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1. Executive Summary 
 

Although the groundbreaking for the Robinson Observatory occurred in January of 
1994, the story of our current telescope begins in 2007.  It was at this point that 
the existing 26” Tinsley telescope was removed and the existing 20” telescope, 
manufactured by RC Optical Systems, was installed.  Although the installation of 
the device was led by Nate Lust, students played a significant role in the effort.  
From the beginning, the telescope was a partnership between the University of 
Central Florida and its students. 

 

The 20” telescope is far from the largest or most powerful in use, so it has been 
designated a unique role.  The telescope was designed to fill the niche of a rapid 
response device; that is, it can be deployed at a moment’s notice, and is therefore 
uniquely situated to make time sensitive observations of astronomical phenomena.  
In addition to its academic and scientific applications, the telescope has also 
served to arouse an interest in astronomy for countless Scout troops, student 
groups and people of all ages.  In 2015, the Orlando Sentinel recommended the 
Robinson Observatory as one of the “things you have to do before graduating 
UCF.” 

 

The telescope served faithfully from its installation until approximately three years 
ago, when its functionality began to degrade.  In brief, the various subsystems of 
the telescope are controlled through a combination of software and dedicated 
peripheral devices.  The focuser is controlled by a dedicated piece of hardware.  
Control of the dome is accomplished through the PC. Two Pittman 4431E064-R3, 
24V DC, 500 CPR motors control the rotation and elevation of the telescope, which 
are in turn driven by a software package designated as TheSkyX.  TheSkyX 
references a database of coordinates and pushes control signals to the motors.  A 
controller, branded as Bisque TCS, sits between the PC running TheSkyX and the 
motors driving the telescope.  This controller translates the commands of the 
software into the inputs that allow the motors to track various astronomical objects. 

 

As it is currently understood, the heart of the problem lies in the ability of the 
telescope to accurately track the coordinates provided by TheSkyX software.  
Images produced by the telescope are blurry, unfocused and include “streaking” 
of illuminated objects, suggesting that one of the motors is not correctly 
compensating for the earth’s rotation.  At this time, the exact cause of this 
breakdown is unknown; it could be due to the software itself (as the problems 
became more pronounced after an update of the software), an issue with the 
motors or the translation of the commands by the Bisque TCS controller.  In 
addition to the tracking issues, the telescope is no longer correctly reporting its 
position back to TheSkyX software package. 

 

Until initial investigation and reverse engineering are underway, it is impossible to 
say whether the Bisque TCS controller is functioning as intended.  However, this 
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is a proprietary piece of hardware.  There is a single individual who is able to 
service this equipment, and he must be flown in at great cost to the University any 
time that service is needed.  Therefore, even if the controller is operating, it is the 
desire of the Robinson Observatory to replace it with an open source design.  The 
core goal of our team is to make adequate progress towards replacing the 
controller. The first step will be to create a scale model for use as a testing platform 
without posing harm to the expensive existing hardware such as the custom 
Pittman motors. Additional functionality may be added as time and budget allow.  
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2. Project Description 
 

The scope of this project has been modified as the interdisciplinary teams have 
begun to have a more complete understanding of the state of the observatory’s 
telescope, mount, proprietary software and embedded telescope controller.  In 
brief, our overall project consists of a scale-model of the current version of the 20” 
telescope.  The electrical engineering team is focused on providing the embedded 
portion of this integrated device.  That is, the piece of hardware that sits between 
the PC and the mount and translates positioning commands from the PC into the 
appropriate motor movements. 

 

2.1 Project Motivation and Goals 
 

The 20” telescope serves as the showpiece of the Robinson Observatory.  In 
addition to performing the bulk of the scientific observations for the astronomy 
team, it is a significant draw to youth groups and has served as a destination for 
Scout troops, school fieldtrips and the general public.  When the telescope is 
operating as designed, it fills scientific, academic and social needs of the Central 
Florida community. 

 

It is the desire of our team to engage with a Senior Design project that has a lasting 
impact.  We do not wish to diminish the creativity, technical challenge and 
opportunities for learning that are inherent in many other Senior Design projects, 
but the simple fact is that many of them are relegated to a storage closet after the 
team graduates.  It is our belief that the successful execution of this project will 
restore a resource that will benefit the community for years to come. 

 

In addition, our team is inspired by the close cooperation that has existed between 
the Robinson Observatory and the UCF student body since the initial installation 
of this telescope.  We all feel that we have benefited greatly by our time at UCF 
and are excited to have an opportunity to continue this partnership and give back 
to the University that has been our home for the last few years.  
 

2.2 Objectives 
 

The minimum viable product, as defined by our contact at FSI, is sufficient 
progress towards the replacement of the proprietary controller that translates 
TheSkyX commands to the motors that drive the telescope. This will be first and 
foremostly achieved through the design of a PCB that decodes a string of motor 
command signals as inputs and controls a scale model of the telescope. In a 
broader sense, the intention is to restore full functionality to the telescope. 
However, since parts of this goal are dependent upon the efforts of other teams 
working the project (e.g. if the motors are not restored to full functionality, no 
amount of effort from the E.E. team will be able to overcome this deficiency), the 
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overall objective for the E.E. team is to make progress towards creating an open 
source replacement of the Bisque TCS controller, as requested by the customer. 

 

There are a number of additional goals that have been defined by the Robinson 
Observatory team (and are enumerated in more detail in the Requirement 
Specifications section of this document).  Key examples are wireless functionality 
and the ability to tie various telescope subsystems (e.g. focuser, dome control, 
etc.) into TheSkyX software to afford an all-in-one solution for observatory control. 

 

If time and budget allow, we will effort to incorporate some of these “want tos” into 
our design.  Since much of this project will be defined by the completion of the 
scale model, this may not fit within the scope of our project.  If this is the case, we 
would like to leave room in the project (e.g. additional ports on our PCB and 
sufficient documentation) for a team to follow behind us and continue the 
observatory update. 

 

2.3 Challenges 
 

The team envisions a number of challenges associated with this project.  First, this 
project is somewhat outside the scope of a traditional Senior Design effort.  Instead 
of designing and implementing a project from the ground up, we are tasked with 
designing around a large amount of expensive, existing equipment.  The cost of 
the equipment makes it impractical to replace, therefore, our first order of business 
is to develop a scale model to demonstrate our understanding of the protocols that 
drive the telescope.   

 

This first challenge is compounded by the fact that existing documentation for the 
hardware is sparse or nonexistent.  Our team has already reached out to Pittman 
in an effort to better understand how to drive the motors and have been told that 
the motor is proprietary and that they will not be able to offer any support.  We are 
continuing our efforts to obtain some documentation on the equipment, but our 
expectations are tempered.  Moreover, the single individual who services this 
controller will very likely not be incentivized to work with a team who is attempting 
to make his equipment obsolete.  These factors point to a significant reverse 
engineering project that will need to be completed before any design work can 
begin. 

 

A second challenge lies in finding the root cause of the problem with the telescope.  
At a very high level, there are three components in play: TheSkyX software, the 
Bisque TCS controller and the Pittman motors.  At this time, it is unknown which 
of these elements is causing the breakdown, and therefore further analysis will be 
required before functionality can be restored. 

 

A third challenge can be found in the budget of the project.  Our contact at the 
Florida Space Institute (FSI) will be engaging with the Florida Space Grant 
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Consortium (FSG) to secure funding for the project, but the timeline for funding is 
still several months out.  In addition, an estimated $800 per team is expected to 
be allotted, meaning that we should expect to have on the order of $1600 - $2400 
(dependent on team composition) available to be divided across the project.  
Specific costs are not yet defined, and budget requirements will need to be 
addressed across the interdisciplinary teams. 

 

A final challenge is rooted in working with an interdisciplinary team, where each 
sub-team has different deliverable requirements for UCF leading to possibly 
conflicting scopes of the overall project. There is currently a team of three 
mechanical engineering students and four computer science students committed 
to the project in addition to our team.  At the time of this writing, the electrical team 
would have to rely on the mechanical engineering team to help build the scale 
model of the telescope for testing and demoing purposes.  

 

2.4 Requirements Specifications 
 

• Shall accept an input voltage of 120VAC +/- 15%. 

• Shall have a sensor response time of less than 2 seconds. 

• Shall have a cost of less than $800. 

• Shall have a power usage of less than 100W. 

• Shall have dimensions less than 20” x 20” x 10”. 

• Shall have a weight of less than 5lb. 

• Shall have an execution time of less than or equal to 60 seconds. 

• Shall have a pointing accuracy of less than or equal to 3.5º. 

• Shall interpret control signals from Stellarium software. 

• Shall relay motor control signals to stepper motors. 
o This includes both right ascension and declination as well as slew 

rates from Stellarium. 

• Shall accept secondary input from user operated joystick to move motors 
manually at variable slew rates. 

• Shall support home and park capabilities for the telescope. 

• Shall support pointing limits (no declinations below the horizon; no 
horizontal azimuths that will damage the telescope) 

• Shall support the ability to work in multiple modes: 
o Sidereal tracking: in which the declination motor does not move and 

right ascension motor tracks at sidereal rate 
o Nonsidereal tracking in which both motors move at non-standard 

tracking rates 
▪ These targets are delivered from Stellarium 

 

There are few quantitative design constraints placed upon this project.  Rather, the 
challenge, and the requirement, comes from the fact that the above specifications 
are to be implemented using existing open-source software (Stellarium).  Design 
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choices and budget will inform quantitative design choices rather than explicit 
requirements from the customer (Robinson Observatory). 

 

2.5 House of Quality Analysis 
 

In our attempts to understand the full system that is the UCF Robinson 
Observatory, the scale model described above will serve as the testing platform 
for our senior design team to use to learn how to control the core components of 
a telescope. However, the scale model that we make needs to serve a use for our 
customers at FSI so that future teams may expand upon it to eventually replace 
their entire existing control box. An analysis of whether our engineering 
requirements for this scale model meet customer requirements is depicted in the 
house of quality chart in Figure 1 below. 

 

Legend: 

+ = Positive Polarity (Increasing Requirement)   

 - = Negative Polarity (Decreasing Requirement)  

↑↑ = Strong Positive Correlation 

↑ = Positive Correlation 

↓↓ = Strong Negative Correlation 

↓ = Negative Correlation 

 
Figure 1: House of Quality 
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2.6 Block Diagrams 
 

The essential components for a minimum viable product are shown in Figure 2 and 
Figure 3 below, with the exception of the camera module.  The camera is not a 
part of the existing design and is not a requirement of the project.  However, if time 
and budget allow, having a camera instead or alongside the laser pointer will be 
investigated. The purpose of the laser pointer would be to verify tracking, while the 
purpose of the camera will be to track near space objects easily visible in the sky 
to better mimic what the observatory serves to do. 

 

Distribution of work is tentative and subject to change as the scope of each 
subsystem becomes clear.  Investigations of the existing system that occurred 
during the initial weeks of the project design gave us a clear picture of the 
components in the existing system, shown in Figure 3.  

 

 
Figure 2: Control Box Block Diagram for EE Design Project Scope 

 

 
Figure 3: Overall System Block Diagram of Existing System 
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In Figure 4, the initial software block diagram is shown illustrating how the software 
on the PC communicates control signals to the existing Bisque TCS box which in 
turn controls the operation of the telescope with a secondary input of a joystick. In 
our design, in combination efforts with the Computer Science team, we will attempt 
to resemble this software logic. 

 

 
Figure 4: Software Block Diagram 
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3. Research Related to Project Definition 
 

This section outlines the research related to our project before performing any 
design. Research before designing is necessary because it helps us as a team 
understand the current products in the market and the current technology used. 
This will help us as a team provide a product that meets the customer’s needs but 
at an advanced level. Once an understanding of the technology and similar 
products is determined, the parts selection is the next step in designing our system. 

 

3.1 Existing Similar Projects and Products 
 

This project for the University of Central Florida (UCF) and the Florida Space 
Institute (FSI) is unique. Typically, senior design projects are sponsored 
interdisciplinary projects, or they are performed by single disciplines. This project 
is different in that it has been developed around an existing system that needs to 
be redesigned. Instead of starting with a fresh design, this undertaking must begin 
with an in-depth amount of reverse engineering to understand the system; only 
then can the replacement system be designed. This not only adds an immense 
amount of work to a project that is difficult to complete on time by the need for first 
understanding the current system before designing the replacement system, but it 
also provides the senior design team with experience that other students will not 
obtain. In the past, there has only been one other senior design project at UCF 
that concentrated on an existing system that needed to be redesigned.   

 

The end goal of this project is to build a model that accurately represents the 
functionality of the current system at the Robinson Observatory. Building a model 
is essential because a model can assist in troubleshooting the current issues with 
the full-scale system without the risk of damaging the current system. 
Unfortunately, it is not feasible to replace the existing system through the efforts 
of just one senior design team; this system is too complex. A second, or possibly 
even a third, team will be needed to completely replace the existing system.  

 

Despite extensive research, the team did not find information on any projects from 
a student level that either redesigned an existing observatory system or developed 
one from the ground up using telescopes with lenses. There are other projects 
performed by students that involve the design and construction of radio 
telescopes. These telescopes have similar functionality to the one used at the 
Robinson Observatory in the sense that they detect naturally occurring radio 
frequencies from celestial bodies. A series of senior design teams from Iowa State 
University developed a radio telescope system to be used at their university. 
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3.2 Relevant Technologies 
 

Software Bisque, the developer of the current technology used at the observatory, 
was one of the first to come to market with a telescope control software that could 
be programmed to track, eliminating the need to have someone constantly operate 
the telescope. This breakthrough was revolutionary because the user could 
operate the telescope from across the United States or even program it to track 
the night sky while everyone sleeps. Software Bisque started off as a software 
company that provided astronomy software for specific mounts, but they began to 
develop their own mounts once their software capabilities exceeded the hardware 
capabilities of the current mounts on the market. Descriptions of the types of 
mounts in the market today, including the mount currently used at the Robinson 
Observatory (German equatorial mount), are discussed in further detail below.  

 

There are many different types of mounts used for telescopes, including 
Altazimuth, Dobsonian, equatorial, German equatorial, and fork mounts.   

 

Altazimuth mounts, also known as Alt-Az as seen in Figure 5, are the least complex 
mounts; they provide two motions: altitude and azimuth. These mounts feature 
slow-motion knobs that allow them to make accurate adjustments and aid in 
smooth tracking. These mounts are used for terrestrial observing and offer scans 
of the sky at lower power; however, they are not useful for sky photography. The 
computer-driven versions of these mounts provide more precise tracking of the sky 
[1]. 

 
Figure 5: Alt-Azimuth Mount 

Invented by John Dobsonian in the 1970s, the Dobsonian mount, like the one 
shown in Figure 6, is essentially a modified version of the Altazimuth mount. These 
mounts are secured on the ground by a heavy platform, and they are designed to 
support large Newtonian reflectors without sacrificing their ability to maintain a 
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steady image. A Newtonian reflector, also called a Newtonian telescope, is a type 
of reflecting telescope that uses a concave primary mirror and a flat diagonal 
secondary mirror. Dobsonian telescopes usually have large apertures, ranging 
from 6" to 20" or more [2]. 

 

 
Figure 6: Dobsonian Mount 

Equatorial mounts are excellent tools for astronomical observing throughout 
extended periods of time. Unlike non-computerized Altazimuth mounts, they are 
necessary for astrophotography. When using an Altazimuth mount, stars that are 
stationary will move out of view, but these stars, which only appear to move due 
to the earth’s rotation, can be captured by an equatorial mount. Properly aligned, 
a telescope on an equatorial mount can be directed toward an object and then 
guided via an electric motor or manual controls. There are two basic types of 
equatorial mounts: German and fork. 

 

Newtonian reflectors and refractor telescopes typically use a German equatorial 
mount. The German equatorial mount, seen in Figure 7, is distinguished by a large 
counterweight that extends on the opposite side from the telescope. Without this 
counterweight, the telescope would be unbalanced. A German equatorial mount is 
the type of mount that is currently being used at the Robinson Observatory. 

 

An issue with the German equatorial mount is that most German equatorial mounts 
require the telescope to be flipped at the meridian line. This requirement comes 
from the way the mount is designed is that at the meridian, the telescope can come 
into contact with the mount and cause damage to the telescope or mess up the 
tracking of the telescope. 
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Figure 7: German Equatorial Mount 

The fork mount, shown in Figure 8, is typically used by catadioptric and other 
shorter optical tubes because it is more convenient than the German mount. Fork 
mounts are especially useful for astrophotography. The most common mount for 
modern research telescopes, a fork mount is operated by a computer, which 
controls the telescope. The computer calculates the altazimuth setting by utilizing 
an internal, digital equatorial drive. Since it is completely automatic, the fork mount 
simplifies observation, making it easier for the observer to find celestial objects. 
For example, an observer could point the telescope in one direction and enter the 
latitude and longitude, and then the computer would finish the alignment, directing 
the telescope to the location of the desired object [2]. 

 

 
Figure 8: Fork Mount 

There are a variety of telescopes, each with a unique design. The telescopes that 
are available today cover all the bands of electromagnetic radiation, from gamma 
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rays to light to radio. This paper, however, will focus on the three types of optical 
telescopes: refractor, reflector, and catadioptric [2]. 

 

Refractor telescopes are the earliest type of telescope. Refractor telescopes are 
essentially a long tube with lenses on both ends. They work by concentrating the 
light, passing it through a common focal point on the two lenses. Compared with 
other telescopes, refractor telescopes are inexpensive.  

 

Without an obstruction to block light, refractor telescopes can provide magnified 
images that are detailed and clear. The downside to using refractor telescopes is 
that they are normally heavier and longer. Additionally, because they are 
inexpensive, their size and aperture are limited, and they are prone to chromatic 
aberration. A layout of the refractor telescope is shown in Figure 9 [2]. 

 

 
Figure 9: Refractor Telescope 

Unlike refractor telescopes, reflector telescopes use mirrors. A large concave 
mirror focuses the light, which is then redirected by a smaller mirror into the 
eyepiece, producing a clear image. These telescopes can be very large because 
all the main optical equipment is on one end. A Dobsonian telescope is an example 
of a reflector telescope, which is shown in Figure 10.  

 

Also, unlike refractor telescopes, reflector telescopes do not have chromatic 
aberration, and they are even more inexpensive to make than refractor telescopes. 
Reflector telescopes are excellent for deep sky viewing, and they even work if the 
mirrors are dusty. The disadvantages to reflector telescopes are that they are high 
maintenance, not very durable, and prone to coma aberration [2]. 
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Figure 10: Reflector Telescope 

Catadioptric telescopes, shown in Figure 11, blend the benefits of both refractors 
and reflectors because they combine a lens with two mirrors. They are the most 
expensive because they have a more elaborate design, and they are more 
compact than the two types of telescopes mentioned above; however, these are 
the most popular telescopes on the market today. The advantages of catadioptric 
telescopes are that they are easy to use, portable, durable, and versatile—they 
can be used for viewing deep sky objects, planets, stars, and even the moon [2]. 

 

 
Figure 11: Catadioptric Telescope 

The list of the different versions of software useful in astronomy is quite extensive. 
For simplicity, the programs discussed below are categorized according to their 
features.  

 

Planetarium software can map the night sky from any location on the Earth. 
Typically, this type of software gives users the option to print out star charts for a 
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night of viewing, and it offers a large database that contains, at minimum, the most 
popular night sky objects. The most popular planetarium software available is 
undoubtedly SkyX by Software Bisque, which is the software used at the Robinson 
Observatory. The SkyX software is available in a few different versions: a student 
edition, a serious astronomer edition, a professional edition, and even a pocket 
edition that provides access to a virtual sky from your personal device. Other types 
of planetarium software include Google Earth, SkyMap, World Wide Telescope, 
and Redshift.  

 

Unlike planetarium software, which provides users with features for the full sky, 
specialty observing programs focus on aiding users who want to concentrate on 
specific objects. As mentioned above, TheSky from Software Bisque is the 
smoothest and most cohesive software, but DeepSky can provide a list of available 
targets for the evening so users can plan their viewing. Seeker, also by Software 
Bisque, is a 3D immersive tool for traveling through the solar system. Other 
specialty observing programs include VRMars, Night Sky Observer, and 
Heavenscape. 

 

Robotic and remote-control software specializes in controlling telescopes from a 
remote location. TheSky used with CCDSoft (for imaging) allows users to control 
a telescope from a computer that is nearby. Other versions of this type of software 
include Orchestrate, which automates imaging sessions; PoleAlignMax, which 
assists the computer in pointing the telescope north; and SN Finder, which 
automates supernova searches.   

 

3.3 Strategic Components and Part Selections 
 

This section outlines the many different options considered for the selection of all 
major components incorporated into our project. The major components that 
constitute the project include the declination and right ascension motors, the power 
supply unit, the sensors, the joystick and the main microcontroller. Before down 
selecting to a specific part number and manufacturer, all available and relevant 
options on the market were explored. Following the corresponding section for each 
major component is a brief explanation of why the selected component was 
chosen as well as a table comparing selected characteristics across multiple 
manufactures. The highlighted column indicates which part was procured for this 
project. 

 

3.3.1 Declination and Right Ascension Motors 
 

Before attempting to determine the correct motor for this specific application, an 
in-depth understanding of the different types of motors—their functions, strengths, 
and weaknesses—needs to be established.  
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At the most basic level, there are two types of motors, alternating current (AC) 
motors and direct current (DC) motors. Both types of motors convert electrical 
energy into mechanical energy; however, there are significant differences between 
the two main types of motors in terms of how they are constructed and controlled. 
The most important difference between AC and DC motors is the type of current 
they use—AC motors are powered by alternating current, while DC motors use 
direct current [3].   

 

The main difference between alternating current and direct current is that with 
alternating current, the flow of charge changes direction periodically. Direct current 
is easier to understand since the current does not alternate but flows in a steady 
manner [4]. Figure 12 below illustrates the flow of alternating and direct current.  

 

 
Figure 12: Alternating vs. Direct Current 

AC motors offer flexibility and certain advantages that DC motors do not. AC 
motors require minimal maintenance and a lower power demand on start. They 
also have adjustable torque limit and controlled acceleration. AC motors generally 
fall into two different categories: synchronous and induction (asynchronous) [5]. 

 

The defining characteristic of a synchronous motor is that it synchronizes the 
rotor’s rotation with the frequency of the supply current. (In a motor, the rotor is the 
part of the motor that rotates, whereas the stator is the part of the motor that does 
not rotate.) Synchronous motors are ideal for driving equipment at a constant 
speed because the motors ensure that the speed does not change regardless of 
the load [5].  

 

While synchronous motors work because of how they synchronize the rotor, 
induction motors work because of how they use the other main part of a motor: the 
stator. The winding of the stator produces a magnetic field, and the induction motor 
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uses electromagnetic induction from this field to produce an electric current. 
Induction motors are the most common type of AC motor. Their importance in the 
industry stems from their load capacity, with single-phase being used for smaller 
loads and three-phase motors being used for industrial purposes [5].  

 

A single-phase system does not deliver power at a constant rate because of the 
oscillations in the signal. With the peaks and dips in the voltage, the power 
fluctuates considerably. If two more phases are introduced 120º out of phase, it 
becomes a three-phase system, and the power becomes almost constant. Figure 
13 below shows the difference between single- and three-phase systems [6]. 

 

 
Figure 13: Three-Phase vs. Single-Phase 

DC motors are the first motors that experienced widespread use. For lower power 
systems, their initial costs are typically less than AC motor systems. DC motors 
can be easily controlled by simply varying the voltage that is supplied to the motor. 
There are many advantages to DC motors including high-starting torque and 
excellent speed control. They are also quick to start and stop and easy to install. 
Featuring a simplistic design, DC motors can both accelerate and reverse quickly. 
There are some disadvantages, namely, their vulnerability to dust and their 
maintenance needs [5]. 

 
There are two main types of DC motors: brushed and brushless. A brush, on a 
motor, is a carbon device that conducts current between stationary wires and the 
moving parts, typically a rotating shaft. For brushed motors, there are a few 
different types: series wound, shunt wound, compound wound, and permanent 
magnet.  

 

Series wound motors are constructed so that the field winding is in series with the 
rotor winding. Varying the input supply voltage controls the speed, which is not 
very effective; as the torque increases, the speed decreases. These motors are 
used in a variety of applications, including lifts, cranes, hoists, and automotive 
machinery [5]. 
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Shunt wound motors use a field winding connected in parallel with the rotor 
winding, which helps deliver increased torque without sacrificing a reduction in 
speed just by increasing the motor current. Since the winding is in parallel, the 
starting torque is not as high as in the series wound. Shunt wound motors can be 
found in vacuum cleaners, grinders, and lathes [5]. 

 

Compound wound motors implement a combination of the series and shunt wound 
rotor design. Compound motors have a high starting torque and operate smoothly. 
Applications for these motors include compressors, rotary presses, elevators, and 
continuous conveyors [5].  

 

Permanent magnet motors, as their name implies, use a permanent magnet. This 
type of motor is preferred for applications requiring high levels of precision, such 
as robotics [5]. 

 

There are some issues with brushed DC motors; specifically, their short life span 
when used frequently. Brushless motors eliminate some of these issues by using 
Hall Effect sensors to detect the rotor’s position, which a controller can use to 
accurately control the motor [5]. To understand what a Hall Effect sensor is, an 
understanding of what is known as the Hall Effect is critical.  

 

As electric current flows through a material, the electrons mostly move in a straight 
line. If you put the material in a magnetic field, the force acts on the electrons, 
which causes them to stray from their straight-line path. This results in one side 
having more electrons than the other, creating a potential difference (voltage). 
Measuring the potential difference will provide the Hall Voltage developed [7]. 
Figure 14 shows this Hall Effect. 

 

 
Figure 14: Hall Effect and Hall Voltage 
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The Hall Effect sensors are then activated by an external magnetic field. As a motor 
turns, the magnetic field changes, making a Hall Effect sensor perfect for this 
application.  

 

The two main types of brushless DC motors are stepper motors and servo motors. 
Servo motors contain a brushless DC motor, potentiometer, and a control circuit. 
Gears attach the motor to the control wheel. The motor’s rotation affects the 
potentiometer’s resistance, allowing the control circuit to control the amount and 
direction of the movement [8]. 

 

Stepper motors consist of a rotor with permanent magnets and a stationary stator 
that carries the windings. A big difference between stepper and servo motors is a 
stepper motor typically has a lot higher pole count, and because of this, the motor 
appears to have a more continuous operation. Since stepper motors generate 
incremental motion, they are usually run open loop, which reduces the cost and 
complexity of the design. This open-loop operation is not as accurate as the closed 
loop design of a servo motor, so if a more accurate operation is needed, an 
encoder can be used.  

 

Encoders are electromechanical devices that provide electrical signals; these 
signals are useful for controlling speed and position. They convert the motor’s 
mechanical motion into an electrical signal; the control system can use this signal 
to track how well the motor is operating and make any necessary adjustments. 
There are different options for mounting an encoder for control: shafted, 
hub/hollow shaft, and bearing less [9]. 

 

Shafted encoders connect the motor encoder shaft to the motor shaft via a 
coupling method. This provides mechanical and electrical isolation from the motor 
shaft.  

 

Hub/hollow shaft encoders are directly mounted to the motor shaft. These 
encoders are connected with a spring-loaded tether. Easy to install, these 
encoders do not require a shaft alignment; however, it requires extra caution to 
provide electrical isolation using this method.  

 

A bearingless encoder, also known as ring mount, contains a sensor assembly that 
is formed like a ring, which is mounted on the face of the motor, and a magnetic 
wheel, which is mounted on the motor shaft [9]. 

 

Motor drives are important for the operation of a motor. The electronic drive 
gathers and directs the electrical energy to a motor. It has the ability to control how 
much and how often the electricity goes to the motor; therefore, the drive can 
influence the speed and torque [10]. 
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3.3.1.1 Project Application 

After obtaining an in-depth understanding of the types of motors and their uses, 
our project team was able to decide which motor is the best choice for our 
application. The two types of motors that we considered were DC servo motors 
and DC stepper motors. For our purposes, we needed higher torque with not much 
speed, but we also needed high position accuracy for sensing objects in the sky. 
Table 1 compares the main advantages of stepper and servo motors. 

