

Laser Guitar Instrument

Final Document

Group 1

 Alexander Truong-Mai - Computer Engineer

 Jacob Legler - Photonic Science and Engineering

 Jonathan Spurgeon - Electrical Engineer

 Juan Gamero - Computer Engineer

Laser Guitar - Group 1

Table of Contents

1. Executive
Summary………………………………………………….…………...1-2

2. Project Description …………………………………………………………...... 2-9
2.1. Project Motivation and Goals……………………………………...….3
2.2. Requirement Specification…………………………….…………...….4
2.3. Quality of House Analysis………………………..………………...….6
2.4. Overview Block Diagram…………………………………………...….7

3. Research and Selection……………………………………………………....10-61
 3.1. Music Theory and Acoustic Guitar Design……………..………..…..10
 3.2. Existing Products …………………………………………………........13
 3.3. Relevant Technologies………………………………….…………...…16

3.3.1 Relevant Technologies: Hardware………………………......16
3.32 Relevant Technologies: Software…………………………....17

 3.4. Strategic Components and Part Selection………………….…….....26
3.4.1. Battery Selection……………………………………………....27
3.4.2. Voltage Regulators……………………………………….…....32
3.4.3. Printed Circuit Board…………………………………….....…38
3.4.4. Integrated Circuits………………………………………….….40

 3.5. Architectures and Implementation Factors……………………….….45
 3.6. Parts Selection Summary……………………...…………………...….50

3.6.1. Hardware Selection……………………...………………....….50
3.6.2. Software Selection……………………...……………………..61

4. Related Standards and Realistic Design Constraints…………………......62-68
4.1. Software Standards…………………...………………………….…...62
4.2. Hardware Standards…………………………………………….…….66
4.3. Design

Constraints……………………...………………………….….69
5. Project Hardware and Software Design Details…………………………....72-91

5.1. Initial Design Architectures and Related
Diagrams…………….…..72

5.2. Software Designs……………………...………………………….......81
5.2.1. Programming Paradigms…………………………………….83
5.2.2. Design Patterns…………………………………………...….84
5.2.3. Space Complexity……………………………………..….....86

6. Construction and Coding……………………………………………...……92-105
6.1. Software Construction……………………...………………...………92
6.2. UML Diagram……………………...…………………………...……...92

6.2.1. Main……………………...……………………………...…….93
6.2.2. Strum Class……………………...……………………...……98
6.2.3. Fret Class……………………...………………………...…....99

6.3. I/O
Programming…………………..………………………………....101

Laser Guitar - Group 1

7. Prototype
Testing………………………………………………………...…106-117

7.1. Hardware Test
Environment………………...…………………....…106

7.2. Hardware Specific Testing…………………...………………...…...107
7.3. Software Test Environment …………………...……………....……113
7.4. Software Specific Testing

…………………...…………………...…115
8. Administrative Content…………………………………………………..118-121

8.1. Milestones………………………………………………………….118
8.2. Division of Work…………………………………………………...119
8.3. Budget and Finance Discussions……………………….……….119

9. Appendices ………………………………………………………………122-129
9.1. Works Cited……………………...……………………...………...122
9.2. Approvals Cited……………………………...…………………....129
9.3. Data Sheet……………………...………………………………….129

Indexes

List of Figures
Figure 1: House of
Quality…………………………………….………………………..6
Figure 2: Block Diagram Overview…………………………………………..………..7
Figure 3: Block Diagrams,
Hardware………………………………………………….8
Figure 4: Block Diagrams, Software……………………………………………..……9
Figure 5: Chord Chart for Ukuleles in Standard Tuning…………………………..13
Figure 6: Beambow Controller Unit………………………………………………….14
Figure 7 : Language Hierarchy……………………………………………………….19
Figure 8: ​Lead Acid charging and discharging chemistry​…………………..........27
Figure 9: ​ Charge and discharge chemistry for lithium ion​………..…….………..28
Figure 10: ​Nickel Metal​………………………………………………………….........28
Figure 11: ​2s2p battery setup
Terminology/Safety​……………………….………..30
Figure 12: ​PTC graph of resistance as temperature
increases​……….....….........31
Figure 13: ​Depictions of a shunt and series voltage regulators​ ………………....33
Figure 14: ​Common switching regulator​…………………………………..………..33
Figure 15: ​Common buck converter​………………………………………..............34
Figure 16: ​Common boost converter​…………………………………………….….34
Figure 17: ​schematic of TPS563231 IC[D5]​……………...…………………….......35
Figure 18: ​TPS563249 schematic IC[D6]​………………….………………………..36
Figure 19: ​TLV62130 schematic IC[D7]​……………………….………………....….36
Figure 20: ​Diagram of power supply through regulators to electronics​....……...37

Laser Guitar - Group 1

Figure 21: Final Power supply to each component………………………………..38
Figure 22: ​Common layers of a printed circuit board microscopic view​ .……....39
Figure 23: ​Digital output taken from analog input​……………………..………......42
Figure 24: ​Summing amplifier shown to represent a
DAC​...................................42
Figure 25: ​Differences of graph between common duty cycle​............................43
Figure 26: ​SAR depiction of architecture​...44
Figure 27: ​Depiction of the switch/resistor string architecture​…………………...45
Figure 28: ​A Hardware Abstraction Layer Example​……...……………..………....47
Figure 29: ​The GeeBat Mini 650nm Laser Diode……………………….……….....53
Figure 30: ​The Vishay BPW34 Photodiode……….………………….………….....55
Figure 31: The MakerHawk Arduino Speaker……………….………….……….....56
Figure 32: Laser Safety Sign………………………………………………..……......68
Figure 33: ​Project Hardware Overview…….………………………………………..72
Figure 34: Guitar Fretboard
Diagram​…….…………………………………………..73
Figure 35: ​Voltage Divider…………………………………………………………….74
Figure 36: Single String Hardware
Schematic……………………………………...75
Figure 37: Single String Fretboard
Schematic……………………………………...76
Figure 38: Single String Strumming Schematic…………………………………....77
Figure 39: Laser Diode Schematic…………………………………………………..78
Figure 40: Single String MCU pin Schematic……………………………………....79
Figure 41: Switching Voltage Regulator Schematic……………………………….80
Figure 42: Final MCU Schematic design……………………………………………81
Figure 43: Final MCU PCB Design…………………………………………………..81
Figure 44: Final Voltage Regulator Schematic
design……………………………..82
Figure 45: Final Voltage Regulator PCB
Design…………………………………....82
Figure 46: Final Fretboard Schematic
design……………………………………....83
Figure 47: Final Fretboard PCB
design……………………………………………...83
Figure 48: Final Strumming PCB design…………………………………………....84
Figure 49: The Martin Smith UK-222-A Ukulele………………………..…………..84
Figure 50: Without using Programing Paradigms​…………….…….……………...85
Figure 51: ​Using Programing
Paradigms………….………………………………...88
Figure 52: ​Using Facade Pattern………….…………………………………...........88
Figure 53: ​Data Type Sizes[S5]…………………………………….………………...90
Figure 54: ​Time Complexity of O(n^2) [S90]………….………………….………...91
Figure 55: ​Time Complexity Chart [S100]………….……………………………….91
Figure 56: ​Flowchart Logic………….………………………………………………..92

Laser Guitar - Group 1

Figure 57: ​UML Diagram………….…………………………………………………..93
Figure 58: ​Imported Libraries and Files…​….……………………………………….94
Figure 59: assignPins Function​………….…………………………………………...96
Figure 60: ​createStrumsAndFrets Function…….…………………………………..98
Figure 61: ​noteSelection Function………….………………………………………..99
Figure 62: ​setup Function
………….……………………….……………………....100
Figure 63: ​loop Function………….………………………………………………....101
Figure 64: ​StrumClass……………..……...………………………………………...101
Figure 65: ​Fret
Class………….……………………………………….……….…….102
Figure 66: ​Arduino Board Overview [D3]………….………………....………..…..102
Figure 68: ​Arduino Schematic 1 [D1] ………….…………………………………..104
Figure 69: ​Arduino Schematic 2 [D1]……………………………………………....105
Figure 70: ​Register Description of I/O Ports[D2] ………….…..…………………107
Figure 71: ​AVR Status Register………….…………………………….…………...108
Figure 72: ​Calibrating the Analog Discovery 2………….………………………..109
Figure 73: ​Laser Diode Testing………….………………………………………….110
Figure 74: ​Measuring the Voltage Across Photovoltaic Photodiode………………...111
Figure 75: ​Testing The Photodiodes in Photoconductive Mode………………………..112
Figure 76: Voltage Regulator test environment………………………….……….113
Figure 77: Strumming Interrupt Testing………………………………….………..114
Figure 78: Tuning Our First String………………………………………………….116
Figure 79: ​Arduino IDE ……………………………………………………………………………………..……...117
Figure 80: ​Microcontroller Selection……………………………………………………………………….118
Figure 81: File Folder ……………………………………..…………………………118
Figure 82: ​Project Sketchbook​………….…………………………………………..119
Figure 83: ​Blink Example Code​………………………………………………..........120
Figure 84: Blink Example on MCU​…………………………….....………………….121

List of Tables
Table 1: Project Requirement Specifications…………………………………….…..5
Table 2: Frequencies of The C Major Scale………………………………………...11
Table 3: Frequencies of the Chromatic Scale………………………………………11
Table 4: Comparing/Contrasting the different offerings……………………...…...15
Table 5: Languages Advantages Vs Disadvantages…………………………...….23
Table 6: Various Battery Pros and Cons...………………………………….……....29
Table 7: Voltage Regulator comparisons………………………………………......38
Table 8: Comparisons of Architectures for
ADC/DAC……………………….........46
Table 9: Laser Diode Comparison……....…………………………………...……...52
Table 10: Photodiode
Comparison……………………………………………….….55

Laser Guitar - Group 1

Table 11: ATmega2560 Summary.………………………………………..………....58
Table 12: AT91SAM3X8E Summary.…………………………………………..…....58
Table 13: Texas Instruments MSP-EXP430FR5994 Summary…….....……....….59
Table 14: Summary Raspberry Pi 4 Model B+……………….……..…….…….....60
Table 15: Summary of Microcontroller Options..…………………….…..…….…..61
Table 16: Laser Safety Standards………………………….……………….…….....67
Table 17: Battery Standards……………………………………………….……..….69
Table 18: Photodiode Photovoltaic Voltages……..……………………...…….…112
Table 19: Testing the Photodiodes in Photoconductive Mode………….…..….122
Table 20: Projected Milestones……………………………….………………...….122
Table 21: Division of Work……………………………………………………….….123
Table 22: Projected
Budget……………………………………………….…..…….124
Table 23: Current Cost as of 7/27/2020​………….……………………….……….124
Table 24: Final Budget Cost………………………………………………..……….125

Laser Guitar - Group 1

1. Executive Summary

Our inspiration for the Laser Guitar Project came from a senior design project
done in the past by a group of Electrical Engineering and Photonics students
titled “Laser Musical Instrument”. This project was intriguing to our group as
bringing the world of engineering into the world of music offered a wide range of
creative opportunities. The Laser Musical Instrument designed by the previous
group was modeled after an Optical Theremin, which played sound that
changed in pitch depending on the intensity of the light reflected off of the user.
While this project did succeed in creating a laser musical instrument, the
Theremin is not a very popular instrument, and likely would not appeal to a large
margin of people. Their design was also monophonic, which prevented the user
from playing chords, which are essentially the building blocks of modern music.
While brainstorming our group came up with the idea of designing a laser
musical instrument that would appeal to a larger audience. This presented us
with the following challenge: To design a laser musical instrument that can be
played similarly to more popular stringed instruments such as the guitar, and
provide a more instrumental and musical experience for the user than other laser
instruments found in today’s market.

In order to accomplish this, the instrument should be polyphonic so that the
user is able to play chords. This opens up the opportunity for the user to play
songs as if they were using a real guitar. This would provide an investment
opportunity for musicians everywhere, as an affordable laser instrument that is
housed in the form of an instrument as popular as the guitar has never been
made before. Also, there is an appeal to people who do not play guitar, but
have always wanted to learn. Learning to play guitar can be a painful
experience, as pressing down on metal strings hard enough to play a note can
be both difficult and strenuous on the player's fingers. By eliminating the need
for metal strings, the laser guitar will draw an audience of beginner musicians
who wish to learn guitar without the pain of pressing down on metal strings.
Another issue that this tackles in the world of music is the price of today’s
instruments.

Most high end electric guitars run for hundreds of dollars, not including
necessary equipment such as pedals and amplifiers. This is a major roadblock
for people who may want to get into music, but do not have sufficient funds to
purchase an instrument. Because this involves generally cheap resources, as
photodiodes and laser diodes often run for less than ten dollars, we have an
opportunity to appeal to an even larger market of musicians by designing an
instrument that is far cheaper than what it costs for most guitars today, provided
we properly manage our budget. Finally, the instrument should sound good.
While this may sound obvious, it would be entirely possible to play a simple sine
wave at the proper frequencies of a musical scale, however this would not
sound good. Instead, we should sample actual instruments and have our

 ​ ​1

Laser Guitar - Group 1

speakers play these samples so that our instrument sounds like an acoustic or
electric guitar.

Marketing strategies could potentially present our product as a futuristic musical
instrument that is fun for beginner and advanced musicians and runs for a
cheaper price than anything like it on the market. Our team consists of two
Computer Engineering majors, an Electrical Engineering major, and a Photonic
Science and Engineering major. By allowing our computer engineers to focus
on the software development of our project, while our Electrical and Photonic
engineers focus on the hardware of the project, we are provided with a well
balanced team capable of tackling this project in a creative, musical, and
financially sound manner.

 ​ ​2

Laser Guitar - Group 1

2. Project Description

This section will give a high level overview of our project. It will cover what
exactly we are trying to accomplish and why, as well as some basic diagrams
and specifications we hope to achieve. Along with everything, there will be
detailed goals set forth and milestones for us to accomplish.

2.1. Project Motivation and Goals

For years, instruments have been used as a form of entertainment and
storytelling. There are a wide range of instruments from the violin to the guitar,
and even older ones that indigneous people used such as the Didgeridoo.
Making music today involves more digital systems and softwares to mimic
traditional sounds from instruments. Guitars though are still widely used in
bands and solo artists during concerts; however, learning the guitar is a struggle
for many beginners due to the fact that it can be physically painful to play guitar
strings with your bare hands over a period of time. With today's technology, we
can solve this problem by removing the strings. By removing guitar strings
entirely, we can replace them with lasers. Using lasers as the strings of the
guitar will provide for a user friendly, fun, innovative, and new musical
experience for musicians everywhere.

The motivation for this project is to develop an instrument with new, unique
features that uses the knowledge we have gained from our studies at the
University of Central Florida (UCF). This instrument will provide a way for
beginners to learn to play the guitar without the painful struggle of fretting
strings for the first time, and also have the feel and musical capabilities of a
normal guitar. With our instrument, we will also satisfy the requirements for
Senior Design 1, and develop an open-ended solution to the advancements and
visual effects we have for our guitar.

For the goals of our project, we will have three sectors separating them by short
term, long term, and stretch goals. Starting with the long term goal, this consists
of one main goal to achieve an accurate sounding guitar with lasers acting as
the guitar strings. Building up to this, there are short term goals; consisting of
implementing the laser diodes, build design, photodetectors, software
implementation, printed circuit board layout, etc. The end objective is an
accurate, portable guitar that is reasonably priced for musicians or the general
public that are interested in purchasing it. The stretch goals consist of ambitious
ideas that can be implemented but not necessary for the design as a whole;
sustaining notes being played based on frequency of strums.

As for implementing each necessary component, there will be two sets of
strings consisting of either three or four laser diodes. The first set will be across
the head of the guitar and the second across the neck. For the head of the
guitar, the software implementation will detect which laser will be broken from

 ​ ​3

Laser Guitar - Group 1

the photodetector. Along the neck, the amount of reflected light at the point the
laser is broken by the player’s finger back to the photodetector will determine
which note to play. To tie all of these strings together, a speaker and battery will
be chosen with research to fit our needs and a microcontroller will be chosen
from a list of researched ones with the necessary features. The printed circuit
board layout will be designed with the microcontroller, ADC, DC-DC converter,
etc. The idea for this project is based on a previous senior design project from
UCF called “Laser Musical Instrument”. The features and new
software/hardware implementations we will be adding will help our design look
and mimic an actual guitar.

2.2. Requirement Specifications

The design of our instrument will result in a stringless guitar that uses laser light
as the strings. The user requirements include the size and feel of the instrument,
and general eye safety for the user. To make an instrument that feels natural to
play, the size should be no longer than that of a bass guitar, and the spacing
between frets should be reasonably small so that the user can play comfortably.
Eye safety will be accounted for by using nothing more powerful than a class
two laser with proper eyewear included if necessary. In terms of engineering
requirements, we must ensure that the correct notes are being played based on
which laser is being blocked by the user's finger, and the returned intensity
signals the microcontroller to play a certain note. This note will be stored and
played when the corresponding string is strummed on the strumming set of
strings. To do this, two separate sets of laser systems will be designed.

The first is a strumming system. This system simply tells the microcontroller to
play a note when the beam is interrupted. A stretch goal of the system would be
to determine the volume and sustain of the note played based on the velocity of
the strums. The second system is the fretting system. This system uses a series
of photodiodes in conjunction with a laser diode to determine what note will be
played by the strumming system. The photodiodes will be placed along the
neck of the guitar in series so that they carry the same current but different
voltages. The voltage collected by each individual photodiode will be either high
or low, depending on the amount of light incident on the photodiode. This
amount of light can be controlled by the user by interrupting the laser beam that
is fired across the fretboard. In terms of project requirements, this means we
need to have a system which can fire a laser beam in a controlled area of space
and collect any light reflected by the user’s finger. The system should react to
this action fast enough so that the act of playing the instrument feels natural to
the player, and the system should be able to work under settings of various
lightings.

Next, we must implement this idea across several strings. To prevent noise from
adjacent strings, we are given the choice of a few different options. First, we

 ​ ​4

Laser Guitar - Group 1

can consider using narrow band filtering to only collect light from the specified
wavelength of our laser diodes. In this case, each photodetector will be paired
with a bandpass color filter which only allows light of the respective string's
wavelength to pass on to the photodiode. The laser diodes will use light in the
visible spectrum, with wavelengths of roughly 450nm (Blue), 550nm (Green), and
633nm (Red), so they can be easily filtered. This will also provide a more intuitive
experience for the user as each string will essentially be color coded. The filters
should also help with ambient light, as a good portion of the light will be filtered
out of the system. This idea would function well under various lighting
conditions, and would prevent the noise from adjacent strings as intended,
however narrow band filtering is an expensive process, and may not be the best
option to consider. Another option would be to modulate our laser diodes and
detect this modulation using the series of photodetectors. This would allow us
to differentiate between adjacent strings by varying the rate of modulation of our
laser diodes, and because it is very unlikely any ambient light will be modulating
at the same frequency we are trying to detect, this will also allow us to solve the
problem of ambient light. Finally, we can potentially design our housing in such
a way that light can only come in from in front of the photodiodes. This is the
cheapest option as it only requires us to modify the physical housing of the
instrument and does not require any further electrical equipment. We will initially
test different housing options with multiple strings and make our decision on
whether or not to modulate the strings after our initial testing. Due to the cost of
narrow band optical filters, this option is likely off of the table.

Table 1: Project Requirement Specifications

 ​ ​5

Requirements Description

Size Roughly size of ukulele (43cm x 10cm)

Weight < 5lbs

of Strings 4

Notes Per String 4 (Open Strings + 3 Frets)

Polyphony 4 Notes at once

Frequency of Notes
Played

Proper Spacing between notes based on musical
scale

Safety Class 3R Lasers, no extraneous reflected light

Functionality Able to detect which fret and string is being held down

Response Time < 50 ms

Laser Guitar - Group 1

2.3. Quality of House Analysis

The House of Quality diagram below displays the desires and needs of the
customer while satisfying engineering specifics.The target audience for our
design will ultimately be anyone who enjoys music, and more specifically to
those with an interest in guitar. In order to meet the expectations of our users,
there is a list of user requirements to consider; speed, sound accuracy, design,
cost, size and functionality. The speed of the device when the user plays notes
and pitches should output sound promptly. The sound accuracy of the device is
something customers will look for to gain the satisfaction of hearing their notes
and pitches played out correctly. User’s also have specific desires when it
comes to the design, size and cost of the instrument, and thus these
requirements are taken into consideration. Lastly, the functionality and the
safety of the device will be essential to customers. Some user’s want different
functionalities such as the whammy bar and volume knob, while some may not
need it. Safety is included in this list due to the usage of lasers, and therefore, it
is essential that the user’s feel safe when using the instrument.

Figure 1: House of Quality

 ​ ​6

Laser Guitar - Group 1

Target engineering requirements for our project include the functionality and
responsiveness of the device. In terms of hardware, each of the photodiodes
used for measuring the returned intensity should be able to detect the difference
in intensity from one distance on the fretboard to the next in order to return a
signal to the microcontroller that tells the program what note to play. The notes
that are able to be played should all be within frequencies in the chromatic
scale, so that they sound musical. Similarly, the strumming strings must detect
the presence of the user's finger in order to tell the microcontroller when to play
the selected notes. All detections should work under both dark and light
conditions, the device should be small enough to be portable, while the spacing
between strings should be large enough so that the player’s fingers do not get in
the way of each other when selecting which string to play. From the software
perspective, a program must be written that selects which note to play based on
the returned intensity of the light reflected off the user’s fingers. This note will
not be played by the speakers until the user strums the second set of strings,
called the strumming strings. Lastly, eye safety is a big factor to consider. This
can be achieved by containtaing the laser within the housing of our design. Also
labels should be included to tell the customer to not look into.

2.4 Block Diagram Overview

Figure 2: Block Diagram Overview

 ​ ​7

Laser Guitar - Group 1

In the block diagram overview, the modules and division of tasks given to each
individual member of the group based on their respective colors. The blocks
were made by looking at the objectives and requirements of the project. Each
module represents a function of the system needed to complete the project. The
specific functionality of each of the blocks is described in further detail in the
following sections.

2.4.1 Hardware Component Block Diagram

From Figure 2, Figure 3 only focuses on the hardware components of the block
diagram. By focusing on only the hardware of the block diagram, this gives the
group a one sided perspective of how the hardware components should be
connected and be taken into consideration.

Figure 3: Block Diagram, Hardware

The goal of the hardware implementation is to allow the microcontroller to
detect which string is being played, and where it is being fretted to determine
what note to play. To do this, two sets of lasers to emulate one string on a
guitar. We will call these sets the “fretting” sets and “strumming” sets. The

 ​ ​8

Laser Guitar - Group 1

strumming set of strings will be placed at the head of the guitar and will operate
by detecting when the laser is interrupted. If a strumming laser is interrupted,
then the note determined by the corresponding fretting laser will be played. The
fretting laser system will operate by detecting the amount of light reflected off of
the user's finger back to the photodiodes which will read the intensity of
reflected light. Each fret will have its own photodiode, which will return a 1 to
the MCU when the voltage is high, meaning the fret is being held down and
reflecting light to the photodiodes. The photodiodes which are not reading any
reflected light will return a low voltage, or value 0 to the MCU. This information
will be used to save which note should be played by the speaker. The entire
system will be powered by a lithium ion battery connected to a voltage
regulator, which will power the laser diodes and provide a reverse bias to the
photodiodes.

2.4.2. Software Component Block Diagram

From Figure 2, Figure 4 only focuses on the software components of the block
diagram. By focusing on only the software of the block diagram, this gives the
group a one sided perspective of how the software components should be
connected to the hardware.

Figure 4: Block Diagram, Software

The goal of the software implementation of the project is to produce the correct
frequency/pitch according to the laser intensity when another laser is
strummed/plucked. When reading the laser from the sensors, there are two
lasers to record and analyze. The first laser is the sturm/pluck from the
“strumming” set , and the second laser is the fret “fretting” set. Both of these
laser detection will need its own algorithm to process because they are two
different systems of lasers. By reading the laser intensity, we can sign a
frequency/pitch. When the laser is strummed/plucked we can use this reading
as a trigger to play the frequency/pitch to the speaker. This will be explained
more in details in Section 6.

3. Research and Selection

This section is focused primarily on all of our research and findings. It covers all
of the relevant concepts that were taken into consideration such as music

 ​ ​9

Laser Guitar - Group 1

theory, hardware parts and technologies and any relevant software. The section
is concluded with all of our part selections and chosen technologies based on
the research that was conducted.

3.1. Music Theory and Acoustic Guitar Design

When designing a musical instrument, it is important to take in consideration
what exactly makes instruments sound good, and how they provide a
user-friendly way of making music. A basic understanding of music theory and
how it directly applies to guitars is therefore an important factor in the design of
our project. Music theory will apply more to the software design, as it will
provide our software team with the proper sound information our device should
output to closely resemble a musical instrument. Guitar design, on the other
hand, applies more to our hardware design, as we will have to design the
housing of our hardware in such a fashion that it feels as natural to play as a
bass guitar or ukulele would, with each of the strings playing the same notes
that would be played on the real instrument. The following paragraphs outline
the key factors of music theory that we will consider for the software design,
and how the design of acoustic guitars will impact our hardware design.

Notes and Scales

For the purposes of this project, a very basic understanding of music theory is
required so that our instrument will play notes that sound musical. A good place
to start is the concept of notes and scales. A note simply refers to a symbol
denoting a musical sound. Notes are commonly symbolized alphabetically with
the letters A-G. This alphabetical pattern repeats, as notes with fundamental
frequencies in a ratio equal to any power of two (i.e. half, double, or four times),
are given the same note name. For example, taking the note middle C, which
resonates at 262 Hz, and doubling its frequency to 524 Hz would result a note
also called C, that is said to be one “octave” higher than middle C. Similarly,
playing a note at half the frequency of middle C, or 131 Hz, would also be called
C, and would be labeled as one octave lower. The name octave comes from
these being eight intervals away from each other on the musical scale. A scale
is just a series of notes ordered by fundamental frequencies. Playing
frequencies in a musical scale ensures that the sounds played will sound nice to
the listener. By programming our MCU according to the frequencies in scales,
this information will be used to play the proper frequencies in our laser
instrument. The chart below shows the fundamental frequencies of the notes
C-B, which make up the most popular scale in all of music, the C Major scale.

