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Abstract — The project is centered around the design of a 
Robot Basketball Arcade game. The arcade basketball arena 
sits on top of a tabletop and one player can pick up a 
controller and move the robot basketball player to intake and 
launch a small basketball into a hoop. The arena garners 
attention from near and far with an exciting display of robot 
athleticism and engaging displays and sounds. The project 
provides an exciting platform to task the team with modern 
engineering challenges such as robotics, computer vision, 
game development, and embedded systems. 

Index Terms — Arcade, Basketball, Computer Vision, 
Embedded Systems, Entertainment, Robotics 

I. Introduction 

This project is proposed in the spirit of the RoboCup 
challenge; RoboCup is a standardized soccer-based robotic 
competition with a variety of leagues. In general, robots 
compete against one another utilizing complex algorithms 
developed by engineers. In the case of Robot Basketball, 
one human player can compete against the clock by 
controlling the robot to move and shoot the basketball. 
However, due to perception and coordination problems that 
come from remotely operating robots, the player may need 
some assistance to maximize amusement. This introduces 
a complex engineering challenge that involves some level 
of machine intelligence to achieve high control fidelity.  

The overall goal in this project is to create an arcade-
style entertainment system that is both robust and 
intelligent. The product can fit on typical foldable tables 
and is playable by one person at a time. The system is 
designed modularly such that different subsystems can be 
designed, created, and tested independently without 
disassembling the entire system. The robot can collect and 
launch the ball into a scale hoop with high accuracy and 
precision. The robot is quick to traverse the court such that 
the player is always actively engaged with the game. The 
system assists the player by performing calculations to 
increase shot accuracy. The game displays information to 
the player including game type, score, and other useful 
debugging information.  

II. System Overview 

The Project is split into three primary systems: Arena, 
Robot, and Game. The robot system is the device for 

physically interacting with the basketball court and 
basketball. The robot receives commands from the arena 
control-system and executes them. The Arena system 
encompasses all things related to the basketball court, 
basketball, physical frame structure, and computer vision. 
The Computer Vision subsystem is used to determine the 
position and orientation of the robot on the court. It also 
tracks the position of the ball. The Game System involves 
taking data in from the player and displaying information 
such as game and robot status, instant replays, and high-
level robot control functionality. The architecture is shown 
in Figure 1 System Architecture. 

 
Figure 1 System Architecture 



III. Robot 

The Robot subsystem is comprised of all the components 
required to pick up and launch a ball from various places 
on the court. The robot acts as an Input-Output device that 
simply takes inputs from other systems and executes them 
based on a set of parameters on the robot. Additionally, it 
provides insight into its state by providing information to 
other systems. The rendered model of the robot is shown in 
Figure 2. 

 
Figure 2 Rendering of robot designed in SOLIDWORKS 

A. Mechanical Overview 

Base 

The mobile robot base is the locomotion component of 
the system. The design chosen is the 4-wheel holonomic 
design. Each of the four wheels are powered by a Parallax 
High-Speed Continuous Rotation servo with feedback. The 
servo’s max speed is 160RPM. The continuous rotation 
servo contains a built-in open-loop velocity-control motor 
driver which reduces complexity in the PCB. Further, each 
servo contains a 910Hz PWM absolute position sensor that 
can be utilized for accurate positional control or verifiable 
velocity control. This is important because the holonomic 
motion requires precise speed control to achieve motion in 
straight lines. The Servos can be powered up to 6.5V and 
stall at 1.2A. The kinematics for this motion is shown 
below. The high-level rotational derivations can be seen in 
Figure 3. 

𝑣𝑣 = 𝑉𝑉𝑡𝑡 + 𝑤𝑤 × 𝑟𝑟 

𝑣𝑣𝑤𝑤 = 𝑣𝑣𝑝𝑝 = 𝑣𝑣 ⋅ 𝑢𝑢 

Where v is the requested robot velocity, Vt is the 
translational velocity, w is the angular velocity, and r is the 
position vector from the base frame to the wheel frame. Vw 

is the wheel velocity, vp is the velocity wheel parallel to the 
wheel, and u is the unit vector between the base frame and 
the wheel frame. These values are calculated on the robot 
with component calculations specific to each of the motor’s 
wheel mounting locations and orientations. Scaling factors 
are also required to ensure that the output of the wheel 
velocity correctly matches the speeds of the wheels.   

