AUDIOVISIBLE

An Audiovisual Spectrum Analyzer for an Underserved Audience

Jaaquan Thorpe, CPE

Danielle Garsten, CPE

Marcos Berrios, PSE

Gustavo Monaco, CPE

Final Presentation UCF – Senior Design – Fall 2020 Group 3

Gus Monaco, CpE

Motivations

There are still certain forms of art that certain demographics are unable to experience and ultimately enjoy.

People who are deaf or hard-of-hearing can't enjoy music.

Music is an amazing and enjoyable experience.

Objective

To serve an underserved audience, and serve it well, by delivering the visual experience of music.

CORE

- Multi-color display
 - Audio output

Features

ADVANCED

- Waveform Simulation
- Graphic Equalization

THE DEVICE.

(4

10

.....

Raspberry Pi 4 – System On a Chip

WiFi Audio Input

Video	
Output	

3.3V			5
PIO2 SDA	8		5'
PIO3 SCL	9		
GPIO4	7	15	T)
		16	R
GPIO17	0		G
GPIO27	2		
GPIO22	3	4	G
3.3V		5	G
010 MOSI 1	2		
09 MISO 1	3	6	G
011 SCLK 1	4	10	
		11	
ID_SD 3	0	31	
GPIO5 2			
GPIO6 2	2	26	G
GPI013 2	3		
GPI0192	4	27	G
GPIO262	5	28	G
		29	G

PIO: PIO: 18	14 15
23	
24	
25	
GPI	08
GPI	07
С	
12	6
16	100 miles
20	
21	

The Component Stack

Marcos Berrios, PSE College of Optics and Photonics

- Experience in diffraction-based optical metrology tools
- Current focus in diffractive waveplate technology
- Background in music theory and performance

Optical Engine

Optical Engine: Overview

The optical engine is a modification of existing Digital Light Processing (DLP) technology.

It takes an image produced by a projector purchased from Texas Instruments, expands the image and projects it through a viewing screen

Production of an image is critical to the success of the project

Optical Engine:

The Expectation

The colors should be bright and easily identifiable

The image should be bright enough to view by the unassisted eye

Optical Engine: The initial plan

We purchased a pocket projector kit from Texas Instruments and intended to utilize the DMD chipset inside, while replacing the illumination optics with optics of our own

- Replacing the illumination LEDs with RGB laser diodes
- Replacing the optics inside with diffractive waveplate lenses provided by BEAM Co., fabricated by the students
- Introduce a beam expansion system to the front of the finished device to shorten the focal plane and enlarge the final image

Zemax Rendering of the Original Projector System*

Lens Design: The Challenge

For proper illumination of the display elements, lasers need to be collimated to a beam diameter <u>no smaller than 5mm</u>. This means that ideally each laser will have a lens with a focal length tuned specifically to it.

Focal lengths

- Red (Slow axis divergence = 7°): 20 mm focal length
- Green (Slow axis divergence = 5°): 28 mm focal length
- Blue (Slow axis divergence = 10°): 14 mm focal length

Lens Design: Image Expansion

The projector has way too large of a throw ratio. This means that the light exiting the projector does not diverge quickly enough to make a sufficiently large image at short distances.

- Introduce a negative lens at the front of the system which will diverge the light, making it form a larger image at distances between 9"-13"
- Can be small, placed right in front of the projector

Optical Engine: Issues Encountered

- After disassembling the projector, we found that the diodes could absolutely not be replaced.
- Diffractive optics promised by sponsor could not be fabricated
- Disassembly of projector damaged LED illumination system beyond repair
- Delays in delivery of optics hindered testing for several weeks

Optical Engine: Enlargement and Testing

Initial design consisted of a single negative lens EFL = -50mm

- Failure: Although image expanded, it was not at all in focus.
- The lens was too small to be inserted anywhere but directly in front of the projector

Secondary design after calculation consisted of two lenses EFL = -250mm and EFL = 50mm

• Success: The positive lens first focused the light, creating a new virtual object that the second lens could then expand much less rapidly than the previous -50mm EFL lens

Optical Engine: Final Design

- Consists of:
 - LED Illuminated, DLP powered mini-projector
 - 50mm EFL lens to provide focus
 - -250mm EFL lens to expand the image
- Produces 8"x11" image at 13" from the nose of the projector
 - Roughly 1.5x magnification

Jaaquan Thorpe, CPE Department of Electrical and Computer Engineering

Area of focus:

- Embedded Systems
- Web Development
- Cloud Computing

Optical Controller

DLPC2607 Controller

- Low-powered digital controller for display applications
- Supports Pixel Clock up to 33.5MHz
- Supports up to 60Hz Frame Rates
- Must be used in conjunction with DMD for a reliable operation of the DMD
- Uses an external SPI serial flash memory device for configuration support.
- The device will be programmed over I2C.
- Has two functional modes controlled by a single pin:
- 1. If pin set to high, projector powers up and projects image.
- 2. If pin set to low, projector powers down to save power.