 ​ ​10

Laser Guitar - Group 1

Table 2: Frequencies of The C Major Scale

There are also notes which lie in between the frequencies of some of the notes
of the C Major scale. These notes have fundamental frequencies halfway in
between notes separated by 48 Hz, and are named after the notes directly
above or below them. For example, the note between C and D resonates at a
frequency of 277.18 Hz, and is called C# (C Sharp) or Db (D flat). The chromatic
scale consists of the seven notes of C Major, and all sharp/flat notes, for a total
of twelve notes, as shown in the chart below.

Table 3: Frequencies of the Chromatic Scale

All the frequencies of sound that can be played on most instruments are some
ratio equal to a power of two of the notes in the chromatic scale. This is
valuable to know for both our hardware and software teams. For hardware, we
can use this knowledge combined with the knowledge of what notes are played
on standard ukuleles to assign the proper notes to their corresponding pins on
the MCU based on their location on the fretboard. As far as software is
concerned, we can use this knowledge in such a way that these frequencies are
playable in the same way they would be on a standard bass guitar or ukulele.

 ​ ​11

Laser Guitar - Group 1

Combining these factors together will allow us to construct an instrument that
feels natural to play.

Chords

The next topic of music theory that is relevant to our project is the concept of
chords. A chord is a combination of three or more notes played in unison. The
most common types of chords are major and minor chords. Major chords
consist of three notes; the first, called the root note, can be any note in the
chromatic scale. The next note for a major chord would be two intervals away
from the root note on the root’s respective major scale, and is called the Major
3rd. Finally, the third note in a major chord is found four intervals away from the
root note on its major scale, and is called a Perfect 5​th​. For example, a C Major

chord would consist of the root note C, it’s Major 3​rd E, and it's Perfect 5​th​, G.

Minor chords are built in the same way as major chords, except the Major 3​rd is

replaced with a Minor 3​rd​. A minor third is simply the flatted Major 3​rd​. So, a C

Minor chord would consist of the root note C, it’s minor 3​rd E​b​, and it’s perfect

5​th​, G. This is relevant to our project because one of the main draws to stringed
instruments in general is that it allows the player to play chords on just a single
instrument. On the guitar, this is accomplished by arranging the strings in such
a way that the user can easily play the notes of major and minor chords by
simply fretting the strings in the proper order. By mimicking the strings of a
ukulele or bass, our project will allow the user to play chords very similarly to
how one would on an acoustic instrument. This brings us to how the design of
acoustic instruments will impact our project.

Acoustic Guitar Design

As mentioned in the previous paragraph, guitars are designed in a way that
allows the user to easily play chords by fretting the strings in the proper order.
Guitar style instruments have strings that are assigned a root note, and by
fretting the string this note goes up one interval in the chromatic scale per fret
(i.e. fretting the first fret of the G string results in a G#). We will use this same
method to determine what notes will be played by our instrument. There are
many different guitar style instruments, with varying sizes and amounts of
strings. For the purposes of our project, we chose to design a four stringed
instrument. This is because of the popularity of the bass guitar and ukulele, the
simplicity in their design, and the variance in size this gives us, as the ukulele is
one of the smallest guitar-style instruments, and the bass guitar is one of the
largest. That being said, the chord chart shown in Figure 5 will be used to
determine what notes will be played by each string, where the open strings are
tuned to play the notes G, C, E, and A, respectively.

 ​ ​12

Laser Guitar - Group 1

With this foundation of music theory and physical instrument design we were
able to establish an outline of how our project will function from an engineer's
standpoint. Our knowledge of notes and scales will allow us to properly
program the software so that we can accurately replicate the proper tonality of
our musical instrument while observing the design of acoustic four stringed
instruments allowed us to envision the housing and functionality of the hardware
design of our instrument. We will use this knowledge as an outline of how we
plan to create the optimal hardware and software design that provides the user
with an instrumental experience. Figure 5 below shows an example chord chart
for Ukuleles which we can emulate the proper tonality of our instrument.

Figure 5: Chord Chart for Ukuleles in Standard Tuning

3.2. Existing Products

One of the most well-known laser instruments is the ‘​The Laser Harp​’ by Laser
Spectacles, Inc. Their design can be described as a MIDI note being sent to a
synthesizer when the beams are detected as off. The lasers themselves are
under 4.95 milliwatts. It is described as having an extremely fast response time

 ​ ​13

Laser Guitar - Group 1

with exceptionally clean lasers. Laser Spectacles, Inc. is not just a company that
makes and sells their laser harp, but also performs shows around the United
States. A typical laser harp they make sells for around $7,000, custom harps can
be made for either a higher or lower price.

With further research, the only laser instrument available is as a harp. A
company by the name of KromaLaser sells different forms of laser harps to the
masses. Currently there are two Embedded RGB laser models and three RGB
laser projectors. Another interesting product they sell is Laser Pedalboard,
which attaches to a piano and shines different lasers based on the foot pedals
you're using. The same principle applies to these models that we will be
researching, in which individual lasers are detected when breaking the plane
with the photodetector and measuring the amount of photons to play a note.

A revolutionary patented product codenamed ‘​Beambow’, ​uses a combination
of two or three lasers and measures the speed, direction, and position in which
the beams are cut. A great feature of this product is the ability for a musician to
customize the noises to their instrument and create new gestures when blocking
the laser beams. Also, a note will not be played when the lasers are blocked,
since the speed in which you break the lasers is being measured when the
photodetector measures the photons again. More traditionally, our design and
many other designs just use one laser to measure a break, but with the three
lasers in Beambow, it is said to create a virtual line in space.

Figure 6: Beambow Controller Unit [D4]

With the ‘Beambow’ unit above, a musician can set different sounds and notes
to play depending on the speed of the swing and the direction you swing at.
Along with this unit is the laser system, which is odd because they are
separated from each other. The combination of these two is a computer
software to set and track points in which you break the plane. As with the Laser

 ​ ​14

Laser Guitar - Group 1

Harp, our guitar laser idea was thought of from a previous UCF senior design
project that revolved around building a laser harp. Approaching their design, we
thought of what we can change and implement to make ours new and unique.
Which birthed our concept of the laser guitar.

Another fascinating company is ‘​Prolight’​, where they sell a wide range of
products from lasers, controllers, to smoke machines. From the beginning,
Prolight began when the founders observed that their laser labyrinth project
could be modified to make sounds when a laser beam is broken. Their first
model was a framed design, but it turned out to be too cumbersome, so they
built a frameless harp, known as a ‘​Prolight Laser Harp Controller LH1​’. The
advantages of this model allow for any audio or video to be played when one of
the lasers is broken, with the help of ​Pangolin software to capture all of the
events. With this model, it is very consumer friendly with a controller and any
ILDA compatible laser. Both the controllers they currently offer range in price
from 900 to 1000 US dollars. The lasers are important and the boxes they sell
start at 500 US dollars and can go all the way up to almost 5500 US dollars. The
output of the highest end is 6 watts, with the beam size varying between units.
To go along with the laser show, you can also purchase a smoke machine which
creates a haze effect when the lasers project through. Overall, you can easily
spend a few thousand dollars to set up your own laser harp rig.

Table 4: Comparing/Contrasting the different offerings

Overall, our design will be vastly different from these products, but still use the
principles that they all use. Instead of having our lasers to act as a harp
with/without a frame, our device will be very portable and can be carried around
for a long period of time. It won’t be a full-blown guitar, but a miniaturized
version with less strings and less notes that can be played. The products
described give us assurance that musical instruments that use lasers to interact
with the user are feasible to build, and already have a market of users interested
in this sort of product. Our purpose with this project is to make a unique

 ​ ​15

The Laser Harp KromaLaser Beambow Prolight

- Sell custom Laser
Harps
- Few thousand
dollars
- Performing crew

- Online seller
- Embedded
designs
- Controllers
- Least expensive

- First real
laser-based MIDI
controller
- Patented
- Uses multiple
lasers as virtual
space
- Sophisticated

- Online retailer
- Over seas
-Controllers/Lasers
/Smoke
- Very Expensive
- Reliable

Laser Guitar - Group 1

product, that’s consumer friendly and potentially enjoyed by thousands, while
not breaking the budget of the average individual.

3.3. Relevant Technologies

This section focuses on our research of relevant technologies for our project.
These relevant technologies consist of various tools and compliments that can
be used in our project from both a hardware and software perspective.

3.3.1. Relevant Technologies: Hardware
The following section outlines our research on technologies that are relevant to
our project from a hardware perspective. This includes our source of light, the
laser, and the way it will detect this light, the photodetector, as well as the way
we intend to provide power and portability to our device.

Lasers

To provide the user with an instrumental experience when using our product,
our design will have strings made from lasers which can be fretted and played
as if it was a real guitar. In order to understand how this will work, some basic
background knowledge on lasers and photodetectors is necessary. First, we
will look into the laser. A laser is a device that emits light through optical
amplification based on the stimulated emission of photons. Lasers are more
applicable than other light sources because the light emitted is coherent. The
spatial coherence of laser light allows for the light to be focused into a tight
spot, while staying narrow over long distances. This is important for our
purposes because it allows us to simulate the strings of a guitar using laser light.
Lasers also have high temporal coherence, which means they can emit a single
color of light. This is valuable to know in case we choose to filter the light
between adjacent strings based on color using narrow bandpass filters. This
choice would greatly increase the cost of our system though, so it is still under
consideration and will be looked into further when designing the system with
several strings.

Photodiodes

Now moving on to the photodetectors, which will be used to return a
measurable voltage to the microcontroller and determine which notes to play,
and when to play them. Photodetectors contain a P-N junction which converts
incident light into an electrical current. There are several different devices that
operate as photodetectors, including photoelectric devices such as phototubes,
semiconductor devices such as photodiodes and phototransistors, and
photovoltaic devices such as solar cells. When used in conjunction with the
laser, the photodetector becomes a very powerful piece of technology. For our
purposes, we will use photodetectors to tell our microcontroller when a laser

 ​ ​16

Laser Guitar - Group 1

beam on the strumming set of strings is interrupted so the system will play a
note. Similarly, for the fretting strings, a series of photodetectors will be used to
tell the microcontroller which note to play based on where the beam of light is
being interrupted.

Regulators

During this section, regulators provide a vital role to sufficiently provide power
accurately to all the necessary components. Whether it will be boosting up or
down, the batteries selected will need additional support to supply their power.
Each component will require different levels of power, so multiple outputs might
be necessary. In the end, the lithium ion batteries will plug into the printed circuit
board to the regulator before power is distributed. It’s wise to not supply too
little or too much as well, and our regulator will act as a means of controlling this
factor.

ADC/DAC

Here the ADCs, and DACs can either be internal or external, with
advantages/disadvantages to both. In our case, we will currently be using the
internal modules to the ATMEGA2560, with more than enough pins. If for some
reason we lose accuracy or experience noise, external is always an option. As
said before, each analog input(lasers to photodetectors) will have a digital signal
to represent what note to play corresponding to the fretboard. Then take that
signal and convert it back to an analog signal to the amplifier.

3.3.2. Relevant Technologies: Software

The main objective from the software side of our project is to program the
microcontroller accordingly in order to produce the correct frequency/pitch and
notes. Since the microcontroller is a core component to reproducing a sound,
the microcontroller needs to be programmed in a way that each laser will be
assigned a frequency/pitch. The lasers that represent each frequency/pitch will
be positioned on the neck of the guitar. Similarly, the lasers on the head of the
guitar will be used to program the microcontroller in such a way that when a
laser is broken it will act as a trigger to output the respective frequency/pitch
based on the corresponding laser on the neck of the guitar.

As the microcontroller is a core complement to achieve our objective, it is
crucial that our research includes various technologies and programming
languages are most common when working with microcontrollers. These
technologies include, but are not limited to the program language, and the
program environment. By researching these technologies, it brings to light
various obstacles and solutions to take into consideration. When seeing these

 ​ ​17

Laser Guitar - Group 1

obstacles and solutions, it will ameliorate both the implementation and testing
phase when designing the project.

Language Hierarchy

In the world of programming there is now an abundance of programming
languages, each of which are designed for different purposes and tasks. These
languages are typically classified into three main categories, machine, low-level
and high-level languages. Machine languages can be thought of as “the native
tongue of the computer” [1]. From Figure 7 below we can see that Machine
language can be seen in this manner because it is the language closest to
hardware. A program written in machine code is composed of a sequence of
ones and zeroes known as binary digits, which represent simple operations that
are supported by the computer. These programs can be executed directly on
the CPU, while higher-level languages have to be translated into machine code
before they can be executed.

There are different viewpoints when it comes to categorizing languages as
low-level. People often include languages anywhere from machine code to C,
due to all the advancements in technology opinions are now mixed. Generally
speaking low-level languages can be described as using little to no abstraction
in comparison to a computer's instruction set architecture. When discussing
low-level languages, the most commonly thought of language is assembly.
Assembly was made in efforts to make programming more feasible to humans.
It replaces binary code with pseudo-english words and hexadecimal values.
Translation to machine code is done by an assembler which is simpler than
having to rely on a compiler. Assembly is not commonly used anymore,
however, for education purposes it can be very beneficial.

High-level languages can be described as being heavily abstract and more
english-like which makes it easier for programmers to learn and understand. C#,
Java and Python are all good examples of higher-level languages. The main
benefits from utilizing high-level languages is their simplicity, readability and
portability. The syntax makes for code that is easy to write, and maintain and
due to the heavy abstraction these languages generally do not have any
dependencies on the machine. On the downside, high-level languages are
slower in comparison to low-level languages because of the time it takes to
translate into machine code. This is something that should be considered when
it comes to programming small devices such as microcontrollers.

By researching the different levels of languages, we can now better understand
how languages are classified and which ones may be the best suited for any
given use-case. For our use-case we can see that a low-level language may be
the best fit. Low-level languages gives the programmer more freedom to control
memory and the code is easily translated into machine code. This results in less
use of power and memory which can be advantageous, given the size of

 ​ ​18

Laser Guitar - Group 1

microcontrollers and their lack of processing power and memory capacity. On
the contrary, high-level languages are at a disadvantage for this same reason,
however, microprocessors have improved over the years. Thus, high-level
languages now have use cases in which they can be applicable.

Figure 7 : Language Hierarchy [1]

Programming Languages

In the earlier stages of microcontrollers developers were limited in the range of
low-level to mid-level programming languages such as C and Assembly. These
languages were most commonly used because they are closer to machine code
and therefore are more specific to the architecture and hardware of the system.
Over the years as technology evolved, so have microcontrollers.
Microcontrollers have the ability to not only program at a low-level, but also in
high-level programming languages. Developers now have a wide range of
languages to choose from besides C and Assembly. The high-level languages
that are now supported by microcontrollers or embedded systems are Python,
C++, Java, C#, and Verilog.

When selecting a programming language for our microcontroller, the project
needs to consider what type of languages can be supported by our microntroler,
and if there are any constraints to the language. Some of these constraints are,
but not limited to efficiency, functionality, runtime, and framework.

 ​ ​19

Laser Guitar - Group 1

C Language

The C language was originally said to be a high-level language as seen in figure
7 above. However, in todays’ modern day many people have started to consider
C as a lower-level language. This is highly in part to the fact that memory
management is in the hands of the programmer, unlike Java or Python in which
this is handled for you.

C is one of the most popular languages when it comes to microcontrollers and
embedded systems. Most electronic gadgets that people use on a day to day
basis such as cell phones, cameras, stereos, etc developed in C. Some of the
reasons why C is popular when it comes to embedded systems are memory
management, performance, portability and bit manipulation. C’s memory
management and performance are essential for microcontrollers and smaller
embedded systems where memory is limited. Having the ability to control it
allows you to make it as efficient as possible and the fact that C compiles easily
into optimized machine code improves the performance of an embedded
system as a whole. Portability and bit manipulation also play a pivotal role in
embedded systems as the portability allows for the code to be moved to
different operating systems without a problem and bit manipulation makes it
straightforward to program the hardware where flipping bits in registers is
recurrent. These capabilities of C make it extremely popular.

C++

C++ is considered to be an intermediate-level language, as it includes
capabilities of both high and low-level language features. C++ was created as
an extension of the C language and can be considered as a superset of C. This
means that almost anything done in C can be done in C++, however the same
can not be said when going the other way. ​Many of C++’s features, including
classes, automatic resource cleanup, parametric polymorphism, and domain
specific libraries such as Arduino syntax. Having C++’s low-language
capabilities allows developers to work with various embedded systems. Being
able to have low-language capabilities allows libraries of the language to easily
be used to control the hardware of the device. Without these libraries, then it
would be difficult to directly change special registers​ to control everything.

Not only does the language provide domain specific libraries, it also gives the
ability to use abstracts and object oriented paradigms. The ability to use
high-level language paradigms and functions gives the developers more power
to create without the tradeoff of affecting the infrastructure of a system directly,
unless explicitly doing so. ​The data structure of C++, like C, is algorithm-based,
and therefore it is a great fit for solving any challenging programming problems
that are commonly faced when dealing with embedded development. C++ also

 ​ ​20

Laser Guitar - Group 1

has processor independence, and microprocessors today come loaded with
C++ compilers starting at $1 USD [2].

Assembly

Assembly is a low-level programming language and there are different variations
which depend specifically on the processor architecture. “​Assembly Language
is a pseudo-English representation of the Machine Language.​”[15]. Assembly
uses pseudo-English words such as ADD, SUB, and MOV, along with
hexadecimal codes to create what is known as instructions. Each instruction is
equivalent to one line of binary code and they rely on an assembler to make the
conversion over to machine code. On the other hand high-level languages
translate into many binary instructions and they rely on a compiler to make the
translation over to machine code. For this reason assembly executes much
faster and takes up less memory as the memory management is entirely up to
the programmer.

With the advancement of technology, assembly is not used as much to program
microcontrollers as it once was because memory is now cheaper, CPUs have
become more powerful, and assembly lacks portability. However, programming
a microcontroller in assembly can be very beneficial for any developer. When
programming in assembly the programmer must know all about the hardwares
architecture and the CPUs registers. This will allow the developer to grasp a
deep understanding of the microcontroller functionalities and have more control
to make use of all the features it has to offer.

Java

“Java is a general-purpose computer programming language that is concurrent,
class-based, object-oriented, and specifically designed to have as few
implementation dependencies as possible.” [3]. Java allows developers to “write
once, run anywhere” (WORA), meaning that compiled Java code can run on all
platforms that support Java without the need for recompilation [3].

With the ideology of “write once, run anywhere”, we can take our java code and
implement it to various devices that have java installed on it. Java code is run
using Java Virtual Machine (JVM) which allows Java code to be executed on any
device with Java on it because java has ​its own virtual machine, Java’s runtime
environment ensures that applications of different systems (e.g JVM and the
Microcontroller’s architecture) are not interfering with one another's process by
checking the code in the JVM before execution. If Java’s code attempts to alter
the microcontrollers core behaviors, it won't be run [4]. ​The java code is
independent from hardware and the architecture of our microcontroller.

Python

 ​ ​21

Laser Guitar - Group 1

Python is one of the most popular programming languages today mainly
because of its readability which makes it easy for beginners to learn. It is an
interpreted, object-oriented, high-level programming language with dynamic
semantics. Its high-level built in data structures, combined with dynamic typing
and dynamic binding, make it very attractive for Rapid Application Development,
as well as for use as a scripting or glue language to connect existing
components together [5]. Python’s uniqueness of dynamic typing and semantics
allowed many users to create libraries for specific tasks. These libraries range
from artificial intelligence and machines learning to its web applications, but also
its embedded system capabilities.

Having these various libraries, ​python scripts can be developed that set the
embedded system into different states, set configurations and test all the
possible perturbations and interactions that the system would have with the
external world[4]. These Python scripts allow automated testing for our system
to undergo. From these automated testing we can see the results of bugs or
non-conformances. A big reason as to why python is not popular in the realm of
embedded development is due to its runtime speed as a result of its high
abstraction. With the popularity of python on the rise, MicroPython was created.
MicroPython is an efficient implementation of Python 3 with a small subset of
the python standard library and it is optimized to run on microcontrollers[20].
With this technology python will look to gain popularity over C and C++ which
are the most commonly used for embedded systems.

Verilog

Verilog is known as a Hardware Description Language (HDL) that focuses
designing, and modeling embedded systems. The syntax is very similar to that
of C, however the languages they used for different purposes. Verilog supports
different levels of abstractions such as the behavioral, register-transfer, and the
gate level which help design and model embedded systems.These levels of
abstraction require different coding methodology and implementation method
because of how sensitive and close they are to the architure of the hardware.

Verilog is mainly used when it comes to programming Field Programmable Gate
Arrays (FPGA). Field Programmable Gate Arrays are integrated circuits that can
be configured or programmed to perform a given task. They are similar to
microcontrollers however, have more flexibility to be configured into anything
the programmer may be trying to accomplish.

Programming Language Comparison

Our research from a software perspective consists of many available
programming languages. Each programming has their strengths and
weaknesses. In order to narrow down what programming language we will use,
we created a table of all of our researched programming languages to make our

 ​ ​22

Laser Guitar - Group 1

choice. Our choice of a selected programming language is discussed in 3.5.2
Software selection. The table consists of key attributes from each language. The
table below shows this comparison.

Table 5: Languages Advantages Vs Disadvantages

 ​ ​23

Languages Advantages Disadvantages

C ● Dynamic memory
allocation

● Compiled language
● Easy to learn
● System programming
● Built-in Function

● Not Object Oriented
base

● No Run time
checking

● No Strict type
● No Namespace

C++ ● Object Oriented
● Self-memory

management
● Multi-level language
● Hardware specific

libraries

● Bloated Machine
Code

● Slow
● Emphasis on

instructions
● No built in threads
● No garbage collector

Assembly ● Fast execution time
● Memory efficient
● Hardware oriented
● More control over

programs

● Difficult to
understand

● Long and convoluted
codes

● Compatibility with
different
architectures can be
an issue

Java ● Object Oriented
● Platform independent

● Large Code size
● Usually slow
● Single Paradigm
● No low-level

programing

Python ● Easy to learn and
read syntax

● Scripting for
automated testing

● Object Oriented
● Asynchronous

Coding

● Slow execution
● Weak mobile

computing
● Design restrictions
● Not memory efficient
● Runtime errors

Verilog ● Hardware modeling
language

● Handles Bidirectional
devices

● Is SystemVerilog

● No High-level
construct

● No custom types
● Poor asynchronous

signals

Laser Guitar - Group 1

Software Environments

Programming languages need a compiler in order to translate human-readable
source code to executable machine code. When a code is written in a specific
language that is already compiled, it gives the hardware instruction on what it
needs to achieve, and how it should perform based on the source code.

An environment that a specific programming language can work and compile
with is an Integrated Development Environment (IDE). Integrated Development
Environment are software application suites that consolidate basic tools
required to write and test software.

For every programming language, there is an environment that supports it.
There are an abundance of Integrated Development Environment that are
available to developers, many having a compiler built into them. Not only do
Integrated Development Environment have built-in compilers, but they offer
various tools specific for the programming language it supports. Having an
environment centralizes the codes and its dependents in an area, while having
tools to navigate and modify code quicker. Integrated Development Environment
also provides debugging tools to help catch errors and fix any bugs within the
code. This both time and resources from being wasted when fixing it. By
researching what type of software environment our code will be built from, it will
save resources for when we will test and implement the code.

To go along with an Integrated Development Environment to work in we must
also have an environment which will facilitate working on a code base with a
team. Such environments are known as version control systems. These systems
allow for code to be kept organized when there are many contributions from
different team members while also keeping a history of it.

Eclipse IDE

The Eclipse IDE is famous for our Java Integrated Development Environment
(IDE), but we have a number of pretty cool IDEs, including our C/C++ IDE,
JavaScript/TypeScript IDE, PHP IDE, and more [6]. Eclipse was mostly written in
Java, therefore it would be well suited for Java based code. Not only does it
support Java, it also supports other programming languages such as C, C++,
PHP, and many more. In order to use other languages with eclipse, all the user
has to do is install the language plugin within the IDE.

Visual Studio Code

Visual studios is considered to be a hybrid environment. It is considered a
hybrid environment because it is in between an IDE and a text editor. Being a
hybrid type of environment is what gives Visual Studios Code its notability to

 ​ ​24

Laser Guitar - Group 1

still be considered a software environment. Visual studio is lightweight, and
powerful cross platform editor. It has a large ecosystem of plugins which
developers can use for their specific needs. By allowing picking what is needed,
the environment can be lightweight, but still perform the desired task needed.
Making the environment operate as a language-agnostic code editor for any
language. Some of the plugins consist of, but not limited to debugging, syntax
highlighting, code completion, refactoring, and workspace customization.

Code Composer Studio

Texas Instruments (TI) developed an Integrated Development Environment that
supports their microcontroller (TI’s based Microonctroller) and embedded
processors portfolio called Code Composer Studio (CCS). Texas Instruments
description of Code Composer Studio is that it “comprises a suite of tools used
to develop and debug embedded applications. It includes an optimizing C/C++
compiler, source code editor, project build environment, debugger, profiler, and
many other features.”[12]. Code Composer Studio was designed as an
Integrated Development Environment for both low-lew and embedded
applications.Code Composer Studio also combines the Eclipse software
framework with more advanced embedded programming and debugging tools.
Code Composer Studio can also connect with MATLAB, Simulink, and with
Simulink. These IDEs are for other programming languages that have embedded
development tools.

