

Robinson Observatory Restoration
Phase A: Scale Model

University of Central Florida
Department of Electrical Engineering and Computer Science

EEL 4914

Dr. Samuel Richie, Dr. Lei Wei
Senior Design I

Sponsor(s): Florida Space Grant Consortium

Under the direction of Mike Conroy, FSI Project Manager

Group A

● Anthony Eubanks Electrical Engineering

● Brian Glass Electrical Engineering

● Melinda Ramos Electrical Engineering

● Thomas Vilan Electrical Engineering

 Group A Senior Design I

i

Table of Contents
1. Executive Summary .. 1

2. Project Description .. 3

2.1 Project Motivation and Goals .. 3

2.2 Objectives ... 3

2.3 Challenges .. 4

2.4 Requirements Specifications ... 5

2.5 House of Quality Analysis ... 6

2.6 Block Diagrams ... 7

3. Research Related to Project Definition .. 9

3.1 Existing Similar Projects and Products .. 9

3.2 Relevant Technologies .. 10

3.3 Strategic Components and Part Selections ... 15

3.3.1 Declination and Right Ascension Motors .. 15

3.3.2 Power Supply Unit .. 24

3.3.3 Sensors .. 26

3.3.4 Joystick ... 33

3.3.5 Microcontroller .. 36

3.4 Parts Selection Summary .. 40

4. Related Standards and Realistic Design Constraints 42

4.1 Standards .. 42

4.1.1 ANSI Related Standards and their Design Impact 42

4.1.2 USB Standards ... 43

4.1.3 C Standard ... 44

4.1.4 ATmega Standards ... 45

4.1.5 NEMA ICS 16 ... 46

4.1.6 Communication Interface Standards .. 47

4.1.7 Industry Standard 26C31 Differential Line Driver and 26C32 Receiver

 .. 48

4.2 Realistic Design Constraints ... 50

4.2.1 Economic and Time Constraints ... 50

 Group A Senior Design I

ii

4.2.2 Environmental, Social and Political Constraints 51

4.2.3 Ethical, Health, and Safety Constraints .. 51

4.2.4 Manufacturability and Sustainability Constraints 52

5. Project Hardware and Software Design Details .. 54

5.1 Initial Design Architectures and Related Diagrams 54

5.2 First Subsystem, Breadboard Test, and Schematics 56

5.2.1 DC to DC Converter Design and Schematic 56

5.2.2 DC to DC Converter Breadboard Test .. 58

5.3 Second Subsystem, Breadboard Test, and Schematics 58

5.3.1 Status LEDs Design and Schematic ... 59

5.3.2 Status LEDs Breadboard Testing ... 60

5.3.3 Sensors .. 62

5.4 Third Subsystem, Breadboard Test, and Schematics 66

5.4.1 Motors .. 67

5.4.2 Encoders .. 71

5.4.3 Power Supply ... 73

5.4.4 Motor and Encoder Breadboard Test ... 74

5.5 Fourth Subsystem, Breadboard Test, and Schematics 76

5.5.1 Integration of ATmega .. 76

5.5.2 Testing of the ATmega ... 76

5.6 Fifth Subsystem, Breadboard Test, and Schematics 78

5.6.1 Joystick Design and Schematic .. 78

5.6.2 Joystick Breadboard Test ... 80

5.7 Sixth Subsystem, Breadboard Test, and Schematics 81

5.8 Software Design ... 83

5.8.1 Basic Arduino programming ... 83

5.8.2 Integrated Development Environment .. 83

5.8.3 Interrupt Service Routines .. 84

5.8.4 Meridian Flip ... 87

5.8.5 Varying Frequency ... 88

5.8.6 Bit Banging Square Wave VS Direct PWM Outputs 89

 Group A Senior Design I

iii

5.8.7 Analog Inputs from an Analog Joystick ... 91

5.8.8 Serial Parser ... 92

5.9 Summary of Design ... 94

6. Project Prototype Construction and Coding ... 97

6.1 Integrated Schematics .. 97

6.2 PCB Vendor and Assembly ... 99

6.2.1 PCB Vendor .. 99

6.2.2 Assembly .. 101

6.3 Final Coding Plan .. 101

6.3.1 Information Flow ... 102

6.3.2 Controlling the Motors... 103

6.3.3 Joystick control ... 105

6.3.4 Parsing the Directions from the Computer Science Team 106

6.3.5 Feedback Control using Sensors and Interrupts 107

6.3.6 Meridian Flip and Motor Control ... 107

6.3.7 Work Load Distribution ... 109

7. Project Prototype Testing Plan .. 113

7.1 Hardware Test Environment.. 113

7.2 Hardware Specific Testing .. 115

7.3 Software Test Environment ... 122

7.4 Software Specific Testing .. 123

7.4.1 USB Input/Output ... 123

7.4.2 Pulse Frequency Ouput .. 124

7.4.3 Tracking .. 124

7.4.4 Encoder .. 124

8. Administrative Content .. 125

8.1 Milestone Discussion .. 125

8.2 Budget and Finance Discussion .. 127

8.3 Work Distributions ... 128

9. Project Summary and Conclusions ... 130

Appendices ... 131

 Group A Senior Design I

iv

Appendix A – References ... 131

Appendix B – Copyright Permissions .. 133

List of Figures
Figure 1: House of Quality .. 6

Figure 2: Control Box Block Diagram for EE Design Project Scope 7

Figure 3: Overall System Block Diagram of Existing System 7

Figure 4: Software Block Diagram .. 8

Figure 5: Alt-Azimuth Mount ... 10

Figure 6: Dobsonian Mount .. 11

Figure 7: German Equatorial Mount ... 12

Figure 8: Fork Mount .. 12

Figure 9: Refractor Telescope .. 13

Figure 10: Reflector Telescope .. 14

Figure 11: Catadioptric Telescope .. 14

Figure 12: Alternating vs. Direct Current .. 16

Figure 13: Three-Phase vs. Single-Phase .. 17

Figure 14: Hall Effect and Hall Voltage ... 18

Figure 15: Steps per revolution dipswitches ... 22

Figure 16: STM17R-3NE NEMA 17 .. 23

Figure 17: Torque Curves... 24

Figure 18: Power Supply Block Diagram .. 24

Figure 19: PS150A24 24VDC Switching Power Supply 25

Figure 20: Existing Configuration of Optical Switch and Interrupter 27

Figure 21: Linear Potentiometer ... 28

Figure 22: Capacitive Position Sensor ... 29

Figure 23: Magnetostrictive Position Sensors .. 29

Figure 24: Eddy Current Position Sensors ... 30

Figure 25: Hall Effect Position Sensor .. 30

Figure 26: Optical Position Sensor (Switch) ... 31

Figure 27: Buffer Logic/Totem-Pole Output Drive Architecture, Courtesy Texas

Instruments .. 32

Figure 28: Mini Analog Joystick .. 33

Figure 29: 2-Axis Joystick ... 34

Figure 30: Thumb Joystick with Select Button .. 35

Figure 31: Signal Sampling and Digital reconstruction 38

Figure 32: Major Components .. 40

Figure 33: USB Description Graphic .. 44

Figure 34: Stacked Arduino shields .. 55

 Group A Senior Design I

v

Figure 35: DC to DC converter Schematic .. 56

Figure 36: Webench Power Designer ... 57

Figure 37: Status LEDs ... 59

Figure 38: Multisim testing of LED .. 61

Figure 39: IR Diode Schematic ... 63

Figure 40: Optical Sensor Internal Components, Courtesy Texas Instruments .. 64

Figure 41: Optical Sensor Schematics .. 65

Figure 42: Status LED and sensor testing .. 66

Figure 43: Complete Motor/Encoder Schematic ... 67

Figure 44: STM17R Motor Connections ... 67

Figure 45: Connections from Microcontroller to Motor .. 68

Figure 46: Motion Profile with Step Smoothing Filter .. 69

Figure 47: Power Supply Front Panel ... 74

Figure 48: Motor Breadboard Test .. 75

Figure 49: ATmega2560 with Connections ... 77

Figure 50: Joystick Schematic .. 79

Figure 51: Joystick Schematic with LEDs for Testing ... 80

Figure 52: Breadboard Test for Joystick ... 81

Figure 53: ATmega 328 Schematic .. 81

Figure 54: ATmega 328 Programming .. 82

Figure 55: ISR Priority Diagram .. 84

Figure 56: Actual Digital Pin Interrupt Mapping .. 85

Figure 57: Digital Deconstruction and Characteristics of a Wave 86

Figure 58: Meridian Flip Illustrated.. 88

Figure 59: Duty Cycle of a Square wave .. 89

Figure 60: Analog signal transformed into PWM signal 90

Figure 61: Analog Signal Deconstruction into a Set Digital Resolution 91

Figure 62: Cartesian Coordinates and Vector Representation 92

Figure 63: Byte representation of a String .. 93

Figure 64: ASCII character code used for common American computers 93

Figure 65: Integrated Schematic ... 97

Figure 66: Direct information flow of components in the telescope system 102

Figure 67: Final Code Logic Diagram ... 112

Figure 68: Project Gantt Chart .. 126

Figure 69: Integrated Team Gantt Chart ... 127

List of Tables

Table 1: Stepper vs Servo Motor .. 20

Table 2: Motor dipswitches ... 21

Table 3: Comparison of Motors .. 23

 Group A Senior Design I

vi

Table 4: Comparison of Power Supply ... 26

Table 5: Comparison of Sensors .. 32

Table 6: Comparison of Joystick Models .. 35

Table 7: Comparison Table for Microcontrollers ... 39

Table 8: Parts Selection Overview ... 41

Table 9: Comparison of Telecommunication Standards 49

Table 10: IR Diode Characteristics ... 63

Table 11: OPB980 Electrical Characteristics .. 64

Table 12: Motor Configuration Selections... 70

Table 13: Comparison of PCB Vendors ... 101

Table 14: OPB980T51Z Electrical Characteristics ... 115

Table 15: OPB980T51Z High and Low Output Voltages 116

Table 16: Proposed Testing Configuration for Motors 117

Table 17: PWM.h Library Frequency Ranges ... 118

Table 18: Expected analogRead() Test Parameters .. 119

Table 19: Projected Voltage Outputs for Joystick ... 119

Table 20: LED Electrical Characteristics .. 120

Table 21: Senior Design I Project Milestones Table ... 125

Table 22: Senior Design II Project Milestones Table .. 126

Table 23: Project Budget .. 128

Table 24: Subsystem Design Work Distribution ... 128

Table 25: General Tasks Work Distribution .. 129

 Group A Senior Design I

1

1. Executive Summary

Although the groundbreaking for the Robinson Observatory occurred in January of
1994, the story of our current telescope begins in 2007. It was at this point that
the existing 26” Tinsley telescope was removed and the existing 20” telescope,
manufactured by RC Optical Systems, was installed. Although the installation of
the device was led by Nate Lust, students played a significant role in the effort.
From the beginning, the telescope was a partnership between the University of
Central Florida and its students.

The 20” telescope is far from the largest or most powerful in use, so it has been
designated a unique role. The telescope was designed to fill the niche of a rapid
response device; that is, it can be deployed at a moment’s notice, and is therefore
uniquely situated to make time sensitive observations of astronomical phenomena.
In addition to its academic and scientific applications, the telescope has also
served to arouse an interest in astronomy for countless Scout troops, student
groups and people of all ages. In 2015, the Orlando Sentinel recommended the
Robinson Observatory as one of the “things you have to do before graduating
UCF.”

The telescope served faithfully from its installation until approximately three years
ago, when its functionality began to degrade. In brief, the various subsystems of
the telescope are controlled through a combination of software and dedicated
peripheral devices. The focuser is controlled by a dedicated piece of hardware.
Control of the dome is accomplished through the PC. Two Pittman 4431E064-R3,
24V DC, 500 CPR motors control the rotation and elevation of the telescope, which
are in turn driven by a software package designated as TheSkyX. TheSkyX
references a database of coordinates and pushes control signals to the motors. A
controller, branded as Bisque TCS, sits between the PC running TheSkyX and the
motors driving the telescope. This controller translates the commands of the
software into the inputs that allow the motors to track various astronomical objects.

As it is currently understood, the heart of the problem lies in the ability of the
telescope to accurately track the coordinates provided by TheSkyX software.
Images produced by the telescope are blurry, unfocused and include “streaking”
of illuminated objects, suggesting that one of the motors is not correctly
compensating for the earth’s rotation. At this time, the exact cause of this
breakdown is unknown; it could be due to the software itself (as the problems
became more pronounced after an update of the software), an issue with the
motors or the translation of the commands by the Bisque TCS controller. In
addition to the tracking issues, the telescope is no longer correctly reporting its
position back to TheSkyX software package.

Until initial investigation and reverse engineering are underway, it is impossible to
say whether the Bisque TCS controller is functioning as intended. However, this

 Group A Senior Design I

2

is a proprietary piece of hardware. There is a single individual who is able to
service this equipment, and he must be flown in at great cost to the University any
time that service is needed. Therefore, even if the controller is operating, it is the
desire of the Robinson Observatory to replace it with an open source design. The
core goal of our team is to make adequate progress towards replacing the
controller. The first step will be to create a scale model for use as a testing platform
without posing harm to the expensive existing hardware such as the custom
Pittman motors. Additional functionality may be added as time and budget allow.

 Group A Senior Design I

3

2. Project Description

The scope of this project has been modified as the interdisciplinary teams have
begun to have a more complete understanding of the state of the observatory’s
telescope, mount, proprietary software and embedded telescope controller. In
brief, our overall project consists of a scale-model of the current version of the 20”
telescope. The electrical engineering team is focused on providing the embedded
portion of this integrated device. That is, the piece of hardware that sits between
the PC and the mount and translates positioning commands from the PC into the
appropriate motor movements.

2.1 Project Motivation and Goals

The 20” telescope serves as the showpiece of the Robinson Observatory. In
addition to performing the bulk of the scientific observations for the astronomy
team, it is a significant draw to youth groups and has served as a destination for
Scout troops, school fieldtrips and the general public. When the telescope is
operating as designed, it fills scientific, academic and social needs of the Central
Florida community.

It is the desire of our team to engage with a Senior Design project that has a lasting
impact. We do not wish to diminish the creativity, technical challenge and
opportunities for learning that are inherent in many other Senior Design projects,
but the simple fact is that many of them are relegated to a storage closet after the
team graduates. It is our belief that the successful execution of this project will
restore a resource that will benefit the community for years to come.

In addition, our team is inspired by the close cooperation that has existed between
the Robinson Observatory and the UCF student body since the initial installation
of this telescope. We all feel that we have benefited greatly by our time at UCF
and are excited to have an opportunity to continue this partnership and give back
to the University that has been our home for the last few years.

2.2 Objectives

The minimum viable product, as defined by our contact at FSI, is sufficient
progress towards the replacement of the proprietary controller that translates
TheSkyX commands to the motors that drive the telescope. This will be first and
foremostly achieved through the design of a PCB that decodes a string of motor
command signals as inputs and controls a scale model of the telescope. In a
broader sense, the intention is to restore full functionality to the telescope.
However, since parts of this goal are dependent upon the efforts of other teams
working the project (e.g. if the motors are not restored to full functionality, no
amount of effort from the E.E. team will be able to overcome this deficiency), the

 Group A Senior Design I

4

overall objective for the E.E. team is to make progress towards creating an open
source replacement of the Bisque TCS controller, as requested by the customer.

There are a number of additional goals that have been defined by the Robinson
Observatory team (and are enumerated in more detail in the Requirement
Specifications section of this document). Key examples are wireless functionality
and the ability to tie various telescope subsystems (e.g. focuser, dome control,
etc.) into TheSkyX software to afford an all-in-one solution for observatory control.

If time and budget allow, we will effort to incorporate some of these “want tos” into
our design. Since much of this project will be defined by the completion of the
scale model, this may not fit within the scope of our project. If this is the case, we
would like to leave room in the project (e.g. additional ports on our PCB and
sufficient documentation) for a team to follow behind us and continue the
observatory update.

2.3 Challenges

The team envisions a number of challenges associated with this project. First, this
project is somewhat outside the scope of a traditional Senior Design effort. Instead
of designing and implementing a project from the ground up, we are tasked with
designing around a large amount of expensive, existing equipment. The cost of
the equipment makes it impractical to replace, therefore, our first order of business
is to develop a scale model to demonstrate our understanding of the protocols that
drive the telescope.

This first challenge is compounded by the fact that existing documentation for the
hardware is sparse or nonexistent. Our team has already reached out to Pittman
in an effort to better understand how to drive the motors and have been told that
the motor is proprietary and that they will not be able to offer any support. We are
continuing our efforts to obtain some documentation on the equipment, but our
expectations are tempered. Moreover, the single individual who services this
controller will very likely not be incentivized to work with a team who is attempting
to make his equipment obsolete. These factors point to a significant reverse
engineering project that will need to be completed before any design work can
begin.

A second challenge lies in finding the root cause of the problem with the telescope.
At a very high level, there are three components in play: TheSkyX software, the
Bisque TCS controller and the Pittman motors. At this time, it is unknown which
of these elements is causing the breakdown, and therefore further analysis will be
required before functionality can be restored.

A third challenge can be found in the budget of the project. Our contact at the
Florida Space Institute (FSI) will be engaging with the Florida Space Grant

 Group A Senior Design I

5

Consortium (FSG) to secure funding for the project, but the timeline for funding is
still several months out. In addition, an estimated $800 per team is expected to
be allotted, meaning that we should expect to have on the order of $1600 - $2400
(dependent on team composition) available to be divided across the project.
Specific costs are not yet defined, and budget requirements will need to be
addressed across the interdisciplinary teams.

A final challenge is rooted in working with an interdisciplinary team, where each
sub-team has different deliverable requirements for UCF leading to possibly
conflicting scopes of the overall project. There is currently a team of three
mechanical engineering students and four computer science students committed
to the project in addition to our team. At the time of this writing, the electrical team
would have to rely on the mechanical engineering team to help build the scale
model of the telescope for testing and demoing purposes.

2.4 Requirements Specifications

• Shall accept an input voltage of 120VAC +/- 15%.

• Shall have a sensor response time of less than 2 seconds.

• Shall have a cost of less than $800.

• Shall have a power usage of less than 100W.

• Shall have dimensions less than 20” x 20” x 10”.

• Shall have a weight of less than 5lb.

• Shall have an execution time of less than or equal to 60 seconds.

• Shall have a pointing accuracy of less than or equal to 3.5º.

• Shall interpret control signals from Stellarium software.

• Shall relay motor control signals to stepper motors.
o This includes both right ascension and declination as well as slew

rates from Stellarium.

• Shall accept secondary input from user operated joystick to move motors
manually at variable slew rates.

• Shall support home and park capabilities for the telescope.

• Shall support pointing limits (no declinations below the horizon; no
horizontal azimuths that will damage the telescope)

• Shall support the ability to work in multiple modes:
o Sidereal tracking: in which the declination motor does not move and

right ascension motor tracks at sidereal rate
o Nonsidereal tracking in which both motors move at non-standard

tracking rates
▪ These targets are delivered from Stellarium

There are few quantitative design constraints placed upon this project. Rather, the
challenge, and the requirement, comes from the fact that the above specifications
are to be implemented using existing open-source software (Stellarium). Design

 Group A Senior Design I

6

choices and budget will inform quantitative design choices rather than explicit
requirements from the customer (Robinson Observatory).

2.5 House of Quality Analysis

In our attempts to understand the full system that is the UCF Robinson
Observatory, the scale model described above will serve as the testing platform
for our senior design team to use to learn how to control the core components of
a telescope. However, the scale model that we make needs to serve a use for our
customers at FSI so that future teams may expand upon it to eventually replace
their entire existing control box. An analysis of whether our engineering
requirements for this scale model meet customer requirements is depicted in the
house of quality chart in Figure 1 below.

Legend:

+ = Positive Polarity (Increasing Requirement)

 - = Negative Polarity (Decreasing Requirement)

↑↑ = Strong Positive Correlation

↑ = Positive Correlation

↓↓ = Strong Negative Correlation

↓ = Negative Correlation

Figure 1: House of Quality

 Group A Senior Design I

7

2.6 Block Diagrams

The essential components for a minimum viable product are shown in Figure 2 and
Figure 3 below, with the exception of the camera module. The camera is not a
part of the existing design and is not a requirement of the project. However, if time
and budget allow, having a camera instead or alongside the laser pointer will be
investigated. The purpose of the laser pointer would be to verify tracking, while the
purpose of the camera will be to track near space objects easily visible in the sky
to better mimic what the observatory serves to do.

Distribution of work is tentative and subject to change as the scope of each
subsystem becomes clear. Investigations of the existing system that occurred
during the initial weeks of the project design gave us a clear picture of the
components in the existing system, shown in Figure 3.

Figure 2: Control Box Block Diagram for EE Design Project Scope

Figure 3: Overall System Block Diagram of Existing System

 Group A Senior Design I

8

In Figure 4, the initial software block diagram is shown illustrating how the software
on the PC communicates control signals to the existing Bisque TCS box which in
turn controls the operation of the telescope with a secondary input of a joystick. In
our design, in combination efforts with the Computer Science team, we will attempt
to resemble this software logic.

Figure 4: Software Block Diagram

 Group A Senior Design I

9

3. Research Related to Project Definition

This section outlines the research related to our project before performing any
design. Research before designing is necessary because it helps us as a team
understand the current products in the market and the current technology used.
This will help us as a team provide a product that meets the customer’s needs but
at an advanced level. Once an understanding of the technology and similar
products is determined, the parts selection is the next step in designing our system.

3.1 Existing Similar Projects and Products

This project for the University of Central Florida (UCF) and the Florida Space
Institute (FSI) is unique. Typically, senior design projects are sponsored
interdisciplinary projects, or they are performed by single disciplines. This project
is different in that it has been developed around an existing system that needs to
be redesigned. Instead of starting with a fresh design, this undertaking must begin
with an in-depth amount of reverse engineering to understand the system; only
then can the replacement system be designed. This not only adds an immense
amount of work to a project that is difficult to complete on time by the need for first
understanding the current system before designing the replacement system, but it
also provides the senior design team with experience that other students will not
obtain. In the past, there has only been one other senior design project at UCF
that concentrated on an existing system that needed to be redesigned.

The end goal of this project is to build a model that accurately represents the
functionality of the current system at the Robinson Observatory. Building a model
is essential because a model can assist in troubleshooting the current issues with
the full-scale system without the risk of damaging the current system.
Unfortunately, it is not feasible to replace the existing system through the efforts
of just one senior design team; this system is too complex. A second, or possibly
even a third, team will be needed to completely replace the existing system.

Despite extensive research, the team did not find information on any projects from
a student level that either redesigned an existing observatory system or developed
one from the ground up using telescopes with lenses. There are other projects
performed by students that involve the design and construction of radio
telescopes. These telescopes have similar functionality to the one used at the
Robinson Observatory in the sense that they detect naturally occurring radio
frequencies from celestial bodies. A series of senior design teams from Iowa State
University developed a radio telescope system to be used at their university.

 Group A Senior Design I

10

3.2 Relevant Technologies

Software Bisque, the developer of the current technology used at the observatory,
was one of the first to come to market with a telescope control software that could
be programmed to track, eliminating the need to have someone constantly operate
the telescope. This breakthrough was revolutionary because the user could
operate the telescope from across the United States or even program it to track
the night sky while everyone sleeps. Software Bisque started off as a software
company that provided astronomy software for specific mounts, but they began to
develop their own mounts once their software capabilities exceeded the hardware
capabilities of the current mounts on the market. Descriptions of the types of
mounts in the market today, including the mount currently used at the Robinson
Observatory (German equatorial mount), are discussed in further detail below.

There are many different types of mounts used for telescopes, including
Altazimuth, Dobsonian, equatorial, German equatorial, and fork mounts.

Altazimuth mounts, also known as Alt-Az as seen in Figure 5, are the least complex
mounts; they provide two motions: altitude and azimuth. These mounts feature
slow-motion knobs that allow them to make accurate adjustments and aid in
smooth tracking. These mounts are used for terrestrial observing and offer scans
of the sky at lower power; however, they are not useful for sky photography. The
computer-driven versions of these mounts provide more precise tracking of the sky
[1].

Figure 5: Alt-Azimuth Mount

Invented by John Dobsonian in the 1970s, the Dobsonian mount, like the one
shown in Figure 6, is essentially a modified version of the Altazimuth mount. These
mounts are secured on the ground by a heavy platform, and they are designed to
support large Newtonian reflectors without sacrificing their ability to maintain a

 Group A Senior Design I

11

steady image. A Newtonian reflector, also called a Newtonian telescope, is a type
of reflecting telescope that uses a concave primary mirror and a flat diagonal
secondary mirror. Dobsonian telescopes usually have large apertures, ranging
from 6" to 20" or more [2].

Figure 6: Dobsonian Mount

Equatorial mounts are excellent tools for astronomical observing throughout
extended periods of time. Unlike non-computerized Altazimuth mounts, they are
necessary for astrophotography. When using an Altazimuth mount, stars that are
stationary will move out of view, but these stars, which only appear to move due
to the earth’s rotation, can be captured by an equatorial mount. Properly aligned,
a telescope on an equatorial mount can be directed toward an object and then
guided via an electric motor or manual controls. There are two basic types of
equatorial mounts: German and fork.

Newtonian reflectors and refractor telescopes typically use a German equatorial
mount. The German equatorial mount, seen in Figure 7, is distinguished by a large
counterweight that extends on the opposite side from the telescope. Without this
counterweight, the telescope would be unbalanced. A German equatorial mount is
the type of mount that is currently being used at the Robinson Observatory.

An issue with the German equatorial mount is that most German equatorial mounts
require the telescope to be flipped at the meridian line. This requirement comes
from the way the mount is designed is that at the meridian, the telescope can come
into contact with the mount and cause damage to the telescope or mess up the
tracking of the telescope.

 Group A Senior Design I

12

Figure 7: German Equatorial Mount

The fork mount, shown in Figure 8, is typically used by catadioptric and other
shorter optical tubes because it is more convenient than the German mount. Fork
mounts are especially useful for astrophotography. The most common mount for
modern research telescopes, a fork mount is operated by a computer, which
controls the telescope. The computer calculates the altazimuth setting by utilizing
an internal, digital equatorial drive. Since it is completely automatic, the fork mount
simplifies observation, making it easier for the observer to find celestial objects.
For example, an observer could point the telescope in one direction and enter the
latitude and longitude, and then the computer would finish the alignment, directing
the telescope to the location of the desired object [2].

Figure 8: Fork Mount

There are a variety of telescopes, each with a unique design. The telescopes that
are available today cover all the bands of electromagnetic radiation, from gamma

 Group A Senior Design I

13

rays to light to radio. This paper, however, will focus on the three types of optical
telescopes: refractor, reflector, and catadioptric [2].

Refractor telescopes are the earliest type of telescope. Refractor telescopes are
essentially a long tube with lenses on both ends. They work by concentrating the
light, passing it through a common focal point on the two lenses. Compared with
other telescopes, refractor telescopes are inexpensive.

Without an obstruction to block light, refractor telescopes can provide magnified
images that are detailed and clear. The downside to using refractor telescopes is
that they are normally heavier and longer. Additionally, because they are
inexpensive, their size and aperture are limited, and they are prone to chromatic
aberration. A layout of the refractor telescope is shown in Figure 9 [2].

Figure 9: Refractor Telescope

Unlike refractor telescopes, reflector telescopes use mirrors. A large concave
mirror focuses the light, which is then redirected by a smaller mirror into the
eyepiece, producing a clear image. These telescopes can be very large because
all the main optical equipment is on one end. A Dobsonian telescope is an example
of a reflector telescope, which is shown in Figure 10.

Also, unlike refractor telescopes, reflector telescopes do not have chromatic
aberration, and they are even more inexpensive to make than refractor telescopes.
Reflector telescopes are excellent for deep sky viewing, and they even work if the
mirrors are dusty. The disadvantages to reflector telescopes are that they are high
maintenance, not very durable, and prone to coma aberration [2].

 Group A Senior Design I

14

Figure 10: Reflector Telescope

Catadioptric telescopes, shown in Figure 11, blend the benefits of both refractors
and reflectors because they combine a lens with two mirrors. They are the most
expensive because they have a more elaborate design, and they are more
compact than the two types of telescopes mentioned above; however, these are
the most popular telescopes on the market today. The advantages of catadioptric
telescopes are that they are easy to use, portable, durable, and versatile—they
can be used for viewing deep sky objects, planets, stars, and even the moon [2].

