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1.0 Executive Summary 
 
The project documentation is centered around the design of a Robot Basketball 
Arcade game. The arcade basketball arena sits on top of a tabletop and one to two 
players can pick up a controller and move around the robot basketball player to 
intake and launch a small basketball into a hoop. The arena garners attention from 
near and far with an exciting display of robot athleticism and engaging displays 
and sounds. The project provides an exciting platform to task the team with modern 
engineering challenges such as robotics, computer vision, game development, 
and embedded systems.  
 
The major systems are designed with one primary goal in mind: player 
engagement. The final product is ultimately meant to be fun and entertaining such 
that people want to keep playing the game. In order to achieve this goal, the 
project’s features and functions are fully described in requirement specifications 
and constraints, and relevant standards are researched and implemented where 
appropriate. The project is split into 3 major systems: Robot, Arena, and Game 
Systems. Each system contains many subsystems and components that interface 
with one another to implement functionality and features. The robot is responsible 
for picking up and launching a ball with a fast and capable mechanical system that 
feels fluid to the player. The arena handles high level logic and computer vision to 
maximize robot intelligence and autonomy.  The game system provides a high-
fidelity representation of the robot and arena to guarantee the player can fully 
engage with the system with minimal frustration. The game system also gives full 
control to the player to customize the robot’s functionality to match the user’s 
playstyle. The project includes both high and low-level software to hide 
complexities from the player to ensure maximum usability and accessibility. 
 
The following report details the full design process including project description 
and narrative, engineering requirement specifications, realistic design constraints, 
system architecture, a detailed breakdown of system components and an 
administrative approach. Each system component contains a description, relevant 
research, design, and prototyping and testing sections. The component description 
translates the project’s requirements and features to a narrative discussion 
detailing the various design aspects of that particular component. The research 
sections discuss in detail the possible technologies, high-level designs, or 
purchasable components that satisfy requirements for the component. The design 
section fully defines the ultimate design that the team utilizes to solve the 
requirements for the project. The prototyping and testing sections describe how 
the design is to be built and tested to ensure that the component actually solves 
the problem within required specifications. Each section is designed and described 
with the previous section’s design decision in mind but attempts to be agnostic to 
it. Non-critical interfaces are defined in their relevant sections, but critical interfaces 
are designed and developed separately in another section to mitigate risk.  
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2.0 Project Description 
 

2.1 Motivation 
 
Entertainment is an essential part of life in the City of Orlando. Amusement parks, 
arcades, sports, movies and television retire us of our tiredness and fulfill our lives 
with optimism and sheer excitement. The Robot Basketball game project is chosen 
to create dynamic, interactive entertainment for everyone to enjoy.  
 
This project is proposed in the spirit of RoboCup challenge; RoboCup is a 
standardized soccer-based robotic competition with a variety of leagues. In 
general, robots compete against one another utilizing complex algorithms 
developed by engineers. In the case of Robot Basketball, two human players can 
compete against one another by controlling the robot to move and shoot the 
basketball. However, due to perception and coordination problems that come from 
remotely operating robots, the players may need some assistance to maximize 
amusement. This introduces a complex engineering challenge that involves some 
level of machine intelligence to achieve high control fidelity.  
 
The team proposes this project as a foundation for learning a wide variety of skills 
including Robotics, Computer Vision, Machine Learning, PCB Design, Bluetooth 
communication, Game and App development, and real-time control.  
 

2.2 Goals and Objectives 
 
The overall goal in this project is to create an arcade-style entertainment system 
that is both robust and intelligent. The product should be able to fit on typical 
foldable tables and should be playable by at least one, but preferably two people. 
The system should be designed modularly such that different subsystems can be 
designed, tested, and created independently without disassembling the entire 
system. The system should incorporate both high level software and low-level 
hardware interfacing. The robot should be low cost such that multiple robots can 
be created. The robot should be capable of collecting and launching the ball into a 
scale hoop with high accuracy and precision. The robot should be quick to traverse 
the court to increase mid-game activity. The system should assist the player by 
performing calculations to increase shot accuracy. The arena should display 
information to the player including game type, score, and debugging information. 
The final product should be engaging and attractive. 
 

2.3 Design Process 
 
The design process for this project follows the following pattern: Define the system 
features from market requirements, Define the subsystem components, Determine 
the requirements for each subsystem requirement specifications, define the tests 
to evaluate the subsystem requirement specifications, research components, 



3 
 

design subsystem, prototype subsystem, and test subsystem. This pattern is 
chosen because it follows the logical progression of system development such that 
a final product meets the actual market requirements defined by customer. Each 
test defined early in the process is directly traceable to an engineering requirement 
specification. The tests are defined before the design is complete in order to create 
an objective set of tasks to be completed such that the requirements are fully 
satisfied. This prevents changing tests in order to ensure the test passes. The 
pattern is shown graphically in Figure 1. 
 

 
 

Figure 1 Project Design Process 
 

2.4 Realistic Design Constraints 
 
These constraints are those placed upon the project by environmental factors such 
as transportation, budget, or customer requirements. The constraints arise from 
the need to present the project in appropriate settings, and also to constrain the 
team adhere to deadlines and restrictions placed upon the project by the senior 
design committee. Additional constraints relate to arbitrary requirements imposed 
by the team to learn skills or increase understanding in some areas. Others are 
facility constraints for final presentations.  
 

2.4.1 General 
 
General constraints pertain to the constraints enforced by the university or by team 
members due to environmental factors or arbitrary distinctions. The identified 
constraints can be found in Table 1, Table 2, Table 3, and Table 4. The constraints 
pertain specifically to the Project, Arena, Robot, and game sections such that each 
high-level system is appropriately designed within boundaries for their respective 
sections. The project constraints are more general than the other sections due to 
the constraints imposed by the university for deadlines, transportation, and 
presentation of the project.  
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Table 1 Project constraints 
 

Constraint The project shall… 

C.P.1  Be transportable in a standard-sized sedan 

C.P.2  Be designed by August 2, 2019 

C.P.3  Be built and tested by November 15, 2019 

C.P.4  Utilize GitHub as a version control system 

 
Table 2 Arena constraints 

 

Constraint The Arena shall… 

C.A.1  Be powered by a standard US 120V 60Hz wall outlet 

C.A.2  Be able to rest on two standard folding tables 

C.A.3  Have only 1 cable that plugs into the wall 

 
Table 3 Robot constraints 

 

Constraint The Robot(s) shall… 

C.R.1  Utilize a custom PCB that fits within size constraints required by 
the project 

C.R.2  Utilize a PCB that contains limited through-hole soldering 

C.R.3  Be powered by a battery 

 
Table 4 Game constraints 

 

Constraint The Game shall… 

C.G.1  Utilize a market-available Game Engine 

 

2.4.2 Economic Constraints 
 
Economic constraints are constraints that pertain to the microeconomic and 
macroeconomic factors that affect design decisions. These factors can include 
things such as taxes, impacts to stock markets, and the general cost and value of 
a product. In the case of Robot basketball, the primary economic factors are those 
that limit the quality or quantity of the parts the project can afford. Further, if the 
project is to be utilized in an actual arcade, some analysis must be done to ensure 
marketplace viability. The identified constraints can be found in Table 5. 
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Table 5 Economic Constraints 
 

Constraint Economic Constraint 

C.ECON.1  The project shall cost no more than $1000 

C.ECON.2  The robot shall cost no more than $300 

C.ECON.3  The arena shall cost no more than $450 

C.ECON.4  The game system shall cost $0 

C.ECON.5  The robot design and cost shall be scalable to multiple copies 

 

2.4.3 Environmental Constraints 
 
Environmental constraints pertain to the consideration of environmental impacts 
such as disposal, energy efficiency, or carbon footprint. For this project, the 
environmental considerations directly relate to the energy efficiency and battery 
technology. The identified constraints can be found in Table 6. 
 

Table 6 Environmental Constraints 
 

Constraint Environmental Constraint 

C.ENV.1  The project shall be energy efficient 

C.ENV.2  The project shall utilize organic materials where feasible 

C.ENV.3  The project shall utilize rechargeable batteries where 
appropriate 

 

2.4.4 Social Constraints 
 
Social constraints pertain to human factors such as psychology, social etiquette, 
privacy, education, and accessibility. Social constraints are the largest driving force 
in this project due to the nature of human interaction with the final product. The 
identified constraints can be found in Table 7. 
 

Table 7 Social Constraints 
 

Constraint Social Constraint 

C.S.1  The project shall be easy to utilize  

C.S.2  The project shall display information to enhance understanding  

C.S.3  
The project and associated documentation shall ensure 
appropriate terms (Pronouns, avoid trigger words, etc.) are 
utilized  
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2.4.5 Political Constraints 
 
Political constraints pertain to the government as an overseer and as a customer. 
There are no driving political constraints for this project outside of following 
governing laws and regulations. 
 

2.4.6 Ethical Constraints 
 
The ethical constraints pertain to the ethical design, construction, and operation of 
the product. The team will adhere to the standard IEEE Code of ethics. [40] 
 

2.4.7 Health and Safety Constraints 
 
Health and safety constraints pertain to the safe operation of a product and 
ensuring no harm comes to a person by being associated with the product. There 
are several health and safety constraints for this project. The identified constraints 
can be found in Table 8. 
 

Table 8 Health and Safety Constraints 
 

Constraint Health and Safety Constraint 

C.HS.1  
The project shall ensure all electrical components are properly 
secured and grounded. No bare wires are to be accessible 
without a locked enclosure 

C.HS.2  The project shall ensure all flying objects are appropriately 
secured and cannot leave the Arena 

C.HS.3  The project shall ensure no user can interact with the robot while 
it is under active power 

C.HS.4  The project shall ensure ergonomically considerate devices are 
utilized when feasible 

 

2.4.8 Manufacturability Constraints 
 
Manufacturability constraints pertain to the construction of the physical device and 
development of any software required to operate the device. This includes utilizing 
widely available standard components such as screws, bolts, and designing 
custom devices that can be made with available tools and machinery. For this 
project, several mechanical devices are required, and effort is put in to ensure the 
product can be manufactured by University students with available resources. The 
identified constraints can be found in Table 9. 
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Table 9 Manufacturability Constraints 
 

Constraint Manufacturability Constraint 

C.MANU.1  The project shall utilize ISO hardware where needed 

C.MANU.2  
The project shall be designed with the following available 
machinery in mind: Saw, Table Saw, Jigsaw, Drill, Laser-Cutter, 
3D Printer, Heat Gun, Soldering Iron 

C.MANU.3  The project shall utilize as few parts and custom components as 
possible 

 

2.4.9 Sustainability Constraints 
 
Sustainability constraints pertain to the maintenance and support of the project 
after development and release to reduce or eliminate the need for additional 
resources. Additionally, renewable resources are to be utilized to ensure the long-
term sustainability of the planet. The identified constraints in Table 10 increase 
sustainability through the ease of repair, changes, and expandability of the product 
by the end of the term, and the use of organic materials where possible. 
 

Table 10 Sustainability Constraints 
 

Constraint Sustainability Constraint 

C.SUS.1  The project’s mechanical design shall be maintainable  

C.SUS.2  The project’s mechanical design shall utilize locking hardware 
where feasible 

C.SUS.3  The project shall include expandable hardware for future 
development 

 

2.5 Engineering Requirement Specifications 
 
The Engineering Requirement specifications found in the following tables are 
requirements developed by the project team such that the project is fully defined 
and constrained. The requirements are a guiding force behind the entire project, 
and each design decision made in the following sections are traceable back to 
these defined requirements. 
 

2.5.1 Project Requirements 
 
The project requirements in Table 11 define the major subsystem components and 
the large overarching requirements for the entire product. They act as a governing 
set of requirements that the project must achieve in order to be considered 
successful.  
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Table 11 Project requirements 
 

Requirement The project shall… 

R.P.1  Contain three high-level subsystems capable of communication: 
Arena, Robot, and Game 

R.P.2  Allow a human-player to control the robot-subsystem to drive 
and launch a ball 

R.P.3  Take efforts to ensure safety of both human players and 
subsystems 

R.P.4  Identify high-risk interfaces and fully define & design them  

 

2.5.2 Robot Requirements 
 
The robot requirements in Table 12, Table 13, Table 14, Table 15, Table 16, and 
Table 17 describe and define the functionality of the robot. The major subsystems 
under the robot are described in individual tables labeled appropriately.  
 

Table 12 Robot requirements 
 

Requirement The Robot(s) shall… 

R.R.1  Weigh no more than 8 lbs. 

R.R.2  Contain a launching mechanism capable of launching a 1.5” 
diameter rubber ball 

R.R.3  Contain an intake mechanism for acquiring a 1.5” diameter 
rubber ball from ground level 

R.R.4  Be sturdy, robust, and resilient regardless of subsystem weight 

R.R.5  Perform required functionality regardless of ball holding status 

R.R.6  Be resilient to hitting the ball while driving 

R.R.7  Be resilient to collisions 

 
Table 13 Robot Base Requirements 

 

Requirement The Robot’s Base shall… 

R.R.B.1  Be capable of holonomic locomotion 

R.R.B.2  Traverse in one direction at minimum 0.3 m/s 

R.R.B.3  Traverse the court without unintentional slipping 

R.R.B.4  Be able to maintain a shot angle while driving 
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Table 14 Robot Launcher Requirements 
 

Requirement The Robot’s launcher shall… 

R.R.L.1  Contain no more than two motors 

R.R.L.2  Maintain at least 75% shot accuracy from anywhere on the court 

R.R.L.3  Be capable of launching a ball with different forces for a required 
distance 

 
Table 15 Robot Intake Requirements 

 

Requirement The Robot’s Intake shall… 

R.R.I.1  Contain no more than one motor 

R.R.I.2  Intake the ball while stationary and moving from a variety of 
angles 

 
Table 16 Robot Electrical Requirements 

 

Requirement The Robot’s Electrical system shall… 

R.R.E.1  Utilize a battery that can safely operate at the loads required for 
the systems 

R.R.E.2  Convert voltage from 12V DC to 9V DC, 7.2V DC and 5V DC 
with high efficiency 

R.R.E.3  Support an embedded controller capable of processing controls 
for a minimum 6 motors 

R.R.E.4  Be power efficient in operation to run more than 10 minutes 

R.R.E.5  Utilize a microcontroller capable of communication protocols 

  
Table 17 Robot Software Requirements 

 

Requirement The Robot’s software system shall… 

R.R.S.1  Communicate with the arena at a rate of at least 30Hz 

R.R.S.2  Utilize sensor data to close feedback loops on relevant actuators  

R.R.S.3  Utilize software that is fully unit tested  

R.R.S.4  Utilize a robust deterministic state-machine 
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2.5.3 Arena Requirements 
The arena requirements in Table 18, Table 19, Table 20, and Table 21 define the 
features and functionality of the Arena system and its respective subsystems. Each 
major subsystem’s requirements can be found in the appropriate table. The arena 
requirements discuss specifications for a variety of components including the 
arena frame and hardware, court, hoop, and ball.  These requirements are critical 
because they directly affect the performance of other systems such as the Game 
and Robot. Additional requirement tables include supporting Display requirements, 
and more importantly, Computer vision requirements that are fundamental to the 
successful operation of the project.  
 

Table 18 Arena requirements 
 

Requirement The Arena shall… 

R.A.1  Be no larger than 2 meters length, 2 meters width, and 1.5 
meters height 

R.A.2  Weigh no more than 75 lbs. total 

R.A.3  Contain at least 1 rubber ball that is no smaller than 1.5” 
diameter 

R.A.4  Contain at least 1 basketball hoop no smaller than 1.5” diameter 

R.A.5  Have flat ground with scale basketball court markings  

R.A.6  Be easy to put together and take apart (Less than 3 minutes 
each) 

R.A.7  Contain a surface that is level  

R.A.8  Be resilient to impacts such as falling or dropping 

R.A.9  Contain walls such that the ball or robot does not go through 

R.A.10  Contain accurate basketball court markings 

R.A.11  Utilize a ball that weighs no more than 5 grams 

R.A.12  Utilize a ball that is not severely impacted by aerodynamic 
conditions 

R.A.13  Securely mount the hoop to the frame 

R.A.14  Contain a hoop that can fit a ball no greater than 2.5” 

R.A.15  Contain a display to show players and spectators game status 

R.A.16  Contain LED lights for status indication and consistent lighting 
on the court 

R.A.17  Employ software that is unit tested 
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Table 19 Arena Display and Sounds Requirements 
 

Requirement The Arena Display and Sounds shall… 

R.A.DS.1  Contain a display that is widescreen with a refresh rate of at 
least 60 Hz and 720p resolution 

R.A.DS.2  Contain a display that can be viewed outdoors from a distance 
of 10 feet 

R.A.DS.3  Have speakers capable of being heard from 10ft away 

 
Table 20 Arena Electrical Requirements 

 

Requirement The Arena Electrical System shall… 

R.A.E.1  Utilize an AC-DC adapter capable of powering the required DC 
loads at a high efficiency 

R.A.E.2  
Contain a DC-DC adapter that converts from the voltage 
provided by the AC-DC adapter to the required DC voltages at 
a high efficiency 

R.A.E.3  Communicate with the robot subsystem at a rate of at least 30Hz 

R.A.E.4  Support a camera for top-down view of the court 

R.A.E.5  Support an Embedded Controller capable of running a 
traditional Operating System 

R.A.E.6  Convert voltage from 120V AC to 5V DC 

R.A.E.7  Support at least two gamepads 

R.A.E.8  Contain sensors to detect when a goal is made 

 
 

Table 21 Arena Computer Vision Requirements 
 

 
 

Requirement The Arena Computer Vision System shall… 

R.A.CV.1  Support vision-based position tracking of the ball and robots in 
the court with update rate of at least 30 Hz 

R.A.CV.2  Have clear color vision from camera mounting height with 
objects moving 

R.A.CV.3  Camera field of view covers the entire court area 

R.A.CV.4  Camera is compatible with the arena controller 

R.A.CV.5  Support vision-based detection of the ball and robots 
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2.5.4 Game Requirements 
 
The game requirements in Table 22 define the features and functionality of the 
game system. Each requirement indicates an aspect of the subsystem that must 
be accomplished for the project to be considered successful. The Game system is 
fundamental to the player’s interaction with the project. It is the front-facing system 
and thus should be engaging and entertaining. It also particularly conforms to 
constraints listed above. The game system has a few sub-components that interact 
directly with other systems and thus is critical to be well-defined and high 
performing. If the game system does not function well, it will affect almost 
everything else as it will be functioning as the data hub for the controls sent to and 
from the robot. 
 
 

Table 22 Game requirements 
 

Requirement The Game shall… 

R.G.1  Create a 2D visual representation of the Arena and Robot Status 

R.G.2  Have a menu to start, pause, and reset a timed match 

R.G.3  Display current score and game time 

R.G.4  Playback past 10 seconds of gameplay upon a goal 

R.G.5  Play a 3D animation of the ball making it into the goal 

R.G.6  Perform collision detection between the different objects 

R.G.7  Employ software that is fully unit tested 

R.G.8  Utilize collision detection to prevent dangerous actions 

 
 

2.6 Standards 
 
The standards found in Table 23 are relevant engineering standards that can 
simplify or increase the capabilities of the designs chosen. Utilizing standards 
results in inter-operability between various systems. It also streamlines decision 
designs in the event of an available standard that meets requirements. The table 
gives a quick summary of the standards investigated and the following sections 
describe the standards followed in detail.  
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Table 23 Relevant Standards 

 

2.6.1 Electrical Standards 
 
The electrical standards listed below dictate the development, design, 
manufacturing, and assembly of components related to the electrical systems of 
the project. This includes PCB design, wire selection, cabling, signal generation, 
and others.  
 
2.6.1a IPC-2221 
 
The IPC standard IPC-2221 provides aa generic standard for Printed Circuit Board 
design. It provides general instructions and requirements for the design, mounting, 
and manufacturing of various PCB material types. The generic standard provides 
a wide array of other sub-standards to go into significant detail on their respective 
topics. [41] 
 

2.6.2 Communication Standards 
 
The communication standards define the operation of the system as the 
functionality pertains to wireless and networked communication. All 
communication systems must adhere to the standards below.  
 
 
 
2.6.2a IEEE 802.15.1 
 
The IEEE 802.15.1 standard applies to wireless arena networks for small, low 
power devices. The standard contains a wide variety of definitions, data-formats, 
message types, and structured formats. The standard is based on the Bluetooth 
standard developed by the Special Interest Group. All devices related to Bluetooth 
communication must conform to this standard. [42] 
 

Standard Name/Field 

IEEE 1872-2015 Standard for Ontologies for Robotics and Automation 

IEEE 1012-2016 Standard for System, Software, and Hardware Verification 

IEEE/ISO/IEC 
29418-2018 

Systems and software engineering – Life cycle processes – 
Requirements engineering 

IEEE 802.15.1 Bluetooth qualification 

IEEE 1540 Software Risk Management 

IEEE 42010 Architectural Description of Software -intensive systems 

C Coding Style C programming standards by Barr Group  

IEEE 829-2008  Standard for Software and System Test Documentation 

IPC-2221 PCB generic standard 

Python style Google Python style guide for clarify and bug reduction 
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2.6.3 Software Standards 
 
The software standards define the development, design, testing, and maintenance 
of the software systems of the project including style guides for different 
languages, testing procedures, and design documentation.  
 
2.6.3a Barr Group’s Embedded C coding standards 
 
Barr Group’s Standard for Embedded C coding follows several guiding principles 
to define a set of rules for developing software in the C programming language. 
This set of rules helps maintain strong consistency between different developers 
and keep a safe, bug-limited software. The standard explicitly calls out things that 
could avoid bug-related problems and gives examples and reasoning for each 
guideline. [43] 
 
2.6.3b Google Python Style Guide 
 
Google’s python style guide defines the various coding standards to ensure 
interoperability between python code and developers. The style guide helps avoid 
a variety of common Python mistakes and reduces code complexity and increases 
readability. [44] 
 
2.6.3c IEEE 829-2008 
 
IEEE 829 pertains to the standard for Software and system test documentation. 
The standard defines the appropriate manner to test if processes meet 
requirements for the process and meets various standards defined by the design 
team. The standard defines various schemas for particular integrity levels that can 
be followed to appropriately test fidelity of the system. It also further defines various 
terms to guarantee the successful communication between relevant parties. [45] 
 
 
2.6.3d IEEE 1540 
 
IEEE 1540 pertains to Risk management in Software Life Cycle Processes. It helps 
define a process to determine potential problems, the consequences of problems, 
and how to address problems found. Key definitions are defined for risk 
management, and a very clear process diagram is described. [46] 
 

2.6.4 Robotics and General Standards 
 
The robotics standards define key-terms, operations, functionality, and 
interoperability between robotic systems. General standards pertain to general 
architecture design and testing outside of those explicitly created for software.  
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2.6.4a IEEE 1872-2015 
 
IEEE 1872 is the standard for Ontologies for Robotics and Automation. The 
standard defines general concepts, relations and axioms for a seamless and 
unambiguous communication between robot engineers. The axioms contained 
within help define system inheritance in a standardized manner. [47] 
 
2.6.3b ISO/IEC/IEEE 42010 
 
ISO/IEC/IEEE 42010 is the international standard for Systems and software 
engineering for architectures. The standard defines how architecture descriptions 
of systems are organized and expressed. This includes viewpoints, frameworks, 
and language to adequately describe system architecture. [48] 
 
2.6.3c IEEE 1012-2016 
 
IEEE 1012 pertains to the Standard for System, Software, and Hardware 
Verification and Validation. Verification and Validation is a way to determine 
whether or not a product meets requirement specifications after the product has 
been designed and built. This standard is similar to IEEE 829 in that it defines 
integrity levels and processes related to the integrity level, except that this standard 
applies to all system levels including software and hardware. [49] 
 

2.7 Project Research 
 
There are several similar projects that are utilized as inspiration for the design, 
operation, and requirements for this project.  
 

2.7.1 RoboCup 
 
The RoboCup competition introduces a challenge for competitors to develop 
complex algorithms to enhance the capabilities of robots in sports. There are 
several academic papers published on the topics of computer vision, control, and 
robot architecture. A useful solution for tracking robots that was developed for 
RoboCup is the usage of an overhead camera utilizing computer vision to solve 
the localization and mapping problem. The camera provides a top-down two-
dimensional view that is easier to process than a complex three-dimensional 
scene. RoboCup participants often utilize position and orientation data from 
camera views to generate paths to acquire a ball and score a goal. [50] 
 

2.7.2 VEX Robotics 
 
The VEX Robotics platform provides a plethora of cost-effective robotics parts that 
can be utilized for this project. In addition, the Nothing but Net challenge from 2015 
and Turning Point from 2018 involved several unique launching mechanisms and 
locomotion systems for a basketball-like challenge. The Vex robotics platform is a 



16 
 

starting place for the mechanical aspects of the robot. The challenge provides a 
plethora of designs for launching a ball at different forces and ranges, and an 
inordinate amount of designs for locomotion in a competitive arena. The VEX 
Robotics platform provides a standard set of parts to compare quality and prices 
to from other vendors.  [51] 
 

2.7.3 Stanford’s Battle of the Bots 
 
Stanford’s 2015 battle of the bots. This challenge very closely matches the scope 
and scale of our project. The students developed many unique robots that launch 
balls in a basketball competition at a very similar scale to the one initially 
considered for this project. This challenge provides a point of comparison for the 
scale, size, and capabilities for launching a small tennis ball in a basketball context. 
The robots in this challenge are approximately 1 cubic foot and shoot small dog 
tennis balls into large hoops that are amounted about a foot tall. [52] 
 

2.8 House of Quality 
 
The house of quality diagram shown in Figure 2 indicates the relationships and 
correlations between engineering requirements and market requirements. 
Additionally, the diagram indicates the relationship between different engineering 
requirements. In summary, some requirements that should be maximized causes 
an increase in a requirement that should be minimized. For example, increasing 
the shot accuracy of the project would result in an increased cost of the project. It 
is important to have a strong understanding of how focusing on one particular 
aspect of the project results in diminishing the quality of another aspect. Further, it 
is important to have clear optimization goals in mind to know what the appropriate 
amount of time is to spend on finalizing the product.  
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Figure 2 House of Quality 
 

2.9 System Architecture 
 
The system architecture defines the various systems included in the project, and 
their interactions between one another. The architecture is the highest-level 
guiding structure for all solutions to the engineering requirement specifications for 
both hardware and software systems.  
 

2.9.1 System and Interface Identification 
 
The Project is split into three primary systems: Arena, Robot, and Game. The 
Arena system encompasses all things related to the basketball court, basketball, 
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physical frame structure, and computer vision. The arena contains a control 
system for high-level planning and control for commands that are sent to the robot 
system. The Computer vision subsystem is to determine the position and 
orientation of the robot on the court. Additionally, it must track the position of the 
ball on the court. The Game System involves taking data in from the player and 
displaying information such as game and robot status, instant replays, and other 
high-level functionality. The robot system is the device for physically interacting 
with the basketball court and basketball. The robot receives commands from the 
arena control-system and executes them.  
 
The subsystems identified to achieve the requirements are the mobile base, intake, 
launcher, and control subsystems. There are several critical interfaces identified 
for this project. These are looked at separately from their own subsystem such that 
the individual subsystems can be designed independently. However, this 
introduces risk that the systems are not compatible. Further, interesting behaviors 
can emerge when complex systems are put together. Thus, these integration 
systems are fully designed and tested in conjunction with the individual systems to 
ensure robustness and consistency. The system architecture is shown graphically 
in Figure 3. 
 

 
 

Figure 3 System Hierarchy and Interface Identification 
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2.9.2 Distributed Architecture 
 
The project is designed and presented as a distributed system. A distributed 
system is an architecture that contains multiple independent systems that often 
rely on one another’s components. In this case, the robots’ responsibilities are 
separate from that of the arena both physically and computationally. This type of 
architecture is chosen due to the possibility of scaling the system to a larger 
number of robots without significantly increasing costs. Dozens of the robots could 
be built and the arena could be scaled up to a larger size, and the arena cost would 
remain the same as a single robot cost. The robot is treated as a slave device that 
does minimal processing. The higher-level control systems, computer vision, and 
hardware are handled by the master device (arena). This reduces cost and 
complexity for the robot by eliminating the need for a camera and a high-power 
processor. The arena can have increased complexity without significantly 
changing the system by only replacing a single arena device as the number of 
arenas or size of arenas increase. The distributed architecture diagram is shown 
in Figure 4. 
 

 
 

Figure 4 System Communication Diagram 
 

2.9.3 Robot Control Architecture 
 
A robot architecture defines how data should flow such that the robot can 
effectively interact with its environment. The architecture introduces constraints 
that drive the design and development of a robotic system. A deliberative robot 
architecture is chosen for this project because it provides a robust solution to 
systems that operate in a well-defined space. Due to the nature of the project, most 
variables related to the operating conditions of the robot such as the number of 
objects, color of objects, speeds and behavior of objects can be adjusted such that 
the robot performs adequately under the conditions provided. The general 
approach to this architecture is to take in data from peripheral devices such as 
encoders, computer vision, and a-priori knowledge to construct a virtual model that 
is then deliberated over to plan and act according to a set of pre-defined rules. The 
architecture is shown graphically in Figure 5. 
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Figure 5 Deliberative Robot Architecture [53] 

3.0 Robot 
 
The robot subsystem is comprised of all the components required to pick up and 
launch a ball from different places on the court. The diagram in Figure 6 denotes 
the primary systems and their various connections to other systems. The final robot 
assembly rendering is shown in Figure 7. The robot acts as an I/O device that 
simply takes inputs from other systems and executes them based on a set of 
parameters on the robot. Additionally, it provides insight into its state by providing 
information to other systems.  
 

 
 

Figure 6 Robot Subsystem Power and Signal Diagram 
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Figure 7 Final Robot render 
 

3.1 Base 
 
The mobile robot base is the locomotion piece of the system. It is the sole source 
of robot movement on the court. The mobile base is to be fast and agile in order to 
increase player engagement. If the robot is slow, the player will feel like they are 
not in control of the robot’s actions, and they are not excited to play the game. If 
the robot is fast and agile, the player can perform complicated maneuvers and 
make exciting plays. The player experience is also significantly enhanced if the 
robot does not need to turn significantly to move around and shoot the ball. This 
way, the player can focus on moving the robot to specific positions and not worry 
about if the robot can rotate and shoot from that position.  
 
The base platform serves as the main structure for the other subsystems. The 
Intake and Launcher must seamlessly integrate with the base to ensure robustness 
and consistency. For example, there must be space for the launcher to extend and 
retract, and the intake must be able to mount and reach the ball on the ground 
without interrupting the intaking motions. In the likely event of collisions between 
robots or between the robot and the arena, the base must be sturdy and stable. 
The electronics on the robot also must remain safe throughout various operating 
conditions, and they should be secure and resilient to impacts. The drive system 
should also be relatively low power to lengthen run-time, as most of the power in 
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the robot is designated to the subsystem. Finally, the robots are generally the focal 
points of the entire project, thus they should appear both professional and exciting.  
 

3.1.1 Research 
 
3.1.1a 3-Wheel Holonomic 
 
The 3-wheel design has omni-wheels mounted at 60-degree angles to one 
another. This allows for full holonomic motion with only three motors. There is 
power loss driving in cartesian directions because only two of the motors are 
contributing to the motion. An example of an available 3-wheel holonomic kit is 
shown in Figure 8. 
 

