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Abstract  —  This article presents a summary of the 

Robinson Observatory scale model project, which began in 

January, 2019 and concluded in November, 2019.  The 
introduction to this paper includes a brief history of the 
Robinson Observatory as well as the primary motivations and 

goals of this project.  The layout of the as-is system at the 
Observatory is considered alongside a high-level overview of 
our own design.  Design decisions are addressed, to include 

component selection and software design.  Finally, the 
challenges and successes of integration are summarized, along 
with a broad summary of the project and the bibliographies of 

all team members. 

 

Index Terms  —  Analog-digital Integrated Circuits, DC 

Motors, Differential Amplifiers, Microcontrollers, Optical 
Switches, System Integration, Telescopes, Universal Serial 
Bus. 

 

I. INTRODUCTION 

Although the groundbreaking for the Robinson 

Observatory occurred in January of 1994, the story of our 

current telescope begins in 2007.  It was at this point that 

the existing 26” Tinsley telescope was removed and the 

existing 20” telescope, manufactured by RC Optical 

Systems, was installed.  Although the installation of the 

device was led by Nate Lust, students played a significant 

role in the effort.  From the beginning, the telescope was a 

partnership between the University of Central Florida 

(UCF) and its students. 

The telescope served faithfully from its installation until 

approximately three years ago, when its functionality began 

to degrade.  A proprietary controller, manufactured by 

Bisque TCS, is at the root of the problem.  This controller 

translates commands from the astronomy software package 

TheSkyX, which runs on a PC, into commands that drive the 

motors of the telescope through pulse width modulation 

(PWM) signals.  The performance of this controller has 

deteriorated to the point where any stellar bodies tracked 

appear as blurs.  There is a single individual that services 

this equipment, and he must be flown out at a significant 

expense for any repairs. 

The original tasking for this project consisted of the 

design and integration of an open-source replacement for 

the existing Bisque TCS controller.  However, due to the 

high cost of some of the related equipment (e.g., two 

Pittman motors valued at approximately $5,000 each), 

along with the uncertain nature of a project based 

exclusively around reverse engineering, the scope of the 

project has changed.  Instead of replacing the controller at 

the Observatory, an interdisciplinary team (consisting of 

Computer Science, Mechanical Engineering and Electrical 

Engineering students) has been charged with designing an 

open-source scale model of the telescope. 

II. MOTIVATION AND GOALS 

Although the scope of the original project has changed 

since its inception, this design will still serve two key 

purposes.  First, the scale model with mitigate the risk of 

damaging costly observatory equipment as a permanent 

replacement controller is implemented.  This scale model 

also serves as a test environment for subsequent Senior 

Design teams in later semesters.  As the model has been 

designed to mirror the existing equipment in the 

Observatory, these teams will be able to quickly understand 

the current, as-is system.  In addition, this model will serve 

as a low-risk test platform from which these teams can test 

and verify their own proposed designs. 

The second intent of this design is for the hobbyist 

astronomer.  These amateur astronomers need only provide 

their own telescope; all other parts will be readily available 

(e.g., 3D-print the mount, have the PCB fabricated from 

Gerber files and download the open-source astronomy 

software from the internet).  With equivalent currently 

available solutions costing in the high hundreds-to 

thousands of dollars, this design will lower the bar of entry 

for an automated, computer-controlled telescope mount. 

Finally, it bears mentioning that the intent of the 

Electrical Engineering team was for this design to be robust 

enough to serve as a replacement for the Bisque TCS 

controller, if the Observatory staff decided to implement it.  

Although the team does not anticipate that this option will 

be elected, the controller is capable of serving as a 1-to-1 

replacement for the existing proprietary hardware. 



III. SYSTEM LAYOUT 

This following section briefly details the existing layout 

of the complete system at the Robinson Observatory, then 

narrows in focus to address the specific tasking and role of 

the Electrical Engineering team. 

 

A. Existing System at Robinson Observatory 

 

 
 

Fig. 1. A generalized block diagram of the existing as-is 

telescope system currently in place at the Robinson Observatory. 