 
Table 1: Stepper vs Servo Motor 

 Stepper Servo 

Torque High at low speeds High even at high 
speeds 

Accuracy High with encoder 
feedback 

High 

Speed More suitable for low 
speeds 

More suitable for high 
speeds 

Cost Low Moderate 

Lifespan High Moderate 

 

Considering our needs and the features of each motor, the best option for our 
application was a stepper motor with an encoder. There were many options when 
choosing the appropriate stepper motor. Some of the more significant 
requirements we considered were the step angle (1.8º or less), high torque, and 
the cost.  

  

After an extensive search, the motor we decided to use is a NEMA 17 Integrated 
Drive and Motor with Encoder. We chose this motor for many reasons. First, having 
a motor with an encoder and a drive that is already integrated into the motor 
decreases the complexity of the design immensely compared to having to locate 
a drive and encoder and integrate them into a motor. Also, the NEMA type motor 
is a low-cost and common motor that provides high torque over a lower speed 
range. The motor also has a wide range of settings that make it easy to adapt to 
any situation. 

 

These settings can be changed by the dipswitches located on the motor in between 
the connections for the motor and the encoder pins. The most important dipswitch 
settings are changing the steps per revolution. Most motors have a fixed number 
of steps per revolution which ultimately limits the design capabilities. The motor 
chosen has the option to change from 200 steps per revolution to 25,000 steps per 
revolution. To be able to handle the change in steps per revolution however, the 
signal being sent to the motor has to be able to reach higher frequencies as the 
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step count increases. 25,000 steps will not be able to be achieved because even 
sophisticated PLC’s cannot provide frequencies that high for precise motor control 
but being able to change to 400 or even 800 steps will provide flexibility for the 
mechanical engineering (ME) team as well as the electrical engineering (EE) team.  

 

The dipswitches are broken up into two sections. One set of dipswitches is used 
to change the steps per revolutions for the motor and the other set is to change 
the settings of the motor itself, such as filtering and current. Tables 2 below shows 
the different dipswitches and what they’re used for.  

 
Table 2: Motor dipswitches 

 1 2 3 4 5 6 7 8 

Current X X       

Idle 
Current 

  X      

Self-Test    X     

Pulse 
Noise 
Filter 

    X    

Smoothing 
Filter 

     X   

Load 
Inertia 

      X  

STEP/DIR        X 

 

The current setting for the dipswitches 1 and 2 allows the user to change the 
amount of current that the motor uses. To obtain maximum torque, the current 
setting would need to be a maximum 100%, but if there are conditions where power 
consumption is an issue, the current level can be changed to as low as 50% to 
conserve power. It is important to note that a reduction in current to this level will 
reduce the torque output considerably. 

 

The idle current setting allows the motor idle current to be lowered 50% or 90%. 
The lower level of the current for this idle setting, the lower amount of holding 
torque this motor will have when the motor is not turning. For large loads that could 
potentially overcome the holding torque of the motor, a higher idle current is 
recommended. 

 

Self-test is a simple but useful dipswitch within the motor. The switch can be turned 
on to test the motor to make sure it is receiving power. This could be used when 
diagnosing the motor issues. 

 

Pulse noise filter dipswitch gives the user the ability to add filtering for noise that 
could affect the STEP signal by causing the drive to interpret pulses improperly. 
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The two options, 150kHz, or 2MHz provide the user to toggle on whichever 
frequency is near the range that they will be using for turning the motor. 

 

Smoothing filter is used for motors that are used at lower step resolutions. At lower 
step revolutions, the motor can run rougher than at a higher step count because 
of the increased production of noise. With the smoothing filter, it enables the motor 
to run at lower steps per revolution with the same smoothness as the higher steps 
per revolution. 

 

Load inertia is an anti-resonance and electronic damping feature that improves the 
motor performance. The load inertia must be calculated, then divided by the rotor 
inertia which was given by the manufacturer, and that will determine the setting for 
that dipswitch. 

 

Lastly, the STEP/DIR dipswitch is to provide two different options for sending 
signals to the motor. STEP and DIR can be two separate signals, or STEP and 
DIR can be sent on the same line. DIR determines the direction of the motor, and 
STEP determines the speed of the motor. 

 

For separate operation, a pulse with a frequency corresponding to the speed is 
sent on the STEP line, and a logic HIGH or LOW is sent on the DIR line to 
determine CCW or CW rotation. If using STEP and DIR together, sending a signal 
to STEPCW will turn it CW and STEPCCW will turn it CCW with the speed being 
proportional to the frequency of that signal and the steps per revolution set with 
the dipswitches. Figure 15 below shows a few of the options of the steps per 
revolution of the motor. There are many other options for steps, but the 
requirement for the input frequency to the motor increases with an increase in 
steps. The highest number of steps obtainable is 25000 steps. To command the 
motor speed of 50 RPS, the pulse frequency would need to be 1.25MHz, which is 
higher than we would expect an ATmega2560 to output effectively. 

 

 
Figure 15: Steps per revolution dipswitches 

A comparison of options for the stepper motor used can be seen below in Table 3. 
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Table 3: Comparison of Motors 

 STM17R-3NE 
NEMA 17 

STM17R-3ND 4209S-1P 

Steps per 
Revolution 

200, 400, 800, 
1600, 3200, 6400, 
12800, 25600, 
1000, 2000, 4000, 
5000, 8000, 
10000, 20000, 
25000 

200, 400, 800, 
1600, 3200, 6400, 
12800, 25600, 
1000, 2000, 4000, 
5000, 8000, 
10000, 20000, 
25000 

400 

Built in Encoder YES NO NO 

Holding Torque 68 oz-in 68 oz-in 31 oz-in 

Length 2.64” 2.64” 1.34” 

Weight 14.7 oz 14.7 oz 7.04 oz 

Operating 
Voltage 

12V, 24V, or 48V 12V, 24V, or 48V 24V 

Cost $204.00 $118.00 $49.10 

 

Between the three motors above, the reason for choosing the first one is mainly 
because of the built-in encoder feature. It was not possible to find a motor for less 
than that that included a built-in encoder. Since the existing design at the 
observatory has a built-in encoder, the team and sponsors suggested using a 
similar motor. 

 

See Figure 16 and Figure 17 below for the motor of choice and the torque curve.  

 
Figure 16: STM17R-3NE NEMA 17 
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Figure 17: Torque Curves 

 

3.3.2 Power Supply Unit 
 

A power supply unit is the part of the electrical system that converts the power 
provided by an outlet (normally 115VAC or 230VAC) or another source to a usable 
level inside an electrical device (typically 5VDC). A block diagram for a typical 
power supply can be seen in Figure 18 below.  

 

 
Figure 18: Power Supply Block Diagram 

The input transformer converts incoming voltage to the level required to convert to 
DC at an acceptable level. In this case, and in most cases, the type of transformer 
used is called a step-down transformer. A step-down transformer decreases the 
voltage of the incoming signal, or steps it down to a lower level. Transformers also 
provide isolation between the output and the supply from the incoming line. 

 

The rectifier converts the voltage that was stepped down from AC to DC from the 
transformer. After the signal is rectified, it still contains unwanted ripples that can 
be filtered out using a filter capacitor to smooth the signal. 
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The final device in the power supply process is the regulator. A linear regulator 
compares the output voltage with a precise reference voltage and adjusts the 
device to maintain a constant level of output voltage. 

 

A power supply that does not contain a regulator is called an unregulated power 
supply. An unregulated power supply is simple and therefore cheaper than a 
regulated power supply, but because they are unregulated, the output voltage from 
this type of power supply can fluctuate. 

 

The switch mode power supply is more complicated than the other supplies 
mentioned above. In this type of supply, AC voltage is converted to an unregulated 
DC voltage, with a series transistor and regulator. Since this DC is a constant high-
frequency voltage, the transformer is significantly smaller and, consequently, so is 
the power supply. Transformers for a switching power supply, however, have to 
be custom made [11]. 

 

For the motor we chose, the STM17R-3NE NEMA 17, either a regulated or 
unregulated power supply can be used. One issue that could arise when using a 
regulated power supply—per the manufacturer—is it could cause a problem with 
regeneration. If the load is rapidly decelerated from a high speed, much of the 
kinetic energy of that load would be transferred back to the power supply, which 
could trip the overvoltage protection of the switching power supply, causing it to 
shut down. Since we are not planning to reach very high speeds, this should not 
be an issue for our system. The manufacturer of the NEMA 17 motors offer power 
supplies that work well with their motors, such as the PS150A24 24VDC switching 
power supply seen in Figure 19 below. 

 

 
Figure 19: PS150A24 24VDC Switching Power Supply 

One of the biggest reasons for choosing a power supply that provides the 150 
watts is because that would allow the project to be expanded in the future. The 
current system at the Robinson Observatory requires more power than our model 
system will but investing in the power supply at the beginning of the process makes 
it possible to broaden the scope over the different teams. There are many other 
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reasons for choosing this power supply rather than building our own or purchasing 
another more inexpensive power supply. Designing and building our own power 
supply of this magnitude would be a complex project. Due to time constraints, it is 
more sensible to purchase one with the required capabilities so that we can focus 
on the design and implementation of the system, which is more important than the 
power supply, which is only a small piece of the model. The power supply we’ve 
selected is not the cheapest we could find, but it also is not the most expensive. It 
is more expensive than we would prefer because of budget constraints; however, 
if the scope is to be expanded in the future, the initial investment is necessary. 
More inexpensive power supplies could potentially provide the same load 
capabilities, but since the supply we chose has been designed to be used with the 
manufacturer’s integrated motors, integration will be easier. 

 

A table comparison of options for the power supply used can be seen below in 
Table 4. 

Table 4: Comparison of Power Supply 

 PS150A24 PS50A24 PS320A48 Other 

Recommended YES YES YES NO 

Current Rating 6.3A 2.1A 6.7A Variable 

Voltage Output 24VDC 24VDC 48VDC Variable 

Watt Rating 150W 50W 320W Variable  

Cost $172.00 N/A $262.00 Variable 

 

The main reason for choosing a power supply that was already designed was 
because the manufacture for the motor that was selected provided recommended 
power supply’s that are compatible with the motor. Since there are two motors, the 
2A power supply would be maxing out our consumption, and the other power 
supply that provided 320W was just more than we needed for the cost.  

 

 3.3.3 Sensors 
 

Sensors are a key component of the original, full-scale implementation of the 
telescope and mount.  In the telescope housed at the observatory, a pair of optical 
sensors have been selected for this purpose.  Their functionality is two-fold.   

 

First, it is possible for the motors to drive the mount in such a way that it could 
damage itself through further application of torque.  Therefore, the first, and 
arguably most important, function of the sensor is to serve as a limit switch.  When 
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this sensor determines that the telescope mount has met a predetermined limit of 
movement, it engages and prevents any further movement in that direction. 

 

The second purpose of the sensors are to detect when the telescope is in its 
“home” position.  That is, a specific position for both sections of the mount has 
been designated as the home position.  When the telescope is at rest (i.e. non-
operational), it should be returned to this home position.  Furthermore, calculations 
on position and tracking are dependent on allowing the telescope to start at this 
home position. 

 

The existing configuration of the telescope relies on a single optical sensor for each 
motor.  This optical sensor is then paired with an interrupter, which has been 
mounted to the gear.  The direction and rotation of the motor is coupled with the 
way that the interrupter triggers the optical sensor to determine whether the 
telescope mount has reached its limit (i.e. limit switch application) or whether the 
mount is in the home position (i.e. home position application). Figure 20 below 
summarizes this relationship. 

 

 
Figure 20: Existing Configuration of Optical Switch and Interrupter 

There are a wide variety of position sensors available on the market, and we have 
considered each within the scope of our application.  A brief treatment of each type 
is provided below. 

 

3.3.3.1 Potentiometric Position Sensor 

The potentiometer is a familiar tool to any student of electrical engineering.  In 
brief, the potentiometer can be considered as a variable resistor that functions 
through the principle of the voltage divider.  A potentiometric position sensor relies 
on a potentiometer to perform its duties. In this device, a resistive track serves as 
the sensing element.  An element known as a wiper is attached to the part that is 
to be tracked, and the wiper also connects with the track.  Movement of this wiper 
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varies the resistance between one end of the track and the wiper, allowing it to 
serve as a potentiometer.  One advantage of this type of sensor is that the 
resistance change with respect to wiper position is linear, facilitating ease of use.  
These sensors lend themselves best to applications that require linear position 
sensing, such as flow control valve position, injection molding and robotic motion 
control. Figure 21 below represents a typical linear potentiometer.  Other options 
for potentiometric position sensors include cable actuated position sensors and 
rotary displacement position sensors. 
 

 
Figure 21: Linear Potentiometer 

 

3.3.3.2 Capacitive Position Sensor 

As can be inferred from the name, capacitive position sensors use capacitance to 
determine position.  These position sensors are highly accurate, generally offering 
a resolution as low as the nanometer level.  The major drawback of these devices 
is that they are made to operate across a short distance, typically between 10µm 
through 2mm. 

 

These devices are capable of operating in a non-contact environment through 
application on a conductive, grounded target.  These sensors lend themselves 
particularly well to applications requiring high resolution, such as vibration 
measurement, semiconductor wafer surface sensing and servo system feedback 
for nanopositioners. 

 

In general, these devices operate through two mechanisms.  The first mechanism 
is that of a changing dielectric constant.  In this instance, displacement is 
measured by connecting the body to be measured to a dielectric material between 
two plates.  The movement of the body will vary the dielectric constant, which is 
then measured.  The second mechanism is that of changing the overlapping area.  
This is accomplished by connecting the body to be measured to one of the plates, 
while the other remains at a fixed position.  The overlap between the plates 
changes with movement, thus changing the capacitance of the sensor.  Figure 22 
below represents a typical capacitive position sensor. 
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Figure 22: Capacitive Position Sensor 

 

3.3.3.3 Magnetostrictive Position Sensor 

Magnetostriction is a property inherent to ferromagnetic materials (e.g. iron, nickel 
and cobalt).  When these ferromagnetic materials are placed within a magnetic 
field, they change their size.  A magnetostrictive position sensor operates on this 
principal. 

 

The magnetostrictive position sensor is comprised of a position magnet, a 
magnetostrictive position sensor (used to measure the distance between the head 
of a sensing rod and the position magnet), electronics capable of transmitting a 
pulse, and a waveguide.  The pulse is transmitted down the waveguide, and the 
induced magnetic field interacts with the magnetic field from the position magnet.  
This creates strain on the waveguide, which can then be sensed.  These sensors 
also produce a high degree of resolution (on the µm scale) and can measure 
significantly greater displacements than the capacitive position sensor.  The 
obvious drawback is the complexity of the sensor.  Figure 23 below represents 
several typical linear magnetostrictive position sensors. 

 

 
Figure 23: Magnetostrictive Position Sensors 

 

3.3.3.4 Eddy Current-Based Position Sensor 

The Eddy-Current based position sensor is another non-contact position sensor 
that is capable of providing high resolution.  These sensors are sometimes also 
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known as inductive sensors, although this is a bit of a misnomer (generally, 
“inductive” is a reference to an inexpensive proximity switch).  These devices are 
well suited to industrial applications due to a high tolerance for dirty environments. 

 

In brief, these sensors also operate through magnetic fields.  A driver creates an 
AC current through a sensing coil at the end of a probe.  This induces an 
alternating magnetic field, which will induce small eddy currents in the target 
material.  This interaction changes with distance from the target material.  As the 
distance varies, the Eddy-Current position sensor outputs a voltage proportional 
to the change in distance between a probe and the target.  Figure 24 below 
represents some common eddy-current sensors. 

 

 
Figure 24: Eddy Current Position Sensors 

3.3.3.5 Hall Effect-Based Magnetic Position Sensors 

These sensors operate on the Hall Effect.  That is, when the magnetic flux around 
the sensor exceeds a certain density, the sensor activates generates an output 
called the Hall Voltage.  With these devices, the moving part is connected to a 
magnet, which is housed with a sensor shaft.  This creates the Hall element.  Then, 
when the part moves, the magnet also moves, which creates a magnetic field and 
induces the Hall Voltage. 

 

The advantage of these devices lies in their reliability, small size, wide range of 
operating voltages, large variety of output options and relatively easy 
implementation.  Figure 25 below shows a typical rotary Hall Effect position sensor. 

 
Figure 25: Hall Effect Position Sensor 
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3.3.3.6 Optical Position Sensor 

The optical position sensor was the design choice made for the full-scale telescope 
currently operating in the observatory.  The operation of this type of sensor was 
outlined briefly in the preceding section but is elaborated briefly here.  There are 
two main types of optical position sensors.  In the first, light is transmitted from one 
end to the other and changes in the characteristics of the light (e.g. wavelength, 
intensity, phase and polarization) are monitored.   

 

In the second case, the transmitted light is reflected and then monitored.  Optical 
sensors are also often referred to as encoders.  Unsurprisingly, these devices 
operate particularly well when counting revolutions.  The drawback with this type 
of device is that foreign particles (e.g. dust, dirt, water, etc.) can interfere and cause 
the sensor to fail.  A common optical position sensor is represented by Figure 26 
below. 

 

 
Figure 26: Optical Position Sensor (Switch) 

Ultimately, our team has selected the optical sensor for this implementation.  There 
are several primary reasons for this selection, not the least of which is that the 
optical sensor closely matches the original equipment used in the full-scale 
telescope. 

 

Table 5 lists the three strongest options for choice of sensor and shows the 
differences across a few electrical characteristics. Other considerations that led to 
our selection included cost, ease of implementation, size and the suitability of the 
technology for our task. The highlighted column shows which sensor was 
ultimately selected. 
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Table 5: Comparison of Sensors 

 Optical Hall Effect Magnetoresistive 

Supply 
Voltage 

4.5 – 16V 5 V 3 – 5 V 

Supply 
Current 

12 mA 6.5 mA 16 mA 

High-level 
Output 

VDD – 2.1 V VDD – 0.5 V N/A 

Interface Digital I/O I2C SSC / IIF 

Manufacturer TT Electronics ams Infineon 

Part Number OPB980T51Z AS5601 TLI5012B 

Cost $5.04 $3.49 + Magnet $7.23 + Magnet 

 

The final selection was a pair of TT Electronics OPB980T51Z optical switches.  
Several factors led to the selection of this specific part.  First, this sensor is 
designed to operate across a broad range of supply voltages (VCC), ranging from 
4.5V to 16V.  Our ideal use case is to power these sensors directly from the 
Arduino, thus avoiding the need to tap an external power supply.  Since the 
Arduino is generally configured to provide 5V power, we expect these sensors to 
operate normally given this condition.  The power dissipation is reasonable, rated 
at 300mW.  A low-level output voltage of 0.4V will confirm to the Arduino’s 
specifications.  And, of course, availability is a concern – there are several 
thousand in stock across various distributors (e.g. Mouser, Digikey, etc.).  Our 
selected sensor configuration includes covered apertures (to enhance 
robustness), flying leads (to ease integration with the PCB) and a buffer 
logic/Totem-Pole output driver architecture, as represented below by Figure 27. 

 

 
Figure 27: Buffer Logic/Totem-Pole Output Drive Architecture, Courtesy Texas 

Instruments 

Our intention is to simulate the functionality of the full-scale telescope by using one 
optical switch per motor.  We will use feedback from the motor encoders to 
determine position, and correlate this with the input from the optical sensor to 
determine whether the mount has reached its limit or its home position.  An 
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incidental benefit of this style of control is the reduced PCB footprint as compared 
to that needed for two sensors per motor. 

 

3.3.4 Joystick 
 

To control the movement of the motors manually, the project will need a joystick to 
serve as an additional input to the system. Although the main method of sending 
commands to the motors will come from the Arduino, it is also desired to use a 
joystick for demonstration purposes as well as to best resemble the telescope 
found in Robinson Observatory. The main thing to consider with the joystick is that 
since the Arduino reads the output as an analog signal anywhere from an integer 
value from 0 to 1023, the rest position will vary each time around the 500 range. It 
is important to note that the joystick shall only be used for rough pointing, but when 
testing the pointing accuracy of our system as a whole, the software should be the 
main source of pointing commands. 

 

The options and technologies considered for joysticks are broken up into sections 
below with a summary table at the end of this section. 

 

3.3.4.1 Mini Analog Joystick - 10K Potentiometers 

This joystick features two 10k Ω potentiometers as well as a spring back system 
for tactile feedback. Most joysticks on the market that look like this arcade-style 
joystick feature only clicking switches in each direction. That is, when the joystick 
is moved in the positive x-axis direction, a limit switch is triggered, and the pin is 
set to high. In this joystick however, since there are potentiometers involved, the 
movement along the x-axis provides a range of varying output from -5V to 5V. The 
physical limits along both the x and y axes are 50 degrees, from -25 degrees to 25 
degrees. The leads for the two potentiometers are easily accessible as shown in 
the figure below. 

 

 
Figure 28: Mini Analog Joystick 
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Another benefit to using this joystick is that since it features two independent 
potentiometers, the gantry spring system in the interior of the joystick base allows 
for movement along the diagonal axes which is beneficial since it best resembles 
the existing system of the Robinson Observatory controls. 

 

3.3.4.2 Two-Axis Joystick 

The joystick model below is similar to the mini analog joystick above; however, it 
is sized significantly smaller and is already mounted to a circuit board. The pins 
shown in Figure 29 below stick out of the bottom of the board so that it can easily 
be inserted into a breadboard for prototyping. The joystick features two 10k Ω 
potentiometers and the option to wire the outputs as either voltage or resistance 
outputs. 

 

 
Figure 29: 2-Axis Joystick 

 

3.3.4.3 Analog 2-axis Thumb Joystick with Select Button 
and Breakout Board 

This type of joystick is different than previous versions because it features a digital 
output in addition to the two analog outputs for motor control. The benefit of having 
a digital output is its ability to be programmed as a trigger key to automatically 
have the telescope perform a key position, such as the home position. In the 
Robinson Observatory, the homing of the telescope had to be done via software 
however, having another way to home the telescope could indeed be useful. 
Alternatively, the digital output could be used to effectively switch over control from 
the software program to the joystick.  

 

Similar to the mini analog joystick, this version still requires a ground connection, 
a Vcc source of 5V, and two analog pins from the microcontroller. Additionally, it 
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requires a digital pin for the select function. Figure 30 shows where these five pins 
are located on the breakout board that comes with this joystick.  

 

 
Figure 30: Thumb Joystick with Select Button 

Additionally, this joystick model is not a switching arcade style of joystick and 
features two potentiometers of a 10k Ω resistance value, similar to the other 
joystick considered. Another advantage of using this joystick is that it is 
ubiquitously used in multiple projects found during research, and therefore already 
has existing EagleCAD schematics and can therefore be directly incorporated into 
the PCB that we design. However, as purchased, it is able to be used as a 
standalone feature. 

 

In summary, the pros and cons of each joystick are easily enumerated in the 
comparison table below. 

 
Table 6: Comparison of Joystick Models 

Feature Mini Analog 
Joystick  

2-Axis Joystick Thumb Joystick 
with Select 
Button 

Potentiometer 
resistance 

10k Ω   10k Ω 10k Ω  

Select button No No Yes 

Analog 
outputs 

2 2 2 

Digital outputs 0 0 1 

Maximum 
operating 
voltage 

5V 10V 5V 

Breakout 
board 
included 

No Yes Yes 

Size 2.7 x 2.1 x 2.1 1.64 x 1.2 x 1.1 1.25 x 1.5 x 1.5 

Price $19.95 $6.95 $5.95 
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Looking at the table above, and after thorough research, it was concluded that the 
joystick to be used in this project is the thumb joystick with the select button. This 
was chosen firstly because of the added feature of a select button which none of 
the other joysticks had. Also, it had a preferable breakout board which makes it 
easy to wire up without the need to mount it into a breadboard and can instead be 
directly wired through our PCB. It is also RoHs compliant, which meets our 
environmental constraints outlined in section 4.2. A last reason for the selection of 
this joystick is that it is almost a quarter of the price of the larger joystick which 
allows for the ordering of more spares to stay within the same budget. Meeting our 
budget requirements is one of our economic constraints set upon ourselves. 

 

3.3.5 Microcontroller 
 

The software design that will be selected is highly based upon the microcontroller 
chosen in other sections. The particular microcontroller we have chosen is an 
Arduino Mega 2560 with 54 Digital I/O pins (15 being PWM capable), 16 analog 
input pins and a standard set of power pins. This particular brand of 
microcontrollers uses their own version of the C language to be written in and is 
primarily handled completely by Arduinos own brand-built IDE. We also have the 
factor of what signals the motor expects from our board and how to control that 
from our board. From these restrictions, it is required that we write our code and 
logic in the modified C language of the Arduino and using its very specific IDE to 
upload and compile our files. These files need to be .ino files so it's very restrictive 
of what you can use to program.   

 

3.3.5.1 MSP Option 

To arrive at the decision of which microcontroller to use, we first started with a 
couple of different options on the table. The main microcontrollers we looked at 
were MSP, Arduino, and Raspberry Pi. Texas Instruments develops the MSP 
series of controllers and boards that are fairly basic and utilize UART connection 
and terminal to send and receive data in a serial fashion. Sending data via serial 
communication is one of two main ways to send data, with the other one being 
parallel. UART is a fairly simple set up and easy to use so there isn’t going to be 
much restriction there in terms of what type of connection to the computer we use. 
It also exists on a plethora of boards out on the market. The hard part about MSP 
is the complex amount of work needed to be put in to use and setup the MSP. 
Along with its not so friendly programming practices we could see a lot of time 
sitting around and debugging the software, trying to make it work. MSP’s generally 
use C, which is easiest for Electrical Engineers, but we decided that there were 
better options out there.   
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3.3.5.2 Raspberry Pi Option 

The Raspberry Pi was the next choice in our list of possible microcontroller/board 
combination to use. The Raspberry Pi is fairly simple to set up and even comes 
with its own OS which is Linux based. This is all great but is not exactly what we 
want or need for the project. Its default language is also Python and being that 
none of our team members are super proficient in writing Python, it’s probably best 
to leave that one out and look for other microcontrollers. The only reason why we 
could potentially switch over to a Raspberry Pi would be if the entire 
interdisciplinary team decided to use ROS, a robot operating system. The ROS 
architecture could actually be pretty useful for the project as there are multiple 
components talking to each other and relying upon data being sent such as motors 
reaching a maximum turn, the need for a meridian flip, LED’s and the feedback 
being sent to the computer science team. Along with a potential camera that can 
have openCV on it, there would be multiple files of different languages operating 
and the same time, and ROS would be a really good organizational system to use. 
However, aside from that, it does not seem that ROS is going to be needed to be 
used, so the Raspberry Pi is not the microcontroller we will be using.   

 

3.3.5.3 Arduino Option 

The final entry on the preliminary list is the Arduino, which is precisely the one we 
chose to use. The Arduino is written in C and comes with its own premade IDE 
that is extremely easy to use. It has its built-in complier as well as an uploader. 
The Arduino product made the process of outputting any desired code or signals 
extremely easy and quick. This is a great advantage because it speeds up testing 
and debugging time and save a lot of potential time troubleshooting possible things 
that could go wrong with the overall design. In terms of extreme flexibility in what 
you can do, the Arduino probably has the most restrictions out of all of them, 
limiting our ability to really take advantage of the hardware. However, even with 
these restrictions it still fits our needs perfectly.  

