

i

G.O.D. (Gesture Operated Drone)
Group 3 - Pranay Patel, Anshul Devnani, Bernardus Swets
Computer Engineering Majors
Senior Design 2 Final Report –December 4th, 2019
EEL 4915 Fall 2019 – Department of Electrical and Computer Engineering

 ii

Table of Contents
List of Figures .. v

List of Tables .. vi

1.0 Executive Summary .. 1

2.0 Project Description ... 1

2.1 Project Motivation ... 2

2.2 Goals and Objectives .. 3

2.3 Requirement Specifications ... 3
2.3.1 Software Requirements ... 4
2.3.2 Hardware Requirements .. 4
2.3.3 System Requirements .. 5

2.4 House of Quality .. 6

3.0 Standards and Constraints ... 7

3.1 Constraints .. 7

3.2 Project Standards ... 9

4.0 Project Design .. 10

4.1 System Block Diagram .. 10

4.2 Neural Networks Overview .. 11
4.2.1 What are Convolutional Neural Networks (CNNs) ... 12
4.2.2 Building Blocks ... 13

4.2.2.1 Convolutional Layers .. 14
4.2.2.2 Pooling Layers .. 15
4.2.2.3 Fully Connected Layers .. 15
4.2.2.4 Activation Functions .. 16
4.2.2.5 Putting It All Together .. 18

4.2.3 How do CNNs Learn/Train ... 18

4.3 Gesture Recognition Neural Network ... 19
4.3.1 Hardware Requirements .. 20
4.3.2 Software Choices ... 22
4.3.3 Building the Dataset .. 26
4.3.4 Building the CNN Model .. 28
4.3.5 Training the Built Model .. 31
4.3.6 Testing the Neural Network ... 32
4.3.7 Real-Time Recognition ... 33
4.3.8 Foreseeable Issues ... 34
4.3.9 Other Approaches to Gesture Recognition .. 35

4.4 Graphical User Interface .. 37
4.4.1 GUI Overview ... 37
4.4.2 Webcam Window Pane ... 37
4.4.3 Feedback/Readings Window Pane .. 38
4.4.4 Log Window Pane .. 38
4.4.5 Building the GUI ... 39

 iii

4.5 Wireless Communication ... 40
4.5.1 Possible Connection Mediums ... 40
4.5.2 Why Bluetooth ... 42

4.5.2.1 Complexity ... 42
4.5.2.2 Bluetooth Version .. 43

4.5.3 Pairing Setup .. 43
4.5.3.1 Trusted Devices and Security ... 43

4.5.4 Limitations ... 44
4.5.4.1 Data Limitations ... 44
4.5.4.2 Range Limitations ... 45
4.5.4.3 Interference Limitations ... 45
4.5.4.4 Device Count Limitations ... 46
4.5.4.5 How Will We Accommodate .. 46
4.5.4.6 Dictionary Setup ... 46
4.5.4.7 Bluetooth Modules .. 47
4.5.4.8 Module Limitations .. 48
4.6.4.9 Module Options ... 48
4.6.4.10 Reasons for Choosing ... 49

4.5.5 Low Power Mode ... 49

4.6 Drone Hardware Design ... 50
4.6.1 Model Overview .. 50
4.6.2 List of Materials ... 51
4.6.3 Drone Frame .. 51

4.6.3.1 Dimensions ... 51
4.6.3.2 Frame Material .. 52
4.6.3.3 Drone Assembly Process .. 52

4.6.4 Motors ... 53
4.6.4.1 Overview of Motor Orientation ... 53
4.6.4.2 Electronic Speed Controller ... 54
4.6.4.3 Brushless Motors ... 56
4.6.4.4 Motor Power .. 57
4.6.4.5 Propellers ... 57
4.6.4.6 Motor of Choice ... 57

4.6.5 Sensors ... 59
4.6.5.1 Overview of Drone Sensors .. 59
4.6.5.2 Gyroscope .. 59
4.6.5.3 Accelerometer .. 60
4.6.5.4 Ultrasonic Sensor ... 61
4.6.5.5 Indicators ... 62

4.6.6 Power ... 62
4.6.6.1 Overview of Power ... 62
4.6.6.2 Gyroscope .. 63
4.6.6.3 Lithium Polymer Batteries .. 63
4.6.6.4 Our Choice ... 64
4.6.6.5 Rechargeable Battery ... 64
4.6.6.6 Voltage Regulator .. 64
4.6.6.7 Battery Life ... 65

4.7 Drone Software Design .. 65
4.7.1 Flight Controls .. 65

4.7.1.1 Dedicated Flight Controller .. 65
4.7.1.2 Combined Flight Controller .. 66

 iv

4.7.1.3 Flight Control Schematic .. 66
4.7.1.4 Microcontroller .. 67
4.7.1.5 ESC Calibration ... 68
4.7.1.6 Balancing the Propellers .. 68
4.7.1.7 Explanation of Flight Control Code .. 68