 
 

Figure 8 Example Omni-wheel base 
Permission from Heneng shown in Figure 68 

 
3.1.1b 4-Wheel Holonomic 
 
The 4-Wheel Holonomic design is the same in principle as the design discussed 
in 3.1.1a 3-Wheel Holonomic. However, instead of three wheels at 60-degree 
angles, there are 4 wheels mounted at 45-degree angles. There is significantly 
more power in this design than in the three-wheel design because all four wheels 
are contributing to the motion at any given time. Additionally, the output speed is 
faster than the actual wheel rpm due to vector multiplication at the cost of torque. 
An example 4-Wheel holonomic kit is shown in Figure 9. 
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Figure 9 4-Wheel Omni Kit  
Permission from RobotShop in Figure 70 

 
3.1.1c Differential Drive 
 
The differential drive design is a traditional approach to mobile robotic bases. This 
design generally involves 2 to 4 wheels mounted square to the base. Either two or 
four of the wheels contributed to the motion of the drive. This design is very robust 
and provides significant power, however it is not holonomic. This base requires 
turning of the entire robot to drive in directions that are not forward or backward. 
The wheels are not required to be Omni-directional, thus traditional wheels or 
treads could be utilized. In order to achieve the requirements, an additional 
mechanism for turning the launcher and/or intake would be required. This would 
ultimately achieve the same thing as the holonomic motion regarding launch angle, 
but it reduces the agility of the robot and ultimately the player engagement. An 
available differential robot kit is shown in  
Figure 10. 
 

 
 

Figure 10 Differential Drive Robot 
Permission from RobotShop in Figure 70 



24 
 

3.1.1d Actuators 
 
There are many available actuators with a variety of parameters that distinguish 
the different products. The actuators cost, RPM, voltage, current, power, control, 
and feedback types are the parameters that directly impact design decisions. A 
summary of the devices investigated in detail is shown in Table 24. 
 

Table 24 Actuator Comparison 
 

Actuator 
Cost 
($) 

RPM 
Voltage, 
Current 
(V), (A) 

Power 
(W) 

Control Feedback 

Heneng DC 
Motor 

15 100 9, 1.2 10.8W 
Externa
l MC 

2 CPR 
Quadrature 
Encoder 

Feedback 
360 High 
Speed 
Continuous 
Rotation 
Servo 

28 140 6, 1.2 7.2 W PWM 2 CPR Hall Effect 

High Speed 
Continuous 
Rotation 
Servo 

17 180 7.4, 0.6 4.44W PWM None 

 
3.1.1e Wheels 
 
There are many wheels available to choose from, each with a variety of properties 
that affect design decisions. The wheel type, cost, size, and material are the main 
factors investigated for this project. A summary of the products investigated is 
shown in Table 25. 
 

Table 25 Wheel Comparison 
 

Wheel Type Cost Size Material 

RobotShop 
Omni 

Omni-Wheel $15 60mm 
Aluminum + 
Rubber 

Lego Omni Omni-Wheel $7.60 58mm Plastic 

UniHobby 
Omni 

Omni-Wheel $15 38mm Plastic 

Micnaron 
Luggage 
Wheel 

Standard $10 60mm Rubber 
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3.1.1f Frame Materials 
 
The frame is a critical component in the base subsystem, and a huge selection of 
materials are available to achieve the requirements defined for the project. The 
parameters investigated are cost, modularity, strength, and manufacturability. The 
modularity property indicates how easy it is to adjust, modify, or change the design 
of the frame given designs of other subsystems. The strength is the sturdiness of 
the material. Manufacturability is how easy the material is to work with given the 
tools available. A summary of the investigated materials is shown in Table 26. 
 

Table 26 Material Comparison 
 

Material Cost Modularity Strength Manufacturability 

Wood Low High Medium High 

Aluminum High Low High Low 

Plastic Low Medium Low Medium 

 

3.1.2 Design 
 
The researched designs are summarized in Table 27. Based on this information, 
the design chosen is the 4-wheel holonomic design. The design provides 
maximum usage of the power available in the motors and provides better mounting 
places for the launcher and intake systems. However, it is more expensive and 
there are no low-cost kits available.  
 
The design chosen is a mash-up of custom parts fabricated by the team, and pre-
existing components. The motor/encoder combination is to be a continuous 
rotation servo. The continuous rotation servo is like a DC-motor except that it has 
built-in open-loop position control and motor driver. This substantially reduces the 
complexity of the PCB required for the robot. Standard servo mounting plates are 
used to interface the servo with the frame. The best servo considering long-term 
goals is the Parallax High-Speed Continuous Rotation servo with feedback shown 
in Figure 11. This servo for $27 provides up to 160RPM with high torque and 
accurate position control. Although this is more expensive, it provides a way to 
close the control loop to improve base performance. The servos are mounted 
asymmetrically to allow for the wheel to be in the center of the hexagonal side, and 
to allow a channel underneath the robot to allow space for cuts and mounting of 
the launcher and intake. The final design is shown in Figure 13. The holonomic 
motion is described in Figure 14. 
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Table 27 Base Design Comparison 
 

Design Wheels Motors Speed Cost Agility Strength 
Modu
larity  

3-Wheel 
Holonomic 

3 3 Low Med Med Low Low 

4-Wheel 
Holonomic 

4 4 
Med 
 

High High Med Med 

Differential 
Drive 

2-4 2-4 Med Low Low High High 

 
The main frame piece for the design is a wooden plate cut on a laser cutter to 
quickly and accuracy cut out all the holes for the various hardware, and the cut-
open sections that give space for the intake and launcher systems. It is also 
possible to utilize traditional tools such as a jigsaw and drill to build the design with 
enough tolerances.  
 
The chosen Omni-wheels shown in Figure 12 are 60mm in diameter and are a 
mixture of aluminum and rubber. They are purchased from Robot-Shop for $15 
each. This is the cheapest omni-wheel at this size. The size is chosen because it 
is just large enough to allow the ball to roll underneath given the wheel mounted 
directly center of the plate. Additional clearance is given by mounting it directly to 
the servo which is underneath the wooden frame. The drive servo directions 
indicated in Figure 14 show how the frame successfully achieves the holonomic 
requirements in each cartesian direction and both rotations. 
 

 
Figure 11 Parallax Feedback 360 

Degrees High Speed Servo  
Permission from Parallax Shown in 

Figure 69 
 

 
 
Figure 12 60mm Omni wheel  
Permission from RobotShop in Figure 
70
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Figure 13 Robot Base Design 
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Figure 14 4-Wheel Holonomic Drive Configuration 
 

3.1.3 Prototyping and Testing 
 
The prototyping can be accomplished with a simple wooden plank of an 
appropriate dimension that is cut by a jigsaw or hacksaw and drilled appropriately. 
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Once tested, a more accurate, tolerance-sensitive version can be manufactured 
on a laser cutter. The electronics can be individually bench-tested utilizing a servo 
driver, power supply, and Arduino. The Servos and wheels can be purchased 
directly from their respective manufacturers.  
 
The tests in Table 28 indicate the various tests required to evaluate the 
performance and capabilities of the Base design. Each test corresponds to a 
requirement or constraint. The equipment required to adequately complete the test 
is also determined such that the equipment can be acquired prior to manufacturing.  
 

Table 28 Base Tests 
 

Requirement Test 
Required 
Equipment 

R.R.B.3 
Determine if the base traverse the court 
without slipping 

Court, rope 

R.R.B.1 
Determine if the base drives forward, 
backward, left, right, and rotates in both 
directions 

Arduino, long USB 
cable, windows 
laptop 

R.R.4 
Determine if the base plate is sturdy 
enough to support the additional 
weights of the other subsystems 

Weights 

R.R.4 
Determine if the base is heavy enough 
to support a moment about the 
expected launching axis 

Weights 

R.R.4 
Determine if the base moves in all 
directions when additional load is 
added 

Arduino, long USB 
cable, windows 
laptop,  

R.R.5 
Determine if the base has enough 
height for the ball to roll underneath on 
the side that the intake is mounted to 

Ball 

R.R.5 
R.R.I.2 

Determine if the base has low enough 
height to block the ball from rolling 
under on the sides that the intake is not 
mounted 

Ball 

R.R.4 
Determine if the robot remains active 
after an impact 

Rubber Mallet 

 

3.2 Launcher 
 
The launcher on the robot must be able to shoot the ball from anywhere on the 
court being played on. In order to accomplish this, the launching mechanism must 
be adjustable in some way, shape or form. This feat can be accomplished in a 
multitude of ways, however, to make it an achievable goal, the team narrowed the 
possible designs down to two ways: either lock the angle and have variable force 
or lock the force and adjust the angle. These paths require different solutions and 
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steps to be able to work properly, and the same type of mechanism may not work 
for both, or either of the ways chosen by the team and can influence other design 
choices. With a fixed angle, the force of the mechanism must be able to be easily 
and reliably changed. This makes the overall mechanism more complicated 
because more parts are required to make the launcher behave in the intended 
manner. A fixed force and variable angle bring up a different set of problems, such 
as the platform the launcher rests on will need to be more complicated instead of 
the launcher itself, and the equations become more complicated due to the 
changing height at each point of launch. Another point the team must keep in mind 
is that due to the steeper angle that would be required at some points on the field, 
the ceiling must be higher than it would be with a fixed angle. As previously 
mentioned, this would have an influence on the size and weight of the field, which 
has the potential to clash with our field requirements. The three main ways of 
implementing a launcher on the robot being explored are a flywheel, puncher, and 
catapult. These three methods were chosen because most of the ways to launch 
the ball reasonably will fit into one of these categories and the team can narrow it 
down more easily within the category before deciding which type overall to use.  
 

3.2.1 Research 
 
3.2.1a Flywheel 
 
There are two main ways to implement a flywheel launching mechanism, using 
one or two wheels. Both offer their own specific problems that must be considered 
when doing calculations for the projectile coming out of the launcher. These 
situations are outlined in Table 29 below. 
 

Table 29 Flywheel design problems 
 

Flywheel problems Outcomes 

Wheel not up to full speed before 
shot 

Shot comes out short 

Ball enters wheel at different speed 
every shot 

Shot is either short or long depending on 
speed and is hard to track and correct 

Ball hits different part of wheel 
(isn’t compressed as much or 
compressed more) 

Length of shot is once again affected. 
Could also put a different spin on the ball 

Wheels are not spinning at same 
speed (double flywheel specific) 

Curve is put on the ball. This could also 
potentially change every time the ball is 
fired. 

 
All these situations boil down to a flywheel just being too unpredictable at any given 
time. There are ways to remedy these problems, such as finding ways to finely 
control the speed of the ball entering the wheel, making sure the channel the ball 
follows into the launcher is a tight fit for the ball to disallow the ball to enter the 
wheel from a different angle each shot. The solutions to many of the problems 
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presented by a flywheel are mechanical in nature and are something that the team 
isn’t built to implement well. Something that can be looked at positively about using 
a flywheel, however, is that it will allow the robot to put a more natural spin on the 
ball compared to the other options under consideration by the team. Since a huge 
part of basketball is getting spin on the ball to help make shots off the backboard, 
this is a rather good thing to be able to do. The flywheel design also would easily 
be able to fulfill our requirements of varying force, by adjusting the velocity the 
wheel spins at, and the ability to fix the angle that the ball is launched at easily. 
This could be done the other way around rather easily as well.  
 
Comparing the two types of flywheels, one or two-wheel, both have their own 
advantages as well. A one-wheel flywheel will take up less space overall but won’t 
be able to put out the same force as a two-wheel flywheel using the same motors. 
Also, due to having only a single motor, the one-wheel flywheel solution would 
require less power to operate as well as have an overall simpler design to 
implement. The two-wheel flywheel would allow for more finely tuned spin on the 
ball and more overall launching power. However, the extra motor would need extra 
consideration as it adds more weight to the robot in the form of extra parts needed 
to hold and support the extra motor and removes space needed to implement other 
systems on the robot. Depending on the parts chosen, this could put unnecessary 
strain on the base and could affect how the base is constructed. The two-wheel 
variant of the flywheel also has a greater chance of failing due to the extra wheel. 
This would require careful monitoring of more variables than the single wheel 
method as any sort of disharmony between the speed or angle of the two wheels 
essentially make the calculations done by the other systems of the project useless 
as the real-life motion of the ball wouldn’t be able to match the projected numbers. 
Overall, the flywheel method’s variability is both its biggest strength and weakness, 
in the form of being flexible enough to meet the team’s launcher requirements 
whichever way ultimately is chosen while being unreliable in accuracy and 
precision needed for this task. 
 
3.2.1b Puncher 
 
A punching mechanism is a lot more straightforward than either a flywheel or 
catapult design. With a puncher there is a lot more control possible with it because 
the ball is always launched from the same spot and orientation every time. The 
first major downside of a puncher is that in order to make the force of it variable is 
to more hardware is required. If the team was going to make a fixed force 
mechanism for a shooter, the puncher would excel at that as it could be solved 
with a mechanism such as a skip gear. However, due to needing to meet the 
requirement of a variable force on the ball, an additional mechanism such as a 
linkage, actuator, or even another motor, would be required to release the puncher.  
 
The puncher design currently being considered will be a tension-based design 
powered by springs either extended or compressed with a sudden release. The 
spot that the puncher contacts the ball and the shape of the punch can be changed 
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to produce different effects on the ball. As the puncher and rail can be attached at 
basically any angle and won’t need to move, the team can experiment easily and 
find the best angle to use before locking the angle in place to fulfil our requirement 
of having a fixed angle, variable force launcher. Due to the puncher traveling in a 
straight line and only acting a short impulse upon the ball, the calculations end up 
being projectile motion equations. The main pros and cons of the puncher are 
outlined below in Table 30. A huge con of the puncher design is the space required 
to implement it correctly and a sample design by the team is provided below in 
Figure 15. First, even though the slide component may look compact, it needs to 
be able to extend a certain amount outside of its at rest position, this size change 
can range from very little, like half an inch, to having to take up double the size of 
the initial position. Second, the extra component that would be needed in order to 
remove the gear from the slide to trigger the launch would have to include another 
motor or drive mechanism which also essentially doubles the space needed for the 
full system. However, if the puncher only needs to have a consistent force, the 
second part of the size requirement is removed, and it is only necessary to worry 
about the range of motion of the slide component. 
  

 
 

Figure 15 Launcher Design 
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Table 30 Pros and cons of a puncher 

 

Pros Cons 

Consistent launch  Not easily converted to variable force 

Consistent force 
Spring/elastic mechanism can wear 
down 

Angle easily changed Large 

 
 

3.2.1c Catapult 
 
There are three main types of catapults, the ballista, the mangonel and the 
trebuchet. Since the construction of a trebuchet device would be unfeasible due to 
the complication of the design and the size constraint of our small robot, that idea 
was only very briefly explored. The ballista variant would be very similar in design 
to the puncher mechanism described above in section 3.2.2b, except for the fact 
that the ball would be pushed down the length of rail instead of a short, sharp 
contact to propel the ball. The ballista design shares a lot of the same advantages 
and disadvantages as the puncher except for being able to control the spin of the 
ball as it is launched. And in the implementation that would be used for this robot, 
the only difference between the ballista design and the puncher design being 
considered is a stopper that keeps the ball from falling into the channel left behind 
when the spring is drawn back.  
 
The last type of catapult is the mangonel [54], which is what most people think of 
when they think of the word catapult. Using this design poses a lot of design 
problems. First, we would need to have a bigger and more complicated intake or 
put it in a place on the robot that doesn’t make sense in order to load the arm of 
the catapult. Second, there would be little control over the angle unless the 
placement of the beam to act as a brake for the arm was very precise. Due to this, 
if the team was to try to make the robot have a variable launch angle, this design 
would immediately become unable to use as it would be difficult to get the correct 
placement dynamically on such a small-scale base. The team would also have to 
take special care to make sure that the arm was able to be fully drawn back, or at 
least drawn pack to a specific spot to be able to vary the force. The calculations 
for aiming the catapult and getting the correct drawback on the arm are more 
calculated than the relatively easier impulse and standard projectile motion 
formulas useable with something like the puncher.  
 

3.2.2 Design 
 
For all that the cons that it can potentially have, the team has decided that they are 
relatively easier to mitigate than having to design an entire separate mechanism 
that would be required to get the correct variable force behavior that is needed for 
the robot. A layout of the design is provided below in Figure 16. The flywheel will 
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be almost centered on the robot, slightly more towards the front side and sunken 
into the robot so that it is close to the ground allowing it to be able to function as 
the intake into the robot as well. The ball will travel around the wheel until the 
correct angle is for launch is reached and the ball is shot from the front of the robot. 
The wheel will be direct driven by a brushless motor. If the motor turns out to be 
much higher powered than what is required, it will have to be geared/chained down 
to burn off some of the speed, adding more complexity and pieces which could 
break down. The motor powering the wheel will have a Pololu Magnetic Encoder 
(Pololu Part #3499). This encoder provides 20 counts per revolution that allow the 
software to effectively track and alter the speed in order to make sure the flywheel 
is being spun at consistently the correct speed for the distance the robot is from 
the hoop.  
 

 
 

Figure 16 Launcher design drawing 
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3.2.3 Prototyping and Testing 
 
The launching mechanism that is going to be used is a single flywheel device 
instead of a double flywheel. The team chose this after spending a large amount 
of time attempting to piece together a variable force spring mechanism which 
ended up being more complicated than what was initially thought. We also decided 
against the double flywheel design because we didn’t want to have to worry about 
the calibration between the two wheels to prevent unwanted curvature. The overall 
tests for this subsystem of the robot are shown in Table 31. Testing for this 
mechanism will be conducted in stages, starting with force and making sure it is 
consistent before trying with different angles. Although there will not be varying 
angle capability included in the final design, it is important to test the angles in 
order to find the optimal one that uses less power and to make sure the path of the 
shot ball is contained within the arena that has been built for the robot. The angle 
will be controlled by a piece of material attached at the end of the track that the 
wheel slingshots the ball around.  
 

Table 31 Launcher Tests 
 

Requirement Test 
Required 
Equipment 

R.R.L.3 
Test the launcher with different forces. 
Determine distance. 

Tape measure, 
carbon paper 

R.R.L.3 
Test the launcher with different angles. 
Determine distance 

Tape measure, 
carbon paper 

R.R.L.3 
Test the launcher for accuracy and 
precision at different shooting 
configurations 

Tape measure 
Carbon paper 

R.R.2 
Test if launcher resets properly between 
shots 

N/A 

R.R.L.2 
Check if the ball is hit consistently in the 
same area 

Carbon Paper 

R.R.E.4 
 

Measure voltage and current draw across 
subsystem 

Multimeter 

 

3.3 Intake 
 
The intake for the robot must be able to pick up a ball and transfer it to the launcher 
mechanism. There are both passive and active options to pick up a ball that the 
team has explored. Passive solutions require no power, or significantly less power 
than active solutions, however, there is a higher chance for them to not consistently 
pick up the ball.  Options researched for our intake mechanism include a telescopic 
lift, a conveyor belt, or a wheel-based design. This mechanism would place the 
ball directly into the spot it will be launched from. It’s important that the ball is 
deposited into the launcher in the same spot each time because that has a direct 
impact on the accuracy and consistency of the launcher due to the puncher having 
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to hit the same spot on the ball each time. The team has narrowed the decision 
down to a series of wheels, a conveyor belt, and a telescopic lift like what is seen 
on a forklift.  
 

3.3.1 Research 
 
3.3.1a Wheels 
 
The first design being considered, as well as the first of the two active intake 
mechanisms is a wheel-based mechanism to pick up the ball and pass it up the 
intake. Wheels for the intake can be done in two ways, either on one or both sides 
of a channel, much like a single or double flywheel design except with a lot less 
power. Wheels are more useful for the intake than for the launcher because less 
precision is required. The design and calculations for the intake don’t depend on 
something as small as making sure the ball comes in at the same speed every 
time. Since all that is required is to get the ball to the launcher, using wheels is 
necessary. A wheel-based intake mechanism would most likely require the most 
hardware out of all the designs being considered as it would require more than one 
motor to implement. The wheel design the team is looking at is essentially a 
conveyor belt without the belt and the only major drawback besides the aspect of 
having to utilize more hardware is that if the wheels aren’t placed in the right 
position the ball could get stuck between them or not move quick enough. Due to 
each wheel needing to be mounted individually, there is also more potential for a 
part to fail taking down the entire mechanism. The front of the wheels act as an 
active intake by spinning to physically pull in the balls, instead of just corralling the 
ball.  
 
3.3.1b Conveyor Belt 
 
The second active design being considered is a conveyor belt. There are only two 
versions of the conveyor belt that can be implemented for the robot. One with, and 
one without dividers in it. The only real distinction is that the one with tabs will have 
a more redundant mechanism for carrying the ball to the launcher. A conveyor belt 
can be implemented with a single motor potentially which makes it lightweight. The 
major failing point of using a conveyor design is that it must always be kept taut 
which requires a lot of attention and regular maintenance. If the conveyor belt isn’t 
fully taut, the ball has the potential to just spin in place, which can be combated 
with plastic tabs that sweep the ball and act as a floor to prevent them from falling. 
Adding this to the conveyor belt doesn’t come at the cost of too much hardware 
and extra weight typically. The two primary materials that the conveyor belt can be 
made from are either a smooth, continuous band or plastic links that look like tank 
tread. The tread design will allow the team to more easily. The conveyor belt is 
very similar to the wheel design in the fact that the front of the conveyor belt actively 
works to bring in the ball.  
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3.3.1c Telescopic Lift 
 
The telescopic lift design is the only design being considered by the team that can 
be considered passive, as the end that contacts the ball would be like the fork on 
a forklift. The upside of this is that the fork part is simple to design and can be 
made from just about anything. It also has the perk of not being an active part that 
can break down and therefore must be replaced. The downside of telescopic lift is 
that the part that grabs the ball is passive. With a passive grabber there is a high 
likely hood of having to trap a ball in the corner to be able to pick the ball up. The 
inability to consistently pick up the ball is a huge detriment overall as it potentially 
leads to a huge loss of time in the game. The lift would be powered with either 1 
or 2 motors attached to pulleys that would pull the different stages up. This 
introduces another problem in that the pulleys are another component that can 
potentially break if the cables that support the lift come off the pulleys or break. 
Out of these two problems, the rope breaking is the easiest to mitigate by simply 
making sure that the cable picked is the necessary strength. The lift could either 
go straight up or at an angle. To be able to drop the ball into the launcher at the 
top of the lift and to more securely hold the ball, a slight angle on the lift would be 
more beneficial than if it was perpendicular to the ground and base of the robot.  
 

3.3.2 Design 
 
The design that will be used is a dual functionality mechanism in the form of using 
the flywheel from the launcher. The flywheel will be placed low to the ground so 
that it can contact and intake the ball correctly. Just after the ball is taken in from 
the ground, it will enter a trapdoor-like mechanism shown in Figure 17 that will 
keep the ball from being in contact with the wheel. This will allow the player to hold 
onto the ball until they want to shoot. When the signal to shoot is given, a servo or 
similar piece of hardware will be used to push the ball back into contact with the 
wheel, transforming it into the launching mechanism. It is important that the servo 
picked to operate the trapdoor is strong enough to stay engaged when the door is 
closed, and the wheel is spinning. If it isn’t, the door will collapse upon itself and 
cause issues with the initial output velocity of the ball in a best-case scenario or 
damage the track and/or servo in a worst-case scenario. When the ball is being 
picked up, the wheel will spin at a much lower RPM than when being shot, this will 
allow better control of the ball and put less stress on the trapdoor mechanism being 
used. Figure 18 demonstrates how the separate components operate in tandem 
to function as an intake, as well as their intended dimensions. The dimension of 
the ball is 1.5’' diameter so the space for the track must be able to slightly compress 
the ball in order to propel it around the track.  



38 
 

 
 

Figure 17 Ball-Trap interaction drawing 
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Figure 18 Intake Design 
 

3.3.3 Prototyping and Testing 
 
The intake will be prototyped and tested the same way that the launcher will be; 
first using premade parts and then getting them manufactured. As for actually 
carrying out the tests, until the intake is able to be mounted to the base of the robot, 
it will have to be hand moved to cover the tests that require the intake to be moving. 
The team will also be looking at the speed and consistency of the intake 
mechanism to determine what must be tweaked in order to make it better overall. 
Table 32 summarizes the tests for the intake subcomponent as well as what 
requirement they pertain to.  
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Table 32 Intake Tests 
 

Requirement Test 
Required 
Equipment 

R.R.I.2 
Test if the intake can pick up a ball from 
different angles 

Ball 

R.R.I.2 
Test the intake moving and pick up a 
stationary ball 

Ball 

R.R.I.2 
Test the intake stationary and pick up a 
moving ball 

Ball 

R.R.I.2 
Test the intake with both intake and ball 
moving 

Ball 

R.R.E.4 
 

Measure voltage and current draw 
across subsystem 

Multimeter 

 

3.4 Actuator Control Array 
 
The actuator array block exists primarily to interface the various actuator 
components of the Launcher, Base, and Intake systems to the electrical systems 
of the robot. This includes routing the signal parameters from the microcontroller 
to the motor controller, and routing power and ground to each device. The motor 
drivers for each of the drive motors exist within the servo itself, thus this component 
simply routes power and signal appropriately – There are no additional integrated 
circuits required. The intake and launcher systems are integrated into the same 
device, thus only a signal motor controller and servo controller port are required. 
The launcher motor is a DC brushless motor that requires an electronic speed 
controller to control. Thus, that device is investigated fully below. Additionally, 
components to simplify the control loop or servo control generation are also 
investigated.  
 

3.4.1 Research 
 
3.4.1a PWM Generators 
 
PWM generators are evaluated to reduce the computational and output strain on 
the microprocessor. These devices can take in protocol base input to set/latch 
several PWM channels. These PWM channels automatically generate signals at 
the desired duty cycles.  
 
One device under consideration is a PCA9685 which is a I2C to PWM IC. It can 
drive up to 16 PWM channels at once with 12-bit resolution at a fixed frequency. 
This can be used in conjunction with the chosen motor controller to reduce load on 
the chosen microcontroller. This also simplifies the motor control process. 
Additionally, between this device and a voltage regulator, several servos can be 
controlled without significant overhead.  
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Another device being considered is a MAX31790 which is marketed as a 6-channel 
PWM fan controller. The duty cycles of the 6 channels are determined by the I2C. 
In addition to the outputs, the device also has inputs for tachometers to monitor 
the rpm of the fan. This device would work in this application based on the desired 
control of the servos. The drive servos are velocity controlled with positional 
feedback in the form of a PWM duty cycle. This device can take in the feedback 
and automatically adjust PWM duty cycle output to close the feedback loop on 
velocity. The other servos would operate in their typical positional mode without 
feedback.  
 
3.4.1c Electronic Speed Controller 
 
An electronic speed controller is a device that generates pulses to accurately 
control the speed and output of a brushless DC motor. This is required to control 
the primary launcher wheel motor at a higher RPM than the other actuators need 
to operate at. There is a wide variety of speed controllers available with many 
different qualities, features, and prices. A summary of the devices primarily 
investigated is shown in Table 33 ESC research summary. The braking feature 
actively drives the coils in the reverse direction to rapidly slow down and prevent 
motion when the brake is enabled. The programmable feature allows the speed 
controller to follow types of ramping curves to reduce load on the microcontroller.  
 

Table 33 ESC research summary 
 

Device Price ($) Current/Voltage Features 

Hobbypower Rc ESC 10a 
Brushed Motor Speed 
Controller 

8.98  
5V/1A BEC 
10A/7.4V 

N/A 

30A Brushless Motor Electric 
Speed ESC 

15.98 
5V/3A UBEC 
39A/16.8V 

Brake, 
Programmable 

Hobbywing HWI30120201 20.15 
5V/3A UBEC 
39A/12.4V 

Brake, 
Waterproof 

 

3.4.2 Design 
 
The elimination of motor control circuitry from the control array significantly 
reduces the complexity of the design. The servos integrate the motor control 
directly within their servo package which allows for just a Signal, Voltage, and 
Ground line for each servo. In addition to these lines, the servos for the drive have 
positional feedback for verifiable velocity and position control. Figure 19 shows the 
control signal diagram indicating the signal flow from the microcontroller to the 
motors through the different connections. Notably, the microcontroller 
communicates with the PCA9685 PWM generator through I2C protocol. The PWM 
generator then outputs all of the required signals to drive the servos, and ESC for 
the launcher motor. Figure 20 shows the power flow diagram between the battery 
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and the actuator devices. Each of the power and signal lines can be broken out to 
a single array for ease of connection and expansion.  
 

 
 

Figure 19 Control signal block diagram 
 

 
 

Figure 20 Power block diagram 
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3.4.3 Prototyping and Testing 
 
The chosen devices can be evaluated utilizing evaluation boards available from 
Amazon. Each board can be purchased and tested individually to verify the design 
prior to the final PCB construction. To make sure the board and motor controllers 
are working correctly, a series of tests provided below in Table 34 Table of Motor 
Controller Tests must be conducted and passed.  
 

Table 34 Table of Motor Controller Tests 
 

Requirement Test 
Required 
Equipment 

R.R.E.3 
Drive each actuator utilizing the chosen 
motor controller and Arduino 

Arduino, Power 
Supply, breadboard, 
actuators 

R.R.E.3 
Drive each actuator utilizing the chosen 
motor controller, PWM generator, and 
Arduino 

Arduino, Power 
Supply, breadboard, 
actuators 

R.R.E.3 
Drive each actuator utilizing the chosen 
motor controller, PWM generator, I/O 
generator, and Arduino 

Arduino, Power 
Supply, breadboard, 
actuators 

R.R.E.3 

Drive each actuator simultaneously 
using each evaluation device (Motor 
controller, PWM generator, I/O 
generator, and Arduino) 

Arduino, Power 
Supply, breadboard, 
actuators 

R.R.E.4 
Determine the final load of each actuator 
at full speed simultaneously 

Arduino, Power 
supply, breadboard, 
actuators, multimeter 

R.R.E.1 
Determine the stall torque of each 
actuator, and the current at which it 
stalls 

Arduino, Power 
supply, breadboard, 
actuators, multimeter 

R.R.E.1 
Determine the actual range of the servo 
motor 

Arduino, Power 
supply, breadboard, 
servo, protractor 

 

3.5 Microcontroller 
 
The robot requires an onboard processor to perform the necessary calculations for 
locomotion and making shots. However, it is still a slave device to the arena and 
therefore, a microcontroller and not a microprocessor is used. A microprocessor 
can carry calculations at nanosecond speeds whereas a microcontroller, well, in 
microseconds. To provide a rich user experience millisecond latency will be 
enough and therefore, due to cost requirements and constraints a microcontroller 
is used to control the robot. 
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The controller is needed to control the dedicated tasks on the robot. These tasks 
require real time executions. The controller receives a packet from the Arena in a 
timely fashion and decodes them. The format of this packet is designed by the 
team. In excess to the overhead that comes with Bluetooth communication, the 
packet contains data that has substantial information for the robot to perform its 
activities. The update frequency of Bluetooth communication has to be 30Hz to 
meet the design requirement as it allows for a rich user experience. This high 
update rate will allow for error detection and correction most of which is inherently 
designed in Bluetooth’s protocol allowing little to no lag on user end. 
 
The packet received by the robot will have information on motors, velocities, 
configuration settings etc. Each motor is given an ID helping the microcontroller 
and the engineers in easily distinguishing them and applying varying velocities 
based on information contained in the packet. These motor values are converted 
to discrete values by the microcontroller and then fed to motor controller ICs using 
Pulse Width Modulation (PWM). The microcontroller also sends sensor data back 
to the Arena for feedback and makes the arena aware of the robot’s location. The 
microcontroller also performs PD calculations for the motors to ensure accurate 
closed-loop control for the systems that require it. There is a myriad of options 
available in the market to use as Robot’s “brain”, however, due to the listed 
requirements and constraints only certain of them are feasible. 
 