 

The serial connection is very easy to set up and maintain from a programming 
standpoint, while also making the programming much more streamlined with its 
built-in functions. Arduino microcontrollers/boards also have several material 
advantages that we can utilize. Arduino offers a particular product called an 
Arduino Mega that offers a bolstering 54 digital I/O pins. And for this project we will 
have a profuse number of devices that need to be sending input and output signals 
back and forth with the board and through the USB. The controller has pins that 
have a built in analog to digital converter (ADC) which is a sub-controller that takes 
any analog signal between a restricted 0 and 5 volts and converts them into 
discrete digital values ranging from 0 to 1023 (1024 values) as seen in Figure 31.  
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Figure 31: Signal Sampling and Digital reconstruction 

 

These values are then programmable in code. Obviously, the original signal isn’t 
perfectly reflected in the sampled signal as you can see in the image above but 
given a high enough bit resolution it can effectively be the same. In terms of what 
applications we are going to use it for of course. It so happens that our telescope 
will be also having a joystick that a user could use to control the direction of the 
telescope. This joystick outputs an analog signal so we would use the analog to 
digital pin on the Arduino.  

 

A final positive for Arduino is the built-in ability to increase the turn on voltage from 
not using the USB. The USB limits the starting voltage to 5 volts per USB standard, 
but there is a port that allows us to go up to 20 volts. Our project is definitely going 
to need it because of how many appliances that are going to be powered from the 
board. If we were to just use a USB 5 volt, the board would start struggling to stay 
on and provide the required power. If we perhaps used another board that only 
had a dedicated pin to power the board such as the raspberry pi, a transformer, 
rectifier, and voltage regulator circuit would have to be made. Otherwise the circuit 
would not be able to plug into a wall outlet in the United States. The United states 
have power outlets running at 120 Volts AC, and if that was fed into a 
microcontroller board a lot of magic smoke would start to appear as the board is 
catching on fire. From this we decided that our best course of action would be use 
9 volts input, as the recommended input voltage is between 7 and 12 volts.  

 

In Table 7 below, a summary of each of the microcontrollers considered for this 
project is listed. As explained previously, the ATmega2560 was selected for the 
main microcontroller of the project due to the larger amount of PWM and total pins, 
and also due to the customer’s request. To meet the requirements of UCF for 
substantial PCB design, we will also use an ATmega328 on board the PCB to 
check the functionality of the main microcontroller.  
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Table 7: Comparison Table for Microcontrollers 

 PWM 

pins 

I/O 

pins 

Total 

pins 

Primary 

Programming 

Language 

Clock 

speed 

Price 

MSP430G2 ~ 24 24 C/C++ 16MHz $17- 

23.75 

Raspberry PI 3 ~ 40 40 Python 900MHz $35.68 

ATmega328 6 14 20 C/C++ 16MHz $22 

ATmega2560 14 54 70 C/C++ 16MHz $38.50 

 

3.3.5.4 Programming Language  

As touched on a little above, our choice as to what language we chose mattered 
greatly on what microcontroller we chose. However, programming languages and 
compilers today are so robust and advanced that a team could chose practically 
any language they wanted and still be able to get a functioning microcontroller. An 
obvious comparison would be that the Raspberry Pi uses Python as its primary 
programming language, even when Python is known to be very high level and not 
offer much control over the physical level of programming. That being said, the 
Raspberry Pi and Python language allow you to intake serial commands as well 
as pin registration, employing some low-level work. Yet, the base C language still 
remains the go to and best programming language for low level programming 
projects. It’s definitely the fastest language out there (unless the assembly 
languages are accounted for) and has pretty much every single low-level capability 
that could be asked for. One of the big reasons for this is because you can directly 
optimize the space used for the program and work at a very base level from what 
the hardware is doing naturally. A Python compiler must go through an abundance 
of steps to end up producing a large machine code file that gets upload to the 
microcontroller, whereas a C compiler is almost just a syntax rewrite into assembly 
code and then easily assembled into machine code.   

 

3.3.5.5 Integrated Development Environment  

Most popular microcontrollers tend to have an IDE that’s associated with them. In 
this case, the Raspberry Pi doesn’t have one associated with it. However, there 
were three IDE’s that came up as the first choices for our microcontrollers, two of 
which are the default ones and one is an open source IDE. The MSP series of 
controllers typically used an IDE called Code Composer which is actually based 
upon another open source called Eclipse. Code Composer featured a large set of 
tools for the programmer which included a debugger, a built-in console, a file 
management system, and exporter. It had a huge set of tools and features giving 
the user and endless amount of options. Albeit these options, it actually seemed 
to be too many options for us and too many ways for thing to go wrong. Our team 
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valued speed of application more than the immense list of possibilities, and it 
became clearer that we’d rather use an Arduino which contains a much simpler 
and streamlined passage way to get to our goal.   

 

Energia is the other IDE that could be used for both MSP and Arduino; however, it 
was too similar to Arduino’s custom-made IDE, and would just involve extra steps 
to set up. As a matter of fact, they are so similar, there is a lot of documentation 
comparing the use of Energia on an MSP430 to that of an Arduino. Even the layout 
and functionality of the two IDEs are remarkably alike. However, in terms of the 
speed and procedure of getting things working Arduino still takes the win with 
having effectively no installation process. That and a more user-friendly 
architecture regarding the actually practice of programming on it makes Arduino 
still a just better choice than Energia.  

 

3.4 Parts Selection Summary 
 

As a result of the strategic part selection process, the main components for the 
design have been collected. An image of the main components can be seen in 
Figure 32 below. The numbers in the image correspond to the numbered list on 
the following page. 

 

 
Figure 32: Major Components 
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1. Motor 
2. Power Supply 
3. Sensor 
4. Joystick 
5. Microcontroller (ATmega2560) 
6. Microcontroller (ATmega328) 

 

The following table provides an overview of what major components were selected 
for our scale model prototype. Specific details as to why each component were 
selected can be located in the strategic parts selection subsection found in Section 
3.3. In the following section of this paper (Section 4) we will talk about how related 
standards and realistic design constraints affected the parts selection process. 
Constraints in the areas of cost, manufacturability, and environmental friendliness 
were considered in the selection process of the parts as well as which standards 
such as communication standards the relevant parts in Table 8 below use or do 
not use. We also considered some sustainability constraints in selecting parts such 
as if the desired parts were readily available and in stock. 

 
Table 8: Parts Selection Overview 

Item Part Number Manufacturer Price 

Motor STM17R-3NE Applied Motion 
Products 

$204.00 

Power Supply PS150A24 Applied Motion 
Products 

$172.00 

Sensors OPB980T51Z TT 
Electronics/Optek 
Technology 

$5.04 

Joystick 512 Adafruit $5.95 

Microcontroller ATmega2560 Amtel $12.21 

Microcontroller Atmega328 Amtel $3.21 
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4. Related Standards and Realistic Design 
Constraints 

 

Having realistic design constraints and adhering to realistic standards is a very 
critical aspect of any deliverable product to a customer. In our case our customers 
include both our professors and the supporting personnel that work at FSI and 
Robinson Observatory. The following sub-sections outline the relevant standards 
used in our project as well as the design constraints that were considered 
throughout the part selection process following all the way through integration and 
testing. 

 

4.1 Standards 
 

This section outlines how ANSI Related Standards impact the design process of 
our project and lists the relevant communications standards used such as the very 
well-known USB standard. “Standards are documents that describe the important 
features of a product, service or system. For example, CSA Standard Z262.34-00 
Ice Hockey Pucks specifies a hockey puck's material, size, mass, hardness at 
room temperature and test methods” [12]. The idea of standards really came about 
when it started hindering the safety of humans. ASME was in response to several 
steam boiler pressure vessel failures [13], and at some point, a collection of 
engineering institutes at the time came together to create an organization called 
ANSI. ANSI now watches over the creation of standards in the U.S., but also 
translates them to international standards so that they can be used worldwide. 

 

4.1.1 ANSI Related Standards and their 
Design Impact  
 

Standards can be easily interpreted as the backbone to modern technologies and 
lifestyles as they perform very supportive roles. They facilitate communication 
between designs without actually communicating data. This universal 
communication between designs takes time and effort to build which is where 
IEEE-SA, ANSI, NSSN, and various other organizations come in to develop the 
standards to be used. The IEEE-SA and ANSI aren’t actually run by governments, 
but by communities that come together to create international or national 
standards to be adopted by governments, consumer groups, and the like. These 
standards aren’t required by law to be met, but more a sort of checklist that allows 
products to be compatible across all types engineering. Essentially, by saying if 
something is up to a certain standard, the user knows that the product meets listed 
requirements and guidelines.   

 

The University of Canterbury describes standards as “documented agreements 
containing technical specifications or other precise criteria to be used consistently 
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as rules, guidelines, or definitions of characteristics, to ensure that materials, 
products, processes and services are fit for their purpose” [14]. From the definition, 
standards can be used as rules, guidelines, or definitions, which illuminate what 
standards can be used for. Noting the ability to become rules, the engineering 
codes definition is then created. Engineering codes can be standards that if not 
adhered to can become punishable by law. For our particular project and product, 
there will not be any engineering codes we must adhere to, however we will be 
taking advantage of already existing codes implemented.  

 

Our project is going to have a set of prebuilt devices and products that will all be 
incorporated together, which all come with their own set of standards. For 
connecting with the CS team’s software, a USB standard will have to be taken into 
consideration as it will be how we communicate between the computer and our 
Arduino Mega. The Arduino Mega will have its own set of standards that it will be 
trying to meet. It has its own built in USB and C based language which is then 
compiled and sent through the Arduino brand IDE.  

 

4.1.2 USB Standards  
 

The standards for the Universal Serial Bus were actually created with companies 
instead of just established standard organizations such as the ones listed above. 
It became a joint effort between Compaq, Intel, Microsoft, NEC, and a couple of 
others to create a port device that was easily compatible with a plethora of devices. 
The Universal Serial Bus is arguably the most prominent example of how 
standards help develop the world with the interoperability between devices as a 
common goal. It is the flagship of the digital world in terms of a standard that wants 
to be met by designers. The parties associated with creating this standard also 
released the document for free, detailing how developers should go about creating 
a USB device that is compatible with other USB devices.  

 

The original motivation behind the USB 2.0 had three parts associated with it. The 
“connection of the personal computer to the telephone” begins as the first one on 
the list. During the starting age of the PC and communication systems, each were 
both being developed separately. The developers saw this and agreed that a 
cheap and universal solution would be needed to link the two realms of technology 
if the future generation of products wanted to be upgraded from the previous 
generation. The second motivation was the “Ease-of-use” idea. Computers used 
to be in a very niche market due to their high learning curve and lack of 
understanding from the public on what can and can’t be done with a computer. It 
was detrimental to the users if certain aspects of the computer they owned didn’t 
allow other devices to work together, thus raising the cost and required 
understanding to be able to reconfigure the computer to suit a user’s needs. Not 
only did this ease of use benefit the user and variety of the computer, but it also 
played a significant role in the marketing of computers as the accessibility for them 
opened up a large number of peripherals and spawned scores of products that 
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could be bought. The third and formally final motivation is the “port expansion”. 
Expanding on this means that instead of having two ports, one for input and one 
for output, a single USB port could be used for both in terms of connecting the 
device. This halves all the required ports needed on a computer, essentially 
doubling the number of connectable adaptors, furthering the market for 
peripherals. A fourth and quieter motivation is that as time moves on the PC began 
getting more powerful and capable of higher performance. So, a new, faster type 
of port needed to be developed. Conclusively, the developers put a very strong 
summation to what USB’s meant for computer with the quote, “Thus, USB 
continues to be the answer to connectivity for the PC architecture”.  

 

From a physical side the port itself has specific requirements that must be met not 
only electrically but physically. Starting electrically, the USB 2.0 requires a 5 volt 
to ground connection with a maximum current at 1.5 Amps (Figure 33). This VCC 
doesn’t provide any data and is actually specifically to be used to either supply or 
deliver power to a circuit. This will provide the power to the Arduino mega and is 
labeled pin 1. The opposing pin 4 is the ground which everything will be referenced 
to. The USB provides 2 data pins called D+ and D-. These are serial pins that feed 
in data one-bit rate at a time in the form of a square wave.  

 

 
Figure 33: USB Description Graphic 

 

4.1.3 C Standard 
 

Before the invention and fabrication on modern compilers and computer 
languages, specified hardware-based assembly was the only way to program a 
computer to get it to perform the tasks desired of the programmer. However, as a 
giant reflection of the engineering world, each hardware and setup had their own 
specified version of assembly that needed to be used. And just as what happened 
in the engineering world, it became very difficult to properly share and conform 
certain products and projects from one to the other. Then the C language was 
made. The function and establishment of the C language is so similar to other 
standards from engineering where ANSI and ISO came together. They formed a 
standard of C with employing the idea of “Software developers writing in C are 
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encouraged to conform to the standards, as doing so helps portability between 
compilers” [15]. 

 

As it stands there are multiple different versions of the C standard as the years 
went on. They are aptly named based on the year they were created, such as C99 
in 1999, and C11 in 2011. The current iteration of the C standard is C18 which was 
just released fairly recently and is the one our Arduino will be based on, as Arduino 
language is not actually C, just heavily inspired by it. C18 is extremely similar to 
C11 as it mainly just addresses certain defects in C11, which means no actual 
language changes.  

 

One major change that could affect us is the removal of the gets() function in C11. 
This function reads in bytes from a standard in operation, but what known to be 
unsafe and cause a plethora of problems for programmers. The second major 
change in the language of C11 would be the addition of anonymous unions and 
structures that allow you to not identify the data type. However, unions and 
structures will most likely not be used at all with our program as these advanced 
data types won’t serve as much use to us. In the end we will unfortunately not be 
able to say our code is C18 standard compliant due to Arduinos special functions. 
Arduino’s C based language comes with some extra functions for the programmer 
to use that invalidate our code from being portable to anything other than an 
Arduino microcontroller. 

 

4.1.4 ATmega Standards 
 

The Arduino brand of boards and microcontrollers is known and used worldwide. 
It is a marketed device that heavily is advantaged by the standards it uses. With it 
being this largely used device it obviously has standards that it must abide by. The 
user manual for Arduino design boards has a couple of notable listing of standards 
they use and follow. The JEDEC standard is a memory ram standard outputted by 
a committee that oversees semiconductor microelectronics, which AVR uses to 
store temporary memory. Another standard is the RS-485 standard which defines 
serial communications in electrical systems. Arduino moves by this standard in 
setting up its transmit and complete flag that can be found as a port on the Arduino 
Mega board and microcontroller, as well as in the USART. It is also known to be 
used in USB connections. A third standard AVR uses is the JTAG industry 
standard of “verifying designs and testing printed circuit boards after manufacture” 
[16]. This is mostly for quality assurance after the board is built to make sure the 
final product actually is the intended final product, which doesn’t apply to the actual 
Chip AVR makes. However, the final one is closely tied to the JTAG standard as 
it is applied to quality assurance rather than a core design of the microcontroller 
and board. The 1149.1-2001 IEEE standard test access port and Boundary Scan 
Architecture standard just tests the integrated circuit for faulty silicon components 
and works in tandem with the JTAG testing. 
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The ATmega has a significant amount of standards that it must adhere to before 
having the microcontroller and board go on the market to be purchased. 
Nonetheless, these standards don’t quite apply to our specific project. We most 
certainly take advantage of them, but the standards themselves have very little to 
do with our design of the telescope. 

 

4.1.5 NEMA ICS 16 
 

This standard, published by the National Electrical Manufacturers Association 
(NEMA) governs the design and implementation of our two NEMA-17 motors.  The 
standard referenced for this document was last updated in 2001 and is available 
on the NEMA website [17]. Although there is a great deal of specifics covered by 
this standard, only the items most relevant to our design will be covered here. 

 

The first conditions relevant to our design pertain to operating conditions for those 
motors.  For example, the NEMA standard designates that the rated value of 
ambient temperature shall be 40°C (104°F) unless otherwise specified by the 
manufacturer.  Additionally, these temperature ratings are based upon operation 
at altitudes of 1,000 meters (3,300) feet or less.  In both cases, these constraints 
are well within the design parameters for our device and should not need to be 
considered. 

 

There are a number of size and other mechanical considerations implemented in 
this standard.  However, as the motor selection has been discussed and approved 
with our mechanical engineering counterparts, we are confident that the NEMA 
specification is reasonable for our use case.  Therefore, a detailed examination is 
not needed. 

 

Similarly, there are a number of testing and acceptance criteria specified in the 
standard (e.g. dielectric withstand, step accuracy or insulation resistance).  Again, 
since these tests are undertaken by the manufacturer, not the end user, these are 
not of specific concern to our design. 

 

Of particular interest are the various specifications listed under the controls section 
of the standard.  First, we consider the range of operating voltage and frequency.  
The standard allows a deviation of +/-10% for RMS input voltage and a frequency 
deviation of +/-2%.  Since our power is provided by a supply sold by the 
manufacturer of the motors, these tolerances are well within spec and not a 
concern for our implementation. 

 

The NEMA standard specifies the use of rotary encoders to serve as the position 
and velocity feedback device.  Operating supply voltages can adhere to a range 
of values from 5V DC through 28V DC, but in the case of our motor implementation 
the manufacturer has selected 5V.  Outputs can confirm to the following options: 
line driver, TTL compatible, open collector, amplified sine wave and triangular 
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wave.  Our device utilizes a line driver and, in addition, is TTL compatible.  
Additional sections specifically relevant to our device and application include 
specifications on quadrature error.  Since our encoders operate on the quadrature 
principal, we see that a specified measurement is performed relative to the offset 
in quadrature from the expected 90°. 

 

Indexing is accomplished via a square pulse.  As an interesting aside, the standard 
also references indexing as a home position or zero reference.  This is especially 
applicable to our design, as the index will be used to confirm when the device has 
reached its home position.  The index can be either gated or ungated.  Our 
particular application employs an ungated index pulse – that is, a pulse that occurs 
once per revolution. 

 

Finally, there is a suite of information on testing the various outputs available with 
lab equipment.  Again, this is a relevant section for our project as much of the 
testing will be done in the lab using oscilloscopes and function generators (in 
addition to the waveforms generated by our controller – the Arduino).  Testing 
procedures include items such as line count verification for encoders with index 
and testing the index using a two-input oscilloscope.  Each procedure includes a 
step-by-step breakdown of the necessary test setup (e.g. step 1 – connect two 1kΩ 

resistors in series to form a series resistor network, etc.). 

 

4.1.6 Communication Interface Standards 
 

When considering the different motor options, it was found that some of the STM17 
models had RS-232 communication interface, some had RS-485 communication 
interface, and some had no communication port. Although we ended up choosing 
the motor model which did not make use of the RS-232 communication port, this 
communication standard is still important to discuss in the context of our project 
because of how ubiquitous it is in the Robinson Observatory on Ara Drive. In the 
observatory, the dome rotation controls, door controls, and positioning controls are 
all controlled through a computer and series of control boxes via USB and RS-232 
interfaces. Understanding the RS-232 standard will be key for future team’s 
progress towards replacing the control box in the observatory as well as ours so 
that we can try to mimic the communication protocol as close as possible in our 
scale model. 

 

The recommended standard (RS-232) was first introduced in 1960 by the 
Electronic Industries Association (EIA) for data transmission via serial 
communication [18]. The standard gives recommendations for the electrical 
characteristics and the timing of how signals are sent and received. In addition, 
like many electrical standards there are also mechanical standards associated 
such as the physical size and pinout of the connectors. The female and male 
connectors are commonly seen on older equipment, particularly personal 
computers, printers, mice, power supplies and other computer peripherals. Since 
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the Observatory has been around for a long time, it would make sense why they 
still have peripheral equipment that is reliant on the RS-232 standard for serial 
communication.  

 

As for the electrical characteristics of this standard, there is a maximum open-
circuit voltage limit of 25 volts and the output signal level usually varies from +12V 
to -12V [18]. The data transmission limit is 256 kb/s and the cable line limit is 50 
feet.  As far as logic control, there are procedures to control the flow of information 
in both directions. The signals are represented as voltage levels with reference to 
a common ground or power in the system. Certain pins have certain functions like 
sending signals meaning ‘Request to Send’ and ‘Clear to Send’ which control data 
from the transmitting computer to the receiving data set. There are also 
confirmation pins indicating whether the data was transmitted, or received, and 
which data carrier to detect. 

 

Some reasons this standard has become outdated are that it is limited to lower 
data transmission speeds and works best with shorter cable lengths. The 
connectors are also fairly large and take up a lot of space on the devices that use 
them. The USB and RS-422 standards which serve as the RS-232 successor in a 
way are further discussed in detail in their respective sub-sections in this chapter. 

 

4.1.7 Industry Standard 26C31 Differential 
Line Driver and 26C32 Receiver 
 

When considering the different motor options, one of the key differences between 
the top three considered was whether they had a built-in encoder or not. As seen 
in Section 3.3.1, the encoder option was selected. The incremental encoder 
specifications state that there is an internal differential line driver which can source 
and sink 20mA at TTL levels. The specifications recommend using the industry 
standard 26C32 as the receiver. The corresponding datasheet to the AM26C32 
Quadruple Differential Line Receiver which will be used to assist in digital data 
transmission lists that the receiver meets or exceeds the requirements of ANSI 
TIA/EIA-422-B, TIA/EIA-423-B, and ITU Recommendation V.10 and V.11. 

 

The TIA/EIA-422 standard, which is also known as the RS-422 standard, is a 
technical standard which was created by the Electronic Industries Alliance (EIA) 
which specifies the required electrical characteristics of a digital signaling circuit. 
This standard imposes limits on the transmission rates of data and the length of 
cables that use this standard. The data transmission rate limit is 10 Mbit/s and the 
limit on cable length is 4,000 feet. Our cable length need in our application is well 
under that limit. 

 

Though this specific standard only applies to the definition of signal levels, there 
are also other properties of the serial interface such as mechanical properties 
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applying to the connectors and properties of the pin layout and wiring. Those 
properties are part of the RS-449 and RS-530 standards. 

 

As far as communications wiring, the RS-422 standard indicated that the wiring 
should be made of two sets of twisted pair cables where each cable pair is 
shielded. Shielded cables have the advantage of being more noise immune 
because of how they couple the noise better and more symmetrically than their 
non-twisted cable counterparts [19]. Compared to the RS-232 standard, the RS-
422 standard overcomes the limitation of using single-ended standards. These 
limitations also include the limited data transmission rate as well as the lack of 
ample noise rejection capability.  

 

The second standard that is applicable the differential line receiver we will be using 
is the TIA/EIA-423 standard, also known as RS-423. This standard is similar to 
RS-232 but features higher data transmission rates. Compared to the RS-422 
standard one of the main differences is that it defines an unbalanced or single-
ended interface with a sending driver which is unidirectional. A table comparing 
both RS-422 and RS-423 standard specifications is below [20]. 

 
Table 9: Comparison of Telecommunication Standards 

Specification RS-423 Standard RS-422 Standard 

Operating Mode Single-ended Differential 

Maximum data 
transmission rate 

100kb/s 10Mb/s 

Max. Driver Output 
Voltage 

+/- 6V -0.25V to +6V 

Driver Load 
Impedance 

Less than 450 Ω  100 Ω  

Slew Rate Adjustable N/A 

Receiver Input 
Voltage Range 

+/- 12V -10V to +10V 

 

The last standard which our differential receiver uses is that of the International 
Telecommunication Union (ITU) which coordinates standards for 
telecommunications. There are a series of ITU recommendations established for 
data communication and two of them, specifically V.10 and V.11 are met or 
exceeded by our differential receiver. Recommendation V.10 states that for 
unbalanced electrical circuits the data communication can be up to 100 Kbit/s 
which is in agreement with the RS-423 standard. The recommendation under V.11 
states that for balanced electrical circuits, the data communication can be up to 10 
Mbit/s which is in agreement with the RS-422 standard. 
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4.2 Realistic Design Constraints 
 

As mentioned previously, the realistic design constraints that are set upon our 
project have a big impact on how we go about choosing parts and integrating a 
working product. The design constraints used can be broken down into the 
following categories: economic constraints, time constraints, environmental 
constraints, social constraints, political constraints, ethical constraints, health 
constraints, safety constraints, manufacturability constraints, and sustainability 
constraints. 

 

4.2.1 Economic and Time Constraints 
 

Since our project is in the process of being funded by the Florida Space Grant 
Consortium, there is a potential for a generous $750.00 of additional funding that 
our team can use. Anything outside of that will have to be covered by the individual 
members. Currently, the procurement of some parts has begun before receiving 
formal funding as waiting for funding could cause serious delays in the project 
progress. Our team does not wish to spend too much more over the potential 
allotment of $750.00 therefore this serves as an economic constraint towards our 
project. This economic constraint consequently affects the part selection process 
for our various subsystems. For example, there may be options for more precise 
motors and encoder feedback but that comes with a price. It will have to be 
carefully considered for each of the subsystems weather the extra cost associated 
with alternative parts cannot be overcome via software or another method. 

 

In addition, there are harsh time constraints on the project that should also be 
considered. All our members on our team are taking at least three engineering 
classes in addition to senior design. At least two members have part-time 
internships in addition to their University of Central Florida collegiate course load. 
Therefore, to maintain good grade point averages for the semester, there must be 
a time limit on the total time dedicated towards this project. Another timing 
constraint to consider is that this being an interdisciplinary project, our sponsors 
are not available for meetings all the time so there needs to be a comfortable 
amount of cushion time to allow our sponsors and significant outside contributors 
enough time to adequately address any concerns or questions that may arise. 

 

Another factor to consider is that since our teams’ advisor is in the Mechanical and 
Aerospace Engineering department, any purchases made with FSI or FSGC funds 
must be made through the MAE purchasing office. Although our team is required 
to receive all major components by the end of the semester according to Senior 
Design 1 rubric, in order to actually receive those parts on time, we will have to 
submit appropriate order forms with a reasonable time allotment for the purchasing 
office to place the order, receive the order, process the order, and for our 
purchasing lead to retrieve the order. Because of those reasons, any purchases 
made need to consider this large time constraint when selecting parts and vendors.  
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Even though our group is one of the few groups that elected to take Senior Design 
II in the fall as opposed to the summer, our group still feels as if there will still be a 
significant time constraint felt throughout all semesters. This is because over the 
summer, all members of the team will be pre-occupied with both in-state and out-
of-state full time and part time internships. However, through the use of our 
milestone planning tools later discussed in the Administrative Content section, our 
group is confident we can overcome the obstacle of limited time. 

 

4.2.2 Environmental, Social and Political 
Constraints 
 

The final product of the scale model telescope will be geared towards hobbyist and 
amateur astronomers use. Therefore, it is important to consider the social 
constraints of those who will end up using our product if it were to be re-produced 
at any volume. Having an easy-to-use user interface is one way to achieve this. In 
addition, building the scale model telescope system at a low cost will also adhere 
to the social constraint of consumer budget. 

 

As for environmental constraints, it is our teams desire to use as many RoHS 
components as possible in our design. RoHS stands for Restriction of Hazardous 
Substances and is implemented under the RoHS Directive that restricts the use of 
certain hazardous substances under European Union transposed laws. To be 
compliant with the RoHS Directive, each component must have minimal 
percentages of concentration by weight of a handful of substances in any given 
material. These substances are Cadmium, Hexavalent Chromium, Lead, Mercury, 
Polybrominated Biphenyls, and Polybrominated Diphenyl ethers, or any of their 
compounds. The percentages of concentration must all fall under 0.10% for all 
substances except for Cadmium or Cadmium Compounds which have an even 
tighter restriction of 0.01% by weight [21]. 

 

4.2.3 Ethical, Health, and Safety Constraints 
 

As discussed in the parts selection section, one of the components used in our 
system to verify pointing accuracy is a laser pointer. Different laser classes have 
different levels of safety to be considered. In the United States, most lasers that 
are used in astronomy and by the general public to point at the sky and certain 
constellations are Class 3a lasers which emit a green neodymium diode laser 
beam [22]. This laser beam has a wavelength of 532 nanometers and has an 
output power of just under 5 milliwatts [22]. Since this laser class is higher than a 
Class 1 or Class 2 laser, it requires a warning label reading “danger” by the US 
Food and Drug Administration (FDA). As for safety, it is critical that the laser beam 
of this class is not pointed into anyone’s eye. Since higher class laser beams are 
much more concentrated than lower class laser beams, every precaution must be 
taken from a safety standpoint to avoid accidental pointing into someone’s eye. 
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Precautions like constantly ensuring the laser pointer is off unless everyone is 
standing behind the horizon line limits of the telescope will ensure everyone’s 
safety. There should also be affixed appropriate IEC-Compliant laser safety labels 
placed on the outside of the laser. 