Vivado Design Suite

Vivado Design Suite is one of Xilinx Hardware Description Language (HDL)
software that emphasizes on synthesis and analysis of Hardware Description
Language Design. The software is considered an IDE because its high-level
synthesis with toolchains allow written C and C++ language code to be
converted into programmable logic. Using Vivado Design Suite gives developers
the backbone for advanced, generation-ahead hardware, software, and system
development using All Programmable Abstractions [7]. Using Vivado Design
Suite developers should experience accelerating system implementation and
integration, and comprehensive hardware debugging.

Arduino IDE

The Arduino IDE is an open source software platform that allows you to write
code and upload it easily to Arduino devices. The platform was written in Java
and is supported by Windows, Mac and Linux operating systems. The
languages supported by the Arduino IDE are C, C++ and Arduino’s own native
language which are based on C and C++. Programs written on this platform are
called sketches, which are compiled into binary files that are then transferred
directly to the board through the configured port. Given that the IDE is native to

 ​ ​25

Laser Guitar - Group 1

Arduino, if an Arduino microcontroller is decided upon, it would be favorable to
use this environment.

MPLAB X IDE

The MPLAB X IDE is a software environment that gives the user a wide range of
freedom when configuring, programming and debugging a broad selection of
microchips and microprocessors. The MPLAB X IDE has a variety of tools and
features that allow for developers to efficiently debug projects such as a data
visualizer and an input/output view. This Integrated Development Environment is
supported by Windows, macOS and Linux and is free to use.

Atmel Studio 7

Atmel Studio 7 is the software environment platform created specifically for
programming and debugging all AVR and SAM devices. AVR and SAM devices
are different families of microcontrollers that were developed by Atmel. Studio 7
provides a user friendly environment to develop applications written in C/C++ or
assembly. It also allows you to import Arduino code, which are called Arduino
sketches, as a C++ project. Atmel Studio also provides a wide range of libraries,
tools and extensions that can be added through its online store the Atmel
Gallery. This platform is free to use and is only supported by Windows operating
systems.

Git/Github

When working on projects with multiple developers things can get messy. Each
developer's contributions need to be integrated into one single project.
Therefore, it is essential to have a version control system that can facilitate team
collaboration. That is where Git and Github become relevant. Git is a version
control system that allows you to manage and store the history of your source
code, while also keeping track of who made which changes. It also allows you
to go back to any of the previous versions which can be critical when trying to
add more functionality or features to a project that may cause the entire code to
break or fail. Github provides an online source that provides the same
functionality git has while also acting as a host system for git repositories. Git
and github will be critical in our project as it allows our team to have an
environment in which everyone can access the code, keep track of the code
history and also monitor all the contributions and changes made by the team.

3.4. Strategic Components and Part Selection

This section focuses on what components or parts have been taken into
consideration from our research in section 3.3. The parts chosen will ensure

 ​ ​26

Laser Guitar - Group 1

that our project design works smoothly and efficiently, while being mindful of
our budget and keeping the device relatively cheap.

3.4.1. Battery Selection

The battery selection for our project will have to be widely available at a low cost
and provide enough power to the device for a session to last at least an hour.
Our chosen battery will need enough current with a low self-discharge and a
long cycle life. The voltage of the battery also plays a vital role, needing to be
able to provide enough potential to power all the electronics. As for powering
the speaker/amplifier, a wall outlet will most likely be used while the electronics
use the battery technology chosen. Preferably, maintenance will not be an issue
but if avoidable will be the best option. With our final selection, we will purchase
each cell individually or a pack that contains the cells already configured with
our specifications.

Lead Acid

These batteries are the most widely available technology in batteries today. With
having an incredibly low energy-to-weight ratio and low energy-to-volume ratio,
these batteries can provide high currents which makes them suitable for electric
vehicles. With these drawbacks, an advantage is actually their large
power-to-weight ratio. During disposal, you will have to take the battery to a
landfill to properly dispose of the lead used in the battery. A description of the
charged state of the battery uses the chemical energy of the potential difference
between the lead and PbO​2​. The electrical energy is then produced from the
interactions of the H​2​O molecules produced from the H​+​ and O​2-​ ions.

Figure 8: Lead Acid charging and discharging chemistry [D5]

Lithium Ion:

 ​ ​27

Laser Guitar - Group 1

With this type of battery, they have a high energy density, the ability to
self-discharge with low maintenance. Several disadvantages include the cost,
the ability for protection and the ageing of the battery. The main advantage
compared to NiMH is the decreased self-discharge rate of about 1%-2% per
month, paired with its high energy density, allowing longer uses in between
charges. The technology used consists of lithium ions moving from a negative
electrode through an electrolyte to the positive electrode, during charging and
discharging. If punctured, the electrolyte will cause an explosion and start a fire.

Figure 9: Charge and discharge chemistry for lithium ion [D6]

Nickel Metal Hydride

With the beginning stage of NiMH batteries, they were unstable due to the alloys
in the cells. Development occurred and created new hydride alloys to improve
the stability and increase the popularity. With having a higher energy cell density
than NiCd but is less durable. With a benefit of being more environmentally
friendly, limitations include a higher self-discharge with a decrease in
performance at higher altitudes. Often needing higher maintenance from having
to do a full discharge to prevent any crystalline structures. The chemical reaction
to produce electrical energy starts with a positive electrode using nickel oxide
hydroxide and the negative electrode uses a hydrogen-absorbing alloy.

Figure 10: Nickel Metal [D7]

 ​ ​28

Laser Guitar - Group 1

Nickel Cadmium

These batteries are another type of rechargeable battery that uses cadmium as
the electrode and nickel oxide hydroxide. A great advantage is how inexpensive
they are, and low maintainability required. A downside is the low energy density
and self-discharge higher than normal. With around 100 cycles per cell, they
have to charge again rather quickly after one use. They also contain toxic
materials, which need extra precautions when disposing of them. Overall, these
batteries are great for a cheap alternative, but do not meet the requirements for
having a long-lasting battery. The negative properties within these batteries are
something that we must consider, in order to improve our functionality of how
we power our components without the cost of health and financial issues.

Table 6: Various Battery Pros and Cons

Our Process:

From the different technologies above, we have chosen to work with Lithium
Ion, for its high energy density to allow for a long play time of the instrument.
The two important factors with batteries are the voltage and the mAh rating. For
the voltage, we don’t need it to be too high, but high enough to allow for a
step-down voltage to power the electronics. When it comes to the storage
capacity, the mAh rating determines how long the battery will operate. Some
comparisons here are for phones, more specifically the iPhone X and XS have a
battery around 2700 mAh. Now, this is a perfect scenario for the phone since all
their electronics are optimized in house. For our case, we would probably be
looking to double that mAh, which will be plenty of a charge to allow our device
to play for many hours. The more charge and power our battery has enables the
user who is using our devices to play for longer periods of time without the
constraints of high power consumption components in our project.

 ​ ​29

Laser Guitar - Group 1

The batteries can now be a single pack, or we can use multiple cells and plug
them into a battery holder. Through some research, the cost of buying 4 cells at
3.6V each is about a quarter to third of the cost for a single lithium ion battery
pack. With this, 4 18650 lithium ion cells will be utilized at 3.6 volts. The
configuration will use a 4-cell battery holder which will give the pack 5000mAh,
which will be plenty for our design. Another alternative would be to use 3 cells
for a total of 10.8V, which will be suitable. With the voltage range we have, each
component on the PCB will need an operating voltage, usually around 5V for the
parts we have chosen now. Utilizing a buck converter instead of a linear
regulator to step down our voltage will be more efficient while producing less
heat and extend the lifetime of the battery cells.

The configuration of the battery cells is very crucial to our set up. To achieve our
desired terminal voltage, each cell will be configured in series. With four cells,
pairs will be configured in parallel to achieve 5000mAh, from 2500mAh cells.
This combination is called 4s2p, which is very common in electronics today.
Most importantly, each cell must be the same voltage and capacity, if not there
will be an imbalance from the odd one out. With a series configuration, the
terminal voltage is only as strong as the weakest cell, exhausting more quickly.
Our goal is to achieve a 2s2p configuration as shown below to increase our
capacity.

Figure 11: 2s2p battery setup ​Terminology/Safety [D8]

Another option instead of using four cells is to separate the ukulele into different
sections according to the power supply. Starting with the fretboard design,
there will be a total of four lasers, with each having four photodiodes for the
notes. Each string will use one lithium ion cell battery at 3.6 volts to supply the
photodiodes. As well for the one photodiode on the head of the guitar. With this,
instead of having a total of four cells powering the PCB directly leading to all the
electronics, four cells will be used to power each string separately. As with the
lasers, five volts is needed which will use two cells and step down the voltage.
There are a total of eight lasers, which only need power, which will utilize two
3.6V lithium ion cells in series. Next is the MCU which will have its own two cell
power supply. With this, instead of being top heavy from one-point powering
everything, the supplies are spread out which will hopefully provide a consistent
and reliable supply of power.

 ​ ​30

Laser Guitar - Group 1

Within the industry, specifications are made on the cells in series first and then
the cells in parallel. As mentioned above, that can be seen as 2s2p. You have
two cells in series and two in parallel. The connection of these cells first starts
with making pairs in parallel, once that is done the two parallel connections can
now be placed in series. This is most common for lithium ion cells, but other
technologies such as NiCd may start with series. It’s common to maintain its
chemical nature. The safety of these cells can be made with positive
temperature coefficient switches or charge interrupt devices. Commonly in
larger than 3-cell packs. Working to switch the cells off when experiencing
excessive pressure or current. Keeping in mind that cells may turn off early
which will increase the load current among the other cells. Best practices also
include keeping each cell clean, never mix batteries, correct polarity, and
remove batteries when not in use.

The first method involves a positive temperature coefficient thermistor. As the
temperature increases of the battery the resistance also increases for the PTC.
Defined into two categories there is one made of silistors and a switching mode
one. The important characteristic of the silistor is the use of silicon which gives a
linear characteristic. Unlike this, the switching mode characteristic is nonlinear.
Specifically, when the switching mechanism is heated, the resistance decreases
initially until the critical temperature is reached. Once the temperature passes
that threshold, the resistance increases drastically. With this, there are two
modes: self-heating and sensor. While in self-heating, a current is passed
through the thermistor and the resistance increases as described above. During
the sensor mode, a minimum amount of current is passed through the
thermistor, which neglects the self-heating portion. Once the device starts
heating up, the resistance begins to increase as well.

Figure 12: PTC graph of resistance as temperature increases [D9]

 ​ ​31

Laser Guitar - Group 1

The second method involves charge interrupt devices. As the name suggests,
this is a fuse, that when triggered turns off the electrical circuit. This can be
triggered by many factors, ranging from high temperature, voltage, or pressure.
As mentioned above, the same principles apply to accurately shut off the charge
when unintended behavior occurs. An issue that can be observed is thermal
runaway where the voltage threshold has been passed and short conditions
occur. Overall, protecting your devices against in-rush current and overcurrent is
obtainable with these applications.

3.4.2. Voltage Regulators

The use of a voltage regulator in our design will ensure that our printed circuit
board and diodes will receive a constant voltage not exceeding their
recommended thresholds. With our current design, we are using a battery pack,
which provides a DC voltage as opposed to an AC voltage from a wall outlet.
Which will make our design portable. With this mind, our focus will be on the
technology used in DC voltage stabilizers. With the battery pack for our design,
we will end up having to step down the voltage to the components on our
printed circuit board, which will feature a Buck converter. There is also a wide
range of regulators that will also be discussed below and then compare each
one with their advantages and disadvantages.

Linear Regulators

The concept of a linear regulator uses a closed feedback loop to create a bias to
sustain a constant voltage. Two types include a series and shunt. The series
type is a simple where a variable element is in series with the load. By changing
the variable resistance, the voltage will change accordingly. With an advantage
of having a clean output, when it comes to step up the voltage, they are very
unstable. The second type is a shunt regulator, which uses a variable resistance
to supply a voltage to ground, unlike a series where a load is used to supply
voltage to. The current however is diverted away from the load directly to
ground, which is not as efficient. Used more commonly in low powered circuits,
where the current is kept low as well. A low-dropout regulator can still regulate
the output voltage when both the supply and output are close to each other,
usually within the dropout voltage. The advantage of this is no switching noise
because there is no switch, unlike the switching regulator. There are also fixed
regulators that allow a fixed output voltage such as 5V or 9V, but also adding a
Zener diode to the IC, you can vary the range of the output.

 ​ ​32

Laser Guitar - Group 1

Figure 13: Depictions of a shunt and series voltage regulators

Switching Regulators

The idea here is to use a switching mechanism to transform the input voltage
into a pulsed voltage, and then smoothed using capacitors. A MOSFET is used
to turn on until the desired voltage is set, once so, the MOSFET turns off.
Continually to do this operation makes these regulators very efficient. This is
known as pulse width modulation; hence the duty cycle of the switch
determines how much of a charge is transferred to the load. There comes a cost
with the high efficiency and low heat generated, such as an increased noise and
a much more complicated design than the other regulators discussed so far.

Figure 14: Common switching regulator

Buck Converter

A buck converter allows for a higher input voltage to be stepped down to a
lower output voltage. Ideally, the current through the inductor is controlled via a
transistor where when the current is on, there is zero voltage drop and zero
current flow when the switch is off. The voltages also remain constant through
the whole process. There are also two modes such as a continuous mode and
discontinuous mode.

 ​ ​33

Laser Guitar - Group 1

Figure 15: Common buck converter

Boost Converter

A boost Converter acts as the opposite of a Buck converter where the voltage is
stepped up. In the figure below, the inductor resist changes to the current. While
the switch is closed, the current flows through the inductor storing energy as a
magnetic field. When the switch is open, the impedance is now higher resulting
in a lower current. The magnetic field will now be destroyed and the polarity
across the inductor is now reversed. Cycling the switch fast enough will result in
not a full discharge and the voltage across the load will always be higher than
the input.

 ​Figure 16: Common boost converter

Specifications

With each regulator, specifications such as the load regulation, dropout voltage,
inrush current, and quiescent current are considered when designing a
regulator. Importantly, the load regulation measures the change of the output
with respect to a change in the load current. As mentioned, the dropout voltage
sets the minimum voltage difference necessary for the supply and output to still

 ​ ​34

Laser Guitar - Group 1

supply current. Inrush current is the maximum amount of current supplied to the
IC when it’s first powered on. Lastly, the Quiescent current is important if
efficiency is an issue since the current is measured while no load is connected
and is internal to the IC. To piece it all together you can test the transient
response of each regulator, by suddenly changing the load current and
comparing the data with those provided in the datasheet of the specific
regulator.

Our Process

For our design we will be using a higher voltage provided by a lithium ion battery
and step it down to a smaller voltage to power all of the electronics. When it
comes to PCB design, you can choose either a surface mounted or through hole
device. A through hole regulator typically deals with large voltages and currents
while a surface mounted regulator deals with much smaller voltages. For the
MCU itself, it will require a higher voltage than the electronics, so a linear
voltage regulator will be used. According to the data sheet, the AtMega2560
requires an operating voltage of 5V. A perfect IC to do this is provided by
adafruit (7805 TO-220), where an input voltage between 7 and 35 volts will step
down to 5 volts, this will be used for testing purposes and a buck converter will
be used instead of linear regulator for its efficiency and power usage. Below are
different buck converters found through Texas instruments Webench tool.
Which is a power designer tool to optimally pick different ICs to power
electronics.

 ​Figure 17: schematic of TPS563231 I​C [D1]

The input voltage range for figure above is 4.5 to 17 volts, which is perfect for
our battery configuration of either 10.8V or 14.4V. Some important features are
the switching frequency of 600 kHz, and an output range of 0.6 to 7V. There is
also a low shutdown current of 12µA and the package for the IC is a 6-pin
SOT563. Some common applications mentioned on the datasheet are a digital

 ​ ​35

Laser Guitar - Group 1

TV power supply, surveillance, and networking home terminal. With a price of
$0.83 on Mouser, this regulator will suit our needs.

Figure 18: TPS563249 schematic IC [D2]

Similar to the TPS563231, the input voltage range is between 4.5 and 17 volts,
with an adjustable output of 0.6 or 7 volts. It uses a forced continuous
conduction mode instead of a pulse skip mode and a smaller low shutdown
current of 10µA. The protection is also a hiccup mode to limit any overcurrent.
Importantly, the switching frequency is much higher at 1.4-MHz which helps
reduce component size but in return increases the cost to $0.95 on Mouser.
With a SOT-23-THIN package, typical applications include a broadband
modem, wireless routers and set-top boxes. This IC could be more useful for the
higher switching frequency, but not necessary. This input voltage range could
also limit us if we wanted to boost a 3.6 volt cell to five volts depending on our
final design. Overall though, we can easily convert a higher voltage to a lower
one based on our needs.

 Figure 19: TLV62130 schematic IC ​[D3]

 ​ ​36

Laser Guitar - Group 1

The regulator above has an input voltage range like the other two of 3 to 17 volts
and an output range of 0.9 to 5.5 volts. With an output current of up to 3A and a
quiescent current of 19µA. It has both a short and over temperature protection
and comes in a 3x3 QFN package. With a good power output, the typical
applications are 12-V rail supplies, motor drives and set-top boxes. With a
frequency of 1.35MHz and efficiency of 93.8%, the cost on Mouser is $1.49.
Overall, this regulator has too many features that won’t be utilized but makes for
a great power/efficient PCB. During the testing and design process, if we switch
up the power supply design to achieve greater long term results, the input
voltage range is just low enough to allow for a one cell design to power a set of
diodes. Currently, below figure is a depiction of the initial plan, but can see
significant changes as we look for better results. With that, the TLV62130 offers
great advantages over the other two ICs, while still giving a great price point and
ability to test different battery pack methods.

Figure 20: Diagram of power supply through regulators to electronics

In the figure above is the current plan for power distribution to current parts we
have selected. With a 10.8- or 14.4-volt battery pack, the regulators chosen are
the TPS63249, for its range in output voltage and the very fast switching
frequency compared to the TPS563231, which is also relatively similar in cost.
There are currently three components being tested before placement/wiring
on/to the PCB, which are the MCU, laser diodes and photodiodes. Both the
MCU and laser diodes have an operating voltage of 5V while the voltage for the
photodiodes will be determined at a later point with more testing. With all three
regulators being chosen for its advantages over being a switching regulator
instead of linear regulator. The linear regulator chosen for testing purposes has
less noise while the switching IC for final design replaces the ripple on the input
for noise on the output, but is also easy to overcome. For the PCB, components

 ​ ​37

Laser Guitar - Group 1

can cause ground bounce and ringing, which can lead to bit rate errors for a
large number of ICs, so not necessarily in our case for our limited design. For
issues that do arise, bypass capacitors can be implemented between the power
and ground pins on each IC. Overall, the signal integrity will remain strong for
these ICs as more issues occur for a larger number of components.

Table 7 - Voltage Regulator comparisons

Updated Voltage Regulator

During the testing phase of the initial voltage regulator selection, there were
issues with the efficiency which caused the IC to overheat after about 7 hours of
continuous testing. Moving from a SOT-5 package regulator to a TO-220
package regulator such as the LM2596 greatly improved the performance of our
system. Two regulators were chosen, the 3.3-V and 5-V variant to power the
photodiodes and laser diodes/MCU, respectively. Below is an overall diagram
showing our final implementation. The LM2596 itself is a buck regulator which
has a large input range of up to 40-V and a great output current of up to 3-A.
The models chosen are set output of 3.3 and 5-V and the low quiescent current
makes it suitable for portable battery applications.

Figure 21 - Final Power supply to each component

 ​ ​38

Laser Guitar - Group 1

3.4.3. Printed Circuit Board

With our project idea, a printed circuit board will be designed to encompass all
the electronic components once testing has completed. A printed circuit board
is essentially a custom board that allows electronic components to connect via
conductive tracks to power a device. Consisting of laminated sheets and a
non-conductive substrate. An important feature of a printed circuit board is to
choose between having through hole or surface mount electronic components.
For efficiency and low cost, surface mount allows components to be soldered
onto metal caps instead of through the printed circuit board.

Properties/Material

The lamination process is done by curing layers of cloth or paper with resin
under high pressure and temperature. Some important characteristics when
determining the ratio between the cloth and resin is the dielectric constant, loss
factor, tensile strength, and importantly thermal expansion. There are many
variations used in industry today, but the most common is FR-4, which is woven
glass and epoxy. With these substrates, it is important to mention that they can
be woven or nonwoven, with woven being cheaper with a high dielectric.

Before printed circuit board boards were constructed, the process to construct
circuits was known as point-to-point wiring. Failures often occurred due to
aging, which caused a development into wire wrapping, where a wire is
wrapped around a post for each connection. As technology evolved and silicon
was used more and more, the printed circuit board was created to reduce costs
to match the electronics. Below is an image of the composition of a printed
circuit board where you have the substrate, copper, solder mask and silkscreen.
As mentioned above, the substrate is FR4, which is fiberglass, giving the printed
circuit board its thickness. After the substrate, copper is applied to both sides,
where the thickness varies but a common amount is 1 oz. With high power
electronics, the amount may increase. On top of the copper is the solder mask,
which is the green/red color you usually see on the printed circuit board. It helps
insulate the copper to prevent contact with other metal. The silkscreen is then
applied on top of the solder mask which denotes contacts as either power or
creates letters or numbers. Usually letting the user know the function of each
pin. Some common manufacturers include TechnoTronix, RedBoard Circuits,
NexLogic, and A.C.T. Each company offers a wide selection of processes with
great costs on many forms of PCB’s. Ranging from industry such as military or
oceanographic to the specific application.

 ​ ​39

Laser Guitar - Group 1

 Figure 22: Common layers of a printed circuit board side view [D10]

Terminology

When it comes to printed circuit board designs, they all have one thing in
common and that’s the terminology used to describe different parts of the
board. The first term is DRC, which is an acronym for design rule check. Some
common checks are things such as traces touching incorrectly, or they can be
too thin. The next term is annular ring, which essentially describes the ring of
copper surrounded by a plated through hole. With that, a drill hole is where a
hole should be drilled, which accommodates a plated through hole for through
hole parts instead of surface mounted parts. An odd one is the finger, which are
the exposed metal pads around the printed circuit board to allow connections
from one printed circuit board to another. A pad is exposed surface metal to
allow surface mounted electronics to be soldered on. A couple important terms
for when actually soldering components to a board, include reflow which is
melting the solder to form joints and solder paste which are balls of solder in a
gel applied to the printed circuit board before electronics are placed. It is a
substitute to the actually using solder, which requires more of a steady hand
and additional parts such as a soldering iron to melt the solder iron onto the
pads as you place the components. A final note that everyone has their own
preference and may choose whatever method they desire to apply their
electronics.

Manufacturing

In the beginning, printed circuit boards were constructed by hand from a
photomask on a mylar sheet. From the schematic, the metal pads and traces
were made on the mylar, with the use of self-adhesive tape. Today, computer
software is used and starts with the printed circuit board data being read by the
CAM (Computer Aided Manufacturing). From this process, if there are multiple
printed circuit boards, they could be grouped together and prepare the printing
process. Two of the processes involved are photoengraving and silk screen
printing. The photoengraving involves removing a UV photoresist to create a
mask, while the silkscreen uses etch-resistance inks to create the mask. Once
imaging and etching is complete, all layers are laminated together with drilling
taking place to electrical connect each layer. The boards are then coated with a
solder mask and machined to the specified dimensions.

Types

When you're choosing a printed circuit board manufacturer, you have the option
to choose from a variety of printed circuit boards such as having a rigid board
with a single layer or having multiple layers with a flexible board. The rigid
version is usually constructed from fiberglass as the substrate and is
inexpensive, but less versatile. The flex models offer greater versatility with a

 ​ ​40

Laser Guitar - Group 1

higher cost, but if you're needing a printed circuit board to fit in a very confined
space or adjust over time, these will work well. With a greater resistance to heat,
thermal expansion is less of an issue. An alternative is a hybrid model, where
multiple rigid printed circuit boards can be connected with the flexibility
component from the flexible printed circuit boards, while keeping a great size
and maintaining durability during its lifetime.

Our Process

During the testing phase and finalizations of components for our design, a
printed circuit board will be designed to encompass everything. The software
used during this step will be Autodesk Eagle, but there are a couple others such
as KiCAD and Fritzing which are highly rated. Once testing and design is
finalized, the selection of the PCb manufacturer will be chosen and our design
will be optimized to allow the lowest cost.

3.4.4. Integrated Circuits

This section covers integrated circuits involving ADCs and DACs. The research
covers a broad range of concepts involved to understand the electrical
functionality of the process to convert between analog and digital signals.

Analog-to-Digital Converter

For an Analog-to-Digital converter, an analog signal like detecting when a laser
is broken is then converted into a digital signal. As an example, on the fretboard
of our design, there will be a set of lasers pointing into photodetectors. To
recognize when the photodetector stops receiving photons, that analog signal
can be categorized as a one and when the photodetector still receives photons,
that will represent a zero. Along the fretboard, different notes can be played.
Depending on the distance when your finger breaks the sight, the number of
reflected photons will be picked up by the photodetector, which the
microcontroller will assign a digital value corresponding to a note being played.

When understanding ADCs, here are some terms to explain its operation. The
resolution of an ADC is the amount of binary values that can be produced over
an analog range. When it comes to resolution, Dither is used to help improve the
overall performance. Essentially, a small random noise is added to the input,
which in turn helps the LSB from getting cut off. Calculating the accuracy so far
has not influenced, but the most common errors deal with non-linearity and
Quantization. Usually resolved by some type of calibration of the IC. The last
important term to understand is the sampling rate, which is basically the rate at
which new values are sampled. When a signal is sampled, the input is held
constant for a single point during a conversion time while a sample and hold
task takes place with a capacitor. Usually oversampling takes place when the
ADCs performance can be greatly increased.

 ​ ​41

Laser Guitar - Group 1

There are also different types of ADCs such as a direct-conversion and
successive approximation. For direct conversion, the sampling rates are fast but
with a low resolution, usually at 8 bits. Comparators sample the input and a
logic circuit is used to create the output for the voltages used. The second
approach is successive approximation, which also uses comparators. At each
step through the process, an output range is compared to the input that is
stored. The input voltage is compared to voltages above and below it to narrow
down the field. There are also many applications for an ADC such as in DSP
applications and sound recording.

