
Robot Basketball
Brandon Gross (EE), Suvrat Jain (CpE), Cory
Ricondo (CpE), Mathew Schneider (CpE)
Dept. Of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract — The project is centered around the design of a
Robot Basketball Arcade game. The arcade basketball arena
sits on top of a tabletop and one player can pick up a
controller and move the robot basketball player to intake and
launch a small basketball into a hoop. The arena garners
attention from near and far with an exciting display of robot
athleticism and engaging displays and sounds. The project
provides an exciting platform to task the team with modern
engineering challenges such as robotics, computer vision,
game development, and embedded systems.

Index Terms — Arcade, Basketball, Computer Vision,
Embedded Systems, Entertainment, Robotics

I. Introduction

This project is proposed in the spirit of the RoboCup
challenge; RoboCup is a standardized soccer-based robotic
competition with a variety of leagues. In general, robots
compete against one another utilizing complex algorithms
developed by engineers. In the case of Robot Basketball,
one human player can compete against the clock by
controlling the robot to move and shoot the basketball.
However, due to perception and coordination problems that
come from remotely operating robots, the player may need
some assistance to maximize amusement. This introduces
a complex engineering challenge that involves some level
of machine intelligence to achieve high control fidelity.

The overall goal in this project is to create an arcade-
style entertainment system that is both robust and
intelligent. The product can fit on typical foldable tables
and is playable by one person at a time. The system is
designed modularly such that different subsystems can be
designed, created, and tested independently without
disassembling the entire system. The robot can collect and
launch the ball into a scale hoop with high accuracy and
precision. The robot is quick to traverse the court such that
the player is always actively engaged with the game. The
system assists the player by performing calculations to
increase shot accuracy. The game displays information to
the player including game type, score, and other useful
debugging information.

II. System Overview

The Project is split into three primary systems: Arena,
Robot, and Game. The robot system is the device for

physically interacting with the basketball court and
basketball. The robot receives commands from the arena
control-system and executes them. The Arena system
encompasses all things related to the basketball court,
basketball, physical frame structure, and computer vision.
The Computer Vision subsystem is used to determine the
position and orientation of the robot on the court. It also
tracks the position of the ball. The Game System involves
taking data in from the player and displaying information
such as game and robot status, instant replays, and high-
level robot control functionality. The architecture is shown
in Figure 1 System Architecture.

Figure 1 System Architecture

III. Robot

The Robot subsystem is comprised of all the components
required to pick up and launch a ball from various places
on the court. The robot acts as an Input-Output device that
simply takes inputs from other systems and executes them
based on a set of parameters on the robot. Additionally, it
provides insight into its state by providing information to
other systems. The rendered model of the robot is shown in
Figure 2.

Figure 2 Rendering of robot designed in SOLIDWORKS

A. Mechanical Overview

Base

The mobile robot base is the locomotion component of
the system. The design chosen is the 4-wheel holonomic
design. Each of the four wheels are powered by a Parallax
High-Speed Continuous Rotation servo with feedback. The
servo’s max speed is 160RPM. The continuous rotation
servo contains a built-in open-loop velocity-control motor
driver which reduces complexity in the PCB. Further, each
servo contains a 910Hz PWM absolute position sensor that
can be utilized for accurate positional control or verifiable
velocity control. This is important because the holonomic
motion requires precise speed control to achieve motion in
straight lines. The Servos can be powered up to 6.5V and
stall at 1.2A. The kinematics for this motion is shown
below. The high-level rotational derivations can be seen in
Figure 3.

𝑣𝑣 = 𝑉𝑉𝑡𝑡 + 𝑤𝑤 × 𝑟𝑟

𝑣𝑣𝑤𝑤 = 𝑣𝑣𝑝𝑝 = 𝑣𝑣 ⋅ 𝑢𝑢

Where v is the requested robot velocity, Vt is the
translational velocity, w is the angular velocity, and r is the
position vector from the base frame to the wheel frame. Vw

is the wheel velocity, vp is the velocity wheel parallel to the
wheel, and u is the unit vector between the base frame and
the wheel frame. These values are calculated on the robot
with component calculations specific to each of the motor’s
wheel mounting locations and orientations. Scaling factors
are also required to ensure that the output of the wheel
velocity correctly matches the speeds of the wheels.