3.5.1 Research 
 
Based on the market research there are many microcontrollers available to 
perform the job. The requirements however constrain the team from choosing just 
any microcontroller. As mentioned earlier, the microcontroller needs to control 6 
motors and have the capability of getting encoder data for monitoring the velocities. 
When the arena sends the robot a Bluetooth packet, the onboard microcontroller 
parses the packet and breaks it into its respective components such as motor ID, 
velocity for that motor ID, Intake action commands, Launch action commands, no 
motion command and the like.  
 
Due to the aforementioned tasks, the microcontroller is required to have Bluetooth 
compatibility for communication. There are several workarounds for this. Solution 
one is to get a controller with a built in Bluetooth module and have a Bluetooth 
stack available for programming it to send and receive data. However, 
microcontroller boards with built in Bluetooth tend to be expensive. Another option 
is to buy a simple microcontroller and have a separate Bluetooth module and use 
it via Universal Asynchronous Receiver Transmitter, also known as the UART. The 
UART is preferred method for exchanging data between the microcontroller and 
the Bluetooth mainly because the data format and transmission speeds are 
configurable.  
 
Additionally, the microcontroller also needs to be able to send motor commands 
using Pulse Width Modulation and receive encoder commands via interrupts. 
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There are boards available in the market which allow configuring every single pin 
as PWM and interrupt however, they tend to be expensive and constrain us in our 
spending limit. Therefore, the microcontroller needs to have a minimum of sending 
6 PWM signal and have 8 interrupts for encoders. There are also multiple ways to 
work with this. First option is to buy a board with all features on board whereas 
another option is to buy modules and either find or create custom libraries to 
interface with them. Keeping such specifications in mind a list of required features 
was created and appropriate microcontroller technologies were studied. A 
summary of the findings can be seen in Table 35. 
 

Table 35 Compare and Contrast of Different Microcontroller Technologies 
 

Processor ATmega328P ATmega2560 MSP430G2553 

Cost ($) 16.90 30.80 23.40 

I2C 2 2 2 

UART (Rx, Tx) 1 4 1 

SPI 1 1 2 

Interrupts 2 6 24 

Digital IO 14 54 24 

Analog IO 6 16 n/a 

PWM 6 15 24 

TTL Voltage(v) 5 5 5 

Input Voltage (V) 7 - 12 7 - 12 5 

CPU Speed (MHz) 16 16 25 

EEPROM (KB) 1 4 n/a 

SRAM (B) 2k 8k 512 

Flash (KB) 32 256 16 

USB Regular Regular Regular 

 
 



46 
 

3.5.2 Design 
 
Based on the research conducted, the microcontroller that seems most feasible 
for the robot is ATmega328P. ATmega328P is popularly used in Arduino 
development boards. There are multiple open source libraries and forums 
available on the internet that act as a valuable asset in the development of this 
subsystem. For the PCB design, a surface mount chip will be used, and the pinouts 
will be matched with the Arduino Uno board. Using an ISP connector, the Arduino 
bootloader is flashed on the ATMega328P microcontroller which gives this chip the 
same capabilities as an Arduino development board allowing development using 
various ICs such as the PWM Controller and the Bluetooth chip. 
 
The ATmega328P controls the PCA9685 PWM Controller chip using I2C protocol. 
The microcontroller sends a 16-bit code at each loop which is generated by parsing 
the incoming Bluetooth packet from the Arena. The servos send a feedback signal 
to the microcontroller via PWM and GPIO pins. An encoder for the flywheel’s 
brushless motor also sends data back as a PWM signal which interrupts 
ATmega328P’s loop to increment or decrement speed. The Bluetooth chip uses 
UART protocol to communicate with the ATmega328P chip. The Transmission (Tx) 
line is pulled high to avoid noise that could be generated on an open trace. The 
flywheel that is used for intake and launching the ball spins with the help of a 
brushless motor. The brushless motor is controlled using an Electronic Speed 
Controller, or ESC which uses Battery for power and PWM signal from the 
microcontroller for speed control. For simplicity of programming, the 
microcontroller is laid out such that the ATmega328P’s ports and pins align with 
Arduino’s digital and analog pins. Additionally, the ISP connector uses SPI protocol 
to upload the bootloader on to the ATmega328P microcontroller due to its reliability 
and high data transfer capabilities. An LED is attached to the microcontroller digital 
pin and upon the code startup, the pin is blinked to indicate the microcontroller’s 
status. A detailed schematic is shown in the PCB section 3.9.2 Design. 

 

3.5.3 Prototyping and Testing 
 
The microcontroller is tested using multiple tools. The primary tool is the Arduino 
Development board as it allows ease of prototyping. Having print statements after 
a certain point in code execution allows the programmer to detect and eliminate 
unnecessary bugs. The UART, SPI, and I2C signals are tested using an 
oscilloscope. The Oscilloscope can be configured to decode the communication 
signals and display them as hexadecimal that can surely be used for debugging. 
The pin voltages and currents are checked using digital multimeter whereas the 
solder joints for the MCU on the PCB are checked using a magnifying glass. This 
is used to detect errors which would take the Serial monitor a delayed time to 
respond to in time critical situation. The requirements completed by these 
procedures is listed in Table 36. It also lists the equipment used to perform the 
tests successfully. 
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Table 36 Controller tests 
 

Requirement Test 
Required 
Equipment 

R.R.S.1 
Determine that microcontroller uses 
Bluetooth Low Energy as a serial device  

Oscilloscope, Serial 
Monitor 

R.R.S.2 
Determine if the encoder interrupts 
increment and/or decrement  

Oscilloscope, Serial 
Monitor 

R.R.E.5 
Determine that the microcontroller 
implements communication protocols 

Oscilloscope 

R.R.S.2 
Determine that the encoder channels 
properly interrupt the microcontroller  

Oscilloscope 

 

3.6 Communication 
 
The communication subsystem allows the robot to receive commands from the 
arena. To accomplish this, the robot must have a communication system on board 
and receive data over a wireless link. The communication subsystem needs to 
have a data update frequency of 30Hz at the minimum. Failure to do so can cause 
latency in robot’s motion. This latency hinders the robot from receiving data in a 
timely manner and constraints it from shooting successfully 75% of the time as per 
out requirements.  
 
Another reason why the communication system needs to be wireless is that the 
robot will be moving in the field. Having cables or wires can restrict the robot and 
introduce noise in the communication signals. Using a differential pair is a possible 
solution however, the robot could damage the cables by running over them. 
Therefore, wireless communication is a priority to prevent any potential damages 
to the entire game. However, with wireless communication comes with a possibility 
of potential packet loss and data corruption. This can inherently introduce the 
similar problem of latency due to which the communication system has to have 
error detection and correction schemes implemented. This achievable using 
TCP/UPD or Bluetooth. The received packet from the Arena is designed by the 
team. It has information regarding the motors to be operated (i.e. motor ID), the 
velocity for that motor, information regarding intake, launch, and other necessary 
configurations. 
 
The robot is a slave device to the arena that will receive data over the radio to 
perform its actions. The implemented communications protocol will also allow the 
robot to send its sensor data back to the arena for monitoring and debugging 
purposes. This data is shown by the Arena on a screen to give users more 
information regarding their robot. These stats could include current motor 
velocities, battery status, communication link status etc.    
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3.6.1 Research 
 
3.6.1a Bluetooth 
 
Another technology which is under consideration is Bluetooth v4.2. Bluetooth is 
low power communication protocol which allows the entire system to be portable 
and cost effective. Connecting two Bluetooth devices together is a multi-step 
process. It requires an inquiry, paging, and connection. These steps are usually 
implemented in Bluetooth’s firmware and API and are readily available on the 
internet. Additionally, there are various Bluetooth profiles and for two Bluetooth to 
exchange data the Bluetooth profile has to be the same. The Bluetooth also has 
to have compatibility with the microcontroller as creating a custom firmware could 
take more time than at hand for the project [55].  
 
For the robot to receive data, a Serial Port Profile, or SPP, will be used. Likewise, 
the arena shall also have a Bluetooth stack that supports similar profile to correctly 
send data. There are various Bluetooth modules available that are compatible with 
Arduino. Based on their characteristic analysis, the best Bluetooth module is 
chosen and tested with Arduino. Then, for the PCB the chip native to that board 
will be used with its bootloader that will allow the team to program the chip in a 
similar fashion.  
 
Different Bluetooth modules compatible with Arduino and ATmega328P can be 
seen in Table 37 [56]. The Bluetooth used is version 4.2 and is low energy allowing 
data transfer without wasting power. They use Serial Port Profile for 
communication and thus, the exchange of data happens via UART protocol. The 
data link layer for the modules uses standard Bluetooth profile and therefore, each 
packet sent can go up to 251 bytes where 14 bytes are overhead due to each layer 
in the Bluetooth stack.  
   
The data rate is dependent upon the version of Bluetooth in use. The Bluetooth 
Low Energy a data rate of 0.27 Mbps and compromises distance for low power. It 
can go up to 50m unlike the previous versions that can reach 100m. This is ideal 
for the project as the Arena dimensions are far less than that [57]. Most Bluetooth 
modules use the TI Bluetooth chip with their custom firmware. Therefore, for the 
project same chip will be used however, multiple modules will be tested for 
firmware and the most compatible one will be loaded on to the chip on the PCB 
using TI’s flash programmer. Otherwise, Adafruit’s custom files and firmware will 
be used to create a personalized onboard Bluetooth system depending on its 
compatibility with the microcontroller.   

Table 37: Bluetooth Module Comparison 

Module Name IC Range (m) 

HC-05 TI CC2451 9 

BLE Link Bee TI CC2540 60 

BLE Mini TI CC2540 50 

Adafruit BLE Bluefruit EZ-Link 10 
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3.6.1b Wi-Fi Direct 
 
Wi-Fi direct is a wireless communication and data transfer protocol that is used for 
browsing, file transfer, or any other communication. The difference between Wi-Fi 
and Wi-Fi direct lie in the fact that Wi-Fi Direct opts for device to device 
communication. Some of the advantages of Wi-Fi Direct include the ability to 
connect to any device. For Wi-Fi direct only one of the devices has to have the 
technology to setup the connection. Majority of the communication uses TCP/IP 
and UDP to exchange data. It acts Bluetooth abilities to Wi-Fi at a higher bandwidth 
which makes it an attractive choice. One does not need to be connected to the 
internet to exchange data. However, there are limited number of technologies 
available that have libraries and firmware developed enough to work with Arduino, 
specifically ATmega328p [58].  
 
The main device used to carry out Wi-Fi communication on Arduino is the 
ESP8266. This device can be setup as an access point that can connect to Arena’s 
Wi-Fi however, this would make the Robot a master device unlike it’s intended use 
as a slave device. A solution would be to find a module for Arena communication 
system that can work as access point that will allow multiple robots to connect via 
Wi-Fi [59].  The data rate provided by Wi-Fi direct is larger than Bluetooth, but it 
also uses more power. Both of them work at 3.3V but Wi-Fi modules can use 
currents up to 170mA of current whereas Bluetooth LE uses 50mA of current at 
maximum. These are important factors that will affect the choice of module used 
in the design of Robot communication which is discussed in section 3.6.2 Design. 
 

3.6.2 Design 
 
Based on the market research conducted on Wi-Fi Direct and Bluetooth 
technologies and weighing their advantages and disadvantages Bluetooth Low 
Energy is used as the primary mode of communication platform for exchanging 
data and commands between the Arena and the Robot. The version of Bluetooth 
LE that is used is v4.2 which provides communication range of up to 50 meters 
and uses 0dB power as it is a class 3 system. The profile of Bluetooth used is 
Serial Port Protocol, or SPP, and it will connect to Arena’s Bluetooth module.  
 
In a wired interface, RS-232 is used for UART communication, however, instead 
of RS-232 Bluetooth uses rfcomm protocol to exchange data serially. This can be 
advantageous as Arduino’s bootloader, that resides in ATmega328P, has built in 
encapsulation is “SoftwareSerial” library that uses a typical UART to send data to 
the Bluetooth driver which translates it into rfcomm and send it wirelessly to its 
connected master. Therefore, using Arduino’s firmware makes programming the 
Bluetooth modules easy.  
 
At maximum, the packet length cannot be more than 251 bytes where 14 bytes are 
used as overhead that contains information of the Bluetooth layer in the Bluetooth 
stack. The packet that is sent by the robot to the arena includes information on the 
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status of the robot and battery information. The status of the robot includes moving, 
stationary, and shooting. The battery information data includes the LiPo cell 
voltage of individual cell and the battery pack. The structure of the packet can be 
seen in Figure 21 [60]. Robot only sends 4 bytes of data to the Arena but receives 
about 16 bytes of data which is discussed in section 4.11.2 Design.  

 

 
 

Figure 21: Bluetooth Packet sent by the robot 
 

3.6.3 Prototyping and Testing 
 
The Bluetooth connection is tested using Serial monitor. Initially, the robot sends 
a packet to the serial monitor as hexadecimal and the same packet is sent to the 
arena. The hexadecimal values are checked for their validity using serial monitor 
on the arena end as well. A time stamp is added to the test packet to determine 
the transmission time which allows the designer to determine the length of the 
packet to reduce latency in robot’s operation if needed. The required tests for the 
prototype are listed in Table 38. 
 

Table 38 Communication tests 
 

Requirement Test 
Required 
Equipment 

R.R.S.1 
Packet is successfully generated by the 
master/slave 

Serial Monitor 

R.R.S.1 
Packet is successfully received from the 
master 

Serial Monitor, 
Oscilloscope 

R.R.S.1 
Packet is successful transmitted to the 
master 

Serial Monitor, 
Oscilloscope 

R.R.E.4 
The system goes into sleep mode when 
no communication is occurring to save 
energy and system resources 

Serial Monitor, 
Oscilloscope, 
Multimeter 

 

3.7 Battery 
 
The battery is the main source of power for the robot. The kind of battery to be 
used depends on the application and power requirements of the system. As 
mentioned earlier, the robot will have an onboard computer, up to 6 motors, 
sensors including motor drivers, analog to digital converters, DC to DC converters, 
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and communication systems such as Bluetooth or Wi-fi Direct. Therefore, the 
battery needs to be strong enough to power it all. 
 
For the motors, the robot has intake and launch mechanism that is implemented 
quite frequently. During this action, adding a load to the system will increase the 
current draw from the power supply to the motors. Therefore, the battery needs to 
not only fit the voltage requirement but also the overall current requirement of the 
robot system. The battery supplies at least 12 to 9 volts and 8-10 amps to the 
system to overcompensate in cases of indeterministic power requirements. This is 
stepped down to a usable voltage for the microcontroller and its peripherals using 
a DC-DC converter and/or voltage divider with a buffer.  
 
The battery technology is rechargeable mainly because it reduces the overall cost 
of the system. It allows reusability of the components and keeps the costs at 
minimum consequently meeting the project requirements and constraints. The 
battery has to have a safety rating that meets OSHA standards. The battery needs 
a voltage detection circuit to determine when it is going under its minimum voltage 
as for instance, LiPo batteries can catch fire when electrically over drained or 
mechanically damaged harming the user or the environment or both. 
 

3.7.1 Research 
 
3.7.1a Lithium Polymer 
 
Lithium Polymer, or LiPo, batteries are quite popular due to their light weight and 
higher energy rate. A single cell can hold up to 4.2V when fully charged and they 
are sold as a pack of multiple cells such as 2S, 3S, 4S, 5S and even 6S or more. 
The S essentially signifies that they are arranged in series therefore, a pack of LiPo 
can provide voltage up to 12.6V in a 3S (3 * 4.2 V). This property makes them an 
attractive choice since different combinations can be used at an affordable market 
rate. They also have a low discharge rate which allows them to last longer. 
Therefore, depending on the power consumption by the robot, a LiPo can easily 
power the robot system for at least 30 minutes or more.  A detailed calculation of 
this is done in section 3.7.2 Design based on which the desired battery is chosen. 
Another advantage of them is that unlike Lithium Cadmium batteries, LiPo’s do not 
require to be fully discharged before being charged again. They can also be used 
in parallel to increase the current source to the system. LiPo batteries are also 
environment friendly unlike Cadmium, Lead or Mercury batteries which is also an 
important design decision for longevity of the system. [61] 
 
LiPo batteries are rated with respect to their current and capacity rating. Therefore, 
a 2200mAh LiPo battery at 25C can provide 55 Amps of current at 11.1V for 1 
hour, or 5 amps of current for 11 hours at the same voltage. This makes LiPo 
batteries an attractive choice as the launcher might use variable force to throw the 
ball which in turn would change the load on the motors. In addition to purchasing 
the battery, a proper battery charger and monitor is required as LiPo batteries 
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come with inherit risk of fire and cannot be over or under charged due to their 
chemical composition. Additionally, they are quite expensive and their price 
increases with their capacity rating and number of cells. Therefore, an important 
design decision is to choose whether two 3S LiPos at 2250 mAh or one 3S LiPo 
at 5500 mAh capacity as this causes a dilemma choosing between cost and weight 
and one has to be sacrificed for the other.  
 
3.7.1b Nickle Cadmium 
 
Nickle Cadmium is one of the oldest battery technologies that were revolutionary 
upon their arrival. They made low powered portable systems a reality however, 
lost their market share to Lithium batteries.  
 
Some of the positive characteristics of NiCad include low internal resistance. This 
allows the energy to easily travel from battery to the system and therefore, is an 
important trait in choosing the battery technology. Modern digital systems require 
high current spikes from time to in operation unlike analog loads that work easily 
on steady current. Therefore, a lower internal resistance acts as an important 
factor in determining the battery to be used in building the robot system.  NiCad 
batteries can be easily stored in charged or discharged state without harm unlike 
LiPo batteries that need to be at a certain voltage before being shelved for 
prolonged period of time. They are available in a large variety of sizes and 
capacities [62]. 
 
Some of the negative characteristics of NiCad batteries include their susceptibility 
to memory effect [62]. This effect causes the battery to remember its previous 
discharge state and hinders its next recharge cycle from reaching a full potential. 
This is usually prevented by either discharging the battery completely before 
recharging it or buying a charger with capabilities to carry out such operations. This 
can increase the cost of building the robot as such charges are expensive. Like 
LiPo batteries, NiCad are prone to damage by overcharging.  
 
3.7.1c Lead Acid 
 
Lead Acid batteries are an industry standard that are featured in robots, cards, 
industrial machinery, power supplied and much more. They are cheap and reliable 
which make them an attractive choice for a financial standpoint. However, one of 
their major limitations include their weight. They are typically used in situations 
where weight is not much of a problem or concern.  
 
One of the major pros of Lead Acid batteries include its reliability. They have been 
in development for over a century and are scaled enough to be available at a 
cheaper price compared to LiPo or NiCad batteries. They are tolerant to abuse 
and overcharging and do not explode in strenuous environments unlike LiPo 
batteries. They have an indefinite shelf like which can a plus to the robot when kept 
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dormant for prolonged periods and can deliver high currents required to run the 
flywheel for intake and launch and servos for locomotion.  
 
However, their weight is a serious disadvantage. Due to their high reliability, they 
tend to come in bulkier packaging which will add on to robot’s overall weight and 
put pressure on the electronics to function with ease. They also do not charge fast 
unlike LiPo and NiCad battery technologies which can deteriorate user experience 
exponentially. Finally, they overheat easily and can cause disruptions in sensor 
readings and wear the robot hardware [63]. 
 

3.7.2 Design 
 
Based on the research conducted in section 3.7.1 Research a system power 
analysis was conducted to specify what battery met the desired requirements and 
specifications. The results can be seen in Table 39 that shows how much power 
each system will need to operate under worst case scenarios and the overall power 
robot will use to operate. Conclusively, LiPo battery seems like the optimal solution 
to driving the robot due to multiple reasons.   
 

Table 39 Power Calculations of Robot’s Subsystem and Components 
 

Subsystem 
Part 
Name/Number 

Unit(s) 
Voltage 
(V) 

Current 
(A) 

Power 
(W) 

Bluetooth CC2541 1 3.3 0.02 0.066 

Microcontroller ATmega328P 1 5 0.2 1 

Encoder TLE4946-2K  1 5 0.05 0.25 

PWM 
Controller 

PCA9685  1 5 0.04 0.2 

Servos 
Parallax #900-
00360 

5 6.8 1.2 40.8 

ESC + Motor A2212/13T  1 10 2 20 

Total Power  62.32 

 
A LiPo battery can charge quickly and discharges at a longer rate. This allows the 
robot to run for a prolonged period of time. The specification of the battery that will 
run this robot need to be at least a 3S LiPo that can provide anywhere from 
5000mAh to 6000mAh charge rate capacity. However, a cheaper solution would 
be to use two 3S LiPo batteries in parallel with 2250mAh capacity each, but it will 
increase the robot weight and occupy more space than a single LiPo battery. The 
specified battery can run the robot for approximately one hour on a full charge and 
40 minutes on the minimum safest cell voltage (i.e. 3.7V each). Therefore, the 
battery should be able to easily support the robot and its activities for more than 
one hour. A test will be conducted upon purchase to determine the actual time the 
battery can run the robot for. 
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3.7.3 Prototyping and Testing 
 
The battery can be purchased and tested with the materials available in the Senior 
Design lab. No tests can be done prior to component purchase except making sure 
that the calculations in Table 39 in section 3.7.2 Design are correct.  Table 40 lists 
the requirements and constraints that need to be fulfilled by testing this component 
using the mentioned equipment.  
 

Table 40 Battery tests 
 

Requirement Test 
Required 
Equipment 

 
C.R.3 

Determine that the battery is not 
undercharged 

Portable BMS unit, 
Multimeter 

 
C.R.3 

Determine that the battery is not over 
charged 

Portable BMS unit, 
Multimeter 

 
C.R.3 
 

Determine that the battery provides the 
necessary voltage and current to the 
system 

Multimeter, electronic 
Load 

R.R.26 Determine expected runtime of the robot electronic Load 

 

3.8 DC-DC Converter 
 
The battery provides a high voltage and high current supply to the entire system. 
This can be harmful for certain integrated circuits and sensor technologies. Most 
sensors work at a standard 5V transistor-transistor logic, or TTL voltage. However, 
it is not uncommon to come across technologies that run on 3.3V. The reason 
behind such vast changes in logic levels is inherent to manufacturers and power 
consumption requirements of the system. Lower voltage levels and current draw 
contribute to the longevity of systems. However, it could come at a cost of high 
performance, cost and rich user experience.  
 
The DC-DC converter has to be 9V to 12V tolerant and therefore, a switching 
regulator is needed to maintain high power efficiency as the voltage is stepped 
down by this system. The power supplied to the robot with a LiPo battery is more 
than what a microcontroller can safely handle. The DC-DC converter takes in raw 
battery voltage and current and converts it into an acceptable power level for the 
system components. The microcontroller used for this project works on 5V 
Transistor-Transistor Logic and therefore, a 5V converter is required to power it 
on. The pins of the microcontroller can supply a maximum current of 20 mA and 
with a maximum of 20 pins a total of 400 mA can be drawn from Arduino pins at 
the same time which, however, is an overestimate as a phenomenon like this 
highly unlikely as per the design. 
  
A 6V DC-DC converter is used to power the continual rotation servos that help the 
robot in its movement. The servos use 15mA of current when idle, about 150mA 
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or current when rotating with no load, and 1.2A of current when stalled. Therefore, 
the converter needs to supply at least 4.8 amps of current in worst case scenario 
for all driving servos. This is an important requirement for the robot to move. 
 
An additional 5V DC-DC converter is used for powering the microcontroller, 
encoder, and PWM Controller. These are low powered systems that use 200mA, 
50mA, and 40mA of current, respectively. Therefore, a linear regulator that can 
support 1 A of current should suffice. The converter will take 9 to 12 V of battery 
input and will try to regulate the output voltage to a steady 5V with an error ±0.1V. 
An alternate solution would be using a voltage divider from a buffer that takes 6V 
regulated output as input. However, this causes issues such as failure in case the 
6V switching regulator fails. Having separate voltage conversions will allow 
connecting a GPIO line from the microcontroller to the 6V DC-DC output that can 
interrupt the processor in case the line goes low. This can help in debugging the 
robot when it stops moving without the need of a multimeter. Another problem with 
the voltage divider with a buffer is that the output voltage is not regulated and 
therefore, it can be anywhere from 4.5V to 5.5V which is a huge change and loss 
of power.  
 
A 3.3V DC-DC converter is used to power the Bluetooth Communication System.  
The Bluetooth communication system uses 50mA of current at maximum and 
hence it is low energy. Therefore, the converter takes 5V input from linear regulator 
and steps it down for the Bluetooth to use. To create these converters, an online 
tool named TI Webench was used which is discussed in section 3.8.1 Research.  
 

3.8.1 Research 
 
3.8.1a TI Webench 
 
Texas Instrument has an online power tool that allows designers to specify input 
voltage range and the desired output voltage and current. Based on this 
information, the tool generates recommended schematics, their PCB layouts, a Bill 
of Material, or BOM, and CAD files for popular schematic and PCB design software 
such as Eagle. This tool is used to determine the details of DC-DC Converters that 
were mentioned in the description of Section 3.8 DC-DC Converter The tools also 
makes sure that the efficiency of the suggested schematics is close to 90% and 
has the ability to filter the results based on BOM count, BOM cost, ripple output, 
switching frequency etc. It is mainly used to design the DC-DC Converter for servo 
system. For the other two DC-DC converters Linear Regulators are used. 
 

3.8.2 Design 
 
Using TI’s Webench tool a DC-DC Converter is designed that takes 9 to 12.6 V of 
LiPo battery input and outputs 6.8V for the servo rail and provides up to 6 amps of 
current. The efficiency of this circuit is 90% and the total cost of parts is less than 
$10. The schematic of the bypass capacitors and the switching regulator circuit 
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are shown in  Figure 22 and Figure 23, respectively. The design uses TI’s TPS 
chip which has an enable pin. This enable pin is be controlled by the 
microcontroller and therefore, provides a test point in debugging the circuit. The 
converter gives a maximum power of 40W in worst case scenario where all the 
servos are stalled and are consuming significant current. Therefore, the LiPo 
battery can power this converter for hours.  

 
 

Figure 22: Bypass Capacitors for 6.8V-6A DC-DC Converter 
 

 
 

Figure 23: Schematic for 6.8V-6A DC-DC Converter IC 
 
The bill of materials, or BOM can be seen in Table 41. The table displays the 
headings abbreviated as part, manufacturer, part number, quantity, price, footprint 
and description of the components, respectively for the schematics shown in 
Figure 22 and Figure 23. There is a total of 22 components that go into building 
the 12.6V to 6.8V DC-DC converter. The total price for buying the parts for this 
converter is $3.10 (excluding shipping) and easily fits the budget requirement. 
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Most of the parts generated in the original BOM are obsolete. Therefore, with the 
help of DigiKey and Mouser Electronics, the BOM is modified as per part 
availability and solderable footprint size. 
  

Table 41: BOM for 6.8V-6ADC-DC Converter 
 

Part Mfr PN Qt. 
Price 

($) 
FP 

(mm²) 
Des 

Cff MuRata GRM033R71C101KA01D 1 0.01 2.08 Cap: 100 pF  

Rff 
Vishay-

Dale 
CRCW040220K0FKED 1 0.01 3 

Resistance: 
20 kΩ   

Rfbt 
Vishay-

Dale 
CRCW0805102KFKEA 1 0.01 6.75 

Resistance: 
102 kΩ   

Rfbb Yageo RC0201FR-0710KL 1 0.01 2.08 
Resistance: 
10 kΩ   

Cboot MuRata GRM155R71C104KA88D 1 0.01 3 Cap: 100 nF  

U1 
Texas 

Instrume
nts 

TPS56637RPAR 1 1.5 16  

Cinx Kemet C1206C103K5RACTU 10 0.04 10.92 Cap: 10 nF 

L1 Coilcraft XAL7070-332MEB 1 1.19 87.4 L: 3.3 µH   

Cin TDK C2012X5R1V156M125AC 1 0.23 6.75 Cap: 15 µF   

Rpg 
Vishay-

Dale 
CRCW0402100KFKED 1 0.01 3 

Resistance: 
100 kΩ  

Cout MuRata GRM31CR61C106KA88L 3 0.08 10.92 Cap: 10 µF   

 
For both 5V and 3.3V DC-DC converters Recom’s switching regulator component 
is used. Recom is a packaged switching regulator that simply needs bypass 
capacitors to regulate the output voltage to 5V or 3.3 depending on the product 
chosen. It eliminates the use of adjustable resistor which are typically used in 
common linear voltage regulator and is 91% power efficient compared to Linear 
Regulator, which tend to be only 60-70% efficient and lose energy as heat. The 
selection guide in Recom’s datasheet meets the project requirements which is 
summarized in Table 42. This component powers the Microcontroller, Encoder, 
Bluetooth, and PWM Controller circuits. For bypass capacitors two 10µF 
capacitors are used as per datasheet’s recommendations. Both 5V and 3.3V DC-
DC converter schematics can be seen in Figure 24. 
 

Table 42: Recom Selection Guide Table from Recom’s Datasheet [64] 

Part Name 

Input 
Voltage 
Range 
(V) 

Output 
Voltage 
(V) 

Output 
Current 
(A) 

Efficiency 
(%) 

Max 
Capacitive 
Load (µF) 

Price 
($) 

R-78E3.3-1.0 7-28 3.3 1 87 220 3.26 

R-78E5.0-1.0 8-28 5 1 91 220 3.26 
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Figure 24: Schematic for 3.3V and 5V DC-DC Converter 
 

3.8.3 Prototyping and Testing 
 
The DC-DC converter is built for prototyping with the appropriate components on 
the breadboard in the Senior Design Lab. All of the appropriate equipment and 
resources are available to verify the design for current and voltage requirements. 
The power output is also to be tested via passive or active load. In some scenarios, 
such as when using a microcontroller in conjunction with the PWM controller and 
servos, actual components are necessary for testing instead of equivalent loads 
because different servo rotations and speeds pull different amount of current to 
generate power for motion. The tests along with their required equipment and the 
requirements that they satisfy are summarized in Table 43. 
 

Table 43 DC-DC Converter tests 
 

Requirement Test 
Required 
Equipment 

R.R.E.2 
Determine that the DC-DC converter 
outputs desired voltage and current 

Multimeter, 
Electronic Load 

R.R.E.4 
Determine that the DC-DC converter is 
power efficient and does not lose energy 
as heat to the environment 

Multimeter, Thermal 
Analysis 

 

3.9 PCB 
 
The PCB component is the implementation and integration of the various electronic 
systems defined previously. It must connect the various integrated circuit 
components to the microcontroller and have slots for the peripherals to plug into. 
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The Printed Circuit Board is required to simplify the design of the robot. The 
electronics that make up the robot consists of 6 motors, a microcontroller, a DC-
DC Converter, Motor Drivers, H-Bridge Circuit, encoders, and communication 
system such as Bluetooth.  The PCB connects all these systems together and 
gives the robot a sophisticated appeal. The PCB needs to be small enough to fit 
the robot and keep the costs as minimum. 
 
The Printer Circuit Board is a 2-layer copper board with silk screen and soldering 
pads on it. It consists of terminal blocks that intake power from the battery and then 
direct them to a voltage regulator by the means of traces. The width of the traces 
depends on the power it is carrying. The width of the trace carrying battery power 
will be thicker than the trace carrying the power to the microcontroller. The PCB 
contains test points to check voltage and currents at certain spots. Additionally, 
adding test points helps in determining the signals using an oscilloscope which can 
help in debugging communication protocol problems that might arise while 
implementing I2C, SPI, or UART. The PCB also contains a reverse voltage 
protection circuit leaving the user with minimal adjustments and focus on playing 
the game out of the box.  
 

