Home Safety and Automation
System

Matthew Allen, Guilherme Costa, Felix
Henriquez, Avery Stevenson

Dept. of Electrical and Computer
Engineering, University of Central Florida,
Orlando, Florida, 32816-2450

Abstract — As technologies advance, our world is
becoming increasingly more efficient. We are in the era of
hands-free multitasking and automation. Our objective for
this project is to create a Home Automation System that
allows consumers to control various appliances in their
home wirelessly, manage the energy consumption of these
appliances through either a smart phone application or web
application, and provide an extra safety net of sensors and
surveillance devices. This will be accomplished with a
smart outlet, smart wall switch, a thermostat for the HVAC
System, a motion sensor, and a fire hazard detector. This
paper will explain our motivations as well as the
components we have chosen and the methodology behind
our software programming.

I. INTRODUCTION

Today, most people want their day-to-day interactions to
occur in a fast, simple and convenient manner. From
driving to work without having to step on the accelerator
pedal to coming home and having their bedroom lights
turning on as we step into the room. The aim of this
project will be to take care of this last stage. We prefer our
users not to worry about manually turning their lights on,
remembering from turning the stove off, and forgetting to
change the temperature of their air conditioning system.
With our Home Safety and Automation System (HSAS) it
will be all integrated for easy control and management of
most of the devices in a home. This system is meant to
provide the end-user with a one-stop interface where they
will be able to control, monitor, and manage their home
lights, outlets, and air conditioning system from a simple
and easy to use interface, from anywhere they like. We
hope to provide a home automation system that is
convenient for the average user to use and requires
minimal installation and maintenance.

Infrared motion detectors will be able to detect when
someone enters of leaves a room, or if someone is at the
front door. This functionality will be part of the core
system, as it will help determine if the lights of a specific
room should be on or off, or if the stove should be on
when there is no one at home, for example. Near Infrared
photodiodes will also be used to detect the temperature in
a specific room. Its main purpose will be to alert the
homeowner of a possible fire in their premise. Since this

sensor permits a much faster response time than common
smoke detectors, it will allow the user to react in a timely
manner. The system will also facilitate the control of
outlets spread across a house. With our system acting as a
middleman for the device and the power grid of the user’s
electrical system, they will be able to control when a
specific outlet should receive power and for how long.
This will improve power usage and help reduce the overall
power efficiency of a household. Our smart switch will
also help us with this purpose. The HVAC System is one
of the more costly appliances in a home in terms of energy
consumption. To manage this system we will use our
smart thermostat to control the HVAC System’s relay
control board.

To integrate the features described previously, the system
will also provide a simple user interface that can be
accessed from anywhere through a web browser where the
user will be able to control and manage all the sensors and
devices connected to the system. The interface, will also
allow the user to monitor the power usage of the devices,
therefore reducing the power cost of the system and the
household.

II. GOALS AND OBJECTIVES

One goal of this project is to make the daily life of our
end-user easier. We want our users, to be able to control
most of the devices in their household and to receive alerts
about them in an efficient and simple manner. Another
important goal to build a low power system. In this way,
we are able to provide the customer with a low-cost
system and at the same time we can monitor the household
power usage to further reduce energy costs. We also tried
to minimize component costs as much as possible. One
hurdle we see with current home automation systems is
that their price points are still out of reach for low income
consumers. An unfortunate pattern with new technologies
is that wealthy consumers benefit first and low income
consumers are left out of the loop for quite a while. Our
goal is to help bridge this divide with our low cost
solutions.

In order to convey this information in a comfortable way,
we need to develop a user interface that is friendly and not
cluttered. This interface needs to be simple and the user
should be presented with all the information and it
shouldn’t be cumbersome to get it. We made the interface
system portable because we want users to be able to access
it from anywhere they desire. With this feature, we are
ultimately able to reduce the overall cost and provide the
user with more flexibility to manage the system. Since we
have opted to a modular system, this modularity also needs
to convey simplicity. We do not want our end-user to have
a cumbersome installation of the system. Our objective is
to make the installation as simple as possible, where a user
with no electronic expertise can perform it easily.

