

i

G.O.D. (Gesture Operated Drone)
Group 3 - Pranay Patel, Anshul Devnani, Bernardus Swets
Computer Engineering Majors
Senior Design 1 Final Report – August 2nd, 2019
EEL 4914 Summer 2019

 ii

Table of Contents

List of Figures ... v

List of Tables ... vi

1.0 Executive Summary ... 1

2.0 Project Description .. 2

2.1 Project Motivation ...2

2.2 Goals and Objectives ..3

2.3 Requirement Specifications ..3
2.3.1 Software Requirements .. 4
2.3.2 Hardware Requirements ... 4
2.3.3 System Requirements ... 5

2.4 House of Quality ...6

3.0 Standards and Constraints .. 7

3.1 Constraints ...7

3.2 Project Standards ...9

4.0 Project Design... 10

4.1 System Block Diagram .. 10

4.2 Neural Networks Overview ... 11
4.2.1 What are Convolutional Neural Networks (CNNs) .. 12
4.2.2 Building Blocks .. 13

4.2.2.1 Convolutional Layers ... 14
4.2.2.2 Pooling Layers ... 15
4.2.2.3 Fully Connected Layers ... 15
4.2.2.4 Activation Functions .. 16
4.2.2.5 Putting It All Together ... 18

4.2.3 How do CNNs Learn/Train .. 18

4.3 Gesture Recognition Neural Network .. 19
4.3.1 Hardware Requirements ... 20
4.3.2 Software Choices .. 22
4.3.3 Building the Dataset .. 26
4.3.4 Building the CNN Model ... 29
4.3.5 Training the Built Model ... 31
4.3.6 Testing the Neural Network .. 32
4.3.7 Real-Time Recognition .. 33
4.3.8 Foreseeable Issues .. 34
4.3.9 Other Approaches to Gesture Recognition ... 36

4.4 Graphical User Interface ... 37
4.4.1 GUI Overview .. 37
4.4.2 Webcam Window Pane... 38
4.4.3 Feedback/Readings Window Pane ... 38
4.4.4 Log Window Pane ... 39
4.4.5 Building the GUI .. 39

 iii

4.5 Wireless Communication .. 41
4.5.1 Possible Connection Mediums .. 41
4.5.2 Why Bluetooth .. 42

4.5.2.1 Complexity .. 42
4.5.2.2 Bluetooth Version ... 43

4.5.3 Pairing Setup ... 44
4.5.3.1 Trusted Devices and Security .. 44

4.5.4 Limitations .. 45
4.5.4.1 Data Limitations .. 45
4.5.4.2 Range Limitations .. 45
4.5.4.3 Interference Limitations .. 46
4.5.4.4 Device Count Limitations .. 46
4.5.4.5 How Will We Accommodate ... 46
4.5.4.6 Dictionary Setup .. 46
4.5.4.7 Bluetooth Modules ... 48
4.5.4.8 Module Limitations ... 49
4.6.4.9 Module Options .. 49
4.6.4.10 Reasons for Choosing .. 50

4.5.5 Low Power Mode .. 50

4.6 Drone Hardware Design .. 51
4.6.1 Model Overview .. 51
4.6.2 List of Materials .. 52
4.6.3 Drone Frame ... 52

4.6.3.1 Dimensions .. 52
4.6.3.2 Frame Material .. 53
4.6.3.3 Drone Assembly Process ... 53

4.6.4 Motors .. 54
4.6.4.1 Overview of Motor Orientation .. 54
4.6.4.2 Electronic Speed Controller .. 55
4.6.4.3 Brushless Motors .. 57
4.6.4.4 Motor Power ... 58
4.6.4.5 Propellers .. 58
4.6.4.6 Motor of Choice .. 58

4.6.5 Sensors .. 60
4.6.5.1 Overview of Drone Sensors ... 60
4.6.5.2 Gyroscope ... 60
4.6.5.3 Accelerometer ... 61
4.6.5.4 Altitude Sensor .. 62
4.6.5.5 Indicators .. 63

4.6.6 Power .. 64
4.6.6.1 Overview of Power .. 64
4.6.6.2 Gyroscope ... 64
4.6.6.3 Lithium Polymer Batteries ... 64
4.6.6.4 Our Choice ... 65
4.6.6.5 Rechargeable Battery .. 65
4.6.6.6 Voltage Regulator.. 65
4.6.6.7 Battery Life .. 66
4.6.6.8 Altitude Sensor .. 66
4.6.6.9 BMP180 Code .. 67

4.7 Drone Software Design ... 67
4.7.1 Flight Controls ... 67

 iv

4.7.1.1 Dedicated Flight Controller ... 67
4.7.1.2 Combined Flight Controller ... 68
4.7.1.3 Flight Control Schematic ... 68
4.7.1.4 Microcontroller ... 69
4.7.1.5 ESC Calibration .. 70
4.7.1.6 Balancing the Propellers ... 70
4.7.1.7 Explanation of Flight Control Code ... 70

4.7.2 PID Tuning ... 71
4.7.2.1 Introduction to PID Tuning .. 71
4.7.2.2 PID Schematic ... 72
4.7.2.3 Using Multiwii to Balance the Drone .. 72
4.7.2.4 Process for tuning PID Loops... 73
4.7.2.5 Explanation of the PID Code ... 74
4.7.2.6 Effects of the Battery Life on the Motors.. 74

4.7.3 Initial Flight Testing ... 75
4.7.4 Expected Adjustments .. 77
4.7.5 Research and investigations ... 78

5.0 Printed Circuit Board ... 79

5.1 Printed Circuit Board Overview ... 79
5.1.1 Ordering the PCB .. 79

5.1.1.1 PCB Company Options .. 79
5.1.2 Building PCB Design .. 80

5.1.2.1 PCB Design Software Options ... 80
5.1.3 Mounting Parts on PCB ... 80

5.2 Hardware Requirements ... 81

5.3 Potential Risks .. 81
5.3.1 Drone Laws ... 81

6.0 Prototype Construction ... 82

7.0 Owner’s Manual ... 83

7.1 Troubleshooting Steps .. 84

8.0 Administrative Content ... 85

8.1 Evaluation Plan .. 85

8.2 Key Evaluation Points ... 85

8.3 Evaluation Questions .. 85

8.4 Evaluation Design ... 85

8.5 Proposed Schedule ... 86

8.6 Budget and Finances ... 86
8.6.1 Software Development ... 88
8.6.2 Wireless Communication .. 89
8.6.3 Battery .. 89

8.7 Division of Labor .. 89

9.0 Conclusions ... 90

 v

Appendix A Resource and Citations ... 93

Appendix B Copyright Permissions .. 95

List of Figures
Figure 1 House of Quality ... 6
Figure 2 System Level Block Diagram ... 11
Figure 3 Hierarchy of AI .. 11
Figure 4 Neural Network Architecture ... 12
Figure 5 Basic CNN Architecture ... 13
Figure 6 Convolution Layer Computation ... 14
Figure 7 Pooling Process ... 15
Figure 8 Common Activation Functions .. 17
Figure 9 Backpropagation Flowchart .. 19
Figure 10 Example Keras Code for Creating a Model ... 24
Figure 11 Example PyTorch Code for Creating a Model ... 25
Figure 12 Original Image Figure 13 Background Subtraction Figure 14 Binary
Threshold .. 27
Figure 15 Utility Flowchart .. 28
Figure 16 Dataset Creator Utility Pseudo-Code .. 29
Figure 17 LeNet-5 Architecture... 30
Figure 18 AlexNet Architecture .. 30
Figure 19 CNN in Training Phase ... 32
Figure 20 Accuracy (Orange) and Loss (Blue) vs Epoch .. 33
Figure 21 Recognition Program Flowchart ... 33
Figure 22 Overfitting Graph .. 35
Figure 23 GUI Layout ... 37
Figure 24 Webcam Window Real Time Feed .. 38
Figure 25 Bluetooth Pairing Request .. 44
Figure 26 Drone Design ... 51
Figure 27 Motor Orientation .. 54
Figure 28 RC Electronic Part ESC ... 57
Figure 29 A2212 1000KV Hoppypower RC Motor .. 60
Figure 30 MPU 6050 Gyroscope and Accelerometer ... 61
Figure 31 BMP180 Altimeter .. 62
Figure 32 LED Indicators ... 63
Figure 33 Dedicated Flight Controller Schematic ... 69
Figure 34 PID Model .. 72
Figure 35 Altitude Sensor Output ... 77
Figure 36 Copyright Permission LeNet-5 Architecture ... 95
Figure 37 Copyright Permissions AlexNet Architecture.. 96
Figure 38 Copyright Permission Request Loss & Accuracy vs Epoch 96
Figure 39 Copyright Permissions Request Overfitting Graph ... 96
Figure 40 Copyright Permissions Request Brushless Motor ... 97

 vi

Figure 41 Copyright Permission Request ESC ... 97

List of Tables
Table 1 Software Requirements ... 4
Table 2 Hardware Requirements .. 4
Table 3 System Requirements .. 5
Table 4 Project Constraints ... 9
Table 5 Project Standards ... 9
Table 6 Host Computer System Specifications ... 21
Table 7 Initial Hand Gesture Set ... 26
Table 8 Log Message Format .. 39
Table 9 Dictionary for Drone Commands ... 47
Table 10 Bluetooth Modes ... 48
Table 11 Comparing ESCs .. 56
Table 12 Motor Comparison ... 59
Table 13 MCU Comparison ... 70
Table 14 Milestones .. 86
Table 15 Proposed Budget .. 88

 1

1.0 Executive Summary

Drones have become increasingly popular over the last decade. Every year their
abilities are rapidly increasing and we want to do our part to add to this
continuously growing field. With the knowledge we have obtained throughout our
studies we want to challenge ourselves and develop a drone that strictly
controlled by human hand motions. Our team wanted to build a product that
combined every aspect of our computer engineering coursework. With this in
mind, we were able to collaborate on the idea to utilize PCB construction,
embedded programming, and machine learning to build a useful and sound
product.

Because we, as a team, believed that drones can sometimes be difficult and so
wanted to offer the ability to control a drone with a much simpler interaction. This
allows for us to build in actions for the drone that will automatically account for
stabilization and move as expected without having to try to keep the drone flat
and level via remote control. This product has not yet found its way on the market
and we want to be the first to make this a reality.

Our plan to create a widely marketable product forced us to take into account the
usability of the product, the cost, and the ability to use devices that customers
were already familiar with to allow for an easier interaction with the drone. We
were able to fulfill all of those goals in our project plan. We were able to
maximize usability by creating hand gestures to control the drone that are
generally universal, meaning that people around the globe can understand many
of the basic gestures and would immediately think to use those gestures to
operate the drone. In order to make the cost of the drone low, we were taking
into account the cost of each and every component when planning our prototype,
and once the build process and components list is finalized, we will be able to
improve upon that even further. Since our product requires the use of an external
device, we decided to make it so that other people can simply install the software
required to operate the drone on their local laptops or PCs. This allows for users
to interact with something they are familiar with and make the drone user
experience more seamless.

Throughout this document we explore why creating this drone would be
beneficial, our creative process and map out how we plan to build and test the
device. Consisting of four main components, we will have a user interface, the
drone flight controls, power system, and the communication network all working
in harmony to control the drone. With the simple hand motions explored in the
following sections, the drone will be able to perform all the necessary actions
needed for flight.

 2

2.0 Project Description

We are proposing a small indoor drone that is entirely driven with hand gestures.
The project will have a user-friendly webcam-based GUI, that will communicate
with the drone. The GUI’s main component will be the webcam, along with other
indicators showing the drone’s current status and useful live information. From
the users end, the user will perform the desired hand gesture and the drone will
react accordingly. For example, the user will signal a thumbs up and the drone
will respond, within a reasonable response time, and increase its flying altitude.
We have a set number of hand movements we plan to incorporate. As the project
develops, we will add functionality and push ourselves to create as many
movements as possible. As a group of computer engineers, we have a
fundamental understanding of the programming and electrical skills necessary for
this project. We plan to develop the flight controller ourselves and incorporate
and apply the corrective features of a closed loop system. Furthermore, this
project will allow us to work with and learn about popular technologies of the
time, including Computer Vision and Machine Learning. Both are emerging
industries and are growing rapidly. As this is a self-funded project and there are
currently no sponsors, our goal is to make this project as low cost as possible.
This will ensure that the product can be supremely accessible to the public and
can be improved upon moving past our first prototype.

2.1 Project Motivation

When discussing all the options for possible senior design projects, we had a
couple ides of varying complexities and price points. This project was on the
more complex and relatively more expensive, however we were most
enthusiastic about researching and creating this project. With all three of us
equally eager to research and plan this project, it justified the higher cost and the
increased complexity. As strictly computer engineers our education covered a
wide variety of topics and overall this project incorporates everything we have
learned. In the latter half of our education we took many courses regarding
microcontrollers, communication networks, creating graphic user interfaces,
programming embedded systems, and PCB routing/design. Individually we also
chose to study computer vision and linear control systems which play key roles in
the project. With this knowledge we will build a product that, from our extensive
research, has not been built before. This is also another motivating factor. Both
drones and computer vision are extremely popular, and in some cases the two
have been combined for tracking purposes. That being said, there is not yet a
commercial product that is strictly controlled by hand movements. Being the first
to achieve this would be an extremely satisfying accomplishment.

Flying a drone for the first time can be fairly complicated and can give a user a lot
of trouble. With the use of your own hand movements, it can add a sense of ease
and fluidity not found in a typical hand-held controller or smartphone. In addition,

 3

our solution involves controlling the drone with one hand, which is unlike
traditional drones in which you use both hands to operate a physical remote
controller. Our solution will allow the user to only need to use one hand to control
the drone, as long as that hand stays in the correct field of vision. This will allow
for freedom of motion for their alternate hand, which is something that is
overlooked often when it comes to drones. Oftentimes, drones are used to record
something in motion, whether it be action sports outdoors or photographers and
videographers trying to get a birds eye view that isn’t easily attained without one.
Given this, allowing for a free hand will immediately be beneficial to drone users.

2.2 Goals and Objectives

Our objective is to create a low-cost hand gestured controlled drone. We have
limited time to complete the project, and we want to make the most of our time.
After spending the last few months researching and planning the project, our goal
is to start building in early August 2019 and have a working prototype by the end
of September 2019. Once we have a working product, our goal is to add as many
hand signals as possible. We are starting with eight essential hand signals and
we strive to get that number up to around 15 different hand signals. Another
objective of ours is to make the build process as simple as possible and as
repeatable as possible. During our production process we will most likely need to
spend more money on replacement parts during testing and other unexpected
factors. Once we get the working product, we can limit our design to the bare
minimum of what needs to be completed and make the project as affordable as
possible.

2.3 Requirement Specifications

When describing our requirements, we did our best to ensure every requirement
was abstract and quantifiable. Table 1 shows software requirement
specifications, Table 2 depicts hardware requirement, and Table 3 displays
system requirement specifications. As we get more involved in the project, we
may notice that some limitations we set might be extremely lenient or we might
have set the bar too high. Because of this, we are open to altering or adjusting
our requirements as we see fit.

 4

2.3.1 Software Requirements

Table 1 specifies the software level requirements for our project

The drone will be able to convert the signal received over Bluetooth within 500
ms.

The user interface will be able to recognize each of the 8 gestures.

The feedback/reading pane will highlight the correct predicted gesture within 1
second.

The Neural Network will produce an accuracy of a minimum of 95 percent.

The user interface GUI will consist of a webcam pane, log pane, and
miscellaneous pane.

 Table 1 Software Requirements

2.3.2 Hardware Requirements

Table 2 specifies the hardware level requirements for our project

The drone frame will be no larger than 150mm.

The drone will not weigh more than 2 pounds.

The drone will be powered by 3.7V lithium polymer batteries.

The microcontroller will be powered by a 9v DC battery.

The drone will utilize propellers of 3 inches or smaller.

The drone will utilize 4 electronic speed controllers to help control the propellers.

The drone will utilize 4 brushless motors with KV above 900.

The drone will utilize an ATmega328P microcontroller.

 Table 2 Hardware Requirements

 5

2.3.3 System Requirements

Table 3 specifies the system level requirements for our project

The drone will be able to receive signals over Bluetooth communication from within a
range of 20 feet.

The drone will be able to react to commands within 1 second.

The drone will be able to land, and motors will terminate within 5 seconds.

The drone will be able to take off to 3 feet within 3 seconds.

The Bluetooth signal will maintain connection within 15 feet.

When the drone’s Bluetooth signal is lost, the drone will hover in place and land within
10 seconds.

The time from the user doing the gesture to the drone reacting to it will be a maximum
of 2 seconds.

The drone will communicate its current altitude to the GUI with a maximum latency of
3 seconds.

The drone will maintain its altitude when moving left, right, forwards, and backwards.

When the drone accelerates in a specific direction, it will rotate less than 90 degrees
to perform the given action, as to not tip the drone over.

The drone’s altitude will be able to be read with a maximum 1 second delay on the
miscellaneous pane of the GUI.

The drone will be able to reach a height of 10 ft.

 Table 3 System Requirements

 6

2.4 House of Quality

The image below, Figure 1, is the proposed house of quality for our drone
design. We compare the model we are planning to create with top market
competitors including DJI, GoPro and PowerVision.

Figure 1 House of Quality

 7

3.0 Standards and Constraints

3.1 Constraints

Along with our planning comes a lot of different constraints that govern the
choices we make and the path we take with our project. Those range in various
types such as economic, environmental, ethical, health, manufacturability, safety,
social, and sustainability. This project is fully funded by our group. We came up
with the idea of this project as a group and did not involve any third parties. As a
result, we do not have any sponsors for our project. It is nice to plan the project
ourselves however the assets from a sponsor would alleviate some of the
economic stress. We understand that we will have to allocate a lot of money to
fund the project. As students we have limited funds and want to do our best to
make our project as affordable as possible. There are a lot of steps we can take
to make that more plausible. A lot of the components we are buying are fairly
sensitive and need to be taken care of properly. If we can avoid breaking pieces
unnecessarily, we can save a lot of money in the long run. Also, if we do more
research beforehand, we cannot waste money on the wrong parts. Another
benefit of scanning the market thoroughly is finding the best balance of price and
quality where we can obtain the best option possible. Having to buy
replacements is inevitable but limiting the number of mishaps will lessen the
economic constraints. We do not have unlimited funds and we kept that in our
minds when we choose our parts.

Environmentally our drone will be constrained by its ability to only be flown
indoors. It is not east to find indoor spaces where flying the drone is allowed
without permission. It is important that our drone is capable of performing well in
tight situations. Having the constraints of four walls around the drone can
complicate some of the testing. To work around this, we received permission
from our local gymnasium that is going to work with us. They have extra indoor
basketball courts that are used throughout the day, but they have given us the
times when the gym is typical empty and free for us to fly our drone around.
When we are unable to use the gym, we can use our own personal garages.
These have far less room to work with but have enough space to practice basic
maneuvers and test what needs to be looked at. Environmentally we are also
legally constrained. To fly the drone out doors in the state of Florida a license is
required. To save money and time we decided to avoid flying the drone outdoor
completely and to focus on only flying indoors. The benefit of this is the controlled
environment that we have indoors. There are no factors like wind and rain to
worry about. Having an indoor drone will lessen the constraints of the more
unpredictable conditions of the outdoors.

There are also socially acceptable and ethical places to fly the drone. Before
flying a drone in any location, it is important to have permission, whether this is a
public gym or our personal apartments, it is essential we let everyone know that
we will be flying a drone. It is not socially acceptable to fly our drone over people.

 8

Drones sometimes have a negative connotation and are often banned, as they
can be a disturbance. Drones are typically associated with having cameras and
even though our drone does not have a camera, people may feel as if we are
spying on them. It would also be unethical of us to fly our drone in certain places.
If we fly our drone in the wrong places not only can be it be illegal but also
offensive. Because of this we are going to limit the places we fly our drone. We
are going to ensure that we do not cross any ethical or social borders when
testing and flying our drone.

Drones can be dangerous, and we need to know the safety and health
constraints going into our building process. There are extremely fast-moving
parts that can be damaging if touched. We cannot cover the propellers and they
need to be exposed for the drone to function properly. Knowing this we will stay
clear of the drone while in flight or while the propellers are turned on. Luckily our
lightweight indoor design does not pose as much a threat as some of the heavier
commercial drones. If a collision were to unfortunately happen, there would most
likely not be any major injuries however the possibility is out there. Other than
injuries from the drone, there are no other health and safety constraints.

When manufacturing the drone there are a couple constraints that we need to be
aware of. One of the main constraints is the range of our device. Bluetooth has
become more advanced and can range quite far however we believe that once
we cross 200ft, our design will no longer be able to connect. As this is an indoor
drone, we will most likely not exceed these limits however, in the right setting,
that might be a possibility and we need to be aware of this. As we are classifying
this as a lightweight indoor drone, we have size constraints to fit that
classification. We do not want to have drone that is heavier than two pounds.
Some more advanced better functioning components are heavier, and more
expensive, so this constraint encourages us to get the most efficient cost-
effective part. We also do not want the frame to exceed 150mm.

Two of the largest constraints that we have to work around are the number of
recognizable gestures and the battery life. It is important that the hand gestures
we define are different enough to be recognized by the webcam. If a hand
gesture is too close to another there could be a mistake that occur. As we test
our initial flight gestures, we will have a better understanding of how similar we
can make them. Our initial gestures are very different, but as we increase
movements, we will need to find hand gestures that are unique enough to not
interfere. The battery life is another obstacle we have to work around or try to
overcome. Further into the document we discuss potential way to increase the
battery life however for the time being we need to work with the limited battery
life we are expecting. Implementing rechargeable batteries will help a lot some of
the financial stress replacing batteries will cause.

In the table below is a more concise and clearer version of some of the topics
discussed above. A lot of these values are more quantifiable. As the project goes

 9

on, we might discover that some of the values we found in research or predicted
might be wrong and are subject to change.