3.9.1 Research 
 
3.9.1a Autodesk Eagle CAD 
 
Eagle CAD is a popular schematic capture and PCB design software that is used 
by hobbyists and beginners to make 2-layer PCB boards using the free version. 
The paid version allows users to make PCBs with up to 4 layered PCBs. For the 
robot system, a two-layer PCB will suffice which makes the free version of Eagle 
an attractive choice. Eagle has myriad of libraries available on the internet for parts 
and their footprints. Manufacturers such as Texas Instruments tend to give eagle 
or “.bxl” files with their part that can be used to generate an eagle footprint for PCB 
design and schematic capture. Eagle also allows users to create custom parts with 
their footprints and connects to LTSpice to perform circuit analysis of the electrical 
design. Eagle CAD, however, does not support 3D view of the generated PCB. It 
cannot export PCB files in “.stl” format which can be used for design in solid works. 
[65] 
 
3.9.1b Diptrace 
 
Diptrace is another schematic and PCB design software which is quite prevalent 
in the industry. The commercial version allows for multiple pin connections and 
sheets whereas the student version allows 300 net connections and is limited to 
designing two layered boards. The schematic capture allows the users to connect 
the pins visually, without wires, logically or using nets. It can annotate easily and 
can easily import or export from or to other Computer Aided Design software, 
which is a feature that can be valuable to detect maximum errors and is not 
available in Eagle. The PCB Layout software has the ability to generate from 
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schematic, like Eagle CAD. However, unlike Eagle it has additional features which 
includes a verification tool that verifies the PCB nets and traces against the 
schematic file. Similar to Eagle, Diptrace also provides auto routing capabilities, 
however, the designed needs to correct any 90° traces to avoid occurrence of EMF 
due to sharp electron turns.  
 
Diptrace also has a pattern editor that allows designers to create custom parts of 
any shape and sizes. It has support for DFX files allowing imports from files of the 
parts generated by their manufacturers. This helps making difficult layouts easier. 
The key feature of Diptrace that beats Eagle is ability to 3D model the final PCB. 
This gives the designer most tactile feel virtually available and help them detect 
errors during hardware installations by exporting stl files to other CAD programs 
such as SolidWorks, etc. and looking at them in a three-dimensional axis. There 
are also a lot of tutorials available on the internet that can ease the design process 
for the team.  
 

3.9.2 Design 
 
After thorough analysis of different Schematic Capture and PCB design software 
tools, the team decided to use Diptrace for designing the Robot’s PCB. Some of 
the reasons included the ability to create STL files from PCB designs which can 
be exported and analyzed in SolidWorks. Another reason is the prior experience 
in working with the software and hence, the familiarity with the tool. The schematics 
generated by using DipTrace can be seen in Figure 26 through Figure 31. These 
figures describe Figure 25 Robot Electrical Network Block Diagram in detail. A 
summary of the input and output connections is also shown in Table 44 I/O 
Schedule. 
 

Table 44 I/O Schedule 
 

 Type 
Connected 
Devices 

Signal Type 

Drive Front Left Servo PCA9685 PWM  

Drive Front Right Servo PCA9685 PWM  

Drive Back Left Servo PCA9685 PWM  

Drive Back Right Servo PCA9685 PWM  

Launcher / Intake Brushless DC PCA9685, ESC PWM 

Launcher Release Servo PCA9685 PWM 

Feedback Front Left Hall Microcontroller 1 Digital 

Feedback Front Right Hall Microcontroller  1 Digital 

Feedback Back Left Hall Microcontroller  1 Digital 

Feedback Back Right Hall Microcontroller  1 Digital 

Feedback Launcher Encoder Microcontroller 2 Digital 

PWM Generator PCA9685 Microcontroller I2C 

Bluetooth BT-05 Microcontroller UART 
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Figure 25 Robot Electrical Network Block Diagram 
 
A schematic of the microcontroller subsystem is shown in Figure 26. The 
microcontroller used is an ATmega328P which is popular for its use in Arduino Uno 
development boards. The package is a QFP package unlike the traditional dip 
socket which is used in Arduino Uno boards. This saves spaces and gives more 
pins to the design. The firmware that is flashed on this chip, however, is the 
Arduino’s bootloader. This is because it will allow the team to program the board 
just like an Arduino using their IDE and free libraries that abstract SPI, UART, I2C 
and other driver interfaces which otherwise would have required custom 
programming and increase the project timeline. The chip controls the output enable 
pin for the PWM controller allowing to turn on or off all 16 channels by flipping 1 
bit. The PWM controller is communicated using the standard I2C protocol and 
therefore, two lines from the MCU, PWM_SDA and PWM_SCL, shown in Figure 
26, connect to the PWM_SDA and PWM_SCL lines on PWM controller chip shown 
in Figure 31. The SDA and SCL lines have pull up resistors as the MCU pulls them 
down to begin communication, however, this is handled by Arduino’s libraries and 
the designer does not need to trouble with them much. Additionally, UART lines 
are used to communicate with the Bluetooth chip shown in Figure 29 whereas SPI 
is used to program the microcontroller with ISP interface shown in Figure 28. 
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[54] [66]

 
 

Figure 26: ATmega328P Microcontroller Schematic 
 

 
 
Figure 27: ATmega328P GPIO Connection and additional power rails for testing 

 
Three bypass capacitors are used for the two VCCs, and one AVCC power lines 
shown in Figure 26. The values for these capacitors are a standard 0.1µF as their 
main purpose is to attenuate any noise entering the CPU and potentially damaging 
the IC with high voltage spikes. The schematic can be seen in Figure 28. Also 
shown in the schematic is an In-Serial Programmer interface which is used to 
program and flash the ATmega328P MCU. Traditionally, Arduino boards come 
with a USB interface that in conjunction with an RS232 to TTL converter program 
the chip. However, that requires an additionally voltage regulator and the ability to 
add differential pair signals to the board increasing the overall complexity of 
programming and designing the system. Therefore, to avoid such intricacies, a 
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traditional ISP program is used that uses SPI with high bandwidth to transmit 
signals and program the chip not only at a faster rate, but with ease.   
 

 

 
 

Figure 28: ATmega328P Microcontroller Bypass Capacitors and Programmer 
Interface 

 
The Bluetooth chip used for sending and receiving Arena packets is TI’s CC240 
chip. This is a popular IC that is used on multiple HM-10 boards, which is 
compatible with Arduino and its clones. Therefore, the idea is to flash the chip with 
HM-10’s firmware and interfacing the MCU to send and receive Bluetooth packets. 
The packet information is discussed in communication sections of this documents 
and can be seen in the design sections 3.6.2 Design and 4.11.2 Design for Robot 
and Arena packet structure, respectively. The Bluetooth chip uses a molex 
debugging/programming connector interface that is specified in TI’s 
documentation using which the HM-10 firmware is flashed onto the board. The chip 
also uses two crystals for stability and an RF matching network that is to be kept 
away from the onboard electronics to allow successful radio communication. The 
schematic of the Bluetooth IC can be seen in Figure 29 whereas the debugger 
connector and RF matching network schematic are shown in Figure 30.  
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Figure 29 Bluetooth IC and Schematic 
 

 
 

Figure 30 Bluetooth Programmer/Debugger and RF Matching Circuit 
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The schematic for PCA9685 chip is shown in Figure 31. This chip controls the 
servos that drive the robot. The input signal is a 16 bit or 2 bytes of data that is 
received using I2C protocol. The I2C lines are driven high by pull up resistors to 
avoid any unpredicted behavior caused by floating pins. To initiate the I2C 
conversation the MCU pulls down the clock and starts transmitting the over the 
PWM_SDA line. The PWM controller takes input voltage at Vcc pin from the 5V 
Recom voltage regulator output (schematic shown in Figure 24). The servo rails 
are used to power the servos and send PWM signals to manage their rotation using 
GPIO pins shown in  Figure 31 and Figure 32. Feedback from is fed to the GPIO 
pins of the MCU which adjusts the 16-bit code based on the received signal and 
sends it to PCA9685 via I2C. 
 

 
 

Figure 31 PWM Controller Schematic 

 
 

Figure 32 GPIO pins for Servo connections to the PCB 
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3.9.3 Prototyping and Testing 
 
The PCB is to be designed and purchased through a PCB manufacturer which 
sells 2 Layer PCB for $2 for 5 boards or cheaper if possible. Additionally, the 
stencils can be purchased for the board at just $6. The stencil is utilized in 
conjunction with the board and solder paste to quickly and accurately build the 
PCB. A heating chamber is required to evenly heat the board to prevent any 
damages. The tests and requirements are summarized in Table 45. 
 

Table 45 Robot PCB Tests 
 

Requirement Test 
Required 
Equipment 

C.R.1 
Determine that the PCB is an 
appropriate size to fit the robot 

Ruler 

R.R.4 
 

Determine that the PCB does not have 
any shorts or opens 

Multimeter 

 

3.10 Software 
 
The software component drives the hardware components in the PCB. This 
includes any control software such as various PID control, state machines, and 
Bluetooth communication. The software for the Robot must be at least Soft-Real 
time to ensure that inputs and outputs are processed in a context that does not 
affect the fidelity of the system. For example, an input from the motor encoders 
should be processed and utilized in outputs for the relevant motor within a single 
deterministic loop. If the motors outputs are updated too long from the motor 
encoder input, the data is no longer valid and could be harmful to the system. Thus, 
a firm data flow structure must be followed for the entire software system. 
Additional limitations on the software are based on the microcontroller chosen in 
section 3.5 Microcontroller. Ideally, the written software follows a strict architecture 
to enhance readability and debuggability. Debugging is critical for the robot 
because there are several factors that could lead to failure: Mechanical, Electrical, 
and Software issues. Often each one of these have issues are observable only in 
another area. Thus, the chosen software and libraries must have thorough 
documentation, and be thoroughly tested prior to usage. Each function or block of 
code should be fully documented and contain a unit test that corresponds to the 
requirement that drives the function.  
 

3.10.1 Research 
 
3.10.1a Arduino IDE vs Atmel Studio 
 
The Arduino IDE is a very popular software that includes a full development 
environment including a text editor, compiler, boot loader, and serial monitor. It has 
a very easy-to-use interface and a large amount of documentation due to the 
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prevalence of Arduino as a hobby device. The IDE is strictly designed around 
particular Arduino boards, thus the support for the chip itself is somewhat limited 
and requires extra effort to work with. 
 
The Atmel Studio software is a software provided by Microchip that supports 
development and debugging for AVR and SAM microcontrollers. The application 
contains a fully-fledged IDE that supports text editing, compiling, debugging, and 
deploying to AT chips. However, this does require (similarly to the Arduino IDE) an 
extra chip that acts as a programmer device. The IDE can also import Arduino 
sketches and libraries.  
 
Another option is the Visual Studio Code extension for Arduino that extends the 
capabilities of the Arduino IDE. The Extension provides full IntelliSense and all of 
the advanced capabilities of the Visual Studio Code application. This provides all 
of the capabilities of the Arduino IDE with a much better text editor. [67] [68] 
 
3.10.1b Libraries 
 
The primary PID library available for Arduino environment (and thus the ATMega) 
is the Arduino PID library by Brett Beauregard. This library implements a traditional 
PID controller in a professional and well-documented way. Additionally, all of the 
PID code is factored into a self-contained class that can be instantiated as many 
times as necessary. Another library option is FastPID by Mike Matera. This library 
is implemented with strictly fixed-point data types rather than utilizing any real data 
types. This reduces complexity and increases performance substantially on the 
ATMega. This is implemented by converting floating point coefficients into fixed 
point by a static conversion. This library does require a deterministic loop rate in 
order to function properly. The API is similar to the PID library in that instances of 
classes are instantiated, and functions are called to process updates. [69] [70] 
 
I2C / PCA9685 Libraries 
 
The best supported library for the PCA9685 is the Adafruit PWM servo library. This 
library implements the appropriate I2C commands and wraps them in a very simple 
to use and understand API. The library takes care of the I2C ID commands such 
as setting the clock, waking or resetting the device, and data transmission. The 
library is very well documented and thoroughly tested. Other libraries exist; 
however, they are fairly undocumented and lack support. A Servo library that 
supports the PCA9685 natively does exist and is discussed below. [71] 
 
Servo Libraries 
 
The default servo support in Arduino is handled by the Arduino Servo Library. This 
library allows users to create servo objects and set their speeds or positions in a 
few different ways. This library is limited to support up to 12 motors at once. This 
library is focused around the generation of PWM signals by the Arduino itself, and 
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thus is unlikely to be useful for this project. Another available library is advanced 
Servo Easing library available from contributors. This library provides precise 
mathematical driven control over servos, and directly supports the PCA9685 
device. The device also supports motor synchronization, and various easing 
functionality. However, it does not have explicit support for continuous rotation 
servos. The library may need to be adjusted manually to support this. [72] [73] 
 
Bluetooth libraries 
 
There are no widely available Bluetooth libraries for Arduino because the chip 
firmware generally abstracts data out enough to be a simple serial interface that 
native Arduino support handles. Thus, the Arduino Serial library is the primary 
library to use for the Bluetooth modules utilized in this project. An additional 
abstraction layer can be included to wrap the serial functionalities into a more 
usable interface.  
 

3.10.2 Design 
 
The design for this software is developed to ensure maximum robustness, 
scalability, modularity, and maintainability. The general structure follows a strict I/O 
paradigm to guarantee real-time reliability. The design does the following: updates 
inputs, processes the system’s data, and updates the outputs. This entire process 
must run each cycle with a deterministic scan time to ensure real-time operation. 
The process is shown graphically in Figure 33. The software and appropriate unit 
tests are to be developed and handled in Visual Studio Code with the C/C++, and 
Arduino IDE extensions. 
 

 
Figure 33 High level process flow 

 
The system defines three finite state machines shown in Figure 34, Figure 35, and 
Figure 36. The Master state machine defines the states that the robot system can 
be in, and their valid transitions. The transitions are determined by the master 
arena software and faults when errors occur in any of the processes. The actuators 
and sensors on the system have their own state machines to reduce system 
complexity in fault-tolerance and error checking. In the actuator states, the actuator 
transitions from offline to tracking such that individual actuators can be deactivated 
without disabling the entire system. The tracking state indicates that the actuator 
is actively following commanded positions or velocities, and the fault state indicate 
that some error has occurred such as tracking errors or invalid state transitions. 
The sensor state machine indicates the validity of the sensor’s information. The 
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reset state indicates that the sensor’s information is invalid in this cycle and it must 
reset accordingly. Active indicates that the sensor is actively tracking velocities / 
positions and the information appears valid. Fault indicates that the sensor has 
had an error or invalid transition.  
 

 

 
 

Figure 34 Master state machine 
 
 

 
 

Figure 35 Actuator State Machine 
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Figure 36 Sensor state machine

The software architecture and preliminary class diagram is shown in Figure 37. 
Four isolated layers are defined: Application layer, System layer, object layer, and 
library layer. The application layer contains the primary infinite loop for the robot’s 
software that processes the inputs, data, and outputs in the appropriate scan time. 
It instantiates and calls methods from the classes in the system layer. The system 
layer contains classes defining robot-specific systems such as the intake, 
launcher, and drive systems. Each of these systems contain state-specific 
processing such as determining when an actuator should be active, how inputs 
from the master arena are handled, and general state machine I/O processing. 
The object layer contains abstract code for actuators, sensors, and state 
processing. This layer must be instantiated and operated by an upper level layer. 
However, the majority of the data of the system is processed and allocated to this 
layer. Finally, the system and object layer leverage existing libraries when 
possible. These libraries include the PID, Servo, I2C(PCA9685) and Bluetooth 
libraries available for the electrical components. The specific libraries chosen are 
the FastPID library, the Servo easing library, and the standard Arduino serial 
library. The FastPID library provides a high-performance control loop that allows 
the Arduino to focus on other important tasks such as polling the encoders or 
processing other data. It reduces the reliance on floating point operations by 
working with a fixed update rate that the architecture already supports.  The servo 
easing library provides an excellent interface to the PCA9685 in addition to a 
powerful signal processing functionality such as s-curve easing between desired 
commands. The serial library provides a simple, robust interface for 
communication over Bluetooth. 
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Figure 37 Robot software architecture design and class diagrams 
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3.10.3 Prototyping and Testing 
 
In order to adequately prototype the software for the robot, an Arduino Uno and 
some evaluation boards are needed to mimic the functionality of the PCB if it is not 
finished yet. Otherwise, the software unit tests can be developed independently to 
the actual software such that each code block can be built and tested without the 
other blocks being complete. In order to verify that the system is working as it 
should be, every test listed in Table 46 will need to be conducted on the separate 
units of the system. 
 

Table 46 Software System Tests 
 

Requirement Test 
Required 
Equipment 

R.R.S.3 
Communication Unit Tests (Bluetooth, 
Wired) 

Bluetooth Module, 
USB Cable, Arduino, 
Power Supply, 
breadboard 

R.R.S.3 
Actuator Unit Tests (Base, intake, 
launcher) 

USB Cable, Arduino, 
Power Supply, 
actuators, 
breadboard 

R.R.S.3 
Sensor Unit Tests (Encoders, Switches, 
battery, etc.) 

Sensors, USB Cable, 
Arduino, Power 
Supply, breadboard 

R.R.S.3 Control Unit Tests (PID, etc.) 
Sensors, Actuator, 
Arduino, Power 
Supply, breadboard 

R.R.S.3 
Safety system Unit Tests (Heartbeat, 
etc.) 

Arduino, Power 
supply 

R.R.S.3 
Full software tests (Operations at max 
capacity, timing, etc.) 

 

R.R.S.3 
State machine Unit Tests (including 
operating modes) 

Arduino, Power 
supply 

 

4.0 Arena 
 
The arena subsystem is the subsystem physical frame that the robot can be placed 
on, along with all the components required for basketball gameplay. The way all 
the separate subsystems integrate together is laid out in Figure 38. It contains the 
computer vision component of the project for robot and ball tracking. The 
subsystem also contains all the player experience including lights, sounds, and 
display. The final mechanical model for the assembly is shown in Figure 39. 
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Figure 38 Arena Subsystem Power and Signal Diagram 
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Figure 39 Final Arena Rendering 
 

4.1 Frame 
 
The frame component is the structure to hold the robots, electronics, court, and 
other components physically. The frame can be quite large; thus, it is designed 
modularly such that it can be stored and transported in a small location. The court 
must be perfectly level to ensure the ball remains in place, thus the frame that 
supports the court flooring must include a leveling apparatus. The exterior of the 
frame will be closed off to prevent the ball from flying outside of the arena. The 
material must be transparent to make sure that spectators can see the entire field.  
 

4.1.1 Research 
 
4.1.1a PVC 
 
PVC pipe is a light weight and low to medium cost material. The cost will depend 
on how many connectors are used as they are the most expensive PVC part to 
buy. The number of connectors used will depend on how much a PVC pipe can 
maintain level at varying lengths, if the PVC needs to be strengthened more to 
keep it level that increases cost. However, to alleviate the need for extra 
connectors we could use thicker pipe, again though the thicker the pipe the more 
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cost increases. PVC pipe is a very portable material though since it does not need 
any hardware or glue to hold it together. The downside to this portability is that 
when taken apart and put together repeatedly, it could go together at a different 
depth than it did before depending on the force applied by the person putting the 
pieces together. This varying depth can throw off calculations if the arena ends up 
being off level. A unique problem to PVC is that it is the only round material 
considered, a round material is not easy to mount other parts on and supplies little 
support to the flooring of the arena. Additionally, the round property of PVC means 
that when together it can rotate in place, this can again affect calculations if the 
camera mount is not placed in the exact same height and position every time. 
Lastly PVC pipe placed into connectors will always have a lip between the 
connection point. Because of this lip a piece of plywood may need to be added to 
the frame in order to ensure the flooring can sit above the lip to make it level. 
 
4.1.1b Metal 
 
A metal frame will cost the most out of all options. To create a metal frame would 
consist of at least four L angled brackets made of aluminum, steel, or another 
lightweight inexpensive metal. These L angled brackets would be used as the wall 
mounts of the frame and additionally for securing the particle board or similar 
material to the frame that will be used to support the flooring. From our research, 
it was concluded that aluminum would have been the cheapest option for the L 
angled brackets with prices for all sides of the arena at over $100. Additional 
materials to construct the frame from metal would include the particle board or 
similar material to secure the flooring to the frame. In the research done the lowest 
cost material for this would be an OSB board which at the correct size for the arena 
would be roughly $8 at the lowest. The walls, hoops, and camera mounts would 
be connected to the L angled brackets using locking hinges so that the arena walls, 
hoops, and camera mount are capable of folding into the arena. These hinges were 
around $7 a piece and we would need at least two per wall, one per hoop, and one 
for the camera mount. The metal frame would supply the arena with the best 
compact design in that the arena would be able to fold into itself and carried. This 
material would also be near the highest weight of the researched materials. Even 
though the portability of this material is excellent, the minimum cost of around $180 
is quite above the estimated budget for the arena. So, if this material is used either 
the budget of the arena would have to increase, the budget for the entire project 
would have to increase, or the budget would have to be lowered from another 
section of the project and applied here. 
 
4.1.1c Wood 
 
A wood frame would be one of the lowest cost options for the frame, but would 
require the most actual work to construct, in that there will need to be numerous 
cuts in the wood that require a tiny bit of skill in carpentry. Making a wooden frame 
would use four 2x4s as the walls and four 2x2s as the lengthwise flooring supports 
in the middle of the walls. Each cut in the four-foot sides (basket sides) will be a 
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notch. One notch on each side will hold the five-foot sides (lengthwise sides) 
perpendicular but even height with the four-foot walls. The other four notches will 
be evenly spaced and will hold the 2x2 strengthening planks an inch below the 
surface of the outer walls. The flooring will then sit on these strengthening planks 
with no glue or hardware to hold them down. For this reason, the wood used will 
need to be strong, rigid, as straight as possible, and with as little knots as possible 
to ensure the cuts and notches will be even enough to hold the supporting braces 
level for the flooring. The wood will also need to be reasonably priced and 
accessible. For this reason, and all previous explained building choices, a kiln dried 
softwood, such as pine, spruce, or Douglas fir will be preferable. This type of wood 
for a 2x4 would be about $5 for 10 feet of material and $2 for 8 feet of 2x2. The 
walls, camera mount, and basket mounts will be attached to the frame with PVC 
pipe and a bolt that will go through the pipe and pipe holder to hold it in place. The 
hardware for this would be roughly $10. Using wood would come to a total cost of 
around $30 to construct the frame. The savings in the arena budget if using wood 
could then be used on better parts or parts that make other parts of the project 
easier. The downside of using wood is that it is difficult to get notches cut very level 
and it’s of medium weight when needing to transport the eight planks together. 
 

4.1.2 Design 
 
The proposed size of the arena is approximately 4 ft width by 5 ft length by 3 ft 
height which is not to an exact scale of a real court. After creating prototypes of 
the arena in SolidWorks using the previously mentioned materials and putting 
together a parts list including price for each, our team decided to use wood 
because its inexpensive, requires little hardware, and can be easily disassembled 
and reassembled. 
 
The design of the frame will use four 2x4 kiln-dried heat-treated spruce-pine-fir 
wooden pieces as the walls and base frame. Two pieces on each basket side will 
serve as the main notched pieces that will hold the middle supporting braces. Each 
of these two pieces will be cut to four feet in length with 1x1 inch notches cut two 
inches deep a half inch away from either side of the 2x4. These notches will be 
used to slot the lengthwise 2x4s into place. The lengthwise 2x4s will have the 
matching joint cut so that it fits tightly into the basket side notches and is level on 
the top and bottom of the joining pieces. With these four sides fit tightly together 
the inner perimeter of the frame should measure 18 feet or 4x4x5x5 feet on each 
side. Additional 2x1 inch notches shall be cut into the basket-side pieces two 
inches deep. These notches will be used to hold the supporting braces. The 
supporting braces will be made of the same type of wood cut to a 2x2 inch plank 
five feet two inches long. Each side of the supporting braces will have a joint cut 
to match the notch on the basket-side pieces. This cut should place the supporting 
braces one inch below the top of the frame. A cross support shall also be placed 
in a notch cut three inches deep in the middle of the long-side wall. With all walls 
and supports in place this should create a level platform in which to place the 
flooring of the arena. The frame will then have lead screws attached to each corner 
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area to keep it level on any surface. Small levels will then be attached to each side 
to ensure the arena is always level. Figure 40 shows the arena dimensions and 
components. 
 

 
 

Figure 40 Arena frame drawings 
 

4.1.3 Prototyping and Testing 
 
The frame components can be purchased from local hardware stores. The cuts 
required to correctly set up the frame need to be done with a jigsaw and table saw, 
both of which are available through team-member’s families. Basic tests to confirm 
functionality of the arena frame are outlined in Table 47 below.  
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Table 47 Frame Tests 
 

Requirement Test 
Required 
Equipment 

R.A.6 Time how long it takes to put together Stopwatch 

R.A.6 Time how long it takes to take apart Stopwatch 

R.A.7 
Determine how level the system is from 
different starting conditions 

Level 

R.A.8 
Determine strength of the frame in 
event of falling 

Weights 

 

4.2 Walls 
 
The walls surrounding the arena exist to prevent a rogue ball or robot from flying 
out of the arena and hitting someone or something it is not supposed to. It also 
exists to prevent people from placing arms or objects into the arena while the 
robots are running. 
 

4.2.1 Research 
 
4.2.1a Clear Acrylic Plastic 
 
The first material to be researched was clear acrylic plastic. This material is very 
rigid and the strongest material to be considered. This rigidity would make acrylic 
the best material for a camera mount alleviating the need for extra mounting 
material should the camera instead need to be mounted to the frame. The solid 
acrylic panels would also be an excellent choice for dampening any wind that could 
occur from outside forces and affect the calculations for shooting the ball, which 
would be necessary should this project need to be demonstrated in an outdoor 
environment. A clear acrylic wall would also make the best choice for viewing the 
robot, making it very easy for any player to see and control their robot. Attaching 
the wall to the arena is also made easier by the acrylics rigidity as hinges would 
be all that is needed to hold the walls and would make them collapsible for 
portability. The downside of the acrylic material is that it is much heavier and would 
add a tremendous amount of weight to the arena decreasing portability. In addition, 
the cost of clear acrylic plastic is tremendously more than any other material 
considered. In fact, this material is the absolute best choice considering all 
aspects, however the cost is so prohibitive that our team is unable to purchase the 
necessary quantity needed for this project. 
 
4.2.1b Clear Vinyl Plastic 
 
A clear vinyl material is a medium cost solid, but not rigid material. For this project 
at least six gauge or thicker vinyl would be used. This thickness would allow for 
hardware to be installed without ripping the vinyl material when it is pulled tightly. 
The vinyl will need to be pulled as tight as possible in order to make the material 
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as clear as possible and help the ball bounce back into the court and keep the 
robot from falling out of the court. A vinyl material will also dampen wind almost as 
good as the rigid acrylic plastic if pulled tight enough. Due to the vinyl not being 
rigid the camera will have to be mounted on the frame, requiring more hardware. 
This is a lightweight material and will add almost no weight to the arena making it 
more portable. In addition, since the material is not rigid it can also be rolled up 
and carried separately. Attaching vinyl to the arena would entail the use of posts 
on each corner of the frame, again requiring additional materials. 
 
4.2.1c Mesh 
 
The third material considered is a mesh material, either plastic or nylon woven in 
a net like structure with one inch or less square holes. The mesh material will be 
the absolute cheapest material considered, costing only several dollars for many 
square feet of mesh. Mesh is also not a rigid material and thus will not be suitable 
for attaching the camera boom and so additional hardware will be required. Mesh 
is however extremely lightweight making it a very good material when considering 
portability. The ability of mesh to dampen wind is almost nonexistent, so there 
would require more work in the ball shooting algorithm to insure target goal 
probability. Mesh will also require additional materials to attach to the frame in the 
form of posts. These posts could be PVC or another sturdy low-cost material. PVC 
would be an easy solution as it is sturdy in short lengths and can easily be slotted 
into the arena by attaching PVC caps to each corner and placing the three-foot 
PVC pipe with mesh material attached into these caps. 
 

4.2.2 Design 
 
The final wall design will be a combination of PVC pipe to hold each corner upright 
and a mesh material used for the physical wall itself and some small ceiling 
hanging hooks to hold the base of the wall to the frame. Each wall will be made of 
¼ inch woven mesh material three feet tall and either four or five feet wide 
depending on which side it is attached to (Figure 42). A mockup of how the walls 
will attach to the PVC and surround the arena is provided below in Figure 41. The 
wall posts will be made of 1/2-inch PVC pipe three feet long each. These PVC pipe 
posts will fit into PVC plugs that are mounted to each corner of the arena frame. 
Each PVC pipe will have small holes drilled ¼ inch apart through both sides of the 
pipe down the full length of the pipe. The mesh will have single strands pulled 
through these holes and tied to keep the mesh tight to each PVC post. The frame 
will have small ceiling hanging hooks attached along the base of the wall area. 
These hooks will be used to hold the base of the mesh wall tightly in place. When 
completed there will be four PVC corner posts with mesh connecting them. This 
will be one piece and will be capable of rolling up, like a scroll, for easy 
transportation. 
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Figure 41 Mesh walls attached to PVC uprights  
 

 
 

Figure 42 Mesh wall dimensions 
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4.2.3 Prototyping and Testing 
 
The walls component can be purchased from Amazon and the remaining 
components for PVC mounting can be purchased any local hardware store. The 
components can be cut and manufactured at the UCF Innovation lab or at a team 
member’s home. The tests for the walls are shown in Table 48. These tests verify 
whether the requirements are met to ensure the safe operation of the product. 
 

Table 48 Wall testing 
 

Requirement Test 
Required 
Equipment 

R.A.9 
Test if the ball goes through the mesh 
thrown at different starting speeds and 
locations 

Ball 

R.A.9 
Test if the ball can roll underneath the 
wall 

Ball 

R.A.9 
Test if the robot can push through the 
wall siding 

Robot 

 

4.3 Court 
 
The court component involves the actual floor of the arena that the robots drive 
around on. The flooring must be easily transportable and must be able to attach to 
the frame described in section 4.1 Frame. The floor paneling must lay flat on the 
frame and contain any required basketball court markings. This is because the ball 
will move roll around without input force and end up in a hotspot on the court. 
Additionally, the basketball court markings can be used as a way to ensure the 
court is placed together properly such that computer vision remains consistent 
between teardowns. The floor material should have a coefficient of friction high 
enough that the robot can consistently traverse the court without fear of slipping in 
the driven directions. If the wheels cannot grip properly on the court, the robot will 
not move, or the holonomic motions will be very inconsistent, leading to a poor 
player experience. The court is intended to mimic a full-size basketball court, 
however, after testing and prototyping, it may be advantageous to switch to a half-
court style arena rather than a full-court arena. 
 

4.3.1 Research 
 
4.3.1a Laminate 
 
Laminate flooring is a low-cost portable option for the court of the arena. Laminate 
flooring comes in many different color variations as well, which is helpful in 
choosing a color that works well with the computer vision tracking program. 
Laminate flooring generally comes in lengths of around 48 inches and widths of 



82 
 

around 8 inches per plank. Each laminate flooring piece connects in a puzzle piece 
locking manner, when locked together the flooring has little to no bumps, groves, 
or creases. Additionally, as long as the frame holding the flooring up is level, the 
laminate flooring will also be level when locked together. Laminate flooring is also 
lightweight, about three pounds per flooring plank. For the entire arena to be 
covered, 4x5 feet of space, seven planks will be needed. Eight to nine planks will 
come in one package of laminate flooring, so only one package would need to be 
purchased. Each package depending on color, brand, and thickness will range in 
price from $12 to $20 making this a very inexpensive choice for the court even if 
choosing the highest priced options. 
 