 
Figure 3 Robot Holonomic Drive Kinematics 

Launcher 

The launcher is a flywheel mechanism that grips the ball 
from the intake and rotates it around a track at high RPM. 
The flywheel is controlled by a 3600 RPM 12V DC motor 
with an IR break-beam sensor for RPM feedback. The 
required launch range for the flywheel is 1 to 5 ft but the 
current implementation is capable of further distances. The 
ball is launched at a 45-degree angle. The launcher is 
controlled with closed-loop velocity feedback through a 
PID controller with feed-forward to overcome the wheel’s 
inertia. Velocity commands are ramped to overcome very 
large errors that can cause high overshoot in the system. 
However, the system needs to have low rise time (<1 
second) and have low steady-state error (<20 RPM) to 
maintain responsiveness and high accuracy.  



Intake 

The intake for the robot must be able to pick up a ball 
and transfer it to the launcher mechanism. The intake 
mechanism is mounted on the front of the robot and is 
controlled by two 9g micro-servos. The intake has three 
operating states: disengaged at 0 degrees, holding at 110 
degrees, and launch at 180 degrees. The servos are 
mounted oppositely of each other so particular care is taken 
that they receive the same (or opposite) positions at any 
given time. The operating procedure is to have the intake 
disengaged when the player is going to intake a ball. When 
the ball is within a close distance of the robot, the intake 
transitions to holding mode that contains the ball while the 
robot navigates around the court. Finally, when the player 
is ready to launch, the intake is fully engaged which pushes 
the ball through a holding flap and engages the ball with 
the flywheel.  

B. Electrical 

The electrical system for the robot exists primarily to 
support the devices required for operation of the base, 
launcher, and intake systems described above. That is: 4 
continuous rotation servos with feedback, 2 9g micro 
servos, and a larger 12V DC motor with an IR break-beam 
sensor. Additionally, the robot is not tethered and thus 
requires a wireless communication system and a battery. A 
microcontroller unit with an additional PWM generator is 
included to support the logic side of the robot system. 
Although the servos only require power and PWM signals, 
the flywheel requires an additional motor controller to 
output varying power to achieve different launch speeds. 
The power and logic systems are shown in Figure 4 and 
Figure 5.  

 
Figure 4 Robot Power Block Diagram 

 
Figure 5 Robot Logic Block Diagram 

Flywheel Motor Controller 

A single channel of 12V input and up to 3-amp output is 
required to control the flywheel motor. A DRV8871 is 
chosen to support this device because it has an input range 
of 6-24V and output current of up to 3.6A with a single 
channel. This device utilizes two digital signals to control. 
The combination of the two signals results in variable 
output speed and direction.  

PWM Generator 

A PWM Generator is included to increase modularity in 
the system. This reduces the number of PWM ports 
required on a microcontroller and allows the system to 
scale to increased actuations in the future. Further, a 
separate module used to generate the signals allows the 
microcontroller to focus on other tasks instead of utilizing 
timers for PWM generation. A PCA9685 device is chosen 
to create up to 16 PWM signals out of a single I2C 
interface. This generator is set to a constant 50Hz output to 
support the frequencies required by the servos. Thus, 6 
PWM signals are utilized with servos, and an additional 2 
signals are used to control the DRV8871. This leaves 8 
PWM channels spare for additions later.  

Microcontroller 

The robot requires an onboard processor to perform the 
necessary calculations for control. These tasks require real 
time executions. An ATMEGA 328P is employed as the 
master controller for the robot. This device acquires 
commands from the communication module, processes 
inputs from sensors, and writes outputs to the PWM 
generator. I2C, UART, PWM inputs, and digital inputs are 
required to support the chosen peripheral devices. There 
are 4 PWM feedback lines, 1 digital feedback line, two I2C 
pins, and 2 UART pins. This leaves 2 digital pins spare, 
and 3 Analog pins spare for future additions. The chosen 
microcontroller has a plethora of firmware support and is 
one of the cheaper models available.  