When it comes down to our overall design, the purpose here is to measure four
signals per each of the four strings, which encompasses a total of 16 notes for
our ukulele design. The voltage drop across each resistor must also be a large
enough value for the MCU to recognize and assign a note value. Overall, there
are many advantages and disadvantages that play an effect when it comes to
ADCs.

Figure 23: Digital output taken from analog input [D11]

Digital-to-Analog Converter

As with a Digital-to-Analog Converter, the opposite occurs from an ADC where
you use the digital signal from the microcontroller and produce an analog output
such as a musical note in our case. When discussing DACs, there are some
figures of merit to consider, resolution and maximum sampling frequency. For
our instance, our analog signal from the lasers on the fretboard and head of the
guitar, will represent different digital signals processed by the microcontroller,
including different notes per string. These digital signals will then take advantage
of the DAC and play each note to the speaker of our choice. A good
representation of a DAC would be a summing amplifier as shown below. The
strings will represent each bit and different levels on each string will correspond
to different notes.

 ​ ​42

Laser Guitar - Group 1

Figure 24: Summing amplifier shown to represent a DAC [D12]

The applications of a DAC range from audio to video and
mechanical/communication. The mechanical is interesting where you have an
actuator which has multiple positions to represent a bit. Communication as
always is popular with mobile devices and cell towers. With applications, there
are also different types of DACs, such as a pulse-width modulator,
binary-weighted, and oversampling. The oversampling uses a delta-sigma
modulation process, allowing a signal to be sampled more accurately. With the
binary-weighted model, an op-amp is used for each bit, which mimics a
summing amplifier as shown above. With its extremely fast response time and
high precision, the downside is the lack of accuracy.

Pulse-Width Modulation

This technique allows for a signal that is in a high or low state to vary the time at
which the state occurs, which essentially changes the proportion between each
state. In the below figure, you can see when the signal is high and when it is low.
The term duty cycle is a percentage that describes the amount of time a digital
signal is on over a time interval. The 50% refers to the signal being half the time
off and half the time on. While 75% is three quarters on and a quarter off. With
25% being the inverse of that. A good approach to visualize how to calculate a
PWM signal, is to compare a sine wave with another waveform and look at the
intersecting points of the sine wave in terms with your signal in its high state and
low state. The duty cycle is then used and altered based on what the customer
or engineer needs.

 ​ ​43

Laser Guitar - Group 1

Figure 25: Differences of graph between common duty cycle [D13]

Architectures

When it comes to analog-to-digital devices, there are many architectures used
for different practices such as successive approximation, delta-sigma, and
pipeline. With delta sigma, oversampling and filtering is used with advantages
such as high resolution and stability but lacks in speed and latency. Successive
approximation samples the input signal and uses iterative processes to
determine the digital signal. With it, there is high accuracy and low latency but
has a low sample rate range compared to the other two methods. Lastly,
pipeline converters under sample the signal and uses multiple stages to give a
higher bandwidth and speed, but compromises with more power usage and
lower resolution.

Figure 26: SAR depiction of architecture [D14]

In the figure above, there is a depiction of a common successive approximation
ADC converter. The flow starts with the sample and hold block where the input
voltage is measured and then fed into the comparator. The output of the DAC is
used to compare against the input voltage, so the N bit number into the DAC will
determine the voltage through a multiplication process depending on the current
value.

For each clock cycle, the process is such that the input voltage is used to
determine whether the output of the DAC is larger or smaller, which will result in
a zero or one respectively. There is also a cool approach that uses capacitors,

 ​ ​44

Laser Guitar - Group 1

where the capacitors are then charged/discharged to feed a value into the
comparator.​ ​Essentially working on the same scale as shown above.

For digital-to-analog devices, the architectures include delta sigma, string and
R-2R. With R-2R architecture, it is one of the older methods with low noise and
high performance, but often skews the timing during the data process. The
string method is really interesting where it has a set of switches and resistors
built around a voltage reference and buffer. This gives great advantages where it
is cost effective with great DNL performance. Though, the resolution is limited,
and the area is rather large compared to the others. As with delta sigma,
mentioned above, it’s a reverse ADC. With low cost, high resolution, and low
power.

Overall, the ADCs and DACs play a vital role in recognizing a high voltage and
playing a corresponding note in our case. Once the analog signal from the laser
to photodiode is converted to a digital signal, the DAC will take the digital signal
from the MCU and play the programmed note per string. Different architectures
as mentioned will aid in this design process.

Figure 27: Depiction of the switch/resistor string architecture [D15]

In the figure above is the depiction of an eight switch/resistor string that
produces eight different voltages. Also, since there are eight switches, it’s a
three-bit device. Depending on the reference voltage, each resistor value is the

 ​ ​45

Laser Guitar - Group 1

same which will give an output such as V​ref /2 or V​ref /4, by turning on the
respective switches. The output buffer then helps prevent extra effects brought
on from V​DAC​. Though now the size will only increase as you increase the number
of resistors 2​n ​and the switches.

Internal/External

With both external and internal ADCs, there are many compromises a designer
must choose. Specifically, for an internal ADC such as those on a
microcontroller, you're mixing an analog device with a digital one. The main
drawback for internal ADCs is the slow speed/performance needed for high end
analog applications. For reference, the mixed-signal processes used must be
paired with slow logic at around 1MHz. How this works starts with the reference
voltage being used form the power supply and to limit the amount of noise
interaction to the digital logic. All in all, as a designer, if speed and accuracy is
an issue, then an internal device may be appropriate, but if the application is
very demanding with data, an external device will be sufficient.

Table 8 - Comparisons of Architectures for ADC/DAC

3.5. Architectures and Implementation Factors

This section focuses on what architectures and implementation factors to
consider. The architectures and implementation factors consist of, but not
limited to the following topics.

Abstraction Methodology

When designing various components within an embedded system, the
methodology of developing an embedded system consists of abstractions. The
term abstractions in context to embedded systems can be defined as the
process of simplifying or modifying a complex system. By simplifying or
modifying a complex system, the process gives developers information of what
components of a system is doing or the overall design. The design of an
embedded system consists of two components, the hardware and software. In

 ​ ​46

Laser Guitar - Group 1

order to understand how our microcontroller will work with our code, we need to
understand abstraction methodologies and concepts of both hardware and
software abstractions. This will provide an understanding of how written code is
implemented to the hardware from a software perceptive. And from a hardware
perspective, it will show how the hardware will process the given code written
by the software.

Hardware Abstraction

A key component to an embedded system design is the hardware. The
hardware of an embedded system is composed of many different components.
These components can be, but not limited to the microcontroller, sensors,
resistors, capacitors, transistors, and power supplies. The methodology of
abstraction is relevant to the hardware of an embedded system because as a
developer we must design and build these components. There will be various
components that are dependent on one another which can eventually become
massive. Having massive amounts of components can create complex systems
which can be confusing for other developers to follow along. By understanding
hardware abstraction, it can help break down complex hardware components
into pieces. As components are built into subsystems of a device, the overall
perspective of the design can be overwhelming. By breaking down complex
hardware components into elements, developers can have a simplistic view on
what components can be utilized by the software. Hardware abstraction can be
defined as a layer of code that allows communication between a system’s
software and hardware. This layer is called the hardware abstraction layer (HAL).
The hardware abstraction layer allows developers to write platform-specific and
device-independent applications by providing operating system (OS) routines
that have direct access to both hardware resources, and system peripherals.

Having the ability to gain direct access to a hardware’s resources and a
system’s peripherals gives developers the freedom to customize their needs
while maximizing the hardwares features. In order to write code that will be
implemented to the hardware abstraction layer, is that it needs to first be
accessed. The hardware abstraction level can be accessed from either the OS’s
kernel (computers core) or from a device driver. When the hardware abstraction
level is accessed by either the kernel or driver, there are many techniques to
append code to the hardware abstraction level. An efficient and reliable way of
appending changes to the hardware abstraction level is virtualization.
Virtualization is the process of running a virtual instance of a computer system in
a layer abstracted from the actual hardware [8]. Virtualization uses a virtual
machine, which is an operating system independent from the kernel and
hardware to run code on. Using techniques such as virtualization, helps map out
virtual resources of the hardware to the physical resources and uses the actual
hardware for computations inside a virtual machine. When the virtual machine is
running, the machine needs to communicate to the physical resources specified

 ​ ​47

Laser Guitar - Group 1

in the code. Once it has made a connection, the simulate takes over and

multiplexes appropriately and appends the code.[S90].

 Figure 28: A Hardware Abstraction Layer Example.

In figure 26 is a visual representation of how the methodology of abstraction is
implemented within an embedded system. The Applications, Kernel &
Operating, and hardware abstraction layer comprises the software components
of the embedded system. The CPU, Memory, I/O Devices, and ETC (Other
hardware component) make up the hardware components. As presented, the
hardware abstraction layer is positioned in between the “Kernel & Operating
System” and “Hardware”. This is positioned in between them because the
hardware abstraction layer is a layer of code that allows communication
between a system’s software and hardware. There's no correlation arrows to
indicate how it affects the kernel or hardware because ​it encapsulates most
hardware-specific functions that are performed by the operating system. If
another portion of the operating system wants to access a hardware device, it
must refer its request to the HAL. The HAL handles communication between the
kernel of the operating system and the hardware. [9]. The hardware abstraction
layer helps developers avoid the need to fully understand how the hardware
works. This pushes developer’s to focus more on the software to maximize the
various capabilities that each hardware component has to offer.

All of this process happens seamlessly, through a software environment. The
software environment will take the code written by the developers and append it
to hardware accordingly. For our project design we must take hardware
abstraction into consideration because without the methodology of hardware
abstractions, the design would accumulate more constraints, and exhaust more
resources than needed. The hardware abstraction layer removes the process of
hard-coding drivers, kernels, and application programming interface to every
component of a hardware device. When designing the hardware for the project,
the hardware components should be strategically categorized based on if the
component needs to be influenced or improved by software. If a component is
heavily influenced by software, then the hardware abstraction layer will provide a

 ​ ​48

Laser Guitar - Group 1

fluid integration when we develop the code for it. This allows the team to shift
our focus more on how the software should be written in order to achieve our
requirement specification and meeting realistic design goals.

Software Abstraction

The second key component to an embedded system design is the software. The
software of an embedded system is composed of varying software technologies
and design implementations. These varying software technologies and design
implementations can be, but not limited to databases, life cycle developments,
servers, application programming interface (API), design patterns, time and
space complexity, and programming languages. The methodology of
abstraction is relevant to the software of an embedded system because as a
developer designs and codes the software of the system, there will be various
elements of codes that are dependent on one another. These dependencies are
critical to the functionality of how the hardware will interpret it. An abundant
amount of codes and dependencies can create complex design
implementations which can be difficult to debug and refactor. By understanding
software abstraction, it can help simplify complex code into readable and usable
elements.

Large complex codes can hinder the readability of the code when being
analyzed by other developers. Not only can it hinder the readability of the code,
but it can also waste memory due to how large the code size is. These
handicaps of writing large complex codes can be ameliorated by applying the
methodology of abstraction to software. Unlike hardware abstraction which
consist of one type of implementation, there are many types of implementations
when discussing the scope of software abstraction. Software abstraction can be
defined as the simplification of behavior and implementation of code. The
simplification of behavior and implementation can be categorized into two types
of software abstraction respectively; control abstraction and data abstraction.
The software abstraction is categorized into two categories because the
methodology of abstraction focuses on two different concepts when
implementing abstraction into software. These two categories can be done
individually or simultaneously. By understanding what control and data
abstraction is, this can help the software development of the project to
maximize resources under tight constraints.

One category of software abstraction is called control abstraction. Control
abstraction ​is the process by which programmers define new control constructs,
specifying a statement ordering separately from an implementation of that
ordering [10]. By creating new control constructs, it hides implementation of
complex execution flow and low-level processes. An execution flow is the
process of running statements that contain code instruction on what to do. The
execution flow process always executes the first statement of a program. After

 ​ ​49

Laser Guitar - Group 1

the first statement, the following statements within the program will execute one
after another until it reaches the end of the program. This is the foundation of
how code is executed within any compiler across all programming languages.
Control abstraction allows developers to create a new way to control how
statements are executed. Creating new constructs of ordering statements can
allow developers manipulate the ordering of their code.

By creating new control constructs, it hides implementation of complex
execution flow and low-level processes. Developers can also hide data
information by using data abstraction. Data abstraction can be defined as
providing only essential information about specific data within a set of code.
Data abstraction can be applied by using programming paradigms such as
Object Oriented Programming. Using Object Oriented Programming, a user can
hide information within an object. An object can enclapules all of its variables
and methods, and hides it’s code from a program. Then users can work an
object and access its properties to perform a task without ever needing to
declare new variables or functions that can increase the code size. The increase
in code size can become unreliable and hard to maintain. By using data
abstraction, developers can maintain their code while making it modular.

3.6. Parts Selection Summary

This section is our selection of parts and components. The section consists of
the parts and components that we will actually use in our design from both a
hardware and software perspective.

3.6.1. Hardware Selection

This section focuses on primary all of our hardware parts and components.
Each of the hardware components and parts were selected based on our
research and strategic component consideration.

Laser and Photodetector Selection

The hardware design of our project will be largely dependent on the detection
and disruption of the laser strings. In order to obtain optimal performance from
our strings, while still adhering to the design restraints of safety, size, and cost
of the device, the type of laser and photodiode we use for this detection is
imperative. There is an abundance of options for us to consider for both the type
of laser and photodetector that we will use, so the following sections are
dedicated to selecting the best possible option for what type of laser and
photodiode we use in our project.

Laser Selection

 ​ ​50

Laser Guitar - Group 1

The laser should be low cost, small, safe to use, and operate within the visible
light spectrum for a more intuitive user experience. Our options include
semiconductor lasers, gas lasers, fiber lasers, and dye lasers. Semiconductor
lasers operate by using the concept of inversion to produce coherent laser light
when the semiconductor is sufficiently pumped. In doing so, a very small,
cheap, and efficient lasing system is made, that is available for purchase on any
major shopping site such as Amazon. Gas lasers operate by optically
resonating light through a tank of gas which acts as the gain medium for the
light to become more intense and coherent. These types of lasers are much
larger than semiconductor lasers, and because of the size constraints of our
project alone they can be ruled out of the question. Fiber lasers allow for
interesting functionality by allowing the user to guide the laser light through an
optical fiber. This has interesting applications, but because our project is just a
linear optical system, it is unnecessary for our needs. Finally, dye lasers operate
by pumping laser light into an organic dye which acts as the gain medium for
the light. Clearly, lasers are designed in several different ways, however when
considering the applications of our project the only viable option is the
semiconductor laser, which is small, low cost, low power, and operate within the
visible light spectrum of 400nm-700nm. For now, we have opted to go with the
GeeBat Mini 650nm Laser Diode, which can be found on Amazon in groups of
10 for just $5.99. These laser diodes provide the functionality necessary for our
project, operating at 5mW with a beam diameter of 6mm. This provides a small
enough beam to fit multiple on a fretboard, lies within the visible light spectrum,
and has enough power to provide sufficient lighting for our photodiodes while
not being too dangerous to use for our project. The following section outlines
our options for Laser Diodes.

GeeBat Mini 650nm Laser Diode

The first laser diodes we considered are the GeeBat Mini 650nm found on
amazon. These laser diodes have a working voltage of 5V and produce a beam
with a diameter of 6mm. The operating current of this laser diode must be
under 20mA to work. The beam has a power of 5mW and the diodes are
available in groups of 10 for $5.99 on Amazon. These diodes were considered
due to their availability, cost, and functionality. They operate within the visible
light spectrum at a power low enough to be safe to use and are cheap enough
to order in abundance, making them a strong contender for our laser diode.

Lights88 532nm Laser Diode

The next laser diode considered had similar features to the GeeBat Mini Diode,
however there are some crucial differences to consider the use of this diode.
First, having a wavelength of 532nm must be considered when using these in
conjunction with our photodiodes. If this is closer to our photodiodes peak
wavelength, this is worth taking into consideration. The operating current of this

 ​ ​51

Laser Guitar - Group 1

diode also ranges up to 250mA, giving us much more freedom with what power
we choose to operate the laser diode at. The Lights88 Laser Diode can operate
at powers from 5mW to 50mW, depending on how much voltage is applied to
the diode. This is valuable in case we need to draw more power from our
photodiodes, we would have the option of increasing the output power of our
laser. This diode is significantly larger than the GeeBat Mini 650nm, at roughly 1
inch in length and 1cm in width, which can also impact our decision. The cost of
the Lights88 Laser Diode is $13.34 for one diode, which is significantly more
than the GeeBat Mini which is 10 for $5.99.

Civil Laser 405nm Diode Laser

The Civil Laser 405nm offers a good balance of pricing, output power and size,
which are all crucial parameters to consider in our project. Similarly to the
previous two diodes, the Civil Laser 405nm has an operating voltage of 5V. The
output power of the Civil Laser 405nm is 20mW, which is a good middle ground
between the other two laser diodes. The wavelength of 405nm is important to
consider in conjunction with what photodiode we select, and the size of the
diode is small enough to fit comfortably on our guitar, at a size of 12x15mm.
This laser diode also runs for a very cheap price, at just $10 for an order of 5
diodes. This option was strongly considered due to meeting our requirements
for size, price, and being within the visible wavelength spectrum, however we
had to rule it out once we began looking for photodiodes and found that
photodiodes with sensitivity in the 400nm range were very expensive. The final
option we went with is described in the section below.

Final Laser Diode Comparison and Selection

The table below shows the types of laser diodes we chose from.

Table 9: Laser Diode Comparison

After looking into each of our options for laser diodes, and taking into account
the photodiode we selected, we chose to go with the GeeBat Mini 650nm.
These laser diodes were not only the most readily available, as with Prime

 ​ ​52

Laser Diode Price Size Wavelength Output Power

GeeBat Mini
650nm

$0.59 8x12mm 650nm 5mW

Lights88
532nm

$13.34 1inx1cm 532nm 5mW-50mW

Civil Laser
405nm

$2 12x15mm 405nm 20mW

Laser Guitar - Group 1

shipping they could be shipped overnight with Amazon, but they were also the
cheapest and smallest of the laser diodes we looked into. The downside is that
the maximum output power is only 5mW, however this actually helps us with
keeping our device from becoming too bright and staying within our safety
constraints. Because we ended up selecting the Vishay BPW34 photodiodes,
the GeeBat Minis were also the best option due to the wavelength being closest
to the Vishay’s peak wavelength. This will help us achieve a more clear signal
and make the software design easier for our software team. Another factor that
we took into consideration is the size of the laser diode. Because the GeeBat
Mini 650nm was the smallest option available, we were more inclined to pick
this device. This was confirmed when we decided we wanted to use the body
of a ukulele rather than the standard or bass guitar body, as this was the
smallest body we had to choose from. Other options of wavelengths would
require more expensive and harder to find options for photodiodes in most
cases, so we decided to go with the 650nm option, where related components
were found abundantly for cheaper price.

Figure 29: The GeeBat Mini 650nm Laser Diode

Photodetector Selection

The photodetector should be cheap, precise, sensitive to change in incident
light, sensitive to light within the desired wavelength, and able to detect power
up to our maximum laser output power. The various types of photodetectors
include phototubes, photovoltaic solar cells, phototransistors, and photodiodes.
By briefly observing the functionality of each of these options we can deduce
which should be used for the optimal functionality of our project. Phototubes
are a gas filled or vacuum tube that is sensitive to light. Incoming photons
strike a photocathode, which knocks electrons onto an anode creating a current
depending on the intensity and frequency of our light. Next we will observe the

 ​ ​53

Laser Guitar - Group 1

option of photovoltaic solar cells. These photodetectors create a flow of
electrons by absorbing light emitted usually from the sun which excites
electrons in a p-n junction causing electricity to flow.

Photovoltaic cells are generally expensive and offer lower efficiency than other
options, such as the photodiode. Photodiodes operate by taking advantage of
the photoelectric effect, where absorption of light causes an electron hole pair
to be produced. If this absorption occurs in the depletion region of the p-n
junction carriers are swept across the junction resulting in a photocurrent.
Photodiodes can operate in either photovoltaic mode or photoconductive mode.
A photodiode operating in photovoltaic mode has no external voltage applied to
it and operates the same as the photovoltaic solar cells that were previously
described. When the photodiode is reverse biased, only the very low dark
current of the photodiode is allowed to flow until light is present on the
photodiode. When light is incident on the photodiode, the photocurrent
increases dramatically. For the purposes of this project, we will use PIN
photodiodes in conjunction with our semiconductor laser to return information to
the microcontroller. This is because PIN photodiodes offer high sensitivity at a
very low cost.

By using our photodiodes in photoconductive mode we will be able to detect
the presence or absence of light in our project. The photodiodes will not allow
much current to flow when no light is present resulting in a low returned voltage
reading to the microcontroller. When light is present on the photodiode in
photoconductive mode current will flow resulting in a readable voltage being
returned to the microcontroller. The following section outlines our options for
photodiodes.

Vishay BPW34

The Vishay BPW34 is a PIN photodiode offered on Amazon in groups of 10 for
just $7.99. The data sheet of the BPW34 lists the device as having a dark
current ranging from 2-30nA, and a reverse light current of 40-50μA. By using a
voltage divider with resistors on the order of 10-50kΩ, this would allow us to
easily draw enough voltage to send a signal to our MCU given enough light
incident on the photodiode. The rise time and the fall time of this photodiode
are both 100ns. The spectral range of the Vishay BPW34 is from 410-1100nm,
which unfortunately means it will not be compatible with the Civil Laser 405nm
Laser Diode if we chose to go that route. The spectral sensitivity of this
photodiode is shown in the figure below. The peak sensitivity of the BPW34 is
900nm, which is outside of the visible spectrum, and therefore not ideal for our
purposes. However, the availability, cost, and size of this photodiode still
makes it a strong contender for our project.

OSRAM SFH 2401

 ​ ​54

Laser Guitar - Group 1

The OSRAM SFH 2401 is a PIN photodiode available in packs of 10 for $14.60.
This photodiode was considered due to its enhanced sensitivity to blue and
green wavelengths of light. The peak sensitivity of this photodiode is 950nm,
and the spectral range is from 300nm-1100nm, which covers every option of
laser diodes we are looking into. The dark current ranges from 1nA to 25nA.
The spectral sensitivity of the device is shown in the figure below. The rise and
fall times of this photodiode are both 0.04μs. The wider spectral width and an
enhanced sensitivity to shorter wavelengths made this another contender for our
project.

Final Photodiode Comparison and Selection

Taking into account the speed, price, and compatibility with our laser diodes, we
decided to purchase the Vishay BPW34 Photodiodes for our project. This does
unfortunately rule out the ability to use wavelengths of light below 430nm,
however when looking into various photodiodes we found that finding a
photodiode with high sensitivity at near ultraviolet wavelengths was significantly
more costly than finding photodiodes with high sensitivity for near infrared
wavelengths. This is what led us to choosing the Vishay BPW34 and the
GeeBat Mini 650nm, as the cost and sensitivity of lasers and photodiodes
operating at near infrared wavelengths was significantly lower than other
wavelengths.

Table 10: Photodiode Comparison

Figure 30: The Vishay BPW34 Photodiode

 ​ ​55

Photodiode Cost Rise/Fall Time Spectral Range Peak Sensitivity

Vishay BPW34 $0.79 100ns 410-1100nm 900nm

OSRAM SFH
2401

$1.46 40ns 300-1100nm 950nm

Laser Guitar - Group 1

Speaker Selection

The speaker is another important component in our project, as we need to
ensure the device provides a loud enough output so that when it is played it is
audible to an audience in a small room. In terms of signals processing, our
speaker will be in charge of receiving an electrical signal, processing the signal,
and outputting an audible sound for the user to hear. The main factors that
went into selecting our speaker are price, power consumption, size, availability,
and sound quality. Taking these factors into consideration, we decided to
purchase the MakerHawk Arduino speaker, which is designed to work with
arduino speakers via their convenient 2-pin interface. They operate under either
3.3V or 5V and are found for $4.99 on Amazon. They are 31mm long, 28mm
wide, and 15mm thick, which is small enough to ensure that we will have plenty
of room to house them in our project. These speakers attach directly to pins of
our microcontroller and provide high quality sound output according to the
software programmed into the microcontroller.

Figure 31: The MakerHawk Arduino Speaker

Microcontroller Selection

The type of microcontroller that we use is crucial to our design due to the fact
that it brings our software and hardware designs together to make the
instrument play sound in a user-friendly way. The microcontroller will process
the signal from the hardware, store this signal as memory in the software, and
send the proper signal to the speaker output to play sound. Because the
microcontroller impacts both the hardware and software design of the project,
we carefully selected the best possible microcontroller for our purposes. From
the hardware perspective, we need a microcontroller with enough I/O pins to
account for the large number of photodiodes that will be used to transmit
information.

 ​ ​56

Laser Guitar - Group 1

Specifically, our current model involves the use of 16 photodiodes for the
fretboard alone, with another 4 photodiodes added when considering the
strumming strings as well. We are also considering modulating our laser diodes
for the fretting strings, which would require an additional 4 pins for modulation.
These strings need to communicate the information to a speaker, which adds at
least one additional pin for a total of at least 25 pins to cover the strings alone.
Another requirement of our microcontroller is that it includes a digital to analog
(DAC) and analog to digital converter (ADC).

The DAC and ADC are necessary because our project requires us to gather light
as an analog input and use this input as digital information and convert it back
into analog sound at the output. While the amount of analog inputs would be a
strict requirement if we were using the difference in intensity to determine the
note being played, by using an array of photodiodes which simply return high
voltage or low voltage we can use digital inputs more freely. From the software
perspective, the microcontroller should be programmable in languages our
computer engineering team is comfortable with, such as C, C++, or Python.
Taking these constraints into consideration led us to the following list of options.

