
Robinson Observatory Scale

Model Project (November,

2019)

Anthony J. Eubanks, Brian T. Glass, Melinda I.

Ramos, and Thomas A. Vilan

Dept. of Electrical and Computer Engineering

(ECE), University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — This article presents a summary of the

Robinson Observatory scale model project, which began in

January, 2019 and concluded in November, 2019. The
introduction to this paper includes a brief history of the
Robinson Observatory as well as the primary motivations and

goals of this project. The layout of the as-is system at the
Observatory is considered alongside a high-level overview of
our own design. Design decisions are addressed, to include

component selection and software design. Finally, the
challenges and successes of integration are summarized, along
with a broad summary of the project and the bibliographies of

all team members.

Index Terms — Analog-digital Integrated Circuits, DC

Motors, Differential Amplifiers, Microcontrollers, Optical
Switches, System Integration, Telescopes, Universal Serial
Bus.

I. INTRODUCTION

Although the groundbreaking for the Robinson

Observatory occurred in January of 1994, the story of our

current telescope begins in 2007. It was at this point that

the existing 26” Tinsley telescope was removed and the

existing 20” telescope, manufactured by RC Optical

Systems, was installed. Although the installation of the

device was led by Nate Lust, students played a significant

role in the effort. From the beginning, the telescope was a

partnership between the University of Central Florida

(UCF) and its students.

The telescope served faithfully from its installation until

approximately three years ago, when its functionality began

to degrade. A proprietary controller, manufactured by

Bisque TCS, is at the root of the problem. This controller

translates commands from the astronomy software package

TheSkyX, which runs on a PC, into commands that drive the

motors of the telescope through pulse width modulation

(PWM) signals. The performance of this controller has

deteriorated to the point where any stellar bodies tracked

appear as blurs. There is a single individual that services

this equipment, and he must be flown out at a significant

expense for any repairs.

The original tasking for this project consisted of the

design and integration of an open-source replacement for

the existing Bisque TCS controller. However, due to the

high cost of some of the related equipment (e.g., two

Pittman motors valued at approximately $5,000 each),

along with the uncertain nature of a project based

exclusively around reverse engineering, the scope of the

project has changed. Instead of replacing the controller at

the Observatory, an interdisciplinary team (consisting of

Computer Science, Mechanical Engineering and Electrical

Engineering students) has been charged with designing an

open-source scale model of the telescope.

II. MOTIVATION AND GOALS

Although the scope of the original project has changed

since its inception, this design will still serve two key

purposes. First, the scale model with mitigate the risk of

damaging costly observatory equipment as a permanent

replacement controller is implemented. This scale model

also serves as a test environment for subsequent Senior

Design teams in later semesters. As the model has been

designed to mirror the existing equipment in the

Observatory, these teams will be able to quickly understand

the current, as-is system. In addition, this model will serve

as a low-risk test platform from which these teams can test

and verify their own proposed designs.

The second intent of this design is for the hobbyist

astronomer. These amateur astronomers need only provide

their own telescope; all other parts will be readily available

(e.g., 3D-print the mount, have the PCB fabricated from

Gerber files and download the open-source astronomy

software from the internet). With equivalent currently

available solutions costing in the high hundreds-to

thousands of dollars, this design will lower the bar of entry

for an automated, computer-controlled telescope mount.

Finally, it bears mentioning that the intent of the

Electrical Engineering team was for this design to be robust

enough to serve as a replacement for the Bisque TCS

controller, if the Observatory staff decided to implement it.

Although the team does not anticipate that this option will

be elected, the controller is capable of serving as a 1-to-1

replacement for the existing proprietary hardware.

III. SYSTEM LAYOUT

This following section briefly details the existing layout

of the complete system at the Robinson Observatory, then

narrows in focus to address the specific tasking and role of

the Electrical Engineering team.

A. Existing System at Robinson Observatory

Fig. 1. A generalized block diagram of the existing as-is

telescope system currently in place at the Robinson Observatory.

It is instructive to present the scope of the existing system

at the Observatory to serve as a backdrop upon which the

Electrical Engineering effort can be considered. This

section is brief, as the true focus of the team is on the “Black

Box” labeled in the block diagram above.