DLP2000 0.2 nHD DI

- Is a digitally controlled microopto-electromechanical system (MOEMS) spatial light modulator (SLM)
- With the proper optical system, a image or video is displayed
- Well-suited for portable equipment where small form factor and low power is importar
- Is an array of highly reflective aluminum micromirrors (up to 8 million mirrors).

DLP Optical Module

DLPC2607 Controller

Digital Image Processor

DLP2000 0.2 nHD DMD

The display device producing the projected image.

DLPA1000 PMIC/LED Driver

Provides the needed analog functions for the projector

PCB designs

- Left: Microcontroller receives messages from Raspberry Pi to display to the LCD screen.
- Right: GPIO pins to allow the Raspberry Pi to communicate with the EVM

LCD Screen

Audio Output

Speakers

• Our device has two 4 ohm/5 W speakers connected to the Raspberry Pi to detect accuracy and show the intention of essential features.

Power Input

AC/DC Power Adapter w/ USB-C ports

- We used an two 5V AC adapter and USB-C port to power the devices.
- The adapter is plugged into the Speakers, while the charger is connected to the Raspberry Pi that is connected to the Evaluation module.

Strobe Decoder: six NMOS switches

DMD Regulators: Only 5 modes of operation.

Modes of Operation

Mode	Description
OFF	This is the lowest-power mode of operation. All power functions are turned off, registers are reset to their default values and the IC does not respond to SPI commands. RESETZ and PWR_EN pins are pulled low. The IC will enter OFF mode whenever the PROJ_ON pin is pulled low.
RESET	Logic core and registers are reset to default values, the IC does not respond to SPI commands, RESETZ and PWR_EN pins are pulled low, but the analog reference system is kept alive. The device enters RESET state when the input voltage drops below the UVLO threshold.
STANDBY	All power functions are turned off, but the IC does respond to the SPI interface. The device enters STANDBY mode when PROJ_ON pins is high, but DMD_EN bit is set to 0. Also, device enters STANDBY mode when a fault on the DMD regulator occurs or the temperature increases above thermal shutdown threshold (TSD).
ACTIVE1	The DMD supplies are powered up but LED power (VLED) and the STROBE DECODER are disabled. PROJ_ON pin must be high, DMD_EN bit must be set to 1, and VLED_EN bit set to 0.
ACTIVE2	DMD supplies, LED power and STROBE DECODER are enabled. PROJ_ON pin must be high and DMD_EN and VLED_EN bits must both be set to 1.

Danielle Garsten, CPE Department of Electrical and Computer Engineering

- Focus on AI and MR
- Future Software Engineer at JP Morgan & Chase
- Aspiring to pursue a Masters or PhD

Software Approach

- 1. For the Python code to be able to perform GET/POST requests
- 2. Make a simple visual on a computer
- 3. Be able to set up this code on the Raspberry Pi
- 4. Make sure the visuals are projecting alongside the music

Software Design

- Our Python code will be able to read in a song played over website file upload.
- It will then be able to detect the tones from the music and correlate a color to it.
- Then, the embedded piece will be able to allow the software to run in the hardware and for the optical module to operate under the Python code.

Sonochromatic Scale

Budget and Finance

Item	Qty	Vendor	Amount
PCB Board Kit	3	OSHPark	\$20
DLP LightCrafter Display 2000 EVM	1	Texas Instrument	\$99
DLP Display Controller	1	Texas Instrument	\$17
Raspberry Pi 4	1		\$55
DLP 0.2 nHD DMD	1	Texas Instrument	\$27
Audio Speaker (4ohm)	1	SkyCraft	\$2
PMIC/LED driver	1	Texas Instrument	\$2
Semiconductor Laser Diode	3	CivilLaser	\$65
MSP430 Launchpad Dev. kit	1	Texas Instrument	\$10
Projector Screen	1	еВау	\$14
Total Donations	1	BEAM Engineering Co.	(\$100)
		Subtotal	\$211
		Initial Budget	\$500
		Budget Available	\$289

Completed Tasks

- All software, hardware, and optical assignments are complete
- Lenses are attached
- Software is setup in Python
- Hardware is assembled

Successes & Difficulties

Successes

- Being able to communicate in a professional manner
- Respect
- Bluntness
- Scheduled meetings

Difficulties

- Lack of time
- Coordinating meetings sometimes
- Recursive mistakes, mostly on the thesis
- Lack of decisive planning
- Gustavo diagnosed with COVID-19

Plans for Success