4.3.1b Metal 
 
An aluminum court would in theory be a great choice as metal is generally flat with 
no impurities in the surface that would cause bumps in the court and is lightweight. 
However, in practice it would depend on the thickness of the aluminum and how 
we transport, cut, and mount it. A thinner aluminum like 0.032 inches would be 
ideal for low weight as a 4x5 foot sheet would weight about 10 pounds. A thinner 
sheet though would be flimsy and need a solid frame below for support. If not, 
enough framing support is under a thin aluminum sheet it will start to develop 
waves in the metal, once the waves start to develop it is almost impossible to get 
the metal to be perfectly flat again. To fix this problem a thicker sheet of aluminum 
could be used, something like 3/16 of an inch. At this thickness the aluminum would 
not need much framing to support it and maintain its surface through transport. An 
aluminum sheet 4x5 feet at 3/16” thick will weight approximately 36 pounds, clearly 
a drastic increase in the weight of the arena. Regardless of the thickness of the 
aluminum sheet it will need to be cut in half either lengthwise or widthwise to make 
it portable. Because the sheet is cut in half it will have to be rejoined together when 
placed on the arena frame, this can be accomplished by either laying the two 
sheets down next to each other and hoping they don’t move or adding hinges to 
hold the two halves together. Whichever idea is chosen will create a small gap or 
possible difference in height between the two pieces which will have to be fixed 
somehow to make the court completely level again. Additionally, aluminum would 
be the most expensive material to create the court. From online quotes for a 4x8 
foot sheet of 0.032-inch-thick aluminum sheets it would cost $109 and go up to 
$398 for an equal sized 3/16 of an inch-thick sheet. This would clearly break the 
budget for the entire arena assembly. 
 
4.3.1c Particle Board 
 
Particle board is an alternative to plywood. There are different types of particle 
board and the type chosen to discuss here will be OSB, oriented strand board, as 
it is the lowest cost while maintaining uniform construction and rigidity. OSB comes 
in a variety of sizes and can be bought and cut such that the whole arena, 4x5 feet, 
could be covered by only one piece of OSB. As one solid piece OSB is very sturdy 
and if bought at the correct thickness would not need any framing underneath to 
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keep it level. While it sounds great to only have one piece for the entire floor this 
project has portability as a restriction and therefore a 4x5 foot sheet of OSB would 
not be portable. Thus, the sheet of OSB would need to be cut, at the least, in half 
to make either two 2x5 halves or two 2.5x4 halves. This half cut would be a 
detriment to the rigidity, levelness, and ease of the OSB sheet as joining the two 
halves together would almost certainly add a slight bump to the middle joint and 
add hardware to connect the two halves. Additionally, the longer and thinner width 
of the sheet the more likely the sheet is to start bowing thus increasing the need 
for frame supports or risking the flooring to be unlevel. OSB can easily be painted 
as well to any color and design that would work well with the computer vision 
program. However, OSB and all particle board, generally does not look very 
professional or sleek, even when painted. Lastly, for the amount of OSB that would 
be needed for this arena the cost would be around $8, which is clearly the lowest 
cost of any of the materials researched. 
 

4.3.2 Design 
 
The final design of the court will be using the laminate flooring material because it 
was the best combination of lightweight, portability, cost, presentability, and would 
maintain a flat level surface after multiple instances of being taken apart and put 
back together. It will require seven laminate flooring planks to cover the 4x5 foot 
area. Each plank will be locked into the previous plank by inserting the protruding 
locking plank side into the docking side of the previous plank at an angle and then 
pushing in and down to lock the two planks together. A diagram of locking two 
planks together is in Figure 43 Plank placement below. 
 

 
 

Figure 43 Plank placement 
 
Since each plank is 8.03 x 47.94 inches, seven planks will cover an area of 56.21 
x 47.94 inches with no cutting of the planks involved. The court will be inserted on 
the arena frame one plank at a time with the lengthwise side parallel with the 
basket side frame wall. Figure 44 and Figure 45 detail the specific dimensions of 
a single piece of the laminate flooring being used, and the full arena floor once 
assembled. As the dimensions for the frame are roughly 4'x5', the floor with will be 
able to fit inside it. 
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Figure 44 Plank drawing 
 

 
 

Figure 45 Court Floor panels 
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With all planks of the court together and aligned evenly the court markings will be 
drawn. The basic court markings will be general professional basketball court 
markings spaced and drawn to scale on this court. These basic court markings 
include the middle division line, drawn to separate the five-foot side length in two.  
The center circle, where the ball and both robots are located at the beginning of a 
game. A semi-circle free throw line for each basket. Finally, the free throw lane is 
drawn which is a rectangle and semi-circle that touches from the free throw line to 
the basket wall. Any additional markings and colors will be added for the computer 
vision to be able to locate distances on the court. All court markings are shown 
and labeled in Figure 46 below. 
 

 
 

Figure 46 Court markings 
 

4.3.3 Prototyping and Testing 
 
The court can be prototyped simply by purchasing a set of floor panels and marking 
out the court with a marker or tape. The arena frame must be completed to 
adequately install the panels.  The tests are shown in Table 49. 
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Table 49 Court Testing 
 

Requirement Test 
Required 
Equipment 

R.A.7 
Determine how level the flooring is in 
different conditions 

Level 

R.A.10 
Determine if the court markings go back 
into the same place each time 

Camera 

R.R.B.3 Determine if the wheels slip on the floor Wheel 

R.A.7 
Determine if the court lays flat inside of 
the frame 

Level 

R.A.9 
Determine if the chosen wheel can roll 
over the frame wall 

Wheel 

 

4.4 Ball 
 
The ball for this project represents a full-size basketball. However, it is much 
smaller scale and must be throwable by a small-size robot. The ball should not be 
heavily affected by aerodynamic forces to ensure repeatability. That is, the ball 
should not be so light that a small gust of wind would affect its motion. Aerodynamic 
drag is expected and will likely be utilized to gain lift based on the amount of spin 
on the ball. It should also bounce on the court but not all over the arena from a 
single throw. This is to prevent the ball from being too difficult to pick up and to 
prevent the ball from landing on a portion of the robot that it gets stuck on. The ball 
should be nearly spherical so that it has consistent rolling and launching. It cannot 
be deformable to the point that a force on the ball causes a permanent dent. 
 

4.4.1 Research 
 
4.4.1a Ping Pong Ball 
 
Ping pong balls are 40mm in diameter and weigh about 2.7 grams. They are made 
from a thin plastic shell that is made of a material to meet a required bounce 
standard. The standard states that the ball should bounce “25 cm when dropped 
from 30.5cm.” This bounce is very significant and could lead to significant issues 
with the robot collecting the ball. However, the ball is very light and could be 
launched very easily.  
 
4.4.1b Small Tennis Ball 
 
A typical tennis ball is a bit too large for the scale of the robot. However, there are 
much smaller-scale tennis balls that exist for pets. This introduces a small difficulty 
as there are not standards related to the size and material. Thus, additional 
research must be conducted after the ball is picked and purchased because the 
material properties could differ from the documentation provided. The typical size 
for these tennis balls are about 1.5” in diameter, a perfect size for the scale of the 
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robot. Virtually any tennis ball of this size can be utilized, and there are hundreds 
of options that are offered in a variety of colors, themes, and prices.  
 

4.4.2 Design 
 
The small Tennis ball is chosen for this project. It is a small ball that has some 
weight and grip on it, and it has a fair amount of grippy material covering the rubber 
ball. The tennis ball chosen comes in a sports pack from PetSmart that contains 
one basketball themed ball. This provides a color with sharp contrast to the court 
so that it can be tracked more easily by the computer vision software. Additionally, 
it fits the theming of the game. The chosen ball can be seen in Figure 47. 
 

 
 

Figure 47 KONG basketball tennis ball chosen for this project 
Permission from KONG in Figure 71 

 

4.4.3 Prototyping and Testing 
 
The ball can be purchased from any local pet store. The tests for the ball are shown 
in Table 50. The ball can be test thrown just by hand or a prototyped launcher to 
verify whether or not aerodynamic forces dramatically affect the balls flight path.  
 

Table 50 Ball Tests 
 

Requirement Test 
Required 
Equipment 

R.A.3 Verify Ball size Calipers 

R.A.11 Verify ball weight Scale 

R.A.12 Test throw with different conditions Tape measure 
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4.5 Hoop 
 
There are two basketball hoops located on either short side of the arena. The hoop 
is mounted and is set to a diameter that is feasible for the launcher to remain 
accurate under all conditions. Two hoops are chosen in order to maintain the 
traditional basketball feel. If two hoops are too many, it is easy to reduce back 
down to just one hoop in a half-court setting. Each time a basket is made, the score 
for the game must be updated, thus the hoop must sense when a ball makes it all 
the way through. It is possible that the ball goes halfway in and pops out, so the 
sensor must be designed such that it is resilient to false positives (I.E debouncing). 
The hoop structure should maintain the appearance of a basketball hoop including 
a backboard, a rim, and a net. Each of the pieces must remain sturdy when the 
ball inevitably misses and hits the structure. It should be designed in such a way 
that improves accuracy. The hoop size can increase or decrease based on robot 
performance, and the backboard should be angled in such a way that increases 
accuracy. The hoop can be broken into 4 sub-components: ring, post, backboard 
and sensor. The ring is the actual loop that the ball falls through, the post is the 
mounting interface for the backboard and ring, the backboard is the solid face that 
the ball can bounce in from, and the sensor determines when a goal is made.  
 

4.5.1 Research 
 
4.5.1a 3D Print 
 
The hoop can be designed in SolidWorks and 3D printed in PLA or ABS plastic. 
This allows for easy integration between the hoop, hoop frame, and sensor 
technology by giving full control over the size, shape, and design of the hoop. 3D 
printers are readily available at UCF or by team-members with a variety of bed-
sizes and printable materials. Thus, the actual cost of the print depends directly on 
the amount of print material required, and whether or not the design can be printed 
on a particular printer. However, the major disadvantage of the 3D print design is 
that the printer may not print the exact size or shape that is designed. It is common 
for prints to warp, bend, or shrink in the process of printing. Further, the strength 
of the design strictly depends on the material used and printing properties used 
such as infill density and infill pattern. Printing larger objects can also take up to 
days long which may affect the viability of the process.  
 
4.5.2b Metal 
 
A simple metal hoop can be utilized to fulfill the requirements for the hoop. Any 
metal material such as aluminum or steel can be utilized to form a ring. Additional 
hardware for mounting the ring, sensor, and post is necessary. Metal is sturdier 
than the 3D prints even at smaller sizes so it will be more resilient to impacts than 
the 3D prints regardless of diameter. The strength of the hoop design depends 
mostly on the interface between the ring and the post, as most of the force of an 
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impact will go into a moment about the interface. It is most likely that the ring would 
bend downwards to the post upon impact.  
 
4.5.1c Infrared Gate (Break Beam Sensor) 
 
An infrared Gate utilizes Infrared light transmitter and receiver to determine when 
an obstacle is placed in the path between the transmitter and receiver. When the 
object blocks the light, the value of the receiver changes and that change is 
interpreted as a pulse by the microcontroller. The length of the pulse indicates how 
long the object has blocked the gate. Ultimately this shows whether or not the 
object actively passed through the hoop without bouncing out. These devices are 
relatively low cost and easy to set up. They are also contactless meaning they will 
not interfere with the object passing through the gate. Some key factors in 
determining the practicality of a particular gate is whether or not the beam can 
travel far enough to reach the receiver within the hoop, the width of the beam so 
that if the ball is not perfectly center the beam will still be broken, and the resilience 
to noise of the sensor. These sensors are dramatically affected by the amount of 
ambient light in a scene, thus outdoor use may affect performance. 
 
4.5.1d Ultrasonic 
 
An Ultrasonic sensor utilizes sound to determine the distance to objects. This 
sensor is like the IR gate in that it can detect when an obstacle passes in front of 
it by constantly determining the distance to a known plate on the opposite side of 
the hoop. Again, this can be interpreted as a pulse by the microprocessor and an 
appropriate response to the pulse can be executed. These sensors are more 
expensive and more difficult to work with than the Infrared Gate despite giving the 
same advantages. This sensor is not affected by ambient light.  
 
4.5.1e Limit Switch 
 
A limit switch can be utilized to detect if a ball has passed by opening/closing a 
digital circuit when interacted with. The major advantage of this is that the ball can 
be detected in a single direction from an angled switch. However, the device is 
contact-dependent thus it directly affects how the ball passes through the hoop. 
Similar to the previous devices, the digital output can be interpreted as a pulse and 
an appropriate response can be executed. This sensor is the most resilient to noise 
and environmental conditions.  
 

4.5.2 Design 
 
The final design is a combination of the metal and 3D print considerations. The 
metal ring is the sturdiest material and structure, but it suffers from poor interfacing 
with the post, backboard, and sensor. Thus, the metal hoop interfaces with a 3D 
printed bracket that integrates the sensor and backboard. The chosen sensor is 
the limit switch due to the ability to work in all environments, and it naturally 
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prevents the problem of the ball bouncing from below the hoop being counted as 
a score. The limit switch is the Cylewet 6PC micro limit switch for snapping actions 
due to their small size, low expense, and ease of acquisition. It is also the cheapest 
and easiest device to integrate into the rest of the project. The backboard is made 
out of polycarbonate to prevent warping or damage over continued use. All 3D 
printed parts are printed with a high infill density in ABS to maximize strength. A 
thin, lightweight nylon mesh is attached to the hoop rim to slow the balls trajectory 
through the plate, and to attempt to center the ball when passing through the plate 
to reduce false readings. Figure 48 shows the final hoop design with the various 
parts and dimensions called out appropriately.  
 

 
 

Figure 48 Hoop & Mounting SOLIDWORKS design 
 

4.5.3 Prototyping and Testing 
 
The hoop can be rapidly prototyped with an available 3D printer either owned by 
team members or the University. The remaining parts can be purchased off the 
shelf at any local hardware store. The size of the hoop may change sizes in the 
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future after testing, so it is important to have enough material to print the hoop 
again. Additionally, care must be taken to set the print settings such as resolution 
and infill density to create the highest quality part. The tests for the hoop are shown 
in Table 51. 
 

Table 51 Hoop Tests 
 

Requirement Test 
Required 
Equipment 

R.A.13 
Test if the hoop is mounted securely 
and can take X force 

Frame, Weight, Ball 

R.A.14 Test if the ball can fall through the hoop Ball 

R.A.E.8 Test the sensors and verify accuracy Ball 

R.A.6 
Test if the hoop is put into the same 
place each time the court is put 
together 

Frame 

 

4.6 Display and Sounds 
 
The arena contains a visual display unit, like a TV, a monitor, or a tablet, that is 
used to relay information to the players. The display unit needs to be capable of 
clearly showing the settings page for the game, like a dashboard on a video game 
console. This page will be used to set up new player robots, game mode, playback 
options, the score of the game, the current period out of four total periods, the 
remaining time for the current period, and to adjust the sounds for the game. The 
display unit will also display the live action 2D top down position on the court in a 
game engine, this is so the player can glance at important game information on 
the screen and not lose their place on the court and can continue driving. Showing 
the live location on the court is also useful for spectators of the game that might 
not be able to see in the arena. It will also need to be capable of displaying 
debugging and development information such as the live computer vision feed for 
any debugging that might need to happen during a game.  
 
When searching for a display that will work for these tasks there are some features 
that will need to be considered. A high definition or super high definition display 
will be ideal for spectators being able to see the information from a far distance 
very clearly. For this same reason a larger screen size is also preferred. In addition, 
only widescreen monitors will be evaluated so when the court, which is a rectangle, 
and robot location is displayed it can take up the whole screen space instead of 
making it smaller to fit on a square screen. The higher refresh rate on the display 
the better so that the game and settings will look smooth. Lower refresh rates might 
make the picture look choppy which can affect where the player thinks their robot 
is in respect to the court. Another consideration for choosing displays is how well 
it can display in daylight conditions. Should the game need to be played outdoors 
or near a window during daylight hours there may be too much ambient light to see 
the display. There will be sounds enabled with the game and therefore speakers, 
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either connected to the display or separate entities that will need to be able to 
supply loud enough sound for both players and spectators to hear. Sound is 
necessary for this project as it will supply feedback to the user as well as add an 
emersion element to the game. An additional feature that will be taken into 
consideration is the ability of the speakers sounds to be mixed with tactile feedback 
to enable a person who is blind to enjoy the game as well. In this case the speakers 
would have to produce adequately loud sounds in conjunction with the tactile 
feedback such as announcing location and orientation on the court. Finally, the 
price of the display and speakers should be reasonable for a self-funded college 
group of four to adequately purchase. 
 

4.6.1 Research 
 
4.6.1a Monitor 
 
There will be two categories of monitors examined and researched, those with 
speakers and those with no speakers (sold separately). Regardless of which 
category is chosen the total price for this section of the arena should be less than 
70 USD. The screen of the monitor should be no less than 18”. The display will be 
showing a live 2D position of the robot on the rectangular court. The monitor will 
need to display the camera feed for debugging. For these two reasons the display 
chosen should be widescreen to adequately scale the rectangular arena. 
Any monitor with built in speakers must have an HDMI or DisplayPort connector to 
be considered, as these are the two best options for showing HD video and playing 
sounds through one plug. DisplayPort will be prioritized higher than HDMI for its 
superior video quality capability. The lowest refresh rate on monitors today is 
adequate for this project and so will not be a consideration. The weight of the 
display is taken into consideration as the arena must be portable.  
 
4.6.1b Speakers 
 
The speakers for the arena need to be loud enough for the spectators to hear the 
game sounds and mountable or embedded into the display for portability. The cost 
of the speakers will also need to be low to meet the arena display and sound 
budget. For non-embedded speakers there are many choices available. Generally, 
all non-embedded speakers will be loud enough for our needs and are relatively 
inexpensive, starting at roughly $10. 
 

4.6.2 Design 
 
The final design for the display and sounds will use a combination TV with 
embedded speakers that will be capable of mounting to the frame of the arena or 
stood up alongside the arena. The TV is the LED-LCD Sharp LC-32LB150U model 
which is 32” inches in size and weighs 13.9 pounds. The Sharp LC-32LB150U 
monitor can display in 1920x1080 resolution at 60 Hz. This meets our restriction 
for displaying the game dashboard, settings, and simulated 2D view of the arena. 
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This model TV has a 10-Watt main channel 2 speaker system. Each speaker 
outputs 5 Watts RMS and uses a DTS digital output. The TV comes with 2 HDMI 
ports of which only one will be used. The actual dimensions of this TV are 28.8 
inches width by 19.3 inches in height. The TV uses a standard 120V AC power 
supply consuming 65 Watts when operational or 1 Watt on standby. The TV can 
either be mounted on a post attached to the side of the arena or can be placed on 
the ground in the front of the arena depending on if the arena is on a table or not. 
 

4.6.3 Prototyping and Testing 
 
The Sharp model LC-32LB150U will be tested for both display and sound 
requirements. Testing for the display size, display width, outside viewability, 
resolution, distance viewable, and refresh rate will be conducted to test display 
specifications. Testing for the sound distance and quality will be conducted to test 
sound requirements. A table of the requirements, test to be conducted for those 
requirements and the equipment needed to test the requirements is shown in Table 
52 below. 

Table 52 Display and Sound Test 
 

Requirement Test 
Required 
Equipment 

R.A.DS.1 
Measure the screen from the bottom 
corner to the top diagonal of the 
opposite corner. 

Tape measure 

R.A.DS.1 Is the screen size 16:9? Windows Laptop 

R.A.DS.1 
Use a program and run it on the display 
to determine the resolution 

Windows Laptop 

R.A.DS.1 
Use a program to test the actual refresh 
rate of the display. 

Windows Laptop 

R.A.DS.2 

View the display outside in a covered 
area with the correct settings. Stand in 
the player position and observe if the 
screen is clearly visible. 

Windows Laptop 

R.A.DS.2 

Turn on the display to the proper 
settings. Walk backwards until the 
display can no longer clearly be seen. 
Measure this distance to the display. 

Windows Laptop 

R.A.DS.3 

Play game sounds at max volume and 
continue moving backward until the 
sound can longer clearly be heard. 
Measure this distance to the arena. 

Windows Laptop 
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4.7 Camera 
 
The camera for this project is used for computer vision to track the robots, ball, 
and goal. It will need to be very accurate to ascertain the exact position of the robot 
in comparison to the goal so that the robot can make the goal within accuracy 
requirements. The camera will be placed above the arena a certain distance so 
that it may see the entire arena, robot, and goal without moving. The camera needs 
to supply clear video and bright colors along with fast speed so that we may update 
locations in real time, as accurately as possible. It will need to determine the robot's 
orientation in the arena so that we may use this to turn the robot toward the goal 
when the gamepad’s shoot button is pressed. In addition, the camera will need to 
be fast enough to track the ball going through the goal so that we may register a 
point and trigger the replay on the display. The camera will connect to the controller 
directly, so it must have compatible connections and firmware to be able to achieve 
this. 
 

4.7.1 Research 
 
4.7.1a Pixy2 
 
The Pixy2 is a small camera that comes with computer vision and tracking built in 
making it an excellent choice if it can perform the necessary tasks adequately. The 
Pixy2 uses an Aptina MT9M114 image sensor capable of displaying video at 
1296x976 resolution at 60 FPS, which in theory should be perfectly fine for our 
application. The camera has a 60-degree horizontal and 40-degree vertical field of 
view. With this field of view the camera would have to be mounted six feet above 
the arena to have a full view of the entire court. The arena is only three feet high, 
so a six-foot mounting height is a detriment in terms of aesthetics. Additionally, at 
six feet high the camera might not be able to distinguish and track the objects it 
needs to. The Pixy2 uses a color-based object detection algorithm that should be 
capable of following a ball or a shape that we design for the robots. It also has built 
in 20 lumen lights to keep the vision area cleanly lite at all times. The Pixy2 uses 
an NXP LPC4330 204MHz dual core processor with 264Kb of RAM and 2Mb of 
flash memory. It will consume roughly 140 mA of power with either a 5V USB input 
or an unregulated 6V-10V input. The Pixy2 outputs data through either a UART 
serial, SPI, I2C, USB, digital, or analog connection. This variation in output data 
connections is useful because depending on the controller we use, there may not 
be enough of a certain port on said controller for all items to plug into if everything 
uses USB or UART. 
 
4.7.1b Logitech C920 
 
The Logitech C920 is a wide view full HD webcam. This camera was chosen to 
research because one of our team members owned it, there are other possible 
better options to research, but to stay in budget for the arena we will attempt to 
use parts already owned. For documentation purposes the Logitech C920 is sold 
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for $60. This camera can produce a full high definition resolution of 1080p at 30 
fps or 720p at 60 fps. This resolution is quite adequate for computer vision and is 
the best of the three researched cameras. Additionally, the C920 has an autofocus 
feature which is good for tracking quick moving objects. The camera is also wide 
view having a 78-degree horizontal and 43.3-degree vertical field of view. This 
means the camera can be mounted at a minimum of roughly three feet above the 
court in order to view the entire horizontal part (5 ft) of the court without moving 
and roughly five feet above the court to view the entire vertical part (4 ft) of the 
court. Since the vertical height needed to see the court is much higher than our 
goal max height two cameras might need to be used. This will need additional 
testing and research to conclude, but most likely two Logitech C920 webcams will 
be necessary to see the entire court at three feet. 
 
4.7.1c Logitech C270 
 
The Logitech C270 is a standard HD webcam. Like the previous Logitech camera 
this camera was also chosen for research it because it is already owned by a team 
member. For documentation purposes the Logitech C270 is sold for $40. This 
camera can produce a high definition resolution of 720p at 30 fps. This frame rate 
might not be good enough to follow fast moving objects like the ball flying, but 
further testing is needed to discern this. In conjunction with lower ability to track 
quick moving objects this camera only has a fixed focus which makes the 
previously mentioned quick moving objects harder to track. The Logitech C270 has 
a field of view of 60 degrees, meaning that in order to see the whole court it will 
have to be mounted 1.4 feet above the court.  
 

4.7.2 Design 
 
For the camera design we first chose to use the Pixy2 as it simplified the computer 
vision object detection and tracking. However, after testing the Pixy2 it was 
discovered that it would not work for this project as it was incapable of detecting 
unmoving objects from six feet above the ground (the height needed to view the 
entire court) at a reasonable rate. The cameras actual video input quality was also 
very low, requiring many lights to make the court bright enough for even slight 
object detection. 
 
The C920 camera will be the camera used in the final design and was chosen for 
its widescreen camera. It’s also the best quality resolution of the three cameras 
researched. The two downsides of the C920 are the use of a USB connection for 
power and data transfer which will take up one of the few USB slots available on 
the arena controller and the fact that we will have to now write the computer vision 
software for the camera. In order to see the court with one camera, it would have 
to be placed somewhere around 5 to 6 feet above the arena. A mockup of this 
configuration is given in Figure 49 below. In order to work around this to cut down 
on vertical height in the arena, the team also explored a two-camera configuration 
that is detailed in Section 6.4 later in the paper.  
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Figure 49 Camera field of view indicating area of Arena the camera can see 
 

4.7.3 Prototyping and Testing 
 
The Logitech C920 camera being used must be tested thoroughly before using it 
in the project as any malfunctions or different parameters will affect the computer 
vision portion of this project. Tests of the camera’s clear viewable height, color, 
field of view, and compatibility must be performed. If any test fails to meet the 
minimum requirement, then this camera will not work for this project and a new 
one must be picked and tested. Table 53 below shows the test to be performed for 
each requirement and the required equipment to perform the test. These tests can 
run in any order. 
 

Table 53 Camera tests 
 

Requirement Test 
Required 
Equipment 

R.A.CV.3 
Determine if the camera can view the 
entire field and objects 

Webcam, Varying 
sized objects 

R.A.CV.5 
Determine color accuracy of objects 
within the field 

Webcam, Varying 
colored objects 

R.A.CV.4 
Read the camera documentation and 
the controller documentation to 
ensure the parts will be compatible 

Camera and Arena 
controller 
documentation 
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4.8 Gamepad 
 
The gamepad will be the first thing a player will touch when playing this game, so 
it’s important to choose a gamepad that will feel familiar. When choosing the 
gamepad our team felt that an often overlooked, but important feature is tactile 
feedback. Tactile feedback aids in the feeling of control over the robot and adds 
another level of response to the player so they feel like their driving has an impact 
on the game.  
 
Our communication between the arena processor and robot will be accomplished 
through Bluetooth. We anticipate that this communication will need to be very fast 
to make driving the robot feel good and reactive. Because of this we are keeping 
the amount of information sent over Bluetooth to the lowest amount possible and 
using a wired gamepad will remove information needed to be communicated over 
Bluetooth. The gamepad could also communicate using WIFI direct, but we have 
opted for wired because adding WIFI direct will add an additional module that will 
need to be purchased, which could break the budget requirement. Choosing a 
wired gamepad will also add a layer of reliability. If we use a Bluetooth gamepad 
and we are having problems with driving, is that a problem with our Bluetooth or 
our code for driving? We are eliminating the possibility of errors occurring from 
wireless communication.  
 
Additionally, the gamepad should be easy to write code for and have thorough 
documentation. This will make working with the gamepad quick and easy and allow 
us to focus our efforts into other parts of the project. For these reasons we decided 
to pick between two popular gamepads; the Xbox One wired gamepad and the 
PlayStation 4 wired gamepad.  
 

4.8.1 Research 
 
4.8.1a Xbox One 
 
The Xbox One wired gamepad is one of the most widely used gamepads for 
computer based and robot-based applications. Therefore, the Xbox One gamepad 
has a lot of documentation, especially for robotic applications like ours. The Xbox 
One gamepad was developed with comfortability in mind when holding the 
gamepad for long periods of time. Therefore, the gamepad fits comfortably in the 
hand while also allowing the user to be able to hit any button and any button combo 
with ease. This gamepad features ten digital buttons, a syncing button, two analog 
triggers, two analog sticks, and a digital D-pad. The two triggers feature 
independent rumble motors (Impulse triggers) that can be programmed to vibrate 
directionally. This rumble will be useful for giving the user an in-depth experience, 
such as rumbling harder and harder while spinning the flywheel up to launch the 
ball when not in autonomous mode. The right side of the gamepad contains four 
of the ten digital buttons; the green ‘A’, red ‘B’, blue ‘X’, and yellow ‘Y’ buttons. 
These buttons are useful for main actions like ‘Choose’ or ‘Go Back’. The left and 
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right side also contains one of two analog sticks each, these also contain a digital 
button activated when the analog stick is pressed in. Analog sticks are very 
important for driving and directional aspects of controlling the robot. In the center 
of the gamepad is two more digital buttons and the syncing button, generally used 
for pausing, menu, and turning the gamepad on and off. The left side of the 
gamepad also contains a digital D-pad generally used for choosing options quickly. 
Located on the shoulders of the gamepad are the two more digital buttons 
generally referred to as “bumpers”. Finally, the back shoulders of the gamepad 
each have one of two analog triggers. These triggers have the rumble feature and 
therefore can be used for processes that require feedback to make the game feel 
more natural. All together the Xbox One gamepad contains sixteen possible 
buttons, many more than this project should need to make it feel good to the player. 
 
4.8.1b DualShock 4 
 
The DualShock 4 is the gamepad used for the PlayStation 4. The DualShock 4 is 
not typically used in many robotics operations. The DualShock model line of 
gamepads has kept its design similar for many years, which could be seen as an 
advantage to players who have used this gamepad since the first generation, 
which was released well before the first-generation Xbox gamepad. The 
DualShock 4 is smaller gamepad compared to the Xbox One gamepad. It also 
contains two vibration motors, one inside the left handle and one inside the right 
handle. The right handle motor is smaller and less powerful than the motor on the 
left, this allows the vibration to vary based on what feedback the developer wants 
the player to feel. The DualShock 4 also incorporates a clickable two-point 
capacitive touch pad on the front along with motion detection through a three-axis 
gyroscope and accelerometer. The buttons on the DualShock 4 include two analog 
sticks, two analog triggers, two pressure sensitive buttons, ten digital buttons, and 
four directional buttons. Located on the right face of the gamepad are four of the 
ten digital buttons: green ‘triangle’, orange ‘circle’, blue ‘X’, and pink ‘square’. 
These are the main action buttons, such as ‘select’ and ‘back’. Also located on the 
right face is the right analog stick in addition to the fifth digital button activated by 
pressing the analog stick. Similarly, on the left face of the gamepad is the left 
analog stick and sixth digital button, again activated by pressing the analog stick 
inward. These analog sticks are generally used for movement, such as driving. On 
the left face of the gamepad is also located the four directional buttons: ‘up’, ‘down’, 
‘left’, and ‘right’. These buttons are also generally used for movement tasks. On 
either side of the capacitive touchpad (located in the middle face) are the ‘options’ 
and ‘share’ buttons, which are two more of the ten digital buttons. On each side of 
the gamepad, located on the shoulder, lies the two pressure sensitive buttons, also 
referred to as “bumpers”. Lastly below each bumper on the shoulder of the 
gamepad are the two analog triggers, again which are usually used for performing 
action tasks like accelerating a car. The DualShock 4 gamepad is sold starting at 
$30. 
 



99 
 

4.8.2 Design 
 
Between the two gamepads we believe the Xbox One wired gamepad will have 
the most documentation and support as well as ease of programming, thus it will 
be used for the final design. We are opting to use a wired controller for two reasons: 
lower the amount of information needed to be transmitted to the Bluetooth module 
and to add a layer of reliability.  
 
