected parts that were 
either easily attainable or already in our possession, 
as many of the parts we initially selected were out of 
stock or unable to be shipped. We designed the robot 
to have four discrete components: the electrical 
system, the computer vision system, the navigation 
system, and the user interface, so that each of us 
could develop independently and integrate our 
components late into the project. 
 
Mechanical Construction 
 
The construction of our robot consisted of 3D printed 
parts that were used to mount all of our components. 
The base plate is a filament printed DonkeyCar base 
plate made specifically for our RC car. Using a resin 
printer we made a mount for the Jeston Nano to be 
mounted on it as well as mount on the top for Lidar. 

 



Electrical Design 
 

A. PCB 
 
For our PCB, we have designed a driver that has 
multiple inputs for all the motors and servos we have. 
The processor for this PCB is a PCA9685 chip that is 
an I2C-bus controlled, 16-channel controller. The 
chip is mainly used for LED applications, as it is 
capable of pulse-width modulation (PWM) to reduce 
the power delivered by an electrical signal. We use 
this technology to control the amount of power 
delivered to our motors and servos. This is an 
essential part of the project, since we want to have no 
delay in our motor output commands. If our 
microprocessor had handled this, there would be 
output delays.  
  
    We designed the PCB using Autodesk EAGLE. 
We laid out the parts and components we needed, and 
then put it on a board to lay out our components and 
wires. The manufacturer of our PCB was JLCPCB. 
  
    The primary processor of this robot is the Jeston 
Nano. The PCB we made acts as the Jetson’s nervous 
system, responsible for all motor commands and 
functions.  
 

 
 

B. Sensors 
 

LookSee has a large variety of sensors to facilitate its 
several functions. All of them are connected directly 
to the Jetson.  
 
The web camera on our robot is used by ROS, and 
has a dedicated topic that all other nodes can see. It is 

used by both the computer vision code, which detects 
human intruders, and the user interface camera, 
which shows the video stream.  
 
Because our video call software. Jitsi Meet, requires a 
dedicated camera and cannot draw from the ROS 
topic, we have an additional webcam on the robot 
that is used only for the video call. It does not serve 
as a sensor otherwise.  
 
The LiDAR we selected, the RPLIDAR A1M8, is 
also connected directly to the Jetson. We use it for 
navigation. We discussed using both the camera and 
LiDAR to navigate, but ultimately decided that since 
the intention of the robot is to navigate a space that 
should be largely devoid of obstacles, a reactive, 
LiDAR-only algorithm would suffice. The unit we 
selected takes scans only in two dimensions, one at 
each of 360 degrees. We selected this LiDAR unit 
primarily because of cost. It has served us immensely 
well.  
 
The thermal camera we selected was initially picked 
for its compatibility with the Raspberry Pi, rather 
than its ability to integrate in with ROS. After the 
header was soldered (and tested for continuity) we 
proceeded onward. Though upon a shift to the 
NVIDIA Jetson Nano the library warned that the 
sensor may be potentially damaged by the given 
library. Though we searched for an alternative 
solution to this issue, it appeared that despite the few 
libraries that existed; the issue lay with the Melexis 
library and EEPROM corruption. (Which contains 
unique calibration parameters to the sensor.) So if the 
values are corrupted, it damages usability of the 
device. Additionally, the lack of integration with 
ROS discouraged us from pursuing it in the final 
iteration of our project. 
 
Software Design 
 

A. System Structure 
 
The Jetson Nano hosts all the required software for 
operation of the platform. There are two main 
workspaces, the catkin_ws which hosts all the ROS 
code and the webpage_ws which hosts all the 
dashboard code.  



 
The catkin_ws has a `src` folder where all the 
relevant code to our project is. The `src` folder is 
organized into packages, both third party and 
packages we wrote ourselves. The custom packages 
include robot_bringup (contains required files to 
launch the robot), robot_control (contains required 
files to control the robot's movement), robot_msgs 
(contains all custom msgs, actions, and services), 
laser_values (contains code to receive LIDAR data 
and follow the gap algorithm). The third party 
packages we used are RPLIDAR (used for receiving 
LIDAR data and publishing to a topic), i2cpwmboard 
(used for communicating with the servo driver), and 
ros_deep_learning (used for image detection). 
 