Figure 3 Robot Holonomic Drive Kinematics

Launcher

The launcher is a flywheel mechanism that grips the ball
from the intake and rotates it around a track at high RPM.
The flywheel is controlled by a 3600 RPM 12V DC motor
with an IR break-beam sensor for RPM feedback. The
required launch range for the flywheel is 1 to 5 ft but the
current implementation is capable of further distances. The
ball is launched at a 45-degree angle. The launcher is
controlled with closed-loop velocity feedback through a
PID controller with feed-forward to overcome the wheel’s
inertia. Velocity commands are ramped to overcome very
large errors that can cause high overshoot in the system.
However, the system needs to have low rise time (<1
second) and have low steady-state error (<20 RPM) to
maintain responsiveness and high accuracy.

Intake

The intake for the robot must be able to pick up a ball
and transfer it to the launcher mechanism. The intake
mechanism is mounted on the front of the robot and is
controlled by two 9g micro-servos. The intake has three
operating states: disengaged at 0 degrees, holding at 110
degrees, and launch at 180 degrees. The servos are
mounted oppositely of each other so particular care is taken
that they receive the same (or opposite) positions at any
given time. The operating procedure is to have the intake
disengaged when the player is going to intake a ball. When
the ball is within a close distance of the robot, the intake
transitions to holding mode that contains the ball while the
robot navigates around the court. Finally, when the player
is ready to launch, the intake is fully engaged which pushes
the ball through a holding flap and engages the ball with
the flywheel.

B. Electrical

The electrical system for the robot exists primarily to
support the devices required for operation of the base,
launcher, and intake systems described above. That is: 4
continuous rotation servos with feedback, 2 9g micro
servos, and a larger 12V DC motor with an IR break-beam
sensor. Additionally, the robot is not tethered and thus
requires a wireless communication system and a battery. A
microcontroller unit with an additional PWM generator is
included to support the logic side of the robot system.
Although the servos only require power and PWM signals,
the flywheel requires an additional motor controller to
output varying power to achieve different launch speeds.
The power and logic systems are shown in Figure 4 and
Figure 5.

Figure 4 Robot Power Block Diagram

Figure 5 Robot Logic Block Diagram

Flywheel Motor Controller

A single channel of 12V input and up to 3-amp output is
required to control the flywheel motor. A DRV8871 is
chosen to support this device because it has an input range
of 6-24V and output current of up to 3.6A with a single
channel. This device utilizes two digital signals to control.
The combination of the two signals results in variable
output speed and direction.

PWM Generator

A PWM Generator is included to increase modularity in
the system. This reduces the number of PWM ports
required on a microcontroller and allows the system to
scale to increased actuations in the future. Further, a
separate module used to generate the signals allows the
microcontroller to focus on other tasks instead of utilizing
timers for PWM generation. A PCA9685 device is chosen
to create up to 16 PWM signals out of a single I2C
interface. This generator is set to a constant 50Hz output to
support the frequencies required by the servos. Thus, 6
PWM signals are utilized with servos, and an additional 2
signals are used to control the DRV8871. This leaves 8
PWM channels spare for additions later.

Microcontroller

The robot requires an onboard processor to perform the
necessary calculations for control. These tasks require real
time executions. An ATMEGA 328P is employed as the
master controller for the robot. This device acquires
commands from the communication module, processes
inputs from sensors, and writes outputs to the PWM
generator. I2C, UART, PWM inputs, and digital inputs are
required to support the chosen peripheral devices. There
are 4 PWM feedback lines, 1 digital feedback line, two I2C
pins, and 2 UART pins. This leaves 2 digital pins spare,
and 3 Analog pins spare for future additions. The chosen
microcontroller has a plethora of firmware support and is
one of the cheaper models available.