 

Another safety constraint is manufacturing a PCB that does not generate too much 
heat so that it would be unsafe to touch any voltage regulation components. A 15V 
linear voltage regulator for instance, has a maximum operating temperature of 125 
degrees Celsius, or 257 degrees Fahrenheit. Temperatures of only about 80 
degrees Celsius are needed to cause severe burns when touched for less than 
one second. Therefore, it is critical that any components that can reach that 
temperature when operating be either dissipated with a large enough heat sink or 
completely concealed and distanced on the PCB from any components that a user 
would interact with such as a joystick. 

 

In addition to ensuring the components on the PCB do not burn anyone, the 
manner in which soldering is used poses another PCB related health and safety 
constraint on the project. For one, soldering irons can reach a temperature of 400 
degrees Celsius so care should be taken to never touch the tip of the soldering 
iron. If a tip needs to be replaced for one with more surface area, the replacement 
should only occur once the iron has reached a safe temperature. In addition to the 
burning hazard from the soldering iron tip, soldering certain materials heats them 
to a point where fumes can be inhaled by the person performing the soldering. 
Additionally, flux which is used to aid in the soldering process is known to contain 
rosin which also produces dangerous solder fumes [23]. It is important that the 
proper soldering conditions are used which include ventilation by means of a fan 
that can prevent the soldering fumes generated from being inhaled. The type of 
solder used is also a constraint on this project from a health and safety perspective. 
Solder which contains traces of lead is considered to be toxic, especially if 
ingested. Therefore, firstly the use of lead containing solder should be avoided, 
and if this is not possible, then the hazard of ingesting the lead containing solder 
should be minimized.  

 

4.2.4 Manufacturability and Sustainability 
Constraints 
 

For a product such as our senior design project to be manufacturable, it must be 
able to be easily reproduced. This includes trying to use commercial off-the-shelf 
parts when possible. Using commercial off-the-shelf parts with short lead times 
and large stock quantities also helps our project meet sustainability constraints 
since it is less-likely that those parts will go obsolete in the near future. Another 
way to make our project more sustainable is to be robust in the design of the PCB 
so that components are attached professionally and securely. Also, any wires that 
come into contact with moving parts on the telescope should be wired 
appropriately and with enough slack so they are not strained during any particular 
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movement or combination of movements. Having optical sensors to determine 
when the telescope reaches the pointing limits will help prevent overstretching and 
straining of the wires leading to the motors from the power supply and control 
system at the base of the telescope. 
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5. Project Hardware and Software Design 
Details 

 

This section on project hardware and software design details outlines the process 
at which the team is designing each particular subsystem. For our complete 
design, we will have a total of six subsystems, with one of the subsystems being 
broken down into a set of two systems due to the small size of the subsystems. 
The subsystems are; DC to DC converter, Sensors and LEDs, Motors, 
ATmega2560, Joystick, and the ATmega328. 

 

5.1 Initial Design Architectures and Related 
Diagrams 
 

There are many options when it comes to choosing a microcontroller for a project. 
A considerable amount of thought is required to choose the right microcontroller, 
such as how many and what type of hardware interfaces (communication and I/O), 
as this will dictate the number of pins and space is required of the microcontroller.  

 

Software architecture is another important piece of the puzzle to consider. This will 
determine how heavy or light the processing requirements are. Cost and power 
constraints are also important factors to consider. With that being said, choosing 
to use an Arduino Mega 2560, appears to satisfy all of our requirements needed 
in a microcontroller because it provides the functionality, we need for our design 
but also satisfies the requirements from the sponsor.  

 

To also satisfy the requirements from UCF, an on-board microcontroller that 
performs simple functions will be used. The on-board microcontroller of choice is 
the ATmega328. This microcontroller will be added to the shield which will attach 
to the ATmega2560 development board. 

 

The ATmega2560 provides the ability to attach a shield to the existing board to 
satisfy our requirements of constructing a printed circuit board (PCB). A shield is 
modular circuit board that piggybacks onto the ATmega2560 to instill it with extra 
functionality as seen in Figure 34 below. 

 

At the current state in our design, it is projected that one shield will suffice, 
however, as we continue to add complexity to our system, the limited space we 
have on our shield decreases. As we continue our design, we must factor in that 
in the future, additional shields may be attached to the ATmega2560, so the routing 
of signals needs to be assessed. Also, there will be numerous plugs going on the 
shield, so we must make sure that they do not get in the way of the possible 
additional shields in the future. 
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Figure 34: Stacked Arduino shields 

 

As far as the structure and design of the system is concerned, the team made up 
of Electrical Engineering students, Computer Science students, and Mechanical 
Engineering students is mostly concerned with providing a more accurate model 
of the current system that is in place at the Robinson Observatory. Because of the 
added features, such as the focus, dome control, and shutter control, a complete 
replication of the system is unattainable for a single senior design team to complete 
in a two-semester project. The goal is to foresee some of the changes required in 
the future two-semester projects to aid the future senior design teams in their 
design without requiring them to completely redesign the system.  

 

Choosing a microcontroller with many extra inputs will provide the future teams 
with the ability to add additional inputs and outputs to the system and easily alter 
the software of the system using the Arduino IDE.  

 

Ensuring that the designed system provides an ample amount of power will also 
give the teams enough room to increase the power consumption of the system 
without fear of overconsumption.  

 

The current plan is to purchase a power supply that is capable of driving the two 
motors (right ascension and declination) and the rest of the system. The output of 
this power supply unit would be split to the motors and then use a DC to DC 
converter to provide all the lower power electronics with a source that is more than 
able to handle any load required.  
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5.2 First Subsystem, Breadboard Test, and 
Schematics 
 

For the first subsystem of the project which is a DC to DC Converter, the following 

two sections describe the schematic layout of the subsystem, factors that went into 

designing the subsystem, any tools used to assist in the design of the subsystem 

(such as TI’s Webench Power Designer), as well as how to verify the subsystem 

design is working as expected via breadboard testing. 

 

5.2.1 DC to DC Converter Design and 
Schematic 
 

Starting with the DC to DC converter for the system, a schematic layout of the 
design can be seen in Figure 35 below.  

 

 
Figure 35: DC to DC converter Schematic 

As one can see, the input voltage to the DC to DC converter is intended to be 
24VDC. This initial voltage would be from the PSU (PS150A24 24VDC switching 
power supply) to be purchased to supply power to this DC to DC converter for the 
operation of the ATmega2560, and all of the other lower power electronics in 
addition to the motors being used to control the telescope. The motors will not 
receive their power through this DC to DC converter because the V+ of the motor 
requires 24VDC, but they will receive their control signals for steps and rotation 
through the signals from the ATmega2560 that receives its power from the DC to 
DC converter.  
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To design this circuit, Texas Instruments (TI) provides a power designer tool, 
Webench, that aids in the design of an end-to-end power supply. Figure 36 below 
shows the website and the parameters required for the end-to-end design.  

 

 
Figure 36: Webench Power Designer 

The acceptable range for the ATmega2560 via the Vin pin is 7-12VDC. If the Vin is 
less than 7V, the 5V output pin on the ATmega2560 may supply less than 5V and 
become unstable, but if supplied with more than 12V, the voltage regulator may 
overheat and damage the board. To eliminate the possibility of either issue, a Vin 
of 10V was chosen. After reviewing the PSU datasheet, the minimum, maximum, 
and nominal output voltage was obtained, which provided the necessary 
parameters for the power designer tool from TI. With all of the required information, 
Webench was able to output multiple DC to DC converters that met our 
requirements. When narrowing down the selection of converters, there were many 
things to consider: efficiency, BOM cost, footprint, BOM count, component 
footprints in Eagle. 

 

The efficiency of the converter tells us how close to the 10V output at 1A we will 
be. This is important, but the majority of the designs provided an efficiency of 88% 
or more, so that still did not narrow down the search much.  

 

The BOM count and footprint is an important consideration because our shield has 
a limited area and Eagle, the PCB software we are using, has a free version that 
only allows PCBs to be of a certain size. Also, the more components, that is the 
higher BOM count, the more items there will be to solder onto the PCB, which 
increases the probability of board issues.  
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The BOM cost is not much of a concern because the DC to DC converter we are 
needing would not require costly components. The components that are used for 
this low-level power are quite cheap to manufacture. The BOM costs in 
consideration were under $2.00.    

 

Lastly, the footprints in Eagle played a major role in the selection of a DC to DC 
converter. When designing a PCB, the physical layout of the devices must be 
known for the layout of the board. Although our combined experience using PCB 
design software is limited, we have realized that finding parts that have existing 
footprints are hard to come by in most cases. So, before narrowing down our 
design decision, the individual parts, mostly the regulator will be researched to 
ensure that the footprint is available for these parts. Footprints can be constructed 
by the user, but that can add a level of complexity and uncertainty that does not 
seem to be worth the risk since there are many options for DC to DC converters. 

 

5.2.2 DC to DC Converter Breadboard Test 
 

The breadboard testing for the DC to DC to converter is quite straightforward. 
Since TI’s Webench program provided the design for the team, any error in design 
should be eliminated. To test the converter, a 24V DC signal is applied to the input 
of the converter by means of a DC Power Supply and the output voltage is checked 
to ensure a 10V DC signal at the output by using a Digital Multimeter (DMM). In 
addition to verifying the system outputs a proper voltage, the current must also be 
checked. The current capabilities of the DC to DC converter is designed to handle 
1A. To test this, there must be a load attached to the output of the converter and 
the current along with the output voltage must be tested.  

 

This subsystem can be easily tested by itself because of general capabilities a DC 
to DC converter needs to operate as intended. In the next subsystem, the LEDs 
and sensors can be tested with and without the DC to DC converter to not only 
verify the design of the subsystem is correct, but also that the subsystem integrates 
well with the DC to DC converter subsystem. 

 

5.3 Second Subsystem, Breadboard Test, and 
Schematics 
 

For the second subsystem of the project which is composed of both the status 

LEDs and sensors, the following two sections describe the schematic layout of the 

subsystem, factors that went into designing the subsystem, any tools used to 

assist in the design of the subsystem, as well as how to verify the subsystem 

design is working as expected via breadboard testing. 
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5.3.1 Status LEDs Design and Schematic 
 

The second subsystem designed for our system are status LEDs. Status LEDs 
was an idea developed by our team as a way to show the user the current status 
of many of the devices within the system. When speaking with the team that 
operates the telescope, it seemed as if the team was confused as the current 
status of the telescope because of the lack of feedback from the system. The 
current system at the Robinson Observatory has beepers to beep when the motors 
were ready, but that was all that it offered. In addition to keeping the user informed 
on the operation of the system, adding other LEDs for other purposes can assist 
in diagnosing issues, or aid in testing of the system. The LED system we have 
designed can be seen below in Figure 37. 

  

 
Figure 37: Status LEDs 

When designing the LED circuit, it must be understood that a current limiting 
resistor is required to be in series with the LED. When an LED is forward-biased, 

the internal resistance is extremely small. Using a form of Ohms Law, 𝐼 =
𝑉

𝑅
, it can 

be seen that with an extremely small resistance, the current will increase to a level 
that is not suitable for the system. The LED cannot handle that level of current, 
therefore it will blow the LED immediately. To design the circuit with the resistor, 
an understanding of the forward voltage Vf and forward current If of the LED must 
be known. The Vf is different for different color LEDs. We plan to use red LEDs for 
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all of the status lights. The Vf of the red LEDs are around 2V with an If of 20mA. 
Using Ohms Law, and the understanding that the input to the resistor will be 5V 
because that is the output from the ATmega2560, the required resistance for the 

resistors can be found quite simply. 𝑅 =
5−2

.02
= 150Ω.  

 

The “MOTORx_RUNNING” LEDs are introduced mainly for diagnostic purposes. 
If the motors are running, the user can obviously see the motor turn, but if the 
motor is supposed to be turning but is not, having an LED in the circuit can help 
the technician determine whether it is because the motor has failed or that the 
signal is not reaching the motor, resulting in other internal issues within the PCB, 
or even the signal from the PC.  

 

The “SENSOR_LIMITx” LEDs are for both the user and diagnostic purposes. 
These LEDs will turn on when the telescope has reached its limit on how far it has 
turned. If the telescope turns beyond that point, damage will occur to either the 
mount, the telescope, and/or the system itself. If the LED is illuminated and the 
motor is nowhere near its physical limit, the user will be able to see that the issue 
is not that the motor has reached its limit, but that there is an electrical/software 
issue. This could help speed up the diagnostic process to find the underlying issue. 

 

The “MOTORx_FAULT” LEDs are also both for the user and diagnostic purposes. 
The motors we are using in this design produce an output signal when there is a 
fault within the motor. Translating that fault to an LED will help the user understand 
what is going on with the system if either motor is not turning. This also will help 
the technician diagnose any faults for the system. 

 

The “HOME_POSITION” LED is helpful for the user because it lets them know 
when the system has reached its resting home position. At the Robinson 
Observatory, the system always starts at the home position and turns off at the 
home position, and if it does not reach the home position, it will not follow through 
with any commands. 

 

The “TRACKING” LED is used to inform the user that the telescope has found the 
position in the sky that was requested by the computer and it is locked in and 
following that target.  

 

5.3.2 Status LEDs Breadboard Testing 
 

Testing the LEDs is a simple task that can be quickly verified. There are two ways 
to test the LEDs work as designed.  

 

The first way is to build the circuit on a software program that can provide a means 
for analyzing electrical circuits. The most common used in the education 
department is Multisim. Multisim, created by National Instruments (NI), is an easy 
to use circuit simulation tool that Universities use to teach students how to simulate 
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electrical systems. Multisim unfortunately is not open source and therefore is not 
free to use. There are student editions for purchase, but usually a university with 
an engineering program will have computers with the software for laboratory 
experiments that are required for certain classes.  

 

There are other simulation tools that are open source such as LTspice. LTspice is 
also fairly easy to use, but the capabilities of the program are limited. Some special 
designs such as non-ideal op amp oscillator analysis is tricky because the majority 
of the op amps within the program have ideal characteristics therefore do not 
behave as they do in practice because of the complexity it adds to the analysis. 
This is fine for most cases, however, if a more in-depth analysis needs to be done 
for very sensitive systems, Multisim seems to be the better option. There are many 
more simulation tools for electrical analysis, but access to those options is limited 
due to mostly cost. These other programs would be used by engineers outside of 
the education system.  

 

Figure 38 below shows one LED being tested in Multisim. For this test, the voltage 
across the LED and the current going through it are tested to ensure that it is 
operating within the limits as defined in the datasheet by the manufacturer. Before 
testing the entire eight LEDs in the circuit, one is tested to eliminate complete 
failure if the system was designed improperly. 

 

 
Figure 38: Multisim testing of LED 

 

Once the simulation of the single LED is completed and verified, the simulation 
can be carried out with the additional LEDs connected in parallel, however, as long 
as the voltage source is producing the correct voltage, and the current capabilities 
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of the source can withstand the addition current from each LED, the operation of 
the system will remain the same. Since the voltage source and current capabilities 
of the system does not depend on the software, but of the hardware (ATmega), it 
is unnecessary to simulate the system any further. 

 

Testing the LEDs on the breadboard begins in the same manner as it did for the 
simulation testing by starting first with one LED and testing the circuit to ensure 
proper voltage and current before moving further in the testing process. This time, 
the voltage and current capabilities and values will not be the ideal values given 
with the calculations or simulation tools but will greatly depend on the many 
differences in the hardware and testing devices. Before beginning to understand 
the analysis, the tester must understand how their measured values may differ 
from expected values.  

 

The testing equipment readings vary between the equipment used to test the 
circuits. As it is with everything else, the higher the cost for an item usually means 
the higher the quality, and in this case, the higher the accuracy. The factor with the 
biggest effect on accuracy is temperature. The same goes for the power supply. 
The power supply will heat up with continued use and request for more power, but 
most systems these days are quite efficient for lower cost, but for more accuracy, 
higher priced power supplies can be purchased.  

 

The values for the components used are not exact. All components have 
tolerances that tell the user how much the values can vary. Typical tolerances for 
resistors are +/- 5%.  

 

The testing of the LED circuit is carried out by connecting it to the ATmega and 
sending a digital output from one of the pins. This will not only ensure that the LED 
circuit works, but that it works with the current and voltage capabilities of the 
ATmega. When testing the single LED circuit, the voltage and current is verified 
for the LED to make sure that it is operating within range and will not fail. The 
brightness of the LED is also checked to see if the supplied power is enough for 
the LED. A dim LED is undesirable because the end user would like to clearly see 
the status of the system which would be achieved by providing a well-lit LED.  

 

After verifying the single LED circuit, the next step is to connect the remaining 
LEDs to other pins of the ATmega and verify that even when all of the LEDs are 
on, the current and voltage provided by the ATmega is sufficient enough to power 
the LEDs simultaneously.  

 

5.3.3 Sensors 
 

The sensors in this system can be broken down into two parts, the input diode, 
and the actual sensor part. The input diode shines an IR light to an optical sensor 
that senses if the light is reaching the sensor or not. If something goes in between 
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the input diode and the optical sensor, the signal is broken, and there is no output 
signal. Because of the nature of this design, the input diode needs a constant 
supply of power to always shine its IR light. 

 

5.3.3.1 Input Diode Design and Schematic 

The input diode is a plastic infrared emitting diode within the sensor that shines an 
infrared (IR) signal. This diode also has a forward voltage and forward current as 
seen with the status LEDs in the previous section, therefore a current limiting 
resistor is also needed to keep the current to an acceptable level. Table 10 below 
shows the electrical characteristics of the device we needed to design the circuit.  

 
Table 10: IR Diode Characteristics 

 PARAMETER MIN TYP MAX UNITS TEST 
CONDITION 

VF Forward 
Voltage 

- - 1.8 V IF = 20mA 

 

Using an input voltage of 3.3V coming from a constant output from the 
ATmega2560, VF of 1.6V, and an IF of 20mA, the value of the resistor can be found 

for the IR diodes. Once again, using Ohms Law, we find that 𝑅 =
3.3−1.6

.02
= 85Ω. 

Figure 39 below shows the basic circuit that makes up the IR diodes. Since there 
are two sensors, there are two diodes that need powering. 

 

 
Figure 39: IR Diode Schematic 

5.3.3.1a Input Diode Breadboard Testing 

Because the input diode is an IR LED, testing of the operation of the LED cannot 
be done visually. The current and voltage of the LED can be verified by the same 
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process as performed in the previous section of testing the LEDs. Once this testing 
is verified, the remaining components of the sensor can be connected, as seen in 
the next section, allowing the entire sensor to be tested and verified 

 

5.3.3.2 Optical Sensor Design and Schematic 

The design of the optical sensor portion of the sensor is also quite simple. Figure 
40 below shows the internals of the sensor, including the diode. 

 

 
Figure 40: Optical Sensor Internal Components, Courtesy Texas Instruments 

It can be seen that the three terminals that make up the optical sensor portion of 
the sensor are VCC, OUT, and GND. The electrical characteristics for VCC and OUT 
(VOL and VOH) shown by two cases of the output being high or low, can be seen in 
Table 11 below for OPB980 which was found within the datasheet. 

 
Table 11: OPB980 Electrical Characteristics 

 PARAMETER MIN TYP MAX UNITS TEST 
CONDITION 

VCC Operating 
D.C Supply 
Voltage 

4.5 - 16 V  

VOL Buffer Totem-
Pole 

- - .4 V VCC = 4.5V 

IOL = 
12.8mA  

IF = 0mA 

VOH Buffer Totem-
Pole 

VCC – 
2.1 

- - V VCC = 4.5V 
to 16V 

IOL = 800µA  

IF = 15mA 
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The OUT for the sensor will be a minimum of VCC – 2.1, which will be enough for 
the ATmega2560 to recognize a high or low signal. The VCC we plan to use is the 
output of the 5V pin on the ATmega2560 to provide a constant voltage to the 
sensor because it always needs to sense the state of the system. Figure 41 below 
shows the schematic that was developed to implement these sensors into our 
system.  

 

 
Figure 41: Optical Sensor Schematics 

These connectors connect the wires to the board by a means that can be 
disconnected easily for replacing or testing. The inputs, S1 and S2 are the inputs 
to the IR diodes, the 5V input is to VCC, the SENSORx_OUT is the output from 
each sensor, and the rest of the pins are to ground. The reason for the 10kΩ 
resistor in the schematics is to use it as a pull-down resistor. This enables the 
ATmega2560 to accurately measure the state of the sensor as a high or low.  

 

5.3.3.2a Optical Sensor Breadboard Testing 

The final testing piece for this particular subsystem is the optical sensor. After 
testing the IR LED, the remaining wires can be installed. The first step is to simply 
wire the sensor per the datasheet and test the sensor, then wire the sensor to the 
input and output (I/O) pins of the ATmega. When testing with the ATmega, not only 
the sensor capabilities are verified, but also that the sensor works with the ATmega 
to signal a change in the state of the sensor. 

 

To test the sensor, the gap in between the sensing element and the IR LED needs 
to be broken. This can be done by simply introducing any object that is not 
transparent, because the sensing element is looking for that IR light from the LED. 
Once the obstruction is placed in the path of the IR LED, the state of the sensor 
will switch, and in this case, the output would become a high (5V), and when the 
obstruction is removed, the output would be a low (0V). After verifying the 
functionality, by introducing the sensor to the ATmega, the tester can verify that 
the ATmega accepts the voltage output levels as high or low voltages and can also 
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send a signal to the LEDs that were tested in a section above to trigger an LED 
when the switch opens or closes.  

 

Figure 42 below shows the status LEDs and the sensors wired up with the 
breadboard the ATmega2560 for testing. 

 

 
Figure 42: Status LED and sensor testing 

 

5.4 Third Subsystem, Breadboard Test, and 
Schematics 
 

The third subsystem in our design, generally, consists of the motors.  At a practical 
level, this subsystem can be broken down into several additional subsystems.  
That is, the motor subsystem consists of the motors, the encoder, the power supply 
and an AM26C32 differential line receiver.  The operation of each of these 
subsystems will be detailed here along with a summary of the integrated operation 
of the motor subsystem at the end of this section. 

 

The overall schematic for this subsystem is included here as Figure 43, and each 
component and interconnect will be detailed in the appropriate subsection.  It is 
important to note that we will have two motors and encoders in use in this 
application; only one is presented below to simplify the design discussion. 
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Figure 43: Complete Motor/Encoder Schematic 

 

5.4.1 Motors 
 

Our application employs a pair of STM17R-3NE, NEMA 17 units that incorporate 
an integrated driver, encoder and motor.  This motor was selected for several 
reasons, including robust configuration options (user selectable current, idle 
current, load inertia, step size, pulse type and noise filter), a minimum native step 
size of 200 counts per revolution (CPR) and the availability of an integrated 
encoder. 

 

The electrical connections for this motor are summarized by Figure 44 below.  
These are reproduced in the above schematic, with this connection located at the 
top left corner of the layout.  It is worth noting that these connections have been 
reproduced in numerical order, from top to bottom (1 through 11) on this connector 
with the exception of pin 9, which is designated as no connection (N.C.). 

 

 
Figure 44: STM17R Motor Connections 
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One of the first considerations on this design is whether it was necessary to 
implement differential outputs from the motor (STEP/DIR) to the Arduino MEGA 
2560.  Since the motor and mount will ultimately be housed less than a few feet 
away from the microcontroller, and a large amount of environmental noise is not 
anticipated, it did not seem necessary to implement the added complexity of an 
additional differential line driver chip in our design.  Therefore, the motor is tied to 
the Arduino (via our PCB/shield) as represented by Figure 45 below. 

 

 
Figure 45: Connections from Microcontroller to Motor 

The enable (EN) wires can be used for three primary applications.  First, they can 
be used to enable the drive if a secondary drive becomes faulted.  Next, they can 
enable or disable the motor in response to a proximity sensor.  And finally, they 
can be used to implement a kill switch to shut down the motors.  The first two 
applications are clearly unnecessary in our design.  Additionally, since our overall 
unit will include the ability to cut power to the motors, the kill switch option will also 
not be used.  Therefore, these EN connections are unused in our design. 

 

The OUT outputs close in response to a motor fault condition, providing a digital 
signal across the output.  Our design does utilize these outputs.  The use is 
twofold.  First, we have an LED connected to the output.  This means that if a fault 
condition occurs on the motor, the LED will be illuminated.  Additionally, we have 
this output line connected to one of the digital I/O pins on our microcontroller.  We 
will occasionally poll this line to determine if there has been a fault condition.  
Unfortunately, the Arduino MEGA 2650 only supports 6 I/O pins with attachable 
interrupts, and these are all required for other applications.  Therefore, polling this 
input will be required. 

 

5.4.1.1 Configuration Options 

This motor supports two primary means of control for step and direction.  In the 
first application, the controller pulses one signal for each step in the clockwise 
(CW) direction and another signal for each step in the counterclockwise (CCW) 
direction.  This is an unconventional control scheme, although it is supported by 
the motor and can be enabled through dipswitch #8 on the motor.  The second 
scheme, and the one that we have selected, is referred to as “Step and Direction.”  
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In this scheme, the step signal pulses once for each motor step and the direction 
signal is used to determine direction with a simple high/low input. 

 

The step size on this motor is dipswitch-configurable (dipswitches #1 - #4) and can 
range anywhere from 200 CPR to 25600 CPR.  The ultimate selection for this 
variable will be dependent upon the needs of the mechanical engineering team 
(i.e. dependent on the gear ratio that they select), but for our initial testing 
configuration we have elected a step size of 400 CPR.   

 

At lower step resolutions, the manufacturer advises that the motors can run more 
roughly than in the higher CPR configurations and produce audible noise.  
Therefore, an option called micro step emulation (or step smoothing) is available 
on dipswitch #6 and will be enabled unless we elect a CPR of 2000 or higher.  
There is a minimal lag associated with the command filter used for this process.  
We do not anticipate that this will have an impact on our application, but if an 
impact is noticed (e.g. in the earth’s rotation tracking capability of the system), it 
will be an easy adjustment to disable this feature. Figure 46 below graphically 
demonstrates the lag associated with this option. 

 

 
Figure 46: Motion Profile with Step Smoothing Filter 

The STM17R includes a digital noise filter on both STEP and DIR inputs.  The 
purpose of this filter is to prevent noise that may cause the drive to interpret a 
single step pulse as multiple pulses, thus negatively impacting the motor.  The 
selection for this setting is determined by the speed at which the motor is being 
driven.  This will be addressed in further detail in the following section, but we 
estimate that our needs will require a pulse of less than 150kHz to drive the motor.  
Therefore, this option is set to 150kHz. 

 

The additional configuration options are dependent on the needs an input of the 
mechanical engineering team.  These will be addressed briefly here, and our 
selections for design and testing purposes will be enumerated.  However, these 
selections to not impact the design work of the electrical engineering team and can 
easily be adjusted upon request of the mechanical engineering team. 
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The current provided to the motor can be controlled through dipswitches #1 and 
#2, and defaults at 100%.  Lower current equates to reduced torque alongside 
reduced power consumption and motor temperature.  The best practice here will 
be to work with the mechanical team to confirm the torque needed for their design 
(which is not complete at the time of this writing) and select the lowest reasonable 
option.   

 

Similarly, dipswitch #3 controls the idle current.  Idle current can be set to either 
50% or 90% of the running current, with a reduced idle current reducing holding 
torque in conjunction with reducing motor heating.  Again, the lowest functional 
value for this variable will be elected once the mechanical engineering team has 
completed their design. 