The webpage_ws hosts all the code related to the 
dashboard. It contains a HTML and Javascript file 
responsible for creating the entire dashboard. The 
HTML file loads the roslibjs library, VueJS, and 
TailwindCSS all from their respective CDN’s. The 
Javascript file contains all the Vue code which makes 
the calls to the ROSBridge JSON API and controls 
the interactive joystick created in Vue.  
 
On a normal run, several pieces of software must be 
started. The first is ROS itself, which allows all of the 
other launch files to be used. Next is the web server, 
which allows the robot to receive commands over a 
web page interface. After that, robot_bringup is 
called, which initializes the camera and LiDAR 
sensors, as well as the camera detection node. From 
there, the phone call software is turned on, as well as 
the navigation node, which utilizes the LiDAR that 
was initialized in robot_bringup. 
 
Each of these nodes fall almost entirely into two 
separate systems. The intruder detection system starts 
with the camera, which publishes image data to ROS. 
The detectnet node subscribes to this image data and 
uses it to scan for recognizable objects each time the 
camera refreshes. If an object is detected, information 
about that object is written to the detectnet/detections 
topic. The alert node subscribes to the 
detectnet/detections topic, and scans each detection to 
determine whether the detected object was a person. 
If it is, the alert node sends a text message to the 
currently designated human user with an invite to a 
video call.  

 
The other system is navigation. The navigation 
system consists first of the LiDAR, which publishes 
scan data that is read by the navigation node. The 
navigation node processes this data and uses it to 
make Twist messages, a type of movement command 
data utilized commonly in ROS applications. The 
other type of navigation is achieved through the web 
server, which contains a virtual joystick the user can 
use to drive the robot remotely. 
 

B. ROS 
 
The Robot Operating System, or ROS, is a free and 
open-source software that runs on Unix-based 
operating systems, primarily Linux. It uses a 
publisher-subscriber model to facilitate 
communication between user-written code, sensors, 
and output devices. LookSee is built to use ROS as 
the structure that ties the above modules together. 
 

C. Computer Vision 
 
Object detection using computer vision was done 
using NVIDIA’s DetectNet node which is built on 
TensorFlow and uses TensorRT for optimization. 
When looking for different solutions we used a 
Google research paper that compared and contrasted 
the different neural network architectures based on 
performance [1]. We found that the combination of 
the SSD and mobilenet architectures was the most 
lightweight and performant pre-trained model that fit 
our accuracy and performance requirements. The 
Single Shot Detector using the MobileNet for feature 
extraction performed the best when it came to the 
accuracy metric mean average precision (mAP) and 
GPU time in milliseconds for each model. We ended 
up using the Single Shot MobileNet v2 
(ssd_mobilenet_v2) which has been trained on the 
COCO (Common Objects in Context) dataset. It was 
able to accurately detect a person just by their legs, 
arms, torso, head, etc along with additional objects.  
 



 
Mean Average Precision (mAP) of Different CNN Architectures 

[1] 
 

 
GPU Time Measurement of Different CNN Architectures  [1] 

 
The NVIDIA ROS integration of the detectnet 
software provided the detections and the output video 
as topics in ROS that other code could subscribe to. 
This allowed for a simple and seamless 
implementation. 
 

D. Navigation 
 

a. Reactive paradigm 
 
LookSee is designed with the Reactive Navigation 
paradigm in mind. Reactive navigation uses 
immediate sensor input to decide the corresponding 
driving command given the environment and decision 
making parameters. These set cases should wholly 
manage the swath of conditions the robot may 
encounter in the surrounding world. 
 