Communication

The robot must have a communication system on board
and receive data over a wireless link. An RN-42 Bluetooth
2.1 device is chosen to integrate with the robot system. This
device is chosen because of its wide support across many
devices, and its relative simplicity compared to newer
Bluetooth devices. SPP (UART) profile is utilized to
transmit ASCII characters to and from the microcontroller.
The Robot expects a specific packet design at a consistent
frequency to avoid timeouts which result in the robot
stopping. The packet design contains a starting character, a
header section, a payload section, and an ending newline
character. The data sections contain combinations of hex
characters to enable high-speed parsing. Control is through
an 8-bit (2 hex) command corresponding to -100% to 100%
joint speed per axis. The overall packet is 32 Bytes
including overhead

Figure 6 Packet Design to Robot and from Robot

Battery

The mobile robot requires a battery system for power. A
2200mAh 3S LiPo is chosen to power the system. A 3S
LiPo has a voltage range within 11.1 to 12.6V. The chosen

battery is capable of 50C discharge which is equivalent to
50A which is more than required to power all the systems
when stalling. The estimated runtime for the battery within
normal playtime conditions is about 2 hours. However, this
runtime is dependent on playing conditions. A LiPo
voltage monitor is included externally to determine the
remaining charge of the battery and indicate when the
voltage drops below an acceptable range.

PCB

The PCB design primarily exists to connect all the
discussed components in a clean, easy to use, and robust
package. The final PCB design is printed as a 2-layer
100x60mm board which contains many surface-mount
devices and an array of header pins to interface with the
peripheral devices such as motors, servos, sensors, and
batteries. An FTDI device is not included on the PCB, but
the PCB contains a header-port for easy access to program
and debug the device.

C. Software

The software component drives the hardware
components in the PCB. This includes any control software
such as various PID control, state machines, and Bluetooth
communication. The software for the Robot must be hard
real time to ensure that inputs and outputs are processed in
a context that does not affect the fidelity of the system. The
design does the following: updates inputs, processes the
system’s data, and updates the outputs. Four isolated layers
are defined: Application layer, System layer, object layer,
and library layer. The application layer contains the
primary infinite loop for the robot’s software that processes
the inputs, data, and outputs in the appropriate scan time.
The system layer contains classes defining robot-specific
systems such as the intake, launcher, and drive systems.
The object layer contains abstract code for actuators,
sensors, and state processing. Finally, the system and
object layer leverage existing libraries when possible.
These libraries include the PID, Servo, I2C(PCA9685) and
Bluetooth libraries available for the electrical components.
The layering system is shown in Figure 7.

Figure 7 Robot Software Architecture design

IV. Arena

The Arena subsystem is the frame that the robot can be
placed on and all the components required for basketball
gameplay. It contains the computer vision component of
the project for robot and ball tracking. The subsystem
contains all the player experience including lights, sounds,
and display. The model is rendered in Figure 7.

Figure 8 Arena model render from SOLIDWORKS

A. Mechanical Overview

The size of the arena is 4 ft width by 5 ft length by 3 ft
height which is scaled from a real court. Walls surround the
arena to prevent a rogue object from flying in or out of the
arena and hitting someone or something it is not supposed
to. The court component involves the actual floor of the
arena that the robots drive around on and it contains
basketball court markings. The ball for this project is a 2-
inch diameter tennis ball themed as a basketball. The hoop
is mounted to the frame and is set to a diameter that is
feasible for the launcher to remain accurate under most
conditions. Each time a basket is made, the score for the
game must be updated, thus the hoop must sense when a
ball makes it all the way through. It is possible that the ball
goes halfway in and pops out, so the sensor is designed
such that it is resilient to false positives (I.E debouncing).

B. Electrical

The electrical system for the Arena subsystem is a
straightforward design that utilizes as many off-the-shelf

components as possible to eliminate the need of an
additional PCB. The electrical system is composed of
power sourced from a standard wall outlet using a power
strip / surge protector. This device powers the TV, and two
5V AC-DC convertors that in turn power the Jetson Nano,
and LED Lights. The remaining devices source power from
the Jetson Nano’s GPIO pins. The electrical block diagram
is shown in Figure 9.