 

Finally, we consider load inertia.  This is a simple calculation (load inertia divided 
by STM17 rotor inertia – 82 g-cm2) and will ultimately be determined by the final 
design of the motor mount.  For testing purposes, we elect the lower of the values, 
setting it at 0-4X. 

 

Therefore, the overall settings of the motor are summarized below in Table 12.  It 
once again bears mentioning that these settings are subject to change based upon 
the final needs of the telescope mount but will not impact the programming or 
design of the electrical engineering team. 

 
Table 12: Motor Configuration Selections 

Dipswitch # Description Setting 

1 – 2 Current 100% 

3 Idle Current 90% 

4 Self-Test Off 

5 Step Pulse Noise Filter 150kHz 

6 Smoothing On 

7 Load Inertia 0-4X 

8 Command Step and Direction 

1 – 4 Step Size 400 

 

5.4.1.2 Control 

The configuration that we have selected for our motor control is that of Step and 
Direction.  Direction is expressed very simply – that is, we send a high signal for 
CW rotation and a low signal for CCW rotation.  Step is slightly more complex, and 
follows the equation presented below. 

 

𝑃𝑢𝑙𝑠𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑅𝑃𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ∗
1

𝑆𝑡𝑒𝑝 𝑆𝑖𝑧𝑒
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This equation allows us to specify the rotations per second (RPS) of the motor.  
This, in conjunction with the gear ratio determined by the mechanical engineering 
team, will allow us to determine the constant speed required to compensate for the 
earth’s rotation. 

 

However, in practical purposes, the commands that we will be receiving from the 
PC’s software package will be to rotate a specified number of degrees (or, perhaps 
with more granularity, arcseconds).  In this instance, we rely on a relatively simple 
calculation of 1 pulse being equal to one step, at a given step size.  We have the 
ability to command the movement at a faster rate for a period of time and slow it 
down (via a lower frequency) as it approaches the set point.  On the Arduino, 1ms 
is equivalent to 1 delay, so our calculation for movement is centered upon how 
long to pulse the motor at a given frequency to achieve a desired angular 
displacement.  Precise control of the pulse frequency on the Arduino is achieved 
through the use of an external PWM.h library, detailed additionally in the software 
section of this document. 

 

5.4.2 Encoders 
 

The STM17R-3NE supports a built-in quadrature incremental rotary encoder.  The 
encoder follows the industry standard 26C31 differential line driver for output, 
meaning that the channels (A, B and Index) are differential signals.  Therefore, a 
differential line receiver (industry standard 26C32) is required to translate this 
output before it hits our microcontroller.  A brief summary of this differential line 
receiver is included here before a more detailed discussion of the encoder 
operation. 

 

5.4.2.1 AM26C32 Quadruple Differential Line Receiver 

Since the two encoders support three differential signals each (A, B and Index), a 
total of two AM26C32 differential line receivers are required for this design.  They 
are designated in the introductory schematic via this same part number.  This 
means that channels 1 through 3 are used on each differential line receiver with 
channel 4 being unused. 

 

The operation of the differential line receiver is straightforward.  The 26C31 
differential line driver sends a pair of differential signals – that is, a square 
waveform and its inverted pair (accomplished through the use of an onboard 
inverter).  These signals are tied directly to the AM26C32 differential line receiver, 
which then only considers the difference between the two channels and ignores 
any signal that is common to both (i.e. noise).  This is done to enhance noise 
immunity.  Our encoders will be placed relatively close to our microcontroller, so 
this level of noise immunity is likely not necessary; however, as it is built-in 
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functionality of the receivers, we have elected to support it through the use of the 
differential line receivers. 

 

Two enable signals exist on this chip, allowing for active high or active low outputs.  
Although it is only necessary to use one of the enables, we have elected to enable 
the active-high select and disable the active low-select. This has no impact on the 
functionality of the device, only enforcing an active-high output – which is our 
desired signal.  The active-high enable and VCC both receive +5V DC from the 
Arduino.  These chips are designed to operate in the range of approximately 10 
mA ICC, so the additional current draw is within a reasonable range. 

 

Several additional notes bear mentioning and factor into the design and 
troubleshooting of this device.  First, if the input lines are inverted, the output will 
also be inverted.  That is, an expected high will be a low and vice versa.  Since 
most code used to determine direction will consider the quadrature of these 
signals, inverted high and low will lead to an incorrect direction determination. 

 

Next, we have elected to terminate the differential receiver per the 
recommendation of the manufacturer.  A pair of 110-ohm resistors are placed in 
series and a 0.0047 µF capacitor is placed across each differential pair.  The 
purpose of the resistors is to increase noise immunity, which, again, is not an 
extremely high priority – however, the cost of these additional resistors is quite low 
and there is little reason to not include them.  The capacitor, however, is an 
important design consideration.  The capacitor conserves power on the order of 
20 mA per pair, or 120 mA across our 6 pairs.  Power consumption is a concern 
when elements of the design are being powered through the Arduino. 

 

5.4.2.2 Quadrature Incremental Encoder 

For position control, there are three primary signals of interest being sent by the 
encoder.  After they have been interpreted by the differential line receiver, those 
signals are A, B and Index.  The A and B signals are the quadrature signals.  That 
is, depending on the direction of rotation, one signal will lead, and the other signal 
will lag.  Our task is to use the microcontroller to determine which signal is leading 
the other. 

 

In brief, this is accomplished through the use of interrupts.  Therefore, it is essential 
that the A and B channels of each encoder are tied directly to a digital I/O pin on 
the Arduino that supports the ability to attach an interrupt.  In our case, the Arduino 
Mega 2560 supports this capability on pins 2, 3, 18, 19, 20 and 21.  The specific 
pin used for the interrupt is inconsequential – the important takeaway here is that 
four out of our six available interrupt pins will need to be dedicated to the pair of A 
and B outputs coming out of the quadrature encoder. 
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The encoder bundled with the STM17R-3NE supports 1000 lines of resolution.  
This means that for each rotation of the motor, 1000 “counts” are sent from the 
encoder.  Our microcontroller code will track a variable, here referenced as “count,” 
that will tick upward in increments of one for each clockwise signal from the 
encoder and down in increments of one for each counterclockwise signal from the 
encoder.   

 

Therefore, when this “count” variable has reached 1000, we know that we have 
completed one full clockwise revolution of the motor.  Conversely, when the count 
reaches -1000, we have completed one full counterclockwise revolution of the 
motor.  This position information will need to be cross-referenced against the gear 
ratio determined by the mechanical engineering team.  For our design purposes, 
we will select a temporary gear ratio – this will easily be changed later by a simple 
#define statement.  The result of this calculation will then inform us on how far the 
mount has rotated in the clockwise or counterclockwise direction.  This will be an 
absolute value, likely in degrees but potentially also in arcseconds. 

 

The encoder also provides a third differential signal that will be interpreted by our 
differential line receiver.  That is, Index.  The Index signal is very straightforward, 
it sends a pulse each time the motor completes one full revolution.  This Index 
signal will be cross-referenced against our count variable to double check the 
accuracy of our positioning data, with a flag raised if a conflict arises between the 
two. 

 

The final connections of concern are the +5VDC and ground.  There are two 
+5VDC connections, and the intention is to supply this power directly from the 
Arduino.  The manufacturer specifies that the requirement is 5VDC at 56 mA as 
typical with 59 mA as max.  This, along with the other components drawing power 
from the Arduino 5V VCC, should be within the specified 200 mA maximum current 
draw.  However, a possible contingency if this should prove too high of a current 
draw would be to include an additional DC to DC converter on the PCB and draw 
this power from the dedicated 150W power supply, discussed below.  The ground 
pin will share the common GND pin on the Arduino. 

 

5.4.3 Power Supply 
 

Our final choice for the motor power supply is a product provided by the 
manufacturer of our motors – Applied Motion Products.  We have selected their 
model PS150A24 Power Supply (PSU), a 150W/24V PSU that includes a built-in, 
active power factor correction (PFC) filter. 

 

The initial design of our board specifies that this power supply will be used 
exclusively for the motors.  That is, the PSU has built-in +V and -V connections 
that will be tied directly to the +V and -V inputs on the motor.  However, this PSU 
is capable of a maximum output current of 6.3A at a nominal output voltage of 24V.  
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The motors operate at a peak current draw of 2A each, meaning that this power 
supply is capable of providing more than enough power for our specified 
application. Figure 47 below shows the front panel of the selected power supply 
which lists the input and output specifications. 

 

 
Figure 47: Power Supply Front Panel 

Should the power demands of our components (joystick, encoders, LEDs and 
sensors) exceed the 200 mA (microcontroller) / 800 mA (5V regulator) that the 
Arduino is able to provide, a secondary option is to include a DC to DC converter 
on our PCB and draw additional power from this PSU.   

 

5.4.4 Motor and Encoder Breadboard Test 
 

The integrated breadboard test for this subsystem will require the motor, encoders, 
differential line receiver and power supply to work in tandem.  In general, the 
connections will follow those outlined on the schematic at the start of this section, 
but the details are summarized briefly below. 

 

The motors should have their +V and -V inputs tied directly to the power supply.  
The OUT+ on the motor is tied to the VCC pin (5V regulator) on the Arduino. The 
OUT- on the encoder is tied to one of the digital I/O pins on the Arduino.  In parallel, 
we have a resistor and an LED, which will trip if the motor is faulted.  The EN+ and 
EN- connections on the motor are unused. DIR- and STEP- are connected to the 
common ground of the Arduino, while DIR+ and STEP+ are connected to a digital 
I/O pin. 

 

On the encoder, we connect both ground pins to the common ground of the 
Arduino.  A+, A-, B+, B-, Index+ and Index- are connected to their respective 
differential line receivers (channels 1 – 3), and the individual outputs of these 
receiver pairs are connected to a digital I/O pin on the Arduino.  In the case of A 
and B, pin #s 2, 3, 18, 19, 20 or 21 should be selected due to the interrupt 
capability.  Both +5VDC connections are tied to the 5V regulator pin on the 
Arduino. 
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For the purposes of our breadboard testing, it is important to understand the power 
requirements (and thus, current draw) of the various components.  During this 
testing, we will connect a digital multimeter (DMM) in series with each of the 
individual components to determine current draw at idle (for the component) and 
when they are in use.  Similarly, we will place a DMM in series with the 5V regulator 
on the Arduino so as to have an understanding of the combined current draw of all 
components connected to this pin.  Our goal is to keep all combined current draw 
under the specified 800 mA that this pin will support. 

 

In general, the breadboard testing is to determine the functionality of each 
component – not to simulate the complete code package that will be available later 
in this development cycle.  Therefore, we will use our PWM.h library in conjunction 
with simple inputs from the Arduino Serial Monitor to vary the frequency of the 
pulses output at the digital I/O pins, thus driving the speed of the motor.  In addition, 
we will send the DIR pin high and low, to confirm that the motors change direction 
as intended.  An oscilloscope will be connected in parallel with these digital I/O 
pins to provide visual confirmation of the varied pulse frequencies.  It is unlikely 
that we will be able to force a fault condition on the motor to test the OUT output; 
therefore, we will simply apply 5V to confirm that it is being received by the Arduino 
and triggering the LED as expected. Figure 48 below shows the breadboard test 
of our motor with trigger LEDs connected to indicate the various motor conditions. 

 

 
Figure 48: Motor Breadboard Test 

Similarly, we will be monitoring the output of the encoder.  As the differential signal 
will have already been parsed by the differential line receiver, we are interested 
primarily in the A, B and Index signals of each respective encoder.  We will motor 
the output via oscilloscope, similar to how we monitor STEP and DIR going into 
the motor.  In addition, we will execute simple code on the Arduino to read the 
inputs coming into the respective I/O pins.  The ideal test case will also involve 
code that executes an interrupt and performs the necessary computation to 
determine the direction of the motor based on the feedback from the A and B 
channels, but whether this is complete in time for the breadboard testing is 
currently an unknown quantity. 
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5.5 Fourth Subsystem, Breadboard Test, and 
Schematics 
 

The ATmega microcontroller subsystem is the system that contains the brains and 
commands for the entire project. It’s the connector between different subsystems 
and facilitates the communication between them. This particular board and 
microcontroller is made by Arduino and testing will be performed on the board 
directly as the feature set is already built into the board.  

 

5.5.1 Integration of ATmega 
 

To reiterate, the ATmega microcontroller is the brains of all the components of this 
project meaning all the subsystems report back to the ATmega. The motors, 
joystick, and sensor and status systems all run through the microcontroller. 
However, the DC to DC converter does not require a microcontroller to operate as 
it’s more of a support device to help the entire project be feasible. 

 

The motors, joystick, and sensor/status systems will be connected through pin 
ports on the ATmega PCB, utilizing the boards given features. Features as 
mentioned would be the varying frequency square wave output used by the motor, 
and the analog input and analog to digital converter built into the ATmega 
microcontroller used by the joystick. Also, the interrupt capabilities of the ATmega 
will be used for the sensors and status indicators of the telescope.  

 

5.5.2 Testing of the ATmega 
 

The ATmega is a series of microcontrollers manufactured primarily to be used with 
their user-friendly PCB. Their PCB provides all the functionality of the 
microcontroller, making any sort of product test and check easy. Essentially the 
features are baked into the PCB board, allowing us to test the board which in turn 
tests the ATmega microcontroller (Figure 49). The board does have some of its 
own extra features that we can use to also help with the testing of the ATmega 
microcontroller. 

 

There are many connections to the ATmega to perform the necessary operations.  

 

• COMM – Communication with the ATmega328. If this communication fails, 
the ATmega328 will realize there’s an error with the ATmega2560. 

• A0/A1 – These are the inputs from the joystick that the ATmega2560 
receives. The ATmega2560 will read these inputs with the ADC and tell the 
motors to turn based off of the displacement from the origin 
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• RA/DEC sensors – The sensors that limit the movement of the telescope 
communicate with the ATmega2560. These sensors will be inputs to tell the 
ATmega2560 when either motor has turned too far and will be used to signal 
LEDs and stop motors. 

• RA/DEC A/B/I – These are input encoder signals from each motor. The 
ATmega2560 will use these signals for understanding the position of each 
motor to adjust speed or send back communication. 

• RA/DEC OUT – These are outputs from the motors when faults occur within 
the motor. The ATmega2560 will then signal LEDs and stop motors to 
prevent any further damage. 

• HOME POSITION – This is an LED output that is turned on when the 
ATmega2560 receives a change in input from the sensors. 

• TRACKING – This is an LED output that is turned on when the 
ATmega2560 knows the motors are in their correct position and are turning 
at a rate to keep up with earth’s rotation. 

• JS – This is an input from the joystick used to signal for the ATmega2560 
to start tracking. Once a high is obtained, the ATmega2560 will send signals 
to keep up with earth’s rotation. 

• RA/DEC STEP – This is a pulse output from the ATmega2560. It will send 
outputs when it receives an input from the software or the joystick. 

• RA/DEC RUNNING – This is an output LED turned on by the ATmega2560 
when it is sending signals to the motors. 

• RA/DEC LIMIT – This is an output LED that the ATmega2560 turns on when 
the sensor sends a signal to the ATmega2560 that a motor has turned too 
far. 

 

 
Figure 49: ATmega2560 with Connections  
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Briefly mentioned above, the ATmega has a built-in analog to digital converter that 
can be easily tested with a computer and a function generator. The function 
generator can create most common types of waves which is more than enough to 
test the ADC. The analog to digital converter is a straightforward device that takes 
an input signal and divvies it up between the listed resolution of the pin (usually 0 
to 1023). So technically a DC source that is manually manipulated can be used as 
well. After wiring it all up, there will be a little extra work that needs to be done on 
the software side. To be the most accurate for a real time display of what the ADC 
pin is doing we need a serial output to a computer. Setting up a small serial monitor 
allows us to see the analog wave deconstruction which is made by the function 
generator. The next test involves the ISR’s and interrupts. A simple circuit can be 
made for testing an ISR by wiring up a button from the output 5 Volts on the board, 
to the selected pin capable of performing the interrupt, and then putting a button 
in-between 5 volts and the selected trigger. The button can be pressed and if the 
interrupts trigger then the corresponding ISR will activate. A serial monitor can be 
used again as well to monitor the output. 

 

Another test we will perform is a test to determine if the writing of our pins actually 
equal a designed frequency that we desire. These pins can be written to with 
digitalWrite and analogWrite to produce an output. If we use an oscilloscope to 
measure the output directly from the pins, we can reliably see how the pin is 
reacting to our code. This both checks the board connections and the ATmega’s 
pin capability and functionality for the motors. In summary, testing the ATmega’s 
board and microcontroller itself will be simple but crucial to the project and we can 
even use the tested ATmega to help system test other parts of the project. 

 

5.6 Fifth Subsystem, Breadboard Test, and 
Schematics 
 

For the fifth subsystem of the project which is the joystick, the following two 
sections describe the schematic layout of the subsystem, factors that went into 
designing the subsystem, any tools used to assist in the design of the subsystem, 
as well as how to verify the subsystem design is working as expected via 
breadboard testing. 

 

5.6.1 Joystick Design and Schematic 
 

Although the selected joystick comes with a breakout board, it is still important to 
understand how the joystick functions by designing the electrical schematic in 
EAGLE. Figure 50 below shows the connections that are made on the breakout 
board of the selected joystick.  
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Figure 50: Joystick Schematic 

The joystick schematic consists mainly of two 10k Ω potentiometers and a push 
button. The 10k Ω potentiometers use the middle pin as an analog output and the 
outer pins are 5V and GND, respectively. The push button shorts the digital output 
to ground when pressed.  

 

The other component on this EAGLE schematic is the Mini USB Connector. In the 
actual implementation of the joystick sub-system, there will be a converter cable 
in-between the joystick components (potentiometer and push-button) and the PCB 
mounted Mini USB connector. The connector on the joystick side of the cable will 
be a 5-pin female 0.1” pitch header. This header will plug in directly to the joystick 
breakout board. 

 

The pros of using the mini USB connector on the PCB as opposed to another 5-
pin header is that it allows for quick connect and disconnect capabilities and they 
are common enough to have EAGLE footprints available for use. 

 

The next schematic in Figure 51 shows the addition of three LEDs and current 
limiting resistors to show how the functionality of the joystick. As the potentiometer 
connected to A0 is increased, the LED2 shown below increases in brightness. 
Similarly, as the potentiometer connected to A1 is increased, the LED1 shown 
below increases in brightness. For the push button, when it is pressed, LED3 
shown below is set to active low and turns on. 
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Figure 51: Joystick Schematic with LEDs for Testing 

 

5.6.2 Joystick Breadboard Test 
 

To test the joystick operation, a simple breadboard test was preformed using the 
Arduino Mega 2560, breadboard wires, LEDs, and resistors. Before wiring it up, 
first we had to solder the joystick components to the breakout board. There was a 
total of four solder points for mounting the base of the joystick, three solder points 
for each potentiometer, four solder points for the push button and five solder points 
for the header which is what the breadboard wires were connected to. Care had 
to be taken to not hold the soldering iron too long on any of the solder points so as 
to not burn the plastic of the breakout board surrounding the solder points. To 
access the underside of the breakout board for soldering, first the joystick body 
and components were aligned and pushed into the breakout board. Then a rubber 
band fixture was wrapped around the assembly so that when held upside down, 
the joystick body would not detach from the breakout board. Then, the order in 
which the components were soldered began with the four mounting solder points, 
then the potentiometer solder points, then the push button solder points, and lastly 
the header solder points. 

 

The program written in the Arduino IDE was loaded onto the Arduino MEGA shown 
below and the joystick’s operation was verified. In Figure 52 below, the red LED is 
off because the select button was not pressed. The other two LEDs were at 
medium brightness since the joystick was in the center position along both X and 
Y axes.  
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Figure 52: Breadboard Test for Joystick 

 

5.7 Sixth Subsystem, Breadboard Test, and 
Schematics 
 

The sixth subsystem for our design is the ATmega328 microcontroller. The reason 
for the additional microcontroller in our system is because the university requires 
a microcontroller that is not a part of a development board. Even though we are 
also using the development board because the sponsor is requesting it, we also 
have to satisfy the requirements made by the university. The operation of the 
microcontroller is quite simple. The purpose of it is to monitor the operation of the 
main board (ATmega2560) and notify the user if there is an issue with the 
operation by illuminating an LED. The schematic for the circuit can be seen in 
Figure 53 below. 

 

 
Figure 53: ATmega 328 Schematic 
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The requirements to operate the ATmega 328 are a 5V input, along with an 
oscillator. The capacitors in the circuit are used to block the DC from ground but 
allow any AC signal to pass through. In addition to those components, a reset 
switch is implemented into the design to reset the microcontroller when necessary. 
The reset pin of the microcontroller is active low, meaning that if the pin is shorted 
to ground, the microcontroller will reset. Using a pushbutton switch to ground will 
enable the user to press the button when the would like to reset the microcontroller.  

 

There is one input and one output to the microcontroller used for the pinging 
design. The input is used to monitor a signal coming from the ATmega2560. If it 
does not see that signal for a specified period of time, it will output a signal to the 
other pin which will enable the LED.  

 

To light the LED, we use the same process as above for the LED design. The Vf 
of the red LEDs are around 2V with an If of 20mA. Using Ohms Law, and the 
understanding that the input to the resistor will be 5V because that is the output 
from the ATmega328, the required resistance for the resistors can be found quite 

simply. 𝑅 =
5−2

.02
= 150Ω. 

 

To program the ATmega328, we will use a breadboard and a FTDI chip. The first 
step would be to wire up the circuit as seen in Figure 54 below and then use the 
USB FTDI Serial to program the chip. Once we program the chip, it can be 
transferred to the PCB. 

 

 
Figure 54: ATmega 328 Programming 
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5.8 Software Design 
 

The design of the software must be something that takes all the listed restrictions 
into account and then organizes them and executes itself to achieve the desired 
goal. Our goal of this project as stated before, is to create a telescope that tracks 
celestial bodies per the user’s request. This incorporates motors, optical sensors, 
analog joystick, and a large external program that will be provided by the Computer 
Science team. These components are what form up what most of the code is going 
to have to handle. The motors are going to have to be sent a signal on which 
direction to turn and how fast, the optical sensors are going to be sending signals 
to the microcontroller causing interrupts. The joystick will be providing signals to 
the microcontroller as well as the CS teams program providing instructions on how 
to move and where. In the end the entire telescope should track objects in the sky.  

 

5.8.1 Basic Arduino programming  
 

One of Arduino’s goals were to simplify and make it easy for programmers to 
understand quickly. Normally microcontrollers give the designer a blank slate to 
create something on and then everything else is left up to the user. However, 
Arduino decided to provide some preliminary functions for users to work with. 
Instead of just a simple main function that the user must then create their own 
while loop to have the function repeat itself, Arduino provides a function that takes 
no arguments called loop(). This loop function does exactly what the name gives 
away, which is looping indefinitely if the programmer so desires. Any code that 
goes into this function will continuously be looped over and over again until only 
exiting if a return value is set or an interrupt service routine is triggered. Even with 
the ISR, the loop will continue right where it left off after the ISR is finished 
executing its commands. Due to this, the intriguing part about the loop() function 
is that it doesn’t have a conditional argument that needs to be made. The default 
state of the Arduino is to continuously run the loop function forever. So, to get the 
polar opposite of it, we get the second function Arduino provides: the setup() 
function. Again, this function does not take any arguments in its initializer and has 
a default return type of void. The purpose of this function is to run only once in the 
entire code. After that, it never gets ran again unless the microcontroller is reset. 
Seeing that it only gets run once, programmers usually adhere to this as the 
function tells them to and set up the board for the rest of the program. This includes 
pin assigns, library starts, timer choices and an assortment of other things are 
located in the setup() function, but nothing heavily related to the brains of the 
program.   

 

5.8.2 Integrated Development Environment  
 

An IDE stands for integrated development environment and is essentially a tool 
that can be used by programmers to write code that can be tested and released. 
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Without the use of IDE’s programmers have a much more manual job to do when 
writing code. Programmers would often just write code in a text file or maybe a 
colorful text editor which would then be compiled in the computer console. The 
console would have to have a system environment pathway set up to be directed 
towards the compiler so that it could be able to understand the commands the 
programmer put in. Compile commands, grep, and possible other features the 
programmer had to manually install like a debugger or a memory leak finder such 
as Valgrind. Furthermore, aside from all the extra useful tools that were used, the 
programmer would then have to properly set up a method of porting the compiled 
machine code to the actual microcontroller. It was a huge process that involved a 
steep learning curve to properly get everything working, and even then, things 
could always go wrong. Then came IDEs serving as a toolbox for all the 
programmers’ tools. Containing all these features previously listed and much 
more, it became the go to method of coding for programmers.  

 

5.8.3 Interrupt Service Routines  
 

The final main element of how the programming is going to be designed and 
utilized is something that was alluded to previously. Interrupt service routines or 
ISR’s are specialized functions that are only supposed to be executed when a 
configured bit flag is raised (Figure 55). What internally happens involves a LIFO 
stack, a pointer, and some bit flags. When a particular desired bit flag gets 
triggered, it causes the microcontroller to immediately move its internal SP counter 
to the ISR location address and start running the ISR functions internals. While 
that’s happening the preceding SP counter location is put on a Last in First out 
(LIFO) stack to keep track of what the program was doing before. The ISR 
completes its processes and then moves the SP to next address on the stack and 
continues executing from there.  

 

 
Figure 55: ISR Priority Diagram 

 

This mechanic in the software is translated into pre-organizing functions, aptly 
named ISR’s in Arduino. Arduino will allow us to set up certain triggers on pins that 
will then immediately activate the corresponding code functions when the flag is 
pulled. This is fantastic towards the goals of our project because now we can 
effectively respond instantaneously to real world stimuli and take action in our code 
to correspond to it. As stated antecedently, the telescope will have optical sensors 
attached to it to prevent harmful actions to itself in its movement. ISR’s will be a 
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great way of relaying real time information of the telescopes position to the 
program controlling it.  

 

The programming design of ISR’s in Arduino have an important list of things that 
need to be setup properly before being able to properly use it. Most of the work 
that is involved utilizes Arduino made functions that are specifically tailored to the 
functionality of ISR’s. To get ISR’s to work we need to use some specific function 
calls named, pinMode(), attachInterrupt(), and digitalPinToInterrupt(). The 
pinMode() function call is actually not specifically tied to ISR’s, it just needs to be 
used to tell the pin that it’s going to be used as an INPUT. The function takes two 
arguments, the pin under question and the type of pin it is. Doing so will set that 
pin to be an INPUT or OUTPUT for the rest of the program’s life, unless reassigned 
elsewhere.  

 

Beginning the second, most significant function, is the function call 
attachInterrupt(). This function is where the actual interrupt and its details are 
written on how to flag the interrupt pin and what to do. First off, the initial argument 
of attachInterrupt() is an integer value delineating the pin number to be assigned. 
Be that as it may, the integer value is not actually mapped to the specific pin value 
associated with the rest of the board. Arduino has an internal interrupt mapping of 
pins for each board that represents the true value of the interrupt integer (Figure 
56).  

 

 
Figure 56: Actual Digital Pin Interrupt Mapping 

Arduino offers a table to illustrate the actual correct value of the integer needed to 
be inputted, and also offers a built-in function called digitalPinToInterrupt() that 
essentially does the correct mapping of pins regardless. This fills out the first 
argument.  

 

The second argument is where the name of the operation comes from, the ISR 
function. This argument takes the address of the function name that is to be 
executed when the flag is raised. A programmer can name this function anything 
they want, but the function must adhere to certain principles. The ISR function 
cannot take any arguments, nor return any value forcing it to have a void return 
type. This is because ISR functions can’t return a value to something that can’t ask 
for a value and can’t take any arguments because the flag raised doesn’t have any 
data arguments to give.  