In general, the Observatory is controlled by a single

computer (PC) that is integrated with various controllers

across a wide range of functionality. Through various

suites of software, the PC controls the rotation of the dome

as well as the status (i.e., open or closed) of the shutter,

along with a filter, a focuser and a camera, all of which are

integrated with the telescope.

The area of concern for our team is what has been labeled

here as the “Black Box.” This is the proprietary Bisque

TCS controller that is responsible for translating control

signals from TheSkyX software suite into positioning

control signals for the motors in the telescope mount.

Specifically, two motors control the telescope: right

ascension, which can roughly be considered a longitude

position, and declination, that is: a position in the sky,

typically referenced from -90 degrees to 90 degrees.

B. Design of the Motor Controller

As outlined above, the efforts of our team have been

restricted to the “Black Box,” or motor controller. The

motor controller is comprised of a set of constituent parts,

to include: a microcontroller, a joystick, optical sensors,

indicator lights, a USB connection to the PC, a power

supply, and motors and their associated encoders. Fig. 2

below summarizes the general block diagram for this

controller, with additional details on each component to

follow.

Fig. 2. A more refined block diagram of the “Black Box” of

Fig.1. This represents the design of the Electrical Engineering

team.

C. Microcontroller

It is important to mention, before proceeding with a

discussion of design, that our PCB is generally a “shield”

that mounts on top of the Arduino Mega 2560 board. This

is per the request of our sponsor, the Florida Space Institute

(FSI), and the intent is to facilitate ease of field

replacement. If the Arduino Mega 2560 ever fails, it should

be a relatively easy replacement for the end user.

Our design encompasses a pair of microcontrollers, both

of which use the Arduino architecture. The ATmega2560

sits at the heart of the design, with the ATmega328 serving

an ancillary purpose. The ATmega328 has had some of the

LED load shifted to it, but its primary purpose is to serve as

a “heartbeat” monitor – that is, if communication between

the primary ATmega2560 and the shield is disrupted, the

ATmega328 will notify the operator through the use of a

trouble LED.

In general, much of the functionality of the ATmega2560

is used in this design. The ATmega2560 provides a 10-bit

analog to digital converter (ADC), which can enable any

one of the 16 analog pins after selection from a MUX that

sits in front of the ADC [1]. This functionality is used for

the only analog input in our design – the joystick. More

detail on the specific implementation is included in the

joystick section below.

The ATmega2560 natively supports 6 digital interrupt

pins (2, 3, 18, 19, 20, and 21). All six were implemented in

this design, with two pins each corresponding to the

differential A and B signals from the motor encoders

(routed through a differential line receiver on the PCB) and

two pins allotted to the optical switches that serve as limit

switches and home position sensors.

The motors are driven by pulse frequency modulation

(PFM), which is distinct from the more customary pulse

width modulation (PWM) that may be expected. The duty

cycle remains fixed, but the pulse frequency is varied. The

Arduino 2560 only natively supports pulse frequencies of

up to 490Hz; therefore, we sought an alternative. Here, we

use a pre-defined Arduino library [2] that supports a range

of 1Hz to 2MHz (on a 16-bit timer) and 31Hz to 2MHz (on

an 8-bit timer). The equation used for calculating the

necessary pulse frequency is detailed in the motors section

of this paper, but this range is more than adequate for our

implementation.

The hardwired connection to the PC is accomplished

through the use of the Universal Serial Bus (USB) protocol.

The Arduino Mega 2560 has a built in USB/Serial

converter. This means that it will natively convert the

incoming traffic from the PC (USB) to the 5V TX and RX

signals that the Arduino expects (as well as converting the

other way, to facilitate Arduino to PC communication).

Finally, the ATmega2560 controls a number of indicator

LEDs. These LEDs are tied directly to the 5V digital I/O

pins on the microcontroller. A resistor is placed in series to

limit current and achieve the proper voltage drop across the

LED.