We considered using a more robust hybrid 
architecture such as HectorSLAM. However, we 
ultimately decided that as the robot is seeking 
intruders anywhere in a building, a “roaming” 
behavior pattern is completely adequate for this use 
case, and could improve the  security of the system 
due to its semi-random drive pattern. Additionally, 
we implemented the Follow the Gap algorithm with 
our own code, while implementation of any kind of 

mapping algorithm would have likely involved 
mostly downloading prewritten code online.  
 

b. Follow the Gap 
 
LookSee was initially conceived with the concept 
that we should seek the largest gap (Find the Gap) 
between two objects, (eg. a wall, and a hallway) and 
by virtue of the sensor readouts having the largest 
discrepancy in range there existed some gap for us to 
proceed towards and navigate through. Although 
simple in concept it seemed fairly robust. This, 
however, has quite a few pitfalls for our particular 
use case. Chiefly, it doesn’t account for 
non-holonomic use cases. When controllable degrees 
of freedom are equal to the total degrees of freedom, 
it is perfectly acceptable to make a linear pursuit 
towards a point, and then adjust to the next desired 
position. To conceptualize, you can think of the 
difference between how a car might parallel park in 
comparison to a Roomba or Turtlebot would parallel 
park. 
 
 Intuitively, heading for the longest possible distance 
readout between the widest gap available seems 
great. However,  this also fails to account for the 
width of the car, and how closely you may be cutting 
near a wall. In order to prevent the robot from 
crashing into the corners of nearby objects we 
initially thought that by simply extending the wall of 
the nearest point to by a bubble (an inflated size 
increased by the radius of the robot) would solve our 
issue, effectively preventing any bumps into the 
nearest object but this turned out to rather ineffective. 
Better yet, it was decided we should translate all 
readouts into the configuration space of the robot; all 
discrepancies would flag LookSee to overwrite the 
nearest distance value over the further distance value, 
effectively identifying walls (via the existence of a 
discrepancy) and also every obstacle would have a 
bubble and effectively have an equivalent 
representation where our robot is now just a point 
object. Meaning if our point robot representation can 
fit through two inflated obstacles, we are effectively 
sure that the car will pass the obstacle. In order to 
solve this for our particular case, a set amount of 
angle ranges (equal to roughly radius of the robot) 
would be zeroed in a safety bubble adjacent to any 



discrepancy greater than half a meter as identified by 
our lidar. From this new filtered array the furthest 
point from the robot  is chosen as the goal.  Then, the 
steering angle is set towards that point and the 
vehicle is driven in that direction. 
 
c. LiDAR Logic Visualization 
 
The find-the-gap code classifies and moves points in 
several stages. In order to better understand the logic 
behind the algorithm, as well as debug, a visualizer 
was written to display the points at each stage of the 
algorithm, color-coded by their purpose to the robot.  
 
The visualizer was written using GLUT, the OpenGL 
Utility Toolkit, which allowed the graphics to be 
published to the screen inline with the rest of the 
code.  
 

 
 
This is an example visualization. It shows the points 
that have been detected by the LiDAR. The black 
points are walls, the red points are potential driving 
goals, and the blue point is the goal that the robot 
would select if it were driving at the time of this 
screenshot. 
 

E. User Interface 
 
ROSBridge is a ROS component that creates a JSON 
API for a ROS system so non-ROS programs can 
interact with it. 

We used ROSBridge and utilized the exposed API 
using roslibjs, a javascript library for making ROS 
API calls.  
 
A frontend dashboard was created using VueJS and 
TailwindCSS which made calls to the exposed 
ROSBridge API through roslibjs. A joystick was 
created using VueJS which published ROS Twist 
messages to the robot_driver node with a 
corresponding velocity and angle component. This 
can be used to control the motion of the robot. 
 
The web page is hosted using a python SimpleHTTP 
server and is accessed by visiting the IP address of 
the robot and the exposed port on an external device 
connected to the local network. Then the UI connects 
to the ROSBridge API by providing it with the 
ROSBRidge address URL which is automatically 
filled in for you. Once connected the controls and 
video feed appear and allow you to control the robot.  
 
