
Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

 Gesture Operated
Drone

Drones have become increasingly
popular over the last decade. Every year
their abilities are rapidly increasing and
we wanted to do our part to add to this
continuously growing field. With the
knowledge we have obtained throughout
our studies we challenged ourselves to
develop a drone that is strictly controlled
by human hand motions/signals. Our
team wanted to build a product that
combined every aspect of our computer
engineering coursework. With this in
mind, we were able to collaborate on the
idea to utilize PCB construction,
embedded programming, Python
development for a GUI, and machine
learning to build a useful and sound
product.

Because we, as a team, believed that
drones can sometimes be difficult to
operate, we wanted to offer the ability to
control them with a much simpler
interaction. This allows for us to build in
automatic stabilization and maneuvers
without having to try to keep the drone
flat and level via remote control. This
product has not yet found its way on the
market and we wanted to be the first to
make this a reality.

Our plan to create a widely marketable
product forced us to take into account the
usability of the product, the cost, and the
ability to use devices that customers
were already familiar with to allow for an
easier interaction with the drone. We
were able to fulfill all of those goals in our
project plan. We were able to maximize
usability by creating hand gestures to
control the drone that are generally
universal, meaning that people around

the globe can mimic all of the gestures to
operate the drone. In order to make the
cost of the drone low, we were taking into
account the cost of each and every
component when planning our prototype,
and once our prototype build process
was completed, we will be able to refine
that process to reduce time to build and
increase cost efficiency. Since our
product requires the use of an external
device, we decided to make it so that
other people can simply install the
software required to operate the drone on
their local laptops or PCs. This allows for
users to interact with something they are
familiar with and make the drone user
experience more seamless.

The project will have a user-friendly
webcam-based GUI, that will
communicate with the drone. The GUI’s
main component will be the webcam,
along with other indicators showing the
drone’s current status and useful live
information. From the users end, the user
will perform the desired hand gesture and
the drone will react accordingly. For
example, the user will signal a thumbs up
and the drone will respond, within a
reasonable response time, and increase
its flying altitude. We have a set number
of hand movements we plan to
incorporate. We plan to develop the flight
controller ourselves to apply the
corrective features of a closed loop
system. As this is a self-funded project
and there are currently no sponsors, our
goal was to make this project as low cost
as possible. This ensures that the
product can be supremely accessible to
the public and can be improved upon
moving past our first prototype.

Throughout this document we
summarize how the drone was built and
the motivation behind each component

Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

we used to build it. Consisting of four
main components, we will have a
graphical user interface, the drone flight
controls, power system, and the
communication network all working in
harmony to control the drone.

Project Design

Information in the following sections
outline our approach in designing our
Gesture Operated Drone prototype.

Gesture Recognition
Neural Network

Building a good gesture recognition
application was an immensely important
aspect of this project. Failure to create a
robust recognition application would’ve
not only lead to wrong gesture
recognition predictions but also lead to
drone control issues. In our project, the
classification task at hand was
categorizing different hand gestures in
real time. Our solution to this
classification problem allowed for the
computer to learn the physical
characteristics of a set of different hand
gestures and was able to accurately
predict a newly inputted hand gesture, in
real time.

Because classification problems using
Machine Learning and Neural Networks
are extremely computationally
expensive, since it uses matrix
multiplication and convolution, we
utilized our MacBook Pro’s GPU to do the
computation. We had accounted for the
possibility of the MacBook not being
enough, and so had kept a backup option
of using Google Cloud, but we found the
MacBook’s to be enough for a decent
response time.

As for the implementation of the Machine
Learning application, we decided to write
it in Python, utilizing the Keras library to
make our code as minimal and readable
as possible. Keras is a library that is built
on top of TensorFlow, which is a Machine
Learning library that has been developed
by Google. Additionally, we chose Keras
because our dataset is relatively small for
this application, limiting it to only
thousands of images as compared to
larger scale Machine Learning
applications using millions of images.