D. Motors and Encoders

The pair of motors implemented in this design are

Applied Motion STM17R-3NE, NEMA 17 units. These

motors support a number of different control options. Since

the motor and mount will be housed less than a few feet

away from the microcontroller, and a large amount of

environmental noise was not anticipated, we elected not to

implement a differential line driver in our design and

utilized the configuration detailed in Fig. 3 below.

Fig. 3. The single step and direction connection from Arduino

Mega 2560 digital I/O pins to STM17R-3NE motors [3].

Using the scheme outlined above, the step signal pulses

once for each motor step and the direction signal is used to

determine direction with a simple high/low input. The step

size on this motor is dipswitch-configurable and can range

between 200 counts per revolution (CPR) to 25,600 CPR.

A simple equation (1) is used to derive the desired pulse

frequency for the motors.

𝑃𝑢𝑙𝑠𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑅𝑃𝑆 ∗ 𝑆𝑡𝑒𝑝 𝐶𝑜𝑢𝑛𝑡 (1)

There are a number of other options available on these

motors and will be dependent on the final design and

requirements of the mechanical engineering team.

Therefore, these options are addressed in the integration

section of this paper.

We next consider the encoder. The STM17R-2NE

supports a built-in quadrature incremental rotary encoder.

The encoder follows the industry standard 26C31

differential line driver for output, meaning that the channels

(A, B, and Index) are differential signals. Therefore, a

differential line receiver (industry standard 26C32) is

required to translate this output before it hits our

microcontroller.

For position control, there are three primary signals of

interest being sent by the encoder. Those signals are A, B,

and Index. The A and B signals are the quadrature signals.

That is, depending on the direction of rotation, one signal

will lead, and the other signal will lag. The methodology

for this is addressed in the software section of this paper.

The encoder bundled with the STM17R-3NE supports

1,000 lines of resolution. This means that for each rotation

of the motor, 1000 “counts” are sent from the encoder. Our

microcontroller tracks this encoder count, ticking upward

or downward in increments of one for each clockwise or

counterclockwise signal from the encoder. Therefore, as

discussed in the microcontroller section of this paper, it is

important for the A and B channels from each encoder to

be tied to digital interrupt pins.

E. Power Supply

Much of the discussion on the power supply (PSU) is

covered under the component selection portion of this

document. The PSU is included here inasmuch as it

pertains to the PCB design of the Arduino shield. Since the

motors operate at a peak current draw of 2A each, we have

elected to place 2, 2A fuses on our PBC to protect the

motors.

F. Optical Switches

The operation of the optical switches is fairly

straightforward. They serve a dual purpose, serving as both

a limit switch and a home position sensor. This is

accomplished through the design of the interrupter wheel,

as implemented by the mechanical engineering team.

Although their final design was not available by the

publication of this paper, a similar implementation from the

Bisque TCS manual illuminates the application.

Fig. 4. The optical switch (sensor) can be interrupted by either

reaching a limit or reaching the home position.

In general terms, the configuration of these OPB980

optical switches is simple. An input diode emits an infrared

(IR) light which is intercepted by an optical sensor. This

optical sensor determines whether the optical switch has

been tripped or not.

We have elected to use the 3.3V output of the

ATmega2560 to drive these optical sensors. A simple

application of Ohm’s law provides just over the necessary

forward voltage (VF) of 1.6V and expected current of 20mA

with the use of an 85Ω resistor.

The output of these optical switches, at a minimum, is

listed in the datasheet as VCC – 2.1V. With a VCC to the

sensor of 5V, this provides a minimum of 2.9V. In

accordance with the ATmega2560 datasheet, as well as

extensive testing, this is more than sufficient to trigger a

high input on the digital I/O pins.

G. Joystick

The joystick consists of three outputs. First, X and a Y-

axis values are determined by a pair of 10kΩ

potentiometers. These potentiometers vary the voltage out

between 0 and 5V. These are the two connections that are

routed to our analog pins on the microcontroller to make

use of the ADC.

As a 10-bit ADC, we can extract 1024 levels of

differentiation between 0 and 5V. However, as with many

mechanical devices, it seemed prudent to program in a

“dead zone” to prevent unintended joystick inputs from the

center range of the ADC. Although it is a simple matter to

modify in the code, our current dead zone exists from levels

500 – 530.