Constraint Value

Drone laws Flying outdoors

Wireless range Less than 200ft

Drone Frame Size Less than 150mm

Drone Battery
Runtime

20 minutes

Drone Weight Less than 2 pounds

Number of
gestures

At least 7 gestures, but limited, as similar gestures may be
hard to differentiate by webcam

Budget Affordability

Table 4 Project Constraints

3.2 Project Standards

When working on a project, standards are essential as they create a level of
quality and expectation across the board. It also helps make the project
adaptable and easy to incorporate. If another company or team were to
incorporate our project, they would easily be able to adapt to our industry
standard protocols. In Table 5 below, we map out the standards that we are
following.

I2C Communication Protocol

IEEE 802.15.1 (Bluetooth)

UART Communication Protocol

ISO/TC 20/SC 16 (Unmanned Aircraft Systems)

IPC-A-610

Table 5 Project Standards

Both I2C and UART are very common communication peripherals, and most
third-party sensors and devices we are using are compatible. Most flight
controllers utilize UART, while all of the sensors we have looked into our I2C.
Using the I2C bus can significantly simplify and make our design more efficient.

 10

Drones all must follow the ISO/TC 20/SC 16 standard for unmanned aircraft
systems. A drone is an unmanned aircraft system and these standards map out
what is allowed and what is not allowed in regard to locations to fly your drone.
This allows for a more responsible and better educated population of drone
operators, which is especially important as drones gain popularity.

IEEE defines Bluetooth as a standard for Wireless Personal Area Network
(WPAN). We decided to use this standard for our wireless communication
because it is heavily supported and continually updated. This allows for us to
implement a technology that is familiar to the common user and is a respected
engineering standard.

IPC-A-610 is the Acceptability of Electronic Assemblies. This standard will verify
that our product has a highly reliable printed wiring assembly. This is a crucial
criterion for our project to meet because it will verify our product even further to
allow it to be more marketable. This will also allow us to proceed to manufacture
the product faster because it already meets the industry standard and does not
need to be verified in that regard again.

4.0 Project Design

Information in this section outlines our approach in designing our Gesture
Operated Drone prototype. Majority of the research we have done regarding the
project will be in this large section. This covers all the flight controls, physical
drone properties, communication and the computer vision aspects of the project.

4.1 System Block Diagram

Figure 2 depicts the proposed block diagram for the project. All blocks are
currently in the research phase. Our system design is divided into 4 groups,
Application/GUI, Power, Drone Hardware, and Wireless Connectivity.

 11

 Figure 2 System Level Block Diagram

4.2 Neural Networks Overview

Before building a Neural Network application, understanding of the components,
features, and constraints of Neural Networks is necessary. Neural Networks are
a subset of Machine learning in terms of hierarchy. Figure 3 shows the hierarchy
of different concepts in artificial intelligence.

1
Figure 3 Hierarchy of AI

 12

Artificial Intelligence is a broader group that encompasses Machine learning.
Machine learning allows a system to learn and progress from past inputted data
without being explicitly programmed. Neural Networks are a subset of machine
learning because certain components and properties of Neural Networks allow
for this learning to occur. Essentially, a Neural Network is a set of algorithms that
are designed to recognize patterns and learn from these patterns to perform
some task without being explicitly programmed to do so. Some popular
applications of Neural Networks include speech recognition, object detection,
image processing, and text recognition. Neural Networks are modeled after our
brain and how our brains processes information. They consist of interconnected
nodes or neurons that take in input from and give output to different neurons. All
nodes are connected via weighted edges. A weight represents the strength of a
connection between nodes and governs how much influence one node has on
another. The higher the weight between two nodes the higher the influence that
node has on the other. Neural Networks are typically trained on a some set of
data, while this training is occurring the weights are updated in order to give
optimal results. Neural networks are also split up into 3 generalized layers, the
input layer, the hidden layers, and the output layer. Figure 4 depicts the general
architecture of a neural network. The input layer provides the initial data for the
neural network. The hidden layers are the between the input and output layers
and is where all the computation and learning is done. The more hidden layers
that exist, the deeper we say the Neural Network is. The number of hidden layers
in a network all depends on the machine learning application itself. The output
layer is the final layer in the network and produces a final result. The idea of
having a machine train itself to process and learn from data without explicitly
teaching the machine is known as deep learning. The hidden layers of the neural
network allow for this learning to occur.

 Figure 4 Neural Network Architecture
 Permission to use from open source

4.2.1 What are Convolutional Neural Networks (CNNs)

In today’s day in age, there are many different types of neural networks, some
examples include, Recurrent Neural Network, Long/Short Term Memory,

 13

Convolutional Neural Networks, etc. For our project, the neural network that we
will choose to implement is the Convolutional Neural Network. This specific type
of neural network help bridges the gap between computer vision and deep
learning. Convolutional neural networks have proven to be effective in areas
related to image recognition and classification and have been very successful in
tasks related to object detection. We chose to implement a Convolutional Neural
Network in our project because of these facts. The challenge of accurately
recognizing and classifying hand gestures in real time can easily be solved by
training a Convolutional Neural Network. Figure 5 shows the basic architecture
of a CNN.

 Figure 5 Basic CNN Architecture

Permission to use from open source

CNNs take an image in as input, in our project this will be an image of a hand
gesture. Next, the image is sent through hidden layers where the image is broken
down and different features of the hand gesture image are extracted and learnt
by the network. For example, some features that can be extracted are edges and
corners. A close fist hand gesture image will have different looking edges than an
open palm hand gesture image. As the features are being extracted and learned,
the weights associated with each node in the network are modified to account for
newly learnt features. This is referred to as the feature learning stage. The
classification stage is where the network makes a prediction on what it thinks the
input image is or classifies the image based on the features the network
extracted. In our project, an input hand gesture image can only be one of eight
different hand gestures therefore the network will need to classify the input hand
gesture image as one of eight different classes. The specific components that go
into feature learning and classification are known as the building blocks of the
CNN and will be discussed in section 4.2.2.

4.2.2 Building Blocks

Before building a Convolutional Neural Network, understanding of the certain
building blocks is necessary. With a proper understanding of each building block,
it is possible to create a robust and accurate Neural Network. In the subsequent
sections, characteristics of each main building block will be explained as well as
how each building block will be used in creating the Gesture Recognition Neural
Network.

 14

4.2.2.1 Convolutional Layers

Convolutional Layers are an essential part of Convolutional Neural Networks.
The main purpose of convolutional layers is to extract features and detect
patterns from the input image. Patterns in images can be anything from edges,
corners, circles, squares etc. A specific filter is used within convolutional layers to
detect specific patterns. A filter is essentially a matrix that is used to convolve
over the input image matrix. Figure 6 portrays what computation occurs in the
convolution layers.

Figure 6 Convolution Layer Computation

The convolution layer essentially does the convolution operation on two matrices.
One of these matrices is the kernel or filter and is usually a 3x3 matrix. The other
matrix is the image in matrix form. The values that make up the image matrix are
all the pixel intensity values. For example, a 50x50 image is converted to a 50x50
matrix with 2500 different pixel intensity values ranging from 0 to 255. The
convolution is the dot product of the two matrices. According to Figure 6, the
kernel can only perform the dot product on a 3x3 region of the image matrix at a
time. After the convolution operation is complete, the result is saved into a new
matrix and the 3x3 kernel acts like a sliding glass window and shifts over one
pixel to the right. The convolution process then repeats itself, saving the result in
a different matrix, until the whole input image matrix has convolved by the kernel.
The matrix in which the results of the convolution operation is saved is known as
the feature map. A feature map or activation map is a mapping of where different
kinds of features are found in the input image. In essence, within the
convolutional layers, there are different filters that are used to extract different
features of the input image. The number of feature maps is determined by the
number of filters used in the convolutional layer. There is one feature map per
filter used. Convolutional layers will be used in our model architecture as they
prove to be the most efficient way to extract different features from our hand
gesture dataset.

 15

4.2.2.2 Pooling Layers

The one limitation of feature/activation maps is that they are sensitive to the
location of features in the input image. For instance, the feature map of a closed
fist hand gesture will look different than the feature map of another closed fist
that is slightly rotated. The goal is to create a model such that the correct hand
gesture regardless of translations, a closed fist should be recognized as a closed
fist regardless of how its rotated or translated. To solve the sensitivity issues,
pooling layers will be used in our model architecture. Pooling layers solve this
issue by essentially down sampling images. By down sampling images, small
features will not be captured and only the more robust and general features are
retained. This idea is referred to as local translation invariance, minute features
should be ignored but broader features should be captured.

Pooling works by summarizing the features present in feature maps in patches
and is used on the feature maps after the activation function has been applied.
Figure 7 shows an example of the pooling process

 Figure 7 Pooling Process

 Permission to use from open source

Essentially, pooling works by splitting the feature map matrix on the left into
patches, According to Figure 7, these patches are 2x2 boxes. The highest pixel
value is taken from each patch and copied to a new matrix on the right which is
¼ the size of the feature map matrix. This process is repeated for every 2x2
patch until the down sampled matrix, on the right, is completely filled. The
resulting pooled matrix is fundamentally a summary of the features detected in
the input and helps provides invariance to small changes or translations in the
input. If the input is translated a small amount, the pooled matrix values should
not change.

4.2.2.3 Fully Connected Layers

Fully connected layers are typically used at the end of the model architecture in
the classification stage. The convolutional and pooling layers allow the model to
detect features, but the fully connected layers use the detected features to

 16

classify the input images. The output of the feature learning phase is set of
feature maps that have been through multiple convolutional, activation, and
pooling layers. In order to achieve classification, these feature maps need to be
flattened and mapped to a N dimensional vector. N represents the number of
classes the model can assign an input image to. In other works, if the last layer of
the feature learning phase outputs a 14x14x3 volume, it means there are 3
feature map matrices all of size 14x14. This output volume is then mapped and
connected to vector of size 588 since 14 * 14 * 3 equals 588. This vector is again
mapped to another fully connected layer known as the output layer of dimension
N. For our project, the fully connected output layer must be of dimension 8 since
there are 8 different potential hand gestures that can be recognized. The actual
classification occurs when the output layer is applied a SoftMax activation
function. By applying a SoftMax activation function to the output layer, the output
vector is transformed into a vector of probabilities of what class the model
believes the input image belongs to. In our project, fully connect layers will be
used with SoftMax activation in our Convolutional Neural Network model
because if provides us an efficient way to achieve classification within the model
itself as opposed to using an external conventional classifier, like a Support
Vector Machine, which adds to the complexity of the code and overall
computation time.

4.2.2.4 Activation Functions

Activation functions are critical to the learning performance of a convolutional
neural network. These functions are inspired by certain activity in our brain.
Different brain neurons are activated by different triggers. The main purpose of
an activation function is to convert an input signal of a node to an output signal
so it can be used in the next layer in the model architecture. The weighted sum of
each node in the network is inputted into the activation function, the resulting
output is a number bounded between a lower and upper limit and is used in the
next layer of the model. In Convolutional Neural Networks, activation functions
are used after convolutional layers and fully connected layers. If activation
functions are not applied to layers, output signals between nodes would be a
linear function. Linear functions are constrained by their complexity and will not
be as powerful when learning features from image data. Therefore, in order to
make the model more robust and powerful in its ability to learn from image data,
it is essential to introduce non linearities in our model. Non linearities are
introduced in our model by using activation functions as it makes the easy for the
model to adapt to different types data. The most common activation functions
include Sigmoid, TanH, and ReLU. Figure 8 shows the graphs of these
activation functions.

 17

Figure 8 Common Activation Functions

The Sigmoid activation function takes in an input signal of a node and transforms
the signal between 0 and 1. If the input signal is a negative number, this number
will be transformed to a value close to zero. If the input signal is a positive
number, the signal will be transformed to a value close to 1. If the input signal is
close to zero, it will be transformed to a value between 0 and 1. The closer the
transformed signal is to one, the more “firing” or active the node is in the network.
If the transformed signal is close to zero, the less active the node in the network
is. Since the sigmoid activation functions maps signals between zero and one, it
is typically used for models that predict probabilities because probability of
something is always between zero and one. In practice, the sigmoid activation
function suffers from many issues such as the vanishing gradient problem which
makes this activation function not has popular today.

The Tanh activation function is preferred over the Sigmoid function due to the
fact that it is zero centered meaning the function is bounded between -1 and 1.
Very negative input signals get mapped to -1 whereas very positive input signals
get mapped to 1. Input signals close to zero are mapped to values close to zero.
The Tanh activation function, however, still does not solve the vanishing gradient
problem.

The Rectified Linear Units or ReLU activation is the most popular activation
function used today. If an input signal is zero or negative, it will be mapped to the
value of zero. If the input signal is greater than zero it will be mapped to that
same value. Therefore, this activation function only has a lower bound of zero.
The one main advantage of the ReLU activation function is that is solves the
vanishing gradient problem.

For our project, the plan is to use ReLU after each convolutional layer and fully
connected layer. Since the ReLU activation involves simpler mathematical
operations it proves to be more efficient and less computationally expensive than
the Sigmoid and TanH activation functions. Because of this fact, using ReLU
activation can lead to better model performance.

 18

4.2.2.5 Putting It All Together

By combining these layers in a certain order, the model architecture is built.
Typically, in a conventional convolutional neural network the order in which the
programmer places the layers are as follows, the convolutional layer followed by
the activation layer followed by the pooling layer. An activation does not follow a
pooling layer due to the fact that the pooling layer only down samples the feature
maps and its outputs don’t need be normalized by an activation layer. Fully
connected layers are typically found at the end of the network and are typically
followed by the output layer or more fully connected layers. The big question
when putting together the different layers to create the model architecture is how
many different layers to use. There is no set standard on how many layers to use
as its all based on the application and characteristics of the dataset. For our
project, we don’t foresee using a lot of layers since our application of the neural
network, which is to recognize hand gestures in real time, will not need many
layers of abstraction to accurately differentiate between gestures. We are
confident that keeping our network shallow, ie. Not using as many layers, will
meet our requirements of accurately recognizing different hand gestures and
doing so in real time. The specifics on what layers our model will utilize and the
order the layers will be arranged are presented in section 4.3.4.

4.2.3 How do CNNs Learn/Train

Convolutional Neural Networks learn through a process called Backpropagation
and takes place during the training of the neural network. This process is split up
into 4 different stages, the forward pass, the loss function, the backward pass,
and weight updating. Throughout the forward pass stage, the input data is
passed through the model. In our project, the input data that we will pass through
our model are hand gesture images. Because the weights are randomly chosen
at the very beginning of the model training phase, the output classification
predictions or probabilities will be very uniform in nature. For instance, if an
image of a closed fist hand gesture is sent through our model in the earlier
stages of the model training phase, the expected output classification
probabilities would be around 15 percent for each class of hand gestures. Having
uniform classification probabilities specifies that the model, with its current node
weights, can’t extract enough features from the input image to help make an
educated prediction about what the classification of the image may be. The loss
function is then computed to measure how different the predicted classification is
from the actual ground truth label of the input image. The more different these
two are, the higher the loss value. The lower the loss value, the more accurate
the model is. There are many popular loss functions we can configure our
network to use but the one that we will use in our model architecture is known as
the Cross-Entropy Loss function. This loss function is popular to use with
classification problems because the loss value increases as the predicted
classification probability deviates from the ground truth label. One important
aspect of using this loss function is that it penalizes severely classification

 19

predictions that are confident by wrong. For example, the loss value will be
extremely high if the neural network model predicted a thumbs up hand gesture,
but a closed fist was actually gestured by the user to begin with. Every time a
loss value is calculated, the goal is to find which weights or nodes contributed
most to the loss in the network, this occurs during the backward pass stage.
During the backward pass stage, the weights that effected the loss the most are
found by taking the gradient of the loss function at each weight. The gradient of
the loss function is simply the derivative of the loss with respect to weight of each

specific node or,
𝑑(𝐿)

𝑑(𝑊)
 where L represents the loss and W represents the weight

of the specific node. After the derivative is calculated, the last step is to perform
an update of the specific weight value tied to each node. In order to calculate the
new weight value for each node, the value of the derivative is multiplied by a
number known as the learning rate. Choosing the learning rate value is up to the
programmer. A good learning rate value will allow for the model to converge on
an ideal set of weights that gives the best prediction accuracy. A learning rate
that is too high will result in big changes in weights which will lead to non-optimal
results. For our project, we will start by using a learning of .001 and will adjust
this value if the loss in the model is not improving. As stated before, the gradient
of the loss function or derivative is multiplied by this learning rate to achieve a
new weight value. The new weight replaces the old weight associated with the
node. The process of backpropagation occurs at the end of each training iteration
and is repeated until all weights are updated to achieve minimum possible loss
and highest possible accuracy for the model. Figure 9 illustrates a flowchart that
describes the backpropagation process of one iteration.

Figure 9 Backpropagation Flowchart

4.3 Gesture Recognition Neural Network

Building a good gesture recognition application is an immensely important aspect
of this project. Failure to create a robust recognition application will not only lead
to wrong gesture recognition predictions but also lead to drone control issues.
One of our main goals of this project is to create a model that will produce
extremely accurate gesture predictions based on the users given gesture.
Machine learning and Neural Networks are great for applications in which
classification of data is involved. For example, you are creating an app that can
classify what dog breed a specific dog is in real time using your phone camera.

Perform forward
pass by feeding

hand gesture
images through

network

Calculate the loss
of the model

based on
classification

prediction results

The gradient of the
loss function is

multiplied with the
learning rate to
update weights

 20

Trying to approach a solution to this classification problem without using machine
learning would prove to be time consuming and inefficient because the developer
will need to come up with and hard code complex algorithms in order to teach the
computer how to differentiate between different dog breeds. Using Machine
learning and Neural Networks, the developer can give the computer the chance
to learn what all the different dog breeds look like beforehand so when given new
input data, ie. A picture of a German Shepard, the output prediction will be a
German Shepard. In our project, the classification task at hand is categorizing
different hand gestures in real time. Just like in the example given above, trying
to use non machine learning techniques would pose to be extremely difficult and
complex. Therefore, our solution to this classification problem allows for the
computer to learn the physical characteristics of a set of different hand gestures
and will be able to accurately predict a newly inputted hand gesture, in real time.
There are many aspects into creating and deploying a robust and accurate
neural network application. If the steps in creating a Neural Network are followed
correctly it can be surprisingly simple to achieve a highly accurate predictions
(97% accurate or more). These facets will be explained in detail in subsequent
sections.

4.3.1 Hardware Requirements

Solutions to classification problems using Machine learning and Neural Networks
are extremely computationally expensive. The main reason being that the basic
building blocks for machine learning computation is matrix multiplication and
convolution. These tasks may not seem as computationally demanding in itself
but when training a neural network, specifically a convolutional neural network,
millions or even billions of these matrix multiplications and convolution operations
need to be completed. The training of a neural network can take days even
weeks on a basic office computer with average hardware specifications.
Therefore, it is imperative that the correct hardware is used so that Neural
Network training time and prediction time is minimized.

There are many different types of hardware that can be used to successfully
create and run Machine learning applications. Some of the different types of
hardware include Central Processing Units or CPU’s, Graphical Processing Units
or GPU’s, Field Programmable Gate Arrays or FPGA’s, or Specialized
Accelerators. When it comes to Machine learning we need the right hardware
that will be able to lower prediction time, achieve higher throughput through
training, and lower power costs. Being able to speed up the matrix multiplication
and convolution operations will ultimately lead faster training time. Since training
a Neural Network takes the most time in creating and deploying Machine learning
applications choosing the right hardware to help minimize computation time is
key. Out of the hardware types listed above, the Graphical Processing Units are
used the most used in the Machine learning world with Central Processing Units
being second most popular. The main advantage of Graphical Processing Units
is that they handle mathematical computation significantly faster. Computer

 21

graphics in general, involve an immense amount of matrix mathematical
functions therefore these Graphical Processing Units are designed specifically to
minimize computation time. Because of this fact, Graphical Processing Units are
far superior to any other Machine learning hardware when it comes to training
Neural Networks as most of the intense computation is done during this stage.
As mentioned before, the deeper the Neural Network, the more intense the
computation gets. The Central Processing Unit can also be used to train Neural
Networks and is used most on systems with integrated cards.

For our project, the system that will be used to train our Neural Network will be a
2017 MacBook Pro. The basic specifications for this system are shown in Table
6.

Table 6 Host Computer System Specifications

Since the graphics card on the system is an integrated graphics card, the
processor will be used as the computation source when training the network. Due
to hardware restrictions and our budget, we do not believe it is feasible to buy an
expensive GPU just to train the model. As mentioned before, the CPU can
handle Neural Network training computation, just not as fast as a GPU. Training
time is highly dependent on training data dimensions and size as well as network
architecture. For example, a network with 100 layers and 5000 images of input
data with dimensions 720 x 480 will train a lot slower than a network with 50
layers and 5000 images of input data with dimensions 50 x 50 if the same
hardware is used to train the model. A CPU can be used for our application since
the input training data will be small and the network architecture will not be as
deep. The specifics of the training data and network architecture will be
discussed in later sections. Overall, the 3.1 GHz dual-core Intel Core i5 will be a
capable processing unit that will be able to train the model with an estimated
training time of less than 24 hours.