Figure 9 Arena Electrical System Block Diagram

Display & Sounds

The arena utilizes a TV for displaying information to the
player through the game engine and playing sounds to
enhance the experience. The resolution of the TV is 720P
and the size is 32-inches. The specific TV is a Sony Bravia
KDl-32BX310 display which is chosen due to high
availability and low cost.

Camera

The camera for this project is used for computer vision
to track the robot and ball. The camera is placed 5 feet
above the arena so that it may see the entire arena, robot,
and goal. The camera is utilized to analyze locations of the
robot and ball such that the assistive features of the game
can be employed. A high framerate is critical to the
application. Additionally, a high resolution is important
such that tracking is accurate. Thus, a Logitech C920
1080P widescreen camera is utilized. The 1080P mode
provides 30 frames per second at a high resolution which
can achieve the locational precision required for robot
tracking.

Gamepad

The gamepad is the first thing a player touches when
playing the game, so it’s important to utilize a gamepad that
feels familiar. An often overlooked, but important feature
is tactile feedback. Tactile feedback aids in the feeling of
control over the robot and adds another level of response
to the player so they feel like their driving has an impact on
the game. An Xbox One controller is utilized due to the
driver availability, popularity of the controller, and tactile
feedback functions.

LED Lights

NeoPixel RGB LEDs are used as they allow for the
customization needed for the arena. The ability to
individually control the LEDs on the strip is invaluable to
display different status signals such as a malfunction or
“goal made” to the players. This feature has also been used
for testing integration between all the objects involved with
the arena. The design uses NeoPixel Strips around the walls
of the arena that are connected to the microcontroller and
they receive signals from the arena about what to display.
The LED lights attracts viewers from far away and engages
the player when achievements are made.

Controller

This controller performs calculations for computer
vision, Bluetooth communication from arena to robot, and
runs the game engine which performs calculations for robot
location, calculations for force to launch the ball, and
shows video on the display. The controller must interface
with the additional peripherals in the system such as the
TV, Gamepad, Camera, Bluetooth, and LED devices. This
is a significant undertaking for a traditional
microcontroller; a Jetson Nano is chosen to employ a
traditional operating system to support the large amount of
data processing. The Jetson nano contains a quad-core
ARM 1.43GHz processor and a 128-core GPU. The team
quickly discovered that the nature of a non-Realtime
operating system prohibits the control of LED-lights and
hoop sensors despite the availability of GPIO pins. Thus,
the system also incorporates an Arduino Nano to control
the NeoPixels and hoop sensors. A UART protocol is
utilized between the Jetson and the Arduino to set LED
states and determine whether a goal has been made. The
gamepad and Camera connect to the Jetson Nano through
a USB interface, and the Bluetooth module is an M.2 Intel
8265 WIFI/Bluetooth module.

Communication

The communication subsystem allows the Arena to send
commands to the robot. To accomplish this, the Arena must
have a communication system on board and send data over
a wireless link. The communication is established through
an Intel 8265 device which contains Bluetooth capabilities.

The packet design is discussed in section III, Robot-
Electrical-Communication.

C. Computer Vision

The computer vision portion detects and tracks the
location of all moving objects on the court. Prior to any
detection, background subtraction is performed to remove
most of the frame noise. The background is static, so prior
to startup, the objects are removed from the court and
several frames are added to a background subtraction
model. After the model is created, the robot and ball are
placed onto the court. The frame that the remaining
calculations are performed on is created through masking
the foreground that is separated from the background
model (Figure 9 top right & middle left). Two color patches
are placed onto the robot to reduce complexity of this
system. In this case, blue and pink patches are put on the
top of the robot that the computer vision looks for to
determine robot position and orientation (Figure 9 middle
right). After color filtering, the software detects various
contours for the squares (Figure 9 bottom left). It also
filters for orange and then performs a Hough transform
operation to detect the ball. After the patches are detected
and the centroids are found, the position and orientation of
the robot is found through vector arithmetic (See Figure 9
bottom right). The computer vision software utilizes the
various functionality available with OpenCV. If additional
computational time is required, the OpenCV libraries can
be CUDA-enhanced to take advantage of parallel
processing. The entire data flow is described in Figure 10.