The third output on the joystick is a simple digital

“button,” which is either high or low. When this button is

pressed, the user can take over manual control of the motors

and direct them via joystick inputs. When the button is

pressed a second time, manual control is released and the

right-ascension motors return to tracking.

IV. COMPONENT SELECTION

This section revisits the major components of the design

and addresses some of the considerations that went into

their selection. In the interest of full disclosure, there will

be a common theme throughout this section.

It was the intent of the Electrical Engineering team to

mirror the existing equipment in the Robinson Observatory

as closely as possible. As outlined in the introduction to

this paper, this served a variety of purposes. The most

significant considerations were the potential for this device

to serve as a 1-to-1 replacement for the Bisque TCS

controller, as well as to provide as much fidelity as possible

for senior design teams who follow behind us and wish to

use this as a scale model and starting point for their own

development work. As such, although a variety of options

and design parameters were considered during part

selection, our main litmus test was: does this match (in form

and function) what is currently in this Observatory?

A second concern is also common to the selection of each

of these parts. That is, availability. For each component, it

was essential that we made selections that were available

from a variety of suppliers (e.g., Digikey and Mouser, at a

minimum) with a large in-stock availability (typically over

1000 parts) and no apparent end-of-life or obsolescence on

the horizon. Since this consideration was common to all

parts, it is only mentioned here in the introduction.

A. Microcontroller

With the above preamble set aside, it is fair to say that the

microcontroller was one of the parts least affected by the

need to mirror existing observatory equipment. With that

said, however, we had a specific request from our project

sponsor, the Florida Space Institute (FSI).

Per FSI’s request, we have elected to implement an

Arduino shield. The general reasoning with the shield is

that the core of the controller (that is, the Arduino

development board) is easily replaced by an end user.

Although we did investigate other options, such as the

Raspberry Pi, they did not meet the request of our sponsor

and were otherwise unsuited for our project. For example,

we had no need for an operating system and were far more

comfortable with C than Python, which meant that the Pi

would have been a poor design choice.

The selection of the ATmega328 was fairly simple once

we had settled on the Arduino development environment.

The general purpose of the ATmega328 is to serve as

connection monitor between the shield and the Arduino

Mega 2560, illuminating a trouble LED if a connection is

lost. Moreover, we were able to offload some of the LED

load to the ATmega328. The third, and perhaps most

significant reason for adding the ATmega328 is so that

design meets the requirements of the program for

substantial PCB design. In truth, this design could have

been accomplished without the ATmega328 – but its

presence adds complexity to the PCB that is needed to meet

design requirements.

B. Motors and Encoders

In general, the selection of the motors used on this project

was driven by two criteria. First, as discussed above, it was

our desire to closely match the existing equipment in the

observatory. Since DC stepper motors were in use in the

observatory, this drove our design decision as to the overall

type of motor.

The secondary consideration for the motors used in this

project was robustness. That is, with the design of the

mechanical engineering team in flux until near the end of

this project, it was necessary for our motors to support a

wide variety of potential design choices.

At 68 oz-in of holding torque, our peers on the

mechanical engineering team have assured us that these

motors will meet any design specifications that they

implement. However, the motors also support a number of

dipswitch-configurable options, to include: idle current,

pulse-noise filtering, smoothing filter, counts per revolution

(CPR) and load inertia. These configuration options are

examined in further detail in the integration section of this

document but are included here to underscore the selection

of a flexible motor.

Other general considerations included the very high CPR

that can be achieved through this motor (ranging as high as

25,600 CPR). This enabled maximum flexibility to work

with the mechanical engineering team, as their gear ratios

(as it stands presently) range from 100:1 (for the declination

motor) to 38,100:1 (for the right-ascension). The

flexibility in the range of CPR allows us to use pulse

frequencies within a reasonably tight range, rather than

ones that differ by several orders of magnitude.

The election of a motor with a built-in encoder was, as

with many other design choices, primarily driven by a

desire to match the existing equipment in the observatory.