4.7.2 PID Tuning .. 69
4.7.2.1 Introduction to PID Tuning ... 69
4.7.2.2 PID Schematic .. 70
4.7.2.3 Using Multiwii to Balance the Drone ... 70
4.7.2.4 Process for tuning PID Loops ... 71
4.7.2.5 Explanation of the PID Code .. 72
4.7.2.6 Effects of the Battery Life on the Motors .. 72

4.7.3 Prototype Testing .. 73
4.7.4 Expected and Actual Adjustments ... 76
4.7.5 Research and investigations .. 77

5.0 Printed Circuit Board .. 78

5.1 Printed Circuit Board Overview .. 78
5.1.1 Ordering the PCB ... 78

5.1.1.1 PCB Company Options ... 78
5.1.2 Building PCB Design ... 79

5.1.2.1 PCB Design Software Options .. 79
5.1.3 Mounting Parts on PCB .. 79

5.2 Hardware Requirements .. 80

5.3 Project Risks .. 80
5.3.1 Drone Laws .. 80

6.0 Prototype Construction .. 81

7.0 Owner’s Manual .. 82

7.1 Troubleshooting Steps ... 83

8.0 Schematics and PCB Design .. 83

8.1 Power Circuit ... 84

8.2 Sensor Circuit ... 84

8.3 Flight Controller / Atmega 328p Circuit .. 85

8.4 Miscellaneous .. 86

8.5 PCB Design ... 87

9.0 Administrative Content .. 88

9.1 Evaluation Plan .. 88

9.2 Key Evaluation Points ... 88

9.3 Evaluation Questions ... 88

9.4 Evaluation Design .. 88

9.5 Project Schedule .. 89

 v

9.6 Budget and Finances .. 90
9.6.1 Software Development .. 91
9.6.2 Wireless Communication ... 92
9.6.3 Battery ... 92

9.7 Division of Labor .. 92

10.0 Conclusions .. 93

Appendix A Resource and Citations ... 96

Appendix B Copyright Permissions ... 99

List of Figures
Figure 1 House of Quality ... 6
Figure 2 System Level Block Diagram ... 11
Figure 3 Hierarchy of AI .. 11
Figure 4 Neural Network Architecture ... 12
Figure 5 Basic CNN Architecture ... 13
Figure 6 Convolution Layer Computation ... 14
Figure 7 Pooling Process ... 15
Figure 8 Common Activation Functions .. 17
Figure 9 Backpropagation Flowchart .. 19
Figure 10 Example Keras Code for Creating a Model ... 24
Figure 11 Example PyTorch Code for Creating a Model ... 24
Figure 12 Original Image Figure 13 Background Subtraction Figure 14 Binary
Threshold…………………………. ... 27
Figure 15 Utility Flowchart ... 28
Figure 16 Dataset Creator Utility Pseudo-Code .. 28
Figure 17 LeNet-5 Architecture .. 29
Figure 18 AlexNet Architecture .. 30
Figure 19 CNN in Training Phase .. 31
Figure 20 Accuracy (Orange) and Loss (Blue) vs Epoch .. 32
Figure 21 Recognition Program Flowchart ... 33
Figure 22 Overfitting Graph .. 35
Figure 23 GUI Layout .. 37
Figure 24 Webcam Window Real Time Feed .. 38
Figure 25 Bluetooth Pairing Request .. 44
Figure 26 Drone Design .. 50
Figure 27 Motor Orientation .. 53
Figure 28 RC Electronic Part ESC ... 56
Figure 29 A2212 1000KV Hoppypower RC Motor .. 59
Figure 30 MPU 6050 Gyroscope and Accelerometer ... 60
Figure 31 HC-SR04 Ultrasonic Sensor ... 61
Figure 32 LED Indicators ... 62
Figure 33 Dedicated Flight Controller Schematic ... 67

 vi

Figure 34 PID Model ... 70
Figure 35 Test Setup ... 73
Figure 36 Final Prototype ... 75
Figure 37 Ultrasonic Sensor Output ... 76
Figure 38 Power Circuit .. 84
Figure 39 Sensor Circuit .. 85
Figure 40 Flight Controller Circuit ... 86
Figure 41 Battery Level / Programming Circuit .. 86
Figure 42 PCB Design .. 87
Figure 43 Copyright Permission LeNet-5 Architecture ... 99
Figure 44 Copyright Permissions AlexNet Architecture .. 99

List of Tables
Table 1 Software Requirements ... 4
Table 2 Hardware Requirements .. 4
Table 3 System Requirements .. 5
Table 4 Project Constraints ... 9
Table 5 Project Standards ... 9
Table 6 Host Computer System Specifications ... 21
Table 7 Initial Hand Gesture Set ... 26
Table 8 Log Message Format .. 39
Table 9 Dictionary for Drone Commands ... 46
Table 10 Bluetooth Modes ... 47
Table 11 Comparing ESCs ... 55
Table 12 Motor Comparison ... 58
Table 13 MCU Comparison ... 68
Table 14 Milestones ... 89
Table 15 Proposed Budget .. 91

1

1.0 Executive Summary

Drones have become increasingly popular over the last decade. Every year their
abilities are rapidly increasing, and we wanted to do our part to add to this
continuously growing field. With the knowledge we have obtained throughout our
studies we wanted to challenge ourselves and develop a drone that strictly
controlled by human hand motions. Our team wanted to build a product that
combined every aspect of our computer engineering coursework. With this in mind,
we were able to collaborate on the idea to utilize PCB construction, embedded
programming, and machine learning to build a useful and sound product.