ATmega2560

First on our list is the ATmega2560. This microcontroller offers 54 I/O pins with
16 analog inputs. The 16 analog inputs are connected to a 16-channel analog to
digital converter making them ideal for use with our laser strings. The total
amount of 100 pins is more than enough to provide that all four strings with four
photodiodes will have a usable input, while still accounting for our power supply
and any other unaccounted-for inputs. The ATmega2560 is also very power
efficient, drawing only 500 microamps when running in active mode at 1
megahertz and 1.8 volts. This power efficiency improves even more when the
device is in sleep mode, drawing just 0.1 microamps. The ATmega2560 offers a
clock speed of 16MHz at 4.5V-5.5V, which is fast enough to provide sufficient
processing for a natural feeling experience.

The ATmega2560 is programmable with a language specific to Arduino which is
based on C and C++ programming, which should ensure that picking up the
language will not be a challenge for our software team. The price is currently
listed as $15.99 on Amazon, which is reasonably cheap for the amount of
features this microcontroller provides. The chart below summarizes the features
of the ATmega2560.

 ​ ​57

Feature Value Significance

Price $15.99 Cheapest option being
considered

Clock Speed 16MHz at 4.5V-5V Sufficiently fast information

Laser Guitar - Group 1

Table 11: ATmega2560 Summary

 ​AT91SAM3X8E

The next microcontroller we considered was the AT91SAM3X8E. This
microcontroller offers an even faster clock speed than the ATmega2560 at
84MHz. On top of this, the AT91SAM3X8E comes preinstalled with a 2-channel
digital to analog converter, which would allow us to output an analog signal
without the need for an external DAC. This is very appealing because it would
add ease to the workflow of outputting sound from a digital input that our
instrument will provide. The pins on the AT91SAM3X8E are similar to that of the
ATmega2560, offering 54 digital I/O pins and 12 analog inputs, with a total of
100 pins. Again, this is more than enough for the purposes of our project and
allows us to be ensured that the number of pins will not be an issue. With all the
similarities, and the advantage of the on board digital to analog converter, the
AT91SAM3X8E seemed like the better choice for our project, until we looked
into the power efficiency of this microcontroller. The AT91SAM3X8E draws 130
mA when running in active mode at 3.3V, which is significantly more than the
ATmega2560’s 500μA at 1.8V in active mode. In backup mode, it draws 25μA,
which again is significantly more than the ATmega2560’s 0.1μA in sleep mode.
Also, the AT91SAM3X8E is currently running for $19.25 on Amazon, which is a
bit more expensive than the ATmega2560.

 ​ ​58

processing

I/O Pins 54 Analog I/O, 16 Analog
Inputs

Enough pins to provide for all
four strings

Power Efficiency 500μA at 1.8V, 0.1μA in Sleep
Mode

Significantly more efficient
than other options
considered

ADC 16-Channel Enough to Provide for all Four
strings

Feature Value Significance

Price $19.25 2nd most expensive option
considered

Clock Speed 84MHz 2nd Fastest option being
considered

I/O Pins 54 digital I/O, 12 Analog
input, 2 Analog Output

Enough to provide for all
four strings

Power Efficiency 130mA at 3.3V and 2.5μA
in backup mode

Lower power efficiency
than ATmega2560

Laser Guitar - Group 1

Table 12: AT91SAM3X8E Summary

Texas Instruments MSP-EXP430FR5994

The Texas Instruments MSP microcontroller offers 40 I/O pins with 8 analog I/O
pins. This is again enough to suit all the needs for our project. The clock speed
of the Texas Instruments MSP is 16MHz at 3.3V, which is slower than our other
options. This microcontroller also draws a relatively large amount of power, at
100mA at 3.3V, which is less than the AT91SAM3X8E, but significantly more
than the ATmega2560. The MSP offers a 12-bit Analog-to-Digital converter,
which would be useful for our project's design. The table below summarizes the
specs of the Texas Instruments MSP-EXP430FR5994.

Table 13: Texas Instruments MSP-EXP430FR5994 Summary

Raspberry Pi 4 Model B+

The Raspberry Pi 4 Model B+ offers 40 general purpose I/O pins, which is
enough for the purposes of our project. The clock speed of the Raspberry Pi 4
is 1.4GHz, which is by far the fastest of any of the microcontrollers we observed.
The Raspberry Pi 4 Model B has a very high power consumption, at 200mA
when operating at 5V. This microcontroller does not offer an on board DAC,
which means a separate DAC would be required for our project. This
microcontroller is also the most expensive of any of the microcontrollers we
considered, at $35. The table below summarizes the specifications of the
Raspberry Pi 4 Model B+.

 ​ ​59

ADC 16-channel Same as ATmega2560

Additional Features On board DAC Eliminates potential need
for external DAC

Feature Value Significance

Price $16.99 2nd cheapest option being
considered

Clock Speed 16MHz at 3.3V Same as ATmega2560

I/O Pins 40 I/O Pins, 8 Analog I/O Pins Enough pins for our project,
but less than other options

Power Efficiency 100mA at 3.3V Better than AT91SAM3X8E
and Raspberry Pi, but worse
than ATmega2560

ADC 12-bit on board ADC Eliminates need for external
ADC

Laser Guitar - Group 1

Table 14: Summary Raspberry Pi 4 Model B+

Our Choice – The ATmega2560

The table below summarizes the advantages and disadvantages of each of the
microcontrollers for the comparison purposes. The selection of this
microcontroller was largely due to the constraints the project’s hardware design
brought about. Because our system involves such a large array of photodiodes,
we needed a microcontroller that could accommodate our needs. Our desire to
make our project portable meant we needed to rely on battery power and
therefore look into the most power efficient microcontroller possible. Breaking
down our hardware before testing, we know we will have an array of 16
photodiodes for the fretboard alone, along with 4 more photodiodes for the
strumming strings. These also must return a signal to at least 1 and at most 4
speakers, depending on the speaker’s polyphonic capabilities. With just this
knowledge, we know that we need a bare minimum of 24 inputs for our holistic
system, and any extra inputs will just be reassurance that we have enough. The
ATmega2560 offers enough functionality for our project, with 54 programmable
I/O pins. On top of this, the ATmega2560 offers very low power consumption
(1.8V: 500μA in active mode), and is relatively inexpensive for the functionality
we are getting, at $15.99 on Amazon. Other options were either more expensive
while still being less efficient, such as the Texas Instruments option, or just too
expensive and offering too many unnecessary features, as in the Raspberry Pi 4
Model B+.

 ​ ​60

Feature Value Significance

Price $35 Most expensive of
microcontrollers considered

Clock Speed 1.4GHz Significantly faster than other
microcontrollers considered

I/O Pins 40 General Purpose I/O pins Enough to cover the needs of
our project

Power Efficiency 200mA at 5V Highest of Microcontrollers
considered

ADC None on board, but sold
separately

Would increase cost of our
project

Microcontroller Advantages Disadvantages

ATmega2560 Good balance of speed,
power efficiency, price

No significant
drawbacks compared to

Laser Guitar - Group 1

Table 15: Summary of Microcontroller Options

3.6.2. Software Selection

Given that the microcontroller is at the root of our project and will ultimately be a
key factor, our software selections were decided upon once the microcontroller
was picked out. The microcontroller selected was the ATmega2560, which is
most commonly found on the Arduino Mega 2560 microcontroller board. Our
software selection is solely geared around this device and thus the programming
language that will be used is Arduino’s native language. This language was not
in our programming languages research for the sole reason that it is derived
from C/C++ and all C/C++ code will work in Arduino for the most part. The
developers on the team are familiar with C/C++ and therefore, makes the
Arduino language a good fit as a new language will not have to be learned. The
Arduino language will give us the benefits that come with the C language such
as memory management and bit manipulation, while also allowing us to
incorporate C++ programming paradigm such as Object Oriented Programming.

In ​regards to the software environment we were able to narrow down our
options to Arduino IDE, MPLAB X IDE and Atmel Studio 7. From our initial
research these software environments are the ones that support the
microcontroller we decided upon and work seamlessly with it. These three were
downloaded and tested briefly in order to make a final decision. Atmel Studio 7
was eliminated due to the fact that it is only supported by Windows, and not all
developers on the team own a windows operating system. We decided to go
with the Arduino IDE because of its simplicity and it’s high compatibility with the
ATmega2560.

 ​ ​61

and functionality other options
considered

 ​AT91SAM3X8E

Faster than
ATmega2560, on board
DAC

Relatively high power
consumption

Texas Instruments
MSP-EXP430FR5994

Good balance of price,
efficiency, speed, and
functionality

Doesn’t bring anything
to the table the
ATmega2560 already
had

Raspberry Pi 4 Model
B+

By far the fastest
processor of any options

No on board ADC,
expensive, high power
consumption

Laser Guitar - Group 1

4. Related Standards and Realistic Design Constraints

The standards today provide specifications, procedures and examples for
products and the use of materials. With standards coming from ANSI and IEEE,
specifically for our design, the lasers are the key aspect, as well with the
software and batteries. These standards help maintain characteristics and
technical specifics of what a product or system entails. Listed below are a few
that are useful for our project.

4.1. Software Standards

Following coding standards can have a significant impact in group projects and
they are widely used in large organizations. Coding standards are generally
specific to a programming language and can be described as a set of rules or
guidelines, best approaches and conventions, that a developer must follow
throughout the project. This will result in much cleaner and efficient code.

Implementing coding standards can help ensure that the source code is secure,
dependable, maintainable and even result in better portability. Consistency
throughout the code is one of the key reasons as to why following code
standards reaps all these benefits. Consistency makes for more readable and
reliable code. When the code is uniform and well documented throughout,
developers are able to maintain and modify it without a hassle as it is easier to
follow and understand. Inconsistent and faulty code makes the whole code base
vulnerable and more susceptible to attacks, and this can be avoided by simply
incorporating standards.

IEC/ISO 12207

This standard falls under systems and software engineering and represents
Software life cycle processes. This is a one in all standard that defines all the
processes associated with the development and maintenance of software
systems. The current revision has a new process very similar to IEC/ISO 15288,
where the total number of processes is down to 30 from 43. There also exists a
difference between stages and processes. Where a stage is a ​"period within the
life cycle of an entity that relates to the state of its description or realization",
IEC 12207. A process is a "set of interrelated or interacting activities that
transforms inputs into outputs", IEC 12207. With these definitions, this standard
only defines processes, but does however consider stages such as
development, production utilization, sustainment, or retirement. Some examples
of processes include agreement, organizational and technical. The agreement is
exactly how it sounds, an agreement is established between two parties. The
organization allows an organization to maintain and control the life cycle
process of the system implemented. Finally, the technical processes allow for an
assessment of each project during its life cycle, such as its architecture,
implementation, or design. With this, there are thousands of other standards

 ​ ​62

Laser Guitar - Group 1

related to many forms of software, but a couple more examples include ISO/IEC
14764, which covers the maintenance of life cycle processes and ISO/IEC
15288 which covers the processes associated with a system during its life cycle.

BARR-C2018

BARR-C2018 is a relatively new standard which was created specifically for
applications and designs written in C/C++ that deal with embedded systems.
It’s main objective is to minimize the chances of writing code with bugs and
defects [16]. BARR-C2018 has a wide range of rules and guidelines on various
aspects of C/C++ programming. The rules cover things such as basic
formatting, (braces, parenthesis, white spaces, alignment, commenting, etc),
dealing with different data types (signed & unsigned int, floats, booleans, etc),
procedure rules (functions, ISRs, etc), variable names and statement rules
(conditional statements, switch statements, loops, etc).

Some of the more important rules that should be followed regarding the general
formatting of our source code are:

● The line widths of every line should not exceed 80 characters
● Braces should always surround any blocks of code following, if, else, for,

while etc.
● Each left brace and right brace should appear on its own line and should

be lined up with each other
● Parenthesis should be used whenever applicable to ensure the execution

order for sequences of operations are correct
● Parenthesis should be used whenever a logical operator is used in a

statement.
○ e.g. if ((a > b) && (a < c))

● Comments should be clear and concise with correct spelling and
grammar

● Comments should come before a block of code that implements some
functionality or algorithm that needs explaining and should have the same
indentation as that block of code

● All assignment (=, +=, -=, *=, /=, %=, &=, |=, ^=, ~=, !=)and binary (+, -, *,
/, %, <, <=, >, >=, ==,!=, <<, >>, &, |, ^, &&, ||) operators should be
preceded and followed by a space.

● Every indentation should be a multiple of 4 characters from the start of
the line

Some of the more Important rules that should be followed in regards to data
types and procedures are:

● The names of all new data types should only contain lowercase character
and underscores

○ e.g. int max_count

 ​ ​63

Laser Guitar - Group 1

● If the bits or bytes of an integer are important then fixed width integers
should be used

○ e.g. int8_t, int16_t, int32_t, int64_t
● Procedures should not begin with underscores and should not be longer

than 31 characters
● Function names should not have any uppercase characters
● Underscores should be used to split up words in procedure names
● Functions should be limited to a maximum of 100 lines of code
● Every function should declare a prototype in the module header file
● Interrupt service routines should be indicated by #pragma or by keywords

that are specific to the compiler such as “_interrupt”
● Functions that will act as ISRs should have names that will end in “_isr”

○ e.g. “strum_isr”

Some of the more important rules that should be followed in regards to variables
and statements are:

● The naming convention for variables follow the same rules that were
covered for functions and procedures

● Global variables should start with the letter ‘g’ and pointers should start
with the letter ‘p’.

○ e.g. ‘g_max_count’ , “p_strum_one”
● Every variable should be initialized before it can be used.
● Local variables should be defined where you need them as opposed to

being defined at the top of a function
● Using the comma operator when declaring variables should be avoided

○ (e.g. “int x, y;”
● There should not be nested conditional statements that go deeper than

two levels.
● All ‘if’ statements that are followed by ‘else if’ should end with an ‘else’
● For each switch statement the break for each case should align with the

case name.
● Numbers should not be hardcoded as the initial start or endpoint in any

loops
● Infinite loops should be implemented with “for (; ;).”

These sets of rules are the most important and relevant that should be followed
to ensure our code stays consistent and robust if the BARR-C2018 standard is
chosen.

GNU Standard

GNU is a unix-like operating system whose software is free and allows users to
have more freedom than most. The GNU standard was primarily created to
ensure an easy and clean installation of the GNU system. However, the standard

 ​ ​64

Laser Guitar - Group 1

also serves as a guide for writing clean portable and dependable code. This
standard was structured towards programs written in C, but can also be useful
for other programming languages. Much like BARR-C2018, the GNU standard
also has a wide range of rules for programs written in C such as code
formatting, commenting, use of constructs, naming variables, functions and
files. Although GNU has many rules, it is not as strict and restrictive as
BARR-C2018 is.

Some of GNUs standard in regards to formatting are as follows:

● Each line of source code should not exceed 79 characters
● Braces should be on their own individual line
● If all arguments do no not fit cleanly on one line then they should be split

up into two. Arguments on the second line should be indented such that
the first argument on the first line is aligned with the first argument on the
second line.

● Spaces should be added before any open parentheses and after any
commas

● Programs should begin with a comment briefly describing what the code
does

● Each function should have a comment saying what it is doing

In regards to constructs, variables, functions and files some important rules to
follow are:

● Names of variables and functions should be insightful and give some sort
of information as to what the meaning of the variable or function is

● Abbreviations should be avoided, and in the case that they are used an
explanation of what they mean should be given

● Each variable declaration should start on a new line
● You should not have assignments inside of if-conditions
● In the case of nested if-else statements, braces must be used
● Underscores should be used when naming variables, functions or files

with more than one word
● Uppercase characters should be reserved for macros and enum

constants and not variable, functions or file names
● Any variable with a constant integer value should be defined by using

enum as opposed to ‘#define’

GNU has many other rules on top of the ones listed, however these are the most
relevant rules that can be applied to our use-case [21].

Using Software Standards

For our project, we must use software standards to create a structure for
everyone who is working on the software end of the project. ​From our previous
research and sections we have decided to use the Arduino programming

 ​ ​65

Laser Guitar - Group 1

language which is a combination of C and C++. Thus, both GNU and
BARR-C2018 standards could be applied and be beneficial. However, we have
chosen to implement the BARR-C2018.

While GNUs objective is to write clean, portable and dependable code we
believe that we will benefit more from implementing BARR-C2018. This standard
was created specifically for programming embedded systems and ensuring that
all bugs and errors are minimized when possible. Given that our project is
structured around our microcontroller this was a big deciding factor. In addition
BARR-C2018 also aims to improve the readability and portability of the code
much like GNU, however it is more strict and restrictive as we can see from the
set of rules listed for each. This will ultimately lead to more consistent and
robust code.

If a standard is not used within our software it will hinder our progression of
implementing a workable code to our microcontroller. ​Thus, everyone
contributing to the code base of this project will become familiar with
BARR-C2018s rules and implement them when applicable. Following this
standard will allow us to minimize any defects while also writing clean and
consistent code where everyone can easily follow and make contributions.

4.2. Hardware Standards

By selecting the hardware components there are also standards for certain
types of hardware. This section focuses on the standards of these hardware
components. Specifically, we will cover what is expected for safety while using
lasers and how batteries standards can affect our overall design.

ANSI Z136.1

With the American National Standards Institute, this standard represents the
guidelines for the safe use of lasers that operate between 180nm and 1000µm
wavelengths. The outline here includes laser light shows, lasers used outdoors
for research, and military lasers. There are also acceptable levels of irradiation
for airspace and to minimize laser interference with air crews. Within these
standards are different classes of lasers, from 1 to 4. For class 1, these are
lasers of 0.39 milliwatts, which means they are safe for long term viewing. Class
2 consists of lasers less than 1 milliwatt, which is safe for unintentional
exposure. For class 3, these consist of 3R and 3B, with beams of up to 4.99
milliwatts and 499.9 milliwatts, respectively. Avoid intentional exposure or
exposure all together. The last class is 4, which consists of 0.5-watt lasers.
These can cause severe eye damage and also to the skin. Concerning eye
damage, typically anything above 500 milliwatts is on the high scale and should
be taken with caution. Some other standards from ANSI exist under Z136 where
you have 0.4, 0.6, and 0.7. Z136.4 is a practice for safety measurements during
hazardous situations. Z136.6 demonstrates how to use lasers outdoors safely

 ​ ​66

Laser Guitar - Group 1

and Z136.7 provides information on how to effectively use safety equipment
such as glasses. [D16]

Table 16: Laser Safety Standards

Using Hardware Standards

From the hardware standards above, there is a variety, ranging across the
proper use and safety of lasers. With ANSI Z136.1, the implementation and
understanding of the use of lasers both indoors and outdoors. With nine
different segments focusing on separate fields, understanding the parent
document that outlines sections will give us a guideline to follow when dealing
with lasers and the proper handling. Importantly, understanding situations and
surroundings will help develop our housing design.

The next stop is to understand the implementation of ANSI Z87.1, which outlines
protective eyewear across many fields. Specifically, eye safety while using
lasers, the user and any bystanders will follow a protocol before any devices are
powered on. Whether the laser is not necessarily powerful, damage to the retina
is a major concern across the board. To also help, there are signs developed to
warn everyone when they approach an eye safety zone as can be seen in Figure
31.

Lastly, the use of battery is crucial to our design, and that involves maintaining
reliability over the lifetime. Table 17 lists out common standards for lithium ion
battery cells and packs for a range of commercial or household uses. For each
standard, implementing the proper use of our lithium ion cells in our design to
maintain proper power to our electronics. When not in use, keeping the cells in a
household climate away from extreme heat and the possibility of being

 ​ ​67

Laser Guitar - Group 1

punctured will maintain the life of the cells to continually use for our project
design.

ANSI Z87.1

The industry standard ANSI Z87.1 introduces eye safety standards for many
different fields of work including optical. The markings listed in this category are
separated by impact/non impact, splash/dust, and optical radiation. The focus
for our project design involves lasers, which are very harmful to the eyes but still
can deal damage if direct eye contact is made, whether by accident or on
purpose. For optical radiation protection, there are several rating numbers for
different protection abilities. A ‘W’ is used for welding, ‘UV’ is ultra-violet, ‘Heat’
is Infra-red, ‘Glare’ is Visible light, ‘V’ is variable tint, and ‘S’ is special purpose.
It is also important to note that labels and signs can alert people of the
appropriate personal protective equipment (PPE) for the different scenarios.

 Figure 32 : Laser Safety Sign

The figure above is actually a perfect example of a sign that is common around
work areas that involve lasers capable of dealing damage to the eyes or skin.
For ANSI Z535, this system presents safety and accident prevention information
that can be conveyed through signs like the one above. There are categories
from one through six that follow safety colors, facility safety signs, safety
symbols, product signs, safety tags and information. Some notable words
involve “WARNING” and “CAUTION”.

Battery Standards

Understanding these standards allows for the proper use and disposal of
batteries that may or may not contain toxic materials. Also, general principles
and specifications of charging and maintenance of a wide range of batteries to
allow for longevity. With IEC 60086-2, this is a standard strictly for batteries in
general, involving proper care and safety guidelines. ANSI C18.2M contain
specifications on portable rechargeable cells, similar to the previous standard
but targeted specifically to rechargeable batteries. What’s important now is
understanding the standards for Lithium Ion batteries and Nickel Metal Hydride.
Importantly, BS EN 60086-4, lists the safety standard for lithium batteries,
providing lists on the dos and don’ts when charging and storage. Nickel Metal

 ​ ​68

Laser Guitar - Group 1

Hydride, BS EN 61436, covers all the topics for secondary cells from safety as
above and also use of/makeup of the technology.

Three of the most popular standards for lithium ion cells include UN/DOT 38.3,
IEC 62133-2, and UL 2054. Each one covers different aspects of safety and
standard when dealing with batteries/cells. UN/DOT 38.3 is set to allow lithium
ion batteries to travel the world by air, rail, or truck. There are eight tiers of tests
that cover altitude simulation, thermal tests, and vibration. IEC 62133 covers
international compliance for the safety requirements of portable sealed lithium
cells. There are four tests that cover molded stress tests, external short circuit,
free fall, and overcharging. Finally, UL2054 is the most challenging to pass with
a vast amount of tests. These include seven electrical, four mechanical, four
battery enclosure, one fire, and two environmental. The standards listed below
offer more of a general understanding of specific lithium ion batteries during
testing and common use.

Table 17: Battery Standards

 4.3. Design Constraints

When it comes to creating a product and brainstorming many ideas, there are
always constraints in place either set by the company/individuals or society.
From time to health and safety constraints, we will walk through what each one
entails and how it impacts our design decisions. A quick brief consists of the
cost of our design or the impacts of lasers on humans dealing with blindness or
the toxic materials used inside some. As well with how our component selection
can impact the environment through the manufacturing process.

Economic and Time Constraints

Usually within a company, an economic constraint consists of some type of cost
that goes along with the research/manufacturing of a new product or existing
ones. As a student, costs could include things like textbooks and transportation
fees. During our time, the virus COVID-19 has affected our economy drastically,
so when it comes time to know what to purchase and get all parts together for
final build, we should order everything at least two weeks prior just in case of
restrictions and extra precautions during shipping. With the production of our
design, the cost could end up being substantially more than a practice guitar
you can get from a music shop. In the end, the training options and intrigue from

 ​ ​69

Laser Guitar - Group 1

people that were not interested in musical instruments before but now are will
be an end goal.

As with all time constraints, there is a set amount of time to achieve our goal.
For senior design, there are two separate semesters where we do all the
research in the first semester and build our project in the second semester.
Since we are taking senior design 1 in the Summer as opposed to the Fall or
Spring, we have 12 weeks compared to 15 weeks. Our time schedule is
condensed which means we have less time to research and build a prototype
going into Senior Design 2.

Environmental, Social, and Political Constraints

With our environmental constraints, since we are dealing with lasers, there is not
much affecting the environment except for the fact that lasers can be blinding or
the process of manufacturing and assembling of the lasers can be harmful
without precautions. It’s also important to mention that with batteries, any toxic
materials must be disposed of properly at a landfill. All manufacturing processes
have some type of environmental impact, which may deal with radiation or a
large amount of energy. All precautions are necessary, and follow any
compliances set forth by an organization.

There is a limited list of social constraints, such as our product is used during a
performance and an audience member has issues with looking at lasers which
can cause seizures in epileptic patients. Specifically, with the manufacturing of
our device, it could be held in place on parts we need, or they need to go
through a rigorous test set by a social standard in another country. Importantly,
it is the music being played and how it can be perceived based on the person or
culture in another country.

Our political constraints are very existent, in the sense that the US has
restrictions on the lasers that can be produced and sold on American land.
Restrictions in place are with the wattage preventing illegal lasers in the US. This
is the case since cases exist where people would shine lasers at helicopters and
planes in hopes to blind the pilots. Another exhibit arises from safety on a
consumer level. If our design ever gets mass produced for the public, even more
rigorous testing must take place to ensure our supplier is reliable and
manufacturing is consistent.

Ethical, Health, and Safety Constraints

These constraints are in place to hopefully protect the musician from potentially
being blinded by the lasers or the audience. Safety is especially important and
to maintain to the health of everyone involved in the project design. Ensuring
everything is in place and all the electrical components are soldered correctly
and grounded when needed. There are also industry ethics standards to follow
such as being truthful and avoid deceptive acts. Proper handling of lasers and

 ​ ​70

Laser Guitar - Group 1

electronics/power to avoid any harm to another person. While working with
printed circuit boards, any soldering taking place must have good ventilation
and dexterity in fingers to place components on the board. Lead free solder is
the best option and rosin flux must be taken seriously since breathing problems
can arise. The ethical constraints are important to consider since there are
standards set on the health and safety of everyone involved or potentially
involved in our project. It is our ethical duty to ensure all the constraints listed
here and other sections are taken seriously for the safety of others and the
University.