The original plan was to use LIGHTTPD web server, 
but as responsibilities were shuffled around on the 
team, one member discovered ROSBridge and 
realized that the available virtual joystick it provides 
would be much preferred to the buttons that would be 
necessary if the other web server was chosen.  
 
The idea with the web server interface is to allow the 
human user to take over driving of the robot if they 
see something that they would like to investigate on 
the camera feed. For example, if the human user is 
watching the robot over video, and notices that a 
piece of furniture has been knocked over, they can 
take over manual driving to find the source of the 
problem. If the user stops using the virtual joystick, 
autonomous driving will resume one minute later. 
 

F. Phone Call Interface 
 
Two pieces of proprietary software have been 
selected to facilitate our video call interface: Jitsi 
Meet and Twilio. Jitsi Meet is an open-source video 
call software that can run easily on a Raspberry Pi, 
which was the first computer we were using, and 
Twilio is a professional programmable phone 
autodialing service. LookSee has its own phone 
number through Twilio, (508)-452-6291, and when 



an intruder is detected, it will text the user to invite 
them to a video call. It does this a maximum of one 
time per two minutes. This was achieved through a 
ROS node programmed in Python that listens to the 
image detection topic.  
 
At this point, LookSee does not make phone calls. 
This was a tradeoff that ultimately required us to 
sacrifice some functionality. In order to send the user 
the link to the video meeting, a text message simply 
had to be used. A phone call from the robot would be 
more intrusive, and therefore more useful, but would 
not allow the ease of being able to click a link. The 
original plan for the robot was to use the Skype 
developer API, which allows direct video calling, but 
since its capability on Linux operating systems is 
limited, we decided to prioritize the stability offered 
by Jitsi Meet and Twilio. 
 
Conclusion 
 

A. Lessons Learned 
 
We faced many challenges of various degrees over 
the course of the construction of this robot. The 
biggest challenges we believe were most informative 
are detailed below. 
 
The most obvious challenge was that this robot was 
constructed amid the 2020 COVID-19 pandemic. The 
members of this team met exactly one time in person, 
and all other development was achieved by writing 
code on separate computers and sending over email, 
or passing the robot from member to member. Each 
member had possession of the robot one time, with 
the exception of Tyler Wallace, who had it twice. 
During this time with the robot, each member had to 
effectively make certain that their component was 
ready and complete, under the assumption that they 
would get no more development time.  
 
We would absolutely never recommend that any 
other team do this. We were able to achieve the base 
version of the robot that we originally envisioned, but 
only because we carefully planned out exactly who 
would be responsible for each component, and 
designed the project with minimal codependency in 
mind. Even then, responsibilities shifted over the 

course of the project, and the order that components 
were added to the robot was not necessarily intuitive.  
 
Unrelated to the pandemic, we learned that the 
Raspberry Pi 4 was inadequate for the processing 
requirements of this robot and had to switch to an 
Nvidia Jetson Nano. The Nano was a very good piece 
of equipment that served us well, but did cause some 
logistical issues because the entire team had been 
developing software on Raspberry Pi 4s up until that 
point. The change in Linux versions after the 
selection of components was not at all ideal. 
However, ultimately, the change was more than 
worth it. The robot is able to run several very 
intensive software processes simultaneously.  
 
An original plan we had for the robot was to identify 
human intruders using a combination of computer 
vision and thermal vision. The idea was to identify 
potential locations where a human could be in an 
image, and seek the temperature reading at the 
corresponding location to improve the estimate of 
whether a human was there. This turned out to be 
completely unnecessary. The deep learning ROS 
node we are using had better than 95% accuracy at 
detecting people, and only had trouble if a person 
passed within one foot of the camera. There was no 
need to verify the camera results with thermal data. 
 

B. Results 
 
The robot performs extremely well under ideal 
conditions. However, not all conditions are ideal. 
This section details the actual performance of each 
component of the robot.  
 
Computer Vision. The object detection on this robot 
is effectively perfect. During testing, it was only 
unable to recognize a person if that person was within 
one foot of the camera. However, it would 
occasionally recognize objects that are typically 
associated with people, such as shoes, and raise an 
intruder alert falsely. In a business setting, where 
shoes are unlikely to be laying around, this would 
probably not be a problem.  
 