In the event that the MacBook Pro CPU cannot handle the computational
requirements of training and real time recognition of hand gestures, we will be
forced to consider other approaches to help boost our computational power.
There are many options to help solve the computational restrictions we may face
during the training and deployment of our gesture recognition network. One
option is to buy an external GPU and connect it to the MacBook Pro to help give
enough computation power in order to speed up training time and the
deployment of the gesture recognition application. The major downfall of this
approach is the cost of acquiring this hardware. External GPUs tend to cost
around $500 USD which will essentially double are proposed budget. Due to
budget restrictions, acquiring and using an external GPU will not be the approach

Processor 3.1GHz dual-core Intel Core i5

Memory 16GB 2133MHz LPDDR3

Graphics Intel Iris Plus Graphics 650
(Integrated)

Storage 512GB SSD

 22

to solve potential computational restrictions. The other option we can turn to for
solving this issue is to use Machine learning as a Service or MLaaS. MLaaS
provides users with Machine learning tools and algorithms via a cloud computing
service. Some of the best know providers of MLaaS include Microsoft Azure,
Amazon Web Services, and Google Cloud. Amazon Web Services offer an
abundant amount of services geared towards machine learning. One popular
service AWS offers is Amazon SageMaker which allows one to build, train, and
deploy machine learning models. The big advantage of using this service is that
a developer does not need to learn complex machine learning algorithms as
there are tools and wizards that allow you to create the machine learning model
without generating any code. Google Cloud’s machine learning engine is another
popular cloud computing service for machine learning tasks. This engine is built
upon the TensorFlow framework which makes this engine highly flexible. Google
Cloud’s machine learning engine allows users to both use a GUI to implement
neural network models or use an environment dedicated to coding the model
from scratch. Microsoft Azure’s ML studio is Microsoft’s version of implementing
machine learning tools in the cloud. The main disadvantage is that there is a
steep learning curve in using ML studio and everything from data preprocessing
to exploring the model results need to be done manually. ML Studio’s GUI
interface, however, allows for easy building, training, and deployment via its drag
and drop GUI mechanism.

For our project, the first option is to use the existing hardware, the MacBook Pro,
to train and deploy our model as this is the most cost-effective approach. In the
event that our hardware does not meet the computational requirements of
performing gesture recognition in real time, we will explore the options described
earlier. Google Cloud’s machine learning engine will be option we will choose if
we need to upgrade our computation throughput. Google Cloud offers the
cheapest price point for using its machine learning tool with monthly fees of $52
per month. Another attractive aspect of Google Cloud’s machine learning engine
is that it provides environments to both code and use a GUI to create neural
network models. In our opinion, being able to code Neural Networks from scratch
allows for better flexibly during the development stage of the model. Again, using
these cloud computing services is a backup plan if our current hardware does not
meet computational and accuracy requirements. However, we are confident that
our existing hardware will perform well enough to meet these requirements.

4.3.2 Software Choices

In order to start building a Machine learning application, software related
decisions need to be made. When starting a new Machine learning project
selecting the right programming language, development environment, and
API/Framework are all crucial decisions that can either allow for seamless
creating and deployment of a Machine learning application or cause the
developer many issues if wrong decisions are made.

 23

There are many factors that go into choosing the right programming language for
a Machine learning application. Factors such as robustness, readability, ease of
coding, experience with the language, documentation/support, and most
importantly, compatibility with Machine learning APIs and frameworks. Some of
the most popular programming languages for machine learning today are Python,
Java, R, Lisp, and Prolong. Lisp is one of the oldest AI suited language. Some
features of Lisp include ease of creating new objects, ability to process symbolic
information, automatic garage collection, and good prototyping capability. Prolog
is similar to Lisp in the machine learning aspect. Features of Prolog include
automatic backtracking, tree-based data structuring, and efficient pattern
matching. R is a programming language that is used mainly for statistical data
manipulation. With the right packages installed R can be a powerful tool for
machine learning usually with raw data. Java is one of the more popular general-
purpose programming languages. In addition to the easy use, widespread
support, and the number of packages available, Java can handle computation
required by machine learning such as search algorithms and neural network
model building. Python is another popular general-purpose programming
language but has even more regard in the machine learning world. Python has a
very simple syntax which, in turn, allows for readability and coding ease. In
addition, there is an immense number of libraries that make programming certain
tasks easier. Most importantly, popular machine learning API’s and Frameworks
are compatible with Python. Based on these factors, Python is the language that
we will choose to code our Neural Network application.

After selecting the right programming language, where you develop the
application, or the development environment is an important software choice in
the overall software development lifecycle. Choosing the right development
environment can save the developer and immense amount of time especially
when creating a Neural Network model. There are two options for development
environment either an Integrated Development Environment (IDE) or a Text
Editor. Some examples of IDE’s include PyCharm, Eclipse, and Visual Studio.
Examples of text editors include Atom, Sublime Text, and Visual Studio Code. A
pure text editor is just a place for one to write code. There is no ability to run
code from within the text editor application or check for syntax errors before run
time. Usually when one wants to run code written in a text editor, the command
prompt is used to call and run the code. Text editors are used mainly for coding
small programs and typically not used for big projects. Integrated Development
Environment are far superior to basic text editors as IDE’s contain all the
functionality of text editors and much more. A big feature of IDE’s is that most
comprise of built in debuggers. A developer can code and debug their program
within the IDE as opposed to having a separate compiler when using a text
editor. Some other features of IDE’s include automatic code completion, built in
project file explorer, package installers, and being able to run code with a click of
a button. Therefore, an IDE will be used for the development environment of this
project. The only restriction when it comes to selecting an IDE is programming
language. It is imperative to select an IDE that is compatible with the

 24

programming language being used for development. The PyCharm IDE will be
used for our development environment. PyCharm is an IDE created by Jet Brains
and is an IDE geared towards developing Python and Django projects. PyCharm
is compatible with Mac OS, which is the operating system that our project will be
developed on. In addition to having all the features described above, the main
reason PyCharm was selected is because of the free educational license Jet
Brains offers for students. With this license we are given the full product at no
cost.

Now that the programming language and development environment choice has
been made, the next major software decision is selecting a machine learning
API/Framework. There are many different APIs and frameworks geared towards
Machine learning that allow for one to create Neural Network models easier.
Some of the most popular API’s and frameworks include TensorFlow, PyTorch,
and Keras. TensorFlow is an open source library developed by Google that is
used for building Neural Networks. PyTorch is another open source machine
learning library specifically for Python and was developed by Facebook. Keras is
an open source neural network API that is built on top of TensorFlow and is
primarily used to create and experiment with deep neural networks. There are
many factors that go into selecting the right Machine learning API/Framework for
the project such as ease of use, debugging, and dataset considerations. As for
ease of use, these API/Frameworks all operate on different levels of abstraction.
Keras is a higher-level API where commonly used functions are wrapped in
callable functions. PyTorch is a lower level API where the programmer can do
more customization when creating the Neural Network Model architecture.
TensorFlow is more of a middle ground between Keras and PyTorch in terms of
abstraction. Figure 10 and Figure 11 show code for creating a simple Neural
Network Model using Keras and PyTorch respectively.

Figure 10 Example Keras Code for Creating a Model

 25

Figure 11 Example PyTorch Code for Creating a Model

It is clearly shown using Keras is easier to both read and code. Which ultimately
leads to easier debugging. Keras is said to be the easiest to debug whereas
TensorFlow is the hardest with PyTorch coming in as the middle ground. The
final consideration when choosing the right machine learning API/Framework is
the dataset. The input dataset is the data being fed into the network in order to
train the model. Keras is used when dataset is typically small. For example, if the
input dataset consists of thousands of images, Keras would be a good choice as
it is comparatively slower. PyTorch and TensorFlow are optimized for speed
therefore a good choice for larger dataset, usually millions of input dataset
images. Our dataset will be relatively small, consisting of thousands of images of
different hand gestures. Given all the stated considerations, Keras will be the
API/Framework used to build, train, and test our Neural Network model.

 26

4.3.3 Building the Dataset

User Action Result

No Gesture Hover in place/autolevel

Thrust Upwards

Drone flies forwards

Drone flies to the left

Drone flies to the right

Drone lands in current
position

Drone flies backwards

Thrust down

Table 7 Initial Hand Gesture Set

The first step for creating a Convolutional Neural Network is building and
preprocessing the dataset. This input dataset set will be used to train our model.
In Convolutional Neural Networks the main goal is to create an input dataset that
has good coverage so the model will be able to achieve maximum prediction
accuracy when faced with brand new input. We will use supervised learning in

 27

our model. Supervised learning is the idea where all training data is associated
with a label identifying what the training data represents.

For this project, our dataset will consist of thousands of different hand gesture
images. The set of hand gestures that our application will be able to recognize
are shown in Table 7. In order to build our dataset, we plan on using our
MacBook Pro webcam. Using this webcam, we can manually take thousands of
pictures of different hand gestures, but this task will prove to be tedious and time
consuming. To improve efficiency, given that the MacBook Pro webcam has the
capability to record at 60 frames per second, it makes more sense to record a 17
second video of someone doing a specific hand gesture. With that video, we can
process each frame individually for a total of 17 * 60 = 1020 images of a specific
hand gesture. This approach is less time consuming then the manual approach
described above. One main challenge we will be faced with will deal with
processing each frame. Our Convolutional Neural Network needs to be able to
universally recognize hand gestures no matter the users skin color or changes in
users background environment. For example, our model shall be able to predict
the correct hand gesture of someone of dark skin sitting outside and do the same
when faced with a user of light skin sitting indoors. It will be inefficient and
virtually impossible to train a model taking into account all skin color and
environment variables. So how do we train our model in a way that it does not
need to take such variables into account? Our plan to simply extract and
threshold the hand gesture from each frame before sending it through our neural
network for training and testing. In order to extract the hand gesture, the idea of
image background subtraction will be used. In essence, you capture the
background of your environment before you hand is the frame. This will create a
“mask” that will remove or subtract everything but your hand. If background
subtraction is done correctly, the resulting image will be just the hand gesture
with a black background. This solves the problem of varying environments. To
solve the issue of varying skin colors, binary thresholding is used on the already
background subtracted image. By using a binary threshold, we can segment an
image based on a certain pixel intensity. Given the background subtracted image
we can threshold the image such that all the dark black pixels remain black and
all every other pixel will be converted to white. This will create a silhouette of the
hand gesture. The process of extracting and thresholding an image is shown in
Figure 12 through Figure 14.

Figure 12 Original Image Figure 13 Background Subtraction Figure 14 Binary Threshold

 28

Our Neural Network should only be fed images that have been background
subtracted and been applied a threshold to ensure skin and environment
independency which we believe will maximize our model’s total prediction
accuracy.

A utility written in Python will be used to create our and organize our dataset. A
basic flow diagram of this utility is shown below in Figure 15.

Figure 15 Utility Flowchart

OpenCV is an open source computer vision library that can be used to interface
with the computer webcam. The webcam will record a certain number of frames
and the utility will load all the captured frames into directory associated with the
hand gesture being recorded. The directory name will serve as the label for each
specific frame. For example, frames that show a closed fist will be put into
directory named thrust_upwards, this name will also act as the label for each of
the frames residing in that directory. The utility will then transverse through the
created directory and modify each frame using background subtraction and
thresholding to create frames that are both skin and background environment
independent. The resulting image will be cropped so that only the hand gesture is
shown and then resized to 50 x 50 pixels to ensure uniformity across all dataset
images. This same process will be executed for each hand gesture. Pseudo-
code for this utility is shown in Figure 16.

Capture
Frames

Modify Each
Frame

(Background Sub
& Thresholding)

Organize into File
Structure

 29

Figure 16 Dataset Creator Utility Pseudo-Code

4.3.4 Building the CNN Model

After our training dataset is created, the next step is to create our
Convolutional Neural Network Model architecture. There are two approaches to
creating the model architecture. One option is to create our own model
architecture or the other option being using an already defined architecture. The
main advantage to creating your own model is that you have full freedom to use
the different building blocks, as discussed before, in any way. However, the main
disadvantage is optimizing the architecture if needed. In building a Convolutional
Neural Network Model, the developer doesn’t know how good the model will
perform without taking the time to train the model. In some cases, this could take
days and if accuracy is low and optimization to different layer parameters is
needed, it could take weeks before the model is producing the right accuracy. In
essence, implementing our own Convolutional Neural Network Model from
scratch will involve a good amount of trial and error and with the hardware being
used to train and test our model, the process will not be time efficient. Based on
this fact, we will use an already defined model. This approach is much better
since these models have been created, tested, and optimized for accuracy by
experts in the machine learning field. In addition, there are an immense amount
of defined architectures to choose from. Of course, no matter what defined
architecture we choose, there will be some tweaking of some parameters that will
allow for compatibility between our dataset and model architecture itself. In
general, the more layers a model has the more computation is needed however
the model accuracy is generally higher in deeper networks. For our project, we
want to stay away from using deep networks due to our hardware constraints and
due to the fact that the model needs to produce prediction results in real time.
Given these constraints we need to base our model after a predefined model that
is shallow (less layers) and produces the best accuracy for our application.

 30

There are many well defined Convolutional Neural Network model architectures
that are optimized for different Machine learning applications. LeNet-5 and
AlexNet are two Convolutional Neural Network architectures that pose to be a
good fit to implement for our gesture recognition application. LeNet-5 is one of
the earliest CNN model architectures and its main advantage being how shallow
the network is. LeNet-5 consists of 7 total layers and was originally used to
classify handwritten or machine printed digits. A representation of the Le-Net
architecture is shown in Figure 17.

Figure 17 LeNet-5 Architecture
 Permission to use approved

The input image to LeNet is a 32x32 greyscale image and the architecture
consists of 3 convolutional layers (C1, C3, and C5), 2 subsampling layers (S2
and S4), and 1 fully connected (F6) followed by the output layer. What makes
this architecture attractive for our application is that the model itself is shallow
therefore training time will be comparatively shorter and predictions can occur in
real time. In terms of error rate/accuracy, Le-Net-5 was able to achieve an error
rate below 1% on certain datasets. AlexNet is another considered Convolutional
Neural Network architecture for our gesture recognition application. AlexNet has
a similar architecture to LeNet-5 but it is deeper (has more layers) than LeNet-5.
AlexNet also outperforms LeNet-5 in terms of accuracy due to the fact that
AlexNet is a deeper network architecture. Figure 18 shows the architecture of
AlexNet.

Figure 18 AlexNet Architecture

 Permission to use approved

 31

AlexNet consists of 4 convolutional layers, 3 subsampling layers, and 3 fully
connected layers followed by an output layer. AlexNet is typically used for
classification of high-resolution colored images and due to the fact that AlexNet is
deeper than LeNet-5, it could cause slower prediction time given our hardware
constraints.

Both LeNet-5 and AlexNet are good defined Convolutional Neural Network
architectures that have been proven to produce accurate predictions. For our
project, we plan on implementing the LeNet-5 architecture first to see what
results we can achieve. LeNet-5 is a simple and shallow network that we believe
can produce accurate results in real time. In addition, LeNet-5 was designed for a
dataset consisting of greyscale and low-resolution images. Our dataset falls into
this category since our input images will also be in greyscale and of size 50 x 50.
AlexNet is a very capable architecture but given the characteristics of our dataset
and our hardware constraints, we believe using AlexNet for our real time gesture
recognition application could be overkill. However, if using the LeNet-5
architecture does not meet our accuracy requirements, we will be forced to use
AlexNet or similar architecture as it is more robust and capable of achieving
higher prediction accuracies.

To build/code the model we will use Keras, TensorFlow, and Python as
mentioned in earlier sections. The plan is to create a single Python file that will
contain code to preprocess our dataset, the model architecture in code form, and
commands to initiate training as well as saving our model weights after training is
complete. Coding the model architecture will be done completely using Keras
since it provides the simplest and readable way to create Neural Network
Models.

4.3.5 Training the Built Model

Once our Neural Network model architecture is defined, the we can begin
training the Convolutional Neural Network. Our input dataset of hand gesture
images will be used to train and test our model. Before the training begins, the
input data set in split into two parts, train data and validation (or test) data.
Typically, there is more train data than validation data, a 9 to 1 split. For
example, if there are a total of 10000 input dataset images, 1000 of those images
will be grouped into the validation data and the remaining 9000 will be grouped
into the training data. The training data is used to help the model learn whereas
the validation data is used to test the model’s accuracy at that point in the
training process. For our project, the dataset will consist of about 1000 images of
each hand gesture for a total of around 8000 images. The plan is to split the
dataset, grouping 7000 images to be used for training the Neural Network and
the remaining 1000 images will be used as validation data. An example of a
Convolutional Neural Network being trained using Keras is show in Figure 19.

 32

Figure 19 CNN in Training Phase

The example shown in Figure 19 has an input dataset of 7000 samples, 6000 of
these samples are used for the training dataset whereas 1000 samples are used
for the validation or test dataset. This model is trained for 3 epochs. An epoch is
essentially the number of times the model cycles through all the data. Within
each epoch the same 6000 samples are used to train the model and the same
1000 samples are used to test the model’s accuracy at that specific epoch. In
general, the more epochs that are run, the more the model’s accuracy will
increase. However, there is an upper bound on the number of epochs that can be
run until there is no more improvement in accuracy. There is no way of knowing
what this upper bound is, so it is a general rule to set the number of training
epochs to a high value, around 50 epochs. There is always an option to stop
training if there are no noticeable or decreases in accuracy. At the end of each
epoch the model evaluates its performance and performs backpropagation to
update the weights, the specifics of backpropagation are mentioned in Section
4.2.3.

4.3.6 Testing the Neural Network

 Testing of the Neural Network itself occurs at the end of each epoch. The
model first trains itself using the training dataset and immediately after the model
tests itself on the validation data. This process occurs during every epoch. After
each epoch, metrics are calculated to show how well the model is responding to
the training and testing. The loss metric is the output of the loss function which
measures how well or how poorly the model behaves by finding the difference
between the predicted value and the ground truth value of an image and is used
to optimize the model. Accuracy measures how well the model performed by
taking the number of correct prediction and dividing by the total number of
predictions. The accuracy metric is not taking into account when optimizing the
model as it is just a metric for us to reference in order to see if the model is
training well. If a model is training well, we see a decrease in the loss and an
increase in accuracy. Figure 20 depicts the ideal trends of a model in the training
phase if the loss metric and accuracy metric is plotted. It is shown that accuracy
generally increases, and loss generally decreases as number of epochs
increase. According to Figure 19, the loss and acc metrics are calculated from
using the training dataset images to test the model whereas the val_loss and
val_acc are calculated from using the validation dataset images to test the
model. The metrics that we are most interested in are the val_loss and val_acc
because they measure how good the model is performing to seeing new hand
gesture images. For our project, we will make sure monitor these different

 33

metrics during the training because they are the only indication of how good the
model is responding to training.

Figure 20 Accuracy (Orange) and Loss (Blue) vs Epoch

 Permission to use requested

4.3.7 Real-Time Recognition

One major aspect of our project which also poses to be a main challenge
achieving real time recognition of hand gestures so our drone can also be
maneuvered in real time. Given that our model trains successfully and produces
an acceptable accuracy it is imperative that we use our model in a way to
achieve real time results.

Once our model is done training and the model’s architecture, weights, and
optimizer state is saved into a .h5 file, the plan is to create a python program that
handles the real time recognition of hand gestures and the sending of messages
over Bluetooth. Figure 21 shows a flow chart of the proposed program

Figure 21 Recognition Program Flowchart

The first step is to load the previously saved model architecture, weights, and
optimizer state. In Keras, the function load_model(filepath) can be used to load

Load
the

Saved
Model

Initiate
GUI

Extract
and

Process
Gesture

Make
Prediction

Send
Message/

Update
GUI

 34

the model at the specified file path. The next step is to initiate and load all visual
aspects of our graphical user interface or GUI. The specifics of the GUI will be
covered in section 4.4. The third step is to extract and process the hand gestures
shown to the webcam. Each frame is first background subtracted, applied a
threshold, resized to 50 x 50 resolution, and finally converted to greyscale. After
the frame containing the hand gesture is processed, it is passed through our
loaded model in order to get a prediction of what the hand gesture is. In Keras,
the model.predict function is used to get prediction results on the inputted image.
This function returns an array of size equal to the number of classes. In our
implementation, there is a class per hand gesture totaling to 8 gestures. The
values in the array represent how close the model thinks the input image is to
belonging in the specific class. The higher the value, the more the model thinks
the input image belongs to the class. For example, in our project we have 8
gestures which corresponds to 8 different classes. When model.predict is called
on a new input image it will produce an array of 8 values, [.21, .26, .56, .86,
.95, .12, .03, .42]. The model predicts that the input image is closest to class 5
since that value is highest. The 5th class could represent a closed fist so
therefore a closed fist is the final prediction. After the prediction is made the next
step is update the GUI to reflect this. In addition, a corresponding Bluetooth
message will be sent to the drone to specify what maneuver the drone must
perform based on the recognized hand gesture. The Extract and Process
Gesture, Make Prediction, and Send Message/Update GUI steps all should be
done in real time.

4.3.8 Foreseeable Issues

One obvious issue that could potentially arise during the model training and
testing is bad prediction accuracy. Bad prediction accuracy can be a caused by a
handful of things such as characteristics of the dataset, model architecture,
model parameters. If the dataset doesn’t provide good converge over the
different classes, there is a potential for some accuracy issues. For example, if
our dataset contains 1000 images of a closed fist hand gesture but only 50
images of an open palm hand gesture, the model might run into accuracy issues
when trying to classify open palm hand gestures because it was not given much
data for the particular hand gesture to be trained on. In our project, by creating
and using a dataset that is composed of an equal number of images per hand
gesture, and having an abundant number of images per gesture, we will
eliminate the possibility that bad prediction accuracy will be caused by the
dataset. The model architecture itself can lead to bad prediction accuracy.
Having too many layers or having a sparse number of layers in your model can
affect how accurate the model is. If an insufficient number of layers are used then
the network will have a hard time recognizing features that make each image
different, thus leading to bad prediction accuracy. Having too many layers in a
model or having a very “deep” model can result in longer training time but even
worse, longer prediction time. Because we need the hand gesture predictions to
be made in real time, we must avoid building an architecture with too many

 35

layers. Model parameters such as the number of filters in each convolutional
layer or the learning rate value can either contribute to good model prediction
accuracy or bad model prediction accuracy. The science behind choosing right
parameters for your model is still a field in machine learning research as it is
highly dependent on the application. As of right now, there is no general standard
to use when defining parameters in the model and is essentially a trial and error
process in order to achieve maximum accuracy. As stated before, we plan on
using a predefined model, LeNet-5, that has been researched and optimized for
performance. Of course, it is possible that we will need to tweak model
parameters or completely change the model architecture if prediction accuracy is
low. We are confident that by using the LeNet-5 architecture, our prediction
accuracy will be high enough and there won’t be a need to completely change
the architecture of our model.