Manufacturability and Sustainability Constraints

During this section, these constraints represent the limited amount of
manufacturing services to us within our price range and being able to produce a
quality product. With our design, specifically the printed circuit board and its
components such as the microcontroller, voltage regulator and connections to
the laser diodes/photodiodes. The connections from the printed circuit board to
the diodes will be a considerable distance but should produce a significant
delay from the plucking to the amplifier. To manufacture our design, the shape
and dimensions of the guitar must be finalized and the number of strings we will
incorporate. The purpose here is to insure that all the electronics will fit nicely
and neatly within the guitar for easy use when needed. For all the electronics,
the testing will be done with a breadboard and all the electronics chosen so far.
For integration, the components will be soldered onto the printed circuit board,
but with extra precaution since damage can occur and to insure that no shorts
or any faults preexist on the printed circuit board.

For a long lasting, sustainable design, our focus will first be on the actual guitar
design to ensure there is proper airflow and no overheating to keep the longevity
of the electronics. We also want to keep the cost low, but with a sturdy frame.
The next important factor is the play time of the instrument. With this, we want
the musician or pupil to play for at least two hours, but hopefully have the overall
design last off and on throughout the day.. To achieve this, the battery
technology narrowed down to NiMH or Lithium Ion. Lithium Ion is the better
choice for a single charge since it has a greater density, but the downside is the
cost. Another great option would be to add fans to the body of the guitar if
overheating and circulation becomes an issue. Overall, we need our design to
be within budget and without setbacks, either from parts or faults, to ensure a
smooth transition from our prototype to Senior Design 2.

 ​ ​71

Laser Guitar - Group 1

5. Project Hardware and Software Design Details

The project hardware and software design details focus on the design details from both
a hardware and software perspective. These perspectives are broken down into smaller
topics to help build a bigger picture of large components.

5.1. Initial Design Architectures and Related Diagrams

Figure 32, shows a basic overview of how our hardware will be set up in its final stage of
design.

Figure 33: Project Hardware Overview

The figure above outlines the hardware of our project. The guitar can be
separated into three main sections, the “Tail”, the “Neck”, and the “Head”.
Each section provides a different functionality that is vital to the instrument's
performance. The three sections will work together in unison to provide the user
with an instrumental musical experience. The overall design and goal of our
project was to design an instrument similar to the most popular string
instrument, the guitar. There are already various instruments that use lasers as
the strings, however these technologies are mostly attempting to mimic the harp
or Theremin, which are far less popular than the guitar, bass, or ukulele. For our
design, we chose to go with a four stringed guitar model, which would be most
similar to a bass guitar or ukulele. The choice of using four strings was made
because of the popularity of these instruments, as well as the fact that they are
on opposite spectrums of size in terms of guitar style instruments, with the
ukulele being one of the smallest guitar style instruments, and the bass guitar
being one of the largest. From an engineering perspective, this gives us a lot of
room to work with when testing our project, and increases our options in terms
of portability and functionality. As can be seen in the diagram, the device
currently has four frets, which will operate by returning a voltage from the
reflected light gathered from the user’s fingers playing the frets. We chose to

 ​ ​72

Laser Guitar - Group 1

have four frets in our model, because we want to be able to use this instrument
to play chords like a real instrument. Having four frets allows the user to play
any major or minor chord, as can be seen in the chord chart in the music theory
section of this document, effectively allowing the user to be able to play any
song. However, to provide an experience that is more true to the instrument, a
full fretboard would be desired, so we have made additional frets past the first
four a stretch goal of ours. Now, we will break the design overview into its three
main sections: The Tail, Neck, and Head.

Starting with the Tail of the guitar, which will be the simplest of the three
sections. The tail will contain only the laser diodes which will act as the fretting
strings of the guitar, as well as potentially containing a power source for this set
of diodes, if necessary. This section can also be used to house a small system
for modulating the laser diodes, if we choose to go that route in the future.
Fitting the aesthetic of a guitar is an important part of the appeal to our project,
so having a tail that is small relative to the head will be important.

The neck of the guitar is likely going to be the most complex part from an
engineering standpoint, as this is where the user will select their notes by
blocking the light from the strings, as demonstrated in the diagram below.

 ​Figure 34: Guitar Fretboard Diagram

The diagram above shows a side view of how one of the fretting strings on the
neck of the guitar will operate. The circles are photodiodes, the green line is the
laser string, the blue arrow is an object, and the rectangle is the fretboard, with
the dotted lines representing the frets of the guitar. A single photodiode will be
placed at the beginning of each fret, where the user likely will not interfere with it
since guitars are traditionally played with your fingers at the end of the frets.
The photodiodes will either return a 0 for low voltages, or a 1 for high voltages.
When no object is present to reflect the spatially coherent laser light into the
photodiodes, the diodes will have a low voltage, and return a 0 to the
microcontroller. When an object, such as the user's finger, is present on the

 ​ ​73

Laser Guitar - Group 1

fretboard, the diodes will collect the reflected laser light and return a high
voltage, or value 1 to the microcontroller. These 1s and 0s will be used to
determine which fret is being played by the user, and this information will be
returned to the microcontroller which will store the note that is selected. Here, it
will be important to consider the effects of noise from adjacent strings and
ambient light. Our first design test will attempt to use the housing to prevent as
much ambient light as possible from entering the photodiodes. With more
testing, we may also consider narrow band filtering and laser modulation as
alternative methods of dealing with noise.

This brings us to the head of the guitar, which will contain a set of strings which
will play the notes selected in the fretting section. This design will be a bit
simpler, only involving one photodiode per string. This photodiode will be on by
default, activated by a second set of lasers that are on the head of the guitar.
When the beam is interrupted by the user, the microcontroller will know to play a
note. The head of the guitar contains the most space to put objects such as a
power supply and the microcontroller, so these parts will go here. Depending
on the speed of the photodiodes, we can potentially measure how long the
photodiode was off to determine the velocity of the strums. This value can be
used to determine the volume which each note is played at, and would be a nice
feature that would add to the instrumental experience. For now, however, our
goal is to be able to get the guitar to play the selected notes consistently.
Measuring strum velocity is a stretch goal of ours.

Figure 35: Voltage Divider

Equation 1: V​out​=V​1​*(R​2​/(R​2​+R​1​))

In order to draw a readable voltage from our fretboard to the microcontroller we
will use the concept of voltage divider. By arranging our photodetectors in
series with a resistor and our voltage input, we will be able to measure the
voltage at the node between the photodetector and the resistor using Equation
1 above in order to return an input to our microcontroller. This voltage will

 ​ ​74

Laser Guitar - Group 1

correspond directly to the amount of light incident on the photodetector,
increasing when there is a lot of incident light, and decreasing when there is not
a lot of incident light. Our system will determine what values are high and low
when we begin our testing, and the microcontroller will read high voltages as a 1
and low voltages as a 0 to determine which note to store when the strumming
strings are played by the user. The figure below shows a visual representation
of the concept of voltage divider. Because we will be using a set of four
photodiodes in series with one another, we will be able to apply this method to
each of the photodiodes to find out whether the voltage is high or low. Having
the photodiodes in series means they will share the same current, but have
different voltages, so this voltage is what we will use to return information to the
microcontroller, as demonstrated in the figure above.

Hardware Schematics

Figure 36: Single String Hardware Schematic

The figure above shows the electronic schematic for a single string of the laser
instrument. The design is going to use five photodiodes which are reverse
biased by 2V at a single node. The voltage source will be a single cell battery
pack which provides 3.6V that is run through a voltage regulator to reverse bias
the photodiodes with the proper amount of voltage. As mentioned previously,
by reverse biasing our photodiodes they will be operating in photoconductive
mode, essentially acting as current sources which will respond to the amount of
light incident on the photodiode. The two sections of the single string design,

 ​ ​75

Laser Guitar - Group 1

that is the strumming section and the fretting section, which are seen in the
diagram can be seen in the schematic as well. By breaking down the two main
sections of the single string’s electronics we can apply this to all four strings in
the laser guitar to achieve the full design of our project.

Figure 37: Single String Fretboard Schematic

The figure above shows the schematic for the fretboard of each individual string.
The fretboard will operate by using our photodiodes to act as a current source
which sends high current to our MCU when light is being reflected from the
user’s finger directly on to the photodiode. The current is then run through a
33kΩ resistor which will provide a voltage at the node between the photodiode
and the resistor that our MCU will be programmed to read. In our initial testing,
we were able to draw about 0.807V from our photodiodes when reflecting light
off of the user’s finger. Since our initial testing was done with 30kΩ of
resistance, we decided to increase the resistance to slightly improve the amount
of voltage being drawn from the system. In contrast, when no light was being
reflected directly on to the photodiode, only an average of 0.0505V was
measured. These measurements were taken in less-than-ideal conditions, as
the room we were testing in contained a lot of ambient light, and our
photodiodes were placed orthogonally to the light being reflected off the user’s
finger, so that they were not picking up as much light as they will be in our final
design, where they will face the light source directly to achieve maximum
lighting incident on the diodes. In order to keep our design as simple as

 ​ ​76

Laser Guitar - Group 1

possible, while still providing enough information to the MCU in order to
determine what note to play, the MCU will be programmed to read the voltage
as either “high” or “low”. A high voltage reading lets the MCU know which fret
is being held down by the user. When the fret is known, a note is stored in the
MCU, and that note is played when the MCU reads an interrupt from the
strumming section of our design, as explained in the section below.

Figure 38: Single String Strumming Schematic

The strumming section of the guitar uses a single photodiode in series with a
resistor to detect the light coming from the second set of laser diodes attached
to the head of the guitar. Because we are using two sets of laser diodes, the
fretting strings will not interfere with the strumming strings. The second set of
laser diodes will be shined directly on the strumming photodiodes. Because of
this, the strumming photodiodes will constantly have a high voltage value
returning to the MCU. The MCU will be programmed to read when this high
voltage is interrupted, and will tell the speaker to play a sound when an interrupt
occurs. The two sets of photodiodes will both be reverse biased at the same
node in order to save space and reduce the amount of battery packs required
for each string thus minimizing the overall cost of the device. Once again we
have opted to use a 33kΩ resistor. This decision was made in order to keep a

 ​ ​77

Laser Guitar - Group 1

relatively consistent voltage across each pin that is used in our design, across
both the fretboard system and the strumming system. The interrupt and the
fretboard will work in conjunction to provide a friendly user experience that feels
like playing an acoustic instrument.

Figure 39: Laser Diode Schematic

In the above figure, this schematic represents the power supply to the eight
laser diodes. The idea is to have two lithium ion cells feed a voltage regulator to
have an output of five volts to each laser diode. Four of these will be placed on
the fretboard and the other four on the head of the guitar. As stated above, the
amount of light feeding into the photodiodes will determine exactly what note
will be played and the string for the strumming section.

Another approach to this power supply can use a single cell to power each set
of four laser diodes. With this, there will be less current drawn per cell which will
increase the longevity of the power supplies. Now, instead of using a buck
converter, we would have to use a boost converter. There are actually regulators
that act as both a boost and buck converter, so this would not be too difficult to
implement. Testing wise, we were able to provide five volts to a laser diode,
which was then used to test the photodiode. From one to five volts, the intensity
of the beam would increase, so with more testing with this range and the
measurements taken from the photodiodes, we will determine the best scenario
based on the environment to appropriately supply each laser diode. Keep in
mind that each laser represents a single string, which is where all the testing
begins to give us a better understanding of the overall four string/four note
design.

The voltage regulator shown represents a buck converter where the 7.2V input
voltage will be reduced down to 5 volts to power each diode. With this switching
method, we will have an excellent efficiency rating where the heat dissipation is
kept low. The power supply can also be fed off from the power to the MCU

 ​ ​78

Laser Guitar - Group 1

since both will need a 5 volt operating voltage. Overall, this is our initial
schematic that will see improvements as we progress through the testing phase.

Figure 40: Single String MCU Pin Schematic

In the figure above, we have the ATMEGA2560 shown to the right and the
schematic for a single string to the left. Pins 82 through 86 are used on the MCU
to connect the photodiodes on the positive terminal. Once the diodes are
reversed biased, the change in voltage across each resistor is measured as
photons are introduced to the diode. From which a threshold is met to play a
certain note from the MCU. The MCU itself will have a seperate two cell 7.2 volt
power supply with a regulator supplying 5 volts. The purpose here is to give a
better understanding of how the positive terminals of the photodiodes will
connect to the MCU and utilize the internal ADCs.

This design encompasses a single lithium ion cell of 3.6 volt, which is converted
to 2 volts through a buck converter. The representation of the buck converter is
kept simple as the final representation will have eight pins instead of three. With
the increased voltage drop across the resistors, that voltage is measured and
compared to the programmed value that represents the specific notes.

Overall, this is a very good representation of our expectations of our final design
with how we will measure and supply voltage to each photodiode. It is also
important to mention that there are a total of 54 pins that can be used to

 ​ ​79

Laser Guitar - Group 1

measure and compare our voltage values. Changes can still apply as we
progress along through our testing phase.

Figure 41: Switching Voltage Regulator Schematic

With the above figure being our representation of the switching voltage regulator
we will be using. For our one and two cell power supplies, we will be able to
step down 7.6 volts to 5 volts and 3.6 volts to 2 volts, to supply both the
microcontroller and the photodiodes/laser diodes. This means that each string
will use one cell lithium ion batteries with their own voltage regulator, while the
MCU and laser diodes will utilize a two cell design since their operating voltage
is higher. Our first thought was to have a four cell battery pack and supply 14.4
volts directly through to the voltage regulators feeding the electronics. Long
term though, this can cause too much strain and reliability issues with the
batteries. So the former creates a better vision of how everything will be
encompassed. With its current package, not all the pins will be used, but this IC
offers many advantages in switching frequency, heat dissipation, and protection
protocols.

Final PCB design

The concept of our initial designs are relatively similar to our implementation but
with a few minor differences. The figures below represent the final schematic
and PCB for the MCU. The design utilizes 4 digital pins for the strumming
section, 12 analog pins for the fretting section and another 4 digital/PWM pins
for the speakers. We also have a 16MHz crystal, reset button, and a list of
capacitors for supplying power. The PCB itself is 4-layers with vias for some of
the connections. Instead of soldering this board ourselves, we had the soldering
done by the manufacturer.

 ​ ​80

Laser Guitar - Group 1

Figure 42: Final MCU schematic design

Figure 43: Final MCU PCB design

The next schematic and PCB figures below represent the final voltage regulator
design. There are two variants, a 3.3-V and 5-V models. Each regulator has 2
capacitors, a schottky diode and an inductor. Each part was carefully picked for

 ​ ​81

Laser Guitar - Group 1

our needs in terms of output voltage, input voltage, and output current from the
provided datasheet. With inductor values of 47μH and 33μH for the inductors, as
well as 680μF and 330μF for the capacitors.

Figure 44: Final Voltage Regulator Schematic

Figure 45: Final Voltage Regulator PCB

The next schematic and PCB final is for the fretboard. Here there were no
changes for our final design except we ended up not using the capacitors to
filter out noise we initially experienced with testing. Once we changed to the
LM2596 regulators and started testing, the use of the capacitors were no longer
necessary. The overall schematic encompasses 12 photodiodes with each
connection to a digital pin on the MCU. There are also enough pin headers for

 ​ ​82

Laser Guitar - Group 1

ground and power as well. The values of the resistors used to measure the
voltage are 300Ω and 6.8kΩ, with both in series. The purpose of the 300Ω is to
separate the output of the photodiode from directly to the MCU. The final angle
of the photodiodes also changed to about 45degrees with the PCB to allow
more light collection.

Figure 46: Final Fretboard Schematic

Figure 47: Final Fretboard PCB

The final figure is the PCB for the strumming section of our design, which utilizes
the same schematic as for the fretting section, but only 4 photodiodes. For
these photodiodes, they are connected to the digital pins on the MCU to read
the voltage drop across the 6.8K resistor. Each photodiode receives direct light
from the lasers for a higher voltage reading as compared to the fretboard.

 ​ ​83

Laser Guitar - Group 1

Figure 48: Final Strumming PCB

Housing Design

An important factor to consider is how we can optimize the housing of our laser
instrument in terms of functionality, portability, and aesthetics. Because we are
creating an instrument that plays like a guitar, the exterior housing should
resemble a guitar. For the purposes of our project, we have decided to use a
real ukulele to house the electrical components of our design. This is
convenient because of the cheap price that ukuleles can be found for, and the
fact that they are small and portable, but have a large enough body to fit all of
our electrical components. Most of our electronics will lie in the head of the
ukulele, however due to the nature of our design some of the components will
need to lie in the fretboard. In order to account for this, it is likely that we will
saw off the ukulele’s original fretboard and replace it with our own, with all of the
necessary electrical components already in place. The figure below shows the
ukulele we have ordered to house our electronics.

Figure 49: The Martin Smith UK-222-A Ukulele

 ​ ​84

Laser Guitar - Group 1

This ukulele will be used as the body of our design, with most of the electrical
components lying in the head of the ukulele, and some of the components lying
in the fretboard, which is likely to be sawed off and remade to suit our needs
more precisely. This Ukulele was simply the cheapest available on Amazon at
$22, since we only needed the body for our housing and the quality of the
instrument is not crucial to our design.

In order to optimize the housing from an engineering standpoint we had to
consider the optical system that our project is. The main issues to consider in
our design are size of the device, and the noise that each string will have to
avoid from ambient light and adjacent strings. In order to account for size, we
will simply design our own fretboard that is large enough to provide for the
needs of our project, since the fretboard on the UK-222 Ukulele is likely going to
be too small to fit all four of our laser strings at a comfortable distance from
each other. The specific size of our fretboard will be roughly 2.5 inches in width
and In order to account for noise from ambient light and adjacent strings, we will
surround our photodiodes with a simple plastic ring which will help prevent light
from reaching the photodiode unless it is coming from directly in front of the
photodiode. Other housing design considerations include using a polarizer at
the end of our optical system to prevent noise from light hitting the end of the
guitar fretboard, and adding electrical components to the tail of the ukulele such
as a power supply for the fretboards laser diodes, if the extra space is
necessary. These housing design considerations will be made final depending
on the results of our multi-string testing in Senior Design 2.

Figure 50 - Final Design Housing

 ​ ​85

Laser Guitar - Group 1

5.2. Software Designs

The process of designing our software for our microcontroller to detect the laser
input should be as fluid as possible. The fluidity of our process should not hinder
the performance of the device and should meet our requirement specification. In
order to make the design process easy without the trade off of device
performance, we need to consider how the code should be used and how it
should be designed. The requirement specification that the software design
must consider is producing the sound under 0.50 milliseconds and reproducing
the sound as accurately as possible. Although these two requirement
specifications are independent from one another, the software that will be
designed to achieve these requirements can create both design and
programming obstacles.

The hardware implementation can be simplified down as each laser will be
assigned a frequency/pitch. The lasers that represent each frequency/pitch will
be positioned on the neck of the guitar. Similarly, the lasers on the head of the
guitar will be used to program the microcontroller in such a way that when a
laser is broken it will act as a trigger to output the respective frequency/pitch
based on the corresponding laser on the neck of the guitar. In response to these
actions occurring simultaneously the correct frequency/pitch will be played
back by the speaker. By understanding the hardware components needed for
our project, it allowed us to consider important design factors to advance the
software design process. The factors to consider to ameliorate the software
design process are programming paradigms, and design patterns. Both the
programming paradigms and the design patterns should be considered because
this will help keep the design within the requirement specification while
minimizing impediments.

Although using programming paradigms and design patterns can ameliorate the
software design process, we need to consider how the software will affect the
performance of a device. Two factors that can affect the performance of a
device when designing the software for it is space and time complexity. Without
taking these two factors into consideration, we could be writing modular and
efficient code, but it would not perform to our requirement specification. Space
and time complexity work in conjunction with one another. Space complexity is
defined as the amount of memory used when an algorithm is executed. And
time complexity is defined as the amount of time it takes for an algorithm to
complete its task. Space complexity and time complexity works in conjunction
with one another because if an algorithm can execute quickly, then the space
needed for the algorithm to achieve it’s task is minimal. The algorithm does not
need to consume more space of a given device to execute and vice versa.

In addition to programming paradigms and design patterns, Interrupt Service
Routines (ISR) and low power modes will play key roles in our software design.

 ​ ​86

Laser Guitar - Group 1

There are two methods in which microcontrollers can handle interrupts: using
ISRS or by polling. The ISR or interrupt handler is what tells the processor what
to do when an interrupt occurs. In our case the interrupt will come from the
hardware in the event that a laser is broken. The I/O pin that is programmed to
sense whether the laser has been broken or not, will raise a flag that triggers the
ISR and tells the processor what should be done at that instant. Polling on the
other hand is continuously checking the status of other devices and seeing if a
flag has been raised to then do whatever action it needs. This can be very
inefficient as it is constantly wasting execution time checking for an event to
occur, which sometimes may not even occur and the microcontroller cannot do
anything in the meantime. This is the benefit of using the ISRs as it wastes no
time, and the microcontroller can be put into low-power modes until an event
occurs.

Low power-modes can vary depending on the device or microcontroller,
however, all variations have the same goal at hand. They aim to conserve as
much power and energy whenever possible. In order to accomplish this goal
most microcontrollers have different levels of low-power modes which vary from
least to most energy consumption. The low power mode in which the most
energy is conserved generally disables certain features and functionalities as
well as responds slower to certain events. On the contrary, the level in which the
least energy is conserved, allows for most of the microcontrollers features and
functionalities to remain active.

5.2.1. Programming Paradigms

The first design factor is to understand what programming paradigms are. A
programming paradigm is a way or approach used to solve a problem in
programming. We can use programming paradigms to solve problems using the
tools and techniques allowed in a programming language. One of the reasons
why we chose to program in the Arduino language is because it gives us the
ability to use Object Oriented Programming.

Object Oriented Programming is a programming paradigm that models the
organization of software design around objects[11]. Objects are instances of a
class which contain various attributes and methods (functions). It can be
considered a blueprint or prototype from which objects are created. From a
class, we can create multiple objects from it and work on them individually
without affecting other data or objects within the code. Using Object Oriented
Programming provides the ability to reuse code and improve software
maintainability

Given the capabilities of Arduino we can implement the programming paradigm
of Object Oriented Programming. Objects are instances of class which we can
create freely and manipulate as needed. For our project, objects are broken up
into two sections. The first section are the lasers that will be used to strum, and

 ​ ​87

Laser Guitar - Group 1

the second section are the lasers that will emulate the frets on a guitar board.
We can create a strum class and create multiple instances of it. By creating a
strum class we can organize and create objects for each laser that are physically
housed respectively. Similarly, we can also create a class for the second section
of laster. Creating two different classes gives us the ability to reuse the same
code multiple times without affecting the other sections. For example;

Figure 51 - Without using Programing Paradigms

Figure 42 shows an example of simple variable declaration. Over the course of
our software design there will be multiple variable declarations for the strum and
fret section of lasers. Multiple variables can be focused and implied to one
section. The problem lies when there are multiple lasers within a section. We
would need to keep track of all the variables and manipulate the variables
accordingly. The code size of the software can be potentially large enough to
exhaust our microcontroller resources to achieve a desired task.

Figure 52 - Using Programing Paradigms

Figure 43 shows an example of Object Oriented Programming. Over the course
of our software design, there will be multiple variable declarations for the strum

 ​ ​88

Laser Guitar - Group 1

and fret section of lasers. We can take multiple variable declarations and
methods (functions) specific to a certain laser and make an object from it. By
creating an object, we can encapsulate everything related to a laser and
manipulate the data of a specific laser accordingly. To change a Strum’s active
status, all we need to is access the object's member variable,
strum1.strumActive = true​. We can repeat this process for any object we create.
This helps us reuse code without the need to declare multiple variables for every
laser.

5.2.2. Design Patterns

The second design factor is to use specific design patterns within our software.
A design pattern is a repeatable solution to solve a problem in a software design
or implementation. Design patterns can be viewed as a template of an idea that
a user can apply to code. A design pattern isn’t a complete design that can be
converted directly to code.

Design patterns can be altered and implemented differently based on design
needs and constraints. There are many types of design patterns that a
developer can use such as Bridge, Decorator, Facade, Factory Method,
Singleton, and much more. Selecting a programming language that can
implement design patterns will be crucial to our project. Choosing the Arduino
language, gives us the ability to use Object Oriented Programming capabilities
which complements the practice of using design patterns. Object Oriented
Programming compliments the practice of using design patterns because we
can construct objects and create a pattern of how objects can be used. By
using design patterns with objects, it can ​prevent subtle issues that can cause
major problems and improve code readability for coders and architects familiar
with the patterns [12].

Design patterns are not specific to a particular programming language. We can
use design patterns with object oriented programming in Arduino. A design
pattern that we’ll be using is called a Facade pattern. A Facade pattern is a
design implementation that uses a single class to represent an entire
subsystem. The subsystems for our software design are our two sections; the
strum, and fret sections. When using a Facade pattern, it is important to
consider what system is needed and how we can interact with individuals and
the components of that system. The Facade pattern can be expanded on to
form another type of design pattern, but for our project we will only need to use
one type of design pattern. Another type of pattern that we can encounter as a
problem instead of as a solution is laval flow pattern. Lava flow pattern is when
olde code is still within the code document. These old code can have other code
that is dependent on it. As the code size increases, and the implementation of
code becomes overwhelming to maintain. A build up of ‘useless’ code is within
our software design which we don’t need.

 ​ ​89

Laser Guitar - Group 1

Figure 53 - Using Facade Pattern

Figure 21 shows an example of a Facade Pattern. There are two distinct classes
that encapsulate all of its member variables. These two distinct classes
represent our subsystems, the strum and fret lasers. We can create multiple
instances of each class without the concern of a variable sharing the same
name or data affecting another class. If we needed to incorporate more
components to hardware design, we can easily incorporate it within our
software design. We can easily incorporate another component because we
would be repeating the same process of creating a new subsystem by creating
a new class into our code. Using the Facade pattern will give us the ability to
easily organize our subsystems without the need to declare new variables. We
can easily reuse code because Ardunio allows Object Oriented Programming.