The Xbox One gamepad also has the individual rumble motors on each trigger 
button, which will add more immersion to the game. In full autonomous shooting 
mode, the right trigger will be used to launch the ball. When pulled, regardless of 
how hard, the flywheel will start spinning up which will enable the rumble feature, 
which will increase in intensity as the wheel spins faster and continue rumbling 
until the ball is launched. If autonomy is turned off the player will control the speed 
of the flywheel, this will be done by pressing and holding the right bumper button, 
the rumble in the trigger will begin just like in autonomous mode, but the ball will 
only be launched when the player pulls the right trigger.  
 
The left trigger will be used for intake and like launching the ball the flywheel will 
begin spinning and the left trigger will begin to rumble. This time the trigger will 
rumble while the fly wheel is spinning and stop either when the player releases the 
trigger, or the ball has reached the resting position in the launching mechanism.  
 
The left analog stick is used to main robot movement. When leaning the analog 
stick forward or backward the robot will move forward or backward. When leaning 
the analog stick left or right the robot will strafe left or right. All combinations of 
movement are supported as well: forward and strafe left or right, backward and 
strafe left or right. The right analog stick is used to rotate the robot. Moving the 
stick to the right rotates the robot clockwise and moving the stick to the left will 
rotate the robot counterclockwise.  
 
The green ‘A’ button is used as the ‘select’ button and the red ‘B’ button is used as 
the ‘back’ button. The ‘menu’ button is used for pausing the video game portion of 
the game to view video settings, exit the game, or restart the current game mode, 
in addition this menu is used if the player would want to invert their movement 
controls. This mapping is reset back to default every time the main dashboard is 
accessed. The ‘view’ button is used for pausing the game. The ‘Xbox’ button turns 
the gamepad on and off. The left bumper, D-pad, blue ‘X’, and yellow ‘Y’ button do 
nothing and will not have mapping.  
 
This control mapping should feel comfortable and natural to the player, whether 
they play with launching autonomy or manual launching mode and regardless of 
the players left hand or right hand preferability. A visual aid for the controller 
mapping is given in Figure 50 while a quick summary of the individual controls is 
given in Table 54. 
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Table 54 Player input functions and gamepad mapping 
 

Function Type # Of Axes 

Forward/Backward + Strafing Left Joystick 2 

Rotation Right Joystick 1 

Launch Ball Right Trigger 1 

Flywheel Speed Control Right Bumper 1 

Intake Left Trigger 1 

Select A Button 1 

Back B Button 1 

Player/Game Settings Menu Button 1 

Pause View Button 1 

Gamepad Power On/Off Xbox Button 1 

 

 
 

Figure 50 Gamepad control layout 
Used with permission from Microsoft 

 

4.8.3 Prototyping and Testing 
 
To test the gamepad the following items are needed: the Xbox One wired 
gamepad, the robot, Bluetooth, arena controller, and video game portion need to 
be working and turned on. The first tests should be ran using launching autonomy, 
then the same tests shall be repeated for manual launching mode. Note that the 
right bumper button should only work in manual mode. Using the gamepad button 
mapping table and diagram press each button one at a time and observe that the 
correct function occurs. Ensure that when the triggers are pressed the rumble 
function works properly and is synced with the flywheel spin up. Next, change the 
driving controls to inverted and observe that the robot is still moving in the correct 
directions. Lastly, after inverting the driving controls and certifying that they work 
correctly, return to the main dashboard and back into a game. The driving controls 
should have reset to default, test this by driving the robot and observing that the 
drive controls are now back to default settings. A summary of these tests is given 
in Table 55 below.  The team will also have to test whatever configurable or custom 



101 
 

controls that are decided upon being used to make sure they are easy to use and 
change on the fly.  
 

Table 55 Gamepad tests 
 

Requirement Test 
Required 
Equipment 

C.S.1 

Set a function to rumble the gamepad on 
command. Perform the command and 
observe the rumbling feeling of the 
gamepad. 

Gamepad, Gamepad 
software, Arena 
controller 

C.S.1 
Ensure each button performs it’s given 
task by pressing each button one at a 
time and observing the buttons output. 

Gamepad, Gamepad 
software, Arena 
controller 

 

4.9 LED Lights 
 
The arena system uses computer vision to detect distance between the robot and 
the hoop. Based on these distances, the arena converts them into motor velocities 
for the robot to adjust and shoot the ball. The update rate of the computer vision 
system is 60Hz and therefore, the arena can perform calculations quickly. 
However, none of this is possible without proper illumination. This is where the 
LED lights play an important role.  
 
Light Emitting Diode, or LEDs, are a common occurrence in present day. 
Therefore, due to such high-volume availability they are affordable. Using 
appropriate current limiting resistors and a microcontroller, one can turn them on 
or off in a timely fashion. Having a strip of them around the arena will not only 
illuminate the arena for computer vision, but also make it aesthetically entertaining. 
There are different colors of LEDs and they can be combined to form different 
colors by simply mixing their RGB values. Consequently, when the player makes 
a shot, a sensor will trigger a sequence of LED blinks and create an animation for 
user entertainment. Each action has an LED sequence preprogrammed into the 
arena. Making the shot causes the arena to turn green, a Bluetooth connection 
turns the arena blue whereas when pairing the arena blinks blue light. A lost 
connection or fault causes the arena to turn red.  
 
LEDs tend to draw a lot of current to shine brighter and therefore, based on the 
kind used, their current and voltage requirements are used to calculate current 
limiting resistors. They surely can add an entertainment value to the project and 
make it more professional. There are multiple LED technologies available which 
are discussed in section 4.9.1 of this document.  
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4.9.1 Research 
 
4.9.1a Adafruit NeoPixel 
 
NeoPixels are LED strips with individually addressable RGB LEDs. They must be 
programmed and run through a microcontroller such as Raspberry Pi. They have 
a refresh rate of around 400 Hz. The limiting factors to the number of NeoPixel 
strips able to be chained together are RAM and power to run, and time to process 
data from the microcontroller hosting them. There is no set limit on the number of 
NeoPixels that can be chained together, however they will eventually need more 
resources than the computer is able to provide for them to be able to function 
properly. [66] 
 
4.9.1b Traditional LEDs 
 
Traditional LEDs are usually just a strip of LEDs controlled by one controller. This 
is the biggest downside of traditional LEDs because they typically must all be the 
same color at the same time which limits the number of custom configurations. 
Traditional LEDs are also usually cheaper than other “smart” LEDs such as the 
NeoPixel discussed in Section 4.9.1a. There are also more options for traditional 
LEDs than if the team was to use a smarter LED strip such as the Adafruit 
NeoPixel. 
 

4.9.2 Design 
 
The team will be using NeoPixels as they allow for the customization needed for 
the arena. The ability to individually control the LEDs on the strip is invaluable to 
display different status signals such as a malfunction or “goal made” to the players. 
This feature can also be used for testing integration between all the objects 
involved with the arena. The design will use 4 NeoPixel Strips around the walls of 
the arena that will be connected to our microcontroller brain and receive signals 
from the arena about what to display. This will also help to keep a consistent 
lighting amount on the arena for computer vision purposes.  
 

4.9.3 Prototyping and Testing 
 
The tests for the LEDs consist mainly of just checking if they integrate well with the 
controller and arena and will be performed according to Table 56. The LEDs will 
also need to be tested to make sure that they are sufficiently bright and responsive 
to the controller. If they do not respond in a timely manner without latency, they will 
have to be replaced.  
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Table 56 LED Lights tests 

 

Requirement Tests 
Required 
Equipment 

R.A.16 
Determine the voltage used by the LEDs 
to power on 

Multimeter, Power 
Supply, Jetson Nano 

R.A.16 
Determine the current draw by the LEDs 
and contain their brightness using 
Ohm’s Law 

Multimeter, 
Calculator 

R.A.16 
Determine the animation sequence via 
timers 

Oscilloscope, Serial 
Monitor 

R.A.16 
Determine logical value of each LED at 
a certain instance for debugging 

Logic Analyzer, 
Multimeter, 
Oscilloscope 

 

4.10 Controller 
 
The controller for this project strongly depends on the computational power that is 
required by the various components. This controller performs calculations for 
computer vision, Bluetooth communication from arena to robot, calculations for 
robot location, calculations for force to launch the ball, and be able to show video 
on the display using the game engine. In addition, it will also control any LED lights 
that are installed in the arena. The controller will need to be capable of running an 
operating system to allow the use of certain software, like the computer vision and 
game engine software. For this reason, the controller will need to be powerful, but 
also compatible with the other parts chosen for the project. Lastly, the controller 
will need to have the proper slots for additional hardware that will have to be 
interfaced with. 
 

4.10.1 Research 
 
4.10.1a Raspberry Pi 3 Model B+ 
 
At the time of writing this paper the Raspberry Pi 4 was released. The Raspberry 
Pi 4 is not being considered due to it being sold out. Instead, the older generation 
Raspberry Pi 3 B+ will be researched. The Raspberry Pi line of controllers are 
generally used for the purpose of robotics and artificial intelligence applications. 
The Raspberry Pi 3 Model B+ uses a 1.4 GHz Broadcom BCM2837B0 Cortex A53 
64-bit Arm8 processor, it has 1 GB of SDRAM. This processor gives the Raspberry 
Pi 3 Model B+ the ability to perform 21.4 billion floating point operations per 
second, or GFLOPs. With only 1 GB of RAM though this controller will have a hard 
time running an operating system, something integral to this project, as it will be 
needed to run the computer vision. The Raspberry Pi has wireless LAN, Bluetooth 
4.2, and Bluetooth low energy capabilities. The Bluetooth 4.2 is what will be used 
to communicate with the robot and is a very important feature. It also has a HDMI 
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port and a display serial interface port for video implementation, important for 
connecting the display and sound. The Raspberry Pi 3 Model B+ also requires a 
micro SD card for loading an operating system and storing data, adding an 
additional expense to this controller. Additional ports on this controller include: 
Extended 40-pin GPIO header, CSI camera, four USB 2.0, and a 4-pole stereo 
output and composite video. The controller is powered by 5V/2.5A DC power, a 
standard amount for a controller of this type. The Raspberry Pi 3 Model B+ sells 
for $35. The Raspberry Pi 3 B+ was originally suggested because of its built-in 
Bluetooth capability, low price, and processing power, however, due to the 
inclusion of the game engine video display, we believe more RAM and an onboard 
GPU will be necessary for smooth video and processing. 
 
4.10.1b Jetson Nano 
 
The Jetson Nano is a new addition to the Jetson family at the time of writing this 
paper. Typically, Jetson controllers are used for artificial intelligence and computer 
learning applications and so are a natural consideration for this project since highly 
accurate computer vision will be necessary. Since the Jetson line of products is 
built for artificial intelligence and robotics it makes sense that the Jetson Nano is 
optimized for machine learning, this generally means a stronger processor, more 
RAM, and a stronger GPU. The Jetson Nano uses a 64-bit Quad core Cortex A58 
CPU with 4 GB of RAM. This processor will give the Jetson Nano the ability to 
perform 472 billion floating point operations per second, or GFLOPs. Additionally, 
the 4 GB of RAM will make the Jetson Nano good at running an operating system 
and performing many computations, such will be needed for accurate computer 
vision. The Jetson Nano is very capable of video processing, because of its 
onboard GPU, the 128 core Nvidia Maxwell. It can encode, decode, and display 
4k videos. This GPU can run up to eight 1080p video feeds at 30fps or eighteen 
720p video feeds at 30fps at the same time and is still able to run any video 
processing algorithms and processes needed. This feature is very important since 
this project will require at least two cameras running in parallel in either 1080p at 
30fps or 720p at 60fps.  
 
The Jetson Nano also has an M.2 Key E slot for mounting a wireless or Bluetooth 
card, which would be used to communicate with the robot. However, the price of a 
Bluetooth card must be considered as well since Bluetooth is not built in and 
requires an additional purchase. Also, the Jetson Nano, being a newer controller 
on the market, does not support all Bluetooth cards and might not have the drivers 
required for the card purchased. This means the drivers would have to be written 
by the team, adding additional responsibilities to an already large list. The Jetson 
Nano runs the Linux4Tegra operating system. This operating system is Jetsons 
adaptation of Ubuntu 18.04. This controller also requires a micro SD card to store 
the operating system and all other information. For video ports the Jetson Nano 
contains one HDMI and one display port capable of 4k quality. Additionally, the 
Jetson Nano has four USB 3.0 ports, a great feature since the cameras will most 
likely be connected via USB. The Jetson Nano runs on a 5V-2A micro USB 
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connection or a 5V-4A DC Barrell jack adapter if more power is needed to keep 
the controller powered smoothly. Additional connections include: 40 pin GPIO, I2C, 
I2S, SPI, and UART. The Jetson Nano will cost around $99 at the time of writing 
this paper. 
 

4.10.2 Design 
 
The final design for the controller will come down to multiple aspects. The controller 
will need to be capable of running two cameras in parallel and operating on the 
images as quickly and accurately as possible. This will generally be comparable in 
GPU strength, processor power, and amount of RAM. The controller will also need 
to have onboard, or be capable of connecting, a Bluetooth controller since 
Bluetooth will be used to communicate with the robot. Additionally, the controller 
will need to have enough USB ports to connect the necessary hardware, two USB 
webcams and up to two gamepads. Since the USB devices will be cameras and 
gamepads the USB ports need to have the best possible data transfer speeds, 
which between the 2.0 and 3.0 standard the 3.0 standard would be preferred. Also 
necessary are ports for the display and sound. A HDMI or Display port would be 
preferable as they are capable of sending both display and sound data through 
only one connection. Lastly, the price is, of course, an important thing to consider 
as well. It is easiest to show a table comparison of the Raspberry Pi 3 Model B+ 
and the Jetson Nano to show the important features of each and decide with the 
mentioned features in mind. Refer to Table 57 below for this comparison. 

 
Table 57 Controller Comparison 

 

Feature Raspberry Pi 3 Model B+ Jetson Nano 

CPU 
1.4 GHz 64-bit Quad-Core 
ARM Cortex A53 

1.4 GHz 64-bit Quad-Core ARM 
Cortex A57 MPCore 

GPU Broadcom VideoCore IV 128-Core Nvidia Maxwell 

RAM 1 GB LPDDR2 SDRAM 4GB LPDDR4 

Operation 
Performance 

21.4 GFLOPs 472 GFLOPs 

Wireless 
Dual-band 802.11ac wireless 
LAN, Bluetooth 4.2 onboard 

M.2 Key E Slot (None onboard) 

USB Ports 4x USB 2.0 4x USB 3.0 

Video Ports HDMI, DSI HDMI, Display Port 

Price($) 35 99 

 
It is evident after examining Table 57 that the Jetson Nano is superior to the 
Raspberry Pi 3 Model B+, but also costs significantly more. For the final design of 
this project a Jetson Nano will be used. The Jetson Nano was chosen almost 
entirely because the Raspberry Pi 3 Model B+ was not good at running an 
operating system, had such little RAM, and not a great GPU. This project is heavily 
reliant on reading information from two cameras simultaneously, detecting, 
tracking, and calculating locations and distances from objects and therefore will 
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require a controller that can support this feature. Of which the Jetson Nano would 
be capable of because of its USB 3.0 slots, larger RAM size, better GPU, and 
vastly superior operational performance.  While the Raspberry Pi 3 Model B+ does 
have onboard Bluetooth already included, it would save a lot of time and money to 
not implement it ourselves, but it has been concluded that the Raspberry Pi 3 
Model B+ wouldn’t be capable of supporting this project. 
 

4.10.3 Prototyping and Testing 
 
The test processes for the controller are listed below in Table 58. They mainly 
consist of determining that the controller is sending and receiving data on time and 
not experiencing latency. The controller also needs to be able to fit inside the power 
requirements set aside by the team. 
 

Table 58 Controller tests 
 

Requirement Test 
Required 
Equipment 

R.A.E.3 
Determine if the controller can 
communicate over Bluetooth at the 
correct rate 

Part documentation 

R.A.E.5 
Determine if there is latency in video 
playback 

Controller 
Monitoring Software 

R.A.E.6 
Check that the correct number of slots 
and slot type is included in the controller. 

Controller 
documentation 

R.A.E.7 Determine output power is sufficient 
Controller 
documentation 

 

4.11 Communication 
 
The communication subsystem allows the Arena to send commands to the robot. 
To accomplish this, the Arena must have a communication system on board and 
send data over a wireless link. The communication subsystem needs to have a 
data update frequency of 30Hz at the minimum. Failure to do so can cause latency 
in sending commands to the robot and thereby an overall latency in the system’s 
response. This latency hinders the robot from shooting successfully 75% of the 
time as per the requirements.  
 
The Arena is a master to all the robots in it. It takes in commands from the controller 
and the computer vision system and combines them into a packet in a systematic 
way. This packet is sent to the robot(s) via a Wireless link. The packet is designed 
by the team and passes multiple checks to ensure accurate transmission of data.  
The robot is a slave device to the arena that will receive data over the radio to 
perform its actions. The implemented communications protocol will also allow the 
robot to send its sensor data back to the arena for monitoring and debugging 
purposes. This data is shown by the Arena on a screen to give users more 
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information regarding their robot. These stats could include current motor 
velocities, battery status, communication link status etc.    
 
The communication system is low energy because it will allow the onboard 
computer to use its resources for high powered activities such as driving the LEDs, 
powering the controller, powering the webcam(s), displaying contents on a TV 
screen using HDMI and running the game engine.  
 

4.11.1 Research 
 
4.11.1a Bluetooth 
 
A detailed study on the use of Bluetooth as a communication system is conducted 
in section 3.6.1a Bluetooth. For Arena Bluetooth to work well with the Robot, it has 
to be the same profile and version as the Robot’s Bluetooth. Therefore, a research 
for Bluetooth v4.2 modules were conducted for the Arena. The onboard computer 
for the Arena is a Jetson Nano which has a special M.2 Key E interface to attach 
a Wi-Fi and/or Bluetooth adapter. There are only a handful of modules compatible 
with Nano and therefore, choosing one was not a hard decision. The modules 
available for Jetson Nano provide a range of Bluetooth profile options unlike 
Robot’s Bluetooth that come with dedicated profiles in their firmware 
 
An alternative option is to use a USB adapter for Bluetooth however, due to the 
usage of one or more web cameras, and one or more D-pad controllers using a 
USB for Bluetooth appears to be a waste of resources. Therefore, due to efficiency 
using the M.2 connector for the Wi-Fi card is highly likely. It also provides a higher 
quality and reliability of communication signal as per suggested on NVIDIA’s 
forums [74]. 
 
One of the most trusted and used module that provides both Bluetooth and Wi-Fi 
capabilities to Jetson Nano is Intel 8265NGW [75]. The Intel 8256 supports 
802.11 ac Wi-Fi dual band that can deliver speeds up to 867 Mbps and also has 
hardware support for Bluetooth v4.2. Since, Nano runs on Linux operating 
system, there are myriad of kernel modules that can be used to use a specific 
Bluetooth profile for Nano. There are two recommended antennas for this radio 
module, one is a 6dBi RP-SMA Dual Band antenna and the other is a Molex 
antenna with 3.3dBi of gain. In terms of cost, the Molex antenna is 78% cheaper 
than the RP-SMA Dual Band antenna and also weight less. Additionally, the 
arena is only four feet by five feet in dimension and so, using a 3.3dBi will cause 
no harm to the communication strength. However, if multiple robots were to be 
supported the 6dBi antenna is ideal.   
 
To program Bluetooth for development the BlueZ stack is the most reliable stack. 
The hcitools allow sending data to a connected device whereas hcidump is used 
to receive Bluetooth packets. The BlueZ stack is an open source codebase which 
is available on git and can be used for development purposes. Additionally, the 
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packages can be installed using the “apt-get” utility in Linux. This stack has 
support for various Bluetooth profiles however, to be able to communicate with 
Arduino, Serial Port Profile has to be used. The time taken to send a certain 
amount of raw data bytes are specified in section 3.6.1a Bluetooth. 
 
4.11.1b Wi-Fi-Direct 
 
A detailed explanation of advantages and disadvantages of using Wi-Fi direct are 
presented in section 3.6.1b Wi-Fi Direct. To implement Wi-Fi Direct in Linux the 
same adapter that is used for Bluetooth, Intel 8265NGW, is used. Wi-Fi Direct is 
simply a software manipulation on the existing Wi-Fi hardware, therefore, for Linux 
Wi-Fi direct support wpa_supplicant package is used [76]. This package uses 
EAPOL (IEEE 802.1x) standard and acts as a middleware between the hardware 
and application layer. To use this efficiently, the functions provided in the library’s 
API should be sufficient. 
 
The wpa_supplicant acts a control interface to the Wi-Fi hardware. The external 
program can use C or C++ to interface with it to suit their needs. The 
wpa_supplicant contains hostapd which includes the IEEE 802.11 access point 
management, EAP server, and RADIUS authentication server functionality. It can 
be built with various configurations which are specified in the documentation. The 
software uses subscribe-event software implementation where the client 
subscribes to host Wi-Fi and the host acts as the access point to deliver and accept 
information from the client.  
 
For the project implementation, the Arena acts as an access point to which the 
Robot computer connects to. The robot’s Atmel uses ESP8266 chip to establish 
Wi-Fi connection with the adapter. After setting up the Wi-Fi the layer of TCP/IP 
can also be used in conjunction with wpa_supplicant to provide code modularity to 
ease the development process. However, due to high energy consumption it is 
unlikely that a Wi-Fi Direct approach will be used for Arena-Robot Communication. 
 

4.11.2 Design 
 
The Arena acts as the master device to the robot(s) which send Robot the 
commands to perform certain activities. The arena uses computer vision to accept 
a stream of raw data bytes which are stored in a data structure and used by the 
CV script to decipher and get distance between the robot and the Arena. This 
distance is then used as an index to a look up table or hash table which outputs a 
motor velocity. This motor velocity is used to create a Bluetooth packet and sent 
to the Arena using rfcomm Serial Port Protocol Profile built into Linux’s kernel and 
used by the BlueZ stack to send and receive signals.   
 
The data packet consists of 14 bytes of overhead along with the size of the data. 
Bluetooth v4.2 allows sending data up to 251 Bytes which is specified in Sparkfun’s 
tutorial on basics of Bluetooth [55]. The data packet as mentioned in 4.11.1a 
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Bluetooth 14 bytes of packet overhead. The data packet consists of motor 
velocities for driving purposes, the flywheel velocity command for shooting the ball, 
command to open or close the gate to let the ball in or let it out of the robot, and a 
state byte. There are multiple ways to frame the data packet. The indices can be 
used as an inherent indication of the motor and the value at that index can be used 
as the velocity of the motor, whereas another option is to use an array with first 
index specifying the motor whereas the second index specifying its velocity. There 
are pros and cons to both implementations. The first implementation allows using 
less data bytes to send more information whereas the second implementation 
secures the packet if the data bytes were to arrive out of order. The time taken by 
the first implementation is calculated to be ~6 ms and for the second 
implementation to be ~7 ms. As it can be seen the first implantation uses less time 
and less bytes for communication, it will be used in the design. Since both the 
arena and the robot are designed in-house, loss of data packets is less of an issue 
as the communication field is quite small. The packet design can be seen in  
Figure 51. 
 

 
 

Figure 51: Bluetooth packet sent by the Arena 
 

4.11.3 Prototyping and Testing 
 
The Bluetooth communication is tested using RSSI readings and serial monitor. 
The hcitool library consist of an RSSI command that outputs the signal strength of 
the established Bluetooth connection. A signal strength of -30dBm or more is 
considered according metageek documentation and will be used as a reference to 
determine Arena-Robot communication signal strength [77].  
 
To check the validity of data, serial monitor on Arduino IDE, and Command Line 
on Ubuntu is used. The data bytes transmitted are ascii characters and because 
ASCII is a global standard, it makes deciphering the code easier. A good software 
test will be to run a loop that transmits packets continuously and the receiving end 
sends an acknowledgement in return to validate that the data has been received. 
A counter should be incremented every time a packet is received and sent to track 
the number of packets exchanged and test if any packets were lost during 
transmission. These tests and requirements are summarized in Table 59. 
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Table 59 Communication tests 
 

Requirement Test 
Required 
Equipment 

R.A.E.3 
Determine that the communication 
system successfully form a connection 
with the slave devices  

Bluetooth module, 
Bluetooth App 

R.A.E.3 
Determine that the commination system 
successfully reads the packet generated 
by the Arena from a buffer 

Serial Monitor, 
Bluetooth Module 

R.A.E.3 
Determine that the communication 
system successfully transmits the 
packet 

Oscilloscope, 
Bluetooth Module, 
Bluetooth App 

R.A.E.3 
Determine that the communication 
system successfully receives a packet 

Oscilloscope, 
Bluetooth Module, 
Bluetooth App 

R.A.E.1 

Determine that the communication 
system saves system resources by 
going to sleep when no communication 
is required 

Multimeter, Serial 
Monitor, Bluetooth 
Module 

 

4.12 Electrical System 
 
The Electrical System subsection defines how the Arena components are wired 
and work together. Supplying power directly to a microcontroller from the power 
outlet can be dangerous. Due to this proper AC to DC conversion is required 
meeting the operation requirements of the Microcontroller and Arena peripherals. 
The AC-DC converter needs to be energy efficient and provide at least 30 to 40 
watts of power for the entire electrical network of the Arena. One can design such 
a converter with enough time and resources. However, they also act as constraints 
for our purpose due to which an AC-DC converter is purchased instead. Overall, 
time vs cost analysis was done by the team to arrive at this conclusion. 
 
Typically, microcontrollers run on 3.3 – 5 V Transistor-Transistor Logic (TTL) and 
so, the AC-DC converter needs to be able to step the power down to that voltage. 
Additionally, the NeoPixel LEDs, which are used to light up the arena, work on 5V 
input. The microcontroller can consume up to 4-6 amps of current as it is going to 
support the D-Pad controller, output video to the TV, and update the LED colors. 
The LEDs consume up to 2 amps of current when all of them are turned to full 
brightness. The TV monitor will run on AC output voltage. This allows the team to 
eliminate the need for a Printed Circuit board for the Arena thereby reducing the 
cost. The electrical wiring will be hidden in a box which is attached to the arena. 
This electrical panel will give the arena a professional look and keep the electronics 
safe from potential damages caused by human interaction and carelessness. A 
power surge is required to power the monitor, Jetson Nano, and the LEDs. These 
technologies are further discussed in section 4.14.1 of this document.  
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4.12.1 Research 
 
4.12.1a UPS / Surge Protector 
 
The Power surge is attached to the arena to power the microcontroller, the 
NeoPixel LEDs and the display screen. For simplicity, the team decided to have 
one cable from the arena go into the power outlet. This also serves the arena 
requirement of being portable. To do so, a surge protector seems like an ideal 
option. One cable from the surge protector will go to the wall whereas all the 
components will connect to the surge protector. The surge protector needs at least 
2 outlets: one for the display and one AC-DC converters to power the LEDs and 
the microcontroller. However, depending on the current consumption and 
equipment protection, the LEDs and the microcontroller might use two different 
power adapters. There are multiple surge protectors available in the market with 
varying features and a comparison between them can be seen in Table 60.  
 
As seen in Table 60, different surge protectors provide different benefits. The 
arena requirement states the surge should be able to support at least three plugs 
for the microcontroller, the LED and the display screen. However, it also depends 
on the type of connectors used to power the equipment. The microcontroller can 
be powered from a DC barrel jack connector, using GPIO pins, or using a standard 
micro USB cable. However, each of them provides different amounts of current to 
the system based on which the DC barrel jack is chosen as it provides adequate 
amount of current required to run Jetson Nano along with its peripherals. The 
NeoPixel LEDs can be powered with either standard USB type A or an AC-DC 
adapter. The specifics of these connectors and adapters will be discussed in more 
detail in sections 4.12.1b and 4.12.1c but this gives an idea on how many outlets 
and/or USB ports does the power surge need to support at the minimum.  
 
The surge provided by Belkin has 12 outlets and can provide a maximum of 15 
amps of current. The energy rating is 3940 joules and it costs approximately $25. 
The dimensions of this surge protector are 15.6 x 6.10 x 2.10 inches and it only 
weighs 2.1 lbs. However, it is quite big in size and it will not attach well to the arena 
making it a bad choice from an aesthetic standpoint. An important requirement for 
the arena is that it needs to be portable. Due to this the surge protector needs to 
be thin enough to able to be glued to the frame allow portability and ease of use. 
The surge protector provided by Amazon Basics consist of 6 outlet and can output 
15 amps of current at maximum. The dimensions of this product are 11.9 x 2.2 x 
1.75 inches and will definitely attach to the arena effectively. However, the energy 
rating is only 200 joules and therefore, it cannot protect against high voltage 
surges. Lastly, the surge protector by TonBux is a sure upgrade from Amazon 
Basic and Belkin but comes are a higher cost. It has built in Wi-Fi that connects to 
an app allowing toggling over the air. It has 4 outlets and 4 USB ports and can 
supply at most 16 amps of current. The energy rating is much higher than 
Amazon’s Surge but less than Belkin and it has a market price of approximately 
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$34. The dimensions of this supply fit our needs however, it is the most expensive 
option out of all the three surge protectors.  
 

Table 60 Comparing Surge Protectors 
 

Brand 
Belkin 
[78] 

AmazonBasics 
[79] 

TonBux 
[80] 

Number of Outlets 12 6 4 

USB Ports - - 4 

Length (inch) 15.6 11.9 12.2 

Width (inch) 6.10 2.20 2.44 

Height (inch) 2.10 1.75 1.26 

Maximum Output Current 
(A) 

15 15 16 

Weight (lbs.) 2.1 1.1 1.6 

Energy Rating (J) 3940 200 1700 

Cost ($) 24.99 11.49 33.99 

 
4.12.1b AC-DC Adapters and Peripheral Connections 
 
This component is required to convert power from a standard US 120V 60 Hz outlet 
to DC power. This component must be highly efficient; thus, it will be purchased. 
A single outlet is expected to support the entire Arena subsystem including TV 
display, Controller, and other loads. A household power strip will be attached to 
the frame to split AC power from the outlet to the TV Display and AC-DC adapter 
systems. The total power between the two must be calculated to ensure a single 
outlet is not tripped, however the TV display is separate from the AC-DC adapter 
power requirements.  
 
The AC to DC adapter will power the Jetson Nano Controller which sends data to 
TV display using HDMI and communicates with D-Pad controller using USB. The 
TV Display needs 3 amps of current and the D-Pad controller uses less than 0.5 
amps of current. Therefore, Jetson Nano needs at least 4 amps of current to power 
all its peripherals easily. The DC barrel jack can support 4 amps of current at 5 V 
which is more than enough required to run the system effectively. The AC-DC used 
for Nano is specified in the datasheet provided by NVIDIA however, that 
component is obsolete. Due to this, the technical parameters of the said 
component were studied, and an equivalent AC-DC converter [81] was chosen. 
This converter has a 5.5 x 2.1 mm barrel jack connector that is compatible with 
Jetson Nano and successfully converts 100-240V to 5 V and can output a 
maximum of 5 amps of current.  
 
The NeoPixel LEDs also require a 5V adapter however, the current requirements 
are at most 2 amps in case when all the LEDs will be lit up. This scenario is highly 
unlikely mainly because the LEDs are used for animation purposes and therefore, 
they will never use their maximum current. This can be used as an advantage and 
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help save cost. The LEDs can be powered by Jetson Nano’s 5V pin which at 
maximum load can output 1.5 amps and at minimum load outputs maximum 
current of the power supply. Therefore, a 5V 4A barrel jack connector could be 
used to run the TV, D-Pad, Camera and NeoPixels. On the other hand, if Nano 
cannot supply enough current to the NeoPixels then there are two possibilities. 
One, they can run at low current and will be less bright and second, an additional 
5V 25W AC-DC converter adapter can be used to power the LEDs and the data 
cable can be connected to Nano’s GPIO to address and program the LEDs. 
 