 

It is instructive to present the scope of the existing system 

at the Observatory to serve as a backdrop upon which the 

Electrical Engineering effort can be considered.  This 

section is brief, as the true focus of the team is on the “Black 

Box” labeled in the block diagram above. 

In general, the Observatory is controlled by a single 

computer (PC) that is integrated with various controllers 

across a wide range of functionality.  Through various 

suites of software, the PC controls the rotation of the dome 

as well as the status (i.e., open or closed) of the shutter, 

along with a filter, a focuser and a camera, all of which are 

integrated with the telescope. 

The area of concern for our team is what has been labeled 

here as the “Black Box.”  This is the proprietary Bisque 

TCS controller that is responsible for translating control 

signals from TheSkyX software suite into positioning 

control signals for the motors in the telescope mount.  

Specifically, two motors control the telescope: right 

ascension, which can roughly be considered a longitude 

position, and declination, that is: a position in the sky, 

typically referenced from -90 degrees to 90 degrees. 

B. Design of the Motor Controller 

As outlined above, the efforts of our team have been 

restricted to the “Black Box,” or motor controller.  The 

motor controller is comprised of a set of constituent parts, 

to include: a microcontroller, a joystick, optical sensors, 

indicator lights, a USB connection to the PC, a power 

supply, and motors and their associated encoders.  Fig. 2 

below summarizes the general block diagram for this 

controller, with additional details on each component to 

follow. 
 

Fig. 2. A more refined block diagram of the “Black Box” of  

Fig.1.  This represents the design of the Electrical Engineering 

team. 

  

C. Microcontroller 

 

It is important to mention, before proceeding with a 

discussion of design, that our PCB is generally a “shield” 

that mounts on top of the Arduino Mega 2560 board.  This 

is per the request of our sponsor, the Florida Space Institute 

(FSI), and the intent is to facilitate ease of field 

replacement.  If the Arduino Mega 2560 ever fails, it should 

be a relatively easy replacement for the end user. 

Our design encompasses a pair of microcontrollers, both 

of which use the Arduino architecture.  The ATmega2560 

sits at the heart of the design, with the ATmega328 serving 

an ancillary purpose.  The ATmega328 has had some of the 

LED load shifted to it, but its primary purpose is to serve as 

a “heartbeat” monitor – that is, if communication between 

the primary ATmega2560 and the shield is disrupted, the 

ATmega328 will notify the operator through the use of a 

trouble LED. 

In general, much of the functionality of the ATmega2560 

is used in this design.  The ATmega2560 provides a 10-bit 

analog to digital converter (ADC), which can enable any 

one of the 16 analog pins after selection from a MUX that 

sits in front of the ADC [1].  This functionality is used for 

the only analog input in our design – the joystick.  More 

detail on the specific implementation is included in the 

joystick section below. 

The ATmega2560 natively supports 6 digital interrupt 

pins (2, 3, 18, 19, 20, and 21).  All six were implemented in 

this design, with two pins each corresponding to the 

differential A and B signals from the motor encoders 



(routed through a differential line receiver on the PCB) and 

two pins allotted to the optical switches that serve as limit 

switches and home position sensors. 

The motors are driven by pulse frequency modulation 

(PFM), which is distinct from the more customary pulse 

width modulation (PWM) that may be expected.  The duty 

cycle remains fixed, but the pulse frequency is varied.  The 

Arduino 2560 only natively supports pulse frequencies of 

up to 490Hz; therefore, we sought an alternative.  Here, we 

use a pre-defined Arduino library [2] that supports a range 

of 1Hz to 2MHz (on a 16-bit timer) and 31Hz to 2MHz (on 

an 8-bit timer).  The equation used for calculating the 

necessary pulse frequency is detailed in the motors section 

of this paper, but this range is more than adequate for our 

implementation. 

The hardwired connection to the PC is accomplished 

through the use of the Universal Serial Bus (USB) protocol.  