As the existing Pittman motors use a built-in encoder, our

technology was selected to closely mirror the as-is system.

Moreover, the built-in encoder made the overall integration

of the motor/encoder system more straightforward. Since

this combination has been thoroughly vetted by the

manufacturer, it (very likely) eliminated one potential point

of failure and allowed us to concentrate troubleshooting

efforts on other areas. Finally, the 1,000 line encoder

provided sufficient resolution for our application,

especially when considered with gear ratios ranging

upwards of 38,000:1.

C. Power Supply

The primary consideration when selecting this power

supply was to enable future extensibility. The current set

of motors at the Observatory draw significantly more power

than our scale model, but investing in a robust power supply

at the onset of the project allows future teams to broaden

the scope of the design without the necessity of replacing

this major component.

The power supply selected for this project was

recommended by the manufacturer of the motors, Applied

Motion. It is an Applied Motion PS150A24 (150W, 24V

DC motor). A secondary consideration regarding this

power supply was the potential for regeneration if a

regulated power supply was used. In brief, regeneration

occurs when a load is rapidly decelerated from a high speed

and much of the kinetic energy of the load is transferred

back to the power supply. This regeneration can trip the

overvoltage protection of a switching power supply,

causing it to shutdown [3]. The vendor does offer a

“regeneration clamp” to remedy this potential issue, but

with the added cost of the additional protection, the

manufacturer recommendation was all the more appealing.

D. Optical Switches

The optical switches selected for this design are a pair of

TT Electronics OPB980T51Z switches. The major concern

here was availability of the part in conjunction with a desire

to match the existing equipment in the Observatory. Design

decisions included flying leads (to ease integration with the

PCB) and covered apertures (to enhance robustness).

E. Joystick

The design considerations for our joystick were

functionality, cost and flexibility. The joystick that we

selected met the functionality criteria better than others that

were evaluated: that is, in addition to the X and Y-axis

functionality of a standard joystick, it also included a push-

button toggle. This push button was essential for our

implementation of the project (e.g., the ability to toggle in

and out of manual control/tracking modes).

Moreover, this joystick, along with being the lowest cost

joystick that we considered, also included a breakout board.

This gave us the flexibility to incorporate the joystick into

our PCB, if desired, or to utilize it as a stand-alone device

without the need for additional PCB design. Ultimately,

due to the design of the mechanical team, this joystick was

implemented as a stand-alone component, and therefore,

the breakout board is in use.

V. SOFTWARE DESIGN

The general approach to the code for this project follows

the Arduino standard. That is, a setup routine executes,

followed by the main loop(). In our case, the setup routine

initializes timers (per the PWM library), sets pin modes

(input, output, input_pullup) as needed, initializes serial

communication and executes a homing function.

Fig. 5. A general block diagram detailing the overall software

implementation.

The homing function turns right-ascension (RA) and

declination (DEC) motors counterclockwise until the

optical switch is tripped. When both optical switches are

engaged, the telescope is homed. Encoder counts are reset

to zero, which translates to a 0° RA position and a -90° DEC

position.

In broad terms, the main loop is always polling for serial

input data. If there is serial data available from the PC, the

software parses the command. There are three possible

options for these commands. The first two options are a

request for our motor position. The position is translated

into an HH:MM:SS format for RA and DEG:MM:SS

format for DEC and returned to the PC via serial write. The

third option is a motor command. In the case of a motor

command, the software compares the requested position to

the current position and continues to pulse the motors until

the two are even (within a tolerance, which was required to

prevent motor jitter). Once the position is reached, a

tracking function executes, setting the motors to the correct

speed to compensate for the earth’s rotation.

In addition, the software is also looking for a button press

from the joystick. If the button is pressed, control is passed

to the joystick. The joystick can be used to manually

position the telescope mount. When the button is pressed a

second time, the tracking function executes.

There are several techniques that were used in the

software that are worth an individual mention. In each case,

these are not especially advanced techniques, but are

essential to the successful operation of the program.

Fig. 6. A timing diagram demonstrating a hypothetical

clockwise (CW) rotation. Channel A (rising edge) triggers the

interrupt, channel B is low. This suggests CW rotation.