Figure 10 Computer Vision Results

Figure 11 Computer Vision Flowchart

D. Peripheral Software

The peripheral software involves all the software related
to devices and hardware for the arena. This includes
driving the LED lights, communication through Bluetooth,
hoop sensing, and robot control. This software also needs
to directly communicate with the Game system. The
peripheral software’s primary job is to map data from the
Game to the Robot through sockets. The Game sends data
through a local socket which is then parsed and passed to
the robot through a Bluetooth RFCOMM socket. The
software actively connects to the robot, and ensures a valid
connection is available. Due to the nature of asynchronous
communication, flow control is required to avoid buffer
overflow on the Robot or the peripheral software. The
peripheral software handles sending & receiving data by
verifying when the robot is ready to receive data, and when
valid data is available to send. The peripheral software also
controls LED states by listening to the Game system and
sending commands to the Arduino Nano through a
hardware serial interface. Finally, it listens to the Arduino
Nano for changes in the hoop-sensor status and passes that
data to the game system.

V. Game

The Game system harnesses the power of a game engine
to deploy commonly used features that are available in a
virtual environment. The project requires players to be able
to adjust settings, start and stop timers, display scores and
other feedback, and aid the user by showing a 2D virtual
representation of an environment. The game system is the
primary software arm on Arena system, but it can act
independently from the Arena system. The three main
components of the game system are the collision detection,
video playback and robot control.

A. Engine

The game engine handles a few tasks overall and acts as
a hub for data to flow in and out of. It handles data
visualization such as showing a mockup of where the
physical components are such as the robot and ball are on
the field or playing an animation when a shot is made or
missed. The game engine will also need to be capable of
both 2D and 3D animation to carry out its tasks. The chosen
engine, PyGames, is picked primarily because of its
availability on the Jetson nano AARCH64 architecture.

B. Collision Detection

The game engine system is responsible for protecting the
robot in events of poor user input. For example, if the
player constantly runs into the wall, the robot would either
drive over the wall and flip, or it would burn out the motors
and cause electrical or structural damage. The protections
could be reducing motor power, slowing the robot, or
preventing input entirely. Another useful feature of
collision detection is automatic intaking when the ball is
near the front of the robot. This is a player-assist feature
that can have adjustable settings. The collision detection
will be set up in such a way that as the robot moves closer
to the designated wall area of the arena, the controller will
begin to vibrate, and the intensity of the vibration will
increase the closer that the robot’s position to the wall is.
The system also fully prevents controls that drive the robot
into a wall

C. Video Playback

It is very common to have a replay of events that
happened prior to a score in any sport. When a player
scores a goal, it would be exciting and useful for spectators
to see the motions of the robot and ball in the time leading
up to the robot shooting the ball. This requires a storage
buffer holding the positional data of the robots and ball,
and timing for ball entering the hoop. At the time of
scoring, a short playback of the positional data (in 2D) and
then a pre-rendered 3D animation of the ball being
launched and going into a hoop play. This is very similar
to what bowling centers do for knocked down pins.

D. Master Control

The master robot control software exists within the game
system and is the ultimate high-level controller for the
robot. The game system acquires user input from the
gamepad and then converts that data into appropriate robot
commands. The robot simply acts as an I/O device that the
game system is controlling. Master states, computer vision,
collision system, and other inputs are utilized to convert
user input into servo commands that are sent through the
Arena system to the robot and interpreted there. The Robot
Master control accumulates all the data relevant to robot
function and determines the high-level functionality of the
robot.