The Arduino Mega 2560 has a built in USB/Serial 

converter.  This means that it will natively convert the 

incoming traffic from the PC (USB) to the 5V TX and RX 

signals that the Arduino expects (as well as converting the 

other way, to facilitate Arduino to PC communication). 

Finally, the ATmega2560 controls a number of indicator 

LEDs.  These LEDs are tied directly to the 5V digital I/O 

pins on the microcontroller.  A resistor is placed in series to 

limit current and achieve the proper voltage drop across the 

LED. 

 

D. Motors and Encoders 

 

The pair of motors implemented in this design are 

Applied Motion STM17R-3NE, NEMA 17 units.  These 

motors support a number of different control options.  Since 

the motor and mount will be housed less than a few feet 

away from the microcontroller, and a large amount of 

environmental noise was not anticipated, we elected not to 

implement a differential line driver in our design and 

utilized the configuration detailed in Fig. 3 below. 

 

 

Fig. 3. The single step and direction connection from Arduino 

Mega 2560 digital I/O pins to STM17R-3NE motors [3]. 

 

Using the scheme outlined above, the step signal pulses 

once for each motor step and the direction signal is used to 

determine direction with a simple high/low input.  The step 

size on this motor is dipswitch-configurable and can range 

between 200 counts per revolution (CPR) to 25,600 CPR.  

A simple equation (1) is used to derive the desired pulse 

frequency for the motors. 

 

𝑃𝑢𝑙𝑠𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑅𝑃𝑆 ∗ 𝑆𝑡𝑒𝑝 𝐶𝑜𝑢𝑛𝑡 (1) 

 

There are a number of other options available on these 

motors and will be dependent on the final design and 

requirements of the mechanical engineering team.  

Therefore, these options are addressed in the integration 

section of this paper. 

We next consider the encoder.  The STM17R-2NE 

supports a built-in quadrature incremental rotary encoder.  

The encoder follows the industry standard 26C31 

differential line driver for output, meaning that the channels 

(A, B, and Index) are differential signals.  Therefore, a 

differential line receiver (industry standard 26C32) is 

required to translate this output before it hits our 

microcontroller. 

For position control, there are three primary signals of 

interest being sent by the encoder.   Those signals are A, B, 

and Index.  The A and B signals are the quadrature signals.  

That is, depending on the direction of rotation, one signal 

will lead, and the other signal will lag.  The methodology 

for this is addressed in the software section of this paper. 

The encoder bundled with the STM17R-3NE supports 

1,000 lines of resolution.  This means that for each rotation 

of the motor, 1000 “counts” are sent from the encoder.  Our 

microcontroller tracks this encoder count, ticking upward 

or downward in increments of one for each clockwise or 

counterclockwise signal from the encoder.  Therefore, as 

discussed in the microcontroller section of this paper, it is 

important for the A and B channels from each encoder to 

be tied to digital interrupt pins. 

 

E. Power Supply 

 

Much of the discussion on the power supply (PSU) is 

covered under the component selection portion of this 

document.  The PSU is included here inasmuch as it 

pertains to the PCB design of the Arduino shield.  Since the 

motors operate at a peak current draw of 2A each, we have 

elected to place 2, 2A fuses on our PBC to protect the 

motors.   

 

F. Optical Switches 

 

The operation of the optical switches is fairly 

straightforward.  They serve a dual purpose, serving as both 

a limit switch and a home position sensor.  This is 



accomplished through the design of the interrupter wheel, 

as implemented by the mechanical engineering team.  

Although their final design was not available by the 

publication of this paper, a similar implementation from the 

Bisque TCS manual illuminates the application. 

 

Fig. 4. The optical switch (sensor) can be interrupted by either 

reaching a limit or reaching the home position. 

 

In general terms, the configuration of these OPB980 

optical switches is simple.  An input diode emits an infrared 

(IR) light which is intercepted by an optical sensor.  This 

optical sensor determines whether the optical switch has 

been tripped or not. 

We have elected to use the 3.3V output of the 

ATmega2560 to drive these optical sensors.  A simple 

application of Ohm’s law provides just over the necessary 

forward voltage (VF) of 1.6V and expected current of 20mA 

with the use of an 85Ω resistor. 