Overfitting is one of the most common and most researched problem with neural
networks. The model is overfitting when the training dataset accuracy continues
to increase or stay the same while the validation dataset accuracy declines. This
means the model is memorizing rather than generalizing. Since the training data
is the exact same for each epoch, the model is memorizing the training data and
therefore when tested on the same training data the prediction accuracy will be
high. When tested on new data, the model will not perform well and will show a
decrease in validation accuracy due to the fact the model is not generalizing well
enough. Detecting overfitting in a model is straightforward. By line plotting the
training data accuracy and the validation data accuracy, it can easily be shown if
a model is overfitting. Figure 22 shows a line plot of a model that is overfitting.

Figure 22 Overfitting Graph

 Permission to use requested

For our project, we will implement different overfitting prevention techniques if
necessary. One way to prevent overfitting is to implement early stopping. Early
stopping essentially stops model training when the validation accuracy starts to

 36

decline rapidly. We can specify in the Keras code that we want to apply early
stopping right before when the validation test accuracy starts to decline. Another
popular technique that we will consider using in the event of overfitting is the use
of dropout layers. Dropout refers to ignoring a random set of nodes during the
model training phase. Each node is either kept or removed from the network with
a certain probability. This helps prevent overfitting because in an overfitted
network some nodes that make up the network are too dependent on other
nodes in the same network which leads to memorizations. Strong dependences
between nodes are denoted by higher weighted edges between the two nodes.
By dropping some nodes from the network, the dependences between nodes are
broken forcing nodes not to rely on each other by distributing weights evenly
across all nodes. Dropout can easily be implemented in Keras by simply adding a
Dropout Layer. In essence, if our model does overfit during training, we will use
the early stopping technique first, as it’s the easiest to implement. Using dropout
layers will be our second option as choosing the right amount of dropout layers
and the right probability that a node will be dropped will involve some trial and
error.

4.3.9 Other Approaches to Gesture Recognition

Computer Vision is still a up and coming field in research therefore than isn’t a lot
of other approaches to gesture recognition. The one notable approach that differs
from the Machine learning approach is the use of the python library known as
OpenCV. OpenCV offers users an abundant number of functions that help with
computer vision applications. OpenCV can be used to recognize simple hand
gestures by essentially counting the number of finger tips is sees. This is a big
limitation since there can only be six recognized hand gestures. In order to be
able to count the number of finger tips in the image, a contour or outline of the
hand must be found first. The next step is to find the edges of the found contour,
this is effective in trying to find the fingertips of the hand. After the edges are
found, the next step is to ignore all edges that are not fingertips. This is done by
computing the angle between two edge points, if the angle is small enough, the
edge points will be considered an edge point. Some advantages to this approach
compared to the machine learning approach is there is no need to gather a
dataset to train a model, this cuts back on development time as the OpenCV
approach is more of a “plug and play” way of recognizing gestures. In addition,
the speed of producing a prediction is generally quicker using OpenCV than
using the Machine learning approach. Some disadvantages of using OpenCV to
recognize hand gestures is the limitations on the different hand gestures that can
be used, and the code complexity that goes into distinguishing between different
hand gestures. The algorithms needed in order to achieve gesture recognition
are more complex and the gestures are limited to the basic numeric gestures
with OpenCV. The more advanced gestures used the more complex the
algorithms get in order to distinguish between the set of hand gestures. The most
prominent difference between OpenCV and Machine learning approaches is that
with OpenCV, the developer is essentially teaching the computer how to

 37

distinguish between hand gestures by hard coding the characteristics to look for
that differentiates each hang gesture. Therefore, the complexity the of code is
dependent on how many gestures are used in the application. Machine learning,
on the other hand, allows the computer to learn the different features of each
hand gesture. The code complexity is not dependent of the set of hand gestures
as the same model architecture is used to train any set of hand gestures. This
approach is more robust, allowing the developer to add or remove hand gestures
from the dataset with little code modifications.

4.4 Graphical User Interface

4.4.1 GUI Overview

The graphical user interface will act as what the user interacts with to
communicate with the drone. The goal is to keep this interface as simple and
user friendly as possible. Figure 23 shows the initial layout of the GUI.

Figure 23 GUI Layout

 38

The GUI will consist of 3 different sections or window panes the webcam pane,
feedback/reading pane, and a log pane.

4.4.2 Webcam Window Pane

The webcam window will consist of a real time feed of the webcam and take up
majority of the overall GUI space. This is where the user’s gestures will be
displayed and captured so the captured gesture can be processed by the Neural
Network in the backend. The real time feed will be displayed with a green box
overlay. Figure 24 displays an example of what the webcam window will show.
The green box overlay acts as a region of interest. This region is where the user
will display their gesture and will ultimately be cropped out, processed, and sent
through the Neural Network model for a real time gesture prediction.

Figure 24 Webcam Window Real Time Feed

4.4.3 Feedback/Readings Window Pane

The feedback/reading window pane will give the user a visual representation of
the prediction result after been passed through the Neural Network model. This
window pane will consist of radio buttons, one for each gesture, with labels

 39

identifying the specific drone action Ideally, while the user gives the specific
gesture that correlates to having the drone thrust upwards, the radio button
labeled Thrust Upwards will be filled. Only one radio button can be filled at a time
as only one drone action can be done at once. In the feedback/reading pane
there will be one radio button for every drone action/gesture. In addition, there
will be an altitude field that displays the drone’s altitude in real time. An altitude
sensor on the drone side will communicate the drone’s altitude to the graphical
user interface via Bluetooth.

4.4.4 Log Window Pane

The log window pane will serve as a textual representation of all actions being
performed and be located at the bottom of the GUI. Essentially, every action
taking place in the system should be recorded in the log window. From
experience, if debugging is needed for your system, looking at log files is a good
place to start. We decide to implement the idea of using logs to ease the
debugging process and to have a good idea of commands being sent throughout
the system. Table 8 shows the initial set of log messages based on actions being
performed in the system.

System Action Example Log Message

Host system successfully connects to
drone via Bluetooth

Bluetooth pairing successful

Users hand gesture is recognized User displayed a Closed Fist

Mapping of hand gesture to drone
action is sent to drone

Host sent Thrust Upward command to
drone

Drone sends an acknowledgement
back to host after receiving command

Drone received Thrust Upward
command

Drone sends altitude data to the GUI Received drone altitude data – 5 ft

Table 8 Log Message Format

In essence, all log messages will be written to a specific log file. This log file will
be monitored, and its contents will be displayed, in real time, to the log window.
The tail -f command will be used to achieve a real time log feed.

4.4.5 Building the GUI

For our project, we want to build a GUI as it will provide the user a simple and
attractive way to interact with the system with all different components
consolidated in one GUI window. Since our project will be coded in Python, we
will be consistent and also use Python to create our GUI. Fortunately, there are
many open source libraries that assist with creating a GUI using Python. Some
main open source Python GUI frameworks include Tkinter and PyQt. Tkinter is
native to Python and is a basic GUI package and provides common GUI
elements that is used to build the interface. Some elements include buttons,
entry fields, display areas, etc. These elements are also referred to as widgets.

 40

Some main advantages of Tkinter include that it is part of Python and there is
nothing extra to download. It also has a very simple syntax and provides an
abundant number of widgets. Some main disadvantages of Tkinter is that the
graphics look old and outdated and it can be difficult to debug. PyQt is a set of
Python bindings for the popular Qt application framework. It is not native to
Python and requires extra downloads. It is easier to design GUI’s with PyQt and
is typically used to design more advanced GUIs. In contrast, Tkinter is generally
used for smaller, less advanced, GUI applications

We plan on using Tkinter to create our GUI as no extra installs are needed and
due to the fact that our GUI itself will not be advanced and the look of the GUI is
not an important aspect to us. Essentially, the purpose of the GUI is a create
some organization of all the different aspects of the gesture recognition
processes. When creating a GUI, the concept of event driving programming will
be utilized. Event driven programming is a programming paradigm where the flow
of the program is determined by events. Events can be mouse clicks, messages
from other threads, key presses, etc. Usually, when creating a GUI there is a
main loop that waits and listens for events to occur. When a specific event
occurs, a callback function is triggered to appropriately respond to that event. In
our GUI implementation, a specific event will occur every time a new hand
gesture is predicted. There will be 8 events, one for each hand gesture. If a
closed fist hand gesture is recognized, the callback function/event handler will
send a specific message to the drone via Bluetooth, update the
Feedback/Readings window pane to fill in the closed fist radio button, and write a
message to the log file that will be shown in the Log window pane. Another
foreseeable event that will occur is updating the altitude field. The drone will send
its altitude via Bluetooth to the GUI. Upon receiving the altitude information from
the drone, and event will be triggered to update the altitude field in the
Feedback/Reading window pane to reflect the newly updated altitude of the
drone.

One potential optimization in building and executing our GUI is to incorporate
multithreading to our GUI application. Multithreading has the potential to improve
computational performance by using different CPU cores in parallel. In our GUI
implementation multithreading could be used perform tasks that do not depend
on each other. For example, reading in altitude data from the drone and updating
the altitude field in not dependent on recognizing hand gestures, sending the
specific message via Bluetooth and updating the GUI fields. Therefore, a single
thread can handle receiving and processing the altitude data and another single
thread can be used to handle gesture recognition. If multithreading isn’t used a
potential blocking scenario can occur. For example, if the execution of the
program is currently processing a frame for recognition and at the same time the
drone sends altitude data to the GUI, the updating of the altitude field will be
blocked since the CPU is currently executing instructions to process the frame.
The updating of the altitude field will have to wait until the frame recognition is

 41

complete before continuing. Therefore, with multithreading, productivity and
response time of certain GUI aspects will be increased.

4.5 Wireless Communication

Because a drone is controlled by RC, we needed to plan for some sort of
wireless communication. The requirement of ours to control the drone from a
remote location is imperative to a drone project, because there are several safety
concerns involved with operating an unstable drone due to the speed and torque
that the motors spin. To circumvent the safety concerns, we are going to operate
the drone wirelessly, which will allow us a safer testing environment and a more
usable product overall. Additionally, it is one of the main features of any drone on
the market to be wireless, because the idea of a drone is to be able to fly
independently. One of the core ideas for our project is to build a drone that is
very user-friendly and easily manageable, which goes hand-in-hand with being
wireless. This means that we had to perform thorough research on forms of
wireless communication to carry our data to and from the drone and decide
which particular medium is best for our implementation.

4.5.1 Possible Connection Mediums

When it comes to the wireless communication for the project, we researched
each and every one of our options, because we wanted to ensure that we were
using the most beneficial medium possible. Our possible options boiled down to
Wi-Fi, Radio, Zigbee/Z-Wave, and Bluetooth. We explored each of the mediums
of wireless communication, but we found that Wi-Fi and Bluetooth were the
leading ones, so we weighed out the advantages and disadvantages for the two.

The industry leading form of wireless communication is undoubtedly Wi-Fi, as it
is a household term known world-wide, and even is seen by some as hard to live
without. This is because it is our way to connect to the Internet, and for it to be so
widely used, Wi-Fi must be reliable and fast. For us to leverage the advantages
of Wi-Fi, we would need either a common Wi-Fi network for both the drone and
the master computer for quick communication across the same network.
Alternatively, we could have the devices connect to the Internet, from different or
same access points, and communicate via an API microservice to communicate
with POST requests from the computer to be received by the drone. This
implementation would allow us to control the drone from long distance remote
locations. We could also have built the drone to be a Wi-Fi access point, which
would have allowed us to just connect to it from the laptop computer and directly
communicate to the drone so long as we stay in range of the Wi-Fi access point,
we could control the drone that way. This would have been similar to the way that
you connect to a Google Chromecast, in which the device contains a Wi-Fi
access point and you connect to it to feed it information to set it up. We decided
against Wi-Fi because of a few reasons. The implementation that would allow us
to control the drone from a long distance did not interest us, due to the fact that
we are operating a drone, and you would always want to at least see the drone to

 42

understand its surroundings to not bump into anything and be able to navigate
properly. Another reason we decided to move away from Wi-Fi was that it would
have been a much more complicated configuration and is much less cost
effective. The Wi-Fi access point configurations mentioned above would all
require at least one Wi-Fi access point and one Wi-Fi receiver for the
communication to work properly. While Wi-Fi is great in being speedy and
communicating large amounts of data in short periods of time, popularity of
Bluetooth for wireless communication for projects similar to this one is much
higher than Wi-Fi.

One of the primary advantages of Wi-Fi would have been the ability to connect a
vast number of devices to the network, however for our particular implementation
this would not have been beneficial. This is due to us not wanting to send the
drone commands from multiple sources, which would cause the drone to behave
unpredictably and could result in injury or damage to the surroundings because it
does not know which signals to prioritize. As this device is meant to be a
personal drone, we only plan on having one device connected to control it, as
having multiple devices connected and sending signals will cause the drone to
perform unpredictable behaviors. This requirement actually lends itself nicely to
one of the primary limitations of Bluetooth.

4.5.2 Why Bluetooth

Bluetooth is also being used because of how popular it is in everyday life.
Bluetooth has been around since the early 2000s and has continually been
maintained and upgraded through the past 2 decades. This technology remains
a worldwide wireless standard and it is evident why it is when one understands
the power and ease-of-use of it. It is completely standardized and has been
continually optimized to reduce interference, reduce cost, increase data
throughput, and reduce power usage. This continual optimization provides us
another reason to use this technology, because it is only evolving more in the
future, we are protecting our product for the future as it can be upgraded to the
newer Bluetooth version without much difficulty. This is opposed to using other
forms of wireless communication such as infrared signals or satellite
communication.

4.5.2.1 Complexity

In regard to compatibility and difficulty, we have also researched this topic.
Arduinos are very popular for basic DIY projects, and so, the Software
Development Environment they provide to program it is very intuitive and
hundreds of thousands of projects have been done developing on them. Because
of this, there are a plethora of resources in regard to establishing the Bluetooth
connection, as well as communicating data via Bluetooth. There are plenty of
samples of source code for various projects that will provide us a great start on
the embedded code that we will need to implement on the Arduino. As the sole
data that is being communicated between a laptop computer and the Arduino is

 43

the gesture and the altitude sensor, we should not have many issues in data
loss. In essence, we will be sending a code from the laptop, after deciphering the
correct gesture, with a dictionary for the code implemented on the Arduino board,
to determine the action that the drone should perform. From the drone, all we will
be sending is the value for the altitude that will be directly read from the sensor.
Simply put, we will only need a single byte going each way in terms of immediate
data transfer. The fact that we are deciphering the gesture on the laptop allows
for the computation done for the drone to be focused on maintaining flight and
performing the actions. Our plan is to continue sending the signal from the laptop
to the Arduino to tell the drone what to do. For example, if you give the ‘thumbs
up’ gesture, the determinant code for that action will be communicated over
Bluetooth to the Arduino continually, until the gesture is changed or until there is
no gesture. In either of those cases, we will then switch to sending the
appropriate signal continually until the signal is either changed or no longer
shown. We are anticipating that we may experience some data loss because
Bluetooth is not 100% efficient and reliable in certain conditions, however, we do
not expect to experience data loss for longer than 500ms, because we are
continually sending the signals. By this I mean that we will be sending several
signals, and so it will not be a large issue if one of those signals gets lost,
because they are being sent many times per second.

4.5.2.2 Bluetooth Version

Bluetooth has various versions available, as the people maintaining and
upgrading the technology have been making it faster, allowing for more range,
and increasing the reliability of it. This means that it is continually updating and
there are many different versions of it. We will be using Bluetooth 4.x, which is
the release that has been out for nearly 10 years now. We chose this particular
implementation of Bluetooth because it will be, without a doubt, the cheapest
version for us to use. Bluetooth modules with Bluetooth 4.x are extremely widely
available and cheap. This allows us to keep the cost of the project down, which
will increase the accessibility of the final product. Using an older implementation
of Bluetooth also allows for the most available support regarding troubleshooting
issues we may have when building it out. Bluetooth 5.0 has only recently been
making its way as a standard in the market, as the technology actually came out
in late 2016 but companies generally take some time to actually add it in to all of
their products. We also chose this version for its Low Energy feature, which
allows for us to preserve the drone battery for actually operating the drone, which
is one of the major pain points of drones. We decided against Bluetooth 5.0 as
well due to its only new feature being Slot Availability Masking, which detects and
prevents interference on neighboring frequency bands. This feature is not a
particularly necessary thing for us because we are looking to stay very close to
the drone when operating it, as it is not meant to travel so far.

 44

4.5.3 Pairing Setup

In regard to our particular implementation of Bluetooth, we will be pairing the
drone to the laptop computer that is reading the hand signals. This pairing is a
very simple process that nearly everyone with a smartphone is familiar with. It
involves putting the Arduino (with the Bluetooth module) into pairing mode and
searching for available (‘visible’) devices from the laptop computer. This process
need only be done a single time, because after the first connection, each device
will have the other device’s Bluetooth ID saved and stored. This will allow the
devices to connect automatically going forward, so long as Bluetooth is enabled
on both devices. This also is not limited to connecting to one device. If we decide
to run our software on different machines, we need only to pair the devices once
again per device. To clarify, the drone will only be connected to one device at a
time and will only be receiving signals from one device at a time.

4.5.3.1 Trusted Devices and Security

The pairing system usually has a built-in security check, which allows for external
devices that you do not want to connect to your device to be filtered out. The
usual process is, upon the pairing request, a security passkey is requested. This
allows for some sense of security with the data being exchanged, because if we
had some external device sending signals to our drone, it could malfunction, and
the damages could be costly and/or dangerous. This built-in security check lets
us make sure that only the devices we want connecting to our drone will be able
to send it signals. Figure 25 shows what the pairing request looks like from the
HC-05 module to an Android phone, however it is very similar to a computer.

Figure 25 Bluetooth Pairing Request

 45

4.5.4 Limitations

There are several limitations to Bluetooth, and so we will discuss what in
particular we will be limited by in our project specifically. Our project in regard to
wireless communication is quite simple, but there are a few hurdles to get over in
regard to the data that is communicated and reliability.

4.5.4.1 Data Limitations

In specific, the amount of data being sent over Bluetooth is a limitation. Bluetooth
does not have a very high data throughput, and so we cannot send large
amounts of data quickly and efficiently. We considered this limitation of Bluetooth
when scoping out the project, and so we decided to make the data
communicated very small and simple. We plan on communicating only bytes of
data, because the data will be sent very often, so we want to send small amounts
of data for it to be communicated quickly and efficiently. Sending data over
Bluetooth is via radio waves, and so it is difficult to send large data through the
air whilst blocking out any interference. Additionally, we want the signals to be
sent rapidly so that the drone is able to respond quickly to a new command. The
signal needs to be read quickly and then communicated to the drone quickly to
ensure that the drone is moving in a near real-time response. This requirement
for us dictates that we needed to send small data but extremely fast.

As far as code complexity goes for the Bluetooth communication, we will be only
communicating bytes of data, as the information coming from the drone will be
numbers for the altitude sensor, and the information coming from the computer
will just be a 4 digit code to determine the action that the drone will need to do.
This allows for very small data and will ensure that the on-board memory will not
be exceeded, and data will not be lost.

4.5.4.2 Range Limitations

Another limitation of Bluetooth is the range through which it can reliably
communicate. This tends to vary from module to module, but generally, Bluetooth
4.0 is meant to have a limited range of roughly 300 feet, which is determined by
the Bluetooth Special Interest Group (SIG). It will be vital for us to find a reliable
Bluetooth module due to this limitation, as there is a possibility for an increasing
number of interferences with the signal. A rapidly growing number of devices are
communicating through radio waves in this time, and so interference-blocking is
a key feature that signals need to have. The expected range is actually
determined by the Power Class, which is a standard in Bluetooth that allows you
to determine the difference between the capabilities of certain Bluetooth
modules. Power Class 1 has a maximum range of 100 meters, while Power
Class 2 has a maximum range of 10 meters, and Power Class 3 has a maximum
range of 10 centimeters. Based on this, we will be absolutely unable to use a
Bluetooth module that falls under Power Class 3, and so will be looking to find
something in Power Class 1-2. However, the further the range, the more power

 46

that the Bluetooth module will use, which is one of our primary project constraints
because drone flight time is very hard to maintain. Due to this, we will be
prototyping a Bluetooth module in Power Class 2 first, to determine if the range is
enough for us to maintain decent functionality of the drone. If that does not work,
we will then fall back on trying something in Power Class 1 to be able to
communicate the signals at a larger distance.

4.5.4.3 Interference Limitations

Another primary concern that will be on our minds is avoiding the heavy amount
of interference that we will deal with when it comes to an indoor drone. Building
an indoor drone helps us greatly with avoiding drone laws that would impede our
product's use, but it also has its cons. The main con to building an indoor drone
is that we have to block out an extreme amount of interference. This is due to the
fact that in a room there are several wireless signals that are transferring very
large amounts of data at all times. This will especially be the case when we are
presenting our project for the Senior Design showcase, and so we will need to
build a fool-proof way to send a strong signal that does not get interrupted or lost
along the travel to and from the drone. This will without a doubt be a great
challenge to us, and we will have to test in order to make sure that our drone is
easily able to communicate with the laptop computer while we are feeding the
signals to the camera.

4.5.4.4 Device Count Limitations

Bluetooth 4.1 allows for a maximum of seven devices connected at one time.
This is a limitation that Bluetooth has due to the signal frequencies it has
available to it. However, this limitation actually is not a constraint for us, because
in our implementation of our gesture-operated drone, we plan on restricting data
emissions to one device, meaning that only one device can control the drone. In
doing so, we will build in the functionality to disallow any more than one device
connected via Bluetooth. We are required to do this to make sure that the drone
does not fly uncontrollably and is not confused as to the action that the drone
should perform.