5.2.3. Space Complexity

Space complexity is the amount of memory needed for an algorithm to achieve
its desired task. Space complexity is important for our software design because
if our algorithm for a specific task takes large amounts of memory space, then
we could hinder our microcontrollers' performance. Not only does space
complexity focus on the algorithm, but the data types used. The data type used
within a code has a specific memory size. If an algorithm were to use a variable
as an argument with a large memory size, then the algorithm can take longer to
process the input because of how large it is. Also when creating objects, it is
also important to take into consideration of what arguments are being passed to
it.

 ​ ​90

Laser Guitar - Group 1

Figure 54 - Data Type Sizes [11]

In Figure 45 shows a table of data types and their corresponding sizes. There
are some microcontrollers that have different types of architectures, x32 or x64.
When declaring variables within our code, it is important to note what type of
data types are allowed on our microcontroller. Our code size may take up a lot
of memory because of the variable declarations and the sizes of each object.
The code size can take memory space away from the algorithm when it is
executed.

5.2.4. Time Complexity

Time complexity is the amount of time it takes for an algorithm to achieve its
desired task. Time complexity is important for our software design because if
our algorithm takes a long period of time, then the software is not responsive to
meet our requirement specification. Depending on our algorithms input, our
algorithm quantifies the amount of time taken by an algorithm to run as a
function of the length of the input [S90]. If we have a very large input our
algorithm has to take this into consideration.Time complexity can be measured
using the notation of Big-O (e.g. O(n)).

Figure 55 - Time Complexity of O(n^2) [13]

 ​ ​91

Laser Guitar - Group 1

Figure 46 shows an example of how an algorithm’s time complexity is
calculated. The example’s time complexity was calculated based on its input, N
and i. The algorithm is trying to operate on the amount of time it takes to go
through N and i. The algorithm is processing N and i simultaneously counting
the number of iterations. This basic analysis can be expanded and applied to
complex algorithms.

Figure 56 - Time Complexity Chart [14]

In Figure 47, O(1) is a constant time which is the absolute best. This means that
the algorithm completes an operation instantly. O(n) takes the algorithm “n”
amount of times to complete its takes. For each O() in figure 47, it describes
how long an operation takes for an algorithms operation to complete. This
analysis and process of calculating time complexity can be applied to our
algorithms in our software design. There is no possible way for our algorithms to
be O(1) because we would need to search for which I/O pin is being activated.
We would need to search through “N” (54) I/O pins to find which one is
activated and that is O(n). Our algorithm design for our software should be at
max O(n^2). It should be max at O(n^2) because that is the run time for most
searching algorithms. We are only searching for which I/O pins. There is no need
for complex algorithms that exceed O(n^2).

5.2.5. Software Logic

 ​ ​92

Laser Guitar - Group 1

In Figure 48, shows a flow chart of our thought process on how we would
approach certain algorithm designs.

Figure 57 - Flowchart Logic

Figure 48 shows a flowchart diagram of our thought process on how we will
approach our algorithm design for our microcontroller. The flowchart diagram
will help all the members within the group understand how the microcontroller
will achieve the desired task of our project. By understanding the logic behind
how the hardware and software components will communicate with one
another, it will ameliorate the process of both designing and implementing code
to our hardware components.

 ​ ​93

Laser Guitar - Group 1

The overall view of the flowchart diagram can be broken down into three
different phases. Each of these phases have their own specific focus on the
type of hardware that should be considered, and what part of our code design
accommodates that specific hardware. Within each phase, there are steps to
follow, and depending on which step is ‘yes’ or ‘no’ the direction path of the
flowchart changes. The three different phases are color coded with different
colors to show how one phase transitions into another, and how these phases
are dependent on one another. The three phases are color coded as red, blue,
and green.

All of the red blocks represent phase one of our logic. Within this phase, the
hardware components that are taken into consideration is the microcontroller
that we have selected and photodiodes. The microcontroller and the
photodiodes must be taken into consideration within the first phase because
without the microcontroller. This project would not be possible, and without the
photodiode. The microcontroller would not achieve its desired task by detecting
a laser and playing a corresponding sound when a laser is broken. The first step
is to have our microcontroller detect whether a group is detected. There are two
key groups; Group A and Group B. Group A will be the strum/pluck photodiode
which will tell the processor to play the respective sound. Group B will be the
fret photo-diodes and this will indicate what note or pitch should be played. If
the microcontroller does not detect a group, then it will wait until a group is
detected. Otherwise if there is a group that is the controller, then our algorithm
will detect which group has been detected. This detection will dictate how step
2 can progress into phase two or not. At step 2, the microcontroller has been
detected and therefore Group A and/or Group B has been detected. Group A
and Group B have their own detection algorithm. Group A and Group B have
their own detection because they are two different types of hardware
components that are connected to our microcontroller.

Although our microcontroller detected Group A or Group B, our algorithm needs
to figure out which photodiode is active for which respective group. This way
the software can save the location of this port and use it throughout the
software. If the algorithm does not detect a port within a group, then it will return
to step 1 again. And wait for the microcontroller to repeat the same process of
detecting which group is detected. If the microcontroller detects group A, this
means that an interrupt was caused by a laser being broken and a photodiode is
now active on the head of the guitar. This is representative of a strum/pluck. Not
only does the microcontroller need to detect group A, it also needs to detect
group B as well. At the neck of the guitar, when a laser is broken when a user is
holding down a fret, an interrupt also occurs. Otherwise if the algorithm does
detect a port within both groups, then the software design can move into phase
two.

All of the blue blocks represent phase two of our logic. Within this phase, the
hardware components remain the same, but now with a speaker component

 ​ ​94

Laser Guitar - Group 1

that we need to take into consideration. All of the photodiodes within each
respective group that were detected from phase one. At step two, our algorithm
will decide if Group A’s photodiodes correspond to Group B’s photodiodes. It is
crucial to make this decision because just like on a guitar. When an individual
holds down a fret on a guitar string, and then sturms the string that the fret is
being held at. It will produce a certain note. We must emulate the fret and the
strumming of that fret with the photodiodes. If the photodiodes of Group A and
Group B do not correspond, then the algorithm must go back to phase one. If
the photodiodes within Group A and Group B correspond like a strum of a fret
like string on a guitar, then we can proceed to step three. In step three, there will
be another algorithm that detects which note to play that corresponds to what
photodiode port in Group B is active. This will emulate the sound of the fret that
is being held down on a guitar. Once the selected note is picked by the
algorithm, we can proceed to step 4.

Within step 4, we must ensure that the note selected by our algorithm is being
emitted from the speaker correctly. In order to ensure that the note selected by
our algorithm does emit from the speaker correctly. We must look at the range
of frequencies that the speaker can produce. In order to test if a speaker can
produce the correct notes, we must do various tests on the speaker. This will be
explained more in chapter seven within this document. When a note is selected
by the algorithm and is emitted by the speaker, if the sound is not properly
produced, then we must change the code to emit the sound properly. If the
sound is emitted properly, then we can go to phase three.

Phase three consists of one block, which is just emitting the correct note from
the speaker. In conclusion the flowchart is a foundation for how the hardware
and software should communicate with one another. Details of how this
flowchart is translated into our software design is described in more detail in
chapter six. In chapter six, the chapter discusses how the construction of both
the hardware and software components of the project is constructed.

 ​ ​95

Laser Guitar - Group 1

6. Construction and Coding

This section focuses on both the hardware and software construction of how the
project ​is built. The construction of both the hardware and software construction
is tentative and in progress of what needs to be completed. The hardware
construction can be described in details in section 6.1, and the software
construction can be described in details in section 6.2.

6.1. Software Construction

In figure 27 shows a UML diagram for our software construction. This construction is a
foundation to how we will code.

Figure 58 - UML Diagram

The UML diagram also known as a Unified Model Language shows how classes
are interacted with one another. This is a visual representation of our software
design implementing Object Oriented Programming using a Facade pattern. The
implementations of Object Oriented Programming and Facade pattern has been
discussed in section 5.2.1 and 5.2.2. Within section 6.2, goes into detail of how
we chose to design our software design using Object Oriented Programming
with a Facade pattern.

 ​ ​96

Laser Guitar - Group 1

6.2. UML Diagram

The Unified Model Language diagram in Figure 27, is a visual representation of
how the software implementation is designed. In Figure 27, there are three
components; Main, Strum, and Fret. Main can be considered as the main file
that will generate the other two compliments which are classes. Within each
component within the Unified Model Language diagram, contains variables and
functions specific to that complement. There are lines going into the Strum and
Fret class. This line is known as an association line. The association line allows
readers what component is associated with another component. The Main
component is associated with both the Strum and Fret class. The symbol ‘+’
within the Main component indicates the function is a public access modifier.
Access modifiers are a type of access a class can have to a function or variable
within a class. There are private, public, protected, and default access modifiers
that a class can implement for each of its functions and variables it has.

The numbering label ‘1..*’ in between the Strum and Fret class is an indication of
many many components there can be. This numbering is translated as one to an
unlimited amount of that specific complement there are. There can be one or as
many Strum and Fret classes that we can create within our software. The
association line that is coming from the Fret class to the Strum class is a
dependency line. In our software our Fret class is dependent on the number of
Strum classes there are. For some number of Strum classes that are created,
there is the same amount of Fret classes as well.

6.2.1. Main

Main is the core for every program. It is required within our software
implementation to run our code. Main is not necessarily a class, but is the main
file that we will need to run all of our instruction and control our microcontroller.
We chose to program in the Arduino language which is both C and C++
language. C and C++ languages require a main within their code design,
therefore it is present within the Arduino language. For our software
construction, we must import all of the necessary libraries and custom files. We
must import all of the necessary libraries and custom files because there are
already built in functions within these libraries and custom files that we can use.
This can reduce the need to write custom functions that can hinder both space
and time complexities that our microcontroller needs to complete our objective,
and meet our design requirement specification.

 ​ ​97

Laser Guitar - Group 1

Figure 59 - Imported Libraries and Files

In Figure 50, shows the imports we need for our project. The importance can be
categorised into two sections; the language libraries and custom files. The
language libraries are libraries already created by Arduino. Each language library
has its own unique functions that we can call and use. These files are used to
create the Fret and Strum class respectively.

By creating these two custom files, we can represent each class within its own
file without need to put these two classes within Main. This helps reduce the
code size of main while keeping everything modular. It is crucial that we import
these two files because we will not be able to implement Object Oriented
Programming and use a Facade pattern. Not only will we not be able to use
these techniques, but the code will not be able to recognize the syntax of what
we are trying to infer in the code.

Within the Main file, not only does it include imports, it also contains the main
method to run our code, and other functions necessary to run. The Main file
consists of; assignPins, createStrumsAndFrets, noteSelection, setup, and loop.

assignPins
The assignPin is a public function that has no return type. The objective of this
function is to enable certain functionality of what the microcontroller has to offer.
Figure X below shows brief pseudo code of configuring clocks, timers, ports and
pins.

 ​ ​98

Laser Guitar - Group 1

Figure 60 - assignPins Function

All microcontrollers contain a clock as it is an essential component that is used
extensively when working with microcontrollers. These clocks may be internal
such as a RC oscillator or external such as a crystal oscillator. Deciding which
clock to use typically comes down to factors such as accuracy and cost. The
microcontroller we have chosen has several clock source options, such as a
crystal oscillator at 16MHz or the internal RC oscillator at 8MHz. Clocks play
such a pivotal role in microcontroller applications due to the fact that many
applications rely on clock signals to achieve their goals. Clock signals are used
by the CPU and peripherals, as well as other use cases like the control of baud
rate in serial communication signals or keeping track of time taken for
digital-to-analog conversions and vice versa. Timers or counters are also a
feature heavily used in microcontrollers and they typically follow the ticks of the
clock. Our microcontroller comes with 6 Timer/Counters, which can be
configured accordingly by referencing it’s datasheet. In our project we want to
make sure that our laser instrument plays sound quickly and at the appropriate
time which is when a laser beam has been broken. Timer interrupts should be
considered in the event that external interrupts are not being triggered quick
enough to meet our requirement specification for response time. Implementing
timer interrupts can help ensure that we play a sound quick and on time.

 ​createStrumsAndFrets
The createStrumAndFrets function is a public function that has no return type.
The objective of this function is to create instances of Strums and Frets, and
assign their variables.

 ​ ​99

Laser Guitar - Group 1

Figure 61 - createStrumsAndFrets Function

Within the createStrumsAndFrets function, we are creating multiple instances of
the Strum and Fret class. By creating objects we can differentiate what
photodiodes correspond to what laser system we have set up. After creating
these objects we can assign all of its member variables accordingly. For the Fret
objects, we have predetermined what port numbers each photodiode will be
assigned to.The ports that are assigned for each photodiode can be grouped.
The group of photodiode port numbers can be placed in an array. We can
hardcode each index of a Fret object’s array member variable with the port
number. By hardcoding the port numbers at each index, the group knows what
index to retrieve when needed.

noteSelection
The noteSelection function is a public function that has no return type. The
objective of this function is to select a note based on the corresponding fret that
is being played.

The function selection has two parameters, and will take a Strum object and a
Fret object as its argument. We must take two objects as an argument because
we need to access the member variables from the Strum and Fret objects. We
will use the member variables from both of these objects and compare them.
After the logic for the comparison occurs, we can use a switch statement to
determine what to play from the speaker. We can have multiple switches for
each note, at various frequencies for its cases. In Figure 53 below shows the
basic foundation of how this function should be implemented.

 ​ ​100

Laser Guitar - Group 1

Figure 62 - noteSelection Function

setup
The setup function is the main function like C and C++ language. Since the
setup is the main function of the program, the objective of the setup is to give
instructions to the microcontroller.

Figure 63 - setup Function

The setup function will just call our functions we have called or run any algorithm
we give it. When setup is first initially called, it will execute the function
assignPins, and createStrumsAndFrets. We must call these functions in this
order because assignPins will assign all of the microcontrollers internal setup,
ports and pins. If this function is not called first, then the microcontroller has no
instructions to work with. Thus there will be no readings from the photodiode
and nothing will happen.

loop
The loop function is what will keep the code iteration forever until a conflict
occurs.

 ​ ​101

Laser Guitar - Group 1

Figure 64 - loop Function

After the setup function is called, the loop function will be called next. The loop
function will contain code to detect when a photodiode is activated. When a
photodiode is activated, we can call the noteSelection function to play a sound
to the speaker. Most of the algorithms to detect a photodiode activation will be
here.

6.2.2. Strum Class

The Strum class will be a custom external file that will be imported to create all
of the Strum objects.

Figure 65 - Strum Class

The Strum Class is an external file that we must import for us to create a Strum
object. In order to create a Strum class file we must create a header file. We can
create a header file by wrap out code in between ‘#ifndef’ and ‘#endif’. By
wrapping the code in between ‘#ifndef’ and ‘#endif’, the compiler will compile
the header file and all of its contents within it. If there are multiple header files
with the same name, the ‘#ifndef’ will prevent the compiler from compiling the
same header file name. Creating a class is similar in Arduino language like any
other language like Java or Python. We must start the file off with the syntax
‘class’ and the class name with a capital letter. Within this class, we can create
member variables and a constructor.

 ​ ​102

Laser Guitar - Group 1

The member variables of the Strum class will be public. The member variables
will be public because we need to modify these member variables within Main.
When we implement our algorithm to detect an interrupt, we can easily change
the status of the Strum object without the need to redeclare a set variable in
Main.We can easily change all member variables of a class by using the ‘.’
operator and then use the member variable name. For example, we can easily
change the status by coding ‘Strum1.status = true’.

The Strum class also has a custom constructor that we can pass a portNumber
as an argument. A constructor can be considered as the input of information to
an object. The data that is being passed to our constructor is a portNumber.
When passing a port number when declaring an instance of a Strum, we can
quickly assign a port number to it, and the strum a status. We can give a Strum
all of the information specific for a certain Strum objective. We can use this
pattern, a Facade pattern for every Strum we create.

There are no methods (functions) within the Strum class. There are no methods
within the Strum class because we only need to declare a port number to it and
a status. The Strum class will represent a user strumming. When a user is
strumming, the photodiode either detects the broken laser or not at a specific
port. Thus, there is no need for methods within this class.

6.2.3 Fret Class

The Fret Class is an external file that we must import for us to create a Fret
object. Similar to how we create a Strum class, the code must be wrapped in
between ‘#ifndef’ and ‘#endif’.

The member variables of the Fret class will be public. The member variables will
be public because we need to modify these member variables within Main.
When we implement our algorithm to detect an interrupt, we can easily change
the status of the Fret object without the need to redeclare a set variable in Main
similar to changing a Strum object. The member variable portNumber is an array
of port numbers that we have hard coded within the createStrumAndFret
function within Main.

Every element of the portNumber array has a port number that corresponds to
all of the Frets on the guitar. This will help us group what ports are being used
and occupied.

 ​ ​103

Laser Guitar - Group 1

Figure 66 - Fret Class

The Fret class also has a custom constructor that has no arguments. The
constructor will only set the Fret’s object status. No further action will be needed
from the constructor unless there needs to be a redesign of how we want to
implement our algorithm.

There is only one method within the Fret Class. This method is public and
returns a boolean value. Within this method, we will check which port within our
array is active. The algorithm for checking which port number has a time
complexity of O(n) which is fast and linear. The algorithm consists of a for loop

 ​ ​104

Laser Guitar - Group 1

that will iterate up to the length of the array, which is the port amount of five. As
we iterate through the for loop, if one of the ports in the array is active then, we
will change the member variable portSelected the actual port number. And set
the status of the Fret objective to active. This will give us information that the
current Fret is active at a specific port number. We can easily call this method
within the loop when we design our algorithm to detemer which Fret is being
used.

6.3. I/O Programming

In this section we will cover the importance of our microcontroller schematics
and data sheet. These two things are essential as they will ultimately be a guide
on how to correctly program and configure the appropriate pins and registers.

Figure 67 - Arduino Board Overview [19]

In Figure 58, is the Arduino Board Overview. We can see that there are 54 I/O
pins that we can use. Based on these 54 I/O ports, each port has unique
characteristics that we can program with when the slots are being used. The
following figures below show the characteristics of each I/O port. These ports
have, but are not limited to registers, timers, and regulators. By understanding
what these ports are, and how they are used, it helps with hard cording the port
numbers. The different functionalities of these ports and how to program them
accordingly will be covered in more detail below.

 ​ ​105

Laser Guitar - Group 1

Figure 68 - Arduino Schematic 1 [18]

Figure 49 above shows a pinout diagram of the Arduino Mega 2560, and
displays Pins D0-D69.We can see that each pin is color coded which tells us
what type of pin it is, which port it is in and what functionality it can provide.
Pins are the physical elements that allow us to make electrical connections.
Some pins can be configured to serve multiple purposes such as pin D21. Pin
D21 is a digital pin meaning it can take digital signals as input or output them.
However, it can also be configured to handle communication and interrupts.

All pins are a part of a port which are depicted by registers. Configuring these
registers are what allow developers to control the state of pins, whether it be
setting it as input, output or any of the functionalities that pin may support.
There are a total of three registers that are configured in order to control the
input/output pins: DDR, PORT, and PIN. Every port possesses its own set of
registers. For instance, port F which can be found from pins D54 to D61 as seen
in Figure 49 above, has registers DDRFn, PORTF and PINFn, with ‘n’ being the
bit number. Port K found on pins D62-D69 has registers DDRKn, PORTKn, and

 ​ ​106

Laser Guitar - Group 1

PINKn, and the rest of the ports follow this same methodology. This will be
covered in more detail.

Figure 69 - Arduino Schematic 2 [18]

Figure 60 above shows another pinout diagram of the Arduino Mega 2560.
Figure 60 is an extension of Figure 49 that displays and labels pins D22-D53.
These are the bottom most pins if the microcontroller is being held vertically.
The view in Figure 60 displays these pins with the microcontroller being held
horizontally similar to the orientation in Figure 48 (Arduino board overview). We
must be aware of all the pins made available to us, given that our project will
require us to use many of the Digital pins as input and output in order to read
from all our photodiodes, set up our lasers and be able to output the sounds to
a speaker. FIgure X below gives us a better description of how these pins are
actually configured in order to achieve the desired functionality. Although Figure
60 and Figure 61 gives us what I/O ports and pins are available to use, we also
need to look at what registers are available at a specific port. We need to look at

 ​ ​107

Laser Guitar - Group 1

the register of a specific port because we want to maximize the features of each
port to help improve our codes algorithm. We can see all of these specific
registers within the datasheet [17].

Figure 70 - Register Description of I/O Ports [17]

Figure 61 above gives us a general overview of the I/O ports from our datasheet.
As was previously discussed before we can see that port A has the three
registers,DDRA, PORTA, and PINA. Each register is composed of 8 bits. DDR is
used to set the direction of the pin. If for example, DDRA1 is set to 1 this means
that pin 1 has now been configured to be an output pin. On the other hand, if
DDRA1 is set to 0 this means that pin 1 has now been configured as an input
pin.

The PORT register is configured similarly to DDR. We use this register to set the
output value. For example, if DDRA1 was set to 1 making it an output pin and
PORTA1 is also set to 1 then the voltage for pin 1 will now be set to 5 volts. If
PORTA1 is set to 0 and DDRA1 is still configured as an output pin then the
voltage for pin 1 is now set to 0 volts. We must also consider what happens
when a pin is configured as input and we try to set the PORT value of that
respective pin. This introduces the concept of the pull up/ pull down resistor.
The pull up/ pull down resistors are used so that any pin that is not connected or
is left floating can be set to a default value. When pins are left free the

 ​ ​108

Laser Guitar - Group 1

microcontroller might not know whether the input value is high or low and thus
the pull up/ pull down resistors take care of this issue.
In the case that DDRA1 is set to 0 making it an input pin and and PORTA1 is set
to 1 this will activate the pull-up resistor. If PORTA1 was set to 0 then the
resistor would be pulled down in this case.

Lastly, the PIN register is simply used to read what value is contained by that
respective pin. If the value at PINA1 is set to 1 we know that its value is 5 volts,
and if it is set to 0 then we know the value is 0 volts. This methodology can be
used to configure all other pins. However, it is important to note that some pins
have different functionalities and therefore, we must check the data sheet in
order to correctly configure the pins within our software implementation.

Figure 71 - AVR Status Register [17]

Figure 62 above shows the AVR status register which stores information about
the arithmetic instruction that was last executed. This information is important to
keep track of as it allows us to change the flow of the program in order to
achieve a desired outcome. An important thing to take away about this register
and something that must be taken into account in regards to our project is BIT 7
which is labeled as ‘I’ above, is the Global Interrupt Enable. Interrupts will play a
key role in our project and if the Global Interrupt Enable bit is not set to 1 then
none of the interrupts will be enabled. Therefore, we must remember to set this
bit in order to enable any other interrupts which have their individual enable
configurations.

 ​ ​109

Laser Guitar - Group 1

7. Prototype Testing

With the COVID-19 pandemic and social distancing changing the circumstances
of testing for our project and group work in general in the year 2020, it was
important that our group had a plan on how we would tackle this project safely
and while working mostly from home. For the research phase of our project,
most of the work was done individually, and in our biweekly meetings we would
catch everyone up on our groups progress. For testing, however, our group
needed to meet in person so we could all have access to the individual parts of
our project. Thankfully, three out of our four group members were in Orlando
for a period of time, so we were able to meet up with each other and work in
person for our initial testing, while our fourth member was present on Zoom,
assisting with software testing. However, distance did become a problem after
our initial testing, since one of our members had to travel for work, leaving us
with just two team members in our group available to meet for a large portion of
Senior Design 1. The following section outlines how we went about testing our
parts and software to prepare ourselves for completing our project in Senior
Design 2 on the days we were all available to test in person.

7.1. Hardware Testing Environment

Once our parts were shipped, our group scheduled a meeting to begin our initial
testing for the parts we received. We met at a group members house and
began testing our Laser Diode, Photodiodes, and MCU using the lab equipment
sent to us by UCF and a multimeter owned by one of our group members. UCF
provided us with the Analog Discovery 2 portable USB laboratory to use for our
hardware testing. In order to use the equipment sent by UCF, we needed to
calibrate the Analog Discovery 2 using the multimeter we already owned. The
figure below shows us calibrating our oscilloscope to use for further testing.

Figure 72 - Calibrating the Analog Discovery 2

 ​ ​110

Laser Guitar - Group 1

Once our equipment was calibrated and we had downloaded the necessary
software, we were able to supply a voltage to our laser diodes and our
photodiodes and begin testing our hardware.

7.2. Hardware Specific Testing

For Senior Design 1, our goal was to have all of our crucially necessary
equipment ordered and tested by the end of the semester. We began by testing
our laser diodes by using the Analog Discovery 2 to apply 5 volts to the diode.
In doing so, we were able to observe a beam with a diameter of roughly 6mm,
as advertised in the GeeBat Mini 650nm Specifications. The figure below shows
the laser diode turned on with 5 volts applied.

Figure 73 - Laser Diode Testing

Unfortunately, without a power meter we had no way of testing the output
power of our Laser Diodes, which would be valuable information to have.
According to the specifications of the GeeBat Mini, however, the output power
was assumed to be approximately 5mW for our testing purposes. For our final
testing, we are hoping to have access to a power meter to provide more precise
readings, however it is not fully necessary for the purposes of our project.

Next, We tested our photodiodes. First we tested the photodiodes in
photovoltaic mode by measuring the voltage across the photodiode under dark
and light conditions. Each of the photodiodes produced a voltage when
exposed to light, meaning they were able to function in photovoltaic mode. This
was reassuring at first, because we were unsure whether ambient light would be
a major issue, however we saw a significant change in the voltage regardless of
the ambient conditions. The figure below shows us measuring the voltage
across the photodiode while operating in photovoltaic mode.