The output of these optical switches, at a minimum, is 

listed in the datasheet as VCC – 2.1V.  With a VCC to the 

sensor of 5V, this provides a minimum of 2.9V.  In 

accordance with the ATmega2560 datasheet, as well as 

extensive testing, this is more than sufficient to trigger a 

high input on the digital I/O pins. 

 

G. Joystick 

 

The joystick consists of three outputs.  First, X and a Y-

axis values are determined by a pair of 10kΩ 

potentiometers.   These potentiometers vary the voltage out 

between 0 and 5V.  These are the two connections that are 

routed to our analog pins on the microcontroller to make 

use of the ADC.   

As a 10-bit ADC, we can extract 1024 levels of 

differentiation between 0 and 5V.  However, as with many 

mechanical devices, it seemed prudent to program in a 

“dead zone” to prevent unintended joystick inputs from the 

center range of the ADC.  Although it is a simple matter to 

modify in the code, our current dead zone exists from levels 

500 – 530. 

The third output on the joystick is a simple digital 

“button,” which is either high or low.  When this button is 

pressed, the user can take over manual control of the motors 

and direct them via joystick inputs.  When the button is 

pressed a second time, manual control is released and the 

right-ascension motors return to tracking. 

IV. COMPONENT SELECTION 

This section revisits the major components of the design 

and addresses some of the considerations that went into 

their selection.  In the interest of full disclosure, there will 

be a common theme throughout this section. 

It was the intent of the Electrical Engineering team to 

mirror the existing equipment in the Robinson Observatory 

as closely as possible.  As outlined in the introduction to 

this paper, this served a variety of purposes.  The most 

significant considerations were the potential for this device 

to serve as a 1-to-1 replacement for the Bisque TCS 

controller, as well as to provide as much fidelity as possible 

for senior design teams who follow behind us and wish to 

use this as a scale model and starting point for their own 

development work.  As such, although a variety of options 

and design parameters were considered during part 

selection, our main litmus test was: does this match (in form 

and function) what is currently in this Observatory? 

A second concern is also common to the selection of each 

of these parts.  That is, availability.  For each component, it 

was essential that we made selections that were available 

from a variety of suppliers (e.g., Digikey and Mouser, at a 

minimum) with a large in-stock availability (typically over 

1000 parts) and no apparent end-of-life or obsolescence on 

the horizon.  Since this consideration was common to all 

parts, it is only mentioned here in the introduction. 

 

A. Microcontroller 

 

With the above preamble set aside, it is fair to say that the 

microcontroller was one of the parts least affected by the 

need to mirror existing observatory equipment.  With that 

said, however, we had a specific request from our project 

sponsor, the Florida Space Institute (FSI). 

Per FSI’s request, we have elected to implement an 

Arduino shield.  The general reasoning with the shield is 

that the core of the controller (that is, the Arduino 

development board) is easily replaced by an end user.  

Although we did investigate other options, such as the 

Raspberry Pi, they did not meet the request of our sponsor 

and were otherwise unsuited for our project.  For example, 

we had no need for an operating system and were far more 



comfortable with C than Python, which meant that the Pi 

would have been a poor design choice. 

The selection of the ATmega328 was fairly simple once 

we had settled on the Arduino development environment.  

The general purpose of the ATmega328 is to serve as 

connection monitor between the shield and the Arduino 

Mega 2560, illuminating a trouble LED if a connection is 

lost.  Moreover, we were able to offload some of the LED 

load to the ATmega328.  The third, and perhaps most 

significant reason for adding the ATmega328 is so that 

design meets the requirements of the program for 

substantial PCB design.  In truth, this design could have 

been accomplished without the ATmega328 – but its 

presence adds complexity to the PCB that is needed to meet 

design requirements. 

 

B. Motors and Encoders 

 

In general, the selection of the motors used on this project 

was driven by two criteria.  First, as discussed above, it was 

our desire to closely match the existing equipment in the 

observatory.  Since DC stepper motors were in use in the 

observatory, this drove our design decision as to the overall 

type of motor. 