Figure 11: Catadioptric Telescope

The list of the different versions of software useful in astronomy is quite extensive.
For simplicity, the programs discussed below are categorized according to their
features.

Planetarium software can map the night sky from any location on the Earth.
Typically, this type of software gives users the option to print out star charts for a

 Group A Senior Design I

15

night of viewing, and it offers a large database that contains, at minimum, the most
popular night sky objects. The most popular planetarium software available is
undoubtedly SkyX by Software Bisque, which is the software used at the Robinson
Observatory. The SkyX software is available in a few different versions: a student
edition, a serious astronomer edition, a professional edition, and even a pocket
edition that provides access to a virtual sky from your personal device. Other types
of planetarium software include Google Earth, SkyMap, World Wide Telescope,
and Redshift.

Unlike planetarium software, which provides users with features for the full sky,
specialty observing programs focus on aiding users who want to concentrate on
specific objects. As mentioned above, TheSky from Software Bisque is the
smoothest and most cohesive software, but DeepSky can provide a list of available
targets for the evening so users can plan their viewing. Seeker, also by Software
Bisque, is a 3D immersive tool for traveling through the solar system. Other
specialty observing programs include VRMars, Night Sky Observer, and
Heavenscape.

Robotic and remote-control software specializes in controlling telescopes from a
remote location. TheSky used with CCDSoft (for imaging) allows users to control
a telescope from a computer that is nearby. Other versions of this type of software
include Orchestrate, which automates imaging sessions; PoleAlignMax, which
assists the computer in pointing the telescope north; and SN Finder, which
automates supernova searches.

3.3 Strategic Components and Part Selections

This section outlines the many different options considered for the selection of all
major components incorporated into our project. The major components that
constitute the project include the declination and right ascension motors, the power
supply unit, the sensors, the joystick and the main microcontroller. Before down
selecting to a specific part number and manufacturer, all available and relevant
options on the market were explored. Following the corresponding section for each
major component is a brief explanation of why the selected component was
chosen as well as a table comparing selected characteristics across multiple
manufactures. The highlighted column indicates which part was procured for this
project.

3.3.1 Declination and Right Ascension Motors

Before attempting to determine the correct motor for this specific application, an
in-depth understanding of the different types of motors—their functions, strengths,
and weaknesses—needs to be established.

 Group A Senior Design I

16

At the most basic level, there are two types of motors, alternating current (AC)
motors and direct current (DC) motors. Both types of motors convert electrical
energy into mechanical energy; however, there are significant differences between
the two main types of motors in terms of how they are constructed and controlled.
The most important difference between AC and DC motors is the type of current
they use—AC motors are powered by alternating current, while DC motors use
direct current [3].

The main difference between alternating current and direct current is that with
alternating current, the flow of charge changes direction periodically. Direct current
is easier to understand since the current does not alternate but flows in a steady
manner [4]. Figure 12 below illustrates the flow of alternating and direct current.

Figure 12: Alternating vs. Direct Current

AC motors offer flexibility and certain advantages that DC motors do not. AC
motors require minimal maintenance and a lower power demand on start. They
also have adjustable torque limit and controlled acceleration. AC motors generally
fall into two different categories: synchronous and induction (asynchronous) [5].

The defining characteristic of a synchronous motor is that it synchronizes the
rotor’s rotation with the frequency of the supply current. (In a motor, the rotor is the
part of the motor that rotates, whereas the stator is the part of the motor that does
not rotate.) Synchronous motors are ideal for driving equipment at a constant
speed because the motors ensure that the speed does not change regardless of
the load [5].

While synchronous motors work because of how they synchronize the rotor,
induction motors work because of how they use the other main part of a motor: the
stator. The winding of the stator produces a magnetic field, and the induction motor

 Group A Senior Design I

17

uses electromagnetic induction from this field to produce an electric current.
Induction motors are the most common type of AC motor. Their importance in the
industry stems from their load capacity, with single-phase being used for smaller
loads and three-phase motors being used for industrial purposes [5].

A single-phase system does not deliver power at a constant rate because of the
oscillations in the signal. With the peaks and dips in the voltage, the power
fluctuates considerably. If two more phases are introduced 120º out of phase, it
becomes a three-phase system, and the power becomes almost constant. Figure
13 below shows the difference between single- and three-phase systems [6].

Figure 13: Three-Phase vs. Single-Phase

DC motors are the first motors that experienced widespread use. For lower power
systems, their initial costs are typically less than AC motor systems. DC motors
can be easily controlled by simply varying the voltage that is supplied to the motor.
There are many advantages to DC motors including high-starting torque and
excellent speed control. They are also quick to start and stop and easy to install.
Featuring a simplistic design, DC motors can both accelerate and reverse quickly.
There are some disadvantages, namely, their vulnerability to dust and their
maintenance needs [5].

There are two main types of DC motors: brushed and brushless. A brush, on a
motor, is a carbon device that conducts current between stationary wires and the
moving parts, typically a rotating shaft. For brushed motors, there are a few
different types: series wound, shunt wound, compound wound, and permanent
magnet.

Series wound motors are constructed so that the field winding is in series with the
rotor winding. Varying the input supply voltage controls the speed, which is not
very effective; as the torque increases, the speed decreases. These motors are
used in a variety of applications, including lifts, cranes, hoists, and automotive
machinery [5].

 Group A Senior Design I

18

Shunt wound motors use a field winding connected in parallel with the rotor
winding, which helps deliver increased torque without sacrificing a reduction in
speed just by increasing the motor current. Since the winding is in parallel, the
starting torque is not as high as in the series wound. Shunt wound motors can be
found in vacuum cleaners, grinders, and lathes [5].

Compound wound motors implement a combination of the series and shunt wound
rotor design. Compound motors have a high starting torque and operate smoothly.
Applications for these motors include compressors, rotary presses, elevators, and
continuous conveyors [5].

Permanent magnet motors, as their name implies, use a permanent magnet. This
type of motor is preferred for applications requiring high levels of precision, such
as robotics [5].

There are some issues with brushed DC motors; specifically, their short life span
when used frequently. Brushless motors eliminate some of these issues by using
Hall Effect sensors to detect the rotor’s position, which a controller can use to
accurately control the motor [5]. To understand what a Hall Effect sensor is, an
understanding of what is known as the Hall Effect is critical.

As electric current flows through a material, the electrons mostly move in a straight
line. If you put the material in a magnetic field, the force acts on the electrons,
which causes them to stray from their straight-line path. This results in one side
having more electrons than the other, creating a potential difference (voltage).
Measuring the potential difference will provide the Hall Voltage developed [7].
Figure 14 shows this Hall Effect.

Figure 14: Hall Effect and Hall Voltage

 Group A Senior Design I

19

The Hall Effect sensors are then activated by an external magnetic field. As a motor
turns, the magnetic field changes, making a Hall Effect sensor perfect for this
application.

The two main types of brushless DC motors are stepper motors and servo motors.
Servo motors contain a brushless DC motor, potentiometer, and a control circuit.
Gears attach the motor to the control wheel. The motor’s rotation affects the
potentiometer’s resistance, allowing the control circuit to control the amount and
direction of the movement [8].

Stepper motors consist of a rotor with permanent magnets and a stationary stator
that carries the windings. A big difference between stepper and servo motors is a
stepper motor typically has a lot higher pole count, and because of this, the motor
appears to have a more continuous operation. Since stepper motors generate
incremental motion, they are usually run open loop, which reduces the cost and
complexity of the design. This open-loop operation is not as accurate as the closed
loop design of a servo motor, so if a more accurate operation is needed, an
encoder can be used.

Encoders are electromechanical devices that provide electrical signals; these
signals are useful for controlling speed and position. They convert the motor’s
mechanical motion into an electrical signal; the control system can use this signal
to track how well the motor is operating and make any necessary adjustments.
There are different options for mounting an encoder for control: shafted,
hub/hollow shaft, and bearing less [9].

Shafted encoders connect the motor encoder shaft to the motor shaft via a
coupling method. This provides mechanical and electrical isolation from the motor
shaft.

Hub/hollow shaft encoders are directly mounted to the motor shaft. These
encoders are connected with a spring-loaded tether. Easy to install, these
encoders do not require a shaft alignment; however, it requires extra caution to
provide electrical isolation using this method.

A bearingless encoder, also known as ring mount, contains a sensor assembly that
is formed like a ring, which is mounted on the face of the motor, and a magnetic
wheel, which is mounted on the motor shaft [9].

Motor drives are important for the operation of a motor. The electronic drive
gathers and directs the electrical energy to a motor. It has the ability to control how
much and how often the electricity goes to the motor; therefore, the drive can
influence the speed and torque [10].

 Group A Senior Design I

20

3.3.1.1 Project Application

After obtaining an in-depth understanding of the types of motors and their uses,
our project team was able to decide which motor is the best choice for our
application. The two types of motors that we considered were DC servo motors
and DC stepper motors. For our purposes, we needed higher torque with not much
speed, but we also needed high position accuracy for sensing objects in the sky.
Table 1 compares the main advantages of stepper and servo motors.

Table 1: Stepper vs Servo Motor

 Stepper Servo

Torque High at low speeds High even at high
speeds

Accuracy High with encoder
feedback

High

Speed More suitable for low
speeds

More suitable for high
speeds

Cost Low Moderate

Lifespan High Moderate

Considering our needs and the features of each motor, the best option for our
application was a stepper motor with an encoder. There were many options when
choosing the appropriate stepper motor. Some of the more significant
requirements we considered were the step angle (1.8º or less), high torque, and
the cost.

After an extensive search, the motor we decided to use is a NEMA 17 Integrated
Drive and Motor with Encoder. We chose this motor for many reasons. First, having
a motor with an encoder and a drive that is already integrated into the motor
decreases the complexity of the design immensely compared to having to locate
a drive and encoder and integrate them into a motor. Also, the NEMA type motor
is a low-cost and common motor that provides high torque over a lower speed
range. The motor also has a wide range of settings that make it easy to adapt to
any situation.

These settings can be changed by the dipswitches located on the motor in between
the connections for the motor and the encoder pins. The most important dipswitch
settings are changing the steps per revolution. Most motors have a fixed number
of steps per revolution which ultimately limits the design capabilities. The motor
chosen has the option to change from 200 steps per revolution to 25,000 steps per
revolution. To be able to handle the change in steps per revolution however, the
signal being sent to the motor has to be able to reach higher frequencies as the

 Group A Senior Design I

21

step count increases. 25,000 steps will not be able to be achieved because even
sophisticated PLC’s cannot provide frequencies that high for precise motor control
but being able to change to 400 or even 800 steps will provide flexibility for the
mechanical engineering (ME) team as well as the electrical engineering (EE) team.

The dipswitches are broken up into two sections. One set of dipswitches is used
to change the steps per revolutions for the motor and the other set is to change
the settings of the motor itself, such as filtering and current. Tables 2 below shows
the different dipswitches and what they’re used for.

Table 2: Motor dipswitches

 1 2 3 4 5 6 7 8

Current X X

Idle
Current

 X

Self-Test X

Pulse
Noise
Filter

 X

Smoothing
Filter

 X

Load
Inertia

 X

STEP/DIR X

The current setting for the dipswitches 1 and 2 allows the user to change the
amount of current that the motor uses. To obtain maximum torque, the current
setting would need to be a maximum 100%, but if there are conditions where power
consumption is an issue, the current level can be changed to as low as 50% to
conserve power. It is important to note that a reduction in current to this level will
reduce the torque output considerably.

The idle current setting allows the motor idle current to be lowered 50% or 90%.
The lower level of the current for this idle setting, the lower amount of holding
torque this motor will have when the motor is not turning. For large loads that could
potentially overcome the holding torque of the motor, a higher idle current is
recommended.

Self-test is a simple but useful dipswitch within the motor. The switch can be turned
on to test the motor to make sure it is receiving power. This could be used when
diagnosing the motor issues.

Pulse noise filter dipswitch gives the user the ability to add filtering for noise that
could affect the STEP signal by causing the drive to interpret pulses improperly.

 Group A Senior Design I

22

The two options, 150kHz, or 2MHz provide the user to toggle on whichever
frequency is near the range that they will be using for turning the motor.

Smoothing filter is used for motors that are used at lower step resolutions. At lower
step revolutions, the motor can run rougher than at a higher step count because
of the increased production of noise. With the smoothing filter, it enables the motor
to run at lower steps per revolution with the same smoothness as the higher steps
per revolution.

Load inertia is an anti-resonance and electronic damping feature that improves the
motor performance. The load inertia must be calculated, then divided by the rotor
inertia which was given by the manufacturer, and that will determine the setting for
that dipswitch.

Lastly, the STEP/DIR dipswitch is to provide two different options for sending
signals to the motor. STEP and DIR can be two separate signals, or STEP and
DIR can be sent on the same line. DIR determines the direction of the motor, and
STEP determines the speed of the motor.

For separate operation, a pulse with a frequency corresponding to the speed is
sent on the STEP line, and a logic HIGH or LOW is sent on the DIR line to
determine CCW or CW rotation. If using STEP and DIR together, sending a signal
to STEPCW will turn it CW and STEPCCW will turn it CCW with the speed being
proportional to the frequency of that signal and the steps per revolution set with
the dipswitches. Figure 15 below shows a few of the options of the steps per
revolution of the motor. There are many other options for steps, but the
requirement for the input frequency to the motor increases with an increase in
steps. The highest number of steps obtainable is 25000 steps. To command the
motor speed of 50 RPS, the pulse frequency would need to be 1.25MHz, which is
higher than we would expect an ATmega2560 to output effectively.

Figure 15: Steps per revolution dipswitches

A comparison of options for the stepper motor used can be seen below in Table 3.

 Group A Senior Design I

23

Table 3: Comparison of Motors

 STM17R-3NE
NEMA 17

STM17R-3ND 4209S-1P

Steps per
Revolution

200, 400, 800,
1600, 3200, 6400,
12800, 25600,
1000, 2000, 4000,
5000, 8000,
10000, 20000,
25000

200, 400, 800,
1600, 3200, 6400,
12800, 25600,
1000, 2000, 4000,
5000, 8000,
10000, 20000,
25000

400

Built in Encoder YES NO NO

Holding Torque 68 oz-in 68 oz-in 31 oz-in

Length 2.64” 2.64” 1.34”

Weight 14.7 oz 14.7 oz 7.04 oz

Operating
Voltage

12V, 24V, or 48V 12V, 24V, or 48V 24V

Cost $204.00 $118.00 $49.10

Between the three motors above, the reason for choosing the first one is mainly
because of the built-in encoder feature. It was not possible to find a motor for less
than that that included a built-in encoder. Since the existing design at the
observatory has a built-in encoder, the team and sponsors suggested using a
similar motor.

See Figure 16 and Figure 17 below for the motor of choice and the torque curve.

Figure 16: STM17R-3NE NEMA 17

 Group A Senior Design I

24

Figure 17: Torque Curves

3.3.2 Power Supply Unit

A power supply unit is the part of the electrical system that converts the power
provided by an outlet (normally 115VAC or 230VAC) or another source to a usable
level inside an electrical device (typically 5VDC). A block diagram for a typical
power supply can be seen in Figure 18 below.

Figure 18: Power Supply Block Diagram

The input transformer converts incoming voltage to the level required to convert to
DC at an acceptable level. In this case, and in most cases, the type of transformer
used is called a step-down transformer. A step-down transformer decreases the
voltage of the incoming signal, or steps it down to a lower level. Transformers also
provide isolation between the output and the supply from the incoming line.

The rectifier converts the voltage that was stepped down from AC to DC from the
transformer. After the signal is rectified, it still contains unwanted ripples that can
be filtered out using a filter capacitor to smooth the signal.

 Group A Senior Design I

25

The final device in the power supply process is the regulator. A linear regulator
compares the output voltage with a precise reference voltage and adjusts the
device to maintain a constant level of output voltage.

A power supply that does not contain a regulator is called an unregulated power
supply. An unregulated power supply is simple and therefore cheaper than a
regulated power supply, but because they are unregulated, the output voltage from
this type of power supply can fluctuate.

The switch mode power supply is more complicated than the other supplies
mentioned above. In this type of supply, AC voltage is converted to an unregulated
DC voltage, with a series transistor and regulator. Since this DC is a constant high-
frequency voltage, the transformer is significantly smaller and, consequently, so is
the power supply. Transformers for a switching power supply, however, have to
be custom made [11].

For the motor we chose, the STM17R-3NE NEMA 17, either a regulated or
unregulated power supply can be used. One issue that could arise when using a
regulated power supply—per the manufacturer—is it could cause a problem with
regeneration. If the load is rapidly decelerated from a high speed, much of the
kinetic energy of that load would be transferred back to the power supply, which
could trip the overvoltage protection of the switching power supply, causing it to
shut down. Since we are not planning to reach very high speeds, this should not
be an issue for our system. The manufacturer of the NEMA 17 motors offer power
supplies that work well with their motors, such as the PS150A24 24VDC switching
power supply seen in Figure 19 below.

Figure 19: PS150A24 24VDC Switching Power Supply

One of the biggest reasons for choosing a power supply that provides the 150
watts is because that would allow the project to be expanded in the future. The
current system at the Robinson Observatory requires more power than our model
system will but investing in the power supply at the beginning of the process makes
it possible to broaden the scope over the different teams. There are many other

 Group A Senior Design I

26

reasons for choosing this power supply rather than building our own or purchasing
another more inexpensive power supply. Designing and building our own power
supply of this magnitude would be a complex project. Due to time constraints, it is
more sensible to purchase one with the required capabilities so that we can focus
on the design and implementation of the system, which is more important than the
power supply, which is only a small piece of the model. The power supply we’ve
selected is not the cheapest we could find, but it also is not the most expensive. It
is more expensive than we would prefer because of budget constraints; however,
if the scope is to be expanded in the future, the initial investment is necessary.
More inexpensive power supplies could potentially provide the same load
capabilities, but since the supply we chose has been designed to be used with the
manufacturer’s integrated motors, integration will be easier.

A table comparison of options for the power supply used can be seen below in
Table 4.

Table 4: Comparison of Power Supply

 PS150A24 PS50A24 PS320A48 Other

Recommended YES YES YES NO

Current Rating 6.3A 2.1A 6.7A Variable

Voltage Output 24VDC 24VDC 48VDC Variable

Watt Rating 150W 50W 320W Variable

Cost $172.00 N/A $262.00 Variable

The main reason for choosing a power supply that was already designed was
because the manufacture for the motor that was selected provided recommended
power supply’s that are compatible with the motor. Since there are two motors, the
2A power supply would be maxing out our consumption, and the other power
supply that provided 320W was just more than we needed for the cost.

 3.3.3 Sensors

Sensors are a key component of the original, full-scale implementation of the
telescope and mount. In the telescope housed at the observatory, a pair of optical
sensors have been selected for this purpose. Their functionality is two-fold.

First, it is possible for the motors to drive the mount in such a way that it could
damage itself through further application of torque. Therefore, the first, and
arguably most important, function of the sensor is to serve as a limit switch. When

 Group A Senior Design I

27

this sensor determines that the telescope mount has met a predetermined limit of
movement, it engages and prevents any further movement in that direction.

The second purpose of the sensors are to detect when the telescope is in its
“home” position. That is, a specific position for both sections of the mount has
been designated as the home position. When the telescope is at rest (i.e. non-
operational), it should be returned to this home position. Furthermore, calculations
on position and tracking are dependent on allowing the telescope to start at this
home position.

The existing configuration of the telescope relies on a single optical sensor for each
motor. This optical sensor is then paired with an interrupter, which has been
mounted to the gear. The direction and rotation of the motor is coupled with the
way that the interrupter triggers the optical sensor to determine whether the
telescope mount has reached its limit (i.e. limit switch application) or whether the
mount is in the home position (i.e. home position application). Figure 20 below
summarizes this relationship.

Figure 20: Existing Configuration of Optical Switch and Interrupter

There are a wide variety of position sensors available on the market, and we have
considered each within the scope of our application. A brief treatment of each type
is provided below.

3.3.3.1 Potentiometric Position Sensor

The potentiometer is a familiar tool to any student of electrical engineering. In
brief, the potentiometer can be considered as a variable resistor that functions
through the principle of the voltage divider. A potentiometric position sensor relies
on a potentiometer to perform its duties. In this device, a resistive track serves as
the sensing element. An element known as a wiper is attached to the part that is
to be tracked, and the wiper also connects with the track. Movement of this wiper

 Group A Senior Design I

28

varies the resistance between one end of the track and the wiper, allowing it to
serve as a potentiometer. One advantage of this type of sensor is that the
resistance change with respect to wiper position is linear, facilitating ease of use.
These sensors lend themselves best to applications that require linear position
sensing, such as flow control valve position, injection molding and robotic motion
control. Figure 21 below represents a typical linear potentiometer. Other options
for potentiometric position sensors include cable actuated position sensors and
rotary displacement position sensors.

Figure 21: Linear Potentiometer

3.3.3.2 Capacitive Position Sensor

As can be inferred from the name, capacitive position sensors use capacitance to
determine position. These position sensors are highly accurate, generally offering
a resolution as low as the nanometer level. The major drawback of these devices
is that they are made to operate across a short distance, typically between 10µm
through 2mm.

These devices are capable of operating in a non-contact environment through
application on a conductive, grounded target. These sensors lend themselves
particularly well to applications requiring high resolution, such as vibration
measurement, semiconductor wafer surface sensing and servo system feedback
for nanopositioners.

In general, these devices operate through two mechanisms. The first mechanism
is that of a changing dielectric constant. In this instance, displacement is
measured by connecting the body to be measured to a dielectric material between
two plates. The movement of the body will vary the dielectric constant, which is
then measured. The second mechanism is that of changing the overlapping area.
This is accomplished by connecting the body to be measured to one of the plates,
while the other remains at a fixed position. The overlap between the plates
changes with movement, thus changing the capacitance of the sensor. Figure 22
below represents a typical capacitive position sensor.

 Group A Senior Design I

29

Figure 22: Capacitive Position Sensor

3.3.3.3 Magnetostrictive Position Sensor

Magnetostriction is a property inherent to ferromagnetic materials (e.g. iron, nickel
and cobalt). When these ferromagnetic materials are placed within a magnetic
field, they change their size. A magnetostrictive position sensor operates on this
principal.

The magnetostrictive position sensor is comprised of a position magnet, a
magnetostrictive position sensor (used to measure the distance between the head
of a sensing rod and the position magnet), electronics capable of transmitting a
pulse, and a waveguide. The pulse is transmitted down the waveguide, and the
induced magnetic field interacts with the magnetic field from the position magnet.
This creates strain on the waveguide, which can then be sensed. These sensors
also produce a high degree of resolution (on the µm scale) and can measure
significantly greater displacements than the capacitive position sensor. The
obvious drawback is the complexity of the sensor. Figure 23 below represents
several typical linear magnetostrictive position sensors.

Figure 23: Magnetostrictive Position Sensors

3.3.3.4 Eddy Current-Based Position Sensor

The Eddy-Current based position sensor is another non-contact position sensor
that is capable of providing high resolution. These sensors are sometimes also

 Group A Senior Design I

30

known as inductive sensors, although this is a bit of a misnomer (generally,
“inductive” is a reference to an inexpensive proximity switch). These devices are
well suited to industrial applications due to a high tolerance for dirty environments.

In brief, these sensors also operate through magnetic fields. A driver creates an
AC current through a sensing coil at the end of a probe. This induces an
alternating magnetic field, which will induce small eddy currents in the target
material. This interaction changes with distance from the target material. As the
distance varies, the Eddy-Current position sensor outputs a voltage proportional
to the change in distance between a probe and the target. Figure 24 below
represents some common eddy-current sensors.

Figure 24: Eddy Current Position Sensors

3.3.3.5 Hall Effect-Based Magnetic Position Sensors

These sensors operate on the Hall Effect. That is, when the magnetic flux around
the sensor exceeds a certain density, the sensor activates generates an output
called the Hall Voltage. With these devices, the moving part is connected to a
magnet, which is housed with a sensor shaft. This creates the Hall element. Then,
when the part moves, the magnet also moves, which creates a magnetic field and
induces the Hall Voltage.

The advantage of these devices lies in their reliability, small size, wide range of
operating voltages, large variety of output options and relatively easy
implementation. Figure 25 below shows a typical rotary Hall Effect position sensor.

Figure 25: Hall Effect Position Sensor

 Group A Senior Design I

31

3.3.3.6 Optical Position Sensor

The optical position sensor was the design choice made for the full-scale telescope
currently operating in the observatory. The operation of this type of sensor was
outlined briefly in the preceding section but is elaborated briefly here. There are
two main types of optical position sensors. In the first, light is transmitted from one
end to the other and changes in the characteristics of the light (e.g. wavelength,
intensity, phase and polarization) are monitored.

In the second case, the transmitted light is reflected and then monitored. Optical
sensors are also often referred to as encoders. Unsurprisingly, these devices
operate particularly well when counting revolutions. The drawback with this type
of device is that foreign particles (e.g. dust, dirt, water, etc.) can interfere and cause
the sensor to fail. A common optical position sensor is represented by Figure 26
below.

Figure 26: Optical Position Sensor (Switch)

Ultimately, our team has selected the optical sensor for this implementation. There
are several primary reasons for this selection, not the least of which is that the
optical sensor closely matches the original equipment used in the full-scale
telescope.

Table 5 lists the three strongest options for choice of sensor and shows the
differences across a few electrical characteristics. Other considerations that led to
our selection included cost, ease of implementation, size and the suitability of the
technology for our task. The highlighted column shows which sensor was
ultimately selected.

 Group A Senior Design I

32

Table 5: Comparison of Sensors

 Optical Hall Effect Magnetoresistive

Supply
Voltage

4.5 – 16V 5 V 3 – 5 V

Supply
Current

12 mA 6.5 mA 16 mA

High-level
Output

VDD – 2.1 V VDD – 0.5 V N/A

Interface Digital I/O I2C SSC / IIF

Manufacturer TT Electronics ams Infineon

Part Number OPB980T51Z AS5601 TLI5012B

Cost $5.04 $3.49 + Magnet $7.23 + Magnet

The final selection was a pair of TT Electronics OPB980T51Z optical switches.
Several factors led to the selection of this specific part. First, this sensor is
designed to operate across a broad range of supply voltages (VCC), ranging from
4.5V to 16V. Our ideal use case is to power these sensors directly from the
Arduino, thus avoiding the need to tap an external power supply. Since the
Arduino is generally configured to provide 5V power, we expect these sensors to
operate normally given this condition. The power dissipation is reasonable, rated
at 300mW. A low-level output voltage of 0.4V will confirm to the Arduino’s
specifications. And, of course, availability is a concern – there are several
thousand in stock across various distributors (e.g. Mouser, Digikey, etc.). Our
selected sensor configuration includes covered apertures (to enhance
robustness), flying leads (to ease integration with the PCB) and a buffer
logic/Totem-Pole output driver architecture, as represented below by Figure 27.

Figure 27: Buffer Logic/Totem-Pole Output Drive Architecture, Courtesy Texas

Instruments

Our intention is to simulate the functionality of the full-scale telescope by using one
optical switch per motor. We will use feedback from the motor encoders to
determine position, and correlate this with the input from the optical sensor to
determine whether the mount has reached its limit or its home position. An

 Group A Senior Design I

33

incidental benefit of this style of control is the reduced PCB footprint as compared
to that needed for two sensors per motor.

3.3.4 Joystick

To control the movement of the motors manually, the project will need a joystick to
serve as an additional input to the system. Although the main method of sending
commands to the motors will come from the Arduino, it is also desired to use a
joystick for demonstration purposes as well as to best resemble the telescope
found in Robinson Observatory. The main thing to consider with the joystick is that
since the Arduino reads the output as an analog signal anywhere from an integer
value from 0 to 1023, the rest position will vary each time around the 500 range. It
is important to note that the joystick shall only be used for rough pointing, but when
testing the pointing accuracy of our system as a whole, the software should be the
main source of pointing commands.

The options and technologies considered for joysticks are broken up into sections
below with a summary table at the end of this section.

3.3.4.1 Mini Analog Joystick - 10K Potentiometers

This joystick features two 10k Ω potentiometers as well as a spring back system
for tactile feedback. Most joysticks on the market that look like this arcade-style
joystick feature only clicking switches in each direction. That is, when the joystick
is moved in the positive x-axis direction, a limit switch is triggered, and the pin is
set to high. In this joystick however, since there are potentiometers involved, the
movement along the x-axis provides a range of varying output from -5V to 5V. The
physical limits along both the x and y axes are 50 degrees, from -25 degrees to 25
degrees. The leads for the two potentiometers are easily accessible as shown in
the figure below.