Gestures
As for the actual gestures, the below
table shows the commands we will be
providing to the Neural Network:

Dictionary

Value
User

Action
Result

0000 No
Gesture

Hover in
place/autolevel

0001

Thrust
Upwards

0002

Drone flies
forwards

0003

Drone flies to
the left

0004

Drone flies to
the right

0005

Drone lands in
current
position

0006

Drone flies
backwards

0007

Thrust down

Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

For this project, our dataset will consist of
thousands of different hand gesture
images. Our Convolutional Neural
Network needs to be able to universally
recognize hand gestures no matter the
users skin color or changes in users
background environment. It will be
inefficient and virtually impossible to train
a model taking into account all skin color
and environment variables.

Our plan was to simply extract the hand
gesture from each frame before sending
it through our neural network, which
means that we used the idea of
background subtraction. For this, we set
a background, and that causes
everything except the hand signal to
appear as black. In order to account for
varying skin colors, we used the binary
thresholding from the background
subtraction to make the subject of the
image filled with white pixels, making a
silhouette of the hand gesture.

For training, we used OpenCV. OpenCV
is an open source computer vision library
that can be used to interface with the
computer webcam. The webcam records
a certain number of frames and the utility
loads all the captured frames into
directory associated with the hand
gesture being recorded. For our project,
we wanted to stay away from using deep
networks due to our hardware constraints
and due to the fact that the model needs
to produce prediction results in real time.
In terms of error rate/accuracy, the Le-
Net-5 architecture was able to achieve an
error rate below 1% on certain datasets.

Before the training began, the input data
set was split into two parts, train data and
validation (or test) data. Typically, there
is more train data than validation data, a
9 to 1 split. For our project, the dataset
consisted of about 1000 images of each
hand gesture for a total of around 8000
images. Testing of the Neural Network
itself occurs at the end of each epoch
(number of times the model cycles
through the data). The model first trains
itself using the training dataset and
immediately after the model tests itself on
the validation data. After each epoch,
metrics were calculated to show how well
the model is responding to the training
and testing.

Graphical User Interface
The graphical user interface is what the
user interacts with to communicate with
the drone. The goal was to keep this
interface functional and user-friendly.
The webcam window consists of a real
time feed of the webcam and takes up
majority of the overall GUI space. This is
where the user’s gestures will be
displayed and captured so the captured
gesture can be processed by the Neural
Network in the backend. The
feedback/reading window pane will give
the user a visual representation of the
prediction result after been passed
through the Neural Network model. The
log window pane serves as a textual
representation of all actions being
performed and is located at the bottom of
the GUI. Essentially, every action taking
place in the system should be recorded
in the log window. We decided to
implement the idea of using logs to ease
the debugging process and to know the
commands being sent throughout the
system.

Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

We plan on using Tkinter to create our
GUI as no extra installs are needed and
due to the fact that our GUI itself will not
be advanced and the look of the GUI is
not an important aspect to us.
Essentially, the purpose of the GUI is a
create some organization of all the
different aspects of the gesture
recognition processes. Tkinter is a basic
GUI package and provides common GUI
elements that is used to build the
interface. Some elements include
buttons, entry fields, display areas, etc.

Wireless Communication
Because a drone is controlled by RC, we
decided to go with Bluetooth as the form
of communication because of how
commonly it is used for small projects on
this scale, how familiar it is to setup, and
the fact that we do not need to send large
packets of data. Bluetooth is completely
standardized and has been continually
optimized and updated. In regard to our
particular implementation of Bluetooth,
we will be pairing the drone to the laptop
computer that is reading the hand
signals. In our solution, we are pre-
programming the Bluetooth ID of the HC-
05 module attached to the PCB so that
we have no issue connecting in our
prototype. We decided that we only will
be communicating one byte of data for
the command to be sent, so that it can be
sent quickly and very often. This is
because we tested and plan to showcase
in a space with relatively few
interferences, and no concrete walls in
between or obstacles of the like.

The previous table shows the values that
we are utilizing for our drone
configuration, meaning the laptop
computer will be sending these values to
the drone after the CNN computation has

completed and the drone will be reacting
accordingly:

Drone Hardware Design
Our drone design is a classic quadcopter
with four arms, four brushless motors,
and four dual blade propellers. Each
motor is accompanied by its own ESC
which are all powered by rechargeable
lithium batteries. The ESCs are
connected to the flight controller, which
communicates to the user via Bluetooth.
Each command is received by the
Bluetooth module and interpreted by the
microcontroller on our printed circuit
board. Figure 26 depicts an overview of
the drone design.