The secondary consideration for the motors used in this 

project was robustness.  That is, with the design of the 

mechanical engineering team in flux until near the end of 

this project, it was necessary for our motors to support a 

wide variety of potential design choices. 

At 68 oz-in of holding torque, our peers on the 

mechanical engineering team have assured us that these 

motors will meet any design specifications that they 

implement.  However, the motors also support a number of 

dipswitch-configurable options, to include: idle current, 

pulse-noise filtering, smoothing filter, counts per revolution 

(CPR) and load inertia.  These configuration options are 

examined in further detail in the integration section of this 

document but are included here to underscore the selection 

of a flexible motor. 

Other general considerations included the very high CPR 

that can be achieved through this motor (ranging as high as 

25,600 CPR).  This enabled maximum flexibility to work 

with the mechanical engineering team, as their gear ratios 

(as it stands presently) range from 100:1 (for the declination 

motor) to 38,100:1 (for the right-ascension).   The 

flexibility in the range of CPR allows us to use pulse 

frequencies within a reasonably tight range, rather than 

ones that differ by several orders of magnitude. 

The election of a motor with a built-in encoder was, as 

with many other design choices, primarily driven by a 

desire to match the existing equipment in the observatory.  

As the existing Pittman motors use a built-in encoder, our 

technology was selected to closely mirror the as-is system.  

Moreover, the built-in encoder made the overall integration 

of the motor/encoder system more straightforward.  Since 

this combination has been thoroughly vetted by the 

manufacturer, it (very likely) eliminated one potential point 

of failure and allowed us to concentrate troubleshooting 

efforts on other areas.  Finally, the 1,000 line encoder 

provided sufficient resolution for our application, 

especially when considered with gear ratios ranging 

upwards of 38,000:1. 

 

C. Power Supply 

 

The primary consideration when selecting this power 

supply was to enable future extensibility.  The current set 

of motors at the Observatory draw significantly more power 

than our scale model, but investing in a robust power supply 

at the onset of the project allows future teams to broaden 

the scope of the design without the necessity of replacing 

this major component. 

The power supply selected for this project was 

recommended by the manufacturer of the motors, Applied 

Motion.  It is an Applied Motion PS150A24 (150W, 24V 

DC motor).  A secondary consideration regarding this 

power supply was the potential for regeneration if a 

regulated power supply was used.  In brief, regeneration 

occurs when a load is rapidly decelerated from a high speed 

and much of the kinetic energy of the load is transferred 

back to the power supply.  This regeneration can trip the 

overvoltage protection of a switching power supply, 

causing it to shutdown [3].  The vendor does offer a 

“regeneration clamp” to remedy this potential issue, but 

with the added cost of the additional protection, the 

manufacturer recommendation was all the more appealing. 

 

D. Optical Switches 

 

The optical switches selected for this design are a pair of  

TT Electronics OPB980T51Z switches. The major concern 

here was availability of the part in conjunction with a desire 

to match the existing equipment in the Observatory.  Design 

decisions included flying leads (to ease integration with the 

PCB) and covered apertures (to enhance robustness). 

 

E. Joystick 

 

The design considerations for our joystick were 

functionality, cost and flexibility.  The joystick that we 

selected met the functionality criteria better than others that 

were evaluated: that is, in addition to the X and Y-axis 

functionality of a standard joystick, it also included a push-

button toggle.  This push button was essential for our 



implementation of the project (e.g., the ability to toggle in 

and out of manual control/tracking modes). 

Moreover, this joystick, along with being the lowest cost 

joystick that we considered, also included a breakout board.  

This gave us the flexibility to incorporate the joystick into 

our PCB, if desired, or to utilize it as a stand-alone device 

without the need for additional PCB design.  Ultimately, 

due to the design of the mechanical team, this joystick was 

implemented as a stand-alone component, and therefore, 

the breakout board is in use. 

V. SOFTWARE DESIGN 

The general approach to the code for this project follows 

the Arduino standard.  That is, a setup routine executes, 

followed by the main loop().  In our case, the setup routine 

initializes timers (per the PWM library), sets pin modes 

(input, output, input_pullup) as needed, initializes serial 

communication and executes a homing function. 