Figure 28: Mini Analog Joystick

 Group A Senior Design I

34

Another benefit to using this joystick is that since it features two independent
potentiometers, the gantry spring system in the interior of the joystick base allows
for movement along the diagonal axes which is beneficial since it best resembles
the existing system of the Robinson Observatory controls.

3.3.4.2 Two-Axis Joystick

The joystick model below is similar to the mini analog joystick above; however, it
is sized significantly smaller and is already mounted to a circuit board. The pins
shown in Figure 29 below stick out of the bottom of the board so that it can easily
be inserted into a breadboard for prototyping. The joystick features two 10k Ω
potentiometers and the option to wire the outputs as either voltage or resistance
outputs.

Figure 29: 2-Axis Joystick

3.3.4.3 Analog 2-axis Thumb Joystick with Select Button
and Breakout Board

This type of joystick is different than previous versions because it features a digital
output in addition to the two analog outputs for motor control. The benefit of having
a digital output is its ability to be programmed as a trigger key to automatically
have the telescope perform a key position, such as the home position. In the
Robinson Observatory, the homing of the telescope had to be done via software
however, having another way to home the telescope could indeed be useful.
Alternatively, the digital output could be used to effectively switch over control from
the software program to the joystick.

Similar to the mini analog joystick, this version still requires a ground connection,
a Vcc source of 5V, and two analog pins from the microcontroller. Additionally, it

 Group A Senior Design I

35

requires a digital pin for the select function. Figure 30 shows where these five pins
are located on the breakout board that comes with this joystick.

Figure 30: Thumb Joystick with Select Button

Additionally, this joystick model is not a switching arcade style of joystick and
features two potentiometers of a 10k Ω resistance value, similar to the other
joystick considered. Another advantage of using this joystick is that it is
ubiquitously used in multiple projects found during research, and therefore already
has existing EagleCAD schematics and can therefore be directly incorporated into
the PCB that we design. However, as purchased, it is able to be used as a
standalone feature.

In summary, the pros and cons of each joystick are easily enumerated in the
comparison table below.

Table 6: Comparison of Joystick Models

Feature Mini Analog
Joystick

2-Axis Joystick Thumb Joystick
with Select
Button

Potentiometer
resistance

10k Ω 10k Ω 10k Ω

Select button No No Yes

Analog
outputs

2 2 2

Digital outputs 0 0 1

Maximum
operating
voltage

5V 10V 5V

Breakout
board
included

No Yes Yes

Size 2.7 x 2.1 x 2.1 1.64 x 1.2 x 1.1 1.25 x 1.5 x 1.5

Price $19.95 $6.95 $5.95

 Group A Senior Design I

36

Looking at the table above, and after thorough research, it was concluded that the
joystick to be used in this project is the thumb joystick with the select button. This
was chosen firstly because of the added feature of a select button which none of
the other joysticks had. Also, it had a preferable breakout board which makes it
easy to wire up without the need to mount it into a breadboard and can instead be
directly wired through our PCB. It is also RoHs compliant, which meets our
environmental constraints outlined in section 4.2. A last reason for the selection of
this joystick is that it is almost a quarter of the price of the larger joystick which
allows for the ordering of more spares to stay within the same budget. Meeting our
budget requirements is one of our economic constraints set upon ourselves.

3.3.5 Microcontroller

The software design that will be selected is highly based upon the microcontroller
chosen in other sections. The particular microcontroller we have chosen is an
Arduino Mega 2560 with 54 Digital I/O pins (15 being PWM capable), 16 analog
input pins and a standard set of power pins. This particular brand of
microcontrollers uses their own version of the C language to be written in and is
primarily handled completely by Arduinos own brand-built IDE. We also have the
factor of what signals the motor expects from our board and how to control that
from our board. From these restrictions, it is required that we write our code and
logic in the modified C language of the Arduino and using its very specific IDE to
upload and compile our files. These files need to be .ino files so it's very restrictive
of what you can use to program.

3.3.5.1 MSP Option

To arrive at the decision of which microcontroller to use, we first started with a
couple of different options on the table. The main microcontrollers we looked at
were MSP, Arduino, and Raspberry Pi. Texas Instruments develops the MSP
series of controllers and boards that are fairly basic and utilize UART connection
and terminal to send and receive data in a serial fashion. Sending data via serial
communication is one of two main ways to send data, with the other one being
parallel. UART is a fairly simple set up and easy to use so there isn’t going to be
much restriction there in terms of what type of connection to the computer we use.
It also exists on a plethora of boards out on the market. The hard part about MSP
is the complex amount of work needed to be put in to use and setup the MSP.
Along with its not so friendly programming practices we could see a lot of time
sitting around and debugging the software, trying to make it work. MSP’s generally
use C, which is easiest for Electrical Engineers, but we decided that there were
better options out there.

 Group A Senior Design I

37

3.3.5.2 Raspberry Pi Option

The Raspberry Pi was the next choice in our list of possible microcontroller/board
combination to use. The Raspberry Pi is fairly simple to set up and even comes
with its own OS which is Linux based. This is all great but is not exactly what we
want or need for the project. Its default language is also Python and being that
none of our team members are super proficient in writing Python, it’s probably best
to leave that one out and look for other microcontrollers. The only reason why we
could potentially switch over to a Raspberry Pi would be if the entire
interdisciplinary team decided to use ROS, a robot operating system. The ROS
architecture could actually be pretty useful for the project as there are multiple
components talking to each other and relying upon data being sent such as motors
reaching a maximum turn, the need for a meridian flip, LED’s and the feedback
being sent to the computer science team. Along with a potential camera that can
have openCV on it, there would be multiple files of different languages operating
and the same time, and ROS would be a really good organizational system to use.
However, aside from that, it does not seem that ROS is going to be needed to be
used, so the Raspberry Pi is not the microcontroller we will be using.

3.3.5.3 Arduino Option

The final entry on the preliminary list is the Arduino, which is precisely the one we
chose to use. The Arduino is written in C and comes with its own premade IDE
that is extremely easy to use. It has its built-in complier as well as an uploader.
The Arduino product made the process of outputting any desired code or signals
extremely easy and quick. This is a great advantage because it speeds up testing
and debugging time and save a lot of potential time troubleshooting possible things
that could go wrong with the overall design. In terms of extreme flexibility in what
you can do, the Arduino probably has the most restrictions out of all of them,
limiting our ability to really take advantage of the hardware. However, even with
these restrictions it still fits our needs perfectly.

The serial connection is very easy to set up and maintain from a programming
standpoint, while also making the programming much more streamlined with its
built-in functions. Arduino microcontrollers/boards also have several material
advantages that we can utilize. Arduino offers a particular product called an
Arduino Mega that offers a bolstering 54 digital I/O pins. And for this project we will
have a profuse number of devices that need to be sending input and output signals
back and forth with the board and through the USB. The controller has pins that
have a built in analog to digital converter (ADC) which is a sub-controller that takes
any analog signal between a restricted 0 and 5 volts and converts them into
discrete digital values ranging from 0 to 1023 (1024 values) as seen in Figure 31.

 Group A Senior Design I

38

Figure 31: Signal Sampling and Digital reconstruction

These values are then programmable in code. Obviously, the original signal isn’t
perfectly reflected in the sampled signal as you can see in the image above but
given a high enough bit resolution it can effectively be the same. In terms of what
applications we are going to use it for of course. It so happens that our telescope
will be also having a joystick that a user could use to control the direction of the
telescope. This joystick outputs an analog signal so we would use the analog to
digital pin on the Arduino.

A final positive for Arduino is the built-in ability to increase the turn on voltage from
not using the USB. The USB limits the starting voltage to 5 volts per USB standard,
but there is a port that allows us to go up to 20 volts. Our project is definitely going
to need it because of how many appliances that are going to be powered from the
board. If we were to just use a USB 5 volt, the board would start struggling to stay
on and provide the required power. If we perhaps used another board that only
had a dedicated pin to power the board such as the raspberry pi, a transformer,
rectifier, and voltage regulator circuit would have to be made. Otherwise the circuit
would not be able to plug into a wall outlet in the United States. The United states
have power outlets running at 120 Volts AC, and if that was fed into a
microcontroller board a lot of magic smoke would start to appear as the board is
catching on fire. From this we decided that our best course of action would be use
9 volts input, as the recommended input voltage is between 7 and 12 volts.

In Table 7 below, a summary of each of the microcontrollers considered for this
project is listed. As explained previously, the ATmega2560 was selected for the
main microcontroller of the project due to the larger amount of PWM and total pins,
and also due to the customer’s request. To meet the requirements of UCF for
substantial PCB design, we will also use an ATmega328 on board the PCB to
check the functionality of the main microcontroller.

 Group A Senior Design I

39

Table 7: Comparison Table for Microcontrollers

 PWM

pins

I/O

pins

Total

pins

Primary

Programming

Language

Clock

speed

Price

MSP430G2 ~ 24 24 C/C++ 16MHz $17-

23.75

Raspberry PI 3 ~ 40 40 Python 900MHz $35.68

ATmega328 6 14 20 C/C++ 16MHz $22

ATmega2560 14 54 70 C/C++ 16MHz $38.50

3.3.5.4 Programming Language

As touched on a little above, our choice as to what language we chose mattered
greatly on what microcontroller we chose. However, programming languages and
compilers today are so robust and advanced that a team could chose practically
any language they wanted and still be able to get a functioning microcontroller. An
obvious comparison would be that the Raspberry Pi uses Python as its primary
programming language, even when Python is known to be very high level and not
offer much control over the physical level of programming. That being said, the
Raspberry Pi and Python language allow you to intake serial commands as well
as pin registration, employing some low-level work. Yet, the base C language still
remains the go to and best programming language for low level programming
projects. It’s definitely the fastest language out there (unless the assembly
languages are accounted for) and has pretty much every single low-level capability
that could be asked for. One of the big reasons for this is because you can directly
optimize the space used for the program and work at a very base level from what
the hardware is doing naturally. A Python compiler must go through an abundance
of steps to end up producing a large machine code file that gets upload to the
microcontroller, whereas a C compiler is almost just a syntax rewrite into assembly
code and then easily assembled into machine code.

3.3.5.5 Integrated Development Environment

Most popular microcontrollers tend to have an IDE that’s associated with them. In
this case, the Raspberry Pi doesn’t have one associated with it. However, there
were three IDE’s that came up as the first choices for our microcontrollers, two of
which are the default ones and one is an open source IDE. The MSP series of
controllers typically used an IDE called Code Composer which is actually based
upon another open source called Eclipse. Code Composer featured a large set of
tools for the programmer which included a debugger, a built-in console, a file
management system, and exporter. It had a huge set of tools and features giving
the user and endless amount of options. Albeit these options, it actually seemed
to be too many options for us and too many ways for thing to go wrong. Our team

 Group A Senior Design I

40

valued speed of application more than the immense list of possibilities, and it
became clearer that we’d rather use an Arduino which contains a much simpler
and streamlined passage way to get to our goal.

Energia is the other IDE that could be used for both MSP and Arduino; however, it
was too similar to Arduino’s custom-made IDE, and would just involve extra steps
to set up. As a matter of fact, they are so similar, there is a lot of documentation
comparing the use of Energia on an MSP430 to that of an Arduino. Even the layout
and functionality of the two IDEs are remarkably alike. However, in terms of the
speed and procedure of getting things working Arduino still takes the win with
having effectively no installation process. That and a more user-friendly
architecture regarding the actually practice of programming on it makes Arduino
still a just better choice than Energia.

3.4 Parts Selection Summary

As a result of the strategic part selection process, the main components for the
design have been collected. An image of the main components can be seen in
Figure 32 below. The numbers in the image correspond to the numbered list on
the following page.

Figure 32: Major Components

2
1

3
4

5

6

 Group A Senior Design I

41

1. Motor
2. Power Supply
3. Sensor
4. Joystick
5. Microcontroller (ATmega2560)
6. Microcontroller (ATmega328)

The following table provides an overview of what major components were selected
for our scale model prototype. Specific details as to why each component were
selected can be located in the strategic parts selection subsection found in Section
3.3. In the following section of this paper (Section 4) we will talk about how related
standards and realistic design constraints affected the parts selection process.
Constraints in the areas of cost, manufacturability, and environmental friendliness
were considered in the selection process of the parts as well as which standards
such as communication standards the relevant parts in Table 8 below use or do
not use. We also considered some sustainability constraints in selecting parts such
as if the desired parts were readily available and in stock.

Table 8: Parts Selection Overview

Item Part Number Manufacturer Price

Motor STM17R-3NE Applied Motion
Products

$204.00

Power Supply PS150A24 Applied Motion
Products

$172.00

Sensors OPB980T51Z TT
Electronics/Optek
Technology

$5.04

Joystick 512 Adafruit $5.95

Microcontroller ATmega2560 Amtel $12.21

Microcontroller Atmega328 Amtel $3.21

 Group A Senior Design I

42

4. Related Standards and Realistic Design
Constraints

Having realistic design constraints and adhering to realistic standards is a very
critical aspect of any deliverable product to a customer. In our case our customers
include both our professors and the supporting personnel that work at FSI and
Robinson Observatory. The following sub-sections outline the relevant standards
used in our project as well as the design constraints that were considered
throughout the part selection process following all the way through integration and
testing.

4.1 Standards

This section outlines how ANSI Related Standards impact the design process of
our project and lists the relevant communications standards used such as the very
well-known USB standard. “Standards are documents that describe the important
features of a product, service or system. For example, CSA Standard Z262.34-00
Ice Hockey Pucks specifies a hockey puck's material, size, mass, hardness at
room temperature and test methods” [12]. The idea of standards really came about
when it started hindering the safety of humans. ASME was in response to several
steam boiler pressure vessel failures [13], and at some point, a collection of
engineering institutes at the time came together to create an organization called
ANSI. ANSI now watches over the creation of standards in the U.S., but also
translates them to international standards so that they can be used worldwide.

4.1.1 ANSI Related Standards and their
Design Impact

Standards can be easily interpreted as the backbone to modern technologies and
lifestyles as they perform very supportive roles. They facilitate communication
between designs without actually communicating data. This universal
communication between designs takes time and effort to build which is where
IEEE-SA, ANSI, NSSN, and various other organizations come in to develop the
standards to be used. The IEEE-SA and ANSI aren’t actually run by governments,
but by communities that come together to create international or national
standards to be adopted by governments, consumer groups, and the like. These
standards aren’t required by law to be met, but more a sort of checklist that allows
products to be compatible across all types engineering. Essentially, by saying if
something is up to a certain standard, the user knows that the product meets listed
requirements and guidelines.

The University of Canterbury describes standards as “documented agreements
containing technical specifications or other precise criteria to be used consistently

 Group A Senior Design I

43

as rules, guidelines, or definitions of characteristics, to ensure that materials,
products, processes and services are fit for their purpose” [14]. From the definition,
standards can be used as rules, guidelines, or definitions, which illuminate what
standards can be used for. Noting the ability to become rules, the engineering
codes definition is then created. Engineering codes can be standards that if not
adhered to can become punishable by law. For our particular project and product,
there will not be any engineering codes we must adhere to, however we will be
taking advantage of already existing codes implemented.

Our project is going to have a set of prebuilt devices and products that will all be
incorporated together, which all come with their own set of standards. For
connecting with the CS team’s software, a USB standard will have to be taken into
consideration as it will be how we communicate between the computer and our
Arduino Mega. The Arduino Mega will have its own set of standards that it will be
trying to meet. It has its own built in USB and C based language which is then
compiled and sent through the Arduino brand IDE.

4.1.2 USB Standards

The standards for the Universal Serial Bus were actually created with companies
instead of just established standard organizations such as the ones listed above.
It became a joint effort between Compaq, Intel, Microsoft, NEC, and a couple of
others to create a port device that was easily compatible with a plethora of devices.
The Universal Serial Bus is arguably the most prominent example of how
standards help develop the world with the interoperability between devices as a
common goal. It is the flagship of the digital world in terms of a standard that wants
to be met by designers. The parties associated with creating this standard also
released the document for free, detailing how developers should go about creating
a USB device that is compatible with other USB devices.

The original motivation behind the USB 2.0 had three parts associated with it. The
“connection of the personal computer to the telephone” begins as the first one on
the list. During the starting age of the PC and communication systems, each were
both being developed separately. The developers saw this and agreed that a
cheap and universal solution would be needed to link the two realms of technology
if the future generation of products wanted to be upgraded from the previous
generation. The second motivation was the “Ease-of-use” idea. Computers used
to be in a very niche market due to their high learning curve and lack of
understanding from the public on what can and can’t be done with a computer. It
was detrimental to the users if certain aspects of the computer they owned didn’t
allow other devices to work together, thus raising the cost and required
understanding to be able to reconfigure the computer to suit a user’s needs. Not
only did this ease of use benefit the user and variety of the computer, but it also
played a significant role in the marketing of computers as the accessibility for them
opened up a large number of peripherals and spawned scores of products that

 Group A Senior Design I

44

could be bought. The third and formally final motivation is the “port expansion”.
Expanding on this means that instead of having two ports, one for input and one
for output, a single USB port could be used for both in terms of connecting the
device. This halves all the required ports needed on a computer, essentially
doubling the number of connectable adaptors, furthering the market for
peripherals. A fourth and quieter motivation is that as time moves on the PC began
getting more powerful and capable of higher performance. So, a new, faster type
of port needed to be developed. Conclusively, the developers put a very strong
summation to what USB’s meant for computer with the quote, “Thus, USB
continues to be the answer to connectivity for the PC architecture”.

From a physical side the port itself has specific requirements that must be met not
only electrically but physically. Starting electrically, the USB 2.0 requires a 5 volt
to ground connection with a maximum current at 1.5 Amps (Figure 33). This VCC
doesn’t provide any data and is actually specifically to be used to either supply or
deliver power to a circuit. This will provide the power to the Arduino mega and is
labeled pin 1. The opposing pin 4 is the ground which everything will be referenced
to. The USB provides 2 data pins called D+ and D-. These are serial pins that feed
in data one-bit rate at a time in the form of a square wave.

Figure 33: USB Description Graphic

4.1.3 C Standard

Before the invention and fabrication on modern compilers and computer
languages, specified hardware-based assembly was the only way to program a
computer to get it to perform the tasks desired of the programmer. However, as a
giant reflection of the engineering world, each hardware and setup had their own
specified version of assembly that needed to be used. And just as what happened
in the engineering world, it became very difficult to properly share and conform
certain products and projects from one to the other. Then the C language was
made. The function and establishment of the C language is so similar to other
standards from engineering where ANSI and ISO came together. They formed a
standard of C with employing the idea of “Software developers writing in C are

 Group A Senior Design I

45

encouraged to conform to the standards, as doing so helps portability between
compilers” [15].

As it stands there are multiple different versions of the C standard as the years
went on. They are aptly named based on the year they were created, such as C99
in 1999, and C11 in 2011. The current iteration of the C standard is C18 which was
just released fairly recently and is the one our Arduino will be based on, as Arduino
language is not actually C, just heavily inspired by it. C18 is extremely similar to
C11 as it mainly just addresses certain defects in C11, which means no actual
language changes.

One major change that could affect us is the removal of the gets() function in C11.
This function reads in bytes from a standard in operation, but what known to be
unsafe and cause a plethora of problems for programmers. The second major
change in the language of C11 would be the addition of anonymous unions and
structures that allow you to not identify the data type. However, unions and
structures will most likely not be used at all with our program as these advanced
data types won’t serve as much use to us. In the end we will unfortunately not be
able to say our code is C18 standard compliant due to Arduinos special functions.
Arduino’s C based language comes with some extra functions for the programmer
to use that invalidate our code from being portable to anything other than an
Arduino microcontroller.

4.1.4 ATmega Standards

The Arduino brand of boards and microcontrollers is known and used worldwide.
It is a marketed device that heavily is advantaged by the standards it uses. With it
being this largely used device it obviously has standards that it must abide by. The
user manual for Arduino design boards has a couple of notable listing of standards
they use and follow. The JEDEC standard is a memory ram standard outputted by
a committee that oversees semiconductor microelectronics, which AVR uses to
store temporary memory. Another standard is the RS-485 standard which defines
serial communications in electrical systems. Arduino moves by this standard in
setting up its transmit and complete flag that can be found as a port on the Arduino
Mega board and microcontroller, as well as in the USART. It is also known to be
used in USB connections. A third standard AVR uses is the JTAG industry
standard of “verifying designs and testing printed circuit boards after manufacture”
[16]. This is mostly for quality assurance after the board is built to make sure the
final product actually is the intended final product, which doesn’t apply to the actual
Chip AVR makes. However, the final one is closely tied to the JTAG standard as
it is applied to quality assurance rather than a core design of the microcontroller
and board. The 1149.1-2001 IEEE standard test access port and Boundary Scan
Architecture standard just tests the integrated circuit for faulty silicon components
and works in tandem with the JTAG testing.

 Group A Senior Design I

46

The ATmega has a significant amount of standards that it must adhere to before
having the microcontroller and board go on the market to be purchased.
Nonetheless, these standards don’t quite apply to our specific project. We most
certainly take advantage of them, but the standards themselves have very little to
do with our design of the telescope.

4.1.5 NEMA ICS 16

This standard, published by the National Electrical Manufacturers Association
(NEMA) governs the design and implementation of our two NEMA-17 motors. The
standard referenced for this document was last updated in 2001 and is available
on the NEMA website [17]. Although there is a great deal of specifics covered by
this standard, only the items most relevant to our design will be covered here.

The first conditions relevant to our design pertain to operating conditions for those
motors. For example, the NEMA standard designates that the rated value of
ambient temperature shall be 40°C (104°F) unless otherwise specified by the
manufacturer. Additionally, these temperature ratings are based upon operation
at altitudes of 1,000 meters (3,300) feet or less. In both cases, these constraints
are well within the design parameters for our device and should not need to be
considered.

There are a number of size and other mechanical considerations implemented in
this standard. However, as the motor selection has been discussed and approved
with our mechanical engineering counterparts, we are confident that the NEMA
specification is reasonable for our use case. Therefore, a detailed examination is
not needed.

Similarly, there are a number of testing and acceptance criteria specified in the
standard (e.g. dielectric withstand, step accuracy or insulation resistance). Again,
since these tests are undertaken by the manufacturer, not the end user, these are
not of specific concern to our design.

Of particular interest are the various specifications listed under the controls section
of the standard. First, we consider the range of operating voltage and frequency.
The standard allows a deviation of +/-10% for RMS input voltage and a frequency
deviation of +/-2%. Since our power is provided by a supply sold by the
manufacturer of the motors, these tolerances are well within spec and not a
concern for our implementation.

The NEMA standard specifies the use of rotary encoders to serve as the position
and velocity feedback device. Operating supply voltages can adhere to a range
of values from 5V DC through 28V DC, but in the case of our motor implementation
the manufacturer has selected 5V. Outputs can confirm to the following options:
line driver, TTL compatible, open collector, amplified sine wave and triangular

 Group A Senior Design I

47

wave. Our device utilizes a line driver and, in addition, is TTL compatible.
Additional sections specifically relevant to our device and application include
specifications on quadrature error. Since our encoders operate on the quadrature
principal, we see that a specified measurement is performed relative to the offset
in quadrature from the expected 90°.

Indexing is accomplished via a square pulse. As an interesting aside, the standard
also references indexing as a home position or zero reference. This is especially
applicable to our design, as the index will be used to confirm when the device has
reached its home position. The index can be either gated or ungated. Our
particular application employs an ungated index pulse – that is, a pulse that occurs
once per revolution.

Finally, there is a suite of information on testing the various outputs available with
lab equipment. Again, this is a relevant section for our project as much of the
testing will be done in the lab using oscilloscopes and function generators (in
addition to the waveforms generated by our controller – the Arduino). Testing
procedures include items such as line count verification for encoders with index
and testing the index using a two-input oscilloscope. Each procedure includes a
step-by-step breakdown of the necessary test setup (e.g. step 1 – connect two 1kΩ

resistors in series to form a series resistor network, etc.).

4.1.6 Communication Interface Standards

When considering the different motor options, it was found that some of the STM17
models had RS-232 communication interface, some had RS-485 communication
interface, and some had no communication port. Although we ended up choosing
the motor model which did not make use of the RS-232 communication port, this
communication standard is still important to discuss in the context of our project
because of how ubiquitous it is in the Robinson Observatory on Ara Drive. In the
observatory, the dome rotation controls, door controls, and positioning controls are
all controlled through a computer and series of control boxes via USB and RS-232
interfaces. Understanding the RS-232 standard will be key for future team’s
progress towards replacing the control box in the observatory as well as ours so
that we can try to mimic the communication protocol as close as possible in our
scale model.

The recommended standard (RS-232) was first introduced in 1960 by the
Electronic Industries Association (EIA) for data transmission via serial
communication [18]. The standard gives recommendations for the electrical
characteristics and the timing of how signals are sent and received. In addition,
like many electrical standards there are also mechanical standards associated
such as the physical size and pinout of the connectors. The female and male
connectors are commonly seen on older equipment, particularly personal
computers, printers, mice, power supplies and other computer peripherals. Since

 Group A Senior Design I

48

the Observatory has been around for a long time, it would make sense why they
still have peripheral equipment that is reliant on the RS-232 standard for serial
communication.

As for the electrical characteristics of this standard, there is a maximum open-
circuit voltage limit of 25 volts and the output signal level usually varies from +12V
to -12V [18]. The data transmission limit is 256 kb/s and the cable line limit is 50
feet. As far as logic control, there are procedures to control the flow of information
in both directions. The signals are represented as voltage levels with reference to
a common ground or power in the system. Certain pins have certain functions like
sending signals meaning ‘Request to Send’ and ‘Clear to Send’ which control data
from the transmitting computer to the receiving data set. There are also
confirmation pins indicating whether the data was transmitted, or received, and
which data carrier to detect.

Some reasons this standard has become outdated are that it is limited to lower
data transmission speeds and works best with shorter cable lengths. The
connectors are also fairly large and take up a lot of space on the devices that use
them. The USB and RS-422 standards which serve as the RS-232 successor in a
way are further discussed in detail in their respective sub-sections in this chapter.

4.1.7 Industry Standard 26C31 Differential
Line Driver and 26C32 Receiver

When considering the different motor options, one of the key differences between
the top three considered was whether they had a built-in encoder or not. As seen
in Section 3.3.1, the encoder option was selected. The incremental encoder
specifications state that there is an internal differential line driver which can source
and sink 20mA at TTL levels. The specifications recommend using the industry
standard 26C32 as the receiver. The corresponding datasheet to the AM26C32
Quadruple Differential Line Receiver which will be used to assist in digital data
transmission lists that the receiver meets or exceeds the requirements of ANSI
TIA/EIA-422-B, TIA/EIA-423-B, and ITU Recommendation V.10 and V.11.

The TIA/EIA-422 standard, which is also known as the RS-422 standard, is a
technical standard which was created by the Electronic Industries Alliance (EIA)
which specifies the required electrical characteristics of a digital signaling circuit.
This standard imposes limits on the transmission rates of data and the length of
cables that use this standard. The data transmission rate limit is 10 Mbit/s and the
limit on cable length is 4,000 feet. Our cable length need in our application is well
under that limit.

Though this specific standard only applies to the definition of signal levels, there
are also other properties of the serial interface such as mechanical properties

 Group A Senior Design I

49

applying to the connectors and properties of the pin layout and wiring. Those
properties are part of the RS-449 and RS-530 standards.

As far as communications wiring, the RS-422 standard indicated that the wiring
should be made of two sets of twisted pair cables where each cable pair is
shielded. Shielded cables have the advantage of being more noise immune
because of how they couple the noise better and more symmetrically than their
non-twisted cable counterparts [19]. Compared to the RS-232 standard, the RS-
422 standard overcomes the limitation of using single-ended standards. These
limitations also include the limited data transmission rate as well as the lack of
ample noise rejection capability.

The second standard that is applicable the differential line receiver we will be using
is the TIA/EIA-423 standard, also known as RS-423. This standard is similar to
RS-232 but features higher data transmission rates. Compared to the RS-422
standard one of the main differences is that it defines an unbalanced or single-
ended interface with a sending driver which is unidirectional. A table comparing
both RS-422 and RS-423 standard specifications is below [20].