Computing Power. The Jetson’s computing capacity 
is entirely adequate to run all of the software 



components with no significant slowdowns or 
bottlenecks. However, running all software 
components will cause the robot to overheat within 
30 minutes, usually around 20. Without running the 
computer vision nodes, the Jetson can run effectively 
indefinitely with no cooling problems. For a 
commercial version of LookSee, a more robust heat 
management system would be absolutely necessary to 
be able to run LookSee at its intended duration. 
 
Navigation. The Follow-the-Gap algorithm was 
immensely successful. LookSee can drive around a 
room with a changing layout as long as its batteries 
allow without getting stuck or running into anything, 
and we haven’t found a configuration of walls that 
causes it to be unable to continue driving. However, 
the navigation computation does have a little bit of 
lag. Due to the relatively slow speed of the robot, as 
well as its constant updating, this is unnoticeable 
under normal conditions, but if an obstacle were to be 
suddenly dropped in its path, the robot can take up to 
3 seconds to react. There are not many situations that 
would cause this to be a problem, but those that 
would could indeed cause damage to LookSee.  
 
User Interface. The user interface does not have any 
severe issues. 
 
Phone Call Software. The ROS node that decodes 
the detection data and texts the user when a person is 
detected has no issues.  
 

C. Future Development 
 
The concept of LookSee certainly has greater 
potential than what is achievable in a single Senior 
Design course. We have a few features that, given 
more time, we would consider worthwhile to 
implement.  
 
Video Backup. The most useful feature for potential 
commercial sale of the robot would be to back up key 
video footage to internal or external storage for later 
review. We didn’t implement this because we 
decided to prioritize the components that did not lean 
heavily on full robot integration. 
 

Tamper Detection. An original stretch goal for the 
project, the installation of a gyroscope would allow 
the robot to detect when unexpected movement 
happens, such as being picked up, and either begin 
recording video, call the user, or both. 
 
Mapping and Route Planning. At this point, the 
robot’s reactive behavior suits its use case perfectly 
well, but there are some benefits to preplanning a 
path. Implementing mapping would allow the robot 
to return to a set point at shutdown, and ensure that it 
scans all rooms, although it would sacrifice an 
element of unpredictability. 
 
Smart Start. Mobile robots require a lot of battery 
power, and LookSee is no exception. To stay at its 
current price point, a significant increase in battery 
capacity is not feasible. To retain battery, a future 
iteration of LookSee could drive for a short period at 
a set time, and begin driving again either at intervals 
or when a noise is heard. 
 
Team Members 
 
Jade Zsiros is a senior Computer Engineering 
student at the University of Central Florida. She is a 
current Telemetry Engineering Intern at the National 
Aeronautics and Space Administration, where she has 
been offered a full-time position after her graduation. 
She previously worked as an intern at Aerojet 
Rocketdyne. At UCF, she was an officer and later 
president of the Robotics Club for three years, during 
which time she led an autonomous IGVC team and a 
prototyping team. She did LookSee’s system design, 
phone call software, and worked on the navigation 
with Austin. 
 
Austin Pena is a senior Computer Engineering 
student at the University of Central Florida. Though 
the opportunity to work as a CNC programmer is 
available to him. He's hoping to find a more degree 
oriented job somewhere sunny with good waves. He 
programmed LookSee’s navigation. 
 
Stavros Avdella is a senior Computer Engineering 
student at the University of Central Florida. He is 
further pursuing his education with a Masters in 
Engineering Management. His hopes are to become a 



project manager for a hardware development 
company. He did the mechanical and electrical design 
and assembly for LookSee. 
 
Tyler Wallace is a senior Computer Engineering 
student at the University of Central Florida. Tyler 
works part time for University of Central Florida as a 
full stack web developer and is pursuing jobs in the 
fields of software development and robotics. He 
programmed the web server, web site, and 
implemented the computer vision for LookSee. 
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