Figure 1 Drone
Design

We chose to use a fiber reinforced plastic
drone frame. Carbon fiber is a popular
alternative used widely in commercial
drones. Our reason for avoiding carbon
fiber was the decreased cost. Carbon
fiber drones are also notorious for
blocking radio waves. We avoided this
issue by utilizing the reinforced plastic
frame. This frame was strong enough to

Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

withstand the impact of minor crashes we
experienced indoors and was fairly light
weight. When assembling the drone, we
ensured all the components are properly
balanced and tightly secured. We
experienced in testing, even the slightest
loose component will significantly
increase the vibrations across the drone.
A poorly aligned drone can lead to
shaking. Shaking especially threw the
gyroscope off, which is a key part of a
stable flight. This is one of many things
we did to avoid vibrations. Our other
solutions are also explored in this
section.

Of the four motors at the end of each
drone arm, the direction of the spin is
extremely important. Shown in Figure 27
is an image showing the orientation we
are going to use for our design. The four
motor positions are front left, front right,
rear left and rear right. These can be
represented with the following
abbreviations, FL, FR, RL, and RR,
respectively.

Figure 2

Motor Orientation

Motors rely on electronic speed controller
to function properly. Essentially the
electronic speed controller, abbreviated
ESC, communicates between the motors
and the flight controller.

Inside of an ESC there are six MOSFET
transistors that are all chained together.
Certain combination of transistors when
activated will correspond to a specific
phase inside the motor. It is programmed
to take the signal given from the flight
controller and performs the correct gate
changes to output the desired rotation. It
is important that we position our ESCs in
a way where they will be exposed to open
air to prevent them from overheating.

Brushless motors were the best option
for our drone because they have a longer
life-span than brushed motors. Brushless
motors use magnetic power which waste
less energy and is more reliable. Our
ESCs will be connected to our lithium
polymer battery power source. The
motors we are using are 1000KV motors
designed for RC quadcopters. 1000KV
motor will produce more than enough
thrust. For our design we are choosing to
use dual blade propellers because
sacrificing efficiency for thrust is not
worth it for our drone designed for indoor
use only. The direction of the propeller is
extremely important. The leading edge
much be facing the direction of the
rotation. Having a misplaced propeller
will result in no lift.

All of these things are heavily dependent
on power when it comes to drones
because in-air flight time is the greatest
limitation when it comes to drones. We
are building an indoor drone, but the
drone will have a lot of things pulling
power from the power source. Overall,
the power source will be providing

Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

voltage to the drone’s propellers and the
Arduino board (which in turn powers the
laser sensor, the Bluetooth module, the
gyroscope/accelerometer, and the flight
controllers). There are two separate
power sources. The PCB has a 9V
battery that powers the microcontroller
and all the sensors. This power is divided
into 5V and 3V which is then routed to the
specific components. The lithium
polymer battery at the base of our drone
is what is used to connect to the ESC.
Our drone frame had a built in power
distribution board that split the battery
equally and powered the ESCs. We also
had two separate wires coming from the
battery that were used to measure the
battery life of the battery. Once the
battery life reached a certain point, an
indication would inform us, and we knew
to change the battery. The battery
voltage was also live fed into the GUI,
giving us a clear representation of how
much time we had left.

For the gyroscope, we will be using the
MPU-6050. Its very low current draw of
0.1 milliamps is ideal for our
implementation because we are trying to
be as preservative as possible with our
power.

To power our drone, we will be using a
rechargeable Lithium Polymer (or LiPo)
battery. We will be using this particular
type of battery because they are much
more efficient and powerful.

Our goal with mounting our flight
controller to the drone frame, was to
dampen the vibrations as much as
possible. For starters we positioned the
flight controller as central as possible. At
the center of the drone is where the
vibrations are the least. We also avoided
using any metal to mount the controller.

Using anti vibration foam we soft
mounted our flight controller to the drone.

We also wanted to tackle the drone’s
vibration directly at the source. Motors
are the root cause of vibrations through
the drone. With the use of Silicon TPC
mounting pads, we did our best to absorb
the motors vibrations. Between the soft
mounted fight controller and the anti
vibration pads under the motors, we had
a sound design, that allowed the
gyroscope to read accurate angles.