The peripherals are interconnected using different connectors and exchange data 
using drivers that are built into Linux’s Kernel. The TV Display uses HDMI to 
receive and display data. The D-Pad sends controller commands via USB whereas 
GPIO pins and PWM is used to address and program the NeoPixels. The camera 
data is exchanged using USB as well. The Bluetooth modules is connected using 
a special M.2 Key E connector which is built into Jetson Nano and does not require 
any purchase. This information is also summarized in Table 61 in an organized 
fashion. The GPIO pins use approximately 0 Watts of power because they provide 
high impedance signal to their respective sensor/device.  
 

Table 61 Arena I/O Schedule 
 

 Type 
Connected 
Devices 

Connection 
Type 

Power 
Requirements 

Bluetooth Intel Module Microcontroller M.2 Key E ~ 10 W 

LED’s NeoPixel Microcontroller GPIO ~ 0W 

Display & 
Sound 

TV Microcontroller HDMI < 5W 

Gamepad 
Xbox 
controller 

Microcontroller USB ~ 2.5W 

Gamepad 2 
Xbox 
Controller 

Microcontroller USB ~ 2.5 W 

Switch Digital Microcontroller GPIO ~ 0 W 

 

4.12.2 Design 
 
Based on the research conducted in section 4.12.1 an overview of the Arena 
Electrical Network can be seen in Figure 52. The block diagram shows that the 
Arena will mainly be powered by a single outlet. The outlet will power a 4 port, 4 
USB power surge to which the display monitor/TV and a 5V 15A AC-DC converter 
adapter is plugged in. The AC-DC converter has a barrel jack connector that 
powers the Jetson Nano, the brain of the arena. The barrel jack also powers the 
LED strips that go around the arena and perform animation for entertainment 
purposes. 
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The Jetson Nano will consume 4 amps of current while the LEDs will consume up 
to 2 amps.  The camera, D-Pad, and HDMI plug into Jetson Nano using their 
appropriate peripheral connector cables and they all run on 5V input. Three GPIO 
pins on the Jetson Nano are used: one for addressing the NeoPixel LEDs, second 
for controlling Limit Switch 1, and the third for controlling Limit Switch 2. The Limit 
Switches are used to detect when the ball makes into the hoop. Second Limit 
switch is added for redundancy. For addressable NeoPixel LEDs the GPIO pin has 
to provide pulse width modulation signal as that is a requirement of its drivers.  
 

 
 

Figure 52 Arena Electrical Network Block Diagram 
 

4.12.3 Prototyping and Testing 
 
The electrical system will be tested using multimeter and oscilloscope. The LEDs 
work on Pulse Width Modulation signal and therefore, an oscilloscope will be used 
to decode the signal generated by the controller. A multimeter will allow to check 
the voltages and currents at input, output of the controller and all the peripherals 
allowing the team to make sure no excessive current or voltage spikes occur with 
the potential of damaging the system and harming the user. These tests will also 
verify the constraints specified in 2.4 Realistic Design Constraints section of this 
document. Table 62 shows how these constraints are tested. 
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Table 62 Arena Electrical System Tests 

 

Requirement Test 
Required 
Equipment 

C.A.3 
Determine that the power surge 
supports all the adapters 

Multimeter 

C.A.3 
Determine that the power surge plugs 
into the wall 

Eye Test 

R.P.3 
R.P.4 

Determine that the controller, 
peripherals, and the sensors are within 
acceptable voltage and current ranges 

Multimeter, 
Oscilloscope, 
Datasheets 

R.A.E.6 
Test if the AC-DC adapter regulates 
voltage at the correct value 

Voltmeter, electronic 
load 

R.A.E.6 
Test if the AC-DC adapter can support 
the required loads value 

Voltmeter, electronic 
load 

R.A.E.6 Test the AC-DC adapter efficiency 
Voltmeter, electronic 
load 

 

4.13 Computer Vision 
 
The computer vision portion is one of the most vital aspects of this project. It will 
detect and track the location of all moving objects and defining court features. It 
will be capable of distinguishing between different robots and supply an accurate 
location to be used in other portions of the project, most notably, shooting the ball. 
This information will then be used for multiple parts of the project. The most 
important part is for calculating the force or angle needed to shoot the ball into the 
hoop. The game engine will also use the information from the computer vision to 
show the robots on the court in an overhead 2D visual representation that is a part 
of the Game system. For these reasons, the computer vision will need to be good 
enough to distinguish between robots and track them if one should be obscured 
by another. It will also simultaneously need to detect and track the ball of the court. 
All these calculations must be done rapidly such that the robot’s control loop can 
be updated with adequate accurate information. If the information is outdated or 
inaccurate, nearly all systems in the project suffer.  
 

4.13.1 Research 
 
Instead of discussing different software to implement computer vision only 
OpenCV will be discussed because it really offers such a plethora of libraries that 
encompass every portion of computer vision and machine learning that would 
possibly be needed for this project. In place of different software will instead be an 
evaluation of the different methods that exist for performing the tasks. Such as, 
types of learning and tracking algorithms for OpenCV. 
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4.13.1a OpenCV 
 
OpenCV is a library of programming functions and libraries used for almost every 
aspect of computer vision. The library is open source and cross platform, it can run 
on Windows, Linux, Android, and Mac. OpenCV was built using C++, but supports 
C++, Python, Java, and MATLAB languages. OpenCV caters to real time computer 
vision tasks incorporating almost all methods available to detect, track, and learn 
objects. These methods include the neural net, deep learning, and various tracking 
algorithms that will be discussed further down in this section. Additionally, OpenCV 
looks to optimize performance by featuring the CUDA parallel computing and 
application programming interface that was created by NVIDIA. CUDA is a platform 
that tries to use the GPU to perform general purpose processing tasks. This is 
important in computer vision as the GPU is generally better at computing parallel 
elements.  
 
So, the introduction of CUDA to OpenCV should allow the Jetson Nano controller 
the ability to use its onboard GPU to assist the CPU in large calculation tasks. 
OpenCV, being the largest and most well-known library for computer vision, will 
also have more than adequate documentation and it should be easy to find 
answers to any questions that may occur in production. One of the key concepts 
that is incorporated in OpenCV is the Neural Net. The Neural Net is a method of 
computer learning that attempts to perform tasks without telling the program task 
specific directives. Instead, the Neural Net looks at many examples and will come 
to conclusions about the examples. It does this by examining connections, known 
as edges, between artificial neurons. The edges and connections then use a 
weight system to determine aspects of an object and perform transformations. The 
other key concept supported by OpenCV is deep learning. Deep learning is a 
computer learning method based on neural networks. Its main feature is the use 
of layers to extract additionally higher-level features from input at each successive 
layer. OpenCV supports the deep learning frameworks TensorFlow, Torch, Py 
Torch, and Caffe. Caffe is the most important of the four for this project. The Caffe 
framework is built for image processing and supports the neural network 
architectures CNN, RCNN, and LSTM. Additionally, Caffe supports GPU and CPU 
based acceleration libraries. 
 
4.13.1b Tracking vs Detection/ Online vs Offline 
 
Identifying, following, and calculating information about objects falls into two 
categories, tracking and detection. Both are necessary to perform the task 
adequately, but when and how to use either is the main difference between 
algorithms in this field. Detection general refers to the identification of a type of 
object in an image. Detection can’t discern different objects of the same type only 
that the objects of that type are present in the image and where their located. 
Detection algorithms always start from scratch, meaning they will not consider any 
previous frames, only the current frame. This makes detection slower as it will need 
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to find the object in every image and therefore will need to search the entire image 
for that object instead of just searching a portion of the image. To alleviate the 
burden of having to detect objects generally only every nth frame or when the 
object is known to be lost will a detection be needed.  
 
Tracking refers to the ability to distinguish objects and follow or predict their 
movement from frame to frame. Tracking is faster than detection because tracking 
keeps useful information about the object, such as its location in previous frames. 
This alleviates the need of a costly detection in every frame by predicting a search 
area for the object in subsequent frames, reducing the resources required to scan 
an entire image. Tracking, unlike detection, can distinguish objects of the same 
type meaning that if multiple objects of the same type appear in the image then 
each one can be marked as a different object of the same type and can be followed 
individually. In general, the tracking algorithm is running every n-1 frame. Tracking 
and detection must work together though because tracking can suffer from object 
obscurity or fast-moving objects causing the trackers bounding box to move 
progressively more off center of the object. This problem is fixed by detecting an 
object every so often to make sure the tracker is still following the object or if the 
object has left the field of view of the camera entirely. Different tracking methods 
employ different variations and mixtures of tracking and detection. 
 
Another feature to be considered when researching tracking algorithms is the 
training method. This refers to the teaching of an object to a program by 
familiarizing it with the object through multiple viewings of the same object in 
different scenarios. The two types of training are online and offline. Online training 
is the harder of the two training methods because the algorithms are trained at 
runtime and have no information about the object prior to running. It is trained using 
positive and negative examples of the object. This method can potentially take 
many cycles to correctly and repeatedly detect and follow an object. Offline training 
is the more upfront time-consuming training method. Offline training is when an 
algorithm is shown thousands of examples of the object to be tracked in different 
scenarios in addition to showing thousands of examples when the object is not in 
the image. This method trains the algorithm to recognize the object as soon as the 
program starts running but has a high upfront cost of time to train the algorithm. 
 
4.13.1c Tracking Algorithms 
 
GOTURN - GOTURN stands for generic object tracking using regression networks 
and is the oldest deep learning-based object tracking method. It is an offline based 
tracker that will require thousands of examples of previous-current frame pairs. It 
works by looking at the previous frame cropping it and drawing a bounding box 
around the object to be tracked. The current image is then cropped using the 
bounding box of the previous frame and a new bounding box is drawn around the 
object in the current frame. Because of the extensive offline training GOTURN is 
one of the faster tracking methods. 
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BOOSTING - Boosting is the oldest tracker using an online version of AdaBoost 
for its algorithm. This tracker is online based and requires that the user or a 
detection algorithm draw the bounding box in the first frame shown. This frame is 
now the positive identification for the object and anything outside the bounding box 
is treated as the background. Subsequent frames will look for this object near the 
area it was located in previous frames and give a score to the frame based on how 
much it believes the two frames objects are a match. The new location of the object 
is the frame with the highest score and is counted as an additional positive 
identifier. This tracking method does not work well as newer methods employ the 
same strategies but without the drawbacks of not knowing when tracking has failed 
and fixing the problem of drifting bounding boxes. 
 
MIL - The multiple instance learning tracker is like boosting and is also an online 
based method. Unlike boosting though the MIL tracker does not only look in the 
location of the object in the previous frame but around that area too to create more 
positives. Instead of scoring these frames and taking the highest score the MIL 
tracker will place frames into positive and negative bags. These bags don’t have 
to contain entirely positives or negatives. In the positive bag there exists at least 
one frame where the object is centered. This method yields good performance, 
corrects the drifting problem seen in boosting, and can still reasonably track the 
object when it is obscured. However, like boosting, tracking failure is not reported 
reliably and it suffers from a lack of recovering when the object is fully obscured. 
 
KCF - The kernelized correlation filter is another online tracker that utilizes features 
of both the boosting and MIL trackers. The KCF, like the MIL will take multiple 
samples of the surrounding area of the object. Unlike the MIL tracker, the KCF 
tracker will leverage the overlapping regions that occur from taking multiple 
bounding boxes from positions close together around an object and uses 
mathematical properties to calculate the predicted location of the object. This 
tracker has better accuracy and is faster than both the boosting and MIL methods. 
Additionally, the KCF tracker also reports tracking failures better than boosting and 
MIL. However, the KCF tracker is unable to continue after the object is fully 
obscured. 
 
TLD - The tracking, learning, detection method looks at long term tracking, 
separating it into three individual jobs. The tracker will follow the object from frame 
to frame. The detector will investigate the frames and update the tracker. The 
learning portion calculates how much error there is between appearances of the 
object and remembers the error, so it doesn’t occur in subsequent frames. This 
tracker uses the online learning method. This tracker performs the best when an 
object is obscured for long periods of time but suffers from repeated false positives. 
 
MEDIANFLOW - The MEDIANFLOW tracker is a bit different in its method. Instead 
of comparing the previous frame to the current frame this tracker will compare a 
previous frame to the current frame and the current frame to the previous frame in 
time. It will then calculate the difference in the trajectories of the object and supply 
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an accurate prediction of the objects path. This is the best tracking method for 
failure detection. This tracker will work for small predictable movement that is 
unobscured but will fail if the motion of the object is too high. 
 
MOSSE - The minimum output sum of squared error is a correlation filter-based 
tracker, not a deep learning based like the previously discussed trackers. It works 
by producing stable correlation filters only using a single frame. The benefits of this 
tracker are its ability to adapt to changes in lighting, scale, pose, and any non-rigid 
deformations that may occur during tracking. Additionally, this tracker is very good 
at following objects that are obscured as it will pause itself and start tracking again 
when the object is visible again. It is one of the easiest trackers to implement and 
can operate a higher fps than any of our cameras can supply, while also being one 
of the fastest methods of tracking. While the MOSSE tracker sounds like all 
positives it has lower performance compared to other deep learning algorithms. 
 
CSRT - Lastly the discriminative correlation filter with channel and spatial reliability 
is based on spatial reliability maps. It relies on adjusting the area selected for 
tracking, which will be able to make the tracking area larger and increase 
localization of the object area. This tracker is good for tracking nonrectangular 
objects. Additionally, it works at a much lower fps than the MOSSE tracker. In 
return though the CSRT tracker does supply high accuracy. 
 

4.13.2 Design 
 
Since OpenCV is written in C++ most of the code for this portion of the project will 
be written in C++, but Python will also be used if a particular library requires it. 
Additionally, all code will be run on the Jetson Nano Linux based environment. The 
final design for computer vision will come down to testing of the different trackers 
in our real environment. However, based on description and research alone, the 
tracker best believed to perform the greatest is KCF tracker. The reasons for this 
choice come down to multiple assumptions. Firstly, the assumption that with two 
cameras no robot should ever be obscured from vision. While the ball may be 
obscured from the vision of the camera it does not matter that it is tracked as much 
as the robots, but rather simply detected because there will always only be one 
ball on the court. Secondly, the KCF tracker boasts accuracy and speed and that 
is required to adequately show the robots 2D view on the display and to launch the 
ball with minimum delay and high chance of making a basket. Further testing is 
needed using this filter though to solidify the claims made. On the next page in 
Figure 53 the class diagram for the computer vision software is shown.  
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Figure 53 Basic Class Diagram for Computer Vision  [82] 

 

4.13.3 Prototyping and Testing 
 
Prototyping the computer vision simply requires the two cameras mounted above 
the arena court. The robot does not necessarily need to be complete for 
prototyping, but a similar sized object is required. Testing of the KCF tracking 
algorithm will require a moving robot, but basic tests can be conducted with the 
tracker before that time, including tracking the ball and hoops. If the KCF filter 
works with the basic arena setup then the next step is to test the tracker with the 
arena LEDs and arena display turned on. All tests should be conducted again with 
this scenario. If this tracker should fail to meet the needs and requirements, then 
another tracking algorithm will need to be selected from the list above in section 
4.13.1c and all tests ran again. In Table 63 below is a clear description of each test 
to be conducted with the adjoining requirement and required equipment to conduct 
the test. The computer vision tests are more robust than other sections due to the 
critical risk nature of the component. The position tracking must be highly accurate 
for the remainder of the project to function properly. 
 
 
 
 
 
 



121 
 

Table 63 Computer Vision Tests 
 

Requirement Test 
Required 
Equipment 

R.A.CV.5 

Place one robot on a blank surface with 
the webcam directly overhead at the 
correct height and attempt to identify the 
robot. 

Robot 1, Webcam, 
Arena Controller 

R.A.CV.5 

Place two robots on a blank surface with 
the webcam directly overhead at the 
correct height and attempt to identify 
both robots simultaneously. 

Robot 1, Robot 2, 
Webcam, Arena 
controller 

R.A.CV.1 

Place one robot on a blank surface with 
the webcam directly overhead at the 
correct height and attempt to track the 
robot while in motion from one point to 
another. 

Robot 1, Webcam, 
Arena controller 

R.A.CV.1 

Place two robots on a blank surface with 
the webcam directly overhead at the 
correct height and attempt to track each 
robot from one point to another 
simultaneously. 

Robot 1, Robot 2, 
Webcam, Arena 
Controller 

R.A.CV.1 

Place two robots on a blank surface with 
the webcam directly overhead at the 
correct height. Attempt to obscure one 
robot from the camera. Observe that 
after the robot is unobscured that it is still 
being correctly tracked. 

Robot 1, Robot 2, 
Webcam, Arena 
Controller 

R.A.CV.1 

Place the ball on a blank surface with the 
webcam directly overhead at the correct 
height. Move the ball and observe if the 
ball is being tracked. 

Ball, Webcam, Arena 
controller 

R.A.CV.1 

Make two markers at a known location 
at a known distance apart. Observe the 
output of the computer vision matches 
the known locations.  

Robot 1, Webcam, 
Arena Controller 

R.A.CV.1 
Perform all previous tests, but now using 
the arena laminate flooring as the 
surface. 

Robot 1, Robot 2, 
Ball, Webcam, Arena 
controller 

 

4.14 Peripheral Software 
 
The peripheral software involves all the software related to devices and hardware 
for the arena. This includes driving the LED lights, communication through 
Bluetooth, hoop sensing, and robot control. This software also needs to directly 
communicate with the Game system; however, this interface is discussed more 
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thoroughly in section 6.5 Arena – Game. This code runs on the microcontroller 
selected for the arena; thus, it is not as critical to design memory efficient code. A 
strict structure is not required to achieve high performance, thus object-oriented 
design is more appropriate than functional design. However, the architecture of the 
code is dictated by the libraries available to achieve the functionality the software 
requires. The code in this section needs to quickly process the data from the other 
systems and generate outputs to maintain some semblance of real-time control. 
Data from the gamepad input in the Game System sent to the peripheral system 
and then finally sent and processed by the robot can introduce a huge amount of 
latency, particularly in the arena-robot interface. 
 

4.14.1 Research 
 
4.14.1a Bluetooth 
 
The most popular python Bluetooth library is pybluez. Pybluez is an open source 
library that extends the operating system’s Bluetooth resources into a python 
application. Although the library is not under official development, there are active 
contributors implementing the software onto new devices. The library has a wide 
range of documentation. Another option is to utilize Python to execute and 
communicate with a C++ process that utilizes another Bluetooth library such as 
BlueZ, Qt Bluetooth, or libblepp. Each of these C++ libraries implement well 
documented code for interacting with the available Bluetooth resources. The node 
would communicate with Python through something like shared memory or a 
socket. This option is likely more difficult to implement. [83] 
 
4.14.1b GPIO Library 
 
The Jetson Nano GPIO is primarily implemented in Python. The python interface 
interacts with system files that are connected to the GPIO registers. There are 
many examples and sample applications, and the library is fairly well documented. 
The library supports interrupts, which is extremely useful for the limit-switches and 
frees up resources from polling. The library has identical API to the Raspberry Pi 
GPIO library, thus the applications written utilizing this library can be ported 
between boards without issue (In the event of hardware issues or additional 
testing). There are additional ways to interact with GPIO on the Jetson without this 
library, including writing directly to the system files related to the GPIO. This is 
significantly more difficult to implement and maintain. [84] [85] 
 

4.14.2 Design 
 
The peripheral software architecture for the Arena closely follows the robot 
architecture paradigm despite not having the same level of I/O. The only I/O for 
peripheral devices in the arena is two limit switches for hoop goal counting, and an 
output LED signal for the various Arena lighting. However, this software does have 
to pass data between the game engine and the robot due to the Bluetooth 
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communication. The message passing structure between the two other software 
implementations is shown in Figure 54. The software architecture and class 
diagram are shown in Figure 55. This figure indicates the three layers of the 
peripheral software: Application, implementation, and library layers. Application is 
the main program that performs the instantiation and method calling of the classes 
implemented in the implementation layer. The implementation layer abstracts the 
I/O, State machine, and communication interfaces. Each class contains relevant 
data and methods to perform all of the appropriate actions for that object. The 
library layer contains libraries external to the team that generally implements low-
level implementations such as Bluetooth communication and GPIO control. The 
selected Bluetooth library is the pybluez library due to its simple implementation in 
python. The standard Jetson Nano GPIO library is utilized. 
 
 

 
 

Figure 54 Peripheral Software Communication Diagram 
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Figure 55 Peripheral software Architecture and class diagram 
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4.14.3 Prototyping and Testing 
 
The prototyping for peripheral software requires the acquisition of the Jetson Nano 
primarily. Once that device is acquired, all the software and libraries can be 
installed and developed. The communication and GPIO tests require additional 
components such as the communication hardware and limit switches. A full-
communication prototype requires the Robot and Game software to be complete. 
However, each section of code can be independently tested with appropriate unit 
tests as described in Table 64. 
 

Table 64 Peripheral Software tests 
 

Requirement Test 
Required 
Equipment 

R.A.17 Communication Unit Tests 
Bluetooth Module, 
power supply, Nano 

R.A.17 LED Unit Tests 
Nano, Power supply, 
LED’s 

R.A.17 Sensor Unit Tests 
Nano, Power Supply, 
Sensors 

R.A.17 Full software tests 
Nano, Power Supply, 
terminal monitor 

 

5.0 Game System 
 
The Game system harnesses the power of a game engine to deploy commonly 
used features that are available in a virtual environment. The project requires 
players to be able to adjust settings, start and stop timers, display scores and other 
feedback, and assist the user by showing a 2D virtual representation of an 
environment. The game system is essentially the primary software arm of the 
Arena system, but it can be developed and act independently from the Arena 
system. This system is the most feature-scalable system in the project. A large 
number of extra software functionality can be added to the project through the 
game system. These things include different robot settings based on a chosen 
player. This feature could adjust speeds, accuracy, or force limits to vary the player 
experience. Additional control logic such as autonomy or machine learning could 
be introduced into the game system to change the player experience quite 
dramatically. Figure 56 contains a block diagram to illustrate the separation of 
components for the game system and how they interact with each other. The three 
main components of the game system are the collision detection, video playback 
and robot control. The game system is also responsible for displaying data to the 
player that is currently playing the game and any spectators watching.  
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Figure 56 Game system block diagram 
 

5.1 Game Engine 
 
The game engine will be responsible for a few tasks overall and will act as a hub 
for data to flow in and out of. It must be able to handle data visualization such as 
showing a mockup of where the physical components such as the robot and ball 
are on the field or playing an animation when a shot is made or missed. Using data 
sent from the field and robot, the game engine will also handle collision detection 
and send feedback to the gamepad being used by the player. The game engine 
will also need to be capable of both 2D and 3D animation to accomplish its tasks.  
 

5.1.1 Research 
 
5.1.1a Unity 
 
Unity is useable for both 3D and 2D games and simulation. Most of the group has 
used Unity before so there is some experience there. A major plus is that the base 
edition of this engine is free to use. Due to that Unity is under consideration for 
being used for both the 2D visualization and tracking as well as the animation after 
a made shot. Unity looks to be a primarily 3D based engine and there seems to be 
more material for tutorial in 3D rather than the 2D side. A downside of unity is that 
the UI can get rather cluttered and unusable. It also has a rather steep learning 
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curve if the developer is just learning how to use Unity with C#. On top of that, 
there are solutions, but no simple answer to doing inter process communication 
between Unity and other things, such as a C++ program or Python script.  
 
5.1.1b Godot 
 
Godot seems to be slightly opposite of Unity in that it looks more 2D friendly than 
3D. It comes with a lot of tools to help a first time Godot developer get started 
creating what they need to. Like Unity, it has its own suite of animation tools for 
the developer to use instead of using a separate software such as Cinema4D or 
Maya. As well as supporting C++ and C#, Godot also has its own language, 
GDScript which is a lightweight Python-like language. Godot in general is a more 
lightweight program and requires less resources to run. This may prove to be 
useful as the resources to run the game system through whatever controller is 
chosen for use may be limited. Godot, like Unity, has an asset hierarchy that 
dictates how and what items are allowed to interact with.  
 

5.1.2 Design 
 
The GUI for the game aspect of the project will be created using the Godot 2D 
gaming engine. It will consist of 4 main screens that are laid out in Figure 57. The 
main menu is the screen that will be shown first when the game is first initialized. 
It will consist of 3 options in the form of buttons for the users to pick, Play, Controls, 
and Exit.  
 
The first option is “Play” which will bring the player to another option screen. The 
Play screen’s options consist of easy and hard mode. Easy mode will lead into a 
game where the robot will handle the different aspects of shooting for the player, 
such as power of the shot and making sure the robot is lined up with the basket. 
Hard mode will disable these assistive options and allow the player full control over 
the robot. The second option of the main menu is to bring up the controller menu. 
This screen will contain an image of the controller labeled with its mappings (Figure 
50 in Section 4.8.2) as well as two checkboxes. One checkbox is to invert the x-
axis of the controllers and the other is to invert the y-axis of the controllers. This 
allows the user to reconfigure the controller to match where they are standing 
around the arena to give them the easiest and least confusing control of the robot. 
The last option is to simply exit the game. Figure 58 contains a flowchart on how 
the screens are accessed. 
 
After the player selects their preferred mode of play, easy or hard, the game will 
start, and the screen will display a representation of the actual game arena. This 
screen contains all the elements on the physical field, the robot, the ball, and the 
hoop. All three will be tracked by our computer vision program, and the positions 
will refresh in real time to display an up to date position of the game components. 
This will also allow the hoop to be placed wherever the owner wants to configure 
it, and have it still accurately shown in the simulation aspect of the game. The other 
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two components are a match timer that displays the time remaining in the game, 
and a counter to display the score the player has accrued by making baskets. 
Baskets will also be scored by the distance the shot occurred from in order to 
provide more of an incentive to make shots from farther away.  
 

 
 

Figure 57 Wireframe screen layouts Screens of the game system 
 

 
 

Figure 58 Flowchart for screen navigation 
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In Figure 59 below, a basic class diagram for how movement and collision 
detection will be handled is given. The main class is RobotMasterControl and will 
handle getting and sending controls and data to and from the robot. It will utilize 
two other classes, Collision and Input. Collision will be a class written by the team 
and will implement the Area2D class for Godot objects to assist in determining 
when objects overlap. Input is another Godot class that handled joystick/gamepad 
interaction. The input class will be responsible for grabbing controls and sending 
the correct event flags to the RobotMasterControl class. An in-depth description of 
the RobotMasterControl class can be found in Section 5.4. 
 

 
Figure 59 Basic Class Diagram for Movement and Collision Detection 

 

5.1.3 Prototyping and Testing 
 
Prototyping will be done using Godot. The first objective for prototyping the game 
system will be to create a base scene that takes the shape of a rectangle to act as 
the arena. On this scene there will be a few shapes that will act as the ball, rim, 
and robot. After the scene is set up, the first 2 tests from Table 65 below will be 
able to be tested. The tests will be conducted in the order of the requirements 
fulfilled as each requirement is a concrete subcategory of the game system. 
Verifying that the game submodules work effectively together will require the rest 
of the subsystems work first, therefore it doesn’t explicitly fall under a requirement 
listed in section 2.5 



130 
 

Table 65 Game engine tests 
 

Requirement Test 
Required 
Equipment 

R.G.1 Moving shapes programmatically Laptop 

R.G.1 Moving shapes via gamepad input Laptop 

R.G.2 Check data is displayed properly  Laptop 

R.G.3 Check date and time are accurate Laptop 

R.P.4 
Verify game submodules work together 
in the intended fashion 

Laptop 

 
After the tests are validated, the parts will be combined into one scene that 
contains the visualization for the court, as well as the data display parts and 
rechecked to make sure the components still function properly. Once that is 
verified it will be made into the official design.  
 

5.2 Collision Detection 
 
The game engine system is responsible for protecting the robot in events of poor 
user input. For example, if the player constantly runs into the wall, the robot would 
either drive over the wall and flip, or it would burn out the motors and cause 
electrical or structural damage. Another instance that requires collision detection 
is when two robots run into each other. Again, these events could cause electrical 
or structural damage and prevent consistent playing. In both instances, the 
collision detection should be aware when a robot is entering a zone that could be 
dangerous and protect the robot. The protections could be reducing motor power, 
slowing the robot, or preventing input entirely. Another useful feature of collision 
detection is automatic intaking when the ball is near the front of the robot. This is 
a player-assist feature that can have adjustable settings.  
 

5.2.1 Research 
 
5.2.1a Game-Engine Collision Detection 
 
Collision detection is possible with both Godot and Unity and is done in a very 
similar way in both engines, with the game objects being designated as collision 
objects, and then monitoring the different objects in order to check if they are 
overlapping, and sending a signal when two objects are found to be overlapping.  
 
5.2.1b Collision Response 
 
There are a couple paths to take in terms of interacting with the user to let them 
know a collision has occurred or is imminent. The first is by sending a rumble pulse 
through the controller. This pulse can be practically any length, it just has to get 
the users attention and they will likely pay attention to their surroundings a little bit 
better. The system can also take control from the user to prevent them from moving 
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the robot in the direction that the collision is occurring in. This will help keep the 
components on the robot from suffering wear and tear. However, this isn’t the 
preferred method as the team wants to avoid taking unnecessary control of the 
robot to keep the players immersion intact. The last way that this can be done is 
to flash a symbol on the GUI/data visualization screen warning the player of a 
collision. However, this would require that the player actually be looking at the 
screen instead of the court, which isn’t recommended.  
 

5.2.2 Design 
 
The collision detection will be set up in such a way that as the robot moves closer 
to the designated wall area of the arena, the controller will begin to vibrate, and the 
intensity of the vibration will increase the closer that the robot’s position to the wall 
is. This is accomplished by layering bands of detection objects in a procedural 
manner leading up to the perimeter. Each band will be assigned a value for 
vibration that will be triggered upon the robot’s sprite in the visualization entering 
its area. It is important that there is a reliable scale between the visualization and 
the actual arena. If this is not the case, the controller may vibrate for no reason, or 
not vibrate when it should be doing so. It is also possible to attempt to send a 
command to the robot to not allow it to move in a specific direction, preventing the 
continued attempt to move into a wall, which potentially can damage motors and 
components.  
 

5.2.3 Prototyping and Testing 
 
The collision detection system can be prototyped with Godot and a simulated 
robot-input and output. This allows the team to verify that the safety functionality 
of the system is in place prior to testing with actual hardware using the unit tests 
below in Table 66. Another important aspect of the testing not mentioned in the 
table is that based off the feedback, the collision detection can be further optimized 
to change when it needs to trigger so it isn’t always sending notifications to the 
system. 
 

Table 66 Collision Detection Tests 
 

Requirement Test 
Required 
Equipment 

R.G.8 
R.P.4 

Verify Safety System 
Robot, Display, 
Frame 

R.G.6 Verify Collision Avoidance algorithms 
Robot, Display, 
Frame 

R.G.6 
Verify accuracy of simulation versus 
physical 

Robot, Camera, 
Court. Tape Measure 
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5.3 Video Playback 
 
It is very common to have a replay of events that happened prior to a score in any 
sport. When a player scores a goal, it would be exciting and useful for spectators 
to see the motions of the robot and ball in the time leading up to the robot shooting 
the ball. This requires a storage buffer containing the positional data of the robots 
and ball, and timing for ball entering the hoop. At the time of scoring, a short 
playback of the positional data (in 2D) and then a pre-rendered 3D animation of 
the ball being launched and going into a hoop play. This is very similar to what 
bowling centers do for different types of pins being knocked down. The pre-
rendered 3D animation reduces complexity of the simulation while still providing 
the feeling of experiencing the goal again. This gives a small reward to the player 
when they score hopefully giving them a sense of accomplishment and 
achievement.  
 