Communication 

The robot must have a communication system on board 
and receive data over a wireless link. An RN-42 Bluetooth 
2.1 device is chosen to integrate with the robot system. This 
device is chosen because of its wide support across many 
devices, and its relative simplicity compared to newer 
Bluetooth devices. SPP (UART) profile is utilized to 
transmit ASCII characters to and from the microcontroller. 
The Robot expects a specific packet design at a consistent 
frequency to avoid timeouts which result in the robot 
stopping. The packet design contains a starting character, a 
header section, a payload section, and an ending newline 
character. The data sections contain combinations of hex 
characters to enable high-speed parsing. Control is through 
an 8-bit (2 hex) command corresponding to -100% to 100% 
joint speed per axis. The overall packet is 32 Bytes 
including overhead 

 
Figure 6 Packet Design to Robot and from Robot 

Battery 

The mobile robot requires a battery system for power. A 
2200mAh 3S LiPo is chosen to power the system. A 3S 
LiPo has a voltage range within 11.1 to 12.6V. The chosen 

battery is capable of 50C discharge which is equivalent to 
50A which is more than required to power all the systems 
when stalling. The estimated runtime for the battery within 
normal playtime conditions is about 2 hours. However, this 
runtime is dependent on playing conditions. A LiPo 
voltage monitor is included externally to determine the 
remaining charge of the battery and indicate when the 
voltage drops below an acceptable range. 

PCB 

The PCB design primarily exists to connect all the 
discussed components in a clean, easy to use, and robust 
package. The final PCB design is printed as a 2-layer 
100x60mm board which contains many surface-mount 
devices and an array of header pins to interface with the 
peripheral devices such as motors, servos, sensors, and 
batteries. An FTDI device is not included on the PCB, but 
the PCB contains a header-port for easy access to program 
and debug the device.  

C. Software 

The software component drives the hardware 
components in the PCB. This includes any control software 
such as various PID control, state machines, and Bluetooth 
communication. The software for the Robot must be hard 
real time to ensure that inputs and outputs are processed in 
a context that does not affect the fidelity of the system.  The 
design does the following: updates inputs, processes the 
system’s data, and updates the outputs. Four isolated layers 
are defined: Application layer, System layer, object layer, 
and library layer. The application layer contains the 
primary infinite loop for the robot’s software that processes 
the inputs, data, and outputs in the appropriate scan time. 
The system layer contains classes defining robot-specific 
systems such as the intake, launcher, and drive systems. 
The object layer contains abstract code for actuators, 
sensors, and state processing. Finally, the system and 
object layer leverage existing libraries when possible. 
These libraries include the PID, Servo, I2C(PCA9685) and 
Bluetooth libraries available for the electrical components. 
The layering system is shown in Figure 7. 

 
Figure 7 Robot Software Architecture design 



IV. Arena 

The Arena subsystem is the frame that the robot can be 
placed on and all the components required for basketball 
gameplay. It contains the computer vision component of 
the project for robot and ball tracking. The subsystem 
contains all the player experience including lights, sounds, 
and display. The model is rendered in Figure 7. 

 
Figure 8 Arena model render from SOLIDWORKS 

A. Mechanical Overview 

The size of the arena is 4 ft width by 5 ft length by 3 ft 
height which is scaled from a real court. Walls surround the 
arena to prevent a rogue object from flying in or out of the 
arena and hitting someone or something it is not supposed 
to. The court component involves the actual floor of the 
arena that the robots drive around on and it contains 
basketball court markings. The ball for this project is a 2-
inch diameter tennis ball themed as a basketball. The hoop 
is mounted to the frame and is set to a diameter that is 
feasible for the launcher to remain accurate under most 
conditions. Each time a basket is made, the score for the 
game must be updated, thus the hoop must sense when a 
ball makes it all the way through. It is possible that the ball 
goes halfway in and pops out, so the sensor is designed 
such that it is resilient to false positives (I.E debouncing).  

B. Electrical 

The electrical system for the Arena subsystem is a 
straightforward design that utilizes as many off-the-shelf 

components as possible to eliminate the need of an 
additional PCB. The electrical system is composed of 
power sourced from a standard wall outlet using a power 
strip / surge protector. This device powers the TV, and two 
5V AC-DC convertors that in turn power the Jetson Nano, 
and LED Lights. The remaining devices source power from 
the Jetson Nano’s GPIO pins. The electrical block diagram 
is shown in Figure 9. 

 
Figure 9 Arena Electrical System Block Diagram 

Display & Sounds 

The arena utilizes a TV for displaying information to the 
player through the game engine and playing sounds to 
enhance the experience. The resolution of the TV is 720P 
and the size is 32-inches. The specific TV is a Sony Bravia 
KDl-32BX310 display which is chosen due to high 
availability and low cost.  