III. HARDWARE — COMPONENTS

The system is comprised of 5 peripheral devices: The
Thermostat, The Outlet. The Switch, a Motion Sensor,
and a Fire Hazard Detector. Our goal for the devices
was to be able to make them cheap and reliable. To
achieve this, we set out to use cheap, readily available,
extensively tested components. By ensuring that the
components were massively produced parts we
decreased our liability on any special order component
malfunc-tioning and the gained the ability to have
numerous spares for quick replacement in case any had
defects

A. MCUESP-12f
The peripheral devices are managed by an ESP-12F
MCU, a model of the esp8266 by Expressif Systems.
We chose this model for its cost, the available gpio
pins, and the vast number of available software
libraries.

Fig. 1. ESP-12F MCU

The ESPs are the smallest 802.11b/g/n Wi-Fi SOC
modules available. They are available with 16 and 32bit
processors with up to 160MHz clock speed. They include
a 10bit ADC and have UART/IIC/SPI interfaces, sleep
modes, and this particular model comes with 4MB flash
memory.

B. Power Relays

We used 5 pin magnetic power realys as our work-
horses in the switching circuits. We chose mechanical
relays or solid state because the currents our devices
can see at the output terminals can be a lot greater than
what the compact SSRs can handle. We also did not
require very fast switching. For the Thermostat we used
an array of 4 3V/10A Relays and 12V/20A relays in the
Outlet and Switch.

C. DHT22 Temperature Sensor

A vital component to the HVAC system the DTH22
uses a Polymer Capacitor Sensor to measure ambient
air temperature and humidity. This is a low power
sensor that only uses 1.5mA when measuring. It uses a
3.3V supply. The sensor communicates via a simplex
data line that is active low. To receive data the MCU
pulls the line to ground for lus and waits for up to 40us
for the sensor to send its readings. The DHT22 is rated
to be 95% accurate in humidity and +-0.5 C
temperature error rate. For home applications we found
this accuracy to be sufficient.

D. ACS712 Current Sensor

The ACS712 is a Hall Effect current sensor capable of
measuring AC and DC currents up to 30A. The
ACS712 operates using SVCC at 10mA making it a
very low power sensor. The sensor uses an analog
voltage output to describe how much current is flowing
through the current terminals. We will be using the
following formula to find how much power the Outlet
and Switch is consuming.

P = 120RMS * (SensorVoltage)/(66mA/V)

The 66mA/V is the conversion ration based on the
sensor’s datasheet.

E. Power Supplies

The Thermostat, Outlet, and Switch use plugged-in
power wires. The Motion and Heat sensors are battery
operated. The thermostat is supplied by the HVAC
relay system 24VAC why the Switch and Outlet are
supplied by the home’s 120VAC. The thermostat uses a
full wave bridge rectifier circuit to an LM2596T voltage
regulator to supply the 3.3VCC. The Outlet and Switch
use an HLK-PM12 to convert the 120VAC to 12VDC
and from that a pair of LM2596Ts for 3.3V and 5V
supplies for the MCU and sensor component.

F. OLED 1.8 IIC Display
To display current temperature readings and settings in
the Thermostat we have a small IIC display from
Adafruit. The display uses the 3.3VCC and is install as
a separate module with an array of button inputs.

IV. FIRE HAZARD DETECTION UNIT

The fire hazard detection unit we designed consists of a
near-infrared photodiode, a lens, and a casing. It can
detect fire as well as materials over 250 degrees
Fahrenheit and it has a range of up to 2 feet for a typical
lighter flame. This fire hazard detection unit is designed
to be placed over a stove to detect fire as well as
potential fire hazards such as a burner which has been
left on after cooking.