Table 9: Comparison of Telecommunication Standards

Specification RS-423 Standard RS-422 Standard

Operating Mode Single-ended Differential

Maximum data
transmission rate

100kb/s 10Mb/s

Max. Driver Output
Voltage

+/- 6V -0.25V to +6V

Driver Load
Impedance

Less than 450 Ω 100 Ω

Slew Rate Adjustable N/A

Receiver Input
Voltage Range

+/- 12V -10V to +10V

The last standard which our differential receiver uses is that of the International
Telecommunication Union (ITU) which coordinates standards for
telecommunications. There are a series of ITU recommendations established for
data communication and two of them, specifically V.10 and V.11 are met or
exceeded by our differential receiver. Recommendation V.10 states that for
unbalanced electrical circuits the data communication can be up to 100 Kbit/s
which is in agreement with the RS-423 standard. The recommendation under V.11
states that for balanced electrical circuits, the data communication can be up to 10
Mbit/s which is in agreement with the RS-422 standard.

 Group A Senior Design I

50

4.2 Realistic Design Constraints

As mentioned previously, the realistic design constraints that are set upon our
project have a big impact on how we go about choosing parts and integrating a
working product. The design constraints used can be broken down into the
following categories: economic constraints, time constraints, environmental
constraints, social constraints, political constraints, ethical constraints, health
constraints, safety constraints, manufacturability constraints, and sustainability
constraints.

4.2.1 Economic and Time Constraints

Since our project is in the process of being funded by the Florida Space Grant
Consortium, there is a potential for a generous $750.00 of additional funding that
our team can use. Anything outside of that will have to be covered by the individual
members. Currently, the procurement of some parts has begun before receiving
formal funding as waiting for funding could cause serious delays in the project
progress. Our team does not wish to spend too much more over the potential
allotment of $750.00 therefore this serves as an economic constraint towards our
project. This economic constraint consequently affects the part selection process
for our various subsystems. For example, there may be options for more precise
motors and encoder feedback but that comes with a price. It will have to be
carefully considered for each of the subsystems weather the extra cost associated
with alternative parts cannot be overcome via software or another method.

In addition, there are harsh time constraints on the project that should also be
considered. All our members on our team are taking at least three engineering
classes in addition to senior design. At least two members have part-time
internships in addition to their University of Central Florida collegiate course load.
Therefore, to maintain good grade point averages for the semester, there must be
a time limit on the total time dedicated towards this project. Another timing
constraint to consider is that this being an interdisciplinary project, our sponsors
are not available for meetings all the time so there needs to be a comfortable
amount of cushion time to allow our sponsors and significant outside contributors
enough time to adequately address any concerns or questions that may arise.

Another factor to consider is that since our teams’ advisor is in the Mechanical and
Aerospace Engineering department, any purchases made with FSI or FSGC funds
must be made through the MAE purchasing office. Although our team is required
to receive all major components by the end of the semester according to Senior
Design 1 rubric, in order to actually receive those parts on time, we will have to
submit appropriate order forms with a reasonable time allotment for the purchasing
office to place the order, receive the order, process the order, and for our
purchasing lead to retrieve the order. Because of those reasons, any purchases
made need to consider this large time constraint when selecting parts and vendors.

 Group A Senior Design I

51

Even though our group is one of the few groups that elected to take Senior Design
II in the fall as opposed to the summer, our group still feels as if there will still be a
significant time constraint felt throughout all semesters. This is because over the
summer, all members of the team will be pre-occupied with both in-state and out-
of-state full time and part time internships. However, through the use of our
milestone planning tools later discussed in the Administrative Content section, our
group is confident we can overcome the obstacle of limited time.

4.2.2 Environmental, Social and Political
Constraints

The final product of the scale model telescope will be geared towards hobbyist and
amateur astronomers use. Therefore, it is important to consider the social
constraints of those who will end up using our product if it were to be re-produced
at any volume. Having an easy-to-use user interface is one way to achieve this. In
addition, building the scale model telescope system at a low cost will also adhere
to the social constraint of consumer budget.

As for environmental constraints, it is our teams desire to use as many RoHS
components as possible in our design. RoHS stands for Restriction of Hazardous
Substances and is implemented under the RoHS Directive that restricts the use of
certain hazardous substances under European Union transposed laws. To be
compliant with the RoHS Directive, each component must have minimal
percentages of concentration by weight of a handful of substances in any given
material. These substances are Cadmium, Hexavalent Chromium, Lead, Mercury,
Polybrominated Biphenyls, and Polybrominated Diphenyl ethers, or any of their
compounds. The percentages of concentration must all fall under 0.10% for all
substances except for Cadmium or Cadmium Compounds which have an even
tighter restriction of 0.01% by weight [21].

4.2.3 Ethical, Health, and Safety Constraints

As discussed in the parts selection section, one of the components used in our
system to verify pointing accuracy is a laser pointer. Different laser classes have
different levels of safety to be considered. In the United States, most lasers that
are used in astronomy and by the general public to point at the sky and certain
constellations are Class 3a lasers which emit a green neodymium diode laser
beam [22]. This laser beam has a wavelength of 532 nanometers and has an
output power of just under 5 milliwatts [22]. Since this laser class is higher than a
Class 1 or Class 2 laser, it requires a warning label reading “danger” by the US
Food and Drug Administration (FDA). As for safety, it is critical that the laser beam
of this class is not pointed into anyone’s eye. Since higher class laser beams are
much more concentrated than lower class laser beams, every precaution must be
taken from a safety standpoint to avoid accidental pointing into someone’s eye.

 Group A Senior Design I

52

Precautions like constantly ensuring the laser pointer is off unless everyone is
standing behind the horizon line limits of the telescope will ensure everyone’s
safety. There should also be affixed appropriate IEC-Compliant laser safety labels
placed on the outside of the laser.

Another safety constraint is manufacturing a PCB that does not generate too much
heat so that it would be unsafe to touch any voltage regulation components. A 15V
linear voltage regulator for instance, has a maximum operating temperature of 125
degrees Celsius, or 257 degrees Fahrenheit. Temperatures of only about 80
degrees Celsius are needed to cause severe burns when touched for less than
one second. Therefore, it is critical that any components that can reach that
temperature when operating be either dissipated with a large enough heat sink or
completely concealed and distanced on the PCB from any components that a user
would interact with such as a joystick.

In addition to ensuring the components on the PCB do not burn anyone, the
manner in which soldering is used poses another PCB related health and safety
constraint on the project. For one, soldering irons can reach a temperature of 400
degrees Celsius so care should be taken to never touch the tip of the soldering
iron. If a tip needs to be replaced for one with more surface area, the replacement
should only occur once the iron has reached a safe temperature. In addition to the
burning hazard from the soldering iron tip, soldering certain materials heats them
to a point where fumes can be inhaled by the person performing the soldering.
Additionally, flux which is used to aid in the soldering process is known to contain
rosin which also produces dangerous solder fumes [23]. It is important that the
proper soldering conditions are used which include ventilation by means of a fan
that can prevent the soldering fumes generated from being inhaled. The type of
solder used is also a constraint on this project from a health and safety perspective.
Solder which contains traces of lead is considered to be toxic, especially if
ingested. Therefore, firstly the use of lead containing solder should be avoided,
and if this is not possible, then the hazard of ingesting the lead containing solder
should be minimized.

4.2.4 Manufacturability and Sustainability
Constraints

For a product such as our senior design project to be manufacturable, it must be
able to be easily reproduced. This includes trying to use commercial off-the-shelf
parts when possible. Using commercial off-the-shelf parts with short lead times
and large stock quantities also helps our project meet sustainability constraints
since it is less-likely that those parts will go obsolete in the near future. Another
way to make our project more sustainable is to be robust in the design of the PCB
so that components are attached professionally and securely. Also, any wires that
come into contact with moving parts on the telescope should be wired
appropriately and with enough slack so they are not strained during any particular

 Group A Senior Design I

53

movement or combination of movements. Having optical sensors to determine
when the telescope reaches the pointing limits will help prevent overstretching and
straining of the wires leading to the motors from the power supply and control
system at the base of the telescope.

 Group A Senior Design I

54

5. Project Hardware and Software Design
Details

This section on project hardware and software design details outlines the process
at which the team is designing each particular subsystem. For our complete
design, we will have a total of six subsystems, with one of the subsystems being
broken down into a set of two systems due to the small size of the subsystems.
The subsystems are; DC to DC converter, Sensors and LEDs, Motors,
ATmega2560, Joystick, and the ATmega328.

5.1 Initial Design Architectures and Related
Diagrams

There are many options when it comes to choosing a microcontroller for a project.
A considerable amount of thought is required to choose the right microcontroller,
such as how many and what type of hardware interfaces (communication and I/O),
as this will dictate the number of pins and space is required of the microcontroller.

Software architecture is another important piece of the puzzle to consider. This will
determine how heavy or light the processing requirements are. Cost and power
constraints are also important factors to consider. With that being said, choosing
to use an Arduino Mega 2560, appears to satisfy all of our requirements needed
in a microcontroller because it provides the functionality, we need for our design
but also satisfies the requirements from the sponsor.

To also satisfy the requirements from UCF, an on-board microcontroller that
performs simple functions will be used. The on-board microcontroller of choice is
the ATmega328. This microcontroller will be added to the shield which will attach
to the ATmega2560 development board.

The ATmega2560 provides the ability to attach a shield to the existing board to
satisfy our requirements of constructing a printed circuit board (PCB). A shield is
modular circuit board that piggybacks onto the ATmega2560 to instill it with extra
functionality as seen in Figure 34 below.

At the current state in our design, it is projected that one shield will suffice,
however, as we continue to add complexity to our system, the limited space we
have on our shield decreases. As we continue our design, we must factor in that
in the future, additional shields may be attached to the ATmega2560, so the routing
of signals needs to be assessed. Also, there will be numerous plugs going on the
shield, so we must make sure that they do not get in the way of the possible
additional shields in the future.

 Group A Senior Design I

55

Figure 34: Stacked Arduino shields

As far as the structure and design of the system is concerned, the team made up
of Electrical Engineering students, Computer Science students, and Mechanical
Engineering students is mostly concerned with providing a more accurate model
of the current system that is in place at the Robinson Observatory. Because of the
added features, such as the focus, dome control, and shutter control, a complete
replication of the system is unattainable for a single senior design team to complete
in a two-semester project. The goal is to foresee some of the changes required in
the future two-semester projects to aid the future senior design teams in their
design without requiring them to completely redesign the system.

Choosing a microcontroller with many extra inputs will provide the future teams
with the ability to add additional inputs and outputs to the system and easily alter
the software of the system using the Arduino IDE.

Ensuring that the designed system provides an ample amount of power will also
give the teams enough room to increase the power consumption of the system
without fear of overconsumption.

The current plan is to purchase a power supply that is capable of driving the two
motors (right ascension and declination) and the rest of the system. The output of
this power supply unit would be split to the motors and then use a DC to DC
converter to provide all the lower power electronics with a source that is more than
able to handle any load required.

 Group A Senior Design I

56

5.2 First Subsystem, Breadboard Test, and
Schematics

For the first subsystem of the project which is a DC to DC Converter, the following

two sections describe the schematic layout of the subsystem, factors that went into

designing the subsystem, any tools used to assist in the design of the subsystem

(such as TI’s Webench Power Designer), as well as how to verify the subsystem

design is working as expected via breadboard testing.

5.2.1 DC to DC Converter Design and
Schematic

Starting with the DC to DC converter for the system, a schematic layout of the
design can be seen in Figure 35 below.

Figure 35: DC to DC converter Schematic

As one can see, the input voltage to the DC to DC converter is intended to be
24VDC. This initial voltage would be from the PSU (PS150A24 24VDC switching
power supply) to be purchased to supply power to this DC to DC converter for the
operation of the ATmega2560, and all of the other lower power electronics in
addition to the motors being used to control the telescope. The motors will not
receive their power through this DC to DC converter because the V+ of the motor
requires 24VDC, but they will receive their control signals for steps and rotation
through the signals from the ATmega2560 that receives its power from the DC to
DC converter.

 Group A Senior Design I

57

To design this circuit, Texas Instruments (TI) provides a power designer tool,
Webench, that aids in the design of an end-to-end power supply. Figure 36 below
shows the website and the parameters required for the end-to-end design.

Figure 36: Webench Power Designer

The acceptable range for the ATmega2560 via the Vin pin is 7-12VDC. If the Vin is
less than 7V, the 5V output pin on the ATmega2560 may supply less than 5V and
become unstable, but if supplied with more than 12V, the voltage regulator may
overheat and damage the board. To eliminate the possibility of either issue, a Vin
of 10V was chosen. After reviewing the PSU datasheet, the minimum, maximum,
and nominal output voltage was obtained, which provided the necessary
parameters for the power designer tool from TI. With all of the required information,
Webench was able to output multiple DC to DC converters that met our
requirements. When narrowing down the selection of converters, there were many
things to consider: efficiency, BOM cost, footprint, BOM count, component
footprints in Eagle.

The efficiency of the converter tells us how close to the 10V output at 1A we will
be. This is important, but the majority of the designs provided an efficiency of 88%
or more, so that still did not narrow down the search much.

The BOM count and footprint is an important consideration because our shield has
a limited area and Eagle, the PCB software we are using, has a free version that
only allows PCBs to be of a certain size. Also, the more components, that is the
higher BOM count, the more items there will be to solder onto the PCB, which
increases the probability of board issues.

 Group A Senior Design I

58

The BOM cost is not much of a concern because the DC to DC converter we are
needing would not require costly components. The components that are used for
this low-level power are quite cheap to manufacture. The BOM costs in
consideration were under $2.00.

Lastly, the footprints in Eagle played a major role in the selection of a DC to DC
converter. When designing a PCB, the physical layout of the devices must be
known for the layout of the board. Although our combined experience using PCB
design software is limited, we have realized that finding parts that have existing
footprints are hard to come by in most cases. So, before narrowing down our
design decision, the individual parts, mostly the regulator will be researched to
ensure that the footprint is available for these parts. Footprints can be constructed
by the user, but that can add a level of complexity and uncertainty that does not
seem to be worth the risk since there are many options for DC to DC converters.

5.2.2 DC to DC Converter Breadboard Test

The breadboard testing for the DC to DC to converter is quite straightforward.
Since TI’s Webench program provided the design for the team, any error in design
should be eliminated. To test the converter, a 24V DC signal is applied to the input
of the converter by means of a DC Power Supply and the output voltage is checked
to ensure a 10V DC signal at the output by using a Digital Multimeter (DMM). In
addition to verifying the system outputs a proper voltage, the current must also be
checked. The current capabilities of the DC to DC converter is designed to handle
1A. To test this, there must be a load attached to the output of the converter and
the current along with the output voltage must be tested.

This subsystem can be easily tested by itself because of general capabilities a DC
to DC converter needs to operate as intended. In the next subsystem, the LEDs
and sensors can be tested with and without the DC to DC converter to not only
verify the design of the subsystem is correct, but also that the subsystem integrates
well with the DC to DC converter subsystem.

5.3 Second Subsystem, Breadboard Test, and
Schematics

For the second subsystem of the project which is composed of both the status

LEDs and sensors, the following two sections describe the schematic layout of the

subsystem, factors that went into designing the subsystem, any tools used to

assist in the design of the subsystem, as well as how to verify the subsystem

design is working as expected via breadboard testing.

 Group A Senior Design I

59

5.3.1 Status LEDs Design and Schematic

The second subsystem designed for our system are status LEDs. Status LEDs
was an idea developed by our team as a way to show the user the current status
of many of the devices within the system. When speaking with the team that
operates the telescope, it seemed as if the team was confused as the current
status of the telescope because of the lack of feedback from the system. The
current system at the Robinson Observatory has beepers to beep when the motors
were ready, but that was all that it offered. In addition to keeping the user informed
on the operation of the system, adding other LEDs for other purposes can assist
in diagnosing issues, or aid in testing of the system. The LED system we have
designed can be seen below in Figure 37.

Figure 37: Status LEDs

When designing the LED circuit, it must be understood that a current limiting
resistor is required to be in series with the LED. When an LED is forward-biased,

the internal resistance is extremely small. Using a form of Ohms Law, 𝐼 =
𝑉

𝑅
, it can

be seen that with an extremely small resistance, the current will increase to a level
that is not suitable for the system. The LED cannot handle that level of current,
therefore it will blow the LED immediately. To design the circuit with the resistor,
an understanding of the forward voltage Vf and forward current If of the LED must
be known. The Vf is different for different color LEDs. We plan to use red LEDs for

 Group A Senior Design I

60

all of the status lights. The Vf of the red LEDs are around 2V with an If of 20mA.
Using Ohms Law, and the understanding that the input to the resistor will be 5V
because that is the output from the ATmega2560, the required resistance for the

resistors can be found quite simply. 𝑅 =
5−2

.02
= 150Ω.

The “MOTORx_RUNNING” LEDs are introduced mainly for diagnostic purposes.
If the motors are running, the user can obviously see the motor turn, but if the
motor is supposed to be turning but is not, having an LED in the circuit can help
the technician determine whether it is because the motor has failed or that the
signal is not reaching the motor, resulting in other internal issues within the PCB,
or even the signal from the PC.

The “SENSOR_LIMITx” LEDs are for both the user and diagnostic purposes.
These LEDs will turn on when the telescope has reached its limit on how far it has
turned. If the telescope turns beyond that point, damage will occur to either the
mount, the telescope, and/or the system itself. If the LED is illuminated and the
motor is nowhere near its physical limit, the user will be able to see that the issue
is not that the motor has reached its limit, but that there is an electrical/software
issue. This could help speed up the diagnostic process to find the underlying issue.

The “MOTORx_FAULT” LEDs are also both for the user and diagnostic purposes.
The motors we are using in this design produce an output signal when there is a
fault within the motor. Translating that fault to an LED will help the user understand
what is going on with the system if either motor is not turning. This also will help
the technician diagnose any faults for the system.

The “HOME_POSITION” LED is helpful for the user because it lets them know
when the system has reached its resting home position. At the Robinson
Observatory, the system always starts at the home position and turns off at the
home position, and if it does not reach the home position, it will not follow through
with any commands.

The “TRACKING” LED is used to inform the user that the telescope has found the
position in the sky that was requested by the computer and it is locked in and
following that target.

5.3.2 Status LEDs Breadboard Testing

Testing the LEDs is a simple task that can be quickly verified. There are two ways
to test the LEDs work as designed.

The first way is to build the circuit on a software program that can provide a means
for analyzing electrical circuits. The most common used in the education
department is Multisim. Multisim, created by National Instruments (NI), is an easy
to use circuit simulation tool that Universities use to teach students how to simulate

 Group A Senior Design I

61

electrical systems. Multisim unfortunately is not open source and therefore is not
free to use. There are student editions for purchase, but usually a university with
an engineering program will have computers with the software for laboratory
experiments that are required for certain classes.

There are other simulation tools that are open source such as LTspice. LTspice is
also fairly easy to use, but the capabilities of the program are limited. Some special
designs such as non-ideal op amp oscillator analysis is tricky because the majority
of the op amps within the program have ideal characteristics therefore do not
behave as they do in practice because of the complexity it adds to the analysis.
This is fine for most cases, however, if a more in-depth analysis needs to be done
for very sensitive systems, Multisim seems to be the better option. There are many
more simulation tools for electrical analysis, but access to those options is limited
due to mostly cost. These other programs would be used by engineers outside of
the education system.

Figure 38 below shows one LED being tested in Multisim. For this test, the voltage
across the LED and the current going through it are tested to ensure that it is
operating within the limits as defined in the datasheet by the manufacturer. Before
testing the entire eight LEDs in the circuit, one is tested to eliminate complete
failure if the system was designed improperly.

Figure 38: Multisim testing of LED

Once the simulation of the single LED is completed and verified, the simulation
can be carried out with the additional LEDs connected in parallel, however, as long
as the voltage source is producing the correct voltage, and the current capabilities

 Group A Senior Design I

62

of the source can withstand the addition current from each LED, the operation of
the system will remain the same. Since the voltage source and current capabilities
of the system does not depend on the software, but of the hardware (ATmega), it
is unnecessary to simulate the system any further.

Testing the LEDs on the breadboard begins in the same manner as it did for the
simulation testing by starting first with one LED and testing the circuit to ensure
proper voltage and current before moving further in the testing process. This time,
the voltage and current capabilities and values will not be the ideal values given
with the calculations or simulation tools but will greatly depend on the many
differences in the hardware and testing devices. Before beginning to understand
the analysis, the tester must understand how their measured values may differ
from expected values.

The testing equipment readings vary between the equipment used to test the
circuits. As it is with everything else, the higher the cost for an item usually means
the higher the quality, and in this case, the higher the accuracy. The factor with the
biggest effect on accuracy is temperature. The same goes for the power supply.
The power supply will heat up with continued use and request for more power, but
most systems these days are quite efficient for lower cost, but for more accuracy,
higher priced power supplies can be purchased.

The values for the components used are not exact. All components have
tolerances that tell the user how much the values can vary. Typical tolerances for
resistors are +/- 5%.

The testing of the LED circuit is carried out by connecting it to the ATmega and
sending a digital output from one of the pins. This will not only ensure that the LED
circuit works, but that it works with the current and voltage capabilities of the
ATmega. When testing the single LED circuit, the voltage and current is verified
for the LED to make sure that it is operating within range and will not fail. The
brightness of the LED is also checked to see if the supplied power is enough for
the LED. A dim LED is undesirable because the end user would like to clearly see
the status of the system which would be achieved by providing a well-lit LED.

After verifying the single LED circuit, the next step is to connect the remaining
LEDs to other pins of the ATmega and verify that even when all of the LEDs are
on, the current and voltage provided by the ATmega is sufficient enough to power
the LEDs simultaneously.

5.3.3 Sensors

The sensors in this system can be broken down into two parts, the input diode,
and the actual sensor part. The input diode shines an IR light to an optical sensor
that senses if the light is reaching the sensor or not. If something goes in between

 Group A Senior Design I

63

the input diode and the optical sensor, the signal is broken, and there is no output
signal. Because of the nature of this design, the input diode needs a constant
supply of power to always shine its IR light.

5.3.3.1 Input Diode Design and Schematic

The input diode is a plastic infrared emitting diode within the sensor that shines an
infrared (IR) signal. This diode also has a forward voltage and forward current as
seen with the status LEDs in the previous section, therefore a current limiting
resistor is also needed to keep the current to an acceptable level. Table 10 below
shows the electrical characteristics of the device we needed to design the circuit.

Table 10: IR Diode Characteristics

 PARAMETER MIN TYP MAX UNITS TEST
CONDITION

VF Forward
Voltage

- - 1.8 V IF = 20mA

Using an input voltage of 3.3V coming from a constant output from the
ATmega2560, VF of 1.6V, and an IF of 20mA, the value of the resistor can be found

for the IR diodes. Once again, using Ohms Law, we find that 𝑅 =
3.3−1.6

.02
= 85Ω.

Figure 39 below shows the basic circuit that makes up the IR diodes. Since there
are two sensors, there are two diodes that need powering.

Figure 39: IR Diode Schematic

5.3.3.1a Input Diode Breadboard Testing

Because the input diode is an IR LED, testing of the operation of the LED cannot
be done visually. The current and voltage of the LED can be verified by the same

 Group A Senior Design I

64

process as performed in the previous section of testing the LEDs. Once this testing
is verified, the remaining components of the sensor can be connected, as seen in
the next section, allowing the entire sensor to be tested and verified

5.3.3.2 Optical Sensor Design and Schematic

The design of the optical sensor portion of the sensor is also quite simple. Figure
40 below shows the internals of the sensor, including the diode.

Figure 40: Optical Sensor Internal Components, Courtesy Texas Instruments

It can be seen that the three terminals that make up the optical sensor portion of
the sensor are VCC, OUT, and GND. The electrical characteristics for VCC and OUT
(VOL and VOH) shown by two cases of the output being high or low, can be seen in
Table 11 below for OPB980 which was found within the datasheet.

Table 11: OPB980 Electrical Characteristics

 PARAMETER MIN TYP MAX UNITS TEST
CONDITION

VCC Operating
D.C Supply
Voltage

4.5 - 16 V

VOL Buffer Totem-
Pole

- - .4 V VCC = 4.5V

IOL =
12.8mA

IF = 0mA

VOH Buffer Totem-
Pole

VCC –
2.1

- - V VCC = 4.5V
to 16V

IOL = 800µA

IF = 15mA

 Group A Senior Design I

65

The OUT for the sensor will be a minimum of VCC – 2.1, which will be enough for
the ATmega2560 to recognize a high or low signal. The VCC we plan to use is the
output of the 5V pin on the ATmega2560 to provide a constant voltage to the
sensor because it always needs to sense the state of the system. Figure 41 below
shows the schematic that was developed to implement these sensors into our
system.

Figure 41: Optical Sensor Schematics

These connectors connect the wires to the board by a means that can be
disconnected easily for replacing or testing. The inputs, S1 and S2 are the inputs
to the IR diodes, the 5V input is to VCC, the SENSORx_OUT is the output from
each sensor, and the rest of the pins are to ground. The reason for the 10kΩ
resistor in the schematics is to use it as a pull-down resistor. This enables the
ATmega2560 to accurately measure the state of the sensor as a high or low.

5.3.3.2a Optical Sensor Breadboard Testing

The final testing piece for this particular subsystem is the optical sensor. After
testing the IR LED, the remaining wires can be installed. The first step is to simply
wire the sensor per the datasheet and test the sensor, then wire the sensor to the
input and output (I/O) pins of the ATmega. When testing with the ATmega, not only
the sensor capabilities are verified, but also that the sensor works with the ATmega
to signal a change in the state of the sensor.

To test the sensor, the gap in between the sensing element and the IR LED needs
to be broken. This can be done by simply introducing any object that is not
transparent, because the sensing element is looking for that IR light from the LED.
Once the obstruction is placed in the path of the IR LED, the state of the sensor
will switch, and in this case, the output would become a high (5V), and when the
obstruction is removed, the output would be a low (0V). After verifying the
functionality, by introducing the sensor to the ATmega, the tester can verify that
the ATmega accepts the voltage output levels as high or low voltages and can also

 Group A Senior Design I

66

send a signal to the LEDs that were tested in a section above to trigger an LED
when the switch opens or closes.

Figure 42 below shows the status LEDs and the sensors wired up with the
breadboard the ATmega2560 for testing.

Figure 42: Status LED and sensor testing

5.4 Third Subsystem, Breadboard Test, and
Schematics

The third subsystem in our design, generally, consists of the motors. At a practical
level, this subsystem can be broken down into several additional subsystems.
That is, the motor subsystem consists of the motors, the encoder, the power supply
and an AM26C32 differential line receiver. The operation of each of these
subsystems will be detailed here along with a summary of the integrated operation
of the motor subsystem at the end of this section.

The overall schematic for this subsystem is included here as Figure 43, and each
component and interconnect will be detailed in the appropriate subsection. It is
important to note that we will have two motors and encoders in use in this
application; only one is presented below to simplify the design discussion.

 Group A Senior Design I

67

Figure 43: Complete Motor/Encoder Schematic

5.4.1 Motors

Our application employs a pair of STM17R-3NE, NEMA 17 units that incorporate
an integrated driver, encoder and motor. This motor was selected for several
reasons, including robust configuration options (user selectable current, idle
current, load inertia, step size, pulse type and noise filter), a minimum native step
size of 200 counts per revolution (CPR) and the availability of an integrated
encoder.

The electrical connections for this motor are summarized by Figure 44 below.
These are reproduced in the above schematic, with this connection located at the
top left corner of the layout. It is worth noting that these connections have been
reproduced in numerical order, from top to bottom (1 through 11) on this connector
with the exception of pin 9, which is designated as no connection (N.C.).

Figure 44: STM17R Motor Connections

 Group A Senior Design I

68

One of the first considerations on this design is whether it was necessary to
implement differential outputs from the motor (STEP/DIR) to the Arduino MEGA
2560. Since the motor and mount will ultimately be housed less than a few feet
away from the microcontroller, and a large amount of environmental noise is not
anticipated, it did not seem necessary to implement the added complexity of an
additional differential line driver chip in our design. Therefore, the motor is tied to
the Arduino (via our PCB/shield) as represented by Figure 45 below.

Figure 45: Connections from Microcontroller to Motor

The enable (EN) wires can be used for three primary applications. First, they can
be used to enable the drive if a secondary drive becomes faulted. Next, they can
enable or disable the motor in response to a proximity sensor. And finally, they
can be used to implement a kill switch to shut down the motors. The first two
applications are clearly unnecessary in our design. Additionally, since our overall
unit will include the ability to cut power to the motors, the kill switch option will also
not be used. Therefore, these EN connections are unused in our design.