4.5.4.5 How Will We Accommodate

Because we want to keep the data being communicated to a minimum to ensure
a faster delivery, we are going to be using a library built for altitude sensors that
will convert the data that it receives via its sensors and converts it into one
floating value. This will allow us to communicate the small amount of data rapidly
and repeatedly so that we will be able to see near real-time updates of the
altitude of the drone, with a relatively quick response time.

4.5.4.6 Dictionary Setup

Because we will be receiving data via an integer, we will be creating an on-board
dictionary of sorts, so that the data we receive can automatically be converted to

 47

a maneuver/motion for the drone to perform. The dictionary will be defined based
on Table 9 provided below:

Dictionary Value Maneuver

0000 Hover in place/auto level

0001 Thrust upwards

0002 Drone flies forwards

0003 Drone flies to the left

0004 Drone flies backwards

0005 Drone flies to the right

0006 Thrust Down

0007 Drone will land at current position

Table 9 Dictionary for Drone Commands

This table dictates what will happen based on each signal sent by the laptop
computer after the gesture is converted to one of the 8 above numbers.

Below, in Table 10, naming each mode, describing the mode, and describing
each use-case that our drone will be using for each.

 48

Mode
Name

Mode Description Drone Usage

Active Regular connection mode, device
is actively communicating data to
paired device

This will be the mode that the
drone is in most often during the
prototype stage, further into later
implementations we will use this
mode less to preserve battery

Sniff Power-saving mode, checking for
transmissions at a set interval, this
mode is activated when the data is
not actively being
communicated/transferred

This is the ideal mode for the
drone to be in for most of the
time. As we are able to configure
the interval for the check for
transmissions, we will be
continually altering this to make
our drone response be a
reasonable time while also
saving as much energy as we
can

Hold Different power-saving mode,
device sleeps for a set interval and
returns to active mode after that,
master can command the slave
device to go into hold directly

This mode may be used when
the drone has landed initially,
and after a certain amount of
time we can send the drone’s
Bluetooth module into “Park”
mode

Park Deep sleep power-saving mode,
master can directly put slave
device in Park Mode to deactivate
the slave device until told by
master to wake up

This mode will be used when the
drone has been grounded for a
longer interval, and so it is
unlikely that the user is going to
return to use the drone anytime
soon, and will receive a signal
from the master to wake back up
when they need to launch the
drone again

Table 10 Bluetooth Modes

4.5.4.7 Bluetooth Modules

There are several Bluetooth modules available to use in conjunction with the
Arduino board. Majority of them are very simple to setup as they are made to use
with the simple-to-use Arduino, but they all have varying libraries, configurations,
and ranges to make each one different.

 49

4.5.4.8 Module Limitations

There are several limitations that we have to consider when choosing our exact
Bluetooth module.

For example, we need to take into account the cost of the module because we
are completely funding this project ourselves and are trying to make our product
as accessible as possible to introduce the value of our product.

Another limitation we should be considering is the amount of power drawn by the
module roughly. While this depends heavily on how we are using the Bluetooth
connection and how often we are communicating with it and what mode it stays
in, particular modules do use different amounts of power because they can
communicate either more reliably or are able to communicate over longer
distances.

Range is the second most important limitation of this choosing, because we need
to ensure that we are able to at least communicate to the drone at a reasonable
distance, because a drone is not often controlled at a distance of under one foot.
If we were limited to that kind of range, it would be hazardous to even operate
the product due to the rapidly spinning propellers that could catch body parts and
maybe even injure people nearby.

The most important factor in choosing a Bluetooth module is its ability to
communicate signals without interference causing the signal to be lost on the
receiving end. This could be very dangerous as well because a user could ask
the drone to increase its altitude and interference could cause the signal to be
altered and then the drone would receive, say, an incorrect command to speed
up forward, which could be hazardous to people and objects nearby. This means
that we absolutely must ensure that the drone operates based on the user’s
commands with 100% precision, hence why we will require that the Bluetooth
module be able to communicate the signals with 100% precision.

4.6.4.9 Module Options

Primarily, for these types of projects the most common module to use is the HC-
05 module. The reasons for this are that the module is able to communicate
reliably within about 30ft and can work as either a master or a slave. This would
mean that the module is able to create its own piconet as a master, and several
external slave devices would be able to connect to this module. This is a
functionality that we would not need, however with this particular module, since it
is so popular for DIY projects, would have the most support for in regard to
troubleshooting issues that we may have with it.

Another popular option for these projects is the HC-06 module. This one in
particular is very similar to the HC-05 module, as it has the same range and
brand, but simply without the functionality to operate as a master device. This

 50

one is very suitable for our use case because we only need the Arduino to be a
slave device to the computer that is configured as a master device.

If we find that we require a greater distance for the connection, we can rely on
switching to the BlueSMiRF Bluetooth module, because that module is able to
communicate over 100 meters.

Another option for us is to use the BLE Link Bee Bluetooth module. The
downside to this module is that it is relatively new, and so there will not be as
much support and tutorials when we are trying to configure or troubleshoot errors
with it. However, it has many benefits to it. Primarily the range that is twice that of
the HC modules of 60 meters, along with a typically rare functionality for
Bluetooth modules of having an integrated voltage regulator that supports both
5V and 3.3V MCUs. This functionality will be very beneficial to us as we begin
building the prototype because we will likely end up going back and forth
between different power configurations.

4.6.4.10 Reasons for Choosing

We have decided to go with the HC-06 module is very simple, we only need to
connect it directly to the Arduino board (as shown in the picture below), configure
the module, then continually read from the module through the Serial object to
read the input. We can also send the altitude data through in the same loop as
we are using the Bluetooth connection as a Full Duplex connection. The
configuration we will be using will need to be tested when we build the prototype,
however the default baud rate is 9600. We only need to tell it to save the
connection info so that the connection is easier to setup next time. We decided
on this module because it is extremely cheap and will allow us to very easily set
up the Bluetooth connection in the beginning when prototyping, and because our
drone will be operating indoors it may have a greater range. We will likely need
more range than this module provides, but this module is so cheap that we can at
least use it for testing because it is so easy to configure. This also allows us to hit
the ground running faster in testing the flight control components, which will
undoubtedly be the most difficult part of the project to figure out. Below you can
see the configuration of the Bluetooth module connected to an Arduino board, as
only 4 jumper cables would need to be used, this is a very simple configuration
with few external parts needed.

4.5.5 Low Power Mode

Because power usage is such a prominent issue in all technological devices in
this day and age, we are trying to create the most efficient product possible, to
allow for the power-on time to be maximized. As this is especially important in
drones that use high-power motors to keep the device suspended in the air or
thrust upwards, we are trying at every step to preserve as much power as
possible. Luckily, Bluetooth offers several low-energy modes that allow users to
preserve power in their implementations of the technology. This was especially a

 51

focus on the Bluetooth 4.0 version because of the ever-growing requirement to
save battery to increase efficiency of technology. Due to this constraint, we will
be using Bluetooth’s several modes to our advantage. These modes have
primarily been made to preserve as much energy as possible.

4.6 Drone Hardware Design

4.6.1 Model Overview

Our drone design is a classic quadcopter with four arms, four brushless motors,
and four dual blade propellers. Each motor is accompanied by its own ESC
which are all powered by rechargeable lithium batteries. The ESCs are
connected to the flight controller, which communicates to the user via Bluetooth.
Each command is received by the Bluetooth module and interpreted by the
microcontroller on our printed circuit board. Figure 26 depicts an overview of the
drone design.

Figure 26 Drone Design

 52

4.6.2 List of Materials

Below is a list of all the major components used to build the drone.

● Usmile 450 Quadcopter Drone Frame

● RC 1000KV Brushless Motor

● 30A Electronic Speed Controllers

● 3 Cell-Lithium Battery

● MPU 6050 - Accelerometer & Gyroscope

● Printed Circuit Board

● Bluetooth Module

● Altitude Sensor

4.6.3 Drone Frame

The drone frame is an essential aspect of the design. It is the core foundation.
Even with sound electronics, a weak or misaligned drone frame can lead to
future complications. There are a couple features we kept in mind when choosing
our drone frame. The two most important aspects we had to decide were the size
of the drone and what material the frame was made of. Our decision processes
and decisions are mapped out in the sections below.

4.6.3.1 Dimensions

Our drone is designed to be flown indoors and that was an important
consideration when choosing parts. Being in a confined space the smaller the
design the better. A large bulky frame will limit the room we have to fly indoors.
While a small frame might be easier to fly, we need enough room to mount all the
components. The arms need to be large enough for the ESCs while the middle
needs to be big enough to house the batteries and the PCBs. Without the need
for a camera or a gimbal, commonly found on commercial drones, we do not
need an extended landing gear to account for the added depth.

Most drones are measured in millimeters and are measured across
horizontally/vertically. Each drone arm is the same length and the overall square
design, means drones are measured with only a single value. We have decided
that a 450 mm is small enough to fly indoors but will have enough space for all
the materials. If we build our drone and have an excess of space, or a
cumbersome design, we can always decrease the length of the frame.

Drones can have varying number of arms extending from the base. Some drones
have as few as three and others have up to eight drone arms. When you
increase the number of arms, the drone becomes more powerful and the thrust
increases. Since our drone is strictly for indoor flight only, we are not overly
concerned about making our drone very powerful. Four arms will give us plenty

 53

of thrust, allow for a more efficient design, and will make designing the flight
controller much more feasible.

4.6.3.2 Frame Material

The material of the drone plays a large role in a drone’s design and can have
various effects on the flight and strength of the device. Frames that tend to be
stronger are often heavier, while those that are lighter, are generally weaker. The
best combination is a lighter drone that is sturdy enough to withstand minor
crashes and stiff enough to have minimal bending. A lot of high-end drones use
carbon fiber. Carbon fiber can be a great option, but it can be more expensive
than other materials. It is both very strong, hard to damage, and also extremely
light. The added strength might not be worth the increase in budget as our drone
is not going to be flown in extreme conditions. On the other side of the spectrum
would be a wooden drone. It is very cost efficient, but wood is extremely heavy
and not strong enough to withstand crashes we are going to expect during the
testing phases.

The best option for our design would be a fiber reinforced plastic drone. Strong
enough to withstand the impact of minor crashes we might experience indoors
and fairly light weight. There are plenty of frames on the market that are
affordable and made of reinforced plastic. Another benefit of using plastic over
the more expensive carbon fiber, is plastic does not have any communication
issues. Carbon fiber is notorious for blocking radio waves and can cause
complications when controlling the drone. When using carbon fiber, it is important
to place electronics in a way where the signal will not be blocked by the frame.
Plastic is a good lightweight and sturdy alternative to the other frame materials
on the market.

4.6.3.3 Drone Assembly Process

When assembling the drone, it is important to ensure all the components are
properly balanced and tightly secured. There are a few bad side effects on flight
as a result of an unbalanced drone. A poorly aligned drone can lead to shaking.
As a result, certain electrical components can be loosened and give off incorrect
readings. Shaking can especially throw the gyroscope off, which is a key part of a
stable flight. Shaking is not the only problem; bad alignment can cause
undulations throughout the drone that could result in sporadic flight patterns. If
you assemble the drone properly, this issue can be avoided. Eliminating these
issues will make testing and debugging a lot easier.

There are two options we considered when discussing the frame of our drone,
was whether we should custom the drone and 3D print it ourselves or build a pre
made frame. Customizing the drone ourselves would give us a lot of design
freedom but would require a lot of excess work. Many drone frames on the
market are well made and we would not be gaining much of an advantage

 54

designing it ourselves. Assembling a premade drone would be a time saving
options and also a reliable option. Putting the drone together ourselves we can
be extra careful to ensure all components are aligned properly and all the
components are tightly secured in place.

4.6.4 Motors

4.6.4.1 Overview of Motor Orientation

Of the four motors at the end of each drone arm, the direction of the spin is
extremely important. A drone consists of three main types of movements. The
first is the drone’s ability to vertically change height, the second is rotation, and
the last type of movement is a directional change. Below, Figure 27, is an image
showing the orientation we are going to use for our design. The four motor
positions are front left, front right, rear left and rear right. These can be
represented with the following abbreviations, FL, FR, RL, and RR, respectively.

Figure 27 Motor Orientation

For the drone to change height, it uses the speed of the motors to control how
much air is being pushed. The thrust of the motors and the drone’s vertical flight
path go hand-in-hand. When the motors are spinning there are two main forces
present. The air being pushed down, and the counter force expressed in
Newton’s third law. When these two forces are equal, the drone remains level.
With an increase in thrust, the force pushes downwards, and the drone starts to
rise. The opposite happens when the thrust is decreased.

 55

For the drone to not rotate the angular momentum needs to be zero. If the drone
needs to be rotated, the angular momentum needs to be changed. This change
can be done through a change in speed of one of the motors. If a singular motor
has an increase in speed, the drone would rotate but it would also cause the
drone to move vertically. As a result, the drones motors work in pairs to prevent
this from happening. The FR and RL motors are pair while the other two are also
a pair. While one set of opposing motors are decreased or increased the
opposite occurs to the other pair to prevent a change in height. For a drone to
rotate to the right, the front right and rear left motors will increase thrust while the,
front left and rear right motors decrease their speed. If the front left and rear right
motors did not decrease their speed, the drone would begin to rise. This
decrease in speed counteracts this motion.

When talking about directional movements, it does not matter what way the
drone moves, as the drone is symmetrical, it is the same explanation for all
directions. Rotational uses diagonal pairs while, directional movement uses
adjacent pairs. These pairs will change depending on which direction. If the pilot
wanted to move the drone to the left, it would increase the speed of the front left
and the rear left motors. If only the two motors increased speed, the drone would
life up. To compensate for this, similarly to rotation, the other two motors
decrease their speed. This will keep all other forces zeroed out and will just move
the drone in the desired direction. All of balancing is going on simultaneously,
and with the correct orientation everything will work in harmony. Prior to first flight
it is crucial that we take the time to ensure all the motors are properly orientated.

4.6.4.2 Electronic Speed Controller

Motors rely on electronic speed controller to function properly. Essentially the
electronic speed controller, abbreviated ESC, communicates between the motors
and the flight controller. It governs the speed that the motors spring and can be
programmed to perform as desired. Both brushless motors and brushed motors
require different types of ESC. In our case, we are using a brushless motor, so
we need the corresponding ESC. ESC for brushless motors are easy to
distinguish as they have three motor wires, as opposed to the two motor wires on
a brushed ESC. These wires will carry the signals from the flight controller to the
motor. A stronger signal will spin the motors faster, this is all determined by the
flight controller which receives the instructions from the user.

Inside of an ESC there are six MOSFET transistors that are all chained together.
Certain combination of transistors when activated will correspond to a specific
phase inside the motor. It is programmed to take the signal given from the flight
controller and performs the correct gate changes to output the desired rotation.
The higher the signal, the faster the cycle of phases will occur. It is important that
we position our ESCs in a way where they will be exposed to open air to prevent
them from overheating.

 56

Choosing ESC can be a difficult task. There is a large variety of electronic speed
controllers on the market all that have their pros and cons. After searching
through a bunch of ESCs we narrowed our selection to a couple. Areas we put
our focus on while searching was the compatibility, size, amperage rating, and
the weight. Compatibility is important and the software needed to program the
ESCs can play a large role in our decision making. If we are not comfortable with
the corresponding software, we would be hesitant to choose the ESC.

The size of the ESC needs to be able to fit securely in the arm of the drone
frame. The more powerful the ESC, the larger it is typically. ESCs can get big
and the last thing we want are the ESCs to be protruding from the arms of the
drone. We are looking for a good combination of power and size. Having a drone
designed for stable indoor conditions, we can sacrifice the power for the overall
size of the electronic speed controller. With a smaller size, the weight will also be
decreased. Weight and size are directly related and the more lightweight our
drone is, the more efficient our design will be.

Lastly, amperage rating is very important. These will be drawing the majority of
our batteries power and minimizing this can elongate our battery life. ESCs are
rated by the maximum number of amps allowed. A higher amperage ESC can
run at a lower amperage, but once the value is exceeded, there is a risk of
overheating or destroying the ESCs. For our design we limited our search for
ESCs with at least an amp reading of twenty Amps. We are most likely not going
to exceed thirty amps but during our search we did not limit ourselves to ESCs
over 30 amps. Below, in Table 11, is a comparison of potential ESCs.

 Size Weight Price Amp Rating Compatibility

Emax
BLHeli

3.1 x 2.0
x 3.1
inches

4 oz $40 20A ✔

RC Electric
Parts

2.1 x 1.0
x 0.5
inches

4.5 oz $16 30A ✔

Crazepony 1.0 x 0.5
x 0.2
inches

1 oz $45 35A ✔

Table 11 Comparing ESCs

All three options are good options that could work with our design. The first
options by EMAX, is slightly bulkier than the other two. This added size did not
come with another strong advantage. The price was on the more expensive side
while the amp rating was the lowest. It was a good option but was not the best
choice. Craze pony’s 35 A model was extremely lightweight and compact. This

 57

would be the most efficient choice; however, the cost is three times more than
the other RC Electric Parts option. We decided that the added benefits of the
Crazepony design did not justify that increased cost. At almost three times the
cost, it would have been a lot more expensive to choose the Craze pony.
Needing possibly more than four for backups or testing purposes, the Crazepony
ESCs put us at risk of using much more of the allocated funds on ESCs. The RC
Electric Part ESC is small enough with a high enough amp rating. The one
downside is that they are the heaviest of the three designs. This added weight
does not work in our favor; however, it is still fairly light, and the difference is
rather negligible. Figure 28 shows of the ESC designed by Electric Part that we
will use in our drone design

Figure 28 RC Electronic Part ESC

4.6.4.3 Brushless Motors

Brushless motors are the best option for our drone because they have a longer
life-span than brushed motors. With no internal friction, the motor will not
deteriorate as quick as a brushed motor would. Brushless motors use magnetic
power which waste less energy and is more reliable. Brushless motors can be
divided into two categories, in runner and out runner motors. Performance wise
they are both very similar however in our case we are using an out-runner motor.
Outrunning motors are commonly used for drones. In running motors tend to be
taller and narrower, however with the extension of our drone arms, space is not
an issue. The wider outrunning motors are more suitable for drones. They are
slightly less efficient but are capable of producing more torque.

 58

4.6.4.4 Motor Power

Section 4.6.6 goes further in depth about our power design. Our ESCs will be
connected to our lithium polymer battery power source. The motors we are using
are 1000KV motors designed for RC quadcopters. 1000KV motor will produce
more than enough thrust, however if in the future we run into issues, we always
have the option of using more powerful motors. The motors and the ESCs draw a
lot of power however our plan is to implement rechargeable batteries. With a
rechargeable battery, it will save us from having to buy batteries every time the
drone is dead. We are going to start with three 3.7V batteries and work our way
from there.

4.6.4.5 Propellers

Propellers come in various shapes and sizes. The number of propeller blades per
motor is a tradeoff between efficiency and thrust. Motors with more propellers
have more thrust but are more inefficient. For our design we are choosing to use
dual blade propellers because sacrificing efficiency for thrust is not worth it for
our drone designed for indoor use only. It is important to position the propellers
properly depending if the motor is spinning clockwise or counter clockwise. The
image below shows the orientation of the propeller depending on the direction of
spin.

Similar to the number of blades, the longer the propeller the more thrust it gives
however it comes at the cost of efficiency. Bullnose propeller are shorter and
have a more square cut off however we are using longer propellers that may
draw more current however the added thrust will help our dual blade propellers.

4.6.4.6 Motor of Choice

Choosing motors has a large effect on the drone’s performance. The motor is
one of the key elements that governs choices for many other decisions. The size
of the motor determines the length of the propellers while the type of the motor
must match the ESCs. Starting with weight, this is one of the more important
aspects to determine. The motor must be chosen with the frame size in mind.
The size of your motors should be relative to how big your drone frame is. With a
lot of room to work with on our drone phase, we can get a fairly larger motor.
Besides weight, the power of the drone and how efficient it is are also selling
points. Some of the original motors that caught our eyes are listed in Table 12.

 59

 Weight Type Price Strator
Size

KV

Hobbypow
er

1.5 oz Brushless
Outrunner

$40 2212 1000

LiTacc
Model

2.0 oz Brushless
Outrunner

$48 2212 1200

Woafly 2.5 oz Brushless
Inrunner

$31 2212 920

abcGoodef
g

1.44 oz Brushless
Outrunner

$45 2212 2200

 Table 12 Motor Comparison

If we were to choose any of the following four motors, we would have a solid
product, but out of the four we were able to narrow our selection down to one. All
motors are within our desired rotor size range. The LiTacc Model was a very
good choice, relatively lightweight, however it was the most expensive model out
of the four, and the increased cost was not justified as the other models had
similar or better specs. The Woafly was significantly cheaper than the other two
options, however it was also the heaviest motor. Not only was it more weight, but
it is also the only inrunner out of the four. Even though we preferred an
outrunner, we did not rule out all inrunner motors. We did not feel that the heavier
weight and brushless inrunner motor was worth the decrease in price. Both the
Hobbypower and abcGoodefg were very similar but the increased voltage on the
abcGoodefg was not what we were looking for.

In summary, we are looking for a prop size ranging from eight inches to ten
inches. With the prop size you can determine the desired size of the motor’s
stator. We are shooting for something greater than 2200. Another important
specification is that our individual motors do not exceed 2oz. With these in mind,
our motor of choice is the A2212 1000KV by Hobbypower shown in Figure 29.
With a stator size of 2212, we have the option of using our desire propeller size
range. We can vary the size of the propellers and compare the efficiency; our
concrete propellers size will be determined in our testing phase. This motor
weighs roughly 1.5oz which is below are constraint of 2oz. With a diameter of just
over an inch, we will have plenty of room to mount it on our frame. It is also fairly
shallow with a height just under 2 inches. One of the most attractive aspects of
this motor is the low cost.