Camera 

The camera for this project is used for computer vision 
to track the robot and ball. The camera is placed 5 feet 
above the arena so that it may see the entire arena, robot, 
and goal. The camera is utilized to analyze locations of the 
robot and ball such that the assistive features of the game 
can be employed. A high framerate is critical to the 
application. Additionally, a high resolution is important 
such that tracking is accurate. Thus, a Logitech C920 
1080P widescreen camera is utilized. The 1080P mode 
provides 30 frames per second at a high resolution which 
can achieve the locational precision required for robot 
tracking. 

 



Gamepad 

The gamepad is the first thing a player touches when 
playing the game, so it’s important to utilize a gamepad that 
feels familiar. An often overlooked, but important feature 
is tactile feedback. Tactile feedback aids in the feeling of 
control over the robot and adds another level of response 
to the player so they feel like their driving has an impact on 
the game. An Xbox One controller is utilized due to the 
driver availability, popularity of the controller, and tactile 
feedback functions.  

LED Lights 

NeoPixel RGB LEDs are used as they allow for the 
customization needed for the arena. The ability to 
individually control the LEDs on the strip is invaluable to 
display different status signals such as a malfunction or 
“goal made” to the players. This feature has also been used 
for testing integration between all the objects involved with 
the arena. The design uses NeoPixel Strips around the walls 
of the arena that are connected to the microcontroller and 
they receive signals from the arena about what to display. 
The LED lights attracts viewers from far away and engages 
the player when achievements are made.   

Controller 

This controller performs calculations for computer 
vision, Bluetooth communication from arena to robot, and 
runs the game engine which performs calculations for robot 
location, calculations for force to launch the ball, and 
shows video on the display. The controller must interface 
with the additional peripherals in the system such as the 
TV, Gamepad, Camera, Bluetooth, and LED devices. This 
is a significant undertaking for a traditional 
microcontroller; a Jetson Nano is chosen to employ a 
traditional operating system to support the large amount of 
data processing. The Jetson nano contains a quad-core 
ARM 1.43GHz processor and a 128-core GPU. The team 
quickly discovered that the nature of a non-Realtime 
operating system prohibits the control of LED-lights and 
hoop sensors despite the availability of GPIO pins. Thus, 
the system also incorporates an Arduino Nano to control 
the NeoPixels and hoop sensors. A UART protocol is 
utilized between the Jetson and the Arduino to set LED 
states and determine whether a goal has been made. The 
gamepad and Camera connect to the Jetson Nano through 
a USB interface, and the Bluetooth module is an M.2 Intel 
8265 WIFI/Bluetooth module.  

Communication 

The communication subsystem allows the Arena to send 
commands to the robot. To accomplish this, the Arena must 
have a communication system on board and send data over 
a wireless link. The communication is established through 
an Intel 8265 device which contains Bluetooth capabilities. 

The packet design is discussed in section III, Robot-
Electrical-Communication.  

C. Computer Vision 

The computer vision portion detects and tracks the 
location of all moving objects on the court. Prior to any 
detection, background subtraction is performed to remove 
most of the frame noise. The background is static, so prior 
to startup, the objects are removed from the court and 
several frames are added to a background subtraction 
model. After the model is created, the robot and ball are 
placed onto the court. The frame that the remaining 
calculations are performed on is created through masking 
the foreground that is separated from the background 
model (Figure 9 top right & middle left). Two color patches 
are placed onto the robot to reduce complexity of this 
system. In this case, blue and pink patches are put on the 
top of the robot that the computer vision looks for to 
determine robot position and orientation (Figure 9 middle 
right). After color filtering, the software detects various 
contours for the squares (Figure 9 bottom left). It also 
filters for orange and then performs a Hough transform 
operation to detect the ball. After the patches are detected 
and the centroids are found, the position and orientation of 
the robot is found through vector arithmetic (See Figure 9 
bottom right). The computer vision software utilizes the 
various functionality available with OpenCV. If additional 
computational time is required, the OpenCV libraries can 
be CUDA-enhanced to take advantage of parallel 
processing. The entire data flow is described in Figure 10. 