The OUT outputs close in response to a motor fault condition, providing a digital
signal across the output. Our design does utilize these outputs. The use is
twofold. First, we have an LED connected to the output. This means that if a fault
condition occurs on the motor, the LED will be illuminated. Additionally, we have
this output line connected to one of the digital I/O pins on our microcontroller. We
will occasionally poll this line to determine if there has been a fault condition.
Unfortunately, the Arduino MEGA 2650 only supports 6 I/O pins with attachable
interrupts, and these are all required for other applications. Therefore, polling this
input will be required.

5.4.1.1 Configuration Options

This motor supports two primary means of control for step and direction. In the
first application, the controller pulses one signal for each step in the clockwise
(CW) direction and another signal for each step in the counterclockwise (CCW)
direction. This is an unconventional control scheme, although it is supported by
the motor and can be enabled through dipswitch #8 on the motor. The second
scheme, and the one that we have selected, is referred to as “Step and Direction.”

 Group A Senior Design I

69

In this scheme, the step signal pulses once for each motor step and the direction
signal is used to determine direction with a simple high/low input.

The step size on this motor is dipswitch-configurable (dipswitches #1 - #4) and can
range anywhere from 200 CPR to 25600 CPR. The ultimate selection for this
variable will be dependent upon the needs of the mechanical engineering team
(i.e. dependent on the gear ratio that they select), but for our initial testing
configuration we have elected a step size of 400 CPR.

At lower step resolutions, the manufacturer advises that the motors can run more
roughly than in the higher CPR configurations and produce audible noise.
Therefore, an option called micro step emulation (or step smoothing) is available
on dipswitch #6 and will be enabled unless we elect a CPR of 2000 or higher.
There is a minimal lag associated with the command filter used for this process.
We do not anticipate that this will have an impact on our application, but if an
impact is noticed (e.g. in the earth’s rotation tracking capability of the system), it
will be an easy adjustment to disable this feature. Figure 46 below graphically
demonstrates the lag associated with this option.

Figure 46: Motion Profile with Step Smoothing Filter

The STM17R includes a digital noise filter on both STEP and DIR inputs. The
purpose of this filter is to prevent noise that may cause the drive to interpret a
single step pulse as multiple pulses, thus negatively impacting the motor. The
selection for this setting is determined by the speed at which the motor is being
driven. This will be addressed in further detail in the following section, but we
estimate that our needs will require a pulse of less than 150kHz to drive the motor.
Therefore, this option is set to 150kHz.

The additional configuration options are dependent on the needs an input of the
mechanical engineering team. These will be addressed briefly here, and our
selections for design and testing purposes will be enumerated. However, these
selections to not impact the design work of the electrical engineering team and can
easily be adjusted upon request of the mechanical engineering team.

 Group A Senior Design I

70

The current provided to the motor can be controlled through dipswitches #1 and
#2, and defaults at 100%. Lower current equates to reduced torque alongside
reduced power consumption and motor temperature. The best practice here will
be to work with the mechanical team to confirm the torque needed for their design
(which is not complete at the time of this writing) and select the lowest reasonable
option.

Similarly, dipswitch #3 controls the idle current. Idle current can be set to either
50% or 90% of the running current, with a reduced idle current reducing holding
torque in conjunction with reducing motor heating. Again, the lowest functional
value for this variable will be elected once the mechanical engineering team has
completed their design.

Finally, we consider load inertia. This is a simple calculation (load inertia divided
by STM17 rotor inertia – 82 g-cm2) and will ultimately be determined by the final
design of the motor mount. For testing purposes, we elect the lower of the values,
setting it at 0-4X.

Therefore, the overall settings of the motor are summarized below in Table 12. It
once again bears mentioning that these settings are subject to change based upon
the final needs of the telescope mount but will not impact the programming or
design of the electrical engineering team.

Table 12: Motor Configuration Selections

Dipswitch # Description Setting

1 – 2 Current 100%

3 Idle Current 90%

4 Self-Test Off

5 Step Pulse Noise Filter 150kHz

6 Smoothing On

7 Load Inertia 0-4X

8 Command Step and Direction

1 – 4 Step Size 400

5.4.1.2 Control

The configuration that we have selected for our motor control is that of Step and
Direction. Direction is expressed very simply – that is, we send a high signal for
CW rotation and a low signal for CCW rotation. Step is slightly more complex, and
follows the equation presented below.

𝑃𝑢𝑙𝑠𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑅𝑃𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ∗
1

𝑆𝑡𝑒𝑝 𝑆𝑖𝑧𝑒

 Group A Senior Design I

71

This equation allows us to specify the rotations per second (RPS) of the motor.
This, in conjunction with the gear ratio determined by the mechanical engineering
team, will allow us to determine the constant speed required to compensate for the
earth’s rotation.

However, in practical purposes, the commands that we will be receiving from the
PC’s software package will be to rotate a specified number of degrees (or, perhaps
with more granularity, arcseconds). In this instance, we rely on a relatively simple
calculation of 1 pulse being equal to one step, at a given step size. We have the
ability to command the movement at a faster rate for a period of time and slow it
down (via a lower frequency) as it approaches the set point. On the Arduino, 1ms
is equivalent to 1 delay, so our calculation for movement is centered upon how
long to pulse the motor at a given frequency to achieve a desired angular
displacement. Precise control of the pulse frequency on the Arduino is achieved
through the use of an external PWM.h library, detailed additionally in the software
section of this document.

5.4.2 Encoders

The STM17R-3NE supports a built-in quadrature incremental rotary encoder. The
encoder follows the industry standard 26C31 differential line driver for output,
meaning that the channels (A, B and Index) are differential signals. Therefore, a
differential line receiver (industry standard 26C32) is required to translate this
output before it hits our microcontroller. A brief summary of this differential line
receiver is included here before a more detailed discussion of the encoder
operation.

5.4.2.1 AM26C32 Quadruple Differential Line Receiver

Since the two encoders support three differential signals each (A, B and Index), a
total of two AM26C32 differential line receivers are required for this design. They
are designated in the introductory schematic via this same part number. This
means that channels 1 through 3 are used on each differential line receiver with
channel 4 being unused.

The operation of the differential line receiver is straightforward. The 26C31
differential line driver sends a pair of differential signals – that is, a square
waveform and its inverted pair (accomplished through the use of an onboard
inverter). These signals are tied directly to the AM26C32 differential line receiver,
which then only considers the difference between the two channels and ignores
any signal that is common to both (i.e. noise). This is done to enhance noise
immunity. Our encoders will be placed relatively close to our microcontroller, so
this level of noise immunity is likely not necessary; however, as it is built-in

 Group A Senior Design I

72

functionality of the receivers, we have elected to support it through the use of the
differential line receivers.

Two enable signals exist on this chip, allowing for active high or active low outputs.
Although it is only necessary to use one of the enables, we have elected to enable
the active-high select and disable the active low-select. This has no impact on the
functionality of the device, only enforcing an active-high output – which is our
desired signal. The active-high enable and VCC both receive +5V DC from the
Arduino. These chips are designed to operate in the range of approximately 10
mA ICC, so the additional current draw is within a reasonable range.

Several additional notes bear mentioning and factor into the design and
troubleshooting of this device. First, if the input lines are inverted, the output will
also be inverted. That is, an expected high will be a low and vice versa. Since
most code used to determine direction will consider the quadrature of these
signals, inverted high and low will lead to an incorrect direction determination.

Next, we have elected to terminate the differential receiver per the
recommendation of the manufacturer. A pair of 110-ohm resistors are placed in
series and a 0.0047 µF capacitor is placed across each differential pair. The
purpose of the resistors is to increase noise immunity, which, again, is not an
extremely high priority – however, the cost of these additional resistors is quite low
and there is little reason to not include them. The capacitor, however, is an
important design consideration. The capacitor conserves power on the order of
20 mA per pair, or 120 mA across our 6 pairs. Power consumption is a concern
when elements of the design are being powered through the Arduino.

5.4.2.2 Quadrature Incremental Encoder

For position control, there are three primary signals of interest being sent by the
encoder. After they have been interpreted by the differential line receiver, those
signals are A, B and Index. The A and B signals are the quadrature signals. That
is, depending on the direction of rotation, one signal will lead, and the other signal
will lag. Our task is to use the microcontroller to determine which signal is leading
the other.

In brief, this is accomplished through the use of interrupts. Therefore, it is essential
that the A and B channels of each encoder are tied directly to a digital I/O pin on
the Arduino that supports the ability to attach an interrupt. In our case, the Arduino
Mega 2560 supports this capability on pins 2, 3, 18, 19, 20 and 21. The specific
pin used for the interrupt is inconsequential – the important takeaway here is that
four out of our six available interrupt pins will need to be dedicated to the pair of A
and B outputs coming out of the quadrature encoder.

 Group A Senior Design I

73

The encoder bundled with the STM17R-3NE supports 1000 lines of resolution.
This means that for each rotation of the motor, 1000 “counts” are sent from the
encoder. Our microcontroller code will track a variable, here referenced as “count,”
that will tick upward in increments of one for each clockwise signal from the
encoder and down in increments of one for each counterclockwise signal from the
encoder.

Therefore, when this “count” variable has reached 1000, we know that we have
completed one full clockwise revolution of the motor. Conversely, when the count
reaches -1000, we have completed one full counterclockwise revolution of the
motor. This position information will need to be cross-referenced against the gear
ratio determined by the mechanical engineering team. For our design purposes,
we will select a temporary gear ratio – this will easily be changed later by a simple
#define statement. The result of this calculation will then inform us on how far the
mount has rotated in the clockwise or counterclockwise direction. This will be an
absolute value, likely in degrees but potentially also in arcseconds.

The encoder also provides a third differential signal that will be interpreted by our
differential line receiver. That is, Index. The Index signal is very straightforward,
it sends a pulse each time the motor completes one full revolution. This Index
signal will be cross-referenced against our count variable to double check the
accuracy of our positioning data, with a flag raised if a conflict arises between the
two.

The final connections of concern are the +5VDC and ground. There are two
+5VDC connections, and the intention is to supply this power directly from the
Arduino. The manufacturer specifies that the requirement is 5VDC at 56 mA as
typical with 59 mA as max. This, along with the other components drawing power
from the Arduino 5V VCC, should be within the specified 200 mA maximum current
draw. However, a possible contingency if this should prove too high of a current
draw would be to include an additional DC to DC converter on the PCB and draw
this power from the dedicated 150W power supply, discussed below. The ground
pin will share the common GND pin on the Arduino.

5.4.3 Power Supply

Our final choice for the motor power supply is a product provided by the
manufacturer of our motors – Applied Motion Products. We have selected their
model PS150A24 Power Supply (PSU), a 150W/24V PSU that includes a built-in,
active power factor correction (PFC) filter.

The initial design of our board specifies that this power supply will be used
exclusively for the motors. That is, the PSU has built-in +V and -V connections
that will be tied directly to the +V and -V inputs on the motor. However, this PSU
is capable of a maximum output current of 6.3A at a nominal output voltage of 24V.

 Group A Senior Design I

74

The motors operate at a peak current draw of 2A each, meaning that this power
supply is capable of providing more than enough power for our specified
application. Figure 47 below shows the front panel of the selected power supply
which lists the input and output specifications.

Figure 47: Power Supply Front Panel

Should the power demands of our components (joystick, encoders, LEDs and
sensors) exceed the 200 mA (microcontroller) / 800 mA (5V regulator) that the
Arduino is able to provide, a secondary option is to include a DC to DC converter
on our PCB and draw additional power from this PSU.

5.4.4 Motor and Encoder Breadboard Test

The integrated breadboard test for this subsystem will require the motor, encoders,
differential line receiver and power supply to work in tandem. In general, the
connections will follow those outlined on the schematic at the start of this section,
but the details are summarized briefly below.

The motors should have their +V and -V inputs tied directly to the power supply.
The OUT+ on the motor is tied to the VCC pin (5V regulator) on the Arduino. The
OUT- on the encoder is tied to one of the digital I/O pins on the Arduino. In parallel,
we have a resistor and an LED, which will trip if the motor is faulted. The EN+ and
EN- connections on the motor are unused. DIR- and STEP- are connected to the
common ground of the Arduino, while DIR+ and STEP+ are connected to a digital
I/O pin.

On the encoder, we connect both ground pins to the common ground of the
Arduino. A+, A-, B+, B-, Index+ and Index- are connected to their respective
differential line receivers (channels 1 – 3), and the individual outputs of these
receiver pairs are connected to a digital I/O pin on the Arduino. In the case of A
and B, pin #s 2, 3, 18, 19, 20 or 21 should be selected due to the interrupt
capability. Both +5VDC connections are tied to the 5V regulator pin on the
Arduino.

 Group A Senior Design I

75

For the purposes of our breadboard testing, it is important to understand the power
requirements (and thus, current draw) of the various components. During this
testing, we will connect a digital multimeter (DMM) in series with each of the
individual components to determine current draw at idle (for the component) and
when they are in use. Similarly, we will place a DMM in series with the 5V regulator
on the Arduino so as to have an understanding of the combined current draw of all
components connected to this pin. Our goal is to keep all combined current draw
under the specified 800 mA that this pin will support.

In general, the breadboard testing is to determine the functionality of each
component – not to simulate the complete code package that will be available later
in this development cycle. Therefore, we will use our PWM.h library in conjunction
with simple inputs from the Arduino Serial Monitor to vary the frequency of the
pulses output at the digital I/O pins, thus driving the speed of the motor. In addition,
we will send the DIR pin high and low, to confirm that the motors change direction
as intended. An oscilloscope will be connected in parallel with these digital I/O
pins to provide visual confirmation of the varied pulse frequencies. It is unlikely
that we will be able to force a fault condition on the motor to test the OUT output;
therefore, we will simply apply 5V to confirm that it is being received by the Arduino
and triggering the LED as expected. Figure 48 below shows the breadboard test
of our motor with trigger LEDs connected to indicate the various motor conditions.

Figure 48: Motor Breadboard Test

Similarly, we will be monitoring the output of the encoder. As the differential signal
will have already been parsed by the differential line receiver, we are interested
primarily in the A, B and Index signals of each respective encoder. We will motor
the output via oscilloscope, similar to how we monitor STEP and DIR going into
the motor. In addition, we will execute simple code on the Arduino to read the
inputs coming into the respective I/O pins. The ideal test case will also involve
code that executes an interrupt and performs the necessary computation to
determine the direction of the motor based on the feedback from the A and B
channels, but whether this is complete in time for the breadboard testing is
currently an unknown quantity.

 Group A Senior Design I

76

5.5 Fourth Subsystem, Breadboard Test, and
Schematics

The ATmega microcontroller subsystem is the system that contains the brains and
commands for the entire project. It’s the connector between different subsystems
and facilitates the communication between them. This particular board and
microcontroller is made by Arduino and testing will be performed on the board
directly as the feature set is already built into the board.

5.5.1 Integration of ATmega

To reiterate, the ATmega microcontroller is the brains of all the components of this
project meaning all the subsystems report back to the ATmega. The motors,
joystick, and sensor and status systems all run through the microcontroller.
However, the DC to DC converter does not require a microcontroller to operate as
it’s more of a support device to help the entire project be feasible.

The motors, joystick, and sensor/status systems will be connected through pin
ports on the ATmega PCB, utilizing the boards given features. Features as
mentioned would be the varying frequency square wave output used by the motor,
and the analog input and analog to digital converter built into the ATmega
microcontroller used by the joystick. Also, the interrupt capabilities of the ATmega
will be used for the sensors and status indicators of the telescope.

5.5.2 Testing of the ATmega

The ATmega is a series of microcontrollers manufactured primarily to be used with
their user-friendly PCB. Their PCB provides all the functionality of the
microcontroller, making any sort of product test and check easy. Essentially the
features are baked into the PCB board, allowing us to test the board which in turn
tests the ATmega microcontroller (Figure 49). The board does have some of its
own extra features that we can use to also help with the testing of the ATmega
microcontroller.

There are many connections to the ATmega to perform the necessary operations.

• COMM – Communication with the ATmega328. If this communication fails,
the ATmega328 will realize there’s an error with the ATmega2560.

• A0/A1 – These are the inputs from the joystick that the ATmega2560
receives. The ATmega2560 will read these inputs with the ADC and tell the
motors to turn based off of the displacement from the origin

 Group A Senior Design I

77

• RA/DEC sensors – The sensors that limit the movement of the telescope
communicate with the ATmega2560. These sensors will be inputs to tell the
ATmega2560 when either motor has turned too far and will be used to signal
LEDs and stop motors.

• RA/DEC A/B/I – These are input encoder signals from each motor. The
ATmega2560 will use these signals for understanding the position of each
motor to adjust speed or send back communication.

• RA/DEC OUT – These are outputs from the motors when faults occur within
the motor. The ATmega2560 will then signal LEDs and stop motors to
prevent any further damage.

• HOME POSITION – This is an LED output that is turned on when the
ATmega2560 receives a change in input from the sensors.

• TRACKING – This is an LED output that is turned on when the
ATmega2560 knows the motors are in their correct position and are turning
at a rate to keep up with earth’s rotation.

• JS – This is an input from the joystick used to signal for the ATmega2560
to start tracking. Once a high is obtained, the ATmega2560 will send signals
to keep up with earth’s rotation.

• RA/DEC STEP – This is a pulse output from the ATmega2560. It will send
outputs when it receives an input from the software or the joystick.

• RA/DEC RUNNING – This is an output LED turned on by the ATmega2560
when it is sending signals to the motors.

• RA/DEC LIMIT – This is an output LED that the ATmega2560 turns on when
the sensor sends a signal to the ATmega2560 that a motor has turned too
far.

Figure 49: ATmega2560 with Connections

 Group A Senior Design I

78

Briefly mentioned above, the ATmega has a built-in analog to digital converter that
can be easily tested with a computer and a function generator. The function
generator can create most common types of waves which is more than enough to
test the ADC. The analog to digital converter is a straightforward device that takes
an input signal and divvies it up between the listed resolution of the pin (usually 0
to 1023). So technically a DC source that is manually manipulated can be used as
well. After wiring it all up, there will be a little extra work that needs to be done on
the software side. To be the most accurate for a real time display of what the ADC
pin is doing we need a serial output to a computer. Setting up a small serial monitor
allows us to see the analog wave deconstruction which is made by the function
generator. The next test involves the ISR’s and interrupts. A simple circuit can be
made for testing an ISR by wiring up a button from the output 5 Volts on the board,
to the selected pin capable of performing the interrupt, and then putting a button
in-between 5 volts and the selected trigger. The button can be pressed and if the
interrupts trigger then the corresponding ISR will activate. A serial monitor can be
used again as well to monitor the output.

Another test we will perform is a test to determine if the writing of our pins actually
equal a designed frequency that we desire. These pins can be written to with
digitalWrite and analogWrite to produce an output. If we use an oscilloscope to
measure the output directly from the pins, we can reliably see how the pin is
reacting to our code. This both checks the board connections and the ATmega’s
pin capability and functionality for the motors. In summary, testing the ATmega’s
board and microcontroller itself will be simple but crucial to the project and we can
even use the tested ATmega to help system test other parts of the project.

5.6 Fifth Subsystem, Breadboard Test, and
Schematics

For the fifth subsystem of the project which is the joystick, the following two
sections describe the schematic layout of the subsystem, factors that went into
designing the subsystem, any tools used to assist in the design of the subsystem,
as well as how to verify the subsystem design is working as expected via
breadboard testing.

5.6.1 Joystick Design and Schematic

Although the selected joystick comes with a breakout board, it is still important to
understand how the joystick functions by designing the electrical schematic in
EAGLE. Figure 50 below shows the connections that are made on the breakout
board of the selected joystick.

 Group A Senior Design I

79

Figure 50: Joystick Schematic

The joystick schematic consists mainly of two 10k Ω potentiometers and a push
button. The 10k Ω potentiometers use the middle pin as an analog output and the
outer pins are 5V and GND, respectively. The push button shorts the digital output
to ground when pressed.

The other component on this EAGLE schematic is the Mini USB Connector. In the
actual implementation of the joystick sub-system, there will be a converter cable
in-between the joystick components (potentiometer and push-button) and the PCB
mounted Mini USB connector. The connector on the joystick side of the cable will
be a 5-pin female 0.1” pitch header. This header will plug in directly to the joystick
breakout board.

The pros of using the mini USB connector on the PCB as opposed to another 5-
pin header is that it allows for quick connect and disconnect capabilities and they
are common enough to have EAGLE footprints available for use.

The next schematic in Figure 51 shows the addition of three LEDs and current
limiting resistors to show how the functionality of the joystick. As the potentiometer
connected to A0 is increased, the LED2 shown below increases in brightness.
Similarly, as the potentiometer connected to A1 is increased, the LED1 shown
below increases in brightness. For the push button, when it is pressed, LED3
shown below is set to active low and turns on.

 Group A Senior Design I

80

Figure 51: Joystick Schematic with LEDs for Testing

5.6.2 Joystick Breadboard Test

To test the joystick operation, a simple breadboard test was preformed using the
Arduino Mega 2560, breadboard wires, LEDs, and resistors. Before wiring it up,
first we had to solder the joystick components to the breakout board. There was a
total of four solder points for mounting the base of the joystick, three solder points
for each potentiometer, four solder points for the push button and five solder points
for the header which is what the breadboard wires were connected to. Care had
to be taken to not hold the soldering iron too long on any of the solder points so as
to not burn the plastic of the breakout board surrounding the solder points. To
access the underside of the breakout board for soldering, first the joystick body
and components were aligned and pushed into the breakout board. Then a rubber
band fixture was wrapped around the assembly so that when held upside down,
the joystick body would not detach from the breakout board. Then, the order in
which the components were soldered began with the four mounting solder points,
then the potentiometer solder points, then the push button solder points, and lastly
the header solder points.

The program written in the Arduino IDE was loaded onto the Arduino MEGA shown
below and the joystick’s operation was verified. In Figure 52 below, the red LED is
off because the select button was not pressed. The other two LEDs were at
medium brightness since the joystick was in the center position along both X and
Y axes.

 Group A Senior Design I

81

Figure 52: Breadboard Test for Joystick

5.7 Sixth Subsystem, Breadboard Test, and
Schematics

The sixth subsystem for our design is the ATmega328 microcontroller. The reason
for the additional microcontroller in our system is because the university requires
a microcontroller that is not a part of a development board. Even though we are
also using the development board because the sponsor is requesting it, we also
have to satisfy the requirements made by the university. The operation of the
microcontroller is quite simple. The purpose of it is to monitor the operation of the
main board (ATmega2560) and notify the user if there is an issue with the
operation by illuminating an LED. The schematic for the circuit can be seen in
Figure 53 below.

Figure 53: ATmega 328 Schematic

 Group A Senior Design I

82

The requirements to operate the ATmega 328 are a 5V input, along with an
oscillator. The capacitors in the circuit are used to block the DC from ground but
allow any AC signal to pass through. In addition to those components, a reset
switch is implemented into the design to reset the microcontroller when necessary.
The reset pin of the microcontroller is active low, meaning that if the pin is shorted
to ground, the microcontroller will reset. Using a pushbutton switch to ground will
enable the user to press the button when the would like to reset the microcontroller.

There is one input and one output to the microcontroller used for the pinging
design. The input is used to monitor a signal coming from the ATmega2560. If it
does not see that signal for a specified period of time, it will output a signal to the
other pin which will enable the LED.

To light the LED, we use the same process as above for the LED design. The Vf
of the red LEDs are around 2V with an If of 20mA. Using Ohms Law, and the
understanding that the input to the resistor will be 5V because that is the output
from the ATmega328, the required resistance for the resistors can be found quite

simply. 𝑅 =
5−2

.02
= 150Ω.

To program the ATmega328, we will use a breadboard and a FTDI chip. The first
step would be to wire up the circuit as seen in Figure 54 below and then use the
USB FTDI Serial to program the chip. Once we program the chip, it can be
transferred to the PCB.

Figure 54: ATmega 328 Programming

 Group A Senior Design I

83

5.8 Software Design

The design of the software must be something that takes all the listed restrictions
into account and then organizes them and executes itself to achieve the desired
goal. Our goal of this project as stated before, is to create a telescope that tracks
celestial bodies per the user’s request. This incorporates motors, optical sensors,
analog joystick, and a large external program that will be provided by the Computer
Science team. These components are what form up what most of the code is going
to have to handle. The motors are going to have to be sent a signal on which
direction to turn and how fast, the optical sensors are going to be sending signals
to the microcontroller causing interrupts. The joystick will be providing signals to
the microcontroller as well as the CS teams program providing instructions on how
to move and where. In the end the entire telescope should track objects in the sky.

5.8.1 Basic Arduino programming

One of Arduino’s goals were to simplify and make it easy for programmers to
understand quickly. Normally microcontrollers give the designer a blank slate to
create something on and then everything else is left up to the user. However,
Arduino decided to provide some preliminary functions for users to work with.
Instead of just a simple main function that the user must then create their own
while loop to have the function repeat itself, Arduino provides a function that takes
no arguments called loop(). This loop function does exactly what the name gives
away, which is looping indefinitely if the programmer so desires. Any code that
goes into this function will continuously be looped over and over again until only
exiting if a return value is set or an interrupt service routine is triggered. Even with
the ISR, the loop will continue right where it left off after the ISR is finished
executing its commands. Due to this, the intriguing part about the loop() function
is that it doesn’t have a conditional argument that needs to be made. The default
state of the Arduino is to continuously run the loop function forever. So, to get the
polar opposite of it, we get the second function Arduino provides: the setup()
function. Again, this function does not take any arguments in its initializer and has
a default return type of void. The purpose of this function is to run only once in the
entire code. After that, it never gets ran again unless the microcontroller is reset.
Seeing that it only gets run once, programmers usually adhere to this as the
function tells them to and set up the board for the rest of the program. This includes
pin assigns, library starts, timer choices and an assortment of other things are
located in the setup() function, but nothing heavily related to the brains of the
program.

5.8.2 Integrated Development Environment

An IDE stands for integrated development environment and is essentially a tool
that can be used by programmers to write code that can be tested and released.

 Group A Senior Design I

84

Without the use of IDE’s programmers have a much more manual job to do when
writing code. Programmers would often just write code in a text file or maybe a
colorful text editor which would then be compiled in the computer console. The
console would have to have a system environment pathway set up to be directed
towards the compiler so that it could be able to understand the commands the
programmer put in. Compile commands, grep, and possible other features the
programmer had to manually install like a debugger or a memory leak finder such
as Valgrind. Furthermore, aside from all the extra useful tools that were used, the
programmer would then have to properly set up a method of porting the compiled
machine code to the actual microcontroller. It was a huge process that involved a
steep learning curve to properly get everything working, and even then, things
could always go wrong. Then came IDEs serving as a toolbox for all the
programmers’ tools. Containing all these features previously listed and much
more, it became the go to method of coding for programmers.

5.8.3 Interrupt Service Routines

The final main element of how the programming is going to be designed and
utilized is something that was alluded to previously. Interrupt service routines or
ISR’s are specialized functions that are only supposed to be executed when a
configured bit flag is raised (Figure 55). What internally happens involves a LIFO
stack, a pointer, and some bit flags. When a particular desired bit flag gets
triggered, it causes the microcontroller to immediately move its internal SP counter
to the ISR location address and start running the ISR functions internals. While
that’s happening the preceding SP counter location is put on a Last in First out
(LIFO) stack to keep track of what the program was doing before. The ISR
completes its processes and then moves the SP to next address on the stack and
continues executing from there.

Figure 55: ISR Priority Diagram

This mechanic in the software is translated into pre-organizing functions, aptly
named ISR’s in Arduino. Arduino will allow us to set up certain triggers on pins that
will then immediately activate the corresponding code functions when the flag is
pulled. This is fantastic towards the goals of our project because now we can
effectively respond instantaneously to real world stimuli and take action in our code
to correspond to it. As stated antecedently, the telescope will have optical sensors
attached to it to prevent harmful actions to itself in its movement. ISR’s will be a

 Group A Senior Design I

85

great way of relaying real time information of the telescopes position to the
program controlling it.

The programming design of ISR’s in Arduino have an important list of things that
need to be setup properly before being able to properly use it. Most of the work
that is involved utilizes Arduino made functions that are specifically tailored to the
functionality of ISR’s. To get ISR’s to work we need to use some specific function
calls named, pinMode(), attachInterrupt(), and digitalPinToInterrupt(). The
pinMode() function call is actually not specifically tied to ISR’s, it just needs to be
used to tell the pin that it’s going to be used as an INPUT. The function takes two
arguments, the pin under question and the type of pin it is. Doing so will set that
pin to be an INPUT or OUTPUT for the rest of the program’s life, unless reassigned
elsewhere.