VI. Conclusion

Over the course of the last two semesters, the team
researched, designed, built, and tested a basketball-based
arcade game. The robot is an agile holonomic drive capable
of picking up a 2-inch diameter basketball and launching it
on a 1:15 scale half-size basketball court. Controlling the
robot can be difficult, so player assistance is added through
automatic speed calculations and angle adjustments. The
robot’s position and orientation, as well as the ball’s
position, is found using computer vision processing on
video data from an overhead camera. The data from the
robot and computer vision systems are transferred to a
game system that displays information to the player. The
game system also ingests data from the player through a
gamepad to pass through to the robot. The final product is
a fun and engaging game that players can pick up the
gamepad and start driving the robot to pick up and launch
a ball to score as many points as possible prior to the clock
time running out

Acknowledgement

A special thanks to Professor Chan and Professor
Sukthankar for their insight into the project at various
stages. An additional thank you to the aides in the
Innovation lab for their help and resources, with a specific
thank you to Elizabeth Nogues. Thanks to Nicole Foust for
her assistance in creating the basketball court markings on
the Arena. Finally, thank you to Birket Engineering for
resources and expertise in PCB manufacturing and testing.

References

[1] M. Matera, "Fast PID," Github, 2017. [Online].
Available: https://github.com/mike-
matera/FastPID. [Accessed 29 7 2019].

[2] "Pybluez," Github, 2018. [Online]. Available:
https://github.com/pybluez/pybluez. [Accessed 29
7 2019].

[3] "Jetson GPIO," Github, 2019. [Online].
Available: https://github.com/NVIDIA/jetson-gpio.
[Accessed 29 7 2019].

[4] "Bluetooth Basics," [Online]. Available:
https://learn.sparkfun.com/tutorials/bluetooth-
basics/all.

[5] "Adafruit Servo Driver Library," 2012. [Online].
Available: https://github.com/adafruit/Adafruit-
PWM-Servo-Driver-Library. [Accessed 29 7 2019].

[6] B. Gross, S. Jain, C. Ricondo and M. Schneider,
"Robot Basketball," 2019.

Biography

Brandon Gross is an Electrical
Engineering Major with a minor in
Intelligent Robotic Systems. He will
be interning at Walt Disney
Imagineering in Spring 2020.

Suvrat Jain is a Computer
Engineering Major with a minor in
Intelligent Robotic Systems. He will
be joining in Birket Engineering in
Spring 2020.

Cory Ricondo is a Computer
Engineering Major. He will be
entering the workforce in Spring
2020 and is currently looking for
Full Time employment.

Mathew Schneider is a Computer
Engineering Major. He will be
joining NAWCTSD full-time in
Spring 2020.

	Robot Basketball
	Dept. Of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-2450
	Abstract — The project is centered around the design of a Robot Basketball Arcade game. The arcade basketball arena sits on top of a tabletop and one player can pick up a controller and move the robot basketball player to intake and launch a small bas...
	Index Terms — Arcade, Basketball, Computer Vision, Embedded Systems, Entertainment, Robotics
	I. Introduction
	II. System Overview
	III. Robot
	A. Mechanical Overview
	Base
	Launcher
	Intake

	B. Electrical
	Flywheel Motor Controller
	PWM Generator
	Microcontroller
	Communication
	Battery
	PCB

	C. Software

	IV. Arena
	A. Mechanical Overview
	B. Electrical
	Display & Sounds
	Camera
	Gamepad
	LED Lights
	Controller
	Communication

	C. Computer Vision
	D. Peripheral Software

	V. Game
	A. Engine
	B. Collision Detection
	C. Video Playback
	D. Master Control

	VI. Conclusion
	Acknowledgement
	References
	Biography
	Brandon Gross is an Electrical Engineering Major with a minor in Intelligent Robotic Systems. He will be interning at Walt Disney Imagineering in Spring 2020.
	Suvrat Jain is a Computer Engineering Major with a minor in Intelligent Robotic Systems. He will be joining in Birket Engineering in Spring 2020.
	Cory Ricondo is a Computer Engineering Major. He will be entering the workforce in Spring 2020 and is currently looking for Full Time employment.
	Mathew Schneider is a Computer Engineering Major. He will be joining NAWCTSD full-time in Spring 2020.