First, we consider the handling of the interrupt service

routines (ISRs) for the encoders. To correctly determine

the rotation direction (clockwise or counterclockwise) of

the motors, we need to understand whether channel A or

channel B on the encoder is leading the other channel. To

do this, we execute the interrupt on the leading edge of

channel A. We then check the state of channel B. If

channel B is low (as referenced in Fig. 6), we interpret

clockwise rotation (channel A leads). If channel B would

be high, we interpret CCW rotation (channel A lags). A

secondary pair of ISRs are attached to the optical switches,

as the limit switch must take priority over any other code

execution to prevent possible damage to the telescope.

We next consider the joystick button itself. Throughout

several implementations of our code, and both revisions of

the PCB, we found that the push-button had intermittent (at

best) operation. Research into the issue revealed that the

software needed a simple debounce feature. This is

accomplished quite directly, by simply checking the state

of the button, inserting a brief delay, and then confirming

that the button has changed state.

The final consideration of the code relates to the variables

used in the ISRs. In the early revisions of our code, we

found that the encoder would seemingly stop counting (that

is, incrementing and decrementing). Since the encoders

were tied to ISRs, this seemed like an unreasonable

conclusion. The ultimate fix was to declare the shared

variables as volatile. This tells the compiler that such

variables might change at any time, and thus the compiler

must reload the variable whenever you reference it, rather

than relying on a copy it might have in a processor register

[4].

VI. INTEGRATION

Working alongside mechanical engineering and

computer science students as part of an interdisciplinary

team requires significant efforts towards integration.

Therefore, this section will address the integration efforts

with each team separately. In the interest of full disclosure,

the mechanical engineering prototype will not be complete

until after the time of the senior design presentation;

therefore, mechanical engineering integration details will

consider theoretical options.

A. Computer Science

The integration work with the computer science team

began in earnest around the middle of the Fall semester.

The goal here was for interoperability between their custom

Stellarium software and our motor controller. Simply put,

the end user needed to be able to select a stellar body (or set

of coordinates) in the Stellarium software and our

controllers needed to point the telescope at it and begin

tracking.

This necessitated the three different commands discussed

in the software portion of this paper. Two commands can

be issued from Stellarium to request the position of the

mount. That is :GR# (to request the RA position of the

telescope) and :GD# (to request the DEC position of the

telescope). Our motor position is tracked internally based

on the encoder count, which is cross-referenced against the

gear ratio to determine how far the mount has moved. This

is then translated by a pair of functions into the expected

Stellarium format (e.g., HH:MM:SS or DEC:MM:SS).

Once Stellarium has determined the position of the

mount, it can then calculate the new position request. It

does this by sending a string, deliminated by the “-“

character (e.g., M-120.2-50.5). This string commands the

motors to move, then references an absolute degree from

our home position.

Through a constant series of position requests, Stellarium

is able to track the movement of the telescope across the

sky as it slews towards its intended target. Similarly, the

constant position requests allow the software to accurately

reflect the ability of the controllers to track against the

earth’s rotation. These three features combine to allow the

user to command the telescope to any position in the sky,

while simultaneously being able to visually verify the

position of the telescope against the Stellarium software.

B. Mechanical Engineering

Although integration with the mechanical engineering

team has not been completed as of the date of this

document, we can nevertheless consider some of the

possible adjustments that will be made to accommodate

their design. Some of these accommodations are made

through our software and other accommodations are

enabled by our selection of motors.

First, we consider the software accommodations. The

gear ratio is a simple declaration in our code and allows for

a range of possibilities. At the time of this writing, the gear

ratios will be 38,100:1 (for right-ascension) and 100:1 (for

declination). These gear ratios, combined with our step

count (counts per revolution), inform the pulse frequency

required to drive the motors at the desired speed for slew

and tracking (per equation (1)).

We also have a number of hardware configurations that

are afforded to us by the motor selection. Since we are

unsure of the mechanical requirements of the final mount

design, flexibility here allows for fine tuning of areas such

as heat and power. All options are configured via dipswitch

on the motor.