 



    Group A Senior Design I 

86 
 

The third and final argument of attachInterrupt() is the flag type. This argument 
explicitly describes when the flag should be raised to run the ISR function. Values 
of this argument take the form of events in a signal such as, CHANGE, RISING, 
FALLING, LOW, and sometimes HIGH. When a signal is read from an input, 
certain features can appear in the signal themselves. For such instance, if a binary 
signal such as a square wave is sent, then at some point in the signals timespan 
there is going to be its low point as well as a high point. Transitioning between 
these two points also can be expressed as a rising or falling edge. These 
characteristics of the signal are better illustrated in the following picture (Figure 
57).  

 

 
Figure 57: Digital Deconstruction and Characteristics of a Wave 

Since our event that tied to an interrupt can only take on the form of a binary signal, 
the signal then must be a square wave with an even more discrete Rising, Falling, 
Low, and High position. Being that the signal is generated by an optical sensor 
which sends a high value when it senses obstruction, we would put a RISING flag 
type to be associated with it. The reason we don’t use HIGH is because the 
Arduino MEGA doesn’t actually offer HIGH trigger responses. And even if it did, a 
problem could occur within the code if this did happen. Setting the interrupt to 
respond to a HIGH trigger means that the ISR associated with that will be ran 
whenever as long as the signal remains HIGH, which is terrible. This correlates to 
the ISR being ran multitude of times instead of just once like we want to, causing 
potentially unknown side effects.  

 

Another unfortunate restriction to ISRs is that it is highly disapproved to use clock 
delays within the ISR. The problem boils down to the simple fact that an ISR is 
supposed to be as fast as physically possible, and a time delay counts the values 
of millis() which is translated into a literal delay meant to burn time as requested 
by the user.  

 

The millis() function is a very basic function that principally just counts how many 
milliseconds have passed since the program started on the Arduino. It holds this 
value in an unsigned long variable which means that it can’t go negative. It also 
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means that after approximately 50 days, the number will overflow leading back to 
zero.  

 

The delay() function is just a function that monitors the millis() function, effectively 
stopping all work on the microcontroller. Not only does this cause problem such as 
not being able to respond to other interrupts, but there is a possibility that the 
delay() function stops counting the seconds and hard locks your microcontroller. 
From all this the software design that we create must never use a delay inside of 
an ISR, instead opting to change a value somewhere else in the code and then 
that prompts a delay function. This design will have to take effect with the optical 
sensors because their signal is based on a mechanical reaction with a possible 
scenario of having two interrupts at the same time. If not properly coded the 
telescope might turn too far and cause damage to the mount, even possibly 
causing and alignment error.  

 

5.8.4 Meridian Flip  
 

When discussing the features of an automated tracking telescope, there is one 
feature that always is included. The feature is called a Meridian flip and is named 
that because of what it does. For observing and tracking celestial objects on a 
telescope that has two major axes of rotation, there is a certain edge case that 
require you to turn the telescope on its head. Both the directions for the motors 
have to be flipped as well as having to perform an operation beforehand. The best 
course of action is to explain the problem first.  

 

The problem stems from the limitations of how far the motor and gears can turn in 
one direction. A telescope that has any significant weight to it usually has some 
sort of counter balance to it or way of keeping the center of mass in the center of 
the telescope. From this arises the limitations that a certain motor/gear can turn 
before the telescope starts turning into itself, causing physical damage and losing 
tracking. If an object that is being tracked goes directly over head of the telescope, 
the telescope will have run into this problem and be unable to continue tracking 
the object.  

 

The way how this is solved is through the Meridian Flip. The Meridian Flip must 
essentially swap the position of the counterweight and the telescope. This is good 
because it puts the telescope in a position that now has the entire gear/motor 
length to use to track the object in question. The telescope stopped at its max 
turning angle, performed a meridian flip, and then now can continue starting at the 
beginning of the turning angle for the axis it was being stopped at (Figure 58). 
However, aside from the maneuver, there are some more complicated things that 
arise. Since the telescope is not in the opposite side of everything, all the directions 
need to be reversed to keep tracking the object. Of course, the speed is going to 
be the same essentially, but another side effect that will occur is that the image will 
now appear flipped, and the telescope essentially turned upside down.  
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Figure 58: Meridian Flip Illustrated 

 

5.8.5 Varying Frequency  
 

The Nema 17 stepper motor that we have ordered is a motor that is controlled by 
two main inputs. A speed input and a direction input. The direction input is a very 
simple signal that will be sent when we want to have the motor turn in a particular 
direction, essentially a binary signal. The speed input signal is a little different. The 
Nema 17 motor requires the user to input a square wave which is just a binary 
wave with a 50% duty cycle. This means the wave will just oscillate between two 
voltages for a similar amount of time spent at both ends. The interesting way how 
the motor actually values its speed is based on the frequency of the square wave 
being inserted. Higher frequencies correspond to higher speeds and vice versa. 
This feature of the motor is actually a very dynamic feature that we must program 
around, and we are very grateful that the signal must be a square wave.   

 

To commence programming of a square wave of varying frequencies we must 
tackle two problems. One is what the max frequency of the pin we’ll be using is, 
and the other is how to program a changing frequency of a pin.   

 

Arduino’s core clock frequency is 16 MHz which will be more than enough to allow 
our motors to track something in the sky. Trackable objects in the sky don’t require 
us to move that fast so we probably have plenty of room to work with. However, 
before we even get started programming there already is a bit of a problem. It turns 
out that while the core clock frequency is at 16 MHz, the output speed of pins on 
the Arduino Mega clock in at around only 490Hz. This is much slower than 16Mhz 
and limits our output square wave to essentially half of that at 245Hz. However, 
there is a fix for this that allows us to increase the base frequency level of the pin 
output. Instead of being able to send only 490 signals a second, we can change 
that level by tying it to another internal timer that outputs at a faster speed. Once 
it outputs at a faster speed the program can then divide the frequency to match 
what speed we want. Arduino Mega has 6 internal clock timers that can be used 
to change the pins output frequency and get the variable speed we want from 
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there. The motors speed will then be directly controlled by us, allowing us to track 
stars accurately.  

 

5.8.6 Bit Banging Square Wave VS Direct 
PWM Outputs  
 

Now that we have a much higher and usable pin frequency, we can start outputting 
a square wave of variable frequency that will control the motors speed precisely. 
The default Arduino library has a function called digitalWrite() which allows a user 
to define a binary signal to be sent to a specific pin. The first argument is a pin 
number and the second argument is the digital equivalent output. HIGH and LOW 
appear here again with HIGH being a 5-volt output and LOW being a 0-volt output, 
which is particular to our board. As used before, it is necessary to utilize the 
pinMode() function to specify the output of our pin. As this output is just a simple 
square wave all we really need to do is write a small function that oscillates a HIGH 
and LOW output. Since the Arduino comes with a built-in delay function, we could 
cascade the code to have a digital write to high, a delay of X time, a digital write to 
low, and then a delay of the same X time. Looping these four lines of code will end 
up simulating a square wave to emit from a port of our choosing. This is great 
because now we have a way of varying the frequency based on a single variable 
with a duty cycle of 50% (Figure 59). This method was tested and showed some 
pretty interesting results. For certain pins the square wave worked nearly perfectly 
and had a variable speed based on the pins. However, some pins that were used 
still resulted in a square wave, except the square wave had a natural decay 
response when oscillating down to 0. This looked very scary at first but ended up 
still working well enough for the motor to vary its frequency. We also could 
electrically attach a sort of 5-volt regulator to the output that only allowed two 
voltages to pass, being 5 or 0. Regardless of all this, there seemed to be a slightly 
bigger problem discussed on the following page.   

 

 
Figure 59: Duty Cycle of a Square wave 
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The problem that we will run into next is the processor use. As it stands with that 
code, it means that the processor is going to be using 100% of its resources to 
toggle a digital pin on and off over and over again. This is really bad. We could 
squeeze in two different pins that output at the same frequency but for tracking 
and optimization it’s terrible. The other part that could really end up being a bad 
play is that while moving the telescope, the Arduino is blind to everything that’s 
going on around it but interrupts. No serial commands can come in nor commands 
from a joystick. But from all this headache several different ways can be used to 
have the Arduino send out a square wave that doesn’t take up all the resources of 
the microcontroller.   

 

AnalogWrite() is a command in Arduino that allows you to write a variable square 
wave from a pin that can output a PWM signal. To properly explain what a PWM 
signal is, the following image makes it really easy to understand (Figure 60).  

 

 
Figure 60: Analog signal transformed into PWM signal 

If there is an analog signal that we would like to reproduce but only have access 
to it in a digital form, the microcontroller will not be able to reproduce the analog 
signal as shown in green. What a PWM signal does is it matches the analog signal 
with a triangle or sawtooth wave (in blue) that essentially samples and compares 
the analog signal. Both sawtooth and analog signals are fed through a comparator 
circuit which then spits out a binary signal telling the viewer which signal is greater 
for the given time. When the analog signal is larger than the sawtooth the binary 
value tends to be more of a 1 than a 0. When the analog typically is smaller than 
the sawtooth the binary value tends to be more of a 0 than a 1. This output just 
looks like a square wave with a varying duty cycle. The magical part is that when 
some device needs an analog signal to operate, it effectively can’t tell the 
difference between an analog signal or a PWM signal. This is good, but some work 
is going to be needed to change the output of a PWM pin to a constant duty cycle 
and a varying frequency. The manipulation of analogWrite() will get us to what we 
want. The function takes two values, one of which is the pin number, and the other 
is the duty cycle number. This is the caveat though, it doesn’t have a method of 
varying the frequency of said square wave. For that though there are several 
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different ways of possibly fixing this issue, most of which involve changing the pins 
internal timer to have a higher default frequency. Once we set a particular PWM 
pin to have a specific timer frequency the program can then do some division to 
land the pin on the desired frequency, upholding the initial task of having a varying 
frequency square wave. The enormous difference now is that we can actually have 
multiple pins, reacting to multiple commands to run at multiple different 
frequencies, while also performing other tasks alongside.  

 

5.8.7 Analog Inputs from an Analog Joystick 
 

The design of our telescope is heavily influenced by what the UCF observatory 
telescope is like, and that telescope has an analog based joystick that allow users 
to free move the telescope around. In attempting to replicated that telescope our 
project will be having a joystick that will produce an analog signal that will be fed 
into an analog pin in our Arduino. Utilizing the analogRead() function in Arduino, 
the signal will be sent through as an analog signal and then processed by an ADC. 
An ADC has been described before as an analog to digital converter. How it does 
that is it has a set resolution to read 1024 different values from a range of 0 to 5 
volts. Anywhere in-between there is set to a specific value that we can read from 
the return value. Note the resolution values can actually be changed as we see fit 
meaning we can go higher or lower in the voltage range (Figure 61).  

 

 
Figure 61: Analog Signal Deconstruction into a Set Digital Resolution 

The analog stick that we use will send out two analog signals representing the two 
axes that the user can control. These two signals with then have to be stitched 
together by us to determine the direction the controller wants to move. The code 
will have to take two numbers between 1023 and 0 that represent the user’s 
position. We can conceptually illustrate this as a Cartesian coordinate system with 
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the two values equaling a point (Figure 62). This point can then be treated as a 
triangle with a magnitude and angle substantially turning it in to a vector. The 
vector will then be interpreted by another part of our code to translate that data 
into workable information for our motors.  

 

 
Figure 62: Cartesian Coordinates and Vector Representation 

The method that will be used to transform the vector information into motor 
instructions will be handled by the Computer Science team and their process will 
be used by us as it distributes some of the work load and saves time.  

 

5.8.8 Serial Parser 
 

A significant part of the telescopes programming is going to be done by the 
Computer Science team. More specifically, they will be in charge of taking an open 
source application and transforming it into a usable star map that any person can 
just point to a star and immediately begin tracking it. The process will result in a 
series of motor controls made to get the motors to move the telescope to the 
intended location. Plenty of calculations must be done on the CS teams’ side, but 
what will be guaranteed is a serial input string that comes through a USB with the 
direction and distance for each motor to move along. Being that the data is sent 
through a string data type, we must develop a parser to properly interpret the 
string.  

 

String manipulation is a very detailed task in the C language as it requires the 
programmer to go byte by byte through the data. This is because a string in C isn’t 
actually a single variable, but rather a set of memory allocated characters with a 
single address leading to all the characters that are sequentially listed in memory. 
What the address pointer will do is read all the characters from the memory 
address and only stopping when a specific type of character is reached called a 
null terminator. Every string has these null terminators seen in Figure 63 as the 
last byte of the string, otherwise the program wouldn’t know when to stop reading 
byte data and stop displaying the corresponding ASCII values seen in Figure 64. 
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Figure 63: Byte representation of a String 

 

 
Figure 64: ASCII character code used for common American computers 

At this point the Computer Science team will have to provide us with the method 
they have of differentiating parts of the string for the values. If the values end up 
being differentiated by a period character or a pip character, then we will use that 
to find out when they are relaying different information. The plan would be to read 
in the characters of the string one by one and look for a period or character to 
symbolize the end of one part of data. This data will most likely be a number. This 
causes a minor problem that is easily fixed by the C language. Since these 
numbers are coming in as strings the number we get is actually a string that can’t 
be interpreted as a number. If the user attempts to interpret the string number as 
an actual number, the program will just read out the ASCII value of that string or 
character rather than the real intended number. Alternatively, it will just emit some 
garbage value or crash. However, the C language has a built-in function that allows 
our program to use to translate a string to a number directly. The atoi() function 
takes a string and processes it to return the real value the string represented as 
an integer instead of a char array. This is great and can be highly efficient when 
we attempt to parse our string for data. Unfortunately, there is one small possible 
problem that we can run into. Certain standard C functions aren’t compatible with 
microcontrollers as they work upon different components of the computer. For 
instance, the highly versatile C function malloc() doesn’t work in a microcontroller 
setting because it requires an Operating System to work. Malloc() is a memory 
allocator that is designed to work with a computer’s memory storage system to 
create a heap of virtual memory for the program to play around in. Since our 
microcontroller doesn’t have an operating system, it can’t generate those heaps of 
memory in the same way an OS can. The fear is that the atoi() function might come 
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under some problems as well, but further inspection shows that the atoi() function 
does indeed work on microcontrollers, allowing us to use this shortcut when 
parsing the string. If this function did not work, we would have to manually assign 
the ASCII values to numbers and do the math ourselves if another function could 
not be found.  

 

5.9 Summary of Design 
 

Many of the design decisions made here were influenced directly by the needs of 
the customer or a desire to replicate the existing set-up of the observatory.  For 
example, our decision to employ an Arduino in tandem with a shield was driven by 
the request of the customer.  In another example, our decision to use optical 
switches to ascertain the mount’s home position and act as a limit switch was 
almost entirely because this mirrors the existing setup at the observatory. 

 

Other decisions, such as the NEMA-17 motors, were born out of a desire to retain 
maximum flexibility.  The specific motor that we have elected to use provides a 
suite of built-in customization options.  For example, max and idle current can be 
adjusted, allowing for more, or less, torque, as needed.  In another example, the 
step count can vary in the range of 200 counts per revolution (CPR) through 25,600 
CPR, varying by a factor of more than 100.  Maximum flexibility was desired with 
components such as this, and the microprocessor, that would serve as our primary 
interface between our peers on the mechanical engineering and computer science 
teams. 

 

Our overall design can be considered as two broad categories.  Input and output 
(I/O) as well as processing and motor control.  The first link in the chain is the I/O.  
Here, we receive control signals from the software designed by the computer 
science team.  These control signals provide commands to the motor, directing a 
number of degrees to rotate the mount from its home position, as well as other 
commands, such as a reset to home position or to enable tracking.  These signals 
are received directly onto the Arduino board via the differential USB connection, 
and translated into serial inputs which can be processed by the microcontroller. 

 

The microcontroller receives these signals and processes them into motor 
commands.  The motor is driven by a frequency modulated pulse train, with higher 
frequencies translating into more frequent steps, and thus, higher revolutions per 
second (RPS).  The gear ratio determined by the mechanical engineering team 
will play a key role, here, as our microcontroller will need to provide intermediary 
calculations accounting for the gearing so as to drive the mount into the desired 
position. 

 

As the motor moves, feedback is provided by way of the encoder, as well as the 
OUT pins on the motor itself.  All external connections (with the exception of the 
USB interface to the computer and external power for the Arduino) are made to 
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the Arduino shield, which has the appropriate I/O accommodated in the PCB 
design.  OUT is used only to signal a fault in the motor (and includes the additional 
illumination of an LED, signaling the fault), whereas the encoder provides data on 
the direction of rotation, speed and overall position.   

 

The encoder, in particular, uses a quadrature incremental rotary encoder.  A 
differential line receiver sits on the PCB between the encoder and our 
microcontroller to translate these differential commands.  Our coding design 
requires that these inputs be tied to Arduino pins allowing interrupts to be attached.  
This feedback on positioning is then relayed to the software on the PC per the 
requirements of the computer engineering team.  At any point where the mount’s 
traversal interrupts the optical switches, corresponding position information on 
“home” or “limit” is send to the PC and (in the case of a limit switch) motor 
movement is halted.  

 

In addition to direct commands from the PC software, motor commands can be 
provided through an external joystick.  The current planned implementation of the 
joystick is to use its “button” input (a simple high or low signal) to transfer command 
of the motors from the PC to the joystick and send appropriate feedback to notify 
the software.  The joystick is analog, and functions on a 2-axis input.  These inputs 
are connected to the Arduino analog inputs through the shield.  The analog inputs 
include built in analog to digital converters (ADCs).  These ADCs index the signal 
into 1024 distinct levels, allowing our code to interpret the positioning commands 
input by the user. 

 

Status LEDs exist to provide visual feedback to the user informing them of the state 
of the mount controller.  Examples include an LED to indicate whether the mount 
has hit a limit or is in a home position, or whether the motor is running and/or 
tracking.  These LEDs are connected to digital I/O pins on the Arduino and driven 
by setting that output to high.  In some instances, such as with the LEDs, it is 
necessary to send power directly from the microcontroller.  In nearly all other 
instances (such as power to the encoders), the 5V output is provided through a 5V 
regulator, which has a significantly improved maximum current rating as compared 
to the Arduino. 

 

The two final considerations are the power supply to the motors and an additional 
level of supervision due to our implementation of the Arduino shield.  The power 
supply was selected due to the recommendation of the motor manufacturer and 
meets all appropriate specs.  It would have been reasonable to design a power 
supply for this purpose, or buy a third party option, but since clean power is an 
important element of any electronic design, and there was some concern 
expressed by the manufacturer about regeneration, we elected to go with the 
recommended power supply.   

 

We have also implemented a second microcontroller on our shield to supervise the 
connection between the main Arduino board and the auxiliary shield.  A “polling” 
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feature has been implemented so that if communication ever fails between the two 
boards, a flag will be raised, and an LED will be illuminated.  Additional feedback 
is a possibility but not a current part of the design.  In addition, the second 
microcontroller has allowed us to offload some of our more power-hungry 
peripherals (such as LEDs) to this ATmega328.  This is to lessen the impact on 
the 200mA (maximum) current rating of the Arduino 2560.  
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6. Project Prototype Construction and Coding 
 

In section 6, the current state of the project is reaching its design completion. This 
section discusses the integrated schematic that was developed, along with the 
plan for the software design, and lastly the plans for obtaining the PCB and 
assembling the required parts. 

 

6.1 Integrated Schematics 
This section is used to discuss the process of integrating the subsystems and how 
they impact each other. After testing and verifying all of our subsystems, the next 
step is to integrate the subsystems into one system for testing and verifying. Figure 
65 below shows the integrated schematic developed in Eagle. 

 

 
Figure 65: Integrated Schematic 

At the top left is the ATmega328 subsystem. This subsystem communicates with 
the ATmega2560 subsystem to determine if there is an issue with the 
ATmega2560 since it is the brains behind the entire operation. The ATmega328 
will illuminate an LED if there are any issues with the ATmega2560. 

 

The bottom left subsystem is the DC to DC converter subsystem. This subsystem 
connects to the ATmega2560 to distribute the power to all of the other subsystems 
including; encoders, motors, sensors, LEDs, and ATmega328. 

 

The big component in what is almost the middle of the image is the ATmega2560. 
This subsystem communicates with the other subsystems and sends commands 
or receives information. The ATmega2560 subsystem sends commands to the 
ATmega328, LEDs, motors, and the astronomy software. The ATmega2560 
subsystem receives information from the astronomy software, sensors, motor, 
joystick, and encoder subsystems. The part of the schematic above the 
ATmega2560 are the voltage pins for the shield. The voltage pins contain a VCC 
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which is the power in from the PSU, a regulated 5V, a regulated 3.3V, and a ground 
connection.  

 

Next to the voltage pins is the joystick. The joystick sends data to the ATmega2560 
to control the motors in a manual way when not communicating with the astronomy 
software. The ATmega2560 will interpret the commands from the joystick and 
move the motors appropriately.  

 

To the right of the joystick is the input 24V terminal block. The terminal block will 
accept the input from the PSU recommended by the manufacturer for controlling 
the motors. This 24V input will split between the DC to DC converter and the inputs 
to the motors. 

 

Below that terminal block are the IR LEDs to the sensors. The IR LEDs accept a 
constant 3.3V input from the ATmega2560 to constantly power the LEDs to sense 
for faults. 

 

Below the IR LEDs are the regular LEDs for user feedback. The LED uses are 
defined in a section above. These LEDs are turned on and off by the ATmega2560 
for certain conditions. For example, if the sensor faults, the corresponding LED will 
illuminate. If the system reaches its home position, another LED will illuminate.  

 

Moving to the top right of the integrated schematic are the differential line 
receivers. These receivers receive a differential input from the encoders and 
output a signal to the ATmega2560, which then the ATmega2560 uses to 
understand more about the position of the motor and adjust the commands to the 
motor as necessary. 

 

Below the differential line receivers are the encoder connectors. These connectors 
connect to the motor encoders and receive and send out data. The encoders 
receive a constant 5V signal and output a differential signal pair pulse train to the 
differential line receivers. 

 

Below the encoder connectors are the motor connectors. These connectors 
connect to the motor for sending and receiving data. The motors accept inputs 
from the ATmega2560 to tell it where to turn and how fast. The ATmega2560 can 
also send a command for the motor to disconnect for removal. The motor also 
accepts a 24V input from the PSU from the manufacturer that works its way 
through the terminal block section before reaching the motor. The motor outputs a 
fault signal when there is an issue. This output will be sent to the ATmega2560 to 
process and illuminate LEDs to show there is a fault. It is important to note that 
there is also a fuse in between the 24V PSU and the input to the motor.  

 

The last piece of the schematic are the sensor connectors with their pull-down 
resistors. The sensors output a signal to the ATmega2560 when the telescope 
turns too far and trips the sensor.  
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6.2 PCB Vendor and Assembly 
 

The PCB design on this project is a two-part process.  That is, the PCB itself must 
be manufacture red, and then the various components assembled (i.e. soldered) 
onto the board.  Therefore, this section is split into two parts: PCB Vendor and 
Assembly. 

 

6.2.1 PCB Vendor 
 

Several vendors are under consideration for the PCB fabrication portion of this 
process.  A brief discussion of each vendor follows.  Ultimately, this decision will 
be made based upon the quoted turn-around time and price provided by each 
vendor, as well as an overall determination on quality and reputation.  Only PCB 
vendors based in the United States have been considered for this portion of the 
project, primarily due to the increased lead time associated with an overseas 
vendor. 

 

6.2.1.1 OSH Park 

OSH Park is one of the most ubiquitous names in PCB fabrication.  As specified 
by our design criteria, this is a U.S. based manufacturer.  OSH Park accepts files 
in the KiCAD, EagleCAD or zipped Gerber format.  Since our design work is done 
in Eagle, this compatibility is a significant advantage for us.  No conversion need 
be done, which can eliminate any potential errors that may arise during this 
process. 

 

OSH Park offers a number of different pricing and turn-around packages.  The 
most general package, a two-layer board with a 12-calendar day turn-around time, 
is priced at $5 per square inch.  For this cost, three PCBs are produced and 
shipped.  The cost of shipping is included in the cost of the boards.  In addition, 
they offer a “Super Swift” service, which offers a 5 business day time to ship.  This 
service may be highly desirable if we require a second PCB as we transition into 
Senior Design II.  Four-layer boards are also available, although we do not 
anticipate the need for this service. 

 

6.2.1.2 Express PCB 

Express PCB is another PCB fabrication vendor that offers boards manufactured 
in the U.S., again meeting this criterion of our design.  The pricing scheme for 
Express PCB is more complex than that offered by OSH Park.  Several levels of 
service are available and are primarily dependent upon the size of the board that 
is required. 
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First, we consider their MiniBoard Standard option.  The size of this board is static 
– the only option is a rectangular 3.8 x 2.5-inch board.  The cost is reasonable, at 
$51 for three identical boards.  The turn-around time is also quick, boasting a 1-
day lead time for a two-layer board. 

 

A second, more versatile option is their ProtoPro service.  This service is 
significantly more costly, weighing in at $169 for 4 boards.  However, it also boasts 
increased flexibility.  The size constraint here is that the board must be a rectangle 
that is 21 square inches or less, with the longest dimension no more than 12 
inches.  The lead time for this service is 2 days. 

 

The most significant concern with this company is the requirement to use their 
proprietary software.  Three versions are offered: ExpressPCB Classic, 
ExpressPCB Plus and ExpressSCH Classic.  Although the software does not look 
overly complex to use, importing EagleCAD or Gerber files is simply not an option 
with this manufacturer.  While their lead time is desirable, this significant drawback 
weighs heavily against them. 

 

6.2.1.3 4PCB 

Our final consideration for a PCB fabrication vendor is 4PCB / Advanced Circuits.  
Although 4PCB offers their own software package (PCB Artist), similar to Express 
PCB, they also accept and work with standard Gerber files.  Since Gerber files are 
easily produced by EagleCAD, this is not necessarily a shortcoming for this 
vendor. 

 

This vendor prices their boards at $33 for a board size at a maximum of 60 square 
inches and a two-layer board.  This pricing is made available especially to student 
groups.  This cost provides a single PCB, which is, ultimately, all that will be 
required by our team.  The low cost and student discount make this a somewhat 
attractive vendor.  Their turn-around time is listed as 5 days for this service.  Four-
layer boards are also available, although, again, this will likely not be required in 
the scope of this project.  The student cost for the four-layer board is $66 for a 30 
square inch board. 

 

6.2.1.4 Comparison of Vendors 

In Table 12 below, the different vendors considered for the PCB fabrication stage 
of our project are listed with each vendor’s respective board size, turnaround time, 
file type and cost. Our team has not yet officially decided on a PCB vendor, 
explaining why there is not a highlighted row yet. This decision will be made at the 
beginning of Senior Design II. 
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Table 13: Comparison of PCB Vendors 

 Board Size Turn Around File Type Cost 

OSH Park N/A 12 days EagleCAD $5 in2 (3 boards) 

Express PCB 21 in2 1 day Proprietary $169 (3 boards) 

4PCB 60 in2 5 days Gerber $33 (1 board) 

 

6.2.2 Assembly 
 

Where available, our intention is to use surface mount parts in our design.  In cases 
where surface mount is not available, or, such as in the case of the ATmega328, 
we have existing parts available, we will use through-hole as needed.  Two clear 
options exist for the assembly of our board: soldering the parts ourselves in the lab 
or employing an assembly house.  As the process of self-soldering the parts is 
fairly self-explanatory, this section will focus on the potential use of an assembly 
house. 

 

6.2.2.1 Quality Manufacturing Services 

Quality Manufacturing Services (QMS) is a local assembly house based out of 
Lake Mary, FL.  Specific pricing for assembly services is not immediately available 
on their website, but in the past, the company has offered assembly services to 
UCF senior design teams at no charge.  If this service is still available, it makes 
sense to move forward with QMS.  Even if there is a cost associated with the 
service, it is still something that is in consideration.  Having a professional 
assembly house handle the reflow and soldering pieces of this project will easily 
rule out human error on our end, in terms of component assembly. 