Drone Software Design
Flight controllers control the speed of all
the motors, dissect commands from the
user and balance the drone. Flight
controllers use the onboard sensors and
constantly feedback information for
correction purposes. This is how the
drone remains level. This PID tuning
process allows us to customize how our
drone reacts to certain movements and
gives us a lot of freedom when designing
our drones flight controls. Instead of
purchasing a preprogrammed flight
controller, using the Arduino platform, we
developed our own. The commands will
be received and directly converted into
the desired reaction.

The microcontroller is the brain of our
drone and connects the ESC to the user
giving them control of the device. The
microcontroller we used is the
ATmega328p. The ATmega328p has a
clock rate of 16 MHz, 2KB RAM, and
32KB of storage. We do not need much
storage space as the code we are using
is concise.

Calibration of the ESC is extremely
important. All the motors need to be in
unison and spinning at the same speeds.
All the calibration is programmed through

Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

the Arduino platform. In our case, when
the ESC gives a signal of 500
microseconds, the throttles are not
spinning, and maximum speed when the
ESCs send a signal of 1500
microseconds.

PID is an acronym for Proportional
Integral and Derivative. In a closed loop
system these values were used to control
the flight and allow the drone to make
corrections as quickly as possible. This
control system is constantly getting
feedback and correcting errors.
Changing the values of P, I and D will
change how quickly and how the drone
fixes these errors.

In order to test the motors, we have a
structure designed to hold the drone in
place. From this stationary position the
drone will be easy to see where the
corrections need to be made. There is
not a combination of PID value that is
universally correct. Every motor is
different, and every drone will have its
own unique inconsistently. Separate
motors draw varying amounts of power,
and the stronger motor will cause the
drone to lift towards the more powerful
motor. This is corrected with the PID
tuning.

Initially our gyroscope had some issues
with drift. We used a Kalman filter to
eliminate this drift. On top of this, it also
helped handle gyro inconsistencies
caused by drone vibrations. The filter
was customizable and we found the best
values to eliminate drift and stabilize the
gyroscope. On top of this we were also
able to desensitize the gyroscope.

The initial flight testing was performed in
a local gym. We needed a space with
plenty of room to try out different flight

control settings. We chose an inside
setting as the drone is designed for flying
indoors and we eliminate all the hazards
and excess forces outdoors.

PCB
In order to get our PCB made, we created
the schematic we needed in Eagle
software and uploaded the gerber file to
JLCPCB.com, from which we were able
to order 5 PCBs from. We did run into
issues with our first PCB, in which we
were unable to load the bootloader onto
the ATMega328p chip that was
embedded on the PCB, and so we
swapped out the embedded chip and
opted to go with drop sockets for us to
remove the ATMega328p from the
Arduino we were using to program it, and
placing it onto the PCB for use
afterwards.

Conclusion
All of the above components were
combined to create our Gesture-
Operated-Drone, which meets several
industry standards and is on par with a
legitimized engineering project. We
found that this project continually
challenged us however we were
absolutely able to realize each and every
part of our 4 year college career in the
ECE department was utilized in the
making of this project. Even though we all
had our own specialties, most of the
project was performed as a group. We
gained experience working as a team
and troubleshooting together. As we hit
hurdles, being able to brainstorm
amongst each other allowed for us to
reach solutions we may not have come
up with by ourselves. We all learned a lot
from this project and will use the skills in
our future professional endeavors.

Pranay Jay Patel, Bernardus Swets, Anshul Devnani
UCF, Dept. of ECE

Biography

Pranay Jay Patel will
graduate with his Bachelor
of Science in Computer
Engineering in December

2019. He currently works for Darden
Restaurants as a Software Engineering
intern. He plans on working for a large
tech company for a few years before
going back to get his Master’s degree in
Business Administration, with the
intention to start his own company in the
future.

Anshul Devnani has a
passion for computer
vision and is hoping to
pursue a career in the
field. As a computer

engineer, he is currently working as
intern at Leidos as a system integration
engineer and previously work as a
CWEP for two years.

Bernardus Swets is a
computer engineering
major at UCF, following the
digital track, and took on
the task of researching the

flight controls. He focused on looking into
the different drone designs and
corresponding hardware. He also looked
into the flight control software. Having
experience with linear control system, he
researched what it would take to balance
our drone using PID loops. He works as
a system engineer CWEP at Lockheed
Martin.