We first have the ability to tune both current and idle

current. Current affects maximum torque, while idle

current affects holding torque. Current can vary between

50% and 100% of maximum. The dividends in reduced

heat are not linear to the reduced maximum torque,

however. For example, at 70% current, the motor produces

70% of the rated torque but only 50% as much heat.

Therefore, fine tuning these variables will lead to increased

power efficiency and expected lifespan of the hardware.

A smoothing filter is also offered and can simply be

configured as “off” or “on.” The smoothing filter is

recommended when the motors are not micro-stepped

(2000 steps/rev and beyond). This allows for smooth

motion from coarse command signals. The drawback is a

slight delay, or “lag” in the motion. In our testing, this

delay has been negligible, but we will need to complete full

integration with the final mount design to know if this

option should remain enabled.

The final consideration is a step pulse noise filter. This

is a digital noise filter included with the STM17R that helps

to overcome electrical noise. This electrical noise may

otherwise cause the drive to interpret a single step pulse as

two or more pulses. Configuration options here depend on

the frequency that will be sent to the drive. The breakpoint

here is above or below 150KHz. We expect to operate well

below 150KHz, but this is another area that will not be set

in stone until after the mechanical engineering integration.

VII. CONCLUSION

The objective of this design effort was twofold. First, we

set out to design a scale model with which subsequent

senior design teams could further advance repair efforts for

the Robinson Observatory. Second, we desire to create an

open-source platform for hobbyist astronomers to be able

to more readily pursue their hobby. We can say with

confidence that these goals, from an electrical engineering

perspective, have been accomplished. The prototype

communicates with the Stellarium software and performs

as expected. Integration with the mechanical engineering

team is pending as of the date of this submission, so the

outcome there is less certain – but it is certainly fair to say

that progress has been made towards both goals that we set

forth to accomplish.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and

support of the Florida Space Institute (FSI)/Florida Space

Grant Consortium (FSGC) as well as Dr. Yan Fernandez

and Dr. Zoe Landsman of the University of Central Florida

(UCF) Department of Physics.

REFERENCES

[1] B. Thomsen, “Analogue input,” Embedded Engineering
Design. [Online] [Accessed November 6, 2019].

[2] runnerup, “PWM frequency library,” Arduino Forum.,
[Online] [Accessed November 6, 2019].

[3] “Hardware manual: STM17R drive+motor”, Applied
Motion. [Online] [Accessed November 7, 2019].

[4] N. Gammon, “Interrupts,” gammon.com.au. [Online]
[Accessed November 7, 2019]

Anthony J. Eubanks, Jr. is a senior
Electrical Engineering student at the
University of Central Florida. He
has received a previous degree in
Electrical Engineering Technology
from Western Piedmont in
Morganton, North Carolina.
 He is currently a member of the
Science Mathematics and Research
for Transformation (SMART)
program through the Department of

Defense (DoD). Upon graduation, he will be working
at the U.S. Army Space and Missile Defense Command
(SMDC) in Redstone Arsenal, developing radar and
high-energy laser systems.

Brian T. Glass is a senior
Electrical Engineering student at the
University of Central Florida. Prior
to attending UCF, Brian spent 10
years working for Guardian
Protection Services in
Pennsylvania.
He has spent two summer
internships at Northrop Grumman,

both in Baltimore and Orlando. Upon graduation, he
has committed to working at Lockheed Martin Missiles
and Fire Controls in Orlando, Florida.

Melinda I. Ramos will be graduating
with a bachelor’s degree in electrical
Engineering and a minor in
Intelligent Robotic Systems. She is
currently working for Lockheed
Martin MFC as an Advanced
Manufacturing Technologies Intern.
After graduation, she is transitioning
to a full-time position in the Test

Engineering department and hopes to join the
Engineering Leadership Development Program class
of 2023 at Lockheed.

Thomas A. Vilan is a senior
Electrical Engineering student at
the University of Central Florida.
He is presently working at Bogen
Communications. He will receive
a minor in Computer Science, and
his major interests lie in computer
communications and MEMS

fabrication.