5.3.1 Research 
 
There are a couple of paths that the video playback could potentially follow. The 
first one is like what someone would see at a bowling alley, where there is a little 
animation for making a strike or a spare, that rewards the player, but doesn’t play 
back any real information. Another potential path is one that relays positional and 
input data leading up to the goal to allow the player or audience to “relive” the shot. 
The timeframe on this can be either lengthened or shortened to change the focus 
of the video. 
 

15.3.2 Design 
 
Videos will be played back when a made basket is detected from the arena, and 
possibly when a shot is attempted and not made. The video will be picked from a 
bank of premade videos depending on the situation and will be rotated so the 
player doesn’t see the same one every time. These videos will follow the bowling 
alley celebration of a goal and not the full playback. One of the options for playback 
is that the screen will replay the last few seconds of the 2D field visualization before 
it plays the animation for the celebration.   
 

5.3.3 Prototyping and Testing 
 
Prototyping of the video playback does not require the actual video that will be 
played to be done in order to be completed. The team can substitute any video to 
use for testing purposes and just swap it with the correct rendered animation once 
it is complete. The testing will follow an order outlined below consisting of unit tests 
that slowly scale up until we get the full project. The procedural steps needed for 
full functionality are outlined in Table 67. 
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Table 67 Video Playback tests 
 

Requirement Test 
Required 
Equipment 

R.G.5 
Manually trigger any video 
 

Laptop 

R.G.5 
Make sure our video is rendered 
properly 

Laptop 

R.G.5 
Trigger scene on basket score/non-
score 

Nano 

 

5.4 Master Robot Control 
 
The master robot control software exists within the game system and is the 
ultimate high-level controller for the robot. The game system acquires user input 
from the gamepad and then converts that data into appropriate robot commands. 
The robot simply acts as an I/O device that the game system is controlling. Robot 
kinematics, master states, computer vision, collision system, and other inputs are 
utilized to convert user input into servo commands that are sent through the Arena 
system to the robot and interpreted there.  
 

5.4.1 Research 
 
5.4.1a Inter-process Communication 
 
Inter-process communication (IPC) is the act of transmitting data between two 
processes either on the same processor or between processors. There are two 
common ways to achieve this: Shared memory, and messaging. Shared memory 
is when two processes have access to the same memory hardware and access 
them at different times. Messaging is when two processes communicate through 
a channel such as a socket, pipe, or file access. This topic and design is discussed 
in depth in an integration section: 6.5 Arena – Game. 
 
5.4.1b Kinematics 
 
Kinematics is related to bodies in motion. In this case, kinematics is referring to 
forward and inverse kinematics of the different mechanical systems of the robot. 
Kinematics are particularly concerned with converting between different domains, 
or spaces. These domains are related to physical information about the system. 
For example, converting a robot arm’s end-effector pose in 3D space to the series 
of joint values required for the robot to achieve that location.  
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5.4.2 Design 
 
The Robot Master control accumulates all of the data relevant to robot function 
and determines the high-level functionality of the robot. The system dictates the 
state machine listed in Figure 34 by determining the appropriate transitions based 
on the input from the various components including Collision Detection, 
Kinematics, Computer Vision, Game State, Gamepad data, and Peripheral 
software data. This data flow is shown in Figure 61. The kinematics component 
itself is also completed in this section due to its reliance on Peripheral software 
data, and computer vision data. The high-level motion control is derived from the 
directions shown in Figure 14. The software is implemented in the chosen Godot 
software and does not require library support outside of the native Godot 
functionality. The robot control inputs are dictated by the gamepad mapping shown 
in Figure 50.  
 
There are three kinematic spaces we are concerned with: Task Space, Robot 
Space, and Actuator Space. The task space is the domain that computer vision, 
collision detection, and players perceive the environment. It is the actual full 3D 
representation of the arena, robot, and other physical components. Robot space 
is the robot’s understanding of the environment, and how to interact with it. That 
is, the robot can move in various directions, spin up a wheel, and other actions that 
refer to velocities or positions relative to the robot transformation frame. The 
actuator space relates to the effort and electrical feedback required to drive the 
servos and motors. Each space requires a transformation between each-other as 
shown in Figure 60. The transformation between task and robot space converts 
between robot pose and robot velocities to servo speeds. This is critical to drive 
the robot in the correct manner. The servo velocities are then transformed to PWM 
signals or duty-cycle percentages. The forward motions take current servo speeds 
and determine the robot’s overall velocity.  
 

 
 

Figure 60 Kinematic Transforms 
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Figure 61 Robot master control data flow 
 

5.4.3 Prototyping and Testing 
 
The prototyping of this component only relies on the Godot Engine. Once the 
general game framework is implemented, the robot master control can be 
implemented. Final testing requires the Arena and Robot to be complete. The tests 
for this component are shown in Table 68. 
 

Table 68 Master Robot Control software tests 
 

Requirement Test 
Required 
Equipment 

R.P.4 Kinematics Unit Tests N/A 

R.P.4 Data Process Unit Tests N/A 

R.P.4 Master Control Tests N/A 

R.P.4 Robot Control Tests 
Complete Arena & 
Robot 
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6.0 Subsystem Integration 
 
The system integration section identifies high-risk interfaces that must be carefully 
designed and tested to avoid problems that occur when multiple systems are 
designed in parallel. Three robot interfaces are identified, and two major system 
interfaces are identified. The robot interfaces are high-risk because they are the 
most likely point of failure in the project, and the entire project depends on the 
robot’s capabilities to be completed appropriately. Although these components 
exist within the same subsystem, their critical risk status elevates the importance 
of integration. The system interfaces are not within the same subsystem; thus, their 
integration is not discussed within their respective system discussions. As such, 
the interfacing between the major systems is developed in this section. 
 

6.1 Base – Intake 
 
The Base-Intake integration is identified as the mounting interface between the 
base subsystem, and intake subsystem. This interface ensures the compatibility 
between the intake and the wheel locations, and the existence of mounting 
locations for the intake to be attached to the base. The ball must be able to be 
picked up from the ground and in various orientations around the court. Corners 
are particularly difficult for the intake to reach in, so the intake-base integration 
must ensure that the intake can reach the ball from each orientation at each 
position in the court. The overall goal of the base-intake integration part is to lower 
the skill and time needed to consistently grab a ball off the ground. If we are able 
to accomplish this, it will make the game more entertaining and less stressful to 
play.  
 

6.1.1 Design 
 
The intake requires the ball to go to a particular location without getting stuck. 
Thus, the design involved for this component is a shovel/gate type apparatus that 
directs the ball into the correct location. This design is provided in Figure 62 and 
functions as a way to keep the ball from getting stuck underneath the robot’s base. 
This is vital to make sure that the sensitive components inside the base are 
protected from getting hit and potentially disconnected. The intake is the same as 
the launcher thus the mounting and cuts are the same as in section 6.2 Base – 
Launcher. This design does not solve the problem of picking up the ball from 
corners as the intake is located within the frame. However, the angled parts on the 
front of the robot that act as a funnel will also be able to displace the ball. In the 
event that this becomes a larger  or more common problem, additional designs / 
components will be introduced. 
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Figure 62 Ball-Prevention plates & cut-outs 
 

6.1.2 Prototype and Testing 
 
The base-Intake integration can be prototyped with the two sub-system 
components and some additional hardware. It includes additional plates that have 
bends in them which requires a heat gun to heat up the material and bend it at a 
particular angle. The tests for this integration determine the validity of the design 
and verifies that all requirements are met. The tests are shown in Table 69. 
 

Table 69 Base-Intake integration tests 
 

Requirement Test 
Required 
Equipment 

R.P.4 
Does the intake mount securely to the 
Base? 

Base, Intake, 
hardware tools 

R.P.4 
Does the intake reach the ground to 
pick up the ball? 

Base, Intake 

 

6.2 Base – Launcher 
 
The base-launcher integration is identified as the mounting interface between the 
Base subsystem and Intake subsystem. This interface ensures the compatibility 
between the base and the launcher, including the existence of mounting locations 
for the launcher to be attached to the base, and clearance for the launcher 
mechanisms to fully actuate  
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6.2.1 Design 
 
The Base-Launcher integration design consists of a cutout for the wheel and track 
mechanism, and mounting holes for the various subsystem components required 
to operating the systems. This includes mounting holes for the lever servo, and the 
wheel motor bracket. The wheel size and cutout are variable such that the best 
sized-wheel can be printed or adjusted after additional testing. However, the cutout 
must be small enough that the frame remains strong despite the hole in the center. 
Dimensions for the cut outs to mount the base are provided in Figure 63. 
 
 

 
 

Figure 63 Base-Launcher Integration 
 

6.2.2 Prototype and Testing 
 
The base-launcher integration is very similar to the base-intake integration 
because of the combination of the two systems. However, testing is critical 
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because the motion and accuracy of the base directly affects the consistency of 
the launching. The tests are shown in Table 70. 
 

Table 70 Base-Launcher Integration tests 
 

Requirement Test 
Required 
Equipment 

R.P.4 
Does the Launcher mount securely to 
the Base? 

Base, Launcher, 
Hardware tools 

R.P.4 
Can the launcher slide fully extend and 
retract? 

Base, Launcher 

R.P.4 
Can the launcher release fully engage or 
disengage the gear? 

Base, Launcher 

 

6.3 Intake – Launcher 
 
The Intake-Launcher integration is identified as the design interface between the 
intake and launcher such that the intake places the ball in the correct location each 
time for the launcher to hit consistently. Further, the intake must not interfere with 
the launching mechanism. 
 

6.3.1 Design 
 
Currently the design we are going with for the Intake-Launcher integration is going 
to incorporate them into the same component. We will be using a single large 
flywheel that is lowered close to the ground to be able to grab the ball off the floor. 
After the ball enters the mechanism, it will slot into a trapdoor to wait to be fired. 
This will allow the wheel to spin freely without moving the ball. When the player is 
ready to shoot, the wheel will spin up to the correct speed and the trapdoor 
mechanism will be reversed through the use of a servo or a similar piece of 
hardware. Once the ball contacts the wheel again, it will continue along its path 
and be shot out the other end. It is important that whatever is used to reverse the 
trapdoor has a high enough torque rating to keep the ball and wheel from pushing 
back out against it. Setting up this integration this way will allow the team to utilize 
both passive and active mechanisms to make the overall component use less 
pieces.  

 

6.3.2 Prototype and Testing 
 
The intake-launcher integration prototyping is essentially automatic due to the 
mixture of the Intake and Launcher systems. The testing for this section is critical 
because it directly impacts the consistency and reliability of the launching system. 
The tests that will be needed are shown in Table 71 on the next page.  
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Table 71 Intake-Launcher Integration Tests 
 

Requirement Test 
Required 
Equipment 

R.P.4 
Does the intake place the ball into the 
correct location for the launcher? 

Intake, Launcher, 
Power Supply 

R.P.4 
Can the launcher shoot without 
interference from the intake at any 
rotation? 

Intake, Launcher 

 

6.4 Camera-Arena 
 
The Camera-Arena integration component is defined as the interface between the 
camera and arena. Specifically, the mounting of the camera such that the camera’s 
field of view does not prevent the camera from seeing all of the components on the 
field. This directly affects the mounting height of the camera. 
 

6.4.1 Design 
 
Upon design of the interface for the single camera mounted in the center of the 
arena, it is found that the camera has to be mounted nearly 6 feet above the ground 
plane for the camera to see the top portions of the robot appropriately. This greatly 
exceeds requirements for the arena to fit in a typical room, thus efforts are taken 
to reduce the height that the camera must be mounted. In order to achieve this, 
two cameras are introduced with their field of views rotated 90 degrees from the 
single camera view. Figure 64 and Figure 65 shows possible configurations for 
single and double camera layouts respectively. There is also some overlap across 
the centerline because the field of view must be able to see objects that are at an 
increased height from the ground plane. There are two ways to deal with this 
overlap, one method through software and another through hardware. The 
software method requires us to filter out the overlap before processing the images, 
while the hardware method requires more precise measuring to reduce the overlap 
of the field of views of the different cameras. Overall the team is leaning towards 
using the software approach to filter the camera feeds. Figure 66 shows the 
projected field of views for the cameras in a single or double camera configuration. 
The single-camera approach will be tested first without part construction to get an 
idea of whether or not the second camera is required. After testing, the two 
camera-design may be implemented depending on the result of the actual test. 
Regardless, the interface is a critical risk and will be monitored appropriately. Note 
that the field of view lines are based on theoretical values and may change based 
on lens focusing as well.  
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Figure 64 Single Camera 
configuration 

 

 
 

 
 
 
Figure 65 Two Camera configuration

 

 
 

Figure 66 Two-Camera FOV 
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6.4.2 Prototype and Testing 
 
The Camera-Arena prototype requires that both cameras be mounted three feet 
above the arena in an equal distant fashion. This will require the completion of both 
the frame and the camera mounts as well as either a robot or something of similar 
size to test the camera with. Below in Table 72 are shown the requirement to 
adhere to, the test to be completed, and the required equipment to complete the 
tests. This is one of the final tests for integration with regards to the arena and is 
integrally important to the computer vision working properly. Computer vision can’t 
be implemented until the Camera-Arena integration tests pass. 
 

Table 72 Camera-Arena Integration Tests 
 

Requirement Test Required Equipment 

R.A.CV.2 
Verify both cameras together can view 
the entire court 

Two Cameras, Arena 
frame 

R.A.CV.1 
Verify the entire robot is visible in the 
camera FOV 

Two Cameras, Arena 
frame, Robot 

 

6.5 Arena – Game 
 
The Arena-Game integration involves interfacing between the Arena system and 
the game system. The game system requires position data of the robots and the 
ball from the camera stationed above the arena to accurately update the locations 
of the simulated versions in the game engine. Additionally, the game system must 
send the gamepad data to the arena system to process the player input’s and send 
them out to the robots.  
 

6.5.1 Design 
 
Inter-process communication can be accomplished in a variety of ways between 
scripts and programs of different languages. The two options the team were most 
comfortable with were TCP/IP sockets and shared memory. Shared memory is 
overall easier with a C++ based environment while TCP/IP sockets would be better 
for use with something like C# and Godot. The arena will connect to a socket to be 
able to send the camera position data to the game, where the game will handle it. 
Socketing is handled rather well by Godot’s API so the team will be primarily using 
this approach. 
 

6.5.2 Prototyping and Testing 
The Arena-Game interface prototype simply requires the Arena and game systems 
to be completed. Once the systems are completed, a single software section must 
be built and tested to interface the Arena and Game software systems. Table 72 
lists the two basic tests that the arena and game must pass to be considered 
integrated properly.  
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Table 72 Arena-Game Integration Tests 
 

Requirement Test 
Required 
Equipment 

R.P.4 
Send and verify signals between arena 
and game 

N/A 

R.P.4 
Check visualization matches data sent 
from the arena 

N/A 

 

6.6 Robot - Arena  
 
The Robot-Arena integration is identified as the interface between the components 
of the Robot and Arena. For example, the ball must interface correctly with the 
Intake subsystem, and launch subsystem. The fiducials for computer vision to track 
on the robot are designed in this section. The robot and arena share information 
via Bluetooth. Arena uses camera information and controller inputs, combines 
them into a packet and sends it to a buffer. The Bluetooth system reads the buffer 
periodically and sends the commands to the robot. The robot then parses the 
packet into useful information and carries out the commanded tasks.  
 

6.6.1 Design 
 
Arena and Robot Integration happens in the software. A hardware implementation 
would require a serial or an ethernet connection between the robot and the arena. 
This approach will undoubtedly provide error free data as long as the noise is 
attenuated. However, having cables in the field will cause troubles in Robot’s 
movement due to which a wireless approach is taken in interfacing the two 
systems.  
 
The Bluetooth comes with a variety of hardware and software components that 
make interfacing the two systems efficient. Bluetooth v4.2 LE is the latest Bluetooth 
available in the market for consumers and developers which is used in this 
integration. The robot runs on ATmega328P microcontroller with is available in 
Arduino. The firmware is open source and is flashed onto the chip. This chip also 
has firmware available that interacts with various Bluetooth modules available for 
Arduino. However, due to the requirement of a custom PCB the Bluetooth modules 
were researched in depth. Almost all Bluetooth modules compatible with Arduino 
use TI’s CC254x chip which will consequently be used to send and receive 
Bluetooth packets to and from the robot, respectively [86]. On the Arena side, 
Intel’s 8265NGW adapter is used to accomplish the same. Both TI’s CC254x and 
Intel’s 8265NGW are discussed in sections 3.6.1a Bluetooth and 4.11.1a 
Bluetooth, respectively. 
 
The Arena generates a 14 to 18 bytes long data packet along with additional 14 
bytes of overhead. The exact length will be determined post experimentation of the 
modules however, ideally it is likely that the data length will be 14 bytes at 
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minimum. This packet contains information regarding each of the motor velocities 
for driving the robot, the speed of the flywheel to shoot the ball at, the status of the 
fifth servo that intakes or let go of the ball, and the state determined by the user 
holding the controller. On the robot end, the raw data bytes are parsed for their 
appropriate information and run specific functions inside the loop. Each command 
sets a Boolean flag making writing and debugging the code easier. After sending 
the packet Arena Bluetooth goes into sleep mode until a response is received from 
the Robot. On the robot side, the Bluetooth wakes up upon receiving data packet 
from the Arena. It sends an acknowledgement along with its state byte so that the 
Arena can make appropriate decisions based on the received information and 
respond. This architecture assumes that both Bluetooth systems are version 4.2 
and work on Serial Port Profile for communication. The structure and sizes of these 
packets can be seen in Communication design sections 3.6.1a Bluetooth and 
4.11.2 Design of robot and arena, respectively.  
 

6.6.2 Prototype and Testing 
 
The communication tests are conducted using RSSI utility in hcitools available in 
the BlueZ stack on Linux. The RSSI value needs to be more than or equal to -
30dBi for an excellent connection. The arena and Bluetooth take at maximum 7 
milli-seconds to send and/or receive packet which gives an update rate of ~140Hz. 
This is far more than the required update rate as allows resting time for healthy 
packet transfers and saving energy. 
 
The packets are tested for accuracy by using serial monitor on Robot end and 
Command Line Interface on Arena’s Linux side. Arduino’s Serial monitor is used 
to send a string which is seen on Arena’s Linux terminal using the “hcidump” utility 
available in the BlueZ stack. The string is displayed as a stream of raw data bytes 
and an ASCII table is used to decipher them. A script can also be written to parse 
the raw bytes. Similarly, the “hcitools” utility can be used to send raw bytes to 
Robot’s Bluetooth which will be displayed on Arduino’s Serial monitor to prove 
accurate data transmission. A summary of such tests is summarized in Table 73 
Robot-Arena Integration Tests which also shows the project requirements they 
satisfy. 
 

Table 73 Robot-Arena Integration Tests 
 

Requirement Test 
Required 
Equipment 

R.A.2 
R.P.4 

The robot and arena can communicate 
bidirectionally 

Robot, Arena, 
Terminal 

R.P.4 The arena can control the robot 
Robot, Arena, 
Terminal 

R.P.4 
The computer vision system can track 
the robot’s position 

Robot, Arena, 
Terminal, Display 
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7.0 Administrative 
 
Overhead is required as project size increases. The overhead involved for this 
project relates to task management, scheduling, budgeting, and communication. 
Each of these is necessary to achieve the requirements set forth by the team.  
 

7.1 Budget and Bill of Materials 
 
As per economic constraints C.ECON.2 and C.ECON.3, the team wanted to keep 
the cost below 300 dollars for the robot and 400 dollars for the arena. In Table 74 
and Table 75 below, the bill of materials for the robot and arena are shown.  
 

Table 74 Robot Budget 

Item Price (USD) Quantity Subtotal (USD) 

Launching Hardware  $           20.00  1 $20.00  

Drive Hardware  $           30.00  1 $30.00  

Intake Hardware  $           20.00  1 $20.00  

Intake Motor  $           15.00  1 $15.00  

Drive Motor  $           20.00  4 $80.00  

Launch Motor  $           20.00  1 $20.00  

Controller  $           20.00  1 $20.00  

Battery  $           30.00  1 $30.00  

PCB  $           20.00  1 $20.00  

Bluetooth Module  $           10.00  1 $10.00  

Voltage Converter  $           15.00  1 $15.00  

Total per Robot      $280.00  

 
Table 75 Arena Budget 

Item Price (USD) Quantity Subtotal (USD) 

Frame Hardware  $         100.00  1  $                            100.00  

Camera  $            40.00  1  $                               20.00  

Controller  $         100.00  1  $                            100.00  

Power Supply (AC-
DC) 

 $            20.00  1  $                               20.00  

Bluetooth Module  $            10.00  1  $                               10.00  

Court Hardware  $            25.00  1  $                               25.00  

LEDs  $            25.00  1  $                               25.00  

Gamepad  $            25.00  2  $                               50.00  

TV Display  $            70.00  1  $                               70.00  

Total      $                            445.00  
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Table 76 and Table 77 below contain the actual bill of materials for the robot and 
arena. The team was unable to be on budget for the robot overall but were under 
budget for the arena. The total spent on both parts was 711.69. Thus, the team 
was able to fulfill constraint C.ECON.1 by being below 1000 dollars total. The 
single component that went over budget the most was the 360-degree servos 
chosen to be used for the drive motors. Another thing that we originally didn’t plan 
on using was a Lexan sheet. Polycarbonate is usually not cheap so that added a 
late cost to the robot section. While, excluding the polycarbonate, the budget 
would’ve been met using the motors that had originally been planned, we were 
able to significantly reduce the complexity of our robot PCB by using the servos 
instead. However, if it is determined that the servos purchased will not meet the 
requirements that have been set, the motors that were originally being considered 
will be purchased and used instead. The total cost for development was $325.47for 
the robot and $386.22 for the arena. 
 
 

Table 76 Bill of Materials for Robot development 
 

Item Budget Item Price ($) Quantity Subtotal (USD) 

Arduino Uno Robot Controller 11.86 1 11.86 

L298Nx5 Motor Controller 13.99 1 13.99 

PCA9685 Motor Controller 6.99 1 6.99 

MCP23017 Motor Controller 7.95 1 7.95 

Servo Launcher Motor 16.88 1 16.88 

Stepper Launcher Motor 12.95 1 12.95 

Stepper 
Controller 

Actuator Control 21.95 1 21.95 

Robot Kit 
Drive Hardware, 
Drive Motor 

95 1 1 

DC-DC 
Convertor 

Voltage 
Converter 

13.99 1 13.99 

Bluetooth 
module 

Bluetooth 
Module (Robot) 

5.22 4 20.88 

Level Shifter 
x10 

PCB 9.89 1 9.89 

Brushless 
Motor & ESC 

Launcher Motor 14.99 1 14.99 

360 Servo Drive Motor 26.99 4 107.96 

Power Supply Battery 21.99 1 21.99 

Encoder Launcher 8.95 1 8.95 

Battery Battery 33.25 1 33.25 

Lexan Sheet Launcher 138 ¼ 34.50 

 
 
 

 



147 
 

 
 

Table 77 Bill of Materials for Arena development 

Item Budget Item Price ($) Quantity Subtotal (USD) 

DC-DC 
Convertor 

Voltage 
Converter 

13.99 1 13.99 

Intel Module 
Bluetooth 
Module (Arena) 

24.89 1 24.89 

Jetson Nano Arena Controller 100 1 100 

SD Card Arena Controller 11.99 1 11.99 

SD Card 
Reader 

Arena Controller 6.99 1 6.99 

Arena 
hardware 

Frame Hardware 20 1 20 

Frame Material Frame Hardware  20 1 20 

Limit Switches Arena  8.39 1 8.39 

Logitech C920 Camera 59.99 2 119.98 

Pixy Cam Camera 59.99 1 59.99 

 
Table 78 and Table 79 below are the respective bills of materials for reproducing 
the robot and arena if another version is needed. As for the arena, a lot of the 
original spending was trial and error and the team now has a better understanding 
of what amount of materials is needed to construct and assemble the arena. The 
cost for manufacturing the robot is $327.65 and $284 for the arena. 
 

Table 78 Bill of Materials for Manufacturing and Reproducing Robot 

Item Budget Item Price ($) Quantity Subtotal (USD) 

PCA9685 Servo control 2.30 1 2.30 

Servo Launcher Motor 16.88 1 16.88 

Parallax Servo Drive Motor 26.99 4 107.96 

PCB PCB 2 1/2 1 

Bluetooth 
module 

Communication 4.77 1 4.77 

ATMega328 Microcontroller 1.50 1 1.50 

Base 
Mechanical  

Base 20 1 20 

Launch/Intake 
Mechanical 

Launcher 20 1 20 

Battery Battery 33.25 1 33.25 

Brushless 
Motor and ESC 

Launcher Motor 14.99 1 14.99 

Encoder Launcher 8.95 1/2 4.50 

Omni-Wheel Base 15 4 60 

Servo Plate Base .5 12 6 

Lexan Sheet Launcher 138 ¼ 34.50 
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Table 79 Bill of Materials for Manufacturing and Reproducing Arena 

 

Item Budget Item Price ($) Quantity Subtotal (USD) 

SD Card Arena Controller 11.99 1 11.99 

Jetson Nano Arena Controller 100 1 100 

Wi-Fi / 
Bluetooth 
module 

Bluetooth Module 
(Arena) 

24.89 1 24.89 

Frame 
Mechanical 

Arena Frame 20 1 20 

Logitech C920 Camera 59.99 2 119.98 

Limit Switches Arena  8.39 1/2 4.2 

Mesh Frame hardware 6.34 1/2 3.16 

 

7.2 Milestones 
 
Figure 67 is a Gantt chart that shows the various major milestones and project 
timelines required to successfully complete the project. Our first major milestone 
is the completion of this paper at the end of July. There are a few check-in points 
along the way during the semester to keep us on track in the form of 50% and 75% 
deadlines where the paper must be at a specific page count. The major critical 
path for the production of the robot is that of the PCB design, purchase, and 
fabrication due to the long lead time to purchase and build the PCBs. The major 
parts and subsystems of the robot such as the launcher, intake and base, however, 
can be separately built and tested without the robot being fully built and assembled. 
This allows for progress to still be made in the form of design revisions and 
placement tweaks of major components without having to get a new PCB entirely. 
The major critical path for the arena is actually getting the frame built and being 
able to check the height the camera(s) need to be mounted at in order to see 
everything. On top of that, with a physical arena built, we will be able to verify that 
the other aspects of the design such as where to mount the hoops, and the height 
of the walls, are correct and do what they need to do. As of the time of this paper, 
the arena base frame is 90% done and will be complete by the time the team 
resumes meetings at the beginning of the fall semester in August. The computer 
vision aspect of the project could potentially cause major problems down the line 
if we find the tracker we plan on using doesn’t work the way we want it to.  On the  
other hand, the game system can be created mostly in parallel with the other 
components and shouldn’t cause a critical delay unless it is put off as most of the 
issues that could arise with the game system require it to be integrated with the 
arena, robot, and computer vision in order to test and resolve and most of its 
components can be tested independently via input from a gamepad or numbers 
generated from a file.  
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Figure 67 Gantt Chart indicating critical milestones and work timelines 
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7.3 Communication 
 
Communication is critical to the project team’s success. A thorough use of 
documentation and sharing tools allows the team to work at peak efficiency 
regardless of physical location or project timeline. Although there are many tools 
available to achieve this, three critical tools that can seamlessly link together are 
utilized to reduce the number of sites or applications to download.  
 

7.3.1 Microsoft SharePoint 
 
SharePoint and other Microsoft products are used for this project because it can 
act as a one-stop shop where all the materials required for the project can be 
found. SharePoint itself is a website platform that has various pages and plugins. 
Each research topic has its own page that the team fills out as the research and 
design is completed. This allows all our research to be compiled real time and is 
organized such that information can be retrieved when necessary. The plugins 
utilized within SharePoint include Microsoft Planner, a tool that allows users to add 
tasks with information like assignee, due date, and relevant files. The tasks are 
tracked as cards that can be moved around with order of importance, or have 
reminders set so that things are finished on time. Everything with the SharePoint 
is synced and stored on OneDrive, Microsoft’s cloud storage platform. This allows 
for version control of all the documentation required for the project.  
 

7.3.2 Discord 
 
Discord is a free VoIP software that provides chat, screen-sharing, file-sharing, 
voice and video calls in an easy to use platform. Discord is chosen over Slack, 
Skype, and other chat software because it provides the required features for free, 
it is stable, and the team has utilized it for other projects in the past. This tool 
provides us a way to store any text messaging between members of the group and 
return to it at any point in the future.  
 

7.3.3 GitHub 
 
GitHub is a cloud application that integrates with the git version control scheme. 
The team can work on their local machine and develop any files or software 
required, and then when finished, upload the file to the cloud that other members 
can update from. The tool is very powerful when simultaneously working on the 
same file because git can merge different versions of the file based on changes 
made. This is particularly helpful in software that are modularized into functions or 
blocks that multiple members can work on simultaneously without losing progress 
in another block.  
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8.0 Project Summary and Conclusion  
 
Over the course of the last semester, we researched and designed a basketball-
based arcade game. In order to do this, we had to figure out a few different parts. 
The different parts of this project consisted of the base robot, and arena, and a 
game system to manage it all. Each part of the project presented a different and 
unique challenge. First, the robot was a huge mechanical undertaking that none of 
us were really prepared for. Although some of the group has robotics experience 
in the past, none of us are mechanical engineers. Another big part of the robot was 
learning about PCB design in order to get everything to integrate in a clean and 
acceptable way. Second, the arena presented us with the challenge of building a 
scaled arena in a modular and easy to transport way, while still being able to be 
large enough to give the player a range of challenge during the game. Another 
challenge of the arena was setting it up in such a way that we can use computer 
vision, as it is the main brain behind the project. This leads into the last part, the 
game system. This consists of computer vision, and a GUI to relay data to the 
player. The computer vision is the brains of the robot. This component finds the 
range between the robot and the rim, assisting the player in making shots. The 
GUI component shows the location of the field components; the robot, ball and 
hoop. It also contains other data such as time left, and score obtained so far in the 
current game.  
 
Overall, we have been successful in creating a design that we believe meets all 
the requirements that we set for ourselves at the beginning of the summer. During 
our design phase, overall, we stayed on schedule. Sometimes we were ahead of 
schedule and other times we weren’t; however, we were able to pick up the pace 
to meet deadlines on time.   Part of the initial setback time towards the beginning 
of the project was adjusting to how the other people in the group operate and 
accomplish work. Once this hurdle was overcome, work was able to progress 
relatively smoothly. 
 
The plan moving forward is to first get our PCB layout tested and ordered. After 
this, we must construct the robot. The arena is already mostly built and only 
requires a few finishing touches and potential tweaks.  Most of the work left is the 
computer vision and game system. Both are still in their infant stages up to where 
they needed to be to hammer out a design strategy for both, but the operational 
function isn’t there yet. We must be able to fully track the robot, ball, and hoop in 
order to consistently get the correct measurements. After we can successfully track 
the positions, we must “teach” the robot the correct power to put on shots for 
different lengths through testing and adapting the formulas used by the robot. 





a 
 

Appendix I Copyright Permissions 
 

 
 

Figure 68 Heneng Permissions 
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Figure 70 RobotShop Permissions 
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Figure 71 KONG Basketball Tennis Ball Permissions 
 

 
 

Figure 72 Gamepad image permissions from Microsoft [87] 
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