 
Fig. 5. A general block diagram detailing the overall software 

implementation. 

 

The homing function turns right-ascension (RA) and 

declination (DEC) motors counterclockwise until the 

optical switch is tripped.  When both optical switches are 

engaged, the telescope is homed.  Encoder counts are reset 

to zero, which translates to a 0° RA position and a -90° DEC 

position. 

In broad terms, the main loop is always polling for serial 

input data.  If there is serial data available from the PC, the 

software parses the command.  There are three possible 

options for these commands.  The first two options are a 

request for our motor position.  The position is translated 

into an HH:MM:SS format for RA and DEG:MM:SS 

format for DEC and returned to the PC via serial write.  The 

third option is a motor command.  In the case of a motor 

command, the software compares the requested position to 

the current position and continues to pulse the motors until 

the two are even (within a tolerance, which was required to 

prevent motor jitter).  Once the position is reached, a 

tracking function executes, setting the motors to the correct 

speed to compensate for the earth’s rotation. 

In addition, the software is also looking for a button press 

from the joystick.  If the button is pressed, control is passed 

to the joystick.  The joystick can be used to manually 

position the telescope mount.  When the button is pressed a 

second time, the tracking function executes. 

There are several techniques that were used in the 

software that are worth an individual mention.  In each case, 

these are not especially advanced techniques, but are 

essential to the successful operation of the program. 

Fig. 6. A timing diagram demonstrating a hypothetical 

clockwise (CW) rotation.  Channel A (rising edge) triggers the 

interrupt, channel B is low.  This suggests CW rotation. 

 

First, we consider the handling of the interrupt service 

routines (ISRs) for the encoders.  To correctly determine 

the rotation direction (clockwise or counterclockwise) of 

the motors, we need to understand whether channel A or 

channel B on the encoder is leading the other channel.  To 

do this, we execute the interrupt on the leading edge of 

channel A.  We then check the state of channel B.  If 

channel B is low (as referenced in Fig. 6), we interpret 

clockwise rotation (channel A leads).  If channel B would 

be high, we interpret CCW rotation (channel A lags).  A 

secondary pair of ISRs are attached to the optical switches, 

as the limit switch must take priority over any other code 

execution to prevent possible damage to the telescope. 

We next consider the joystick button itself.  Throughout 

several implementations of our code, and both revisions of 

the PCB, we found that the push-button had intermittent (at 

best) operation.  Research into the issue revealed that the 

software needed a simple debounce feature.  This is 

accomplished quite directly, by simply checking the state 

of the button, inserting a brief delay, and then confirming 

that the button has changed state.   

The final consideration of the code relates to the variables 

used in the ISRs.  In the early revisions of our code, we 

found that the encoder would seemingly stop counting (that 

is, incrementing and decrementing).  Since the encoders 

were tied to ISRs, this seemed like an unreasonable 

conclusion.  The ultimate fix was to declare the shared 

variables as volatile.  This tells the compiler that such 



variables might change at any time, and thus the compiler 

must reload the variable whenever you reference it, rather 

than relying on a copy it might have in a processor register 

[4]. 

VI. INTEGRATION 

Working alongside mechanical engineering and 

computer science students as part of an interdisciplinary 

team requires significant efforts towards integration.  

Therefore, this section will address the integration efforts 

with each team separately.  In the interest of full disclosure, 

the mechanical engineering prototype will not be complete 

until after the time of the senior design presentation; 

therefore, mechanical engineering integration details will 

consider theoretical options. 

 

A. Computer Science 

 

The integration work with the computer science team 

began in earnest around the middle of the Fall semester.  

The goal here was for interoperability between their custom 

Stellarium software and our motor controller.  Simply put, 

the end user needed to be able to select a stellar body (or set 

of coordinates) in the Stellarium software and our 

controllers needed to point the telescope at it and begin 

tracking. 