 

One of the key concerns regarding outsourcing the assembly of our boards is 
communication and readability.  That is, it is imperative that the PCB silk screens 
accurately describe the associated components and that all files provided to the 
assembly house are well documented.  Additional time and scrutiny spent in this 
area will pay dividends in the quality of the final product that is produced. 

 

6.3 Final Coding Plan 
 

The final programming of our project will most likely take place near the end of the 
project as all the parts are understood and calibrated. Preliminary code will be 
written up to test the parts and concepts, which then the results will dictate how 
the final result will look and work. The ideal code to come out of this is a very fast 
and resource efficient program that gets the objective done per requested by the 
user. Fortunately for our project, the hardware and tools being used provide a solid 
foundation to a seamless program that gets the job done in reasonable real time.  

 



    Group A Senior Design I 

102 
 

6.3.1 Information Flow 
 

When creating a coding plan the first step that should always be considered is how 
to design the method and direction of the information of the parts. How each part 
of the project interacts with another part of the project and how each part can 
interact with another part is truly the molding process of the software design. The 
parts can only relay certain information and respond to certain information, with 
which the information is dictated by other parts culminating in the software 
controlling all this information and part integration. Our specific project is going to 
be a user-controlled tracking telescope that contains motors, joysticks, optical 
sensors, and specially designed program all giving and receiving signals from the 
Arduino.  

 

A good place to start is with how and what information we will be receiving 
regarding our devices. The Computer Science team that we will be working with 
will be creating a program that sends a signal to us telling us how to move the 
telescope, which in term means that they will be sending our Arduino a descriptive 
string containing the distance and direction our motors need to turn to. The motors 
will then turn to the requested direction and move until the position is reached 
sending back a signal that the movement was complete. If an optical sensor is 
triggered however, the motors will stop and send back a failed signal depending 
on what the failure means. During all this, the Arduino will be also susceptible to 
move into the joystick control mode where the user can manually move the 
telescope. Taking all this into consideration, the summary of information flow is the 
computer inputs information into the Arduino which then sends out information to 
motors. The motors then can respond back through the Arduino to the computer 
completing a sort of information cycle. All while the cycle is happening, the Arduino 
is also listening to input commands from an optical sensor or a joystick. These two 
devices would send out information into the Arduino, subsequently sending out 
information into the motors and the computer (Figure 66). 

 

 
Figure 66: Direct information flow of components in the telescope system 
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6.3.2 Controlling the Motors 
 

The control of the motors is simple conceptually but requires a little bit more effort 
to execute. The motors functionality comes directly from the Arduino which will be 
spitting out two values. A direction to turn and at what speed. Initially the computer 
will be telling the Arduino some different values and it will be left up to the parser 
to correctly interpret the values, but the transformation of the values must be done 
as well.  

 

From the given directions and speed to travel at, the program will have to handle 
the calculation of the distance traveled to a corresponding frequency to be 
outputted. That frequency is then dictated by the calculations done with the stepper 
motor and its steps. Several calculations and testing will have to be done to 
achieve this. This is because the final point of the motors is to move a certain 
amount of distance across the sky. These distances are called arc-seconds, and 
testing will have to be done to determine how much a step on our motor will 
correspond to an arc-second in the sky. Once that’s found out a calculation will 
then have to take place to associate the speed of the motor with the number of 
steps the motor takes. This will relate the speed of the motor which in turn will 
relate the frequency of the signal with the distance to travel across the sky. As 
shown before, the frequency is the speed of the motors, but this doesn’t solve the 
whole problem. In the equation for distance traveled which is 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑆𝑝𝑒𝑒𝑑 ∗
 𝑇𝑖𝑚𝑒, the speed is only one part of going the required distance. 

 

To go a certain distance the motors need speed and time. Speed has been covered 
with the only remaining thing as time. Using the equation above however can give 
us the time needed to move at a certain speed, resulting in the specified distance 
we would like to move. With these two elements we can set the motor to move a 
calculated speed with analogWrite() and a calculated time to reach our desired 
destination. The calculated speed or frequency we assign will only be found once 
proper testing has been done and a graph has been made.  

 

Immediately there comes an interesting coding complication in the form of 
organizing the motors and processes. Initially controlling two motors at the same 
time can actually become fairly difficult if not handled properly by the method of 
bit-banging. Bit-banging is a method where the programmer manually sends out 
discrete signals to simulate a sinusoidal wave. Each motor will need a specific 
frequency of a square wave that controls the speed. Since the Arduino doesn’t 
support simple multithreading capabilities which would allow us to run multiple 
processes at the same time, we’re stuck executing code a single line at a time. 
This means that if we were to spend the time creating a signal via bit-banging, the 
program wouldn’t be able to take on other tasks while this was happening unless 
it was an interrupt. Even then, the interrupt would end up stopping the signal for 
the motor causing further issues. It is possible to bit-bang out two signals at the 
same time in the main loop() function, but their frequencies would need to be 
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delicately handled to the point of detriment. And it still wouldn’t solve the problem 
of the program not being able to do anything else while sending out those signals.  

 

Fortunately for Arduino users, the library come with a built-in function as described 
before called analogWrite(). AnalogWrite() just continuously outputs a square 
wave of requested duty cycle at 490Hz. That’s a positive feature at our finger tips, 
the issue is that we must have a higher variable frequency for the analogWrite(). 
Our analogWrite()’s frequency can actually be changed fortunately, by directly 
overriding some innate timers in the Arduino. Now the problem is almost 
completely solved regarding the processing management. It’s almost completely 
solved because even though a well-defined frequency square wave can be 
outputted, the program will still have to wait for a specified amount of time before 
it shuts off the signal when the telescope reaches its destination. This is where 
some proper management of coding and data can come into use.  

 

The program has the ability to set and forget a square wave out of a PWM port on 
the Arduino, but it still will have to wait a specified amount of time before the 
processor can move on. If the immediate choice is used, namely the delay() 
function or delayMicroseconds() function, the problem will not be solved. The 
processor will fall asleep for the given amount of time and not perform any other 
actions during this time. The method going to be used to work around that is 
instead of using the built-in function for time delays, the internal clock on the 
microcontroller is going to be used. Millis() is function in Arduino that just simply 
returns the number of milliseconds in time passed since the board began running. 
Our program will use that to calculate the current time and duration to equal the 
final time we want to reach. This final time will then be passed as a return argument 
from the function call to be put into a variable in the main loop. A conditional if 
statement will be checked every iteration of the loop to see if the time desired has 
been met. If the time desire has been met, then the if statement will call another 
function to stop the signal from being sent.  

 

Conclusively, the program will now be able to effectively continuously output 
square waves of varying frequency that turn on and off at desired times, while still 
allowing the program to perform other tasks. Alternatively, the motor functions 
could just simply reassign a global variable value and the loop() function just check 
the global variable. However, global variables make code less portable between 
systems, reduce readability and sometimes cause unintended behavior in 
microcontrollers. To say the least, it is a good idea to not use global variables as 
much as possible. 

 

A final part of the programming for motor control is the calculations for continuous 
tracking. The concept is that since the earth rotates, the period at which a user is 
looking at a celestial body will see the object move out of sight after a certain 
amount of time. Working in tandem with the Computer Science team the 
calculations will be made to be able to set a constant speed for each motor to track 
the celestial object until another command is received. 
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6.3.3 Joystick control 
 

The joystick will be a small device that the user has the ability to plug in and 
physically turn the telescope where they want to point it. To briefly explain, the 
joystick outputs two DC signals whose voltage represents the strength the user 
moves the controller. One signal is the x-axis and the other one is the y-axis. In 
spite of the signal technically be a DC signal, the actual signal will effectively act 
like an analog signal, changing the way we’re going to be handling the input. The 
signal will be changing so often that it won’t ever really be steady at a single DC 
value for a particular amount of time. The analogRead() function that comes with 
Arduino is a function where if a value is read into an analog input port, it will use 
an analog to digital converter to change that signal into 1024 discrete values, 
outputting the value that the input signal is at. This gives us a range of discernable 
numbers to use when programming the analog stick.  

 

Programming a set of 1024 values will be fairly straight forward. Typically, with 
joysticks there is a dead zone that is programmed into the signals that allow the 
joystick to move a slight amount without correlating to an action. It’s useful so the 
user doesn’t have to be extremely careful and concerned with oversensitivity if we 
program in a small buffer that doesn’t relate to movement.  

 

Another characteristic of the joystick is that the DC voltages the joystick output 
aren’t from 0 to 5 volts that the Arduino can handle, its -2.5 to 2.5 volts. What will 
happen is beforehand we’ll have to up the voltage by 2.5 before any signal goes 
out so that the range is shifted to 0 to 5 volts. A range like this works with our code 
and can then be translated to a frequency. 

 

As stated before, Arduino proves us with a function called analogRead(). When 
the analog joystick is in a stable position it will be providing the port with a 2.5-volt 
signal translated into 512 as a discrete value. Through the process of testing we 
shall find a sort of dead zone range of values that the Arduino will just ignore, 
assumingly between 612 and 412 values. An if statement will be running to check 
the output of the analogRead() to see if it exceeds these values, and only when it 
does will an analogWrite() be sent out move the motor. During programming the 
frequencies, we have the option to make the input signal linearly scale with the 
frequency set to be outputted. This will work with the max value of 0 or 5 volts be 
the max frequency we want to give, however there might be a bit of an incentive 
to make a joystick cap where 0.5 volts to 0 volts output the same frequencies into 
the motors. These are just possible safety precautions that might not need to be 
taken. Along with the frequency and discrete voltage scaling, the final values we 
use will be determined by testing to be set to what we deem suitable.  

 

The final requirement for the joystick programming will be the case of how to 
determine when the microcontroller hands over control of the motors from the 
automated input of the computer. For this there are three options possible to 
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choose from, but they aren’t too different in their outcomes to really warrant any 
specific choice. 

 

The first option is to use the fact that the Arduino can listen to and perform other 
tasks due to the motor optimization described above. A simple if statement can be 
made to check if the user pressed a button. Once that button is pressed, we can 
change a global variable to now say that the user is in manual control and will 
execute the controller code as written above.  

 

Another option is to have whatever input the user puts into the analog port override 
and move the motors as intended. This is the least favorable choice as accidents 
could happen with the joystick and programming the Arduino to pick up after the 
manual movement is finished could become extremely messy. 

 

The best option so far is the use of interrupts to control the joystick activation. 
Interrupts are immediate and can be activated at any time allowing the signal from 
the user to never be missed. The interrupt will simply change a variable that will 
then be checked by the main loop with an if statement. No hard programming is 
ever done inside of the interrupt because the interrupt should be the fastest it can 
possibly be as to not cause any errors. The advantage of this method over the one 
that just has the check in the main loop is that this one has almost no chance of 
being missed by the program doing something else. 

 

6.3.4 Parsing the Directions from the 

Computer Science Team 
 

The core information that will allow us to locate and track a celestial body will be 
coming to our Arduino via USB and their program. The USB uses a serial type 
connection where all the bits come in sequentially into Rx line of the board. The 
Arduino itself handles the data intake and transformation automatically for us, and 
outputs bytes. As decided from meeting with the Computer Science team, their 
software will be outputting a string containing the direction and distance that the 
motors need to travel, along with maybe some other elements. It is our job to then 
parse the given string and extract the actual data, while turning it into usable 
information.  

 

The actual programming of this parser will come down to what the Computer 
Science team actually ends up submitting to our Arduino, but general coding 
practices can be made before hand. Serial.read() is a built-in function that reads in 
byte by byte the input coming from the Rx pin of the USB. Translating to code it 
means that a while loop will be used to iterate through each byte given to us until 
a specified stopping byte is reached. This byte can be determined by the CS team 
as some random character, or more usually a null terminator character. Since 
these bytes are of ASCII format, we must use a conditional statement to look for 
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the terminating character by associating the numerical value with it. If the default 
null terminator is used, our code will be looking for a 0 character to appear and 
then use that to exit the loop. 

 

The loop itself will just be inputting each byte into a locally stored string and 
separating the bytes into different strings based on particular flags the CS team 
will provide to us. These flags tell us when the byte data will change from one data 
piece to another, allowing them to transmit and us to receive multiple types of data. 
How that data is being stored can be a bit of a complication. Normally in C, the use 
of the malloc() or calloc() function would be utilized, but those two functions rely 
upon an OS to operate, as stated before. Our current method will just be filling in 
given arrays allocated by the Arduino microcontroller. Once inside of a local string, 
the atoi() function will be of great use transforming a string byte into a numerical 
byte, with which we can do calculations with. 

 

6.3.5 Feedback Control using Sensors and 

Interrupts 
 

The feedback control is going to be a very simple coding system to design. It will 
just be a set of interrupts looking for the event to happen. Once the event under 
scrutiny happens, we will be able have the ISR trigger and change a couple of 
variables which will then be checked by the main loop. Under no circumstances do 
we want to have delays or heavy processing work under the ISR as that can cause 
some extreme and undefined behavior. If some of the feedback needs to be sent 
to the Computer Science team, a Serial.write() can instead be used to send any 
incident to the Computer Science team.  

 

6.3.6 Meridian Flip and Motor Control 
 

The Meridian Flip is going to require some delicate coding and team work between 
the Computer Science team and our team. From an informational standpoint, the 
Computer Science team should be able to predict when the motors reach their 
maximum and need a meridian flip. Another note is that the meridian flip and 
motors reaching their maximum aren’t completely mutually exclusive. Meridian flip 
is more of just a special case for a need of our motors to adjust themselves. 
However, regarding the Computer Science’s ability to deal with the event, there 
can be a better way of controlling the logic for our system. Our main movement will 
essentially consist of two actions. One will be the movement to a specified location, 
while the other will be tracking the location in the sky. Since all these movements 
are technically originating from the CS team, they should be able to also know 
when to perform a Meridian Flip. This is the more complicated and prone to 
accident compared to what is planned. 
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The plan is to use the two optical sensors to send a signal back to the computer 
and to the Arduino. The signal being sent contains two pieces of information 
disguised as one. It tells the motors that they have reached their limit in turning 
radius for the telescope base, and it also that a meridian flip is going to be required. 
This information doesn’t come in two different packets but more is represented as 
two different things regarding hardware side and software side.  

 

The signal must go through our Arduino which will be processed as a flag interrupt. 
We want this to be a flag interrupt because on a hardware side we want our motor 
to stop the rotation as fast as possible. If we have any bit of delay on the motors 
turning, then that can lead to damage done to the structure it’s attached to. This is 
because there is a large possibility that the time it takes for the motors to react to 
the sensor trip will be too slow for a large, heavy moving telescope. We could have 
the telescope move at a slower speed but then it might risk not being able to 
properly find its location or track something because it’s moving too slowly. There’s 
even another possible problem that can arise with the centering of the telescope. 
If the telescope travels too far off from where the trigger was flagged, the system 
will not be synced up with the offset telescope position.  

 

The proposed solution to this is to actually have the telescope flag the interrupt 
twice or more. The concept is to oscillate the telescope to be exactly in the optical 
sensor by changing the direction and speed of the respective motor, constantly 
slowing down and changing direction. The more this occurs the more accurate the 
telescope will be pointed as it will essentially be lined up with the optical sensor, 
raising the flag continuously. This is a positive because now we know exactly 
where the telescope will be after an abrupt stop. A small problem comes up but is 
easily fixed by Arduinos given interrupt commands. Having the telescope directly 
on the sensor means we know exactly where it’s aimed and can get the same 
results after a meridian flip every single time.  

 

To actually program this, the method that we will be using is to have the interrupt 
add a value to a variable. Once this variable is greater than zero, a function will 
run, changing the direction and speed of the corresponding motor. It then 
continues this until the trigger is tripped again, adding to the variable. This new 
number will again change the motor, causing it to trip again. This constant back 
and forth will happen very quickly causing the telescope to have an oscillating 
decay into the optical sensor. Once the given variable surpasses a particular 
number, we can assume that it is essentially close to being in the exact center of 
the optical sensor. Realistically this could only take a single oscillation to bring it to 
the center. The amount of oscillations just heavily varies on how fast and far the 
telescope flies out.  

 

Resuming with the code, the variable that was being used will be set to zero again 
and the interrupt will be disabled for the period of time the meridian flip will begin 
to occur. Otherwise, the flag will be raised indefinitely causing an endless loop and 
holding up the processor. There are two immediately known ways to do this, one 
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is with the detachInterrupt() function. The function will just stop allowing any 
interrupts to be triggered through the desired pin. The pin however will still keep 
sending a signal from the port of the interrupt, it’s just that nothing will happen now.  

 

The other function is noInterrupts(), which leads to an inferior method of controlling 
the telescope. NoInterrupts() is a system wide function that stops all interrupts from 
occurring. Unsurprisingly this is a bad idea to use because then our program will 
not be able to detect when other interrupts occur such as the other motor reaching 
its limit. Therefore, this function will most likely not be used in this particular area. 
It does however bring up one particular aspect of the code. There is a strong 
chance that both motors can hit their limits and set off their respective interrupts at 
the same time. Having them precisely connect at the same time is highly unlikely, 
the more plausible event that would occur is that one motor is performing its 
oscillation while the other motor then trips is respective trigger. Although this 
seems like it could be a big problem, it logically won’t really cause much of a 
disturbance. Since both ISRs are just changing a certain variable and then the 
loop() function of the Arduino is checking that variable, it means that both 
processes can technically be deployed at the same time. The oscillation on one 
motor will commence, and then immediately after the oscillation on the second 
motor will start as well. Since these two things rely on real-time to be completed, 
the Arduino should have no problem handling the changing controls between two 
motors and centering them in the optical sensor.  

 

The second part of the signal will be sent through a USB serial command saying 
that the telescope is in a position needing a meridian flip. The meridian flip itself 
does take time to perform and during that time the Computer Science teams’ 
program will be waiting for an ok signal to be sent. The ok signal will just a simple 
completed flag to notify the program that tracking can resume and 
countermeasures can be taken to make up for the lost time. Our program itself 
should be able to handle a meridian flip, but there can be the case where the CS 
teams’ program sends us a serial signal telling it to meridian flip. If this is what 
happens, then our program will need to have an updated parser that is able to 
understand the meridian flip command. When it comes down to the actual flip, then 
our program will take over and adjust the motors itself. 

 

An actual Meridian Flip will just consist of the program rotating both motors by 180 
degrees. In practice this might result in something a little bit extra then just simply 
switching the direction of the motors for a given amount of time and then continuing 
along. The time lost during the Meridian Flip will need to be taken into account as 
well as the possibility of one of the motors not needing to rotate at all. 

 

6.3.7 Work Load Distribution 
 

The organization and collection of logic in programming as well as placement of 
features has a huge impact on how project will perform. It shouldn’t need to be 
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said that how the code is made will heavily affect the time spent and frustration 
levels of the developers. Time for debugging and finding errors can be drastically 
reduced down with well-maintained code and can also even be easier to write if 
care is used when writing it. The focal points that will dictate how we write the code 
will be revolving around the main functionalities of the ATmega itself.  

 

The setup function is one of the default given items that we can use to organize 
and program our project. As per the name most of the initialized configuration code 
will be placed here to start the board off as its intended. This also means that if the 
reset pin is triggered from the board, then the setup function is the first one that 
get execute again. In our project we will have mainly our pin setups and 
configuration to start getting the hardware to respond to the real-time and internal 
actions that are about to happen. The serial commands to read and write data will 
also be set up in the given setup function. An interesting note is that all these things 
don’t actually have to set in the setup function and can be called later on, but it is 
still a significantly organized way to see the logic of the code. Not much else will 
be placed in the setup function as much of the brains of the project comes later on 
in the loop function and its supporting functions. 

 

Global variables are something that is generally looked down upon in a computer 
science community because they tend to make code less readable, more 
complicated to fix, and have worse portability. Despite all that, we will be using 
global variables because of the advantage they provide. The global variables are 
going to be outside of the setup, ISR, helper, and loop functions. Great use will 
come from this as we can use these variables as status variables. They’ll monitor 
the system and be updated by anything that happens elsewhere. Since they are 
global variables they can be changed at any time or anywhere without us having 
to maintain the passage of data flow by the return values of functions.  Under no 
circumstances is this going to have any logic or work done in the global variable 
area. Doing so could cause a host of problems and bugs while also muddying the 
logic flow up and preventing certain work from being done.  

 

The main loop of the function is where all the core decision actions are going to be 
made, but not the actual actions themselves will be executed. This is to avoid 
clutter and unnecessary collection of ideas. Conditional statements are the brains 
of what will happen in the microcontroller, which will often be checking the global 
variables for status listed above. This includes the functionality of an ISR as the 
ISR’s are generally just going to be limited to changing a global variable if required. 
This main loop function will also be home to the parsing logic in reading of the input 
data.  

 

Another big part of the main loop will be changing itself to respond to the analog 
input stick and configuring the Arduino system to not respond to certain things. 
One of the big things with this design is being able to sort out how the ISR’s can 
interrupt with minimal ‘interrupting’ to the actual flow of the program. The more we 
can exclude as many possible ways an interrupt can interfere with our program, 
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the better. The worst case is having an interrupt disrupt a crucial task and causing 
the outcome of the event to mess up and desynchronize the telescope. Even 
though we’re leaving all the extra work to be done in the helper functions, the 
helper functions are just more ways of uncoupling the work to other areas. When 
it comes down to it, executing a function is still technically operating in the area of 
the main loop.  

 

The ISR functions are going to be kept as simple as possible. To reiterate, this is 
because the ISR’s can interrupt or cause un-warranted behavior in the system. 
There are several general key points to abide by when writing an ISR, which then 
dictate the distribution of work. The first is just a general idea of keeping it as short 
as possible. The second is to never put delays inside of the ISR function itself. It 
turns out that the delay function in Arduino monitors an internal timer to count for 
a delay. However inside of a delay, the timer cannot return an updated time amount 
to the ISR, causing it to create undefined behavior.  

 

Another problem with a delay inside of an ISR is that interrupts are turned off while 
the program is executing inside of an ISR. So, if interrupts would happen as 
demonstrated in the Meridian flip section, our program would not be able to detect 
it. The third limitation is to make variables that are only used by ISR’s volatile. This 
more has to do with the compiler optimizations that can be made at time of building. 
The compiler will often look for unused variables and wasted resources to be 
cleaned up if it can. This directly affects an ISR as compilers will look for all the 
calls to a function. If it can’t find a function call to function outside of the main code, 
then it will effectively remove that allocated resource as it sees fit. Interrupts aren’t 
called from the main code, which is their defining characteristic, so when the ISR 
is called, it crashes the program and possibly causes segmentation faults because 
the variable needed isn’t there. Assigning the keyword volatile to a variable causes 
it to be set specifically aside in the compiler, making sure it still exists in the final 
machine code. 

 

The final note for information flow will be about the helper functions. The helper 
functions are just simple extra functions created to organize and space out the 
core logic from the mechanics of the program. It easies the time to debug, distribute 
work load among team members and make the code readable. An advanced use 
of functions can come in the form of implementing a recurrence relation, however 
there will probably be very little need for it. It is mainly used to help solve 
complicated logic or math problems, instead of the simple commands we need to 
create. Figure 67 which is pictured below demonstrates a realized explanation of 
the program. The figure shows the major blocks of information flow that go into the 
main loop of the program as well as the operations that will be occurring within 
each of the main blocks. 
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Figure 67: Final Code Logic Diagram 
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7. Project Prototype Testing Plan 
 

In general, this plan covers four main areas.  First, we examine the environment 
that we will complete our testing in.  That is, the senior design lab and its available 
equipment.  Next, we discuss testing for each component and an overall plan to 
test the integrated prototype.  We then provide a consideration of our software and 
its associated capabilities, and finally conclude with a summary of our software-
specific testing plan. 

 

7.1 Hardware Test Environment 
 

The bulk of the testing and integration for this project will be performed in the 
University of Central Florida (UCF) Senior Design lab.  Safety is a concern when 
designing any piece of electronic equipment, and this project is no exception.  The 
UCF Senior Design lab is monitored 24/7 by Closed Circuit Television (CCTV) 
cameras and has an additional requirement of at least two personnel from a design 
team on site during any testing.  These stipulations serve to mitigate some of the 
safety concerns related to electronics design work. 

 

Much of the equipment required for the testing of this design is present in the 
Senior Design lab.  Other equipment, to include connectors, breadboards, leads, 
discrete components (e.g. resistors, capacitors, etc.) can be acquired via checkout 
through the UCF Electrical Engineering lab manager, David Douglass.  Major 
components that will be used in the design and testing of this project are detailed 
below. 

 

Tektronix AFG3022B Arbitrary/Function Generator 

Although this is a discontinued model, the functionality of the AFG3022B is very 
robust.  In addition to sinusoidal and other periodic waveforms of up to 25MHz, 
this deice also supports 14-bit arbitrary waveforms at up to 2 GS/s.  Supported 
periodic waveforms include: sine, square, pulse, ramp, triangle, sine, exponential 
rise and decay, Gaussian, Lorentz, Haversine, DC and noise.  The function 
generator will be a key element in our hardware test environment as the operation 
of the motor encoders is dependent on the frequency of a pulse. 

 

Tektronix MSO4034B Mixed Signal Oscilloscope 

The MSO4034B is also a discontinued model but supports features that are more 
than sufficient for the needs of this test environment.  The oscilloscope provides 
four analog channels with up to 350MHz of analog bandwidth.  This device will 
record 20M points and additionally features a sample rate of 2.5 GS/s.  Although 
it will likely not be needed in the scope of our project, this oscilloscope also 
supports FFT analysis for in-depth analysis of the frequency domain.  In general, 
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our project should function adequately with the standard passive voltage probes, 
but this model does also support active, differential and current probes if the need 
arises. 

 

Keithley 2230-30-1 Triple Channel DC Power Supply 

The Keithley 2230 is a triple channel DC power supply that offers two channels 
that vary from 0 – 30V at a maximum of 1.5A and a third channel that is able to 
output 6V at 5A, generally recommended for powering digital circuits.  This allows 
for a maximum power output of 45W on the 30V channels and 30W on the 6V 
channel.  When strictly considering the power requirements of our motors, these 
power supplies should meet the necessary specifications. 

 

However, this is a regulated power supply.  Per the manual for our STM17R 
motors, it is possible that a regulated power supply will encounter a problem with 
regeneration.  When a load is rapidly slowed from a high speed, much of the kinetic 
energy will be transferred back to the power supply.  This, in turn, can trip 
overvoltage protection, if present, on the power supply. 

 

For this reason, we will move forward with securing an additional, long-term 
solution with respect to the power supply.  The manufacturer recommends their 
own model, the PS150A24.  If another power supply is sourced, the manufacturer 
further recommends the installation of their RC-050 regeneration clamp. 

 

Tektronix DMM4050 Digital Multimeter 

The Tektronix DMM4050 bench multimeter offers significant accuracy, with 6.5-
digit resolution and VDC accuracy of up to 0.0024% (rated at one year).  This 
device is capable of detecting voltage from 100mV to 100V with up to 100nV 
resolution, and 100 µA to 10A of current, with up to 100pA of resolution.  In 
addition, resistances between 10Ω and 1GΩ can be measured, with up to 10µΩ of 
resolution.  Additionally, temperature, continuity and diode tests are available on 
this model.  This model does not detect capacitance, so if this functionality is 
required, an additional solution will be needed. 

 

Dell OptiPlex 990 

The bench PC available in our test environment is the Dell OptiPlex 990.  This is 
a reasonably recent PC and should be sufficient to support the needs of our test 
environment.  This PC will be supplemented with personal laptops as needed to 
run software that is not natively available on the bench PC.  The bench PC is worth 
noting because a number of the measurement tools available (multimeter, function 
generator, etc.) support capabilities that allow them to be tied directly into a PC for 
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more detailed analytical work.  Should this need arise in our testing, the OptiPlex 
990 will be the first choice for these tie-ins. 