Hydrocarbon fire "typical” emission spectrum
2000

WIS IR

5000 -
CO2 & H2O

Relative intensity

3000 4

3 4 -}

1 2

Wavelength (um)

Fig. 2. Emission Spectrum

The near-infrared photodiode is made of silicon and it
has a detection spectrum between 0.7-1.1um. Figure 2
shows the blackbody spectrum of a typical hydrocarbon
fire and we can see there is emission within the sensor’s
detection spectrum. The sensor’s detection spectrum is
also useful for stopping false detections because there
are only a few other sources which emit in this
spectrum naturally, and actions such as pointing the fire
hazard detection unit downward and away from the sun
or lighting can easily mitigate false detections. The
detection angle is approximately 16 degrees so most of
a stovetop is within the area of detection if it’s placed 2
feet above.

Tek stop S E—— — Maoise Filter Off
! - 1e ' T

T = I o dibms 135mY

: : : : ; : ® -1425 500V

3 FAEPP S S I al8ds o480V
]k e
(@ s00v Jfaooms & 100v]
save Save Save Recal Recal Assin Fie .

ScreenImage Waveform © Setup Waveform ~ Setup

Fig. 3. DC Output Signal

w0 - Us
image, | LS p G

The near-infrared photodiode has a 5V input voltage
and has options for both an AC output and a DC output.
We chose to use the DC output because it was much
more consistent and allowed us to take a simpler route
for programming the detection software. Figure 3
shows the DC output signal of the photodiode and we
see that there is a constant steady-state voltage of 5V
and when there is a fire hazard detection we see that the
voltage drops to 199mV.

The near-infrared photodiode has a steady-state input
current of about 90uA. This makes the steady-state
power usage low at about 450uW. We utilized an N-

BK?7 plano-convex lens to focus incoming radiation
onto the sensor. We chose this material because it
transmits radiation in the near-infrared spectrum and it
is cost effective costing only $35.

N-BK7 Transmission
100 -

30-(‘5

80

70 4

ol T 1 1 TS

% Transmission

50 T T T T T
500 1000 1500 2000 2500 3000

Wavelength (nm)
Fig. 4. N-BK7 Transmission by Wavelength

Figure 4 shows the transmission spectrum of N-BK7
and we can see that the near-infrared spectrum between
0.7 and 1.1um has a transmission of about 95% which
makes this lens viable for focusing the correct radiation
onto the photodiode. The lens has a focal length of 1
inch and we chose this length so that we could have the
maximum detection angle for our fire hazard detection
unit. We chose a 1 inch diameter lens because it has a
large surface area in comparison to the photodiode so
more incident radiation will be focused onto it.

The near-infrared fire hazard detection sensors are
encased in a rectangular acrylic casing. The lens is
mounted onto an opening that is 1 inch above the base
of the casing that the near-infrared photodiode is
mounted onto. This case is easily attachable to
stovetops and walls because it is only 2.57x1.5”x1.5”
and it weighs only 200 grams.

V. MOTION SENSORS

We utilized passive-infrared sensors for our motion
sensor modules. The sensors use two inversely
polarized sensors that passively receive infrared
radiation from the surrounding environment. They are
able to detect a differential in the incident radiation so it
is able to detect when objects move into and out of the
active areas.

The range of the motion sensor is up to 5 meters and the
angle of detection is 120 degrees. This sensor is very
sensitive to any change in infrared radiation, so even
reflections of human blackbody radiation can set it off.
This does not change the viability of this sensor for the
system because any human presence should continue to
trip the motion sensor. The sensor is covered by a
Fresnel lens which allows the angle of detection to be
so large.

Tek stop et Noise Filter 0ff
® e . H H

. : : B -S52ms 332V

: : : : @ -142s 40.0mY

: R aB72ms a328Y

: : +

P T 4
P © L [400ms I WalTk <10
(@ 200V JE@200y _400ms) :

Save Save Save Recal Recal ,Mfon File

Screenlmage” Waveform ~ Setup T Waveform Setup

SRL 0 iities [_ulﬁa_]
Fig. 5. PIR Output Voltage

The PIR sensors use a DC input voltage of 5V and a
steady-state ‘off”” DC output voltage of 40mV. When
the sensor is tripped we see a short jump in voltage to a
DC ‘on’ voltage of 3.32V for 1.5 seconds. The sensor
then has a 5 second reset time until it can turn on again.
Figure Z shows the output voltage of the PIR sensor
and we can see that there is a constant DC ‘off” and
‘on’ voltages at the formerly mentioned voltages. The
steady-state input current of the PIR sensor is equal to
about SmA. This makes the steady-state power usage
very low at 16.5mW.