This necessitated the three different commands discussed 

in the software portion of this paper.  Two commands can 

be issued from Stellarium to request the position of the 

mount.  That is :GR# (to request the RA position of the 

telescope) and :GD# (to request the DEC position of the 

telescope).  Our motor position is tracked internally based 

on the encoder count, which is cross-referenced against the 

gear ratio to determine how far the mount has moved.  This 

is then translated by a pair of functions into the expected 

Stellarium format (e.g., HH:MM:SS or DEC:MM:SS).   

Once Stellarium has determined the position of the 

mount, it can then calculate the new position request.  It 

does this by sending a string, deliminated by the “-“ 

character (e.g., M-120.2-50.5).  This string commands the 

motors to move, then references an absolute degree from 

our home position. 

Through a constant series of position requests, Stellarium 

is able to track the movement of the telescope across the 

sky as it slews towards its intended target.  Similarly, the 

constant position requests allow the software to accurately 

reflect the ability of the controllers to track against the 

earth’s rotation.  These three features combine to allow the 

user to command the telescope to any position in the sky, 

while simultaneously being able to visually verify the 

position of the telescope against the Stellarium software. 

 

B. Mechanical Engineering 

 

Although integration with the mechanical engineering 

team has not been completed as of the date of this 

document, we can nevertheless consider some of the 

possible adjustments that will be made to accommodate 

their design.  Some of these accommodations are made 

through our software and other accommodations are 

enabled by our selection of motors. 

First, we consider the software accommodations.  The 

gear ratio is a simple declaration in our code and allows for 

a range of possibilities.  At the time of this writing, the gear 

ratios will be 38,100:1 (for right-ascension) and 100:1 (for 

declination).  These gear ratios, combined with our step 

count (counts per revolution), inform the pulse frequency 

required to drive the motors at the desired speed for slew 

and tracking (per equation (1)). 

We also have a number of hardware configurations that 

are afforded to us by the motor selection.  Since we are 

unsure of the mechanical requirements of the final mount 

design, flexibility here allows for fine tuning of areas such 

as heat and power.  All options are configured via dipswitch 

on the motor. 

We first have the ability to tune both current and idle 

current.  Current affects maximum torque, while idle 

current affects holding torque.  Current can vary between 

50% and 100% of maximum.  The dividends in reduced 

heat are not linear to the reduced maximum torque, 

however.  For example, at 70% current, the motor produces 

70% of the rated torque but only 50% as much heat.  

Therefore, fine tuning these variables will lead to increased 

power efficiency and expected lifespan of the hardware. 

A smoothing filter is also offered and can simply be 

configured as “off” or “on.”  The smoothing filter is 

recommended when the motors are not micro-stepped 

(2000 steps/rev and beyond).  This allows for smooth 

motion from coarse command signals.  The drawback is a 

slight delay, or “lag” in the motion.  In our testing, this 

delay has been negligible, but we will need to complete full 

integration with the final mount design to know if this 

option should remain enabled. 

The final consideration is a step pulse noise filter.  This 

is a digital noise filter included with the STM17R that helps 

to overcome electrical noise.  This electrical noise may 

otherwise cause the drive to interpret a single step pulse as 

two or more pulses.  Configuration options here depend on 

the frequency that will be sent to the drive.  The breakpoint 

here is above or below 150KHz.  We expect to operate well 

below 150KHz, but this is another area that will not be set 

in stone until after the mechanical engineering integration. 



VII. CONCLUSION 

The objective of this design effort was twofold.  First, we 

set out to design a scale model with which subsequent 

senior design teams could further advance repair efforts for 

the Robinson Observatory.  Second, we desire to create an 

open-source platform for hobbyist astronomers to be able 

to more readily pursue their hobby.  We can say with 

confidence that these goals, from an electrical engineering 

perspective, have been accomplished.  The prototype 

communicates with the Stellarium software and performs 

as expected.  Integration with the mechanical engineering 

team is pending as of the date of this submission, so the 

outcome there is less certain – but it is certainly fair to say 

that progress has been made towards both goals that we set 

forth to accomplish. 
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