 

Global Specialties PB-60 Externally Powered Breadboard 

The bulk of early prototyping will be completed using this breadboard, and it is 
included here to memorialize its specifications.  This board supports 1,680 tie-
points and is rated for 36V and 1.5A.  In all cases, these specifications should meet 
our needs.  Two of these devices have been secured for ease of testing. 

 

7.2 Hardware Specific Testing 
 

Sensors 

One of the primary concerns with the sensors is whether or not they will output a 
sufficient voltage for the Arduino to recognize a high signal when they are tripped.  
Relevant entries from the datasheet are memorialized in Table 14 below.  Of note 
is the fact that the high-level output voltage (VOH) only confirms a minimum value, 
not a typical. 

 

It is preferable to power the optical sensors via the Arduino’s built-in 5V source, as 
this will eliminate the need for additional DC-DC conversion circuitry and minimize 
the footprint of the Shield-style PCB that is being developed. 

 
Table 14: OPB980T51Z Electrical Characteristics 

Symbol Parameter Min Typ Max Units 

VF Forward Voltage   1.70 V 

VCC Operating D.C. Supply Voltage 4.5  16 V 

ICC Supply Current   12 mA 

VOL Low Level Output Voltage   0.4 V 

VOH High Level Output Voltage VCC – 2.1   V 

IOH High Level Output Current   100 µA 

 

The implication here is that the VCC constraint of a minimum of 4.5V will be satisfied 
by the Arduino’s 5V supply.  Moreover, the minimum High-Level Output Voltage 
should be guaranteed at or above 2.9V (5V – 2.1V).  The relevant portion of the 
ATmega2560 datasheet is summarized in Table 15 below.  The Low-Level Output 
Voltage is capped at 0.4V maximum. 
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Table 15: OPB980T51Z High and Low Output Voltages 

Symbol Parameter Condition Min Typ Max Unit
s 

VIL Input Low 
Voltage 

VCC = 2.4V – 5.5V -0.5  0.3VCC V 

VIH Input High 
Voltage 

VCC = 2.4V – 5.5V 0.6VCC  VCC + 0.5 V 

 

Assuming a maximum VCC of 5.5 (our expectation is to operate at 5V), VIL(max) can 
be calculated as 1.65V and VIH(min) can be calculated at 3.3V.  VIL is certainly 
satisfied with this condition but there is a question of whether VIH would be 
sufficient.  At the expected operating point of 5V VCC, the requirement for VIH drops 
to 3V minimum, although this is still slightly above the guaranteed minimum output 
voltage for the OPB980T51Z optical switch. 

 

Therefore, the testing for this component is comprised of two phases.  First, we 
connect the optical switch to the 5V Arduino power pin and take measurements of 
VOL and VOH.  The second phase connects the output of the OPB980T51Z to a 
digital input of the Arduino and simple code is executed to determine whether or 
not the high and low outputs of the switch register at the correct logic level on the 
microcontroller. 

 

Motors 

The Applied Motion STM17R-3NE – NEMA 17 motors that have been selected for 
this project consist of two primary systems.  First is the motor and the associated 
drive, and the second is the integrated encoder.  Our testing process will address 
these components individually and in concert with each other. 

 

Before we begin any testing, it is important to note that the STM17R has an internal 
fuse connected to its power supply.  This fuse is not made to be user replicable.  
Therefore, any testing or operation of these motors should occur using a fast acting 
2A external fuse in series with the positive power supply lead.  A second 
consideration here is related to regeneration.  When the drive is rapidly 
decelerated, kinetic energy is transferred to the power supply and can trip 
overvoltage protection; thus, shutting down the supply.  We do not anticipate that 
the motor will be decelerated rapidly enough to fulfill this condition, but if it does, 
the addition of an RC-050 regeneration clamp will be considered. 

 

We first consider the operation of the motor.  The STM17R supports a number of 
different configurations through user-selectable dip-switches to control parameters 
such as current, idle current, load inertia and step size.  Many of the specific 
requirements for these variables will be determined by the needs of the mechanical 
engineering team, but several default values will be selected for initial testing.  
These are summarized in Table 16, included below. 
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Table 16: Proposed Testing Configuration for Motors 

Parameter Value 

Current 100% 

Idle Current 90% 

Load Inertia 0-4X 

Step Size 400 

 

In brief, these parameters can be explained as follows.  Current determines torque, 
with maximum torque available at 100%.  Reduced current will concurrently reduce 
available torque and heat produced by the motor.  Idle current can further reduce 
heat and impacts holding torque.  Generally, 50% is sufficient, although the higher 
value (90%) may be required in some applications, such as supporting a vertical 
load.  Load inertia is strictly determined by a calculation of load inertia divided by 
the STM17R rotor inertia (82 g-cm2), which will be determined by the mechanical 
engineering team. 

 

Step size is the parameter of most interest to our electrical engineering team.  The 
native step size of this device is 200 counts per revolution (CPR), but the motor is 
capable of more granular resolution through a dip-switch setting.  Resolutions of 
between 200 and 25,600 CPR are supported.  The motor is commanded through 
the frequency of the pulse that drives it, using the following formula: 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧) = 𝑅𝑃𝑆 ∗ 𝑆𝑡𝑒𝑝 𝐶𝑜𝑢𝑛𝑡 

 

This means that, as an extreme example, a speed of 50 revolutions per second 
with the 25,000 setting would require a pulse frequency of 1.25MHz, which is well 
outside the native operating parameters of our microcontroller.  Therefore, for this 
initial testing, we will limit the step size to 400 and test at frequencies of 5kHz and 
below.  Once more specifics on gear ratio and requirements are obtained from the 
mechanical engineering team, additional testing will be undertaken as necessary. 

 

Microcontroller 

The hardware specific testing of the microcontroller will be focused on two primary 
areas: signals that the microcontroller is able to output and the response to signals 
that the microcontroller receives.   

 

The first revision of our design involves using the ATmega2560 to drive the motors 
directly, as well as to communicate with the encoder.  Additionally, the 
microcontroller will be expected to drive the LEDs on the board.  Inputs will 
primarily consist of: signals from the PC (delivered over a USB and translated into 
serial communication by a USB-to-serial converter), digital inputs/outputs from/to 
the encoder and the sensors and analog inputs from the joystick.  The test plan 
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will necessitate confirming the ability to respond to and produce each of these 
signals. 

 

Digital outputs (in the form of a pulse) form one of the challenges of this project.  
The speed of the motors is controlled by the frequency of the pulse.  As mentioned 
above, in an extreme case, with 25,000 steps and 500 RPS, this would necessitate 
a pulse frequency of 1.25MHz.  Research indicates that a library called PWM.h is 
capable of supporting frequencies per Table 17 below [24].  Initial testing in this 
area will verify the accuracy of this library and its ability to produce the frequencies 
necessary to drive the motor across a wide breadth of speeds.  The Arduino Mega 
2560 makes pins 2 to 13 and 44 to 46 available for PWM output. 

 
Table 17: PWM.h Library Frequency Ranges 

Timer Frequency 

Timer0 31Hz to 2MHz 

Timer1 – Timer5 1Hz to 2MHz 

 

Note: it bears mentioning here that internal Arduino time keeping functions are 
dictated by Timer0, so the preferred method of using this library is to call the 
InitTimersSafe() function and preserve the existing functionality of Timer0. 

 

In addition to the outputs of the motor/encoder, it is necessary to test the inputs 
being received from the encoder.  This testing should be completed in two phases.  
First, we connect the output of the encoder directly to an oscilloscope, which will 
be used to measure amplitude and frequency.  In the second stage, we will connect 
the outputs to the Arduino and use a rudimentary software package to send the 
amplitude and frequency received directly to the Arduino serial monitor for 
verification. 

 

Ultimately, the Arduino will be receiving signals generated by a software package 
developed by the computer science team, delivered over the USB.  Exact 
communication protocols are being negotiated with the CS team, but initial testing 
will consist of sending command strings through the serial monitor built in to the 
Arduino IDE.  The first revision of the proposed command string includes three 
parts: a designation for which motor is to be controlled, total angular displacement 
(degrees, counts or revolutions) and a direction of rotation. 

 

Much of the analog testing of the board will be covered under the joystick section, 
but preliminary tests of the analogRead() functionality are to be performed first.  
The Mega2560 supports 15 analog input pins (although only 2 will be in use for 
this project) that include built-in analog to digital converters (ADCs).  The ADC 
maps an input voltage between 0 and 5V (operating voltage of the Arduino) to a 
10-bit resolution, meaning that the output ranges from 0 – 1023.  Initial testing will 
consist of feeding precise fixed values of DC voltage into the analog input pins and 
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confirming the output of the analogRead() function through the use of the Arduino 
serial monitor.  Sample expected test parameters are included here as Table 18. 

 
Table 18: Expected analogRead() Test Parameters 

Input (V) analogRead() 

0 0 

1 204 

2.5 511 

4 818 

5 1023 

 

Note: it is possible to change the upper end of the analog reference range by 
utilizing the AREF pin in conjunction with the analogReference() function.  
However, it is not expected that this functionality will be required for this project. 

 

Joystick 

The joystick selected for this project is a 2-axis analog joystick with select button.  
The select should short to ground (i.e. go low) when it is depressed, and the X and 
Y axis function as 10KΩ potentiometers.  The X and Y outputs are both analog 
out. 

 

There is little available documentation for the joystick, so some assumptions are 
made here and then must be tested.  The joystick accepts an input of any voltage 
up to 5V, which is where it will be operating at for our project.  The assumption 
here is that if the X and Y axis act as potentiometers, the analog output should 
vary from 0 to 5V in a linear fashion as the potentiometer is adjusted.   

 

Testing will need to determine how this voltage varies with position.  For example, 
when the joystick is at extended to one extreme of the axis it could read 0V, when 
it is zeroed (at resting position) it could read 2.5V and when at the other extreme 
of the axis it could read 5V.  This seems a reasonable assumption but testing with 
verify the voltage distribution across the working range of the joystick.  In addition, 
voltage on the select output will be measured and the variation will be noted as the 
select button is depressed.  The expectation here is 5V out under normal 
conditions and 0V out when depressed.  Expectations are detailed here in Table 
19. 

 
Table 19: Projected Voltage Outputs for Joystick 

 Lower Extreme Center Upper Extreme Off On 

X/Y Axis 0V 2.5V 5V   

Select    5V 0V 
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The second piece of the testing will be the interaction of the joystick with the analog 
pins on the Arduino.  As referenced above, the expectation is for the analog voltage 
on these pins to be indexed evenly to a value between 0 and 1023.  The behavior 
of the joystick should be predictable based on our initial testing, but further 
validation should occur to confirm a smooth integration with the microcontroller. 

 

LEDs 

The LED operation is fairly straightforward and intuitive but should be tested to 
confirm assumptions made are correct.  Relevant electrical characteristics from 
the datasheet are included here as Table 20. 

 
Table 20: LED Electrical Characteristics 

Characteristics Symbol Condition Unit Min Typical Max 

Forward Current 
(max) 

IF  mA   501 

Peak Forward 
Current2 

IFP  mA   200 

Forward Voltage VF IF = 20mA V  2.1 2.6 

Reverse Current IR VR=5V µA   100 
1. For long term performance the drive currents between 10mA and 30mA are recommended. 
2.  Pulse width ≤ 0.1 msec, duty ≤ 1/10. 

 

The major item for test here is to confirm that all purchased LEDs function at the 
expected turn-on voltage of 2.1V and not somewhere higher in their possible 
range.  Current into the LED will be limited with a resistor in series to meet the 
specifications, so it will be important to verify that enough voltage is provided after 
the voltage division to power the LED. 

 

Integrated Testing 

Although the individual components will be tested and verified according to the 
plan set forth above, it will also be necessary to test the prototype with all systems 
integrated as a functioning whole.  The true test of this functionality will require that 
the computer science team has made their completed code base available to us, 
so that will likely not occur until near the end of this prototype life-cycle.  Similarly, 
the scale-model developed by the mechanical engineering team will not be 
available until well after this testing needs to have been completed.  However, it is 
important that we be able to test the integration of all parts of the system well 
before that, so a brief outline of this test procedure is set forth here. 

 

The prototype testing discussed here will utilize our in-house software package 
(i.e. the basic version developed by our team, versus the production version 
developed by the computer science team).  We will rely on a terminal window to 



    Group A Senior Design I 

121 
 

issue commands and receive feedback from our microcontroller. Although much 
of the feedback received from the system will be able to be identified in real-time, 
the best practice here will be to dump the serial monitor data into an Excel file for 
later analysis.  Although the Arduino serial monitor is capable of some work-
arounds that enable dumping data to a .CSV file, other applications, such as 
puTTY, have this functionality built-in.  Therefore, this will be the preferred terminal 
application for this portion of the testing. 

 

Simple control strings will be issued in the format agreed upon with the computer 
science team.  At this time of this writing, this includes a binary determination of 
which motor is being commanded (1 or 0), a binary command to determine 
direction (1 or 0) and a number to indicate the degree of rotation (which will either 
be in degrees or counts).  We will need to make assumptions about the gear ratios 
being developed by the mechanical engineering team to complete this testing, 
although these values are easily modified if needed when the full-scale model is 
implemented.   

 

To date, the feedback requested by the computer science team includes 
confirmation of success or failure in terms of movement of the motors to the 
desired position, and an indicator of position if the desired movement is not 
completed.  Therefore, these are the signals that we will be sending back to the 
terminal window and capturing into an Excel file. 

 

Without the use of the mechanical engineering team’s scale-model, it will be 
necessary to have an alternative means to test the rotation of the motors and the 
functionality of our optical switches (e.g. as limit switches and home position 
sensors).  To test the rotation, the best practice here will be to issue commands 
that necessitate a minimum degree of rotation from the motors.  The simplest test 
with the least room for measurement error is to command the motor to complete 
one full rotation.  In addition, quarter and half-rotations can be easily measured.  
This is best accomplished by affixing a position indicator (i.e. a simple, straight 
rod) to the shaft of the motor and placing the motor inside a circle that has been 
demarcated by quarter and half-rotation marks.  The correspondence of the 
position indicator to the markings will broadly confirm whether the motor is being 
commanded as intended.   

 

Similarly, this system can also confirm positional tracking (i.e. compensation for 
the earth’s rotation).  Since the earth’s rotation is fixed, a simple calculation can 
determine the time it should take to rotate a quarter, half or full-turn.  Since this will 
also be dependent on the mechanical engineering team’s gear ratio, it will be 
necessary to make an assumption here.  The simplest assumption would be to 
assume a gear ratio of less than or equal to one (although this is certainly not the 
gear ratio of the final product) to allow the motor to move a minimal distance for 
each command sequence. 
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7.3 Software Test Environment 
 

As the core design of this project involves the use of a Shield daughterboard 
designed to interface directly with the Arduino MEGA 2650, the Arduino 
environment naturally lends itself to our software testing.  There are two 
environments specific to the Arduino, and both will be addressed in this section.  
These environments are the Arduino IDE (Integrated Development Environment) 
and the Arduino Web Editor.  Both of these systems are available directly from the 
Arduino website. 

 

Arduino IDE 

The Arduino IDE is a traditional desktop IDE and it can be downloaded directly 
from Arduino.  The main application of the desktop IDE is for offline work.  This 
platform will be used to write short, quick test routines and other informal scripts 
for verification of hardware functionality.  The desktop Arduino IDE is limited in 
some ways as compared to the Arduino Web Editor, and these differences will be 
elaborated below. 

 

Arduino Web Editor 

The Arduino Web Editor is part of the Arduino Create software suite.  This suite 
provides functionality to create code, review online tutorials, perform board 
configuration and share project amongst collaborators.  In addition, the Arduino 
Web Editor is an entirely online platform; therefore, the latest features are 
immediately available.  Moreover, over 700 Arduino libraries are natively 
supported.  

 

The Web Editor is able to automatically recognize any official Arduino/Genuino 
board, and code is backed up and saved to the cloud.  The platform is available 
across Windows, Mac and Linux, which allows ease of adoption throughout our 
interdisciplinary team; however, Google Chrome is the recommended browser. 

 

The Arduino Web Editor organizes projects as Sketches.  These Sketches can 
include the code uploaded to the board, documentation and schematics for 
hardware layout.  Our primary schematic design tool is Autodesk’s Eagle PCB 
design tool; however, the ability to include informal schematics within the Sketch 
is a useful tool for associating breadboard testing configurations with the related 
code. 
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Arduino Serial Monitor 

Both the Arduino Web Editor and IDE include built-in functionality to send and 
receive data to a console via the Serial Monitor.  The Serial Monitor functions 
through the native USB port on the Arduino MEGA 2560 and can both send and 
receive data to and from the microcontroller.  As with much of the Arduino 
language, this capability is abstracted to a high level.  Core functionality is similar 
to traditional C statements for outputting to the monitor (e.g. serial.print()).  Before 
initiating communication, the serial.begin() function must be passed with a baud 
rate that agrees with the communication terminal built-in to the Arduino IDE [25]. 

 

GitHub 

The Florida Space Institute (FSI) retains an enterprise GitHub repository that is 
used across the interdisciplinary teams to maintain communication, 
documentation and code. GitHub allows for version control of software via the Git 
platform.  Although the Arduino Web Editor allows for sharing of projects, any code 
that will communicate across the interdisciplinary teams will be housed on GitHub, 
as the associated distributed version control can serve to mitigate any problems 
that may otherwise arise due to the size of the team working this project. 

 

7.4 Software Specific Testing 
 

In general, we have a number of specific software subsystems that will require 
testing, alongside an integrated test of all functionality.  The integrated test will be 
dependent upon a selection of gear ratio by the mechanical engineering team as 
well as the full implementation of the PC-side code by the computer science team.  
As that full integrated testing will not be implemented until near the conclusion of 
this project, it is mentioned here only for completeness. 

 

7.4.1 USB Input/Output 
 

We will be receiving commands from, and transferring positioning data to, the 
software running on the PC.  This will be accomplished over the built-in Arduino 
USB interface.  The Arduino USB interface has a built-in serial converter, that will 
translate differential USB signals into serial data, as well as perform the outbound 
translation.  Much of our testing will use the built-in Arduino Serial Monitor, but a 
stand-alone test of USB functionality is preferred in advance of full integration, as 
the serial monitor will not be a part of the integrated package.  A rudimentary USB 
functionality check can easily be accomplished through a simple scripting 
language, such as Python – although our intent is to compile a more robust test 
platform using C. 
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7.4.2 Pulse Frequency Ouput 
 

We have selected a library that allows the Arduino to vary the frequency of pulses 
on its digital I/O pins.  This library is referred to as PWM.h and has associated sub-
libraries.  A simple functionality test will include installing these libraries onto the 
Arduino and sending commands to initialize the timers and vary the pulse 
frequency on the I/O pins.  An oscilloscope will be used to capture the output, 
determine the error and/or range of the frequency outputs and verify this 
functionality. 

 

7.4.3 Tracking 
 

One of the significant challenges for this embedded design is to include tracking 
functionality – that is, our motors need to compensate for the earth’s rotation, in 
addition to accepting positioning commands from the PC software package.  As 
with much of our other positioning software, the final variables needed for this code 
will vary, depending on the gear ratio chosen by the mechanical engineering team.  
However, for a simple proof-of-concept test, we will implement the tracking 
software using a single rotation.  The tracking rotation should provide one full 
revolution each 24-hours, in accordance with the earth’s rotation.  Therefore, this 
test will be instituted at mid-day, and the results will be confirmed the following day 
at the same time window. 

 

7.4.4 Encoder 
 

The encoder that we have selected is a quadrature incremental encoder.  
Therefore, it is essential that we include a software element that is capable of 
differentiating the two signals so as to determine which is leading and which is 
lagging.  This will provide data on the direction of motor rotation.  In addition, the 
1000-line encoder will increment a counter by +1 for each clockwise rotation and 
decrement the counter by -1 for each counterclockwise rotation.  In conjunction 
with the gear ratio, this will allow us to determine the absolute position of the 
telescope mount with reference to its home position.  This software package will 
need to be implemented on the Arduino and tested for all possible cases.  
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8. Administrative Content 
 

Being on an intradisciplinary team means a lot more coordination and organization 

is involved as opposed to working with only the ECE members of a team. Due to 

this, Gannt charts and work distributions are key to communicating expectations 

both within our ECE team of four electrical engineering students as well as within 

the broader scope of our intradisciplinary team. This section outlines important 

milestones that were made aware to the other mechanical and computer science 

teams, as well as the project schedules and work distributions for our ECE team. 

 

Our project director, Mike Conroy suggested to create a project schedule chart 

(referred to here as a Gannt Chart) and make it available to all sub-teams and 

customers. By alerting the other teams of when parts need to be ordered, this 

made the mechanical team aware that they might have to make some design 

choices earlier than normally expected of them. Making this schedule available to 

the customer enabled them to see how much progress has been made with ease. 

 

8.1 Milestone Discussion 
 

Our project milestones in Table 21 and Table 22 below appear to span throughout 
47 weeks, however most of the members on our team will be completing full-time 
summer internships during the summer term. The summer term is during weeks 
19 through 34. It is our goal to hold bi-weekly meetings online to address the status 
of our project and make as much progress possible towards our Senior Design II 
deliverables. 

 
Table 21: Senior Design I Project Milestones Table 

Tasks  Week 

Divide and assign duties  3 

Divide and Conquer 
Document 

4 

Research 4-6 

Divide and Conquer 2.0 7 

Design 7-10 

Begin writing 
Documentation 

10 

60-page draft due 12 

Order Parts 13 

100-page submission due 14 

Finalize documentation 15 

Final documentation due 16 
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Some of the things that our team hopes to accomplish over the summer include to 
complete and fine tune our code for communication with the PC, the joystick, the 
sensors, the LEDs and the ATmega328. Our team also hopes to work on 
significantly the encoder and motor code which will take up hopefully no longer 
than five weeks. The remaining portion of the summer our team hopes to work on 
the integrated code which we have allotted over six weeks towards its completion. 

 

In parallel to the code integration and completion, our team hopes to complete 
testing and verification of all major components both separately and together as 
an integrated project. More optimistically, we will also begin creating the PCB 
schematic and board layout and hopefully have our first iteration of the board 
printed and assembled by the beginning of the fall semester. Lastly, our team will 
work on a makeshift mount for which we can test our system while we wait on the 
mechanical team to deliver to us a working design. We believe if we achieve all of 
the goals stated above, we will be in a really good place going in to the fall term to 
allow for many revisions to the PCB if needed and to account for any issues 
integrating our system with the code developed by the Computer Science team 
and the mount developed by the Mechanical Engineering team. 

 
Table 22: Senior Design II Project Milestones Table 

Tasks  Week 

Build Prototype 35-39 

Hardware/Software Check 40 

Address Prototype Issues 41 

Assemble Final Project 42-46 

Test and Fine Tune 47-49 

Presentation 50 

 

For a more visual representation of our teams’ milestones, specifically looking at 
the first semester, see Figure 68 below. 

 

 
Figure 68: Project Gantt Chart 



    Group A Senior Design I 

127 
 

It is also important to consider how each of the other teams involved in the project 
will impact any timelines for decisions made on either side. Some decisions such 
as ordering parts will have to be a collaborative effort to make sure that there will 
be a usable interface and communications handover between each of the sub-
teams compromised of mechanical engineering students and computer science 
students. The Figure 69 below illustrates the overall milestones for the three sub-
teams over the course of Senior Design I. 

 

 
Figure 69: Integrated Team Gantt Chart 

 

8.2 Budget and Finance Discussion 
 

The ultimate source of funding for this project will be through the Florida Space 
Grant Consortium (FSGC); however, process of obtaining the grant will be 
facilitated by the Florida Space Institute (FSI).   

 

The preliminary estimate for the grant is $750 per team.  If three teams take on the 
project, that would allocate a total budget of $2,250 to cover the project.  It is 
expected that each team will work within their own portion ($750) of the budget, 
but this has not been formally outlined between teams. 

 

Though some parts have been procured already, list items in Table 23 such as the 
PCB manufacturing and soldering as well as PCB components and housing are 
initial estimates only.  Specific design choices have not yet been made to allow for 
maximum flexibility, and it is expected that some additional needs will surface as 
the project progresses.  Therefore, some categories here (e.g. cables and PCB 
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parts) are an overestimation of the anticipated cost, but this should serve to 
mitigate the impact of unforeseen needs. Though the total figure of $1,009.53 is 
over the potential grant allocation of $750, during the design process decisions on 
parts will be made so that the overage over the total grant allocation is minimized. 
Our team is willing however to split the excess cost of parts if the total figure does 
in fact go over the grant amount. 
 

Table 23: Project Budget 

Description Quantity Unit Price Extended Price 

Integrated Motors with 
Encoders 

2 $204.00 $408.00 

Arduino Mega 2560 1 $38.50 $38.50 

Power Supply 1 $172.00 $172.00 

Optical Sensors 2 $5.04 $10.08 

Joystick 1 $5.95 $5.95 

PCB manufacturing and 
soldering 

1 $100.00 $100.00 

PCB components N/A $100.00 $100.00 

Misc. cables, 
connectors, LED’s, etc. 

N/A $100.00 $100.00 

Housing 1 $75.00 $75.00 

Total   $1,009.53 

 

8.3 Work Distributions 
 

The following table (Table 24) show how the major design work is distributed 

among each of the team members. 

 

Table 24: Subsystem Design Work Distribution 

Subsystem 

Number 

Subsystem Name Primary Secondary 

1 DC to DC Converter Anthony 

Eubanks 

Brian Glass 

2 Status LEDs and Sensor Brian Glass Anthony Eubanks 

3 Motors Brian Glass Anthony Eubanks 

4 ATMega2560 Thomas Vilan Melinda Ramos 

5 Joystick Melinda Ramos Brian Glass 

6 ATMega328 Anthony 

Eubanks 

Thomas Vilan 
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In addition to the major subsystem design work distributions, there are also other 

tasks that require ownership by a selected team member. Table 25 shows which 

team member was majorly responsible for various administrative and overall 

project coordination type tasks that come with being a part of an intradisciplinary 

team. 

 

Table 25: General Tasks Work Distribution 

Task Primary Secondary 

Integrated PCB Design 

Lead 

Anthony Eubanks Brian Glass 

Task Delegation and 

Communications Lead 

Anthony Eubanks Brian Glass 

FSGC Grant Paperwork 

Lead 

Melinda Ramos Thomas Vilan 

Purchasing Forms Lead Melinda Ramos Anthony Eubanks 

Intradisciplinary Project 

Schedule Lead 

Melinda Ramos Anthony Eubanks 

Final Report Integration 

and Quality Lead 

Melinda Ramos Anthony Eubanks 
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9. Project Summary and Conclusions 
 

The scope of this project has evolved significantly since the initial proposal, based 
on feedback from the customer and the proprietary nature of some of the hardware 
and software existing in the observatory.  In short, this project has shifted from an 
immediate effort to rehabilitate the UCF observatory into an intermediate step, 
where a working scale-model of the equipment is implemented so that future 
teams are able to follow behind and continue the effort without fear of damaging 
the observatory’s equipment or causing extended downtime.  In addition, one of 
the aims of this project is for astronomy enthusiasts to be able to reproduce a 
similar set-up using this open-source design.  

 

Through the research and design of this scale-model, we have learned a great 
amount on stepper motor control systems. Our design will essentially consist of a 
short list of major components such as the stepper motors, sensors, joystick, 
power supply, and two different microcontrollers. After our initial prototyping 
efforts, we have come up with a sufficient design that we believe can be easily 
implemented in a larger scale  which would benefit the UCF observatory. Our 
largest challenge was to create the foundation program which will interact with the 
software created by our computer science team members and will be capable of 
sending feedback to ensure our scale-telescope meets the most important 
specification of 3.5 degrees in accuracy. We fully expect our implementation of the 
designed system to meet this requirement while serving as a modifiable, open-
ended solution to the observatory.  
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Appendices 
 

This section consists of any references and sources used throughout the paper as 
well as permission emails to use copyrighted materials. 
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