VI. HARDWARE - DEVICE CIRCUITS
Our system of 5 wifi enabled devices will use very
similar circuit setups. The Outlet and the Switch circuit
boards are almost identical. This uniformity allowed us
to cut down on design time and testing since the
components and design concepts are being reused and
only slightly modified to fit the application. These
boards were designed using EagleCAD and manu-
factured by Advanced Circuits (www.4pcb.com)

A. Thermostat

As mentioned, our smart Thermostat uses an array of 4
relays for its switching circuit. These relays control the
function of the HVAC System by routing 24VAC
power to different terminals on the HVAC’s relay
controller. Since there are many different HVAC
system and no ONE wiring standard we cannot
accommodate for every kind of heating and cooling
system. However, we believe that our configuration
should work in the majority of homes. The four relays
will allow us to support up to 5 output wires. These are
the FAN (G), HEATER (W), COMPRESSOR (Y), and
REVERSE-VALVE ON/OFF (O/B).

B. Wall Outlet and Switch
The Outlet and Switch circuits are nearly identical. The
outlet operates by having a relay break the circuit between
the LINE IN wire and the receptacle. The system is
normally closed to ensure that the receptacle is operational
regardless of the functionality of the MCU. In the Switch,
the NO and NC terminals of the relay are wired in a 2-way

circuit with a standard sized paddle switch. This config-
uration allows for operation by both the MCU relay
control and the physical switch; Both will act as a toggle.
The current sensor will measure current going into the
COMMON terminal of the relay, this measurement will
also allow us to determine when the connected appliance
is actually on.

C. Sensors

The sensors do not have specialized circuits. To
accommodate the possibility of various sensor
configurations this circuit was generalized to be
powered by any DC voltage up to 40V. The GPIO pins
are accessible through header pins and cable connect-
ions can be made between the pins and the sensor
outputs.

Cloud
Service User

Appliance @

r%

i

| | HUB
Switch g
t
Router
D Flame Motion
Outlet Detector Detector

Fig. 6. System Diagram

VIL.SOFTWARE- DEVICES

The system overview can be seen in figure 6. We used
the Arduino IDE to flash the MCU. We chose this
because of the many libraries available for the sensors
and components in these circuits. The Arduino format
allows us to have class based code structure which
makes the code compartmentalized and easier to read
and debug.

A. Connection and Communication
The devices will communicate with the System
Controller using WIFI and the MQTT protocol. The
system controller will broadcast a dedicated WIFI
network that only our devices have access to. MQTT
allows us to publish and subscribe to various data
streams. We use these data streams to differentiate
between the type of devices and the commands being
passed. This allows us to make sure devices that are not

supposed to interact together, can’t because they have
no knowledge of the other devices data topics. Only the
system controller is aware of all the data topics and we
can minimize the risk of miscommunication through the
system controller’s software rather than debugging the
code in the devices as well. Compartmentalism was
crucial to the simplification of the project code.

B. Control Loop

To provide a seamless set up will we are connecting our
devices to the system hub creating our own private
network. When first powering up, the devices will be on
stand-by mode awaiting a successful connection to the
hub. The device will attempt to connect to the hub
indefinetely. When connected, the devices will operate
as normal sending out data and awaiting HUB
commands. Configuring the device will be left up to the
user, through the Web UI.

VIII. SOFTWARE- SYSTEM CONTROLLER
For the purpose of coordinating the myriad devices
which are to be used as part of our project’s system,
we opted for the creation of a ‘central hub’ device
which will act as an intermediary between the web-
based sections of the system, and the ‘modules’,
devices within the user’s home which are part of the
system. To manage this, we chose to make use of the
Raspberry Pi 3 Model B+, as it provides the
necessary functionality in terms of wireless
communication capabilities and is simultaneously a
powerful platform capable of running the scripts
developed for the purpose of coordinating connected
modules and reporting state back to the web-based

component of the project. The hardware
specifications of the Raspberry Pi 3 Model B+ can be
found in Table 1 on the following page.