 
Figure 10 Computer Vision Results 



 
Figure 11 Computer Vision Flowchart 

D. Peripheral Software 

The peripheral software involves all the software related 
to devices and hardware for the arena. This includes 
driving the LED lights, communication through Bluetooth, 
hoop sensing, and robot control. This software also needs 
to directly communicate with the Game system. The 
peripheral software’s primary job is to map data from the 
Game to the Robot through sockets. The Game sends data 
through a local socket which is then parsed and passed to 
the robot through a Bluetooth RFCOMM socket. The 
software actively connects to the robot, and ensures a valid 
connection is available. Due to the nature of asynchronous 
communication, flow control is required to avoid buffer 
overflow on the Robot or the peripheral software. The 
peripheral software handles sending & receiving data by 
verifying when the robot is ready to receive data, and when 
valid data is available to send. The peripheral software also 
controls LED states by listening to the Game system and 
sending commands to the Arduino Nano through a 
hardware serial interface. Finally, it listens to the Arduino 
Nano for changes in the hoop-sensor status and passes that 
data to the game system.   

V. Game 

The Game system harnesses the power of a game engine 
to deploy commonly used features that are available in a 
virtual environment. The project requires players to be able 
to adjust settings, start and stop timers, display scores and 
other feedback, and aid the user by showing a 2D virtual 
representation of an environment. The game system is the 
primary software arm on Arena system, but it can act 
independently from the Arena system. The three main 
components of the game system are the collision detection, 
video playback and robot control. 

A. Engine 

The game engine handles a few tasks overall and acts as 
a hub for data to flow in and out of. It handles data 
visualization such as showing a mockup of where the 
physical components are such as the robot and ball are on 
the field or playing an animation when a shot is made or 
missed. The game engine will also need to be capable of 
both 2D and 3D animation to carry out its tasks. The chosen 
engine, PyGames, is picked primarily because of its 
availability on the Jetson nano AARCH64 architecture. 

B. Collision Detection 

The game engine system is responsible for protecting the 
robot in events of poor user input. For example, if the 
player constantly runs into the wall, the robot would either 
drive over the wall and flip, or it would burn out the motors 
and cause electrical or structural damage. The protections 
could be reducing motor power, slowing the robot, or 
preventing input entirely. Another useful feature of 
collision detection is automatic intaking when the ball is 
near the front of the robot. This is a player-assist feature 
that can have adjustable settings. The collision detection 
will be set up in such a way that as the robot moves closer 
to the designated wall area of the arena, the controller will 
begin to vibrate, and the intensity of the vibration will 
increase the closer that the robot’s position to the wall is. 
The system also fully prevents controls that drive the robot 
into a wall 

C. Video Playback 

It is very common to have a replay of events that 
happened prior to a score in any sport. When a player 
scores a goal, it would be exciting and useful for spectators 
to see the motions of the robot and ball in the time leading 
up to the robot shooting the ball. This requires a storage 
buffer holding the positional data of the robots and ball, 
and timing for ball entering the hoop. At the time of 
scoring, a short playback of the positional data (in 2D) and 
then a pre-rendered 3D animation of the ball being 
launched and going into a hoop play. This is very similar 
to what bowling centers do for knocked down pins.  



D. Master Control 

The master robot control software exists within the game 
system and is the ultimate high-level controller for the 
robot. The game system acquires user input from the 
gamepad and then converts that data into appropriate robot 
commands. The robot simply acts as an I/O device that the 
game system is controlling. Master states, computer vision, 
collision system, and other inputs are utilized to convert 
user input into servo commands that are sent through the 
Arena system to the robot and interpreted there. The Robot 
Master control accumulates all the data relevant to robot 
function and determines the high-level functionality of the 
robot.  

VI. Conclusion 

Over the course of the last two semesters, the team 
researched, designed, built, and tested a basketball-based 
arcade game. The robot is an agile holonomic drive capable 
of picking up a 2-inch diameter basketball and launching it 
on a 1:15 scale half-size basketball court. Controlling the 
robot can be difficult, so player assistance is added through 
automatic speed calculations and angle adjustments. The 
robot’s position and orientation, as well as the ball’s 
position, is found using computer vision processing on 
video data from an overhead camera. The data from the 
robot and computer vision systems are transferred to a 
game system that displays information to the player. The 
game system also ingests data from the player through a 
gamepad to pass through to the robot. The final product is 
a fun and engaging game that players can pick up the 
gamepad and start driving the robot to pick up and launch 
a ball to score as many points as possible prior to the clock 
time running out 
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