 60

Figure 29 A2212 1000KV Hoppypower RC Motor

 Permission to use requested

4.6.5 Sensors

4.6.5.1 Overview of Drone Sensors

The drone has a total of three different sensors all serving their own each
individual purpose. The three sensors are the gyroscope, accelerometer, and the
altitude sensor. They are all connected to our flight controller and their data is
used to balance the drone and move the drone to the user indicated position.
There are a lot of varying types of sensors on the market and a big part of our
research was going through all the options and figuring out which were the best.
Some of the factors we considered were the cost of the sensor, the functionality
of the sensor, the overall size, and the communication protocol. Our decision
processes are mapped out below, along with the sensor we will be building our
prototype with.

4.6.5.2 Gyroscope

Gyroscopes come in various different types. Space shuttles use laser gyros while
something more common like your car uses a vibration gyroscope. The
gyroscope used by our drone is also a vibration gyro and it is an essential part of
our design. It is especially important for the PID control loops that will keep the
drone’s flight stable. The MPU-6050 is a popular option and we are going to use
it for our design. The MPU-6050 has more than just a gyroscope, section 4.6.6.2
dives further into greater detail regarding all the chips functionality. One of the
main reasons it is widely used is because it has a very helpful auto leveling
compatibility which will facilitate with the balancing process. The sensor vibrates
in certain way when the device is rotating. The gyroscope feeds this information
to the flight control and the appropriate action is taken. The MPU-6050 is pictured
below in Figure 30.

 61

Figure 30 MPU 6050 Gyroscope and Accelerometer

 Permission to use from open source

It is important to keep in mind when the gyroscope is being mounted, to ensure
the gyroscope is aligned with the frame of the drone. Otherwise the drone will
balance incorrectly. The sensor measures the how fast the drone is rotating. The
rotation of the drone and angular velocity is explained in greater detail, in section
4.6.4.1. There are three coordinates the gyroscope measures, x, y, and z. Both x
and y can be determined depending on which way the gyroscope is rotated. That
being said, it must be sat perfectly flat so the vertical measurement, z
measurement, is accurate.

When looking through motion sensors, it is important to look at the number of
axes on the chip. Starting at three, a three-axis motion sensor only measures
position and functions as an accelerometer. A six-axis motion sensor now adds
the gyroscope rotational measurements. For the purpose of this project, we will
be using a 6-axis motion sensor. A nine-axis motion sensor includes a
magnetometer which for the purposes of this project we do not need.

4.6.5.3 Accelerometer

The accelerometer we are using shares the same chip, MPU-6050, as the
gyroscope. Accelerometers are equipped on most electronic devices that are
moving. They used on most aircrafts and measure both orientation and a devices
acceleration. The accelerometer is constantly measuring all of the forces acting
on the drone. Some are constant, like gravity, while others are user induced.
Newton's second law defines acceleration as the net forces divided by the mass
of the object. The accelerometer works in the same manner. There is a mass
attached that measures the change in forces and determines the acceleration
value. This is given to the flight controller and is used to move as desired and
prevent the drone from tilting.

Doing research, we have some slight doubt regarding the effectiveness of the
MPU-6050. The combined accelerometer and gyroscope are an ideal set up.

 62

This being said, we run the risk of increased noise and disturbed signals. An
alternative solution if we run into problems are buying separate accelerometers
and gyroscopes. Two good reliable backups would be Invensense ICM-42605 or
the MPU-9250.

The MPU-6050 board can connect to the Arduino board. These connections are
very simple, as the Vcc input and Gnd pins are used for power, the SCL (I2C
Clock) and SDA (I2C Data) pins are connected to the general GPIO pins on the
Arduino board, and the Arduino SDE will allow us to work with the data passing
through those pins directly.

4.6.5.4 Altitude Sensor

Measuring altitude can refer to many different things. Simply speaking it is a
measurement of how high the drone is flying. However, it is all based off a
reference point. This can either be absolute or relative. Different ways to
measure altitude include measuring atmospheric pressure, height above sea
level or height above the ground. For the use of controlling the drone’s height, we
would need a drone that measures to the barometric pressure. We need to
ensure the height doesn't exceed a certain value from the starting point. When
the drone is launched, the current altitude needs to be stored. The drone can be
given a limitation as to how much room it has to safely fly. This value can be
changed and will be assigned prior to flight.

The altitude sensor our drone is using is the BMP180 as shown in Figure 31.
This is a small yet powerful device that measures pressure and altitude.
Additionally, it also measures the temperature of the surrounding air, but for the
purpose of this project, that measurement is of no use. This altitude sensor is
fairly inexpensive and supports I2C which will integrate nicely in our PCB. The
layout of this sensors connection to our PCB is discussed in section 5.0.

 Figure 31 BMP180 Altimeter
 Permission to use from open source

 63

4.6.5.5 Indicators

The drone will be equipped with numerous LED indicators to help the user
understand which direction the drone is flying and what state the drone is in. The
drone will have an indicator that will turn on when the drone is powered on. This
will be a small LED that will flash three times when the drone is powering on.
Once on, the LED will remain illuminated and will turn off if the drone loses power
or the drone is turned off. This is a good quick indicator to the user the state of
the drone. When the drone is turned off, the LED will flash twice and promptly
turn off, demonstrating the drone is now powered off. The LED will have various
colors to indicate the battery life. Figure 32 below shows the different colors and
their corresponding battery value. Our drone and most drones on the market do
not have very long-lasting batteries. It is important that the user knows the state
of the battery and knows how long he has until the device loses power.

Figure 32 LED Indicators

Another indicator we are using, is a directional indicator. On the bottom of the
drone will be four LEDs. The two front motors, FR and FL, will both have a green
LED, while the other two will have a red LED. This will be on the ends of the
arms, so the user can have easy visibility to the directional LEDs from every
angle. These LEDs can be referenced when the drone is being directed. Moving
the drone forward, is in reference to the two green LEDs. Regardless of where
the drone is rotated, the forward movement will always be directed towards the
two green LEDs. The image below shows how to read the LEDs and determine
which direction needs to be shown to move the desired direction.

 64

4.6.6 Power

4.6.6.1 Overview of Power

Power is one of the most important things to have a deep understanding of when
it comes to this project, as we want to create a product that is as efficient as
possible while retaining a low cost due to the project being locally funded and
maintaining a good value to make it accessible. All of these things are heavily
dependent on power when it comes to drones because in-air flight time is the
greatest limitation when it comes to drones, given that most professional drones
only have roughly a 30-minute flight time, which is industry leading. While that
timing is for outdoor drones that reach a very high elevation, we are building an
indoor drone, but the drone will have a lot of things pulling power from the power
source. Overall, the power source will be providing voltage to the drone’s
propellers and the Arduino board (which in turn powers the altitude sensor, the
Bluetooth module, the gyroscope/accelerometer, and the flight controllers). This
shows that there are several things at work that require power here, and so our
power source is going to need to be reliable and large. Unfortunately we are also
limited to how large the battery can be because this will weigh the drone down,
and our motors will need to use more power to keep the drone in air (if they can
even lift it off the ground) and it will put more stress on the motors too. This would
also cause the product to run much hotter, which can result in unsafe conditions
for the other electrical components and eventually a malfunctioning of several
parts of our drone.

4.6.6.2 Gyroscope

For the gyroscope, we will be using the MPU-6050. This particular component
has a low power mode built into it, in which it will draw under .1 milliamps. This
very low current draw is ideal for our implementation because we are trying to be
as preservative as possible with our power. This .1 milliamp is being used up by
.02 milliamps for the low power mode and roughly .06 milliamps for the voltage
regulator that is built into the MPU-6050. Because the MPU-6050 is being
powered by the Arduino, this will cause our Arduino to draw less power, which
allows for more power to be used to keep the drone in the air, which will increase
the runtime for our product.

4.6.6.3 Lithium Polymer Batteries

To power our drone, we will be using a Lithium Polymer (or LiPo) battery. We will
be using this particular type of battery because they are much more efficient and
powerful. The downside to using them is that they tend to run up the price of the
drone, however because power is one of the biggest limitations when it comes to
drones, we have decided as a group to invest well into a good battery so that our
product can have a longer runtime. The type of battery is primarily determined by
the motors and propellers that we are choosing, since heavier and more powerful
ones would require a heavier and bigger battery. LiPo batteries are differentiated

 65

by the Capacity, C Rating, and the Cell Count. The Capacity of the battery is
generally measured in milli-ampere hours (mah) which is generally the
measurement that you often see to measure store-bought AA and AAA batteries.
This measurement means that your device could draw that number of milliamps
for one whole hour to drain the battery from 100% to 0%. The C Rating gives the
maximum discharge current that can be drawn from the battery without damaging
it. This just ends up being the Cell Count multiplied by the Capacity. The Cell
Count is just that, the number of cells that the battery contains in total. Generally,
you will find 3S or 4S, aka 3 cells or 4 cells, where each cell has a nominal
voltage of 3.7V.

4.6.6.4 Our Choice

We will be experimenting with these LiPo batteries to build our product, but for
now the battery we will begin testing with a few 3S batteries. We will essentially
buy one of a lower capacity and then continue testing to figure out if we need a
bigger one or can continue to use that one. Ideally, we would like at least roughly
5 minutes of flight time for our first prototype. In the future, we can work on
upgrading the battery and bettering our product to be able to have a longer flight
time, however our drone is meant to be very miniature, and so we are hoping that
a 900mAh capacity 3S LiPo battery will suffice for our first prototype.

4.6.6.5 Rechargeable Battery

For our product, we intend to use a rechargeable battery. The reasoning for this
is that we are building this product for hobby use, rather than competition use
because the idea of this product is to use it indoors and build a new way to
control a drone. Generally, we are not building this drone for a one-time use, and
so it would be a great hassle to need to replace the battery every time you are
done using the drone. Therefore, we will be using a rechargeable Lithium
Polymer battery (specifications previously discussed). This will also help us in
testing and keeping the cost down, because we will undoubtedly need to test the
drone’s flight and runtime vigorously and having to buy new batteries every time
it is discharged will drive the price of our drone up exponentially.

We will be purchasing a Lithium Polymer battery charger that is able to charge
our battery safely along with the battery. The charger comes with connectors that
plug into the battery and provides a screen interface so that you can view the
battery percentage or the battery content. This feature will be especially useful in
our power testing because we will be able to use the screen to tell us how much
battery is left in the drone after we perform a controlled test with the drone and it
still has power after landing. This will greatly help us in writing out usage
instructions for the end-user.

4.6.6.6 Voltage Regulator

For each component receiving power, mainly the motors and the Arduino, we will
need to regulate the voltage so that we are not over-supplying them and in turn

 66

damaging the components. While the power supplied to the motors will not need
to be very strictly regulated, the power to the Arduino will need a very defined
voltage regulation.

4.6.6.7 Battery Life

As previously mentioned, the battery life of the drone is one thing that we expect
to be our greatest limitation for the drone. The reason for us thinking this is
because drones typically do not have a very long battery life even when
professionally made. Furthermore, we plan on using a very small battery. We
hope to have at least an estimated 5 minutes of battery life from 100% battery to
0%, but we will need to see how close we are to that in the first prototype when
we start testing out batteries and combine all of the electrical components
together to see the amount of power that they are going to draw. Our plan is to
use the low power modes in all of the sensors and the Bluetooth wireless
communication to give us the most efficiency with our battery, and we also plan
on testing how long the drone can hover, how long it can continually move
forward, and other similar tests so that we have a very good idea of how the
drone can operate and to understand how to instruct the drone user when a good
time to bring the drone back closer to the user so that the drone can land before
the battery is completely discharged and has a crash landing. Because of this,
we will need to test the drone’s flying time with the motors connected but without
the propellers, allowing us to determine the kind of flight time before actually
letting the drone fly by itself, which would help us reduce damage costs.

4.6.6.8 Altitude Sensor

Measuring altitude can refer to many different things. Simply speaking it is a
measurement of how high the drone is flying. However, it is all based off a
reference point. This can either be absolute or relative. Different ways to
measure altitude include measuring atmospheric pressure, height above sea
level or height above the ground. For the use of controlling the drone’s height, we
would need a drone that measures to the barometric pressure. We need to
ensure the height doesn't exceed a certain value from the starting point. When
the drone is launched, the current altitude needs to be stored. The drone can be
given a limitation as to how much room it has to safely fly. This value can be
changed and will be assigned prior to flight.

The altitude sensor our drone is using is the BMP180. This is a small yet
powerful device that measures pressure and altitude. Additionally, it also
measures the temperature of the surrounding air, but for the purpose of this
project, that measurement is of no use. This altitude sensor is fairly inexpensive
and supports I2C which will integrate nicely in our PCB. The layout of this
sensors connection to our PCB is discussed in section 5.0.

The MPU-6050 board can connect directly to the Arduino board. These
connections are very simple, as the Vcc input and Gnd pins are used for power,

 67

the SCL (I2C Clock) and SDA (I2C Data) pins are connected to the general GPIO
pins on the Arduino board, and the Arduino SDE will allow us to work with the
data passing through those pins directly.

4.6.6.9 BMP180 Code

The exact code uses an altitude function that takes in two parameters of the
atmospheric pressure of your location and then the atmospheric pressure that
the sensor is reading to determine the altitude based on the difference. This
simple and easy to use library allows for our code to be complete, readable, and
concise. The code will be running on a while loop that will continuously serve the
pressure data converted to an altitude number in meters for us to provide to the
laptop to show in the GUI.

4.7 Drone Software Design

4.7.1 Flight Controls

4.7.1.1 Overview of Flight Controller

Flight controllers control the speed of all the motors, dissect commands from the
user and balance the drone. They are vital to the drone and can vary in
functionality. For our design we have the option of programming our own flight
controls or using a pre-programmed flight controller. Flight controllers use the
onboard sensors and constantly feedback information for correction purposes.
This is how the drone remains level. This PID tuning process allows us to
customize how our drone reacts to certain movements and gives us a lot of
freedom when designing our drones flight controls.

4.7.1.1 Dedicated Flight Controller

Drones have become widely popular over the last few years and the market is
saturated with various kinds of drones. With all these drones, there are a ton of
preprogrammed flight controllers to choose from. If we were to use a dedicated
flight controller, it would save us the trouble of having to balance the quadcopter
ourselves. If we did use a dedicated flight controller, the integration process
would be more difficult. Communicating our controls to the already
preprogrammed device, would limit our freedom and could also lead to future
complications. This is not our first choice. We understand that complications
down the road might lead us towards a dedicated flight controller.

The dedicated flight controller is just another microcontroller that is pre-
programmed to have a stable drone. We thought it was important to have a
couple options selected in case we needed to use a dedicated flight controller.
Light a lot of the other components in this project, there are a lot of different kinds

 68

and it took a lot of research to find the best fit for our project. One component
that will help is having a floating-point unit, abbreviated FPU. This is a
component to speed up the computation of floating-point numbers. With an FPU,
the mathematics will be calculated at a faster rate and will alleviate stress on the
MCU and allow for quicker corrections.

Flight controllers are measured by their speed on a scale ranging from F1 to H7.
These values determine a lot of components regarding the drone, but the higher
the value, the more functionality and the better the processor. For our case, we
do not need more advanced than a F3 processor. These processors are powerful
enough and come with all the necessary components, including the FPU. The
Frsky Rx & OSD V2 is an F3 flight controller that would be a good option if we
decide to go the dedicated flight controller route.

4.7.1.2 Combined Flight Controller

Instead of purchasing a preprogrammed flight controller, using the Arduino
platform we can develop our own. Having full control will allow us to expand our
capabilities to the fullest potential. The commands will be received and directly
converted into the desired reaction. There will be no integration process with an
external flight controller. This will make our design simpler and limit the number
of components controlling the drone. That being said, combining our flight
controller and all the other devices under one MCU, might be a lot for the
microcontroller to handle. It is important that device we pick is powerful enough
to handle everything. It is also important that we have a backup plan in case, we
cannot make it work. Our microcontroller decision is further explored in section
4.7.1.4.

4.7.1.3 Flight Control Schematic

If we decide to go with a dedicated flight controller there will be a change
reflected in our block diagram. This will the separation of the MCU and the flight
controller. The flight controller will be connected to the ESC and given
instructions from the MCU. Figure 33 shows and updated block diagram.

 69

 Figure 33 Dedicated Flight Controller Schematic

4.7.1.4 Microcontroller

The microcontroller is the brain of our drone and connects the ESC to the user
giving them control of the device. The microcontroller we are planning to use the
ATmega328p. The ATmega328p has a clock rate of 16 MHz, 2KB RAM, and
32KB of storage. We do not need much storage space as the code we are using
is concise. We have predicted the processing power will be fine to work as a
flight controller and read in commands from the user.

If the processor turns out to not be powerful enough to fly efficiently, the
AT91SAM3X8E is a safe backup. It has significantly more space, higher clock
rate and a lot more ram. The larger microcontroller will most likely not be needed.
However, another option is to use the ATmega328p to feed information to a
dedicated flight controller. The ATmega328p is quite good at relaying
information. We are trying to avoid a dedicated flight controller but, in the
scenario, where we need more power, this could be a feasible option. In Table
13 below we list the three options we are interested in. The ATSAMD21G18 is a
happy medium between the ATmega328p we plan to use and the backup
AT91SAM3X8E. If the ATmega328p is slightly overworked, upgrading to the
ATSAMD21G18 would be a smarter move than the bigger change to the

 70

AT91SAM3X8E.

 Clock
Rate

RAM Flash Price

ATmega328p 16 MHz 2 KB 32 KB $10

AT91SAM3X8E 84 MHz 96 KB 512 KB $20

ATSAMD21G18 48 MHz 32 KB 256 KB $15

Table 13 MCU Comparison

4.7.1.5 ESC Calibration

Calibration of the ESC is extremely important. Subtle differences have large
negative effects on the drone’s stability. All the motors need to be in unison and
spinning at the same speeds. The calibration process is crucial but it’s fairly
straightforward. No external program is used to calibrate the ESCs. All the
calibration is programmed through the Arduino platform. A certain value needs to
be set to determine what no throttle is and what maximum throttle is. This will
vary depending on the motor. In our case, when the ESC gives a signal of 500
microseconds, the throttles are not spinning, and maximum speed when the
ESCs send a signal of 1500 microseconds.

4.7.1.6 Balancing the Propellers

Once the propellers are arranged properly, they must be balanced. Just like most
other components, symmetry and balance is a must. Using the accelerometer
discussed in section 4.6.5.3 and the Arduino platform, the number of vibrations
can be measured. Each motor can be isolated and checked to ensure not much
vibration is being produced. Too much vibration will affect the flight of the drone
and will be extremely difficult to control. With constant starting and stopping and
adding small increments of weight to the appropriate side of the propeller they
can be balanced. For the smoothest possible flight, the level of vibration should
be as minimal as possible and equal across the four motors. If all four motors
have little vibration the sensor can run without being disturbed. Taking our time
on balancing the propellers will benefit us greatly in the long run with an
extremely steady flight.

4.7.1.7 Explanation of Flight Control Code

Arduino programming language works very well with servo motors. It makes it
very simple to program the ESCs as necessary. After including the servo
package, you have the ability to use very helpful built in functions to control the
motors. This will especially be helpful when controlling the PID loops. The actual

 71

PID tuning process is discussed more in section 4.7.2. However, the following is
a general summary of what the Arduino program will consist of. Initially the servo
libraries are imported, opening the door to plenty helpful functions. The next step
is to define values that will be used throughout the program globally so they can
be referenced from across the board. It is important to look at the data sheet and
observe how the information from the different sensors are given and how we
can convert that to helpful information that can be used to create calculations.
This information is discussed in more detail in the individual sensor section 4.6.5.

Now that all the preliminary information is taken care of, the next step is to define
each of the motors and assign them the necessary signal to be in the off position.
The program will run in an endless loop that will constantly be looking for a
direction. The values received via Bluetooth we correspond to a signal and a
conditional statement will match the value with a movement. Each digit will
correspond to a different hand movement. When no action is being received, it
will remain stationary. At this point the PID loops will constantly be giving
feedback correcting the drone’s movement and ensuring it remains horizontal.
While the drone is hovering, the device is constantly getting feedback from all the
sensors, this is the data being used to calculate the PID value. The program will
also monitor the battery level of the drone. The different levels will correspond to
different LED colors specified in section 4.6.5.5. All the other LEDS will also be
controlled by the flight program. These include the power LED and the directional
LED. The directional LEDs will remain the same color while the other LEDs will
be constantly changing depending on the state of the drone.

4.7.2 PID Tuning

4.7.2.1 Introduction to PID Tuning

PID is an acronym for Proportional Integral and Derivative. In a closed loop
system these values can be used to control the flight and allow the drone to
make corrections as quickly as possible. This control system is constantly getting
feedback and correcting errors. Changing the values of P, I and D will change
how quickly and how the drone fixes these errors. Setting your own PID values
can give us a lot of freedom to have the drone react best to our motions. Ideally
the drone should not oscillate and move right back to an auto leveled position
once the drone has finished its action.

Starting with the P value, it monitors the current error. A drone without any PID
tuning would not correct itself. Including the P value will cause the drone to start
oscillating. At this point it reads the error that the drone is too far to one side and
tries to compensate. The higher the value, the more it tries to correct. This
correction alone will not be enough. It will try to correct and over compensate
causing a continuous back and forth action.

 72

The I value monitors the past corrections and applies it under the situation where
external forces are applied to the drone. Initially the I value is not a necessity.
The P and D values are the first priority. The D value looks at potential future
errors and correct accordingly. The combination of the P and D values are what
create the quick reactive correction that is common across commercial drones. If
the D value is increased it will work harder to stop the over corrections caused by
a higher P value.

4.7.2.2 PID Schematic

Below, in Figure 34, a representation of the basic PID model. It shows how the
output is fed back into the controller and altered by the PID values, affecting the
output.

 Figure 34 PID Model

4.7.2.3 Using Multiwii to Balance the Drone

There are numerous programs that facilitate with PID tuning including control
station, MathWorks and MultiWii. After looking through various different options
and possibilities we decided the best third-party tool to help balance the drone
would be MultiWii. MultiWii is a tool designed specifically for RC drones and has
a wide variety of helpful capabilities. It gets its name as it was originally based
upon a component of Nintendo’s game console Wii, which heavily used motion
tracking abilities. It does a good job graphing the PID process and these visuals
will help give us insight on how we can improve our design. With the useful
Horizontal Situation Indicator (HSI) and all the angular measurements calculated,
getting the Kp, Ki, and Kd values through MultiWii will be made much simpler.
This is explained further in section 4.7.2.4. MultiWii integrates extremely easily
with the Arduino software and the two will make balancing the drone much
easier.