Beginning the second, most significant function, is the function call
attachInterrupt(). This function is where the actual interrupt and its details are
written on how to flag the interrupt pin and what to do. First off, the initial argument
of attachInterrupt() is an integer value delineating the pin number to be assigned.
Be that as it may, the integer value is not actually mapped to the specific pin value
associated with the rest of the board. Arduino has an internal interrupt mapping of
pins for each board that represents the true value of the interrupt integer (Figure
56).

Figure 56: Actual Digital Pin Interrupt Mapping

Arduino offers a table to illustrate the actual correct value of the integer needed to
be inputted, and also offers a built-in function called digitalPinToInterrupt() that
essentially does the correct mapping of pins regardless. This fills out the first
argument.

The second argument is where the name of the operation comes from, the ISR
function. This argument takes the address of the function name that is to be
executed when the flag is raised. A programmer can name this function anything
they want, but the function must adhere to certain principles. The ISR function
cannot take any arguments, nor return any value forcing it to have a void return
type. This is because ISR functions can’t return a value to something that can’t ask
for a value and can’t take any arguments because the flag raised doesn’t have any
data arguments to give.

 Group A Senior Design I

86

The third and final argument of attachInterrupt() is the flag type. This argument
explicitly describes when the flag should be raised to run the ISR function. Values
of this argument take the form of events in a signal such as, CHANGE, RISING,
FALLING, LOW, and sometimes HIGH. When a signal is read from an input,
certain features can appear in the signal themselves. For such instance, if a binary
signal such as a square wave is sent, then at some point in the signals timespan
there is going to be its low point as well as a high point. Transitioning between
these two points also can be expressed as a rising or falling edge. These
characteristics of the signal are better illustrated in the following picture (Figure
57).

Figure 57: Digital Deconstruction and Characteristics of a Wave

Since our event that tied to an interrupt can only take on the form of a binary signal,
the signal then must be a square wave with an even more discrete Rising, Falling,
Low, and High position. Being that the signal is generated by an optical sensor
which sends a high value when it senses obstruction, we would put a RISING flag
type to be associated with it. The reason we don’t use HIGH is because the
Arduino MEGA doesn’t actually offer HIGH trigger responses. And even if it did, a
problem could occur within the code if this did happen. Setting the interrupt to
respond to a HIGH trigger means that the ISR associated with that will be ran
whenever as long as the signal remains HIGH, which is terrible. This correlates to
the ISR being ran multitude of times instead of just once like we want to, causing
potentially unknown side effects.

Another unfortunate restriction to ISRs is that it is highly disapproved to use clock
delays within the ISR. The problem boils down to the simple fact that an ISR is
supposed to be as fast as physically possible, and a time delay counts the values
of millis() which is translated into a literal delay meant to burn time as requested
by the user.

The millis() function is a very basic function that principally just counts how many
milliseconds have passed since the program started on the Arduino. It holds this
value in an unsigned long variable which means that it can’t go negative. It also

 Group A Senior Design I

87

means that after approximately 50 days, the number will overflow leading back to
zero.

The delay() function is just a function that monitors the millis() function, effectively
stopping all work on the microcontroller. Not only does this cause problem such as
not being able to respond to other interrupts, but there is a possibility that the
delay() function stops counting the seconds and hard locks your microcontroller.
From all this the software design that we create must never use a delay inside of
an ISR, instead opting to change a value somewhere else in the code and then
that prompts a delay function. This design will have to take effect with the optical
sensors because their signal is based on a mechanical reaction with a possible
scenario of having two interrupts at the same time. If not properly coded the
telescope might turn too far and cause damage to the mount, even possibly
causing and alignment error.

5.8.4 Meridian Flip

When discussing the features of an automated tracking telescope, there is one
feature that always is included. The feature is called a Meridian flip and is named
that because of what it does. For observing and tracking celestial objects on a
telescope that has two major axes of rotation, there is a certain edge case that
require you to turn the telescope on its head. Both the directions for the motors
have to be flipped as well as having to perform an operation beforehand. The best
course of action is to explain the problem first.

The problem stems from the limitations of how far the motor and gears can turn in
one direction. A telescope that has any significant weight to it usually has some
sort of counter balance to it or way of keeping the center of mass in the center of
the telescope. From this arises the limitations that a certain motor/gear can turn
before the telescope starts turning into itself, causing physical damage and losing
tracking. If an object that is being tracked goes directly over head of the telescope,
the telescope will have run into this problem and be unable to continue tracking
the object.

The way how this is solved is through the Meridian Flip. The Meridian Flip must
essentially swap the position of the counterweight and the telescope. This is good
because it puts the telescope in a position that now has the entire gear/motor
length to use to track the object in question. The telescope stopped at its max
turning angle, performed a meridian flip, and then now can continue starting at the
beginning of the turning angle for the axis it was being stopped at (Figure 58).
However, aside from the maneuver, there are some more complicated things that
arise. Since the telescope is not in the opposite side of everything, all the directions
need to be reversed to keep tracking the object. Of course, the speed is going to
be the same essentially, but another side effect that will occur is that the image will
now appear flipped, and the telescope essentially turned upside down.

 Group A Senior Design I

88

Figure 58: Meridian Flip Illustrated

5.8.5 Varying Frequency

The Nema 17 stepper motor that we have ordered is a motor that is controlled by
two main inputs. A speed input and a direction input. The direction input is a very
simple signal that will be sent when we want to have the motor turn in a particular
direction, essentially a binary signal. The speed input signal is a little different. The
Nema 17 motor requires the user to input a square wave which is just a binary
wave with a 50% duty cycle. This means the wave will just oscillate between two
voltages for a similar amount of time spent at both ends. The interesting way how
the motor actually values its speed is based on the frequency of the square wave
being inserted. Higher frequencies correspond to higher speeds and vice versa.
This feature of the motor is actually a very dynamic feature that we must program
around, and we are very grateful that the signal must be a square wave.

To commence programming of a square wave of varying frequencies we must
tackle two problems. One is what the max frequency of the pin we’ll be using is,
and the other is how to program a changing frequency of a pin.

Arduino’s core clock frequency is 16 MHz which will be more than enough to allow
our motors to track something in the sky. Trackable objects in the sky don’t require
us to move that fast so we probably have plenty of room to work with. However,
before we even get started programming there already is a bit of a problem. It turns
out that while the core clock frequency is at 16 MHz, the output speed of pins on
the Arduino Mega clock in at around only 490Hz. This is much slower than 16Mhz
and limits our output square wave to essentially half of that at 245Hz. However,
there is a fix for this that allows us to increase the base frequency level of the pin
output. Instead of being able to send only 490 signals a second, we can change
that level by tying it to another internal timer that outputs at a faster speed. Once
it outputs at a faster speed the program can then divide the frequency to match
what speed we want. Arduino Mega has 6 internal clock timers that can be used
to change the pins output frequency and get the variable speed we want from

 Group A Senior Design I

89

there. The motors speed will then be directly controlled by us, allowing us to track
stars accurately.

5.8.6 Bit Banging Square Wave VS Direct
PWM Outputs

Now that we have a much higher and usable pin frequency, we can start outputting
a square wave of variable frequency that will control the motors speed precisely.
The default Arduino library has a function called digitalWrite() which allows a user
to define a binary signal to be sent to a specific pin. The first argument is a pin
number and the second argument is the digital equivalent output. HIGH and LOW
appear here again with HIGH being a 5-volt output and LOW being a 0-volt output,
which is particular to our board. As used before, it is necessary to utilize the
pinMode() function to specify the output of our pin. As this output is just a simple
square wave all we really need to do is write a small function that oscillates a HIGH
and LOW output. Since the Arduino comes with a built-in delay function, we could
cascade the code to have a digital write to high, a delay of X time, a digital write to
low, and then a delay of the same X time. Looping these four lines of code will end
up simulating a square wave to emit from a port of our choosing. This is great
because now we have a way of varying the frequency based on a single variable
with a duty cycle of 50% (Figure 59). This method was tested and showed some
pretty interesting results. For certain pins the square wave worked nearly perfectly
and had a variable speed based on the pins. However, some pins that were used
still resulted in a square wave, except the square wave had a natural decay
response when oscillating down to 0. This looked very scary at first but ended up
still working well enough for the motor to vary its frequency. We also could
electrically attach a sort of 5-volt regulator to the output that only allowed two
voltages to pass, being 5 or 0. Regardless of all this, there seemed to be a slightly
bigger problem discussed on the following page.

Figure 59: Duty Cycle of a Square wave

 Group A Senior Design I

90

The problem that we will run into next is the processor use. As it stands with that
code, it means that the processor is going to be using 100% of its resources to
toggle a digital pin on and off over and over again. This is really bad. We could
squeeze in two different pins that output at the same frequency but for tracking
and optimization it’s terrible. The other part that could really end up being a bad
play is that while moving the telescope, the Arduino is blind to everything that’s
going on around it but interrupts. No serial commands can come in nor commands
from a joystick. But from all this headache several different ways can be used to
have the Arduino send out a square wave that doesn’t take up all the resources of
the microcontroller.

AnalogWrite() is a command in Arduino that allows you to write a variable square
wave from a pin that can output a PWM signal. To properly explain what a PWM
signal is, the following image makes it really easy to understand (Figure 60).

Figure 60: Analog signal transformed into PWM signal

If there is an analog signal that we would like to reproduce but only have access
to it in a digital form, the microcontroller will not be able to reproduce the analog
signal as shown in green. What a PWM signal does is it matches the analog signal
with a triangle or sawtooth wave (in blue) that essentially samples and compares
the analog signal. Both sawtooth and analog signals are fed through a comparator
circuit which then spits out a binary signal telling the viewer which signal is greater
for the given time. When the analog signal is larger than the sawtooth the binary
value tends to be more of a 1 than a 0. When the analog typically is smaller than
the sawtooth the binary value tends to be more of a 0 than a 1. This output just
looks like a square wave with a varying duty cycle. The magical part is that when
some device needs an analog signal to operate, it effectively can’t tell the
difference between an analog signal or a PWM signal. This is good, but some work
is going to be needed to change the output of a PWM pin to a constant duty cycle
and a varying frequency. The manipulation of analogWrite() will get us to what we
want. The function takes two values, one of which is the pin number, and the other
is the duty cycle number. This is the caveat though, it doesn’t have a method of
varying the frequency of said square wave. For that though there are several

 Group A Senior Design I

91

different ways of possibly fixing this issue, most of which involve changing the pins
internal timer to have a higher default frequency. Once we set a particular PWM
pin to have a specific timer frequency the program can then do some division to
land the pin on the desired frequency, upholding the initial task of having a varying
frequency square wave. The enormous difference now is that we can actually have
multiple pins, reacting to multiple commands to run at multiple different
frequencies, while also performing other tasks alongside.

5.8.7 Analog Inputs from an Analog Joystick

The design of our telescope is heavily influenced by what the UCF observatory
telescope is like, and that telescope has an analog based joystick that allow users
to free move the telescope around. In attempting to replicated that telescope our
project will be having a joystick that will produce an analog signal that will be fed
into an analog pin in our Arduino. Utilizing the analogRead() function in Arduino,
the signal will be sent through as an analog signal and then processed by an ADC.
An ADC has been described before as an analog to digital converter. How it does
that is it has a set resolution to read 1024 different values from a range of 0 to 5
volts. Anywhere in-between there is set to a specific value that we can read from
the return value. Note the resolution values can actually be changed as we see fit
meaning we can go higher or lower in the voltage range (Figure 61).

Figure 61: Analog Signal Deconstruction into a Set Digital Resolution

The analog stick that we use will send out two analog signals representing the two
axes that the user can control. These two signals with then have to be stitched
together by us to determine the direction the controller wants to move. The code
will have to take two numbers between 1023 and 0 that represent the user’s
position. We can conceptually illustrate this as a Cartesian coordinate system with

 Group A Senior Design I

92

the two values equaling a point (Figure 62). This point can then be treated as a
triangle with a magnitude and angle substantially turning it in to a vector. The
vector will then be interpreted by another part of our code to translate that data
into workable information for our motors.

Figure 62: Cartesian Coordinates and Vector Representation

The method that will be used to transform the vector information into motor
instructions will be handled by the Computer Science team and their process will
be used by us as it distributes some of the work load and saves time.

5.8.8 Serial Parser

A significant part of the telescopes programming is going to be done by the
Computer Science team. More specifically, they will be in charge of taking an open
source application and transforming it into a usable star map that any person can
just point to a star and immediately begin tracking it. The process will result in a
series of motor controls made to get the motors to move the telescope to the
intended location. Plenty of calculations must be done on the CS teams’ side, but
what will be guaranteed is a serial input string that comes through a USB with the
direction and distance for each motor to move along. Being that the data is sent
through a string data type, we must develop a parser to properly interpret the
string.

String manipulation is a very detailed task in the C language as it requires the
programmer to go byte by byte through the data. This is because a string in C isn’t
actually a single variable, but rather a set of memory allocated characters with a
single address leading to all the characters that are sequentially listed in memory.
What the address pointer will do is read all the characters from the memory
address and only stopping when a specific type of character is reached called a
null terminator. Every string has these null terminators seen in Figure 63 as the
last byte of the string, otherwise the program wouldn’t know when to stop reading
byte data and stop displaying the corresponding ASCII values seen in Figure 64.

 Group A Senior Design I

93

Figure 63: Byte representation of a String

Figure 64: ASCII character code used for common American computers

At this point the Computer Science team will have to provide us with the method
they have of differentiating parts of the string for the values. If the values end up
being differentiated by a period character or a pip character, then we will use that
to find out when they are relaying different information. The plan would be to read
in the characters of the string one by one and look for a period or character to
symbolize the end of one part of data. This data will most likely be a number. This
causes a minor problem that is easily fixed by the C language. Since these
numbers are coming in as strings the number we get is actually a string that can’t
be interpreted as a number. If the user attempts to interpret the string number as
an actual number, the program will just read out the ASCII value of that string or
character rather than the real intended number. Alternatively, it will just emit some
garbage value or crash. However, the C language has a built-in function that allows
our program to use to translate a string to a number directly. The atoi() function
takes a string and processes it to return the real value the string represented as
an integer instead of a char array. This is great and can be highly efficient when
we attempt to parse our string for data. Unfortunately, there is one small possible
problem that we can run into. Certain standard C functions aren’t compatible with
microcontrollers as they work upon different components of the computer. For
instance, the highly versatile C function malloc() doesn’t work in a microcontroller
setting because it requires an Operating System to work. Malloc() is a memory
allocator that is designed to work with a computer’s memory storage system to
create a heap of virtual memory for the program to play around in. Since our
microcontroller doesn’t have an operating system, it can’t generate those heaps of
memory in the same way an OS can. The fear is that the atoi() function might come

 Group A Senior Design I

94

under some problems as well, but further inspection shows that the atoi() function
does indeed work on microcontrollers, allowing us to use this shortcut when
parsing the string. If this function did not work, we would have to manually assign
the ASCII values to numbers and do the math ourselves if another function could
not be found.

5.9 Summary of Design

Many of the design decisions made here were influenced directly by the needs of
the customer or a desire to replicate the existing set-up of the observatory. For
example, our decision to employ an Arduino in tandem with a shield was driven by
the request of the customer. In another example, our decision to use optical
switches to ascertain the mount’s home position and act as a limit switch was
almost entirely because this mirrors the existing setup at the observatory.

Other decisions, such as the NEMA-17 motors, were born out of a desire to retain
maximum flexibility. The specific motor that we have elected to use provides a
suite of built-in customization options. For example, max and idle current can be
adjusted, allowing for more, or less, torque, as needed. In another example, the
step count can vary in the range of 200 counts per revolution (CPR) through 25,600
CPR, varying by a factor of more than 100. Maximum flexibility was desired with
components such as this, and the microprocessor, that would serve as our primary
interface between our peers on the mechanical engineering and computer science
teams.

Our overall design can be considered as two broad categories. Input and output
(I/O) as well as processing and motor control. The first link in the chain is the I/O.
Here, we receive control signals from the software designed by the computer
science team. These control signals provide commands to the motor, directing a
number of degrees to rotate the mount from its home position, as well as other
commands, such as a reset to home position or to enable tracking. These signals
are received directly onto the Arduino board via the differential USB connection,
and translated into serial inputs which can be processed by the microcontroller.

The microcontroller receives these signals and processes them into motor
commands. The motor is driven by a frequency modulated pulse train, with higher
frequencies translating into more frequent steps, and thus, higher revolutions per
second (RPS). The gear ratio determined by the mechanical engineering team
will play a key role, here, as our microcontroller will need to provide intermediary
calculations accounting for the gearing so as to drive the mount into the desired
position.

As the motor moves, feedback is provided by way of the encoder, as well as the
OUT pins on the motor itself. All external connections (with the exception of the
USB interface to the computer and external power for the Arduino) are made to

 Group A Senior Design I

95

the Arduino shield, which has the appropriate I/O accommodated in the PCB
design. OUT is used only to signal a fault in the motor (and includes the additional
illumination of an LED, signaling the fault), whereas the encoder provides data on
the direction of rotation, speed and overall position.

The encoder, in particular, uses a quadrature incremental rotary encoder. A
differential line receiver sits on the PCB between the encoder and our
microcontroller to translate these differential commands. Our coding design
requires that these inputs be tied to Arduino pins allowing interrupts to be attached.
This feedback on positioning is then relayed to the software on the PC per the
requirements of the computer engineering team. At any point where the mount’s
traversal interrupts the optical switches, corresponding position information on
“home” or “limit” is send to the PC and (in the case of a limit switch) motor
movement is halted.

In addition to direct commands from the PC software, motor commands can be
provided through an external joystick. The current planned implementation of the
joystick is to use its “button” input (a simple high or low signal) to transfer command
of the motors from the PC to the joystick and send appropriate feedback to notify
the software. The joystick is analog, and functions on a 2-axis input. These inputs
are connected to the Arduino analog inputs through the shield. The analog inputs
include built in analog to digital converters (ADCs). These ADCs index the signal
into 1024 distinct levels, allowing our code to interpret the positioning commands
input by the user.

Status LEDs exist to provide visual feedback to the user informing them of the state
of the mount controller. Examples include an LED to indicate whether the mount
has hit a limit or is in a home position, or whether the motor is running and/or
tracking. These LEDs are connected to digital I/O pins on the Arduino and driven
by setting that output to high. In some instances, such as with the LEDs, it is
necessary to send power directly from the microcontroller. In nearly all other
instances (such as power to the encoders), the 5V output is provided through a 5V
regulator, which has a significantly improved maximum current rating as compared
to the Arduino.

The two final considerations are the power supply to the motors and an additional
level of supervision due to our implementation of the Arduino shield. The power
supply was selected due to the recommendation of the motor manufacturer and
meets all appropriate specs. It would have been reasonable to design a power
supply for this purpose, or buy a third party option, but since clean power is an
important element of any electronic design, and there was some concern
expressed by the manufacturer about regeneration, we elected to go with the
recommended power supply.

We have also implemented a second microcontroller on our shield to supervise the
connection between the main Arduino board and the auxiliary shield. A “polling”

 Group A Senior Design I

96

feature has been implemented so that if communication ever fails between the two
boards, a flag will be raised, and an LED will be illuminated. Additional feedback
is a possibility but not a current part of the design. In addition, the second
microcontroller has allowed us to offload some of our more power-hungry
peripherals (such as LEDs) to this ATmega328. This is to lessen the impact on
the 200mA (maximum) current rating of the Arduino 2560.

 Group A Senior Design I

97

6. Project Prototype Construction and Coding

In section 6, the current state of the project is reaching its design completion. This
section discusses the integrated schematic that was developed, along with the
plan for the software design, and lastly the plans for obtaining the PCB and
assembling the required parts.

6.1 Integrated Schematics
This section is used to discuss the process of integrating the subsystems and how
they impact each other. After testing and verifying all of our subsystems, the next
step is to integrate the subsystems into one system for testing and verifying. Figure
65 below shows the integrated schematic developed in Eagle.

Figure 65: Integrated Schematic

At the top left is the ATmega328 subsystem. This subsystem communicates with
the ATmega2560 subsystem to determine if there is an issue with the
ATmega2560 since it is the brains behind the entire operation. The ATmega328
will illuminate an LED if there are any issues with the ATmega2560.

The bottom left subsystem is the DC to DC converter subsystem. This subsystem
connects to the ATmega2560 to distribute the power to all of the other subsystems
including; encoders, motors, sensors, LEDs, and ATmega328.

The big component in what is almost the middle of the image is the ATmega2560.
This subsystem communicates with the other subsystems and sends commands
or receives information. The ATmega2560 subsystem sends commands to the
ATmega328, LEDs, motors, and the astronomy software. The ATmega2560
subsystem receives information from the astronomy software, sensors, motor,
joystick, and encoder subsystems. The part of the schematic above the
ATmega2560 are the voltage pins for the shield. The voltage pins contain a VCC

 Group A Senior Design I

98

which is the power in from the PSU, a regulated 5V, a regulated 3.3V, and a ground
connection.

Next to the voltage pins is the joystick. The joystick sends data to the ATmega2560
to control the motors in a manual way when not communicating with the astronomy
software. The ATmega2560 will interpret the commands from the joystick and
move the motors appropriately.

To the right of the joystick is the input 24V terminal block. The terminal block will
accept the input from the PSU recommended by the manufacturer for controlling
the motors. This 24V input will split between the DC to DC converter and the inputs
to the motors.

Below that terminal block are the IR LEDs to the sensors. The IR LEDs accept a
constant 3.3V input from the ATmega2560 to constantly power the LEDs to sense
for faults.

Below the IR LEDs are the regular LEDs for user feedback. The LED uses are
defined in a section above. These LEDs are turned on and off by the ATmega2560
for certain conditions. For example, if the sensor faults, the corresponding LED will
illuminate. If the system reaches its home position, another LED will illuminate.

Moving to the top right of the integrated schematic are the differential line
receivers. These receivers receive a differential input from the encoders and
output a signal to the ATmega2560, which then the ATmega2560 uses to
understand more about the position of the motor and adjust the commands to the
motor as necessary.

Below the differential line receivers are the encoder connectors. These connectors
connect to the motor encoders and receive and send out data. The encoders
receive a constant 5V signal and output a differential signal pair pulse train to the
differential line receivers.

Below the encoder connectors are the motor connectors. These connectors
connect to the motor for sending and receiving data. The motors accept inputs
from the ATmega2560 to tell it where to turn and how fast. The ATmega2560 can
also send a command for the motor to disconnect for removal. The motor also
accepts a 24V input from the PSU from the manufacturer that works its way
through the terminal block section before reaching the motor. The motor outputs a
fault signal when there is an issue. This output will be sent to the ATmega2560 to
process and illuminate LEDs to show there is a fault. It is important to note that
there is also a fuse in between the 24V PSU and the input to the motor.

The last piece of the schematic are the sensor connectors with their pull-down
resistors. The sensors output a signal to the ATmega2560 when the telescope
turns too far and trips the sensor.

 Group A Senior Design I

99

6.2 PCB Vendor and Assembly

The PCB design on this project is a two-part process. That is, the PCB itself must
be manufacture red, and then the various components assembled (i.e. soldered)
onto the board. Therefore, this section is split into two parts: PCB Vendor and
Assembly.

6.2.1 PCB Vendor

Several vendors are under consideration for the PCB fabrication portion of this
process. A brief discussion of each vendor follows. Ultimately, this decision will
be made based upon the quoted turn-around time and price provided by each
vendor, as well as an overall determination on quality and reputation. Only PCB
vendors based in the United States have been considered for this portion of the
project, primarily due to the increased lead time associated with an overseas
vendor.

6.2.1.1 OSH Park

OSH Park is one of the most ubiquitous names in PCB fabrication. As specified
by our design criteria, this is a U.S. based manufacturer. OSH Park accepts files
in the KiCAD, EagleCAD or zipped Gerber format. Since our design work is done
in Eagle, this compatibility is a significant advantage for us. No conversion need
be done, which can eliminate any potential errors that may arise during this
process.

OSH Park offers a number of different pricing and turn-around packages. The
most general package, a two-layer board with a 12-calendar day turn-around time,
is priced at $5 per square inch. For this cost, three PCBs are produced and
shipped. The cost of shipping is included in the cost of the boards. In addition,
they offer a “Super Swift” service, which offers a 5 business day time to ship. This
service may be highly desirable if we require a second PCB as we transition into
Senior Design II. Four-layer boards are also available, although we do not
anticipate the need for this service.

6.2.1.2 Express PCB

Express PCB is another PCB fabrication vendor that offers boards manufactured
in the U.S., again meeting this criterion of our design. The pricing scheme for
Express PCB is more complex than that offered by OSH Park. Several levels of
service are available and are primarily dependent upon the size of the board that
is required.

 Group A Senior Design I

100

First, we consider their MiniBoard Standard option. The size of this board is static
– the only option is a rectangular 3.8 x 2.5-inch board. The cost is reasonable, at
$51 for three identical boards. The turn-around time is also quick, boasting a 1-
day lead time for a two-layer board.

A second, more versatile option is their ProtoPro service. This service is
significantly more costly, weighing in at $169 for 4 boards. However, it also boasts
increased flexibility. The size constraint here is that the board must be a rectangle
that is 21 square inches or less, with the longest dimension no more than 12
inches. The lead time for this service is 2 days.

The most significant concern with this company is the requirement to use their
proprietary software. Three versions are offered: ExpressPCB Classic,
ExpressPCB Plus and ExpressSCH Classic. Although the software does not look
overly complex to use, importing EagleCAD or Gerber files is simply not an option
with this manufacturer. While their lead time is desirable, this significant drawback
weighs heavily against them.

6.2.1.3 4PCB

Our final consideration for a PCB fabrication vendor is 4PCB / Advanced Circuits.
Although 4PCB offers their own software package (PCB Artist), similar to Express
PCB, they also accept and work with standard Gerber files. Since Gerber files are
easily produced by EagleCAD, this is not necessarily a shortcoming for this
vendor.

This vendor prices their boards at $33 for a board size at a maximum of 60 square
inches and a two-layer board. This pricing is made available especially to student
groups. This cost provides a single PCB, which is, ultimately, all that will be
required by our team. The low cost and student discount make this a somewhat
attractive vendor. Their turn-around time is listed as 5 days for this service. Four-
layer boards are also available, although, again, this will likely not be required in
the scope of this project. The student cost for the four-layer board is $66 for a 30
square inch board.

6.2.1.4 Comparison of Vendors

In Table 12 below, the different vendors considered for the PCB fabrication stage
of our project are listed with each vendor’s respective board size, turnaround time,
file type and cost. Our team has not yet officially decided on a PCB vendor,
explaining why there is not a highlighted row yet. This decision will be made at the
beginning of Senior Design II.

 Group A Senior Design I

101

Table 13: Comparison of PCB Vendors

 Board Size Turn Around File Type Cost

OSH Park N/A 12 days EagleCAD $5 in2 (3 boards)

Express PCB 21 in2 1 day Proprietary $169 (3 boards)

4PCB 60 in2 5 days Gerber $33 (1 board)

6.2.2 Assembly

Where available, our intention is to use surface mount parts in our design. In cases
where surface mount is not available, or, such as in the case of the ATmega328,
we have existing parts available, we will use through-hole as needed. Two clear
options exist for the assembly of our board: soldering the parts ourselves in the lab
or employing an assembly house. As the process of self-soldering the parts is
fairly self-explanatory, this section will focus on the potential use of an assembly
house.

6.2.2.1 Quality Manufacturing Services

Quality Manufacturing Services (QMS) is a local assembly house based out of
Lake Mary, FL. Specific pricing for assembly services is not immediately available
on their website, but in the past, the company has offered assembly services to
UCF senior design teams at no charge. If this service is still available, it makes
sense to move forward with QMS. Even if there is a cost associated with the
service, it is still something that is in consideration. Having a professional
assembly house handle the reflow and soldering pieces of this project will easily
rule out human error on our end, in terms of component assembly.

One of the key concerns regarding outsourcing the assembly of our boards is
communication and readability. That is, it is imperative that the PCB silk screens
accurately describe the associated components and that all files provided to the
assembly house are well documented. Additional time and scrutiny spent in this
area will pay dividends in the quality of the final product that is produced.