The operating system chosen to be used in tandem
with the Raspberry Pi 3 Model B+ was Raspbian, a
Debian-Based Linux distribution compiled for ARM
processors with the Raspberry Pi in mind. Although
alternative operating systems can be run on the
Raspberry Pi, Raspbian provided all of the necessary
functionality for the completion of the project, and as
the official operating system for the Raspberry Pi, it
boasts a robust user-base which will be a significant
help in regards to troubleshooting any technical
issues encountered during the project development
process. This is particularly helpful in the case of our
project, as Raspberry Pi devices used with the
Raspbian operating system are a popular choice for
Internet-Of-Things applications, and thus a great deal
of information related to those types of projects in
particular is readily available.

A. Network Overview
For in-home networking, we have chosen Wi-Fi as
the primary means of establishing connections
between the Raspberry Pi, the modules which make
up the smart-home system, and the web server via the
Internet. It can be assumed that most clients
interested in making use of such a device would have
a local area network of some kind, but for those that
choose not to broadcast a Wi-Fi signal, it is also
possible to connect the Raspberry Pi directly to the
network via the built-in Ethernet port, maintaining

TABLE 1

RASPBERRY PI 3 MODEL B+ SPECIFICATIONS

Component Specifications
CPU Broadcom BCM2836B0 Cortex-A53 (ARMvS) 64-bit SoC @ 1.4 GHz
Memory 1GB LPDDR2 SDRAM
Wireless Networking 2.4GHz and 5GHz IEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
Wired Networking Gigabit Ethernet over USB2.0 (maximum throughput 300 Mbps)
Pin I/O Extended 40-pin GPIO header
USB 4 USB 2.0 Ports
Digital Video Full-size HDMI
Analog AV 4-pole stereo output and composite video port
Storage Micro SD port (loaded with 32GB SanDisk microSD with Raspbian
installed for the purposes of this project)
Power 5V/2.5A DC Power input

the same functionality as if it were connected via Wi-
Fi. The Raspberry Pi is, in turn configured to
broadcast an access-point which the modules are
configured to connect to. This architecture simplifies
the process of establishing a connection between the
hub and the modules, as the modules do not need to
be configured to connect to the user’s Wi-Fi network
specifically and the hub device itself can be expected
to have a static IP address from the point of view of
the modules which are connecting to it as an access
point.

To avoid potential technical pitfalls and simplify the
process of configuring the Raspberry Pi to run as
both a Wi-Fi access-point and as a client to a Wi-Fi
LAN, the Edimax EW-7811Un USB Wi-Fi adapter
was chosen and configured to serve the role of
facilitating Wi-Fi client communications, with the
onboard Wi-Fi module built into the Raspberry Pi 3
Model B+ is configured to run in access point mode
and broadcast a network to which the client modules
can connect.

The MQTT protocol was chosen as a means of
organizing communications carried out by the
devices and the hub, with the Raspberry Pi hub
running an MQTT broker (in this case, the open-
source Mosquitto MQTT Broker [1]) which the
modules establish a connection to in order to public
messages to, and subscribe to, various topics. On the
hub-side, the open-source Paho MQTT client module
for Python is used to publish and receive messages
from the broker running locally.

B. Hub Software Design

Python was chosen as the primary language for the
development of the software designed to be run on
the Raspberry Pi itself, as the benefits of clear,
readable high-level code and relative ease of
development as compared to lower-level languages
such as C or C++ far outweigh any need for speed or
low system memory footprint in this case. The hub
software is automatically started following system
boot and keeps track of changes of state reported by
other devices networked to the hub, while sending
commands via published MQTT statements which
reflect changes made to the database entries for the
various connected devices via the web interface, i.e.
publishing a message for the HVAC system to turn
on the ‘cool’ mode on the air-conditioner when the
user selects said option in the web interface.