 73

4.7.2.4 Process for tuning PID Loops

In order to test the motors, we have a structure designed to hold the drone in
place. From this stationary position the drone will be easy to see where the
corrections need to be made. Either this can be used, or the drone can be held
and as the motors are increased, it can be moved to feel for the drone to be
corrected. This process works but having a consistent stationary mount would be
the most effective. Starting out we can isolate the test to one axis. Starting with
two motors we can find the best working PID values and apply that to the other
axes. Everything thing done on the first axis, can be applied to the second axis.
After setting the untested axis, check to see if the values work and adjust the
value accordingly. It will most likely work at first assuming the two axes are close
to identical, but the values might need some subtle adjustments.

 There is not a combination of PID value that is universally correct. There are
guidelines to help guide in the right direction. Every motor is different, and every
drone will have its own unique inconsistently. Separate motors draw varying
amounts of power, and the stronger motor will cause the drone to lift towards the
more powerful motor. This is corrected with the PID tuning. The best PID tuning
process is starting with the P value. Increase the P value till a steady oscillation
is obtained. This oscillation should be relatively quick. It will bounce back and
forth but will take a very long time to get stable. Once the drone is oscillating from
the overcorrections, the D value can be introduced. The D value will monitor the
time a PID loop takes and relate that to the current angle. Now the drone should
correct faster. With that information it will be able to prevent the drone from over
correcting drastically and will limit the time of complete correction. The next
process can be tedious but through trying different P values and corresponding D
values, the high function set of values can be found to balance the drone as
quick as possible. When the D value is too low, it will almost be negligible, and
when it is too high the system will act unpredictably. Having an understanding of
this can help you determine the next move to find the correct P and D values.
Including the I value can also tighten up the drone’s corrective process. The
drone could balance itself without the I value although the I value makes subtle
important changes. Once the drone is balanced close enough to zero the P and
D values are no longer of use. Here is where the I value comes into play and can
make those subtle changes that ensure the drone is perfectly horizontal.

It is important that the drone’s range doesn’t exceed a real angle of -45 degrees
or +45 degrees, and also that the drone remains perfectly horizontal when no
movement is occurring. If the drone were to exceed these ±45-degree angles,
the drone would flip over. Once the drone flips over, it will not be able to hold
itself up and crash. If the drone does not remain at a real angle of 0, it will float
around and won’t remain still which will make controlling the drone difficult. The
importance of PID tuning cannot be stressed enough and we know this will be a
major part of our project. This will take up a large amount of time and needs to be
started as early as possible to get a working drone. Once balanced, we will have

 74

more time to focus on all the other aspects and improve our design to the best of
our ability.

4.7.2.5 Explanation of the PID Code

The program needs to read in the values from the motion sensor and use that
information to actively balance the drone. The value received can be broken into
two categories, the accelerometer readings and the gyroscope. The
accelerometer has a 16-bit value that can be converted to a more digestible unit
of the pull of gravity. Gravity is roughly 32 ft/ s^2, and a register value of 16384 is
equal to 1g. When the gravity is equal to 1g, the drone is level and a change in
value most likely means the drone is changing direction. Using the pull of gravity,
you can calculate the angle of the drone using basic trigonometric functions.
These angles are important and can be used with the gyroscope to monitor the
position and angular changes in the drone. The information can be extremely
sporadic, and it is important to use filters to clean up the data received from the
motion sensor. Through a combination of low pass and high pass filter, we can
take that information and eliminate most noise and random errors that might
occur.

Using the Arduino environment controlling our flight controls, we can use that
data to help with the PID tuning. The three main PID constants are represented
by Kp, Ki, and Kd. Kp corresponds to the P value, Ki corresponds to the I value,
and Kd corresponds to the D value. It is important to track the error, how far off
the drone is from stable and use the PID values to correct that. The desired
angles are simple, either 0 for horizontal flight or 45 degrees in the desired
direction. The PID controllers’ job is to compare this value and correct
accordingly. It is important to define which side is positive and which side is
negative. Directionally, the forwards and right position are positive on the y and x
axis, respectively. The backwards and left position are negative on the y and x
axis, respectively. Each k value is individually calculated and summed together
to create the singular PID value. This one PID value can then be used to monitor
and correct the motor speeds. The error is constantly fed back into the closed
loop system, the difference is taken for the desired value and the necessary
corrections are made.

4.7.2.6 Effects of the Battery Life on the Motors

As the battery life declines, the power being delivered to each motor will
decrease. This needs to be addressed in the flight controller as this will have a
relatively large effect on the drone’s flight pattern. With a short life span, the
drone batteries are draining quite rapidly. As the battery declines in overall
charge, the motors will all together deliver more power. This inconsistency needs
to be closely monitored and expected. As the power starts to drain, the PID loops
will correct the speeds of each motor to ensure the drone remains stable. The
power of the drown is explained more in section 4.6.6.

 75

4.7.3 Initial Flight Testing

The initial flight testing is being performed in a local gym. We needed a space
with plenty of room to try out different flight control settings. We chose an inside
setting as the drone is designed for flying indoors and we eliminate all the
hazards and excess forces outdoors. The space we used had heights exceeding
our max height requirement so we were able to confirm our drone could reach
the desired height of 10 feet. After PID settings and all the equipment is
mounted, we took the drone to our testing location and flew around observing
how the drone reacts to certain motions and how it corrects. Observing these
components, we would keep that in mind for what corrections would need to be
made. Using gym mats, we covered the floor and did our best to keep the drone
low. Are biggest goal with testing is to do as little damage to the drone as
possible. Without the mats, the hard floor below could potentially break a
propeller or damage other extending parts of the drone. The mats will absorb
some of the impact and prolong the life of our drone in the event of a crash
landing. For the majority of the testing we will keep the drone fairly low to the
ground and avoid exceeding certain heights to prevent major crashes. The huge
amount of space allocated for a testing helps minimizes unwanted crashes.

We want the flight to be demonstrable in a small indoor environment. When the
project is to be showcased, it is important to have a fail proof procedure to show
all the functionalities. That means our battery must last a certain amount of time
and all the gestures must be repeatable upon command. During our testing this
is what we are looking out for. Exhaust a battery and become aware of what time
span we are limited too. If this time is shorter than we presumed, adjustments will
need to be made. Make our design more efficient or add batteries to the drone.

We also need to make sure each individual hand gesture is easily
distinguishable. If two separate hand gestures are too similar and the drone is
performing the wrong action, the gesture may need to be changed to a more
recognizable one. These initial tests are important to lay the groundwork for
improving our design and minimize failure. Once we reach a comfortable position
we can then start adding to our design. Adding extra hand gestures and adding
functionality to our drone would be a fun way to test how far we can take our
project.

6.1.6 Bluetooth Testing

In regard to testing with Bluetooth, we will be able to test that the module is
connected to the laptop computer by seeing the connection indicator LED on the
module, as well as verify that on the laptop computer. We will also be able to
verify this easily when setting up with new devices as we have several laptop
computers, and we are able to connect to the module without it being connected
to the drone. We will rigorously test the connection of the module at varying

 76

distances, with various obstacles in the way, as well as test the communication of
the data with these variables to clearly define the limitations around our product.
These are very important things to verify because the drone, if it gets out of
control, can be very hazardous to surrounding objects and people. When we
want to test the communication, we can simply communicate the data across
without the drone actually flying or spinning the motors. As we are only
communicating numbers across the Bluetooth connection, we can very easily
output the numbers to the console of each respective device to ensure that all of
the data is coming through accurately and precisely.

6.1.3.1 Altitude Sensor Testing

In regards to testing with the BMP180 barometric pressure sensor, we can verify
this very easily by connecting it to the Arduino, and reading the output of the
sensor in the Arduino’s console that is accessible by the Arduino Software
Development Environment, as that is how you debug most Arduino programs
and we will be commonly using that tool. We will develop tests in which we
elevate the sensor to previously measured heights and then look at the output
given in the console to ensure that it is accurate to the level described in the
technical specs of the sensor, which is a very low difference of 18 centimeters.
The output described will essentially output the elevation level in relation to the
provided atmospheric pressure reading at the floor level. It will output its
estimated elevation level after a set interval that we provide it using the Spark
Fun library to convert the sensor’s data to a readable elevation level. Below is
similar to the output that we are expecting to see in the Arduino SDE when
debugging/testing the altitude sensor. Figure 35 is a screenshot of the log output
showing from the Arduino’s Integrated Development Environment. The output is
what we expect to receive using Sparkfun’s library to show the exact altitude at a
given time.

 77

Figure 35 Altitude Sensor Output

4.7.4 Expected Adjustments

Building our project, we are going to run into dead ends and times we need
improvements. There are some areas where it is safe to assume, changes may
need to be made. It is important to be open to change and not get to focused on
something stopping the progress of the project. The first change we may need to
work around, is upgrading to a microcontroller with more space and a stronger
processor. If our current processor cannot manage both flight controls and
communicating to the user, we will have to upgrade our processors. Another
change may be adding more power or making our design more efficient. Even
commercial drones are notorious for having fairly short battery life. Having
multiple batteries standby is another solution however, making our system as
efficient as possible is the best option.

We may also need reprinted PCB. Errors can occur during the production phase
or we can damage the board ourselves. Regardless of how the issue was caused
it is important to have a reliable backup. Most sites are fairly reliable and can give
us a low-cost board in a time no longer than a week. This is comforting as
changes may need to be made or fixed. Same goes to say with individual
components. Are goal being to choose reliable sensors and other key functional
parts, however incidents happen. Crashes may cause breaking or defects can
cause other issues, therefore we can have a backup readily available to avoid
wasting time. With testing out main priority is to not waste time waiting for parts.

 78

Being constantly at a stage of testing and improving will lead to the best result
and possible outcomes.

Another area we have room to explore is what to do when the drone loses
connection. Whether this is caused by a loss in power, out of range or
interference, the drone needs a safe solution to land properly. The simplest
solution would be once connection is lost, or when the battery reaches are
certain percentage, the drone will perform a landing sequence and power down.
This solution will be simple to implement but could also have some downfalls.
The drone might land over something it should not land, causing harm to
someone or the drone. This can be avoided by the user, when flying to always
keep the drone out of danger and over a safe place to land. Another option would
be to incorporate a back-tracking flight path, that can lead the drone closer to its
initial starting path. This will require a more advanced fix and possibly a more
powerful flight controller. If the starting position were marked, it could maneuver
its way back to the starting position. This feature is seen in commercial drones
and would be a possible addition to our drone. There is a lot of room to explore in
this category and once our drone is working properly, we can focus on improving
this. Once the drone loses connection or powers off mid-flight, there should be a
clearly defined response.

4.7.5 Research and investigations

Drones have become increasingly popular in recent years, along with computer
vision technology. When the idea came up for this project, as a group we
researched the web for similar products. Although the market is super saturated
with drones, there was no product exactly alike what we are attempting to design.
This exclusivity is enticing and is another driving factor to do our best at
designing and improving this product.

That being said computer vision and drones do go hand in hand. On the market,
a popular product is a drone that follows motion. These are mainly used for
tracking purposes and the drone will choose a target and track its movement.
This utilizes the same computer vision concepts but differs in the sense that, our
design will be independent of the user movement unless directly intended for the
drone.

 79

5.0 Printed Circuit Board

5.1 Printed Circuit Board Overview

We will be ordering the printed circuit board from online in search of a very low
cost and a relatively short delivery time. This will help us combine the electrical
components that we need to work together to get the drone up and running.

5.1.1 Ordering the PCB

To order the PCB, we need to build the PCB design, and then upload the design
to the website that we are ordering from. We also will need to know how many
pieces exactly that we are ordering, the number of layers we want, and the
thickness of the chip. There are several other options that can be customized
when it comes to PCBs, but for the purpose of our project we do not believe that
we will need anything particularly customized.

5.1.1.1 PCB Company Options

When it comes to choosing the company that we will order the PCB from, there
are limitless options. The primary requirements that we have are a relatively
quick turnaround time and a low cost for a low volume. We only plan on ordering
2 boards, one for our main use and one backup in case something goes wrong in
the mounting process for the components. We hope to find the board for under
$10 each and to receive the board within, at most, two weeks from order time.
We leveraged a website called pcbshopper.com in order to determine which
company we should purchase the PCB from that meets our needs.

The most popular company to order PCBs from is JLCPCB.com, which is a
company that has a special offer to provide prototype PCBs for roughly $2 each,
however their minimum order count is 5 pieces. This company simply wants us to
upload a ‘gerber’ file, which is the industry-standard file type for PCB designs.
This website is especially appealing to us because of their low cost for each
board, however we likely will not need 5 PCBs. We found this company to be
able to deliver at a cost of roughly $10 for normal US registered mail delivery,
which offers a turnaround time of 23 days.

An alternative to JLCPCB is Elecrow, which is a company based in China that
will offer a total price of $13 with a turnaround of 16 days. This offer is compelling
if we are on more of a time crunch, however with this company the minimum
order is for 5 pieces still. The primary quality of Elecrow that would be useful to
us is the quality of the product, as the reviews are much higher for Elecrow as
compared to JLCPCB and other companies.

After looking at more results from the pcbshopper.com resource, it seems that
most other companies are offering higher prices for similar products, and there
are no companies that have 100% satisfaction with the product. If we were to find

 80

that then we would be able to completely eliminate the need for adding in buffer
time for testing the PCB when we mount the components onto it.

5.1.2 Building PCB Design

We will need to build a very comprehensive design for the PCB in order to
provide to our company of choice, in the format of a gerber file. This design will
need to be built with a specific PCB design software, which we will be able to
upload to the company that we want to order it from so that it can be built exactly
to our expectations. For this, there are several options of software to build the
designs. We will also be searching for free software only, as we are trying to
keep the budget for this project at a minimum.

5.1.2.1 PCB Design Software Options

PCBWeb is one application that allows for designing electronics hardware. It has
a very fast and user-friendly wiring tool to allow us to route all of our components
to each other easily. This software offers also a parts catalog which will likely
allow us to find common parts that users choose and offer much more
information about (i.e. which pins are for Vcc and Gnd and more) the
components that we are using, if they are available in their library of components.

Another option is called ZenitPCB, which is a user-friendliness focused program
that will allow us to quickly spin up our PCB design, and it offers the functionality
of directly converting the schematic design to a PCB if we are able to provide that
to the software. It is unlikely that we will take advantage of this feature, however
if we were on a large-scale this feature would be very useful because we would
very likely have the schematic to convert automatically.

Several other tools are available, however many of them are Operating System
specific, which is not ideal as well as being less commonly used and so there is
less support in the online community for them. Because of this, we will be
building our PCB design with PCBWeb, as it seems to be the most popular
option and is the highest rated free software. From PCBWeb, we will generate a
gerber file for us to upload to the company that we will be ordering the boards
from.

5.1.3 Mounting Parts on PCB

In order to mount all of our parts onto the PCB, we will be taking advantage of a
service offered nearby us called Quality Manufacturing Services, Inc. This
incorporation offers a free service to mount most of our parts onto the PCB, so
long as we provide the PCB and the design of where the components are meant
to be fitted. This will allow for a professional to mount our components, which will
reduce the likelihood of error that would occur if we were to mount it ourselves
with our lack of better equipment and experience. This is a very common service

 81

that many students use to mount components onto their PCBs for their Senior
Design projects and so we will also be following suit to ensure a better product.

The PCB will need multiple components mounted onto it. The largest portion of
the PCB will be taken by the Arduino board, as that is the primary component
that is powering everything and feeding most of the parts data and receiving all of
the data. The Arduino is then complemented by the Bluetooth module, the
accelerometer, and the altitude sensor in terms of components that will be
feeding it data. Then, the ATMega328p will also be connected as the flight
controller and will then communicate to the ESCs to provide the drone motors the
appropriate speeds they should fly at. The voltage regulator will both need places
on the PCB to be connected, as the ESCs will be directly connected to the
motors.

5.2 Hardware Requirements

Because this project is heavily hardware-focused, we will have requirements
based solely on the hardware. We will have our requirements directly line up to
our tests, so that our tests are exactly testing our requirements, and ensuring
functionality. Our core functionality however is divided up into Software
Requirements, Hardware Requirements, and General Requirements. Our
hardware requirements are more focused on how the hardware parts work
together.

5.3 Potential Risks

While building this project, there are numerous potential risks. Primarily, the risks
involve failing parts and electrical hazards. We intend to prototype at various
levels to mitigate these risks. We are planning on testing each individual
electrical component, such as the Arduino, the ATmega328p, the motors, and the
ESCs. We intend to mitigate any risk of electric shock by measuring via
multimeter the output of each component with the battery connected to it. This
will allow us to understand exactly the output of the components to build a project
that does not electrically fail or short. We also plan on testing in a closed
environment due to the danger of drone motors hurting people. This will also
allow us to fly the drone legally because we are doing it indoors and without
anybody in the room, as to protect their privacy.

5.3.1 Drone Laws

Currently, in Florida, drones are not able to be flown without restrictions. We are
required to submit for permission to fly our drone via the Federal Aviation
Administration, which will require a registration process and a description of the
drone and why we intend to fly it. Flying a drone and invading someone’s privacy
is illegal, and because of the risk of several drone operators committing this
crime, there have been laws placed to circumvent this risk. The laws are about
registering the specific drone, following safety guidelines, keeping the drone

 82

within the line of sight, getting authorization to fly in any controlled airspace, and
flying below 400 feet in any uncontrolled airspace. Because we are not building
this product for outdoor flight, we do not need to worry about this risk. Therefore,
we will be flying our drone completely indoors with authorization from the entire
room without breaching any person’s privacy. Being indoors also means that we
are able to fly a drone without any licensing or certification. This allows our
product to be much more marketable and accessible. The indoors setting also
means that the airspace is private, which means that our drone’s flight is not
regulated by the FAA, however fault is still gone to the pilot if anyone is harmed
during the drone’s flight.

6.0 Prototype Construction

We will be constructing the prototype after all of the individual parts have
undergone their associated tests. Similar to how a software application is tested
with unit tests and system tests, we will perform the same type of testing on our
project to ensure that all of our parts work individually, and then that they all work
together. We will construct the prototype by first connecting the motors to the
ESCs, then mounting those parts to the frame. From there we will connect the
PCB that we will design for the combination of microchips that we will be using
for the project. We will then connect power and test the drone out.

In order to build the prototype, we will need to go through a number of steps.
Primarily, we will need to start with the drone motors connecting to the ESCs.
Then we will test operation of the motors directly through the ESCs and the
ATmega328p to see how the motors work. From there we will need to attach the
motors and ESCs with wiring to the drone frame that we purchase.

Next, we will need to mount all of the components onto our designed PCB which
is then to be mounted onto the drone frame in the very center, attempting to do
our best to keep the weight balance as central as possible to allow for the
smoothest balancing mechanism for the drone’s motors and flight controller.

Once those parts are mounted, we will move on to the software side of the
project. This part of the project can be done in conjunction to the actual hardware
construction of the drone, as they are two separate parts that are not dependent
on each other until we actually want to fly the drone.

The Arduino and the ATmega328p will need to be programmed along with the
sensors and Bluetooth module connected, which we will need to work on having
them all working in conjunction simultaneously.

The neural network will first need to be trained, and then we will need to create
the GUI that shows the signal that it is reading from the webcam, along with the
altitude of the drone and a log output to verify that the computer is sending the
appropriate signals and that the drone is receiving those signals clearly.

 83

Once the hardware and software have been completed, we will connect to the
drone via Bluetooth and verify whether the drone is able to respond to our hand
gestures passed to our laptop’s webcam.

This will conclude our process of building our prototype. Of course, this is a very
high level and very simple method of building our prototype, but it will be our
responsibility to be flexible to account for unknown hurdles that we may come
across and not let any bumps in the road keep us from progressing our project.

7.0 Owner’s Manual

Our product was built with ease-of-use as a primary benefit of our drone
compared to other drones available in the market. However, taking off for the first
time does involve a generally lengthy process. In order to setup the drone for its
first flight, the following steps will need to be followed:

1. Install the GUI software on the controlling laptop computer
2. Test every one of the hand motions in the table provided containing the

hand gestures and make sure the correct output is shown in the log output
3. Charge the drone’s battery to 100%
4. Turn on the drone’s power
5. The drone will automatically go into pairing mode if it does not detect a

nearby previously connected device
6. Open the controlling computer’s Bluetooth settings

a. Select G.O.D. to connect to the drone
b. Enter the provided PIN to authenticate

7. Verify that the Bluetooth connection was successful on the log output of
the GUI

8. Verify that the altitude sensor feature is providing output on the GUI, and
that it is responding to actual changes in altitude for the drone (this can be
done by manually picking up the drone or by flying it using the motors)

9. Start giving the drone commands via hand gesture

This product can be very dangerous, so please use caution when flying. As this
product is a prototype, please fly this product in an area clear of animals and
obstacles to prevent any injury or damage to the surroundings or the drone.

During prototyping, the laptop computer used was a 2017 MacBook Pro, with a
3.1GHz CPU. While you are welcome to use your own laptop, please understand
that we do recommend something similar to what we were prototyping with or
better to ensure that your hand gestures are read in and converted to commands
to the drone quickly and efficiently.

Upon opening up the GUI, please verify that all components are visible and are
structured like the picture shown below in section 4.4.3. This will allow you to
make sure that the software has been installed correctly.

 84

7.1 Troubleshooting Steps

If you find that the GUI software is not responding, please try all troubleshooting
steps below:

1. Uninstall and reinstall the software
2. Restart your laptop computer
3. Check your camera settings for your specific computer.