 ​ ​111

Laser Guitar - Group 1

Figure 74 - Measuring the Voltage Across Photovoltaic Photodiode

The room was fairly well lit, but we were still able to see a large discrepancy
between values depending on if the laser was on or off. The photodiodes would
provide an average of 26.3mV of electricity when the laser was off, and this
value would jump to an average of 56.6mV when the laser was directly on the
photodiode. The results of our tests are summarized in the table below.

Table 18: Photodiode Photovoltaic Voltages

While it was reassuring that each of the photodiodes worked in photovoltaic
mode, it is more important to our project that they can operate in
photoconductive mode. To test the photodiodes in photoconductive mode, we
used the Analog Discovery 2 to apply a reverse bias on our photodiodes of -5V,
and measured the current when no light was present, and when light was
present. To make the testing closer to how the actual device will operate, the

 ​ ​112

Photodiode 1 2 3 4 5 6 7 8 9 10

Dark
Voltage (mV)

26 27 26 28 25 24 27 27 26 27

Bright Voltage
(mV)

57 56 56 57 58 57 56 55 56 58

Laser Guitar - Group 1

photodiode was placed in series with a 30kΩ resistor. We then mounted a laser
diode on a ruler half a centimeter above our breadboard, and blocked the light
using our fingers and measured the current produced by the light that was
reflected off the users finger, rather than measuring the current with the laser
light directly on the photodiode. The figure below shows the experimental set
up.

Figure 75: Testing The Photodiodes in Photoconductive Mode

The table below summarizes the results of our testing for each of the
photodiodes operating in photoconductive mode. The current was measured by
breaking the circuit between the photodiode and the resistor, and the voltage
was calculated by multiplying by the resistance.

Table 19: Testing the Photodiodes in Photoconductive Mode

 ​ ​113

Photodiod
e

1 2 3 4 5 6 7 8 9 10

Dark
Current

(μA)

1.5 1.7 1.4 2.1 1.8 1.6 1.5 2.4 1.6 1.3

Bright
Current

(μA)

27 31 25 29 26 31 24 28 23 25

Dark
Voltage (V)

0.045 0.051 .042 .063 .054 .048 .045 .07 .048 .039

Bright
Voltage (V)

0.81 0.93 0.75 0.87 0.78 0.93 0.72 0.84 0.69 0.75

Laser Guitar - Group 1

The tests were done by applying -2V to the photodiodes using the Waveforms
application sent to us by UCF. This caused the photodiodes to act as a current
source and create a voltage across the resistor placed in series with the
photodiode. Again, due to the large amount of natural ambient light in the room
we were testing in, some of the values for dark current are inflated, and the
discrepancy between voltages would be greater in a dark setting. However, we
were still able to achieve a consistent increase in voltage of just under 1V using
a 30kΩ resistor. This is high enough for us to read a difference between the high
and low voltage values in our software programming, however there are
certainly improvements that can still be made to the design when looking into
our initial tests. The paragraph in the section titled “Hardware Initial Testing
Conclusions and Potential Improvements” discusses how we can potentially
improve this voltage discrepancy to send more clear high and low voltage
values to our MCU. Next, we considered the testing environment for our voltage
regulator, as demonstrated in Figure 67 below.

Figure 76: Voltage Regulator test environment

For the voltage regulator, the testing design will be a linear model while the final
PCB mounted one will be a switching model that will go under further testing
following. The objective here is to verify that the output voltage of 5V is indeed
the output voltage, so that when we supply the MCU. It is receiving the correct
supply amount. After confirming that we can draw a voltage from the
photodiodes to our MCU we began testing our speaker in conjunction with our
MCU to play sound from the strumming system of our project.

 ​ ​114

Laser Guitar - Group 1

Figure 77: Strumming Interrupt Testing

In order to test our strumming system we designed a circuit consisting of our
laser diode, photodiode, MCU and speaker, where the MCU is programmed to
read the voltage coming from the node between the resistor and photodiode,
which varies with the amount of light incident on the photodiode.This voltage
was high when the laser was directly on the photodiode, and low when the laser
beam was interrupted. To simulate the interrupts which would be caused by the
user blocking the light with their finger, we simply moved the laser off of the
photodiode so that less light was incident on the photodiode. The software
coded into the MCU then ran a signal to the speaker which caused the speaker
to play a note which corresponds to the note that will be played for an open
string in our final design. The note played by the speaker was then measured by
a guitar tuner app on our phone, to ensure that the frequency programmed into
our MCU was the proper frequency for the note we were trying to play. For our
first string, we played the note “G”, which is the note that will be played by the
bottom string in our final design. The figure below shows a screenshot of the
app used to measure the frequency emitted by our speaker, called the
“GuitarTuna” app. The guitar tuner returned the note “G”, which confirmed that
the noise coming from our speaker was playing at the proper frequency. The
sound testing was not as clear as we would like in our final design, however the
sound can be improved by using an amplification circuit to improve the signal.

 ​ ​115

Laser Guitar - Group 1

Figure 78: Tuning Our First String

This app helped us ensure that the frequency being played by our speaker is the
proper note in terms of the musical scale. In our future testing, we will use this
app to ensure that each of the open strings plays sound at the proper
frequencies that would be played by a real guitar or ukulele.

Hardware Initial Testing Conclusions and Potential Improvements

The results of our initial testing were reassuringly positive. All of our
components worked well under less than ideal conditions, and we gained a lot
of valuable information from our tests. Now, we have thought of several ways
we can improve our system for future tests. First, we can mount our
photodiodes vertically, rather than flat on the fretboard as we initially planned.
This should cause the reflected light to hit the photodiode at a better angle
resulting in a clearer and stronger signal. If the signal is still not strong enough,
we can increase our resistance, but ideally we would like to keep our resistance
relatively low. If necessary, we are also presented with the option to use
multiple photodiodes in parallel to create a stronger bright current for each
individual string. We can also use an amplifier circuit to improve the quality of
the signal that is being sent to the speaker for a more clear sound. Finally, we
can consider how we house our laser diodes and photodiodes. By designing a
housing that decreases the amount of light that leaks from the laser diodes, and
blocks light coming from behind and the sides of the photodiodes, we should be
able to further improve the performance of our hardware.

 ​ ​116

Laser Guitar - Group 1

7.3. Software Testing Environment
From our selected components, we chose to test our software with Arduino IDE.
Figure 59 shows a new file being created.

Figure 79 - Arduino IDE

After researching on what Integrated Development Environment we would, we
chose to work with Arduino IDE. Figure 70 is the default screen when creating a
new file. In order to use our microcontroller, we must connect it to the computer
and select the board drivers from within the Integrated Development
Environment. Errors that could accrue within Arduino IDE is that it can only
support C, C++ and .INO files. Any other file format will cause Arduino to crash.
Also another key factor is setting up the drivers correctly for our microcontroller.
Most embedded integrated development environments already have drivers for
a specific microcontroller while others don’t. Since Arduino IDE is developed for
Arduino microcontrollers, Arduino IDE should have most and all of the drivers for
its own microcontroller. When we first plugged our microcontroller into the
computer and loaded Arudino to run test code it wouldn’t work. Although the
drivers were already preloaded into the Arduino IDE, we need to select it.

 ​ ​117

Laser Guitar - Group 1

Figure 80 - Microcontroller Selection

Figure 59 shows how to select the microcontroller with Arduino IDE. Since
Arduino IDE is specific for Arduino based microcontrollers, there are various
Arduino minctorncolter to select from. The red dots within Figure X shows that
our microcontroller is available, and we can select it. By selecting our controller,
Arduino IDE will automatically recognize all of the drivers peripherals of our
controller when plugged in. This should always be the first step when
connecting our microcontroller to our workstation.

Figure 81 - File Folder

Figure 60 shows how many files and the types of files that will be needed for our
project. We can see that there is only one .INO file which is the Arduino file. This
Arduino file is what the Arduino IDE will compiler and implement the code to our
microcontroller. This folder is our ‘sketchbook’ which is Arduino IDE’s project
environment. We can have multiple sub folders, and the Arduino IDE would
automatically detect these subfolders and create a working directory.

 ​ ​118

Laser Guitar - Group 1

Figure 82 - Project Sketchbook

Figure X shows how Arduino IDE will import the sketchbook. Arduino IDE has all
of the files open within tabs that we can easily work from. As we change one or
more files, Arduino IDE will automatically save these changes. Within the
Arduino IDE we can compile the code and implement it to our microcontroller to
see these changes live.

7.4. Software Specific Testing

Now that we have selected and understand the basic operations of our software
environment. We can begin doing various types of tests for these basic
operations. Figure 63 shows this.

 ​ ​119

Laser Guitar - Group 1

Figure 83 - Blink Example Code

Although Arduino IDE has the drivers and peripherals codec need to recognize
our minctroller, we need to test whether or not the code that we will write will be
applied to it. Arduino has example code that we can run on our microcontroller
to see if the code was applied to it or not. The example code we used to test if
the code applied to the microcontroller is called Blink. The objective of this code
is to make the LED on the microcontroller blink at a specific interval, one second
on and off.

 ​ ​120

Laser Guitar - Group 1

Figure 84 - Blink Example on MCU

Figure 63 shows the result of when programming the Blink code example to our
microcontroller. The LED is one for one second and off for one second .Now
that we have an initial test of our Integrated Development Environment and the
result of our microcontroller program. We can begin implementing our algorithm.
There are several testing that we need to continue and improve on. That will be
taken care of in Senior Design 2 when we have our final project built.

 ​ ​121

Laser Guitar - Group 1

8. Administrative Content

The Administrative Content consists of milestone dates and budget outline.
These milestones and budgets are subject to change based on time, resource,
and money constraints. For the time being, this section has the following
information.

8.1. Milestones

Our milestones can be seen below in Table 18. This Table is our projected outlook on
what needs to be accomplished within a time frame.

Table 20: Project Milestones

 ​ ​122

Laser Guitar - Group 1

Table 18 shows the expected initial begin dates and end dates for the
milestones we currently have. The first half represents the Senior Design 1
milestones and the second half are the milestones for Senior Design 2.
Everything currently listed is expected, but can change depending on how
progress is moving online through the semester.

8.2. Division of Work

Not only does Table 18 show the planning of work in a time frame. In Table 19
shows the division of work between group members.

 Table 21: Division of Work.

Table 19 shows the task of our project for each member within the group. There
are Primary and Secondary individuals for each task. The Primary column
consists of members who will primarily focus on the task. If there were any
complications in terms of technical, personal or any types of conflicts that
hinder the progression of the project. There is a Secondary person to assist.
Individuals who are a Secondary will be working on other tasks and objectives
of the project, but be on standby to help Primary individuals with the task that
the Secondary is assigned to. The assignments were made based on each
group member's individual strengths, where our Electrical Engineering and
Photonic Science and Engineering majors focused mainly on tasks involving the
hardware, and our two Computer Engineering majors focused on the tasks
involving more software design.

8.3. Budget and Finance Discussions

The budgeting and fiance for our project can be seen within Table 20. From our
research there are constant price changes for certain components. Due to
COVID-19 the rarity of some components are hard to both find and buy because

 ​ ​123

Laser Guitar - Group 1

some of these manufacturers who make the components that we’re looking for
are closed. As an alternative to our part selection and budgeting of these
components, we researched on what's currently available to us. Table 20 shows
the current market price of our components.

 Table 22: Projected Budget

For the project there will not be any type of outside funding or sponsors from
any parties. Instead, the project will be funded by the members of the group.
Figure 4 below, shows the breakdown of what items we need, the quantity
amount, and the cost. These items are subject to change based on design,
safety, and implementation constraints that we may or may not encounter.

Table 23: Current Cost as of 7/27/2020

The chart above shows the parts ordered for our projects initial testing, along
with the quantity and total price of each of the components. A few things have
changed from our initial project design, which brought our cost down below
what we initially intended on spending. While we still need to order some costly

 ​ ​124

Laser Guitar - Group 1

components, most notably our PCB, we are comfortably below budget to where
we do not need to worry about spending more than we initially intended. One of
the main factors in reducing the cost of our project was the decision not to vary
the wavelength of each of the strings. This decision was made because of the
high cost of narrow band optical filters, as well as the high cost of laser diodes
outside of the 600nm range, and photodiodes with high sensitivities for
wavelengths in the visible spectrum below 600nm.

Table 24: Final Budget Cost

 ​ ​125

Laser Guitar - Group 1

 ​ ​126

Laser Guitar - Group 1

9. Appendices

Section 9 Appendices contains all evidence of copyrighted permissions, works
cited and references.

9.1 Works Cited

[1] Chawla, Mohit. “Levels of Programming Languages.” Medium, The
BitTheories, 18 Dec. 2017,

thebittheories.com/levels-of-programming-languages-b6a38a68c0f2

[2] Unknown, Author “Jacob’s Blog.” Bingo Embedded Group, Beningo
Embedded Group, 18 Feb. 2018,

www.beningo.com/5-reasons-to-start-using-c-over-c

[3] Lokesh, Gupta. “Java Tutorial.” HowToDoInJava, 27 June 2020,

howtodoinjava.com/java/basics/java-tutorial

[4] Staff, Embedded. “Embedded Java.” Embedded.Com, 1 Mar. 2002,

www.embedded.com/embedded-java

[5] Unknown Author, What Is Python? Executive Summary.” Python.Org,

www.python.org/doc/essays/blurb

[6] Guindon, Christopher. “Eclipse Desktop & Web IDEs | The Eclipse
Foundation.” Eclipse,

www.eclipse.org/ide

[7] “9 Reasons Why The Vivado Design Suite Accelerates Design Productivity.”
Xilinx,

www.xilinx.com/publications/prod_mktg/vivado/Vivado_9_Reasons_Back
grounder.pdf

 [8] Unknown, Author. “Virtualization Technology & Virtual Machine Software:
What Is Virtualization?” VMware,

 ​www.vmware.com/solutions/virtualization.html​.

[9] Editor. “Hardware Abstraction Layer (HAL).” Network Encyclopedia, 29 Aug.
2019,

networkencyclopedia.com/hardware-abstraction-layer-hal

http://www.xilinx.com/publications/prod_mktg/vivado/Vivado_9_Reasons_Backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/vivado/Vivado_9_Reasons_Backgrounder.pdf
http://www.vmware.com/solutions/virtualization.html

Laser Guitar - Group 1

[10] Crowl, L. A., and T. J. LeBlanc. “Control Abstraction in Parallel
Programming Languages - IEEE Conference Publication.” IEEE, 22 July 1992,

ieeexplore.ieee.org/document/185467/metrics#metrics.

[11] Unknown, Author. “Paradigms.” Programming Paradigms,

cs.lmu.edu/%7Eray/notes/paradigms.

[12] Unknown, Author. “Design Patterns and Refactoring.” Source Making,

sourcemaking.com/design_patterns.

[13] Unknown, Author. “Time and Space Complexity Tutorials & Notes | Basic
Programming.” HackerEarth, 30 Aug. 2016,

www.hackerearth.com/practice/basic-programming/complexity-analysis/t
ime-and-space-complexity/tutorial/#:%7E:text=Time%20complexity%20
of%20an%20alg.

[14] Drowell, Eric. “Big-O Algorithm Complexity Cheat
 Sheet (Know Thy Complexities!) @ericdrowell.” Know Thy Complexities!,

www.bigocheatsheet.com​.

[15] Ravi, et al. “8051 Microcontroller Assembly Language Programming.”
Electronics Hub​, Ravi, 25 Dec. 2017,

www.electronicshub.org/8051-microcontroller-assembly-language-progr
amming/

[16] Barr, Michael. ​Embedded C Coding Standard​. Barr Group, 2018.
https://barrgroup.com/embedded-systems/books/embedded-c-coding-st
andard

[17] Atmel Corporation. ​Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V​.

1600 Technology Drive, San Jose, CA 95110 USA T, Atmel Corporation,
2014,

ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-av
r-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf

[18] ​Arduino.cc. Creative Commons, 17 June 2020.

content.arduino.cc/assets/Pinout-Mega2560rev3_latest.pdf.

[19] Arduino. “Arduino Mega 2560 Rev3 | Arduino Official Store.” ​Store.Arduino​,

store.arduino.cc/arduino-mega-2560-rev3.

http://www.bigocheatsheet.com/
http://www.electronicshub.org/8051-microcontroller-assembly-language-programming/
http://www.electronicshub.org/8051-microcontroller-assembly-language-programming/
https://barrgroup.com/embedded-systems/books/embedded-c-coding-standard
https://barrgroup.com/embedded-systems/books/embedded-c-coding-standard

Laser Guitar - Group 1

[20] George, Damien. ​MicroPython​, George Robotics Limited, 2018,
micropython.org/.

[21] Free Software Foundation, Inc. ​GNU Coding Standards​. 2008,
www.gnu.org/prep/standards/html_node/GNU-Free-Documentation-License.html.

[22] Pal, Sayan Kumar. “Coding Standards and Guidelines.” ​GeeksforGeeks​, 2
July 2019, www.geeksforgeeks.org/coding-standards-and-guidelines/.

[23] Van Zegbroek, B. (2011). Principles of Semiconductor Devices. Retrieved June 03,
2020, from http://ecee.colorado.edu/~bart/book/book/chapter4/ch4_7.htm

[D1] ​https://www.ti.com/product/TPS563​231

[D2] ​https://www.ti.com/product/TPS56​3249

[D3] ​https://www.ti.com/product/TLV62130

[D4] ​http://beambow.com/

[D5]​https://www.researchgate.net/figure/Lead-acid-battery-chemistry-a-during-
discharging-b-during-charging-and-c-LA_fig4_311305861

[D6] ​“UC San Diego Works to Build Batteries of the Future.” ​Accelerating
Microscopy​, 12 Apr. 2019,

www.thermofisher.com/blog/microscopy/uc-san-diego-works-to-build-b
atteries-of-the-future/​.

[D7] ​Jihad Tarabay, and Nabil Karami. “Nickel Metal Hydride Battery: Structure,
Chemical Reaction, and Circuit Model.” ​Undefined​, 2015,

www.semanticscholar.org/paper/Nickel-Metal-Hydride-battery%3A-Struc
ture%2C-chemical-Tarabay-Karami/5a915f5bf77684aaa66209969569f3b
e4592d91b​.

[D8] ​“Serial and Parallel Battery Configurations and Information.”
Batteryuniversity.Com​, 2018,

batteryuniversity.com/learn/article/serial_and_parallel_battery_configurati
ons.

https://www.ti.com/product/TPS563249
https://www.ti.com/product/TPS563249
https://www.ti.com/product/TLV62130
http://beambow.com/
https://www.researchgate.net/figure/Lead-acid-battery-chemistry-a-during-discharging-b-during-charging-and-c-LA_fig4_311305861
https://www.researchgate.net/figure/Lead-acid-battery-chemistry-a-during-discharging-b-during-charging-and-c-LA_fig4_311305861
http://www.thermofisher.com/blog/microscopy/uc-san-diego-works-to-build-batteries-of-the-future/
http://www.thermofisher.com/blog/microscopy/uc-san-diego-works-to-build-batteries-of-the-future/
http://www.semanticscholar.org/paper/Nickel-Metal-Hydride-battery%3A-Structure%2C-chemical-Tarabay-Karami/5a915f5bf77684aaa66209969569f3be4592d91b
http://www.semanticscholar.org/paper/Nickel-Metal-Hydride-battery%3A-Structure%2C-chemical-Tarabay-Karami/5a915f5bf77684aaa66209969569f3be4592d91b
http://www.semanticscholar.org/paper/Nickel-Metal-Hydride-battery%3A-Structure%2C-chemical-Tarabay-Karami/5a915f5bf77684aaa66209969569f3be4592d91b

Laser Guitar - Group 1

[D9] ​electronics notes. “PTC Thermistor: Positive Temperature Coefficient »
Electronics Notes.” ​Electronics-Notes.Com​, 2019,

www.electronics-notes.com/articles/electronic_components/resistors/the
rmistor-ptc-positive-temperature-coefficient.php​.

[D10]​“Multilayer Pool - The Most Comprehensive Lead You To Know PCB
Layers.”

 ​www.Wellpcb.Com​, ​www.wellpcb.com/multilayer-pool.htm​l

[D11] ​“Analog and Digital.” ​Www.Mathsisfun.Com​,
www.mathsisfun.com/data/analog-digital.html​.

[D12] ​“Digital to Analog Converters - Analog and Digital Electronics Course.”
Electronics-Course.Com​,

electronics-course.com/digital-analog-converter.
[D13] ​“Pulse Width Modulation - Learn.Sparkfun.Com.” ​Learn.Sparkfun.Com​,

learn.sparkfun.com/tutorials/pulse-width-modulation/duty-cycle.

[D14]​“Successive-Approximation ADC.” ​Wikipedia​, 20 May 2020,
en.wikipedia.org/wiki/Successive-approximation_ADC.

[D15] ​All About Circuits. “The Operation and Characteristics of Voltage-Mode
R-2R DACs.” ​Allaboutcircuits.Com​, 11 Mar. 2019,

www.allaboutcircuits.com/technical-articles/voltage-mode-r2r-dacs-oper
ation-and-characteristics/​.

[D16] ​“ANSI Z136 Standards.” ​The Laser Institute​, 3 Oct. 2018,
www.lia.org/resources/laser-safety-information/laser-safety-standards/an
si-z136-standards​.

[D17] ​“Battery Technologies - Learn.Sparkfun.Com.” ​Sparkfun.Com​, 2019,

learn.sparkfun.com/tutorials/battery-technologies/all.

[D18] ​“Common Battery Types.” ​Uiuc.Edu​, 2019,
butane.chem.uiuc.edu/pshapley/GenChem2/C6/3.html.

[D19] ​electronics notes. “Li-Ion Battery Advantages / Disadvantages | Lithium
Ion | Electronics Notes.” ​Electronics-Notes.Com​, 2019,

www.electronics-notes.com/articles/electronic_components/battery-tech
nology/li-ion-lithium-ion-advantages-disadvantages.php​.

http://www.electronics-notes.com/articles/electronic_components/resistors/thermistor-ptc-positive-temperature-coefficient.php
http://www.electronics-notes.com/articles/electronic_components/resistors/thermistor-ptc-positive-temperature-coefficient.php
http://www.wellpcb.com/multilayer-pool.html
http://www.wellpcb.com/multilayer-pool.html
http://www.mathsisfun.com/data/analog-digital.html
http://www.allaboutcircuits.com/technical-articles/voltage-mode-r2r-dacs-operation-and-characteristics/
http://www.allaboutcircuits.com/technical-articles/voltage-mode-r2r-dacs-operation-and-characteristics/
http://www.lia.org/resources/laser-safety-information/laser-safety-standards/ansi-z136-standards
http://www.lia.org/resources/laser-safety-information/laser-safety-standards/ansi-z136-standards
http://www.electronics-notes.com/articles/electronic_components/battery-technology/li-ion-lithium-ion-advantages-disadvantages.php
http://www.electronics-notes.com/articles/electronic_components/battery-technology/li-ion-lithium-ion-advantages-disadvantages.php

Laser Guitar - Group 1

[D20] ​electronics notes. “Series Voltage Regulator | Series Pass | Electronics
Notes.” ​Electronics-Notes.Com​, 2020,

www.electronics-notes.com/articles/analogue_circuits/power-supply-elec
tronics/linear-psu-series-regulator-circuit.php​.

[D21] ​“Regulated Power Supplies.” ​Learnabout-Electronics.Org​,
learnabout-electronics.org/PSU/psu21.php.

[D22]​“Difference Between Linear Regulator and Switching Regulator |
Electronics Basics | ROHM.” ​Www.Rohm.Com​,

www.rohm.com/electronics-basics/dc-dc-converters/linear-vs-switching-
regulators​.

[D23] ​“What Is a Printed Circuit Board (PCB)? - Technical Articles.”
Www.Allaboutcircuits.Com​,

www.allaboutcircuits.com/technical-articles/what-is-a-printed-circuit-boa
rd-pcb/​.

[D24] ​“What Is a Printed Circuit Board (PCB)?” ​Printed Circuits LLC​,
www.printedcircuits.com/what-is-a-pcb/​.

[D25] ”​Glossary Definition for Switching Regulator.”
Www.Maximintegrated.Com​,

www.maximintegrated.com/en/glossary/definitions.mvp/term/Switching
%20Regulator/gpk/298#:~:text=A%20switching%20regulator%20is%20
a

[D26] ​“Boost Converters.” ​Learnabout-Electronics.Org​,

learnabout-electronics.org/PSU/psu32.php

[D27]​“ANSI Z87.1 Eye Protection Standard | Graphic
Products.”​Www.Graphicproducts.Com​,

ww.graphicproducts.com/articles/ansi-z871-eye-protection/

[D28]​“Battery Standards - Lithium, Nickel Metal Hydride, Nickel Cadmium.”
www.Epectec.Com​, www.epectec.com/batteries/battery-standards.html.

http://www.electronics-notes.com/articles/analogue_circuits/power-supply-electronics/linear-psu-series-regulator-circuit.php
http://www.electronics-notes.com/articles/analogue_circuits/power-supply-electronics/linear-psu-series-regulator-circuit.php
http://www.rohm.com/electronics-basics/dc-dc-converters/linear-vs-switching-regulators
http://www.rohm.com/electronics-basics/dc-dc-converters/linear-vs-switching-regulators
http://www.allaboutcircuits.com/technical-articles/what-is-a-printed-circuit-board-pcb/
http://www.allaboutcircuits.com/technical-articles/what-is-a-printed-circuit-board-pcb/
http://www.printedcircuits.com/what-is-a-pcb/

Laser Guitar - Group 1

9.2 Approvals Cited

Texas Instrument Approval

Arduino Approval

9.3 Data Sheets

[17] Atmel Corporation. ​Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V​.

1600 Technology Drive, San Jose, CA 95110 USA T, Atmel Corporation,
2014,

ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-av
r-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf

[18] ​Arduino.cc. Creative Commons, 17 June 2020.

content.arduino.cc/assets/Pinout-Mega2560rev3_latest.pdf.