6.3 Final Coding Plan

The final programming of our project will most likely take place near the end of the
project as all the parts are understood and calibrated. Preliminary code will be
written up to test the parts and concepts, which then the results will dictate how
the final result will look and work. The ideal code to come out of this is a very fast
and resource efficient program that gets the objective done per requested by the
user. Fortunately for our project, the hardware and tools being used provide a solid
foundation to a seamless program that gets the job done in reasonable real time.

 Group A Senior Design I

102

6.3.1 Information Flow

When creating a coding plan the first step that should always be considered is how
to design the method and direction of the information of the parts. How each part
of the project interacts with another part of the project and how each part can
interact with another part is truly the molding process of the software design. The
parts can only relay certain information and respond to certain information, with
which the information is dictated by other parts culminating in the software
controlling all this information and part integration. Our specific project is going to
be a user-controlled tracking telescope that contains motors, joysticks, optical
sensors, and specially designed program all giving and receiving signals from the
Arduino.

A good place to start is with how and what information we will be receiving
regarding our devices. The Computer Science team that we will be working with
will be creating a program that sends a signal to us telling us how to move the
telescope, which in term means that they will be sending our Arduino a descriptive
string containing the distance and direction our motors need to turn to. The motors
will then turn to the requested direction and move until the position is reached
sending back a signal that the movement was complete. If an optical sensor is
triggered however, the motors will stop and send back a failed signal depending
on what the failure means. During all this, the Arduino will be also susceptible to
move into the joystick control mode where the user can manually move the
telescope. Taking all this into consideration, the summary of information flow is the
computer inputs information into the Arduino which then sends out information to
motors. The motors then can respond back through the Arduino to the computer
completing a sort of information cycle. All while the cycle is happening, the Arduino
is also listening to input commands from an optical sensor or a joystick. These two
devices would send out information into the Arduino, subsequently sending out
information into the motors and the computer (Figure 66).

Figure 66: Direct information flow of components in the telescope system

 Group A Senior Design I

103

6.3.2 Controlling the Motors

The control of the motors is simple conceptually but requires a little bit more effort
to execute. The motors functionality comes directly from the Arduino which will be
spitting out two values. A direction to turn and at what speed. Initially the computer
will be telling the Arduino some different values and it will be left up to the parser
to correctly interpret the values, but the transformation of the values must be done
as well.

From the given directions and speed to travel at, the program will have to handle
the calculation of the distance traveled to a corresponding frequency to be
outputted. That frequency is then dictated by the calculations done with the stepper
motor and its steps. Several calculations and testing will have to be done to
achieve this. This is because the final point of the motors is to move a certain
amount of distance across the sky. These distances are called arc-seconds, and
testing will have to be done to determine how much a step on our motor will
correspond to an arc-second in the sky. Once that’s found out a calculation will
then have to take place to associate the speed of the motor with the number of
steps the motor takes. This will relate the speed of the motor which in turn will
relate the frequency of the signal with the distance to travel across the sky. As
shown before, the frequency is the speed of the motors, but this doesn’t solve the
whole problem. In the equation for distance traveled which is 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑆𝑝𝑒𝑒𝑑 ∗
 𝑇𝑖𝑚𝑒, the speed is only one part of going the required distance.

To go a certain distance the motors need speed and time. Speed has been covered
with the only remaining thing as time. Using the equation above however can give
us the time needed to move at a certain speed, resulting in the specified distance
we would like to move. With these two elements we can set the motor to move a
calculated speed with analogWrite() and a calculated time to reach our desired
destination. The calculated speed or frequency we assign will only be found once
proper testing has been done and a graph has been made.

Immediately there comes an interesting coding complication in the form of
organizing the motors and processes. Initially controlling two motors at the same
time can actually become fairly difficult if not handled properly by the method of
bit-banging. Bit-banging is a method where the programmer manually sends out
discrete signals to simulate a sinusoidal wave. Each motor will need a specific
frequency of a square wave that controls the speed. Since the Arduino doesn’t
support simple multithreading capabilities which would allow us to run multiple
processes at the same time, we’re stuck executing code a single line at a time.
This means that if we were to spend the time creating a signal via bit-banging, the
program wouldn’t be able to take on other tasks while this was happening unless
it was an interrupt. Even then, the interrupt would end up stopping the signal for
the motor causing further issues. It is possible to bit-bang out two signals at the
same time in the main loop() function, but their frequencies would need to be

 Group A Senior Design I

104

delicately handled to the point of detriment. And it still wouldn’t solve the problem
of the program not being able to do anything else while sending out those signals.

Fortunately for Arduino users, the library come with a built-in function as described
before called analogWrite(). AnalogWrite() just continuously outputs a square
wave of requested duty cycle at 490Hz. That’s a positive feature at our finger tips,
the issue is that we must have a higher variable frequency for the analogWrite().
Our analogWrite()’s frequency can actually be changed fortunately, by directly
overriding some innate timers in the Arduino. Now the problem is almost
completely solved regarding the processing management. It’s almost completely
solved because even though a well-defined frequency square wave can be
outputted, the program will still have to wait for a specified amount of time before
it shuts off the signal when the telescope reaches its destination. This is where
some proper management of coding and data can come into use.

The program has the ability to set and forget a square wave out of a PWM port on
the Arduino, but it still will have to wait a specified amount of time before the
processor can move on. If the immediate choice is used, namely the delay()
function or delayMicroseconds() function, the problem will not be solved. The
processor will fall asleep for the given amount of time and not perform any other
actions during this time. The method going to be used to work around that is
instead of using the built-in function for time delays, the internal clock on the
microcontroller is going to be used. Millis() is function in Arduino that just simply
returns the number of milliseconds in time passed since the board began running.
Our program will use that to calculate the current time and duration to equal the
final time we want to reach. This final time will then be passed as a return argument
from the function call to be put into a variable in the main loop. A conditional if
statement will be checked every iteration of the loop to see if the time desired has
been met. If the time desire has been met, then the if statement will call another
function to stop the signal from being sent.

Conclusively, the program will now be able to effectively continuously output
square waves of varying frequency that turn on and off at desired times, while still
allowing the program to perform other tasks. Alternatively, the motor functions
could just simply reassign a global variable value and the loop() function just check
the global variable. However, global variables make code less portable between
systems, reduce readability and sometimes cause unintended behavior in
microcontrollers. To say the least, it is a good idea to not use global variables as
much as possible.

A final part of the programming for motor control is the calculations for continuous
tracking. The concept is that since the earth rotates, the period at which a user is
looking at a celestial body will see the object move out of sight after a certain
amount of time. Working in tandem with the Computer Science team the
calculations will be made to be able to set a constant speed for each motor to track
the celestial object until another command is received.

 Group A Senior Design I

105

6.3.3 Joystick control

The joystick will be a small device that the user has the ability to plug in and
physically turn the telescope where they want to point it. To briefly explain, the
joystick outputs two DC signals whose voltage represents the strength the user
moves the controller. One signal is the x-axis and the other one is the y-axis. In
spite of the signal technically be a DC signal, the actual signal will effectively act
like an analog signal, changing the way we’re going to be handling the input. The
signal will be changing so often that it won’t ever really be steady at a single DC
value for a particular amount of time. The analogRead() function that comes with
Arduino is a function where if a value is read into an analog input port, it will use
an analog to digital converter to change that signal into 1024 discrete values,
outputting the value that the input signal is at. This gives us a range of discernable
numbers to use when programming the analog stick.

Programming a set of 1024 values will be fairly straight forward. Typically, with
joysticks there is a dead zone that is programmed into the signals that allow the
joystick to move a slight amount without correlating to an action. It’s useful so the
user doesn’t have to be extremely careful and concerned with oversensitivity if we
program in a small buffer that doesn’t relate to movement.

Another characteristic of the joystick is that the DC voltages the joystick output
aren’t from 0 to 5 volts that the Arduino can handle, its -2.5 to 2.5 volts. What will
happen is beforehand we’ll have to up the voltage by 2.5 before any signal goes
out so that the range is shifted to 0 to 5 volts. A range like this works with our code
and can then be translated to a frequency.

As stated before, Arduino proves us with a function called analogRead(). When
the analog joystick is in a stable position it will be providing the port with a 2.5-volt
signal translated into 512 as a discrete value. Through the process of testing we
shall find a sort of dead zone range of values that the Arduino will just ignore,
assumingly between 612 and 412 values. An if statement will be running to check
the output of the analogRead() to see if it exceeds these values, and only when it
does will an analogWrite() be sent out move the motor. During programming the
frequencies, we have the option to make the input signal linearly scale with the
frequency set to be outputted. This will work with the max value of 0 or 5 volts be
the max frequency we want to give, however there might be a bit of an incentive
to make a joystick cap where 0.5 volts to 0 volts output the same frequencies into
the motors. These are just possible safety precautions that might not need to be
taken. Along with the frequency and discrete voltage scaling, the final values we
use will be determined by testing to be set to what we deem suitable.

The final requirement for the joystick programming will be the case of how to
determine when the microcontroller hands over control of the motors from the
automated input of the computer. For this there are three options possible to

 Group A Senior Design I

106

choose from, but they aren’t too different in their outcomes to really warrant any
specific choice.

The first option is to use the fact that the Arduino can listen to and perform other
tasks due to the motor optimization described above. A simple if statement can be
made to check if the user pressed a button. Once that button is pressed, we can
change a global variable to now say that the user is in manual control and will
execute the controller code as written above.

Another option is to have whatever input the user puts into the analog port override
and move the motors as intended. This is the least favorable choice as accidents
could happen with the joystick and programming the Arduino to pick up after the
manual movement is finished could become extremely messy.

The best option so far is the use of interrupts to control the joystick activation.
Interrupts are immediate and can be activated at any time allowing the signal from
the user to never be missed. The interrupt will simply change a variable that will
then be checked by the main loop with an if statement. No hard programming is
ever done inside of the interrupt because the interrupt should be the fastest it can
possibly be as to not cause any errors. The advantage of this method over the one
that just has the check in the main loop is that this one has almost no chance of
being missed by the program doing something else.

6.3.4 Parsing the Directions from the

Computer Science Team

The core information that will allow us to locate and track a celestial body will be
coming to our Arduino via USB and their program. The USB uses a serial type
connection where all the bits come in sequentially into Rx line of the board. The
Arduino itself handles the data intake and transformation automatically for us, and
outputs bytes. As decided from meeting with the Computer Science team, their
software will be outputting a string containing the direction and distance that the
motors need to travel, along with maybe some other elements. It is our job to then
parse the given string and extract the actual data, while turning it into usable
information.

The actual programming of this parser will come down to what the Computer
Science team actually ends up submitting to our Arduino, but general coding
practices can be made before hand. Serial.read() is a built-in function that reads in
byte by byte the input coming from the Rx pin of the USB. Translating to code it
means that a while loop will be used to iterate through each byte given to us until
a specified stopping byte is reached. This byte can be determined by the CS team
as some random character, or more usually a null terminator character. Since
these bytes are of ASCII format, we must use a conditional statement to look for

 Group A Senior Design I

107

the terminating character by associating the numerical value with it. If the default
null terminator is used, our code will be looking for a 0 character to appear and
then use that to exit the loop.

The loop itself will just be inputting each byte into a locally stored string and
separating the bytes into different strings based on particular flags the CS team
will provide to us. These flags tell us when the byte data will change from one data
piece to another, allowing them to transmit and us to receive multiple types of data.
How that data is being stored can be a bit of a complication. Normally in C, the use
of the malloc() or calloc() function would be utilized, but those two functions rely
upon an OS to operate, as stated before. Our current method will just be filling in
given arrays allocated by the Arduino microcontroller. Once inside of a local string,
the atoi() function will be of great use transforming a string byte into a numerical
byte, with which we can do calculations with.

6.3.5 Feedback Control using Sensors and

Interrupts

The feedback control is going to be a very simple coding system to design. It will
just be a set of interrupts looking for the event to happen. Once the event under
scrutiny happens, we will be able have the ISR trigger and change a couple of
variables which will then be checked by the main loop. Under no circumstances do
we want to have delays or heavy processing work under the ISR as that can cause
some extreme and undefined behavior. If some of the feedback needs to be sent
to the Computer Science team, a Serial.write() can instead be used to send any
incident to the Computer Science team.

6.3.6 Meridian Flip and Motor Control

The Meridian Flip is going to require some delicate coding and team work between
the Computer Science team and our team. From an informational standpoint, the
Computer Science team should be able to predict when the motors reach their
maximum and need a meridian flip. Another note is that the meridian flip and
motors reaching their maximum aren’t completely mutually exclusive. Meridian flip
is more of just a special case for a need of our motors to adjust themselves.
However, regarding the Computer Science’s ability to deal with the event, there
can be a better way of controlling the logic for our system. Our main movement will
essentially consist of two actions. One will be the movement to a specified location,
while the other will be tracking the location in the sky. Since all these movements
are technically originating from the CS team, they should be able to also know
when to perform a Meridian Flip. This is the more complicated and prone to
accident compared to what is planned.

 Group A Senior Design I

108

The plan is to use the two optical sensors to send a signal back to the computer
and to the Arduino. The signal being sent contains two pieces of information
disguised as one. It tells the motors that they have reached their limit in turning
radius for the telescope base, and it also that a meridian flip is going to be required.
This information doesn’t come in two different packets but more is represented as
two different things regarding hardware side and software side.

The signal must go through our Arduino which will be processed as a flag interrupt.
We want this to be a flag interrupt because on a hardware side we want our motor
to stop the rotation as fast as possible. If we have any bit of delay on the motors
turning, then that can lead to damage done to the structure it’s attached to. This is
because there is a large possibility that the time it takes for the motors to react to
the sensor trip will be too slow for a large, heavy moving telescope. We could have
the telescope move at a slower speed but then it might risk not being able to
properly find its location or track something because it’s moving too slowly. There’s
even another possible problem that can arise with the centering of the telescope.
If the telescope travels too far off from where the trigger was flagged, the system
will not be synced up with the offset telescope position.

The proposed solution to this is to actually have the telescope flag the interrupt
twice or more. The concept is to oscillate the telescope to be exactly in the optical
sensor by changing the direction and speed of the respective motor, constantly
slowing down and changing direction. The more this occurs the more accurate the
telescope will be pointed as it will essentially be lined up with the optical sensor,
raising the flag continuously. This is a positive because now we know exactly
where the telescope will be after an abrupt stop. A small problem comes up but is
easily fixed by Arduinos given interrupt commands. Having the telescope directly
on the sensor means we know exactly where it’s aimed and can get the same
results after a meridian flip every single time.

To actually program this, the method that we will be using is to have the interrupt
add a value to a variable. Once this variable is greater than zero, a function will
run, changing the direction and speed of the corresponding motor. It then
continues this until the trigger is tripped again, adding to the variable. This new
number will again change the motor, causing it to trip again. This constant back
and forth will happen very quickly causing the telescope to have an oscillating
decay into the optical sensor. Once the given variable surpasses a particular
number, we can assume that it is essentially close to being in the exact center of
the optical sensor. Realistically this could only take a single oscillation to bring it to
the center. The amount of oscillations just heavily varies on how fast and far the
telescope flies out.

Resuming with the code, the variable that was being used will be set to zero again
and the interrupt will be disabled for the period of time the meridian flip will begin
to occur. Otherwise, the flag will be raised indefinitely causing an endless loop and
holding up the processor. There are two immediately known ways to do this, one

 Group A Senior Design I

109

is with the detachInterrupt() function. The function will just stop allowing any
interrupts to be triggered through the desired pin. The pin however will still keep
sending a signal from the port of the interrupt, it’s just that nothing will happen now.

The other function is noInterrupts(), which leads to an inferior method of controlling
the telescope. NoInterrupts() is a system wide function that stops all interrupts from
occurring. Unsurprisingly this is a bad idea to use because then our program will
not be able to detect when other interrupts occur such as the other motor reaching
its limit. Therefore, this function will most likely not be used in this particular area.
It does however bring up one particular aspect of the code. There is a strong
chance that both motors can hit their limits and set off their respective interrupts at
the same time. Having them precisely connect at the same time is highly unlikely,
the more plausible event that would occur is that one motor is performing its
oscillation while the other motor then trips is respective trigger. Although this
seems like it could be a big problem, it logically won’t really cause much of a
disturbance. Since both ISRs are just changing a certain variable and then the
loop() function of the Arduino is checking that variable, it means that both
processes can technically be deployed at the same time. The oscillation on one
motor will commence, and then immediately after the oscillation on the second
motor will start as well. Since these two things rely on real-time to be completed,
the Arduino should have no problem handling the changing controls between two
motors and centering them in the optical sensor.

The second part of the signal will be sent through a USB serial command saying
that the telescope is in a position needing a meridian flip. The meridian flip itself
does take time to perform and during that time the Computer Science teams’
program will be waiting for an ok signal to be sent. The ok signal will just a simple
completed flag to notify the program that tracking can resume and
countermeasures can be taken to make up for the lost time. Our program itself
should be able to handle a meridian flip, but there can be the case where the CS
teams’ program sends us a serial signal telling it to meridian flip. If this is what
happens, then our program will need to have an updated parser that is able to
understand the meridian flip command. When it comes down to the actual flip, then
our program will take over and adjust the motors itself.

An actual Meridian Flip will just consist of the program rotating both motors by 180
degrees. In practice this might result in something a little bit extra then just simply
switching the direction of the motors for a given amount of time and then continuing
along. The time lost during the Meridian Flip will need to be taken into account as
well as the possibility of one of the motors not needing to rotate at all.

6.3.7 Work Load Distribution

The organization and collection of logic in programming as well as placement of
features has a huge impact on how project will perform. It shouldn’t need to be

 Group A Senior Design I

110

said that how the code is made will heavily affect the time spent and frustration
levels of the developers. Time for debugging and finding errors can be drastically
reduced down with well-maintained code and can also even be easier to write if
care is used when writing it. The focal points that will dictate how we write the code
will be revolving around the main functionalities of the ATmega itself.

The setup function is one of the default given items that we can use to organize
and program our project. As per the name most of the initialized configuration code
will be placed here to start the board off as its intended. This also means that if the
reset pin is triggered from the board, then the setup function is the first one that
get execute again. In our project we will have mainly our pin setups and
configuration to start getting the hardware to respond to the real-time and internal
actions that are about to happen. The serial commands to read and write data will
also be set up in the given setup function. An interesting note is that all these things
don’t actually have to set in the setup function and can be called later on, but it is
still a significantly organized way to see the logic of the code. Not much else will
be placed in the setup function as much of the brains of the project comes later on
in the loop function and its supporting functions.

Global variables are something that is generally looked down upon in a computer
science community because they tend to make code less readable, more
complicated to fix, and have worse portability. Despite all that, we will be using
global variables because of the advantage they provide. The global variables are
going to be outside of the setup, ISR, helper, and loop functions. Great use will
come from this as we can use these variables as status variables. They’ll monitor
the system and be updated by anything that happens elsewhere. Since they are
global variables they can be changed at any time or anywhere without us having
to maintain the passage of data flow by the return values of functions. Under no
circumstances is this going to have any logic or work done in the global variable
area. Doing so could cause a host of problems and bugs while also muddying the
logic flow up and preventing certain work from being done.

The main loop of the function is where all the core decision actions are going to be
made, but not the actual actions themselves will be executed. This is to avoid
clutter and unnecessary collection of ideas. Conditional statements are the brains
of what will happen in the microcontroller, which will often be checking the global
variables for status listed above. This includes the functionality of an ISR as the
ISR’s are generally just going to be limited to changing a global variable if required.
This main loop function will also be home to the parsing logic in reading of the input
data.

Another big part of the main loop will be changing itself to respond to the analog
input stick and configuring the Arduino system to not respond to certain things.
One of the big things with this design is being able to sort out how the ISR’s can
interrupt with minimal ‘interrupting’ to the actual flow of the program. The more we
can exclude as many possible ways an interrupt can interfere with our program,

 Group A Senior Design I

111

the better. The worst case is having an interrupt disrupt a crucial task and causing
the outcome of the event to mess up and desynchronize the telescope. Even
though we’re leaving all the extra work to be done in the helper functions, the
helper functions are just more ways of uncoupling the work to other areas. When
it comes down to it, executing a function is still technically operating in the area of
the main loop.

The ISR functions are going to be kept as simple as possible. To reiterate, this is
because the ISR’s can interrupt or cause un-warranted behavior in the system.
There are several general key points to abide by when writing an ISR, which then
dictate the distribution of work. The first is just a general idea of keeping it as short
as possible. The second is to never put delays inside of the ISR function itself. It
turns out that the delay function in Arduino monitors an internal timer to count for
a delay. However inside of a delay, the timer cannot return an updated time amount
to the ISR, causing it to create undefined behavior.

Another problem with a delay inside of an ISR is that interrupts are turned off while
the program is executing inside of an ISR. So, if interrupts would happen as
demonstrated in the Meridian flip section, our program would not be able to detect
it. The third limitation is to make variables that are only used by ISR’s volatile. This
more has to do with the compiler optimizations that can be made at time of building.
The compiler will often look for unused variables and wasted resources to be
cleaned up if it can. This directly affects an ISR as compilers will look for all the
calls to a function. If it can’t find a function call to function outside of the main code,
then it will effectively remove that allocated resource as it sees fit. Interrupts aren’t
called from the main code, which is their defining characteristic, so when the ISR
is called, it crashes the program and possibly causes segmentation faults because
the variable needed isn’t there. Assigning the keyword volatile to a variable causes
it to be set specifically aside in the compiler, making sure it still exists in the final
machine code.

The final note for information flow will be about the helper functions. The helper
functions are just simple extra functions created to organize and space out the
core logic from the mechanics of the program. It easies the time to debug, distribute
work load among team members and make the code readable. An advanced use
of functions can come in the form of implementing a recurrence relation, however
there will probably be very little need for it. It is mainly used to help solve
complicated logic or math problems, instead of the simple commands we need to
create. Figure 67 which is pictured below demonstrates a realized explanation of
the program. The figure shows the major blocks of information flow that go into the
main loop of the program as well as the operations that will be occurring within
each of the main blocks.

 Group A Senior Design I

112

Figure 67: Final Code Logic Diagram

 Group A Senior Design I

113

7. Project Prototype Testing Plan

In general, this plan covers four main areas. First, we examine the environment
that we will complete our testing in. That is, the senior design lab and its available
equipment. Next, we discuss testing for each component and an overall plan to
test the integrated prototype. We then provide a consideration of our software and
its associated capabilities, and finally conclude with a summary of our software-
specific testing plan.

7.1 Hardware Test Environment

The bulk of the testing and integration for this project will be performed in the
University of Central Florida (UCF) Senior Design lab. Safety is a concern when
designing any piece of electronic equipment, and this project is no exception. The
UCF Senior Design lab is monitored 24/7 by Closed Circuit Television (CCTV)
cameras and has an additional requirement of at least two personnel from a design
team on site during any testing. These stipulations serve to mitigate some of the
safety concerns related to electronics design work.

Much of the equipment required for the testing of this design is present in the
Senior Design lab. Other equipment, to include connectors, breadboards, leads,
discrete components (e.g. resistors, capacitors, etc.) can be acquired via checkout
through the UCF Electrical Engineering lab manager, David Douglass. Major
components that will be used in the design and testing of this project are detailed
below.

Tektronix AFG3022B Arbitrary/Function Generator

Although this is a discontinued model, the functionality of the AFG3022B is very
robust. In addition to sinusoidal and other periodic waveforms of up to 25MHz,
this deice also supports 14-bit arbitrary waveforms at up to 2 GS/s. Supported
periodic waveforms include: sine, square, pulse, ramp, triangle, sine, exponential
rise and decay, Gaussian, Lorentz, Haversine, DC and noise. The function
generator will be a key element in our hardware test environment as the operation
of the motor encoders is dependent on the frequency of a pulse.

Tektronix MSO4034B Mixed Signal Oscilloscope

The MSO4034B is also a discontinued model but supports features that are more
than sufficient for the needs of this test environment. The oscilloscope provides
four analog channels with up to 350MHz of analog bandwidth. This device will
record 20M points and additionally features a sample rate of 2.5 GS/s. Although
it will likely not be needed in the scope of our project, this oscilloscope also
supports FFT analysis for in-depth analysis of the frequency domain. In general,

 Group A Senior Design I

114

our project should function adequately with the standard passive voltage probes,
but this model does also support active, differential and current probes if the need
arises.

Keithley 2230-30-1 Triple Channel DC Power Supply

The Keithley 2230 is a triple channel DC power supply that offers two channels
that vary from 0 – 30V at a maximum of 1.5A and a third channel that is able to
output 6V at 5A, generally recommended for powering digital circuits. This allows
for a maximum power output of 45W on the 30V channels and 30W on the 6V
channel. When strictly considering the power requirements of our motors, these
power supplies should meet the necessary specifications.

However, this is a regulated power supply. Per the manual for our STM17R
motors, it is possible that a regulated power supply will encounter a problem with
regeneration. When a load is rapidly slowed from a high speed, much of the kinetic
energy will be transferred back to the power supply. This, in turn, can trip
overvoltage protection, if present, on the power supply.

For this reason, we will move forward with securing an additional, long-term
solution with respect to the power supply. The manufacturer recommends their
own model, the PS150A24. If another power supply is sourced, the manufacturer
further recommends the installation of their RC-050 regeneration clamp.

Tektronix DMM4050 Digital Multimeter

The Tektronix DMM4050 bench multimeter offers significant accuracy, with 6.5-
digit resolution and VDC accuracy of up to 0.0024% (rated at one year). This
device is capable of detecting voltage from 100mV to 100V with up to 100nV
resolution, and 100 µA to 10A of current, with up to 100pA of resolution. In
addition, resistances between 10Ω and 1GΩ can be measured, with up to 10µΩ of
resolution. Additionally, temperature, continuity and diode tests are available on
this model. This model does not detect capacitance, so if this functionality is
required, an additional solution will be needed.

Dell OptiPlex 990

The bench PC available in our test environment is the Dell OptiPlex 990. This is
a reasonably recent PC and should be sufficient to support the needs of our test
environment. This PC will be supplemented with personal laptops as needed to
run software that is not natively available on the bench PC. The bench PC is worth
noting because a number of the measurement tools available (multimeter, function
generator, etc.) support capabilities that allow them to be tied directly into a PC for

 Group A Senior Design I

115

more detailed analytical work. Should this need arise in our testing, the OptiPlex
990 will be the first choice for these tie-ins.

Global Specialties PB-60 Externally Powered Breadboard

The bulk of early prototyping will be completed using this breadboard, and it is
included here to memorialize its specifications. This board supports 1,680 tie-
points and is rated for 36V and 1.5A. In all cases, these specifications should meet
our needs. Two of these devices have been secured for ease of testing.

7.2 Hardware Specific Testing

Sensors

One of the primary concerns with the sensors is whether or not they will output a
sufficient voltage for the Arduino to recognize a high signal when they are tripped.
Relevant entries from the datasheet are memorialized in Table 14 below. Of note
is the fact that the high-level output voltage (VOH) only confirms a minimum value,
not a typical.

It is preferable to power the optical sensors via the Arduino’s built-in 5V source, as
this will eliminate the need for additional DC-DC conversion circuitry and minimize
the footprint of the Shield-style PCB that is being developed.

Table 14: OPB980T51Z Electrical Characteristics

Symbol Parameter Min Typ Max Units

VF Forward Voltage 1.70 V

VCC Operating D.C. Supply Voltage 4.5 16 V

ICC Supply Current 12 mA

VOL Low Level Output Voltage 0.4 V

VOH High Level Output Voltage VCC – 2.1 V

IOH High Level Output Current 100 µA

The implication here is that the VCC constraint of a minimum of 4.5V will be satisfied
by the Arduino’s 5V supply. Moreover, the minimum High-Level Output Voltage
should be guaranteed at or above 2.9V (5V – 2.1V). The relevant portion of the
ATmega2560 datasheet is summarized in Table 15 below. The Low-Level Output
Voltage is capped at 0.4V maximum.

 Group A Senior Design I

116

Table 15: OPB980T51Z High and Low Output Voltages

Symbol Parameter Condition Min Typ Max Unit
s

VIL Input Low
Voltage

VCC = 2.4V – 5.5V -0.5 0.3VCC V

VIH Input High
Voltage

VCC = 2.4V – 5.5V 0.6VCC VCC + 0.5 V

Assuming a maximum VCC of 5.5 (our expectation is to operate at 5V), VIL(max) can
be calculated as 1.65V and VIH(min) can be calculated at 3.3V. VIL is certainly
satisfied with this condition but there is a question of whether VIH would be
sufficient. At the expected operating point of 5V VCC, the requirement for VIH drops
to 3V minimum, although this is still slightly above the guaranteed minimum output
voltage for the OPB980T51Z optical switch.