The software running on the hub locally stores JSON
representations of the information stored in the

MongoDB database running on the web server, as
this format closely matches the format of the data
which is being manipulated remotely, and can in turn
be read, modified, and used to update the database
entries of for the relevant modules on the server with
new information when necessary. By checking for
discrepancies between the state of key fields of a
module on the database as compared to their state in
the local JSON listing, the software can determine
whether a command should be published to change
the state of the relevant module via the MQTT topic.

Local storage of JSON representations of the JSON
objects stored in the MongoDB database is an
important factor in reducing latency for certain
triggered actions, such as having a light turn on when
a particular motion sensor is triggered, and for
reducing networking overhead by ensuring that
messages to change the state of connected modules
are only sent when such a message represents a
change of state in the relevant database field. These
JSON objects are only kept in memory and are
automatically re-populated in the event that the
system is powered down and restarted.

Devices connected to the hub are automatically
registered in the database upon first registered
communication, provided that a document has not
already been created for them in the database prior to
the first contact during this runtime. Modules are
differentiated via a unique serial number with which
they are hard-coded before deployment and which is
designed to remain static for the entirety of their
lifetime. This serial number is used both as a primary
key in the database, and in differentiating modules
from one another in MQTT communications carried
out via the broker, i.e. both for determining which
status-update messages belong to which modules,
and also for the modules to determine whether a
command sent from the hub is meant for another
device and should be ignored, or meant for the device
in question and should be used to trigger a state
change of some kind.

IX. SOFTWARE- CLIENT AND SERVER
In order to support the functionalities previously discussed
in the other sections, we needed a strong backend. We
decided to use the popular web framework Django, written
in Python. Django allowed us to quickly build a
functioning website so that the devices could be tested. It
uses the model-view-controller design, as shown in Fig. 6.
Model is directly connected to the database, the view
component is what the user sees and interacts with, and the
controller component is where all the logic resides to

manage all the actions the user can perform.

Our backend consists of many functionalities to improve
our system and to better serve our users.

Such functionalities include: user registration, dependent
registration, password reset, profile editing, notifications
(when the sensors are triggered), and management of
devices (adding, removing, and updating). Other features
that are also implemented in our system, is the ability to
schedule tasks for each device. For example, it will be
possible for our users to set a time when they want a smart
outlet to turn off. Another scenario is the ability to turn a
light on when the motion sensor is triggered.

(MODEL

UPDATES MANIPULATES
VIEW CONTROLLER
\ P
d‘\% &
¢$ \)"’
% /

Fig. 7. Django Architecture Design

A. The Database

We decided to implement MongoDB as our database of
choice. Because of that, we were also able to host such
database with the cloud service MongoDB Atlas, which
allowed us to reduce the load from our other cloud
services and hub controller, as we will discuss further in
this section. By choosing MongoDB, this also allowed us
to easily manipulate the data from our devices from both
the website and the controller, which is discussed in a
further section.

¥ Your Outlets

ID Location Status Switch

1 Room Off | ON |

‘ <+ ADD NEW OUTLET ‘

Fig. 9. Smart Outlets Management Example

Our goal with our system, is to allow the user to control
the devices installed in their homes from anywhere they
would like. Our website allows just that. The user is able
to access their system from any supported web browser
and from there, they are able to check which devices are
being used, if the sensors had any activity recently, and
also manage their HVAC system. An example of the
management of the smart outlets is shown in Fig. 7.

B. Web Services

To achieve this, we decided to utilize cloud services to
allow remote access to the system. In our project, we are
using a combination of two cloud service providers.
Amazon Web Services and DigitalOcean. From AWS, we
are utilizing their Work Mail service, to implement a
password reset functionality in case our users need to
change their password. This can also be used to send any
communication to our users. From DigitalOcean, we are
using their compute services to host our website, which
also manages our domain. Combining both of these
services, we were able to keep a low cost, reducing the
investment of our users. As seen in Fig. 8, we have opted
to a very simple design. We opted for this design, because
we want the user to be able to navigate with ease through
our system, and to be presented with a familiar design
language. That is why we decided to utilize Material
Design Bootstrap as our frontend design.