If there are issues in which the hand gestures are not being recognized by the
GUI software:

1. Verify that you are allowing the GUI to utilize the camera on your laptop
computer

2. Please check every gesture to see if any of them are registered
3. Please verify that you have a high contrast between your hand and the

background, so that the camera is able to clearly distinguish your gesture
4. Try using your alternate hand to mimic the gestures

If there are issues with connecting to the drone via Bluetooth, verify the below:
1. Is the blue LED light on the drone flashing when the drone has been

turned on?
2. If the blue LED is flashing rapidly, the drone is still in pairing mode, which

means that it is searching for a new device to connect to
a. Ensure that your controlling device is within 30 feet of the drone

3. If the blue LED is flashing slowly, it has connected to a previously
connected device and is awaiting input from that device

4. Should that be the incorrect device, please disable Bluetooth on the
incorrect device to put the drone back into pairing mode so that your
desired controlling laptop computer can see the drone in the Bluetooth
settings

If the drone is not able to fly based on your commands, please verify the below:
1. Is the drone’s battery charged to 100%?
2. If the motors are not moving at all, there is likely an issue with an on-board

connection to the ESCs or from the ESCs to the motors
3. Verify that the log output shows the signal that the command has been

received
4. If none of the above work, please reset the drone and quit the GUI

a. Open the GUI
b. Connect again via Bluetooth
c. Verify on your laptop that you are connected to the correct device
d. Verify the camera is enabled and your hand is visible in the frame
e. Send a ‘fly upwards’ command

 85

8.0 Administrative Content

8.1 Evaluation Plan

Our evaluation plan will consist of key points that our project is meant to meet,
evaluation questions that will be answered with measurable outcomes, and an
evaluation design that highlights our project’s objectives and addresses the key
shortcomings.

8.2 Key Evaluation Points

The key evaluation points that we are trying to reach with our project are the
ability to fly the drone, the ability for our neural network to recognize the hand
gesture passed to the camera, and the ability to communicate the action paired
with that hand gesture to operate the drone.

8.3 Evaluation Questions

In order to meet those evaluation points, we need to be able to measurably test
those points. Below are the measurable key questions that we aim to be able to
answer positively after the successful construction of our project:

1. Can the neural network recognize our hand gesture within 500ms?
2. Can the drone react to our hand gesture within 1s?
3. Can the drone ascend with full stabilization, maintaining level during

ascent?

8.4 Evaluation Design

For us to be evaluated, we will be reaching out to one of our professors or a
provided proctor to go through all of our measurable requirements shown in the
beginning pages of this report and verify that we have met those requirements.
Of course, those requirements can change along the way, however we will be
sure to provide the appropriate fields for the evaluator to fill in so that the input is
unbiased when it comes to measurements and having a holistic understanding of
our project. We will also include a list of the primary constraints that we were tied
to during the making of the project and will leave a field for the evaluator to input
how we circumvented those constraints in order to complete our project. This will
allow the proctor to gain a much better understanding of the project, why
everything has been done in the way it has been done, and the ideology behind
what we plan to develop with our prototype.

Furthermore, to allow for more freedom for the evaluator, we will offer a form in
which they can list their specific concerns. Our team will answer those concerns
upon hearing them, and if our project does not address those concerns then we
will be able to collect that as data from the evaluator to be addressed in the next
iteration of the project.

 86

8.5 Proposed Schedule
Every week we plan on meeting at least twice and discussing our research

and progress. On top of these meetings we will strictly follow our milestone plan
listed below in Table 14.

Date Semester Milestone

May 27, 2019 Summer 2019 Divide & Conquer 1 Assignment

May 28, 2019 Summer 2019 Approve projects and begin research

June 3, 2019 Summer 2019 Begin our individual writing parts

July 2, 2019 Summer 2019 Complete parts and share content

July 4, 2019 Summer 2019 Begin integrating all three parts

July 16, 2019 Summer 2019 Finalize document and print final copy

July 30, 2019 Summer 2019 Submit the final document

August 27, 2019 Fall 2019 Order all the necessary parts

September 3, 2019 Fall 2019 Being assembling drone

September 10, 2019 Fall 2019 Ensure individual components are working

September 17, 2019 Fall 2019 Build the first prototype

September 24, 2019 Fall 2019 Test prototype

September 26, 2019 Fall 2019 Use following time to redesign and rebuild

November 19, 2019 Fall 2019 Finalize drone for final presentation

November 26, 2019 Fall 2019 Present our project

 Table 14 Milestones

8.6 Budget and Finances

Budgeting was a very large concern when it comes to this project. Most drone
projects end up costing a very large amount, and we found in our research that
this was mostly due to parts breaking and expensive drone parts. Other reasons
for this can be due to students buying pre-built drones and add to its functionality.
This was among our options, however we decided to try and build as much of the

 87

drone as we reasonably could, so that we would be able to have the drone be
marketable and cost us less in prototyping.

Because we were not buying a drone that was already built and just integrating
our solution to control it via controlling the given controller, we circumvented the
entire need of buying a controller as well, since our laptop computer is directly
controlling our drone now, with no middle man that could have been a
dependency for our project.

Furthermore, since we avoided buying an already built drone, we are able to
deeply understand all of the working parts of our drone, which allows us to
understand what is broken and how to fix or replace that piece that is broken,
whereas if we were to buy a built drone, we would have to dismantle the entire
thing to fix something that could be going wrong with the drone.

While we saved greatly on buying the drone in parts, we also tried to minimize
our spending on a part-level basis. This means that cost-effectiveness was a
factor when it comes to each and every part that we chose to use to build our
product.

 88

Table 15 maps out our expected budget for our project. These are estimated
costs and we expect our total budget to be around the value listed in the last row.

Component Estimated Cost

Development Equipment $100.00

Bluetooth Module $10.00

Brushless Motors x4 $70.00

Propellers x4 $20.00

Lightweight Drone Frame (150mm) $20.00

Electronic Speed Controller x4 $100.00

Voltage Regulator $5.00

Batteries $40.00

Accelerometer Sensor/Gyroscope $20.00

Altitude Sensor $10.00

PCB Printing $30.00

ATMega328p $10.00

Miscellaneous Components $200.00

Total: $635.00

Table 15 Proposed Budget

8.6.1 Software Development

When it comes to the GUI, we developed the entire thing by ourselves. This was
attributed to the fact that among us are 3 computer engineers, and so we have a
strong background in software development. This allowed us to build the GUI for
the drone all with the use of free tools and the development was done entirely by
us.

In regard to the neural network, one of the members of the group, particularly
Anshul Devnani, had previous coursework experience in Machine Learning, and
so he was knowledgeable to help the 3 of us build the neural network free-of-
charge through the use of Keras.

The minimal hardware necessary for the neural network recognition system was
simply a computer that has a webcam and a GPU. We have not yet tested the

 89

neural network’s speed from one laptop’s GPU specs to another, however we
believe there to be a difference in time taken to train the model as well as the
time taken to recognize the gesture. Despite that, most laptop computers are
quite capable of handling this task if it is the only one currently running on the
computer and there are not several other tasks running on the GPU. Since our
intention was to minimize the spending, we avoided the need of purchasing new
hardware just to control the drone, and so we decided to use the computers that
we already owned, as they already had capable GPUs and had built-in webcams.

8.6.2 Wireless Communication

For the wireless communication, we decided to use Bluetooth, which we found to
be very cheap and accessible. Most of the Bluetooth modules were available for
under $40, however we decided to go with a very popular choice that was only a
fourth of that price. We chose this one because it was popular with DIY projects,
and it was cost-effective for us to use simply the module tacked on top of the
Arduino rather than buy an Arduino with Bluetooth already built in. This form of
communication also proved cost-effectiveness in the reasoning that most
computers have Bluetooth built-in, so it was something that computers already
have installed and would not require any additional hardware for the computer for
the drone and the computer to connect.

8.6.3 Battery

In terms of battery, we designed our product to be able to use a rechargeable
battery. This means that we are not required to spend large amounts of money
on several batteries that will only last a 15-20 minute flight and then be unusable
afterwards. Most drones typically use a rechargeable battery, and so we will be
using the same. We were very unsure about the capacity of battery we needed,
so we are starting with a 3S Rechargeable Lithium Polymer battery that is only a
900mAh capacity to start, however we will likely need to upgrade the battery as
we go on. Fortunately, the low amperage batteries are relatively cheap, most
being under $20. We will certainly need to spend an additional amount on
recharging the battery, which we plan on prioritizing despite price due to us trying
to avoid destroying or damaging any of the batteries we use to test.

8.7 Division of Labor

A lot of work on the project is performed as a team although for individual
research we broke down the topics into sections and divided the work. We all
chose the topics that best suited our expertise and strengths. Anshul Devnani
has a passion for computer vision and is hoping to pursue a career in the field.
As a computer engineer, he is currently working as intern at Leidos as a system
integration engineer and previously work as a CWEP for two years. With his
professional programming experience and computer knowledge, gained through

 90

courses at UCF, he took on the task of planning the graphic user interface and
research deep neural networks and computer vision.

Pranay Patel has a history in network communication and power systems. He is
a computer engineering major and is researching all the different types of
network communications, memory management, PCB construction, and system
power. He currently works at Darden Restaurant as an implementation engineer
intern working with a skilled team of engineers to maintain and improve a back-
end system for digital marketing. He is using the knowledge he has gained from
work and class to research what is necessary to connect the drone to the user
interface and how to power the drone.

Bernardus Swets is a computer engineering major at UCF, following the digital
track, and took on the task of researching the flight controls. He focused on
looking into the different drone designs and corresponding hardware. He also
looked into the flight control software. Having experience with linear control
system, he researched what it would take to balance our drone using PID loops.
He works as a system engineer CWEP at Lockheed Martin. Between his
knowledge gained from professional experience and in class he will focus on
designing and balancing the drone.

9.0 Conclusions

To conclude, our project is going to be a new way to interact with drones and can
pave the way for a new way to interact with other machines as well. The
extensibility of gesture-controlled devices is rapidly growing, and it is also
extremely beneficial to those with disabilities regarding sound. Because those
with disabilities regarding sound tend to communicate through sign language or
the like because they are unable to talk, this will allow them an easy way to
communicate with devices via gestures that they are already very familiar with.
Our project, a gesture-operated drone, is simply an implementation of a gesture-
controlled device. The Gesture Operated Drone allows for an extremely simple
way to operate a drone in comparison to the unwieldy RC remotes that
commonly come with drones to operate them.

Our gesture schema has been set up to be accessible to any and all that have
full motion of all of their fingers. This schema allows for an extremely wide market
for our drone, because most people are able to do all of these simple gestures
with ease. In addition, our target market for the product is people that want to
pick up drones as a hobby or for a just-for-fun purpose. This target market is
extremely wide because drones are a relatively new concept and there are an
increasing amount of people taking up photography and videography in today’s
time. Generally, most drones are either flown for fun or to get a photograph or
video from an angle that mimic’s a bird’s eye view. This allows for a very unique
picture or video and so is desired by many people exploring the hobby of
photography.

 91

While there are many people that want to take up flying a drone for whatever
purpose, unfortunately it can take time to learn how to operate the drone safely
with the common RC remote that comes with most drones, and drones can be
very dangerous if flown incorrectly or if it goes off-course due to the operator not
knowing how to use the remote control. Our project is designed to skip this
extreme learning curve by making predefined actions for the drone, such as
elevate, de-elevate, move left, right, forward, and backward, so that the user can
simply pick up the drone and start using it without the worry of accidentally
thrusting the drone into a tree, damaging the several hundred dollar drone that
they just bought minutes after using it. On top of that, the user does not even
need to operate any extraneous hardware to perform those actions, they simply
need to only use their hands in front of their computer screen to make them
happen.

Of course, there is one particular limitation that we immediately noticed when
compared to using a remote control that seemed to be a disadvantage to our
solution. That limitation would be the latency with which the signal is received. In
particular, there is much more computation going on when it comes to the two
forms of operating the drone. Both using a remote control and our solution of
communicating from a laptop computer requires a wireless communication
method to command the drone to act. However, they differ in the computation
required to create the command to the drone. Our solution must convert the input
hand signal from a camera to match a model, while the remote control simply
needs to convert analog input to digital input and send the appropriate command
accordingly. Our projection was that this would cause an extreme latency that
would impact the drone’s functionality and wieldiness of the controls. However,
as we are training the model, we are seeing a much faster response time than
we previously expected.

This project is very helpful in combining our multitude of coursework to produce a
working drone from scratch and a GUI built from scratch with integrated Machine
Learning and Computer Vision applications. We were also able to communicate
between the two wirelessly. Every part of our project could of course be improved
upon, and when going to market we would be able to minimize costs by
manufacturing in bulk and not wasting as many parts as we did during testing.
This would allow for the product to be much more marketable.

Additionally, we could offer the product as a modular product, in which we offer
the drone with better Bluetooth modules for extended range, a faster chip to
handle flight control, better motors, a larger frame, and the like. This would make
the customer able to make the product more attuned to their use case.

Another addition that we could implement to our drone could be the ability for the
drone to have the camera on board, with a built-in processor able to handle the
neural network processing. This would allow the drone to be 100% hands free,
and completely without a remote at all. The primary condition that we would run

 92

into there is keeping the subject’s hand in view at all times, or to train a neural
network to recognize hands despite all of the extraneous input received via the
camera’s lens.

To sum up, this project was extremely educational and allowed us to follow the
lifecycle of an integrated project from start to finish. We were able to generate
actual user requirements based on measurable items, and we were able to build
a prototype that can scale to multiple things. This project can evolve in hundreds
of ways and can really make a large impact on consumer tech worldwide if it was
to reach the global market. The reasoning behind that is that as we progress in
technology, we are decreasing the direct touch interaction continuously. One
particular example of that is how fast voice recognition technology is spreading
and ramping up. However, our product is able to target those that are not able to
speak fluently or do not speak a common language that is supported for most
voice-recognition services out of the box. This allows for us to target a near-
universal market, because humans everywhere can understand some hand
signals, and we have designed our product to account for using hand signals that
are understandable no matter what differences a person may have origin-wise.

 93

Appendix A Resource and Citations

/@piotr.skalski92. “Preventing Deep Neural Network from Overfitting.” Medium,
Towards Data Science, 4 Jan. 2019, towardsdatascience.com/preventing-deep-
neural-network-from-overfitting-953458db800a.

“Convolutional Neural Network.” Wikipedia, Wikimedia Foundation, 29 July 2019,
en.wikipedia.org/wiki/Convolutional_neural_network.

/@_sumitsaha_. “A Comprehensive Guide to Convolutional Neural Networks -
the ELI5 Way.” Medium, Towards Data Science, 17 Dec. 2018,
towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53.

“Tkinter vs PyQt Detailed Comparison as of 2019.” Slant,
www.slant.co/versus/16724/22768/~tkinter_vs_pyqt.

CS231n Convolutional Neural Networks for Visual Recognition,
cs231n.github.io/convolutional-networks/.

“Comparing Machine Learning as a Service: Amazon, Microsoft Azure, Google
Cloud AI, IBM Watson.” AltexSoft,
www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-
amazon-microsoft-azure-google-cloud-ai-ibm-watson/.

“KDnuggets.” KDnuggets Analytics Big Data Data Mining and Data Science,
www.kdnuggets.com/2018/01/mlaas-amazon-microsoft-azure-google-cloud-
ai.html.

“AlexNet.” Wikipedia, Wikimedia Foundation, 26 June 2019,
en.wikipedia.org/wiki/AlexNet.

Rizwan, Muhammad. “LeNet-5 - A Classic CNN Architecture.” EngMRK, 30 Sept.
2018, engmrk.com/lenet-5-a-classic-cnn-architecture/.

Jeremy Jordan. “Common Architectures in Convolutional Neural
Networks.” Jeremy Jordan, Jeremy Jordan, 20 Oct. 2018,
www.jeremyjordan.me/convnet-architectures/.

“Keras vs TensorFlow vs PyTorch: Deep Learning Frameworks.” Edureka, 22
May 2019, www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/.

/@DevEconomics. “What Is the Best Programming Language for Machine
Learning?” Medium, Towards Data Science, 7 Jan. 2019,
towardsdatascience.com/what-is-the-best-programming-language-for-machine-
learning-a745c156d6b7.

 94

“A Beginner's Guide to Backpropagation in Neural Networks.” Skymind,
skymind.ai/wiki/backpropagation.

/@avinashsharmav91. “Understanding Activation Functions in Neural
Networks.” Medium, The Theory Of Everything, 30 Mar. 2017, medium.com/the-
theory-of-everything/understanding-activation-functions-in-neural-networks-
9491262884e0.

 “Online Diagram Software & Visual Solution.” Lucidchart, www.lucidchart.com/.
Clausing, John R. HauserDon. “The House of Quality.” Harvard Business
Review, 1 Aug. 2014, hbr.org/1988/05/the-house-of-quality.

Brokking, J.M. “Project YMFC-AL - The Arduino Auto-Level
Quadcopter.” Brokking.net - Project YMFC-AL - The Arduino Auto-Level
Quadcopter - Home., www.brokking.net/ymfc-al_main.html.

Ryan, and General Electric. “Brushless Inrunner vs Outrunner Motor?” Go Back
to the Front Page, 24 Aug. 2018, www.radiocontrolinfo.com/brushless-inrunner-
vs-outrunner-motor/.

Osmanbasic, Edis. “Three-Phase Electric Power
Explained.” Engineering.com, www.engineering.com/ElectronicsDesign/Electroni
csDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx.

“Choosing the Right Quadcopter Frame.” QuadHangar, 14 June
2016, www.quadhangar.com/choosing-the-right-quadcopter-frame/.

“Best Indoor Drones - Fly in the Living Room without Wrecking the Place.” Drone
Rush, 30 July 2019, dronerush.com/best-indoor-drones-fly-living-room-11926/.

Allain, Rhett. “How Do Drones Fly? Physics, of Course!” Wired, Conde Nast, 3
June 2017, www.wired.com/2017/05/the-physics-of-drones/.

“Quadcopter PID Explained.” Oscar Liang, 20 Jan.
2019, oscarliang.com/quadcopter-pid-explained-tuning/.

“Electronic Speed Control.” Wikipedia, Wikimedia Foundation, 3 June
2019, en.wikipedia.org/wiki/Electronic_speed_control.

Corrigan, Fintan. “How A Quadcopter Works With Propellers And Motors
Explained.” DroneZon, DroneZon, 18 July 2019, www.dronezon.com/learn-about-
drones-quadcopters/how-a-quadcopter-works-with-propellers-and-motors-
direction-design-explained/.

http://www.lucidchart.com/
http://hbr.org/1988/05/the-house-of-quality
http://brokking.net/
http://www.brokking.net/ymfc-al_main.html
http://www.radiocontrolinfo.com/brushless-inrunner-vs-outrunner-motor/
http://www.radiocontrolinfo.com/brushless-inrunner-vs-outrunner-motor/
http://engineering.com/
http://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
http://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
http://www.quadhangar.com/choosing-the-right-quadcopter-frame/
http://dronerush.com/best-indoor-drones-fly-living-room-11926/
http://www.wired.com/2017/05/the-physics-of-drones/
http://oscarliang.com/quadcopter-pid-explained-tuning/
http://en.wikipedia.org/wiki/Electronic_speed_control
http://www.dronezon.com/learn-about-drones-quadcopters/how-a-quadcopter-works-with-propellers-and-motors-direction-design-explained/
http://www.dronezon.com/learn-about-drones-quadcopters/how-a-quadcopter-works-with-propellers-and-motors-direction-design-explained/
http://www.dronezon.com/learn-about-drones-quadcopters/how-a-quadcopter-works-with-propellers-and-motors-direction-design-explained/

 95

“How Gyroscopes Work.” Robot Academy, 30 July
2018, robotacademy.net.au/lesson/how-gyroscopes-work/.

“A-610 Acceptability of Electronics Assemblies Training and Certification
Program.” IPC, 22 Apr. 2019, www.ipc.org/ContentPage.aspx?pageid=IPC-A-
610.

Henney, Marc. “Bluetooth Versions Comparison & Profiles.” RTINGS.com, 6 July
2017, www.rtings.com/headphones/learn/bluetooth-versions-comparison-profiles.

“How to Set Up the BMP180 Barometric Pressure Sensor on an Arduino.” Circuit
Basics, 13 Aug. 2018, www.circuitbasics.com/set-bmp180-barometric-pressure-
sensor-arduino/.

Murison, Malek, and Malek MurisonMalek Murison. “ISO Proposes Global Drone
Standards.” DRONELIFE, 22 Nov. 2018, dronelife.com/2018/11/22/iso-proposes-
global-drone-standards/.

“The Guide to Bluetooth Modules for Arduino.” Into Robotics, Into Robotics, 18
Jan. 2015, www.intorobotics.com/pick-right-bluetooth-module-diy-arduino-
project/.

Appendix B Copyright Permissions

Figure 36 Copyright Permission LeNet-5 Architecture

http://robotacademy.net.au/lesson/how-gyroscopes-work/
http://www.ipc.org/ContentPage.aspx?pageid=IPC-A-610
http://www.ipc.org/ContentPage.aspx?pageid=IPC-A-610
http://rtings.com/
http://www.rtings.com/headphones/learn/bluetooth-versions-comparison-profiles
http://www.circuitbasics.com/set-bmp180-barometric-pressure-sensor-arduino/
http://www.circuitbasics.com/set-bmp180-barometric-pressure-sensor-arduino/
http://dronelife.com/2018/11/22/iso-proposes-global-drone-standards/
http://dronelife.com/2018/11/22/iso-proposes-global-drone-standards/
http://www.intorobotics.com/pick-right-bluetooth-module-diy-arduino-project/
http://www.intorobotics.com/pick-right-bluetooth-module-diy-arduino-project/

 96

Figure 37 Copyright Permissions AlexNet Architecture

Figure 38 Copyright Permission Request Loss & Accuracy vs Epoch

Figure 39 Copyright Permissions Request Overfitting Graph

 97

Figure 40 Copyright Permissions Request Brushless Motor

Figure 41 Copyright Permission Request ESC