Therefore, the testing for this component is comprised of two phases. First, we
connect the optical switch to the 5V Arduino power pin and take measurements of
VOL and VOH. The second phase connects the output of the OPB980T51Z to a
digital input of the Arduino and simple code is executed to determine whether or
not the high and low outputs of the switch register at the correct logic level on the
microcontroller.

Motors

The Applied Motion STM17R-3NE – NEMA 17 motors that have been selected for
this project consist of two primary systems. First is the motor and the associated
drive, and the second is the integrated encoder. Our testing process will address
these components individually and in concert with each other.

Before we begin any testing, it is important to note that the STM17R has an internal
fuse connected to its power supply. This fuse is not made to be user replicable.
Therefore, any testing or operation of these motors should occur using a fast acting
2A external fuse in series with the positive power supply lead. A second
consideration here is related to regeneration. When the drive is rapidly
decelerated, kinetic energy is transferred to the power supply and can trip
overvoltage protection; thus, shutting down the supply. We do not anticipate that
the motor will be decelerated rapidly enough to fulfill this condition, but if it does,
the addition of an RC-050 regeneration clamp will be considered.

We first consider the operation of the motor. The STM17R supports a number of
different configurations through user-selectable dip-switches to control parameters
such as current, idle current, load inertia and step size. Many of the specific
requirements for these variables will be determined by the needs of the mechanical
engineering team, but several default values will be selected for initial testing.
These are summarized in Table 16, included below.

 Group A Senior Design I

117

Table 16: Proposed Testing Configuration for Motors

Parameter Value

Current 100%

Idle Current 90%

Load Inertia 0-4X

Step Size 400

In brief, these parameters can be explained as follows. Current determines torque,
with maximum torque available at 100%. Reduced current will concurrently reduce
available torque and heat produced by the motor. Idle current can further reduce
heat and impacts holding torque. Generally, 50% is sufficient, although the higher
value (90%) may be required in some applications, such as supporting a vertical
load. Load inertia is strictly determined by a calculation of load inertia divided by
the STM17R rotor inertia (82 g-cm2), which will be determined by the mechanical
engineering team.

Step size is the parameter of most interest to our electrical engineering team. The
native step size of this device is 200 counts per revolution (CPR), but the motor is
capable of more granular resolution through a dip-switch setting. Resolutions of
between 200 and 25,600 CPR are supported. The motor is commanded through
the frequency of the pulse that drives it, using the following formula:

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧) = 𝑅𝑃𝑆 ∗ 𝑆𝑡𝑒𝑝 𝐶𝑜𝑢𝑛𝑡

This means that, as an extreme example, a speed of 50 revolutions per second
with the 25,000 setting would require a pulse frequency of 1.25MHz, which is well
outside the native operating parameters of our microcontroller. Therefore, for this
initial testing, we will limit the step size to 400 and test at frequencies of 5kHz and
below. Once more specifics on gear ratio and requirements are obtained from the
mechanical engineering team, additional testing will be undertaken as necessary.

Microcontroller

The hardware specific testing of the microcontroller will be focused on two primary
areas: signals that the microcontroller is able to output and the response to signals
that the microcontroller receives.

The first revision of our design involves using the ATmega2560 to drive the motors
directly, as well as to communicate with the encoder. Additionally, the
microcontroller will be expected to drive the LEDs on the board. Inputs will
primarily consist of: signals from the PC (delivered over a USB and translated into
serial communication by a USB-to-serial converter), digital inputs/outputs from/to
the encoder and the sensors and analog inputs from the joystick. The test plan

 Group A Senior Design I

118

will necessitate confirming the ability to respond to and produce each of these
signals.

Digital outputs (in the form of a pulse) form one of the challenges of this project.
The speed of the motors is controlled by the frequency of the pulse. As mentioned
above, in an extreme case, with 25,000 steps and 500 RPS, this would necessitate
a pulse frequency of 1.25MHz. Research indicates that a library called PWM.h is
capable of supporting frequencies per Table 17 below [24]. Initial testing in this
area will verify the accuracy of this library and its ability to produce the frequencies
necessary to drive the motor across a wide breadth of speeds. The Arduino Mega
2560 makes pins 2 to 13 and 44 to 46 available for PWM output.

Table 17: PWM.h Library Frequency Ranges

Timer Frequency

Timer0 31Hz to 2MHz

Timer1 – Timer5 1Hz to 2MHz

Note: it bears mentioning here that internal Arduino time keeping functions are
dictated by Timer0, so the preferred method of using this library is to call the
InitTimersSafe() function and preserve the existing functionality of Timer0.

In addition to the outputs of the motor/encoder, it is necessary to test the inputs
being received from the encoder. This testing should be completed in two phases.
First, we connect the output of the encoder directly to an oscilloscope, which will
be used to measure amplitude and frequency. In the second stage, we will connect
the outputs to the Arduino and use a rudimentary software package to send the
amplitude and frequency received directly to the Arduino serial monitor for
verification.

Ultimately, the Arduino will be receiving signals generated by a software package
developed by the computer science team, delivered over the USB. Exact
communication protocols are being negotiated with the CS team, but initial testing
will consist of sending command strings through the serial monitor built in to the
Arduino IDE. The first revision of the proposed command string includes three
parts: a designation for which motor is to be controlled, total angular displacement
(degrees, counts or revolutions) and a direction of rotation.

Much of the analog testing of the board will be covered under the joystick section,
but preliminary tests of the analogRead() functionality are to be performed first.
The Mega2560 supports 15 analog input pins (although only 2 will be in use for
this project) that include built-in analog to digital converters (ADCs). The ADC
maps an input voltage between 0 and 5V (operating voltage of the Arduino) to a
10-bit resolution, meaning that the output ranges from 0 – 1023. Initial testing will
consist of feeding precise fixed values of DC voltage into the analog input pins and

 Group A Senior Design I

119

confirming the output of the analogRead() function through the use of the Arduino
serial monitor. Sample expected test parameters are included here as Table 18.

Table 18: Expected analogRead() Test Parameters

Input (V) analogRead()

0 0

1 204

2.5 511

4 818

5 1023

Note: it is possible to change the upper end of the analog reference range by
utilizing the AREF pin in conjunction with the analogReference() function.
However, it is not expected that this functionality will be required for this project.

Joystick

The joystick selected for this project is a 2-axis analog joystick with select button.
The select should short to ground (i.e. go low) when it is depressed, and the X and
Y axis function as 10KΩ potentiometers. The X and Y outputs are both analog
out.

There is little available documentation for the joystick, so some assumptions are
made here and then must be tested. The joystick accepts an input of any voltage
up to 5V, which is where it will be operating at for our project. The assumption
here is that if the X and Y axis act as potentiometers, the analog output should
vary from 0 to 5V in a linear fashion as the potentiometer is adjusted.

Testing will need to determine how this voltage varies with position. For example,
when the joystick is at extended to one extreme of the axis it could read 0V, when
it is zeroed (at resting position) it could read 2.5V and when at the other extreme
of the axis it could read 5V. This seems a reasonable assumption but testing with
verify the voltage distribution across the working range of the joystick. In addition,
voltage on the select output will be measured and the variation will be noted as the
select button is depressed. The expectation here is 5V out under normal
conditions and 0V out when depressed. Expectations are detailed here in Table
19.

Table 19: Projected Voltage Outputs for Joystick

 Lower Extreme Center Upper Extreme Off On

X/Y Axis 0V 2.5V 5V

Select 5V 0V

 Group A Senior Design I

120

The second piece of the testing will be the interaction of the joystick with the analog
pins on the Arduino. As referenced above, the expectation is for the analog voltage
on these pins to be indexed evenly to a value between 0 and 1023. The behavior
of the joystick should be predictable based on our initial testing, but further
validation should occur to confirm a smooth integration with the microcontroller.

LEDs

The LED operation is fairly straightforward and intuitive but should be tested to
confirm assumptions made are correct. Relevant electrical characteristics from
the datasheet are included here as Table 20.

Table 20: LED Electrical Characteristics

Characteristics Symbol Condition Unit Min Typical Max

Forward Current
(max)

IF mA 501

Peak Forward
Current2

IFP mA 200

Forward Voltage VF IF = 20mA V 2.1 2.6

Reverse Current IR VR=5V µA 100
1. For long term performance the drive currents between 10mA and 30mA are recommended.
2. Pulse width ≤ 0.1 msec, duty ≤ 1/10.

The major item for test here is to confirm that all purchased LEDs function at the
expected turn-on voltage of 2.1V and not somewhere higher in their possible
range. Current into the LED will be limited with a resistor in series to meet the
specifications, so it will be important to verify that enough voltage is provided after
the voltage division to power the LED.

Integrated Testing

Although the individual components will be tested and verified according to the
plan set forth above, it will also be necessary to test the prototype with all systems
integrated as a functioning whole. The true test of this functionality will require that
the computer science team has made their completed code base available to us,
so that will likely not occur until near the end of this prototype life-cycle. Similarly,
the scale-model developed by the mechanical engineering team will not be
available until well after this testing needs to have been completed. However, it is
important that we be able to test the integration of all parts of the system well
before that, so a brief outline of this test procedure is set forth here.

The prototype testing discussed here will utilize our in-house software package
(i.e. the basic version developed by our team, versus the production version
developed by the computer science team). We will rely on a terminal window to

 Group A Senior Design I

121

issue commands and receive feedback from our microcontroller. Although much
of the feedback received from the system will be able to be identified in real-time,
the best practice here will be to dump the serial monitor data into an Excel file for
later analysis. Although the Arduino serial monitor is capable of some work-
arounds that enable dumping data to a .CSV file, other applications, such as
puTTY, have this functionality built-in. Therefore, this will be the preferred terminal
application for this portion of the testing.

Simple control strings will be issued in the format agreed upon with the computer
science team. At this time of this writing, this includes a binary determination of
which motor is being commanded (1 or 0), a binary command to determine
direction (1 or 0) and a number to indicate the degree of rotation (which will either
be in degrees or counts). We will need to make assumptions about the gear ratios
being developed by the mechanical engineering team to complete this testing,
although these values are easily modified if needed when the full-scale model is
implemented.

To date, the feedback requested by the computer science team includes
confirmation of success or failure in terms of movement of the motors to the
desired position, and an indicator of position if the desired movement is not
completed. Therefore, these are the signals that we will be sending back to the
terminal window and capturing into an Excel file.

Without the use of the mechanical engineering team’s scale-model, it will be
necessary to have an alternative means to test the rotation of the motors and the
functionality of our optical switches (e.g. as limit switches and home position
sensors). To test the rotation, the best practice here will be to issue commands
that necessitate a minimum degree of rotation from the motors. The simplest test
with the least room for measurement error is to command the motor to complete
one full rotation. In addition, quarter and half-rotations can be easily measured.
This is best accomplished by affixing a position indicator (i.e. a simple, straight
rod) to the shaft of the motor and placing the motor inside a circle that has been
demarcated by quarter and half-rotation marks. The correspondence of the
position indicator to the markings will broadly confirm whether the motor is being
commanded as intended.

Similarly, this system can also confirm positional tracking (i.e. compensation for
the earth’s rotation). Since the earth’s rotation is fixed, a simple calculation can
determine the time it should take to rotate a quarter, half or full-turn. Since this will
also be dependent on the mechanical engineering team’s gear ratio, it will be
necessary to make an assumption here. The simplest assumption would be to
assume a gear ratio of less than or equal to one (although this is certainly not the
gear ratio of the final product) to allow the motor to move a minimal distance for
each command sequence.

 Group A Senior Design I

122

7.3 Software Test Environment

As the core design of this project involves the use of a Shield daughterboard
designed to interface directly with the Arduino MEGA 2650, the Arduino
environment naturally lends itself to our software testing. There are two
environments specific to the Arduino, and both will be addressed in this section.
These environments are the Arduino IDE (Integrated Development Environment)
and the Arduino Web Editor. Both of these systems are available directly from the
Arduino website.

Arduino IDE

The Arduino IDE is a traditional desktop IDE and it can be downloaded directly
from Arduino. The main application of the desktop IDE is for offline work. This
platform will be used to write short, quick test routines and other informal scripts
for verification of hardware functionality. The desktop Arduino IDE is limited in
some ways as compared to the Arduino Web Editor, and these differences will be
elaborated below.

Arduino Web Editor

The Arduino Web Editor is part of the Arduino Create software suite. This suite
provides functionality to create code, review online tutorials, perform board
configuration and share project amongst collaborators. In addition, the Arduino
Web Editor is an entirely online platform; therefore, the latest features are
immediately available. Moreover, over 700 Arduino libraries are natively
supported.

The Web Editor is able to automatically recognize any official Arduino/Genuino
board, and code is backed up and saved to the cloud. The platform is available
across Windows, Mac and Linux, which allows ease of adoption throughout our
interdisciplinary team; however, Google Chrome is the recommended browser.

The Arduino Web Editor organizes projects as Sketches. These Sketches can
include the code uploaded to the board, documentation and schematics for
hardware layout. Our primary schematic design tool is Autodesk’s Eagle PCB
design tool; however, the ability to include informal schematics within the Sketch
is a useful tool for associating breadboard testing configurations with the related
code.

 Group A Senior Design I

123

Arduino Serial Monitor

Both the Arduino Web Editor and IDE include built-in functionality to send and
receive data to a console via the Serial Monitor. The Serial Monitor functions
through the native USB port on the Arduino MEGA 2560 and can both send and
receive data to and from the microcontroller. As with much of the Arduino
language, this capability is abstracted to a high level. Core functionality is similar
to traditional C statements for outputting to the monitor (e.g. serial.print()). Before
initiating communication, the serial.begin() function must be passed with a baud
rate that agrees with the communication terminal built-in to the Arduino IDE [25].

GitHub

The Florida Space Institute (FSI) retains an enterprise GitHub repository that is
used across the interdisciplinary teams to maintain communication,
documentation and code. GitHub allows for version control of software via the Git
platform. Although the Arduino Web Editor allows for sharing of projects, any code
that will communicate across the interdisciplinary teams will be housed on GitHub,
as the associated distributed version control can serve to mitigate any problems
that may otherwise arise due to the size of the team working this project.

7.4 Software Specific Testing

In general, we have a number of specific software subsystems that will require
testing, alongside an integrated test of all functionality. The integrated test will be
dependent upon a selection of gear ratio by the mechanical engineering team as
well as the full implementation of the PC-side code by the computer science team.
As that full integrated testing will not be implemented until near the conclusion of
this project, it is mentioned here only for completeness.

7.4.1 USB Input/Output

We will be receiving commands from, and transferring positioning data to, the
software running on the PC. This will be accomplished over the built-in Arduino
USB interface. The Arduino USB interface has a built-in serial converter, that will
translate differential USB signals into serial data, as well as perform the outbound
translation. Much of our testing will use the built-in Arduino Serial Monitor, but a
stand-alone test of USB functionality is preferred in advance of full integration, as
the serial monitor will not be a part of the integrated package. A rudimentary USB
functionality check can easily be accomplished through a simple scripting
language, such as Python – although our intent is to compile a more robust test
platform using C.

 Group A Senior Design I

124

7.4.2 Pulse Frequency Ouput

We have selected a library that allows the Arduino to vary the frequency of pulses
on its digital I/O pins. This library is referred to as PWM.h and has associated sub-
libraries. A simple functionality test will include installing these libraries onto the
Arduino and sending commands to initialize the timers and vary the pulse
frequency on the I/O pins. An oscilloscope will be used to capture the output,
determine the error and/or range of the frequency outputs and verify this
functionality.

7.4.3 Tracking

One of the significant challenges for this embedded design is to include tracking
functionality – that is, our motors need to compensate for the earth’s rotation, in
addition to accepting positioning commands from the PC software package. As
with much of our other positioning software, the final variables needed for this code
will vary, depending on the gear ratio chosen by the mechanical engineering team.
However, for a simple proof-of-concept test, we will implement the tracking
software using a single rotation. The tracking rotation should provide one full
revolution each 24-hours, in accordance with the earth’s rotation. Therefore, this
test will be instituted at mid-day, and the results will be confirmed the following day
at the same time window.

7.4.4 Encoder

The encoder that we have selected is a quadrature incremental encoder.
Therefore, it is essential that we include a software element that is capable of
differentiating the two signals so as to determine which is leading and which is
lagging. This will provide data on the direction of motor rotation. In addition, the
1000-line encoder will increment a counter by +1 for each clockwise rotation and
decrement the counter by -1 for each counterclockwise rotation. In conjunction
with the gear ratio, this will allow us to determine the absolute position of the
telescope mount with reference to its home position. This software package will
need to be implemented on the Arduino and tested for all possible cases.

 Group A Senior Design I

125

8. Administrative Content

Being on an intradisciplinary team means a lot more coordination and organization

is involved as opposed to working with only the ECE members of a team. Due to

this, Gannt charts and work distributions are key to communicating expectations

both within our ECE team of four electrical engineering students as well as within

the broader scope of our intradisciplinary team. This section outlines important

milestones that were made aware to the other mechanical and computer science

teams, as well as the project schedules and work distributions for our ECE team.

Our project director, Mike Conroy suggested to create a project schedule chart

(referred to here as a Gannt Chart) and make it available to all sub-teams and

customers. By alerting the other teams of when parts need to be ordered, this

made the mechanical team aware that they might have to make some design

choices earlier than normally expected of them. Making this schedule available to

the customer enabled them to see how much progress has been made with ease.

8.1 Milestone Discussion

Our project milestones in Table 21 and Table 22 below appear to span throughout
47 weeks, however most of the members on our team will be completing full-time
summer internships during the summer term. The summer term is during weeks
19 through 34. It is our goal to hold bi-weekly meetings online to address the status
of our project and make as much progress possible towards our Senior Design II
deliverables.

Table 21: Senior Design I Project Milestones Table

Tasks Week

Divide and assign duties 3

Divide and Conquer
Document

4

Research 4-6

Divide and Conquer 2.0 7

Design 7-10

Begin writing
Documentation

10

60-page draft due 12

Order Parts 13

100-page submission due 14

Finalize documentation 15

Final documentation due 16

 Group A Senior Design I

126

Some of the things that our team hopes to accomplish over the summer include to
complete and fine tune our code for communication with the PC, the joystick, the
sensors, the LEDs and the ATmega328. Our team also hopes to work on
significantly the encoder and motor code which will take up hopefully no longer
than five weeks. The remaining portion of the summer our team hopes to work on
the integrated code which we have allotted over six weeks towards its completion.

In parallel to the code integration and completion, our team hopes to complete
testing and verification of all major components both separately and together as
an integrated project. More optimistically, we will also begin creating the PCB
schematic and board layout and hopefully have our first iteration of the board
printed and assembled by the beginning of the fall semester. Lastly, our team will
work on a makeshift mount for which we can test our system while we wait on the
mechanical team to deliver to us a working design. We believe if we achieve all of
the goals stated above, we will be in a really good place going in to the fall term to
allow for many revisions to the PCB if needed and to account for any issues
integrating our system with the code developed by the Computer Science team
and the mount developed by the Mechanical Engineering team.

Table 22: Senior Design II Project Milestones Table

Tasks Week

Build Prototype 35-39

Hardware/Software Check 40

Address Prototype Issues 41

Assemble Final Project 42-46

Test and Fine Tune 47-49

Presentation 50

For a more visual representation of our teams’ milestones, specifically looking at
the first semester, see Figure 68 below.

Figure 68: Project Gantt Chart

 Group A Senior Design I

127

It is also important to consider how each of the other teams involved in the project
will impact any timelines for decisions made on either side. Some decisions such
as ordering parts will have to be a collaborative effort to make sure that there will
be a usable interface and communications handover between each of the sub-
teams compromised of mechanical engineering students and computer science
students. The Figure 69 below illustrates the overall milestones for the three sub-
teams over the course of Senior Design I.

Figure 69: Integrated Team Gantt Chart

8.2 Budget and Finance Discussion

The ultimate source of funding for this project will be through the Florida Space
Grant Consortium (FSGC); however, process of obtaining the grant will be
facilitated by the Florida Space Institute (FSI).

The preliminary estimate for the grant is $750 per team. If three teams take on the
project, that would allocate a total budget of $2,250 to cover the project. It is
expected that each team will work within their own portion ($750) of the budget,
but this has not been formally outlined between teams.

Though some parts have been procured already, list items in Table 23 such as the
PCB manufacturing and soldering as well as PCB components and housing are
initial estimates only. Specific design choices have not yet been made to allow for
maximum flexibility, and it is expected that some additional needs will surface as
the project progresses. Therefore, some categories here (e.g. cables and PCB

 Group A Senior Design I

128

parts) are an overestimation of the anticipated cost, but this should serve to
mitigate the impact of unforeseen needs. Though the total figure of $1,009.53 is
over the potential grant allocation of $750, during the design process decisions on
parts will be made so that the overage over the total grant allocation is minimized.
Our team is willing however to split the excess cost of parts if the total figure does
in fact go over the grant amount.

Table 23: Project Budget

Description Quantity Unit Price Extended Price

Integrated Motors with
Encoders

2 $204.00 $408.00

Arduino Mega 2560 1 $38.50 $38.50

Power Supply 1 $172.00 $172.00

Optical Sensors 2 $5.04 $10.08

Joystick 1 $5.95 $5.95

PCB manufacturing and
soldering

1 $100.00 $100.00

PCB components N/A $100.00 $100.00

Misc. cables,
connectors, LED’s, etc.

N/A $100.00 $100.00

Housing 1 $75.00 $75.00

Total $1,009.53

8.3 Work Distributions

The following table (Table 24) show how the major design work is distributed

among each of the team members.

Table 24: Subsystem Design Work Distribution

Subsystem

Number

Subsystem Name Primary Secondary

1 DC to DC Converter Anthony

Eubanks

Brian Glass

2 Status LEDs and Sensor Brian Glass Anthony Eubanks

3 Motors Brian Glass Anthony Eubanks

4 ATMega2560 Thomas Vilan Melinda Ramos

5 Joystick Melinda Ramos Brian Glass

6 ATMega328 Anthony

Eubanks

Thomas Vilan

 Group A Senior Design I

129

In addition to the major subsystem design work distributions, there are also other

tasks that require ownership by a selected team member. Table 25 shows which

team member was majorly responsible for various administrative and overall

project coordination type tasks that come with being a part of an intradisciplinary

team.

Table 25: General Tasks Work Distribution

Task Primary Secondary

Integrated PCB Design

Lead

Anthony Eubanks Brian Glass

Task Delegation and

Communications Lead

Anthony Eubanks Brian Glass

FSGC Grant Paperwork

Lead

Melinda Ramos Thomas Vilan

Purchasing Forms Lead Melinda Ramos Anthony Eubanks

Intradisciplinary Project

Schedule Lead

Melinda Ramos Anthony Eubanks

Final Report Integration

and Quality Lead

Melinda Ramos Anthony Eubanks

 Group A Senior Design I

130

9. Project Summary and Conclusions

The scope of this project has evolved significantly since the initial proposal, based
on feedback from the customer and the proprietary nature of some of the hardware
and software existing in the observatory. In short, this project has shifted from an
immediate effort to rehabilitate the UCF observatory into an intermediate step,
where a working scale-model of the equipment is implemented so that future
teams are able to follow behind and continue the effort without fear of damaging
the observatory’s equipment or causing extended downtime. In addition, one of
the aims of this project is for astronomy enthusiasts to be able to reproduce a
similar set-up using this open-source design.

Through the research and design of this scale-model, we have learned a great
amount on stepper motor control systems. Our design will essentially consist of a
short list of major components such as the stepper motors, sensors, joystick,
power supply, and two different microcontrollers. After our initial prototyping
efforts, we have come up with a sufficient design that we believe can be easily
implemented in a larger scale which would benefit the UCF observatory. Our
largest challenge was to create the foundation program which will interact with the
software created by our computer science team members and will be capable of
sending feedback to ensure our scale-telescope meets the most important
specification of 3.5 degrees in accuracy. We fully expect our implementation of the
designed system to meet this requirement while serving as a modifiable, open-
ended solution to the observatory.

 Group A Senior Design I

131

Appendices

This section consists of any references and sources used throughout the paper as
well as permission emails to use copyrighted materials.

Appendix A – References

[1] "Different Types of Telescope Mounts," Astronomy WA Partners, [Online].

Available: http://www.astronomywa.net.au/different-types-of-telescope-

mounts.html.

[2] "Types of Telescopes and Mounts," Optics Central, [Online]. Available:

https://www.opticscentral.com.au/types-of-telescopes-and-mounts.html.

[3] "What Is the Difference between an AC Motor and a DC Motor?," Ohio

Electric Motors, [Online]. Available:

http://www.ohioelectricmotors.com/2015/07/what-is-the-difference-between-

an-ac-motor-and-a-dc-motor.

[4] "What’s the Difference between AC and DC," MIT School of Engineering,

[Online]. Available: https://engineering.mit.edu/engage/ask-an-

engineer/whats-the-difference-between-ac-and-dc.

[5] "Different Types of Motors and Their Use," Design Spark, [Online]. Available:

https://www.rs-online.com/designspark/different-types-of-motors-and-their-

use.

[6] "3 Phase Power vs Single Phase Power," OEM Panels, [Online]. Available:

http://www.oempanels.com/what-does-single-and-three-phase-power-

mean.

[7] C. Woodford, "Hall-Effect Sensors," Explain That Stuff, [Online]. Available:

https://www.explainthatstuff.com/hall-effect-sensors.html.

[8] "How Do Servo Motors Work?," Jameco Electronics, [Online]. Available:

https://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-

work.html.

[9] "Motor Encoder Overview," Dynapar, [Online]. Available:

https://www.dynapar.com/technology/encoder_basics/motor_encoders.

[10] S. Mraz, "What’s the Difference between a Motor and a Drive?," Machine

Design, [Online]. Available:

https://www.machinedesign.com/motorsdrives/what-s-difference-between-

motor-and-drive.

 Group A Senior Design I

132

[11] "Classification of Power Supply and Its Different Types," ElProCus, [Online].

Available: https://www.elprocus.com/classification-power-supply-different-

types.

[12] "What Are Standards?," Queen's University Library, [Online]. Available:

https://guides.library.queensu.ca/c.php?g=501793&p=3436599.

[13] "ASME," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/ASME.

[14] "Mechanical Engineering: Standards," The University of Canterbury, [Online].

Available: https://canterbury.libguides.com/enme/standards.

[15] "ANSI C," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/ANSI_C.

[16] "JTAG," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/JTAG.

[17] "NEMA ICS 16," NEMA, [Online]. Available:

https://www.nema.org/standards/securedocuments/ics16.pdf.

[18] "RS232 Data Interface: A Tutorial on Data Interface and Cables," ARC

Electronics, [Online]. Available: https://arcelect.com/rs232.htm.

[19] "AN-214 Transmission Line Drivers and Receivers for TIA/EIA Standards RS-

422 and RS-423," Texas Instruments, [Online]. Available:

http://www.ti.com/lit/an/snla137a/snla137a.pdf.

[20] "TIA/EIA-422-B Overview," National Semiconductor, [Online]. Available:

http://rbsfm.org/Downloads/APPNOTE/RS232-485/TIA-

EIA422B%20Overview.pdf.

[21] "RoHS Compliance," RoHS Guide, [Online]. Available:

https://www.rohsguide.com/.

[22] R. T. Fienberg, "Sky & Telescope," 24 October 2015. [Online]. Available:

https://www.skyandtelescope.com/observing/some-pointers-on-the-use-of-

laser-pointers/.

[23] "Lead Soldering Safety Guidelines," Carnegie Mellon University, [Online].

Available: https://www.cmu.edu/ehs/Laboratory-Safety/chemical-

safety/documents/Lead%20Soldering%20Safety%20Guidelines.pdf.

[24] runnerup, "PWM Frequency Library," Arduino Forum, [Online]. Available:

http://forum.arduino.cc/index.php/topic,117425.0.html.

[25] "Arduino Software," Arduino - Introduction, [Online]. Available:

https://www.arduino.cc/en/Main/Software.

[26] "What is a Position Sensor?," AZoSensors, [Online]. Available:

https://www.azosensors.com/article.aspx?ArticleID=308.

 Group A Senior Design I

133

Appendix B – Copyright Permissions

Copyright Permission Request for Figure 27 and Figure 40

Copyright Permission Request for Figure 54