¥ Your Outlets

ID Location Status Switch

o o]

1 Room

+ ADD NEW OUTLET

C. Backend Framework
Fig. 8. Smart Outlets Mobile Ul

For our project, we decided to utilize Django to handle
both the backend and the frontend of the system. We
decided to go against utilizing a standalone frontend
framework because we knew Django was capable of
handling both aspects. This also allowed us to keep a
similar interface for the website in case the user chooses to
access the system through their mobile device. As shown

in Fig. 8, the layout stays consistent no matter which
device the website is being accessed from. Note: the
“Edit” button can still be accessed by scrolling to the left.

D. Dashboard

Our dashboard presents the user with a list of all of their
devices. The Motion Sensor, Fire Detector, HVAC system,
smart lights, and smart outlets. For the Motion Sensor, the
user has information about the current status (if it was
recently triggered or not), as well with the date and time
when it last detected motion. For the Fire Detector, similar
information is displayed. For the HVAC system, the user
receives information about the current temperature,
humidity, and mode of operation of the device.

Manage Dependents

All Dependents

Username Edit
DELETE

&* ADD NEW DEPENDENT

Requests

You have no requests at this moment.

testuser

Fig. 10. Management of Dependents

The user is also able to change the temperature and the
mode to cooling or heating. If the user chooses to do so,
they can also see the power usage of the system. Finally,
for the smart lights and outlets, the user has information
about the location and status of both devices. They are also
given a switch to change the status of such devices can
also edit them, to change their location for example. In
addition to these features, the user has the option to delete
such devices, after a confirmation prompt is shown.
Another feature of our system is the ability to add
dependents to the ‘main’ user. A common scenario would
be for the parent of a family choose to give access to a
child to view the devices installed in their household.

To access such feature, the main user would navigate to
their profile page where they can add any number of
dependents to their account. Each dependent, needs to
have a account already registered in the system in order to
benefit from such feature. This measurement also
improves the security of the system, to avoid unwanted
access to the devices in a household. Fig. 10 shows the
page to add new dependents. When the request for a
dependent is created, such user receives a notification
where they can choose to accept or not. Upon acceptance,

the dashboard of the user will be updated to show the same
devices as the master user. The dependent however, cannot
add or delete devices. Their ability is limited to editing the
location of the devices and changing the temperature of
the HVAC system.

REFERENCES

[1] Particle. (n.d.). Retrieved April 06, 2016, from
https://docs.particle.io/datasheets/photon-datasheet/

[2] Split Core Current Transformer ECS1030-
L72. (n.d.). Retrieved April 06, 2016, from
http://cdn.sparkfun.com/datasheets/Sensors/Current/ECS1
030-L72-SPEC.pdf

[3] LCM-S01602DSF/A Datasheet. (n.d.).
Retrieved April 06, 2016, from
http://www.mouser.com/ds/2/244/LCM-S01602DSFA-
108827.pdf

[4] R. A. Light, "Mosquitto: server and client
implementation of the MQTT protocol," The Journal of
Open Source Software, vol. 2, no. 13, May 2017, DOI:
10.21105/j0ss.00265

THE TEAM

Guilherme Costa is a student from
Brazil, currently in the United States
pursuing his bachelor’s degree in
Computer Engineering with expec-
tations to graduate in the Fall of 2019.
After graduation he plans to use the
experience acquired through UCF to
work as a network engineer back in his

Matthew Allen is a Computer Engi-
neering student at the University of
Central Florida, plans to pursue a career
in the software development following
graduation.

Felix Henriquez is a Computer Engi-
neering student from the Dominican
Republic. After graduation Felix plans
to work a few years as a software
contractor before starting his own
software engineering firm.

Avery Stevenson is a Senior at UCF
graduating with a Photonic Science and
Engineering Degree from the Center of
Research Education of Optics and
Lasers. He plans to work with optical
sensors and lasers in both production

4 .‘i\\v and research.