Because we, as a team, believed that drones can sometimes be difficult and so
wanted to offer the ability to control a drone with a much simpler interaction. This
allowed for us to build in actions for the drone that will automatically account for
stabilization and move as expected without having to try to keep the drone flat and
level via remote control. This product has not yet found its way on the market and
we wanted to be the first to make this a reality.

Our plan to create a widely marketable product forced us to consider the usability
of the product, the cost, and the ability to use devices that customers were already
familiar with to allow for an easier interaction with the drone. We were able to fulfill
all those goals in our project plan. We were able to maximize usability by creating
hand gestures to control the drone that are generally universal, meaning that
people around the globe can understand many of the basic gestures and would
immediately think to use those gestures to operate the drone. In order to make the
cost of the drone low, we were taking into account the cost of each and every
component when planning our prototype, and once the build process and
components list were finalized, we had the ability to improve upon that even
further. Since our product required the use of an external device, we decided to
make it so that other people can simply install the software required to operate the
drone on their local laptops or PCs. This allows for users to interact with something
they are familiar with and make the drone user experience more seamless.

Throughout this document we explore why creating this drone would be beneficial,
our creative process and map out how we plan to build and test the device.
Consisting of four main components, we have a user interface, the drone flight
controls, power system, and the communication network all working in harmony to
control the drone. With the simple hand motions explored in the following sections,
the drone can perform all the necessary actions needed for flight.

2.0 Project Description

We proposed a small indoor drone that was entirely driven with hand gestures.
The project has a user-friendly webcam-based GUI, that communicates with the

 2

drone. The GUI’s main component is the webcam, along with other indicators
showing the drone’s current status and useful live information. From the users end,
the user will perform the desired hand gesture and the drone reacts accordingly.
For example, the user can signal a thumbs up and the drone responds, within a
reasonable response time, and increase its flying altitude. We have a set number
of hand movements we incorporated. As the project is improved further, we can
add functionality and push ourselves to create as many movements as possible.
As a group of computer engineers, we have a fundamental understanding of the
programming and electrical skills necessary for this project. We developed the
flight controller ourselves and correctly applied the corrective features of a closed
loop system. Furthermore, this project allowed us to work with and learn about
popular technologies of the time, including Computer Vision and Machine
Learning. Both are emerging industries and are growing rapidly. As this is a self-
funded project and there were no sponsors, our goal was to make this project as
low cost as possible. This ensured that the product can be supremely accessible
to the public and can be improved upon moving past our first prototype.

2.1 Project Motivation

When discussing all the options for possible senior design projects, we had a
couple ideas of varying complexities and price points. This project was on the more
complex and relatively more expensive, however we were most enthusiastic about
researching and creating this project. With all three of us equally eager to research
and plan this project, it justified the higher cost and the increased complexity. As
strictly computer engineers our education covered a wide variety of topics and
overall this project incorporated everything we have learned. In the latter half of
our education we took many courses regarding microcontrollers, communication
networks, creating graphic user interfaces, programming embedded systems, and
PCB routing/design. Individually we also chose to study computer vision and linear
control systems which play key roles in the project. With this knowledge we built a
product that, from our extensive research, has not been built before. This was also
another motivating factor. Both drones and computer vision are extremely popular,
and in some cases the two have been combined for tracking purposes. There is
not yet a commercial product that is strictly controlled by hand movements. Being
the first to achieve this would be an extremely satisfying accomplishment.

Flying a drone for the first time can be complicated and can give a user a lot of
trouble. With the use of your own hand movements, it adds a sense of ease and
fluidity not found in a typical hand-held controller or smartphone. In addition, our
solution involves controlling the drone with one hand, which is unlike traditional
drones in which you use both hands to operate a physical remote controller. Our
solution allows the user to only need to use one hand to control the drone, as long
as that hand stays in the correct field of vision. This allows for freedom of motion
for their alternate hand, which is something that is overlooked often when it comes
to drones. Oftentimes, drones are used to record something in motion, whether it
be action sports outdoors or photographers and videographers trying to get a bird's

 3

eye view that isn’t easily attained without one. Given this, allowing for a free hand
is immediately beneficial to drone users.

2.2 Goals and Objectives

Our objective was to create a low-cost hand gestured controlled drone. We had
limited time to complete the project, and we wanted to make the most of our time.
After spending the first few months researching and planning the project, our goal
was to start building in early August 2019 and have a working prototype by the end
of September 2019. Once we had a working product, our goal was to add as many
hand signals as possible. We started with eight essential hand signals and we
strived to get that number up to around 15 different hand signals. Another objective
of ours was to make the build process as simple as possible and as repeatable as
possible. During our production process we needed to spend more money on
replacement parts during testing and other unexpected factors. Once we got the
working product, we can limit our costs to the bare minimum of what needs to be
completed and make the project as affordable as possible.

2.3 Requirement Specifications

When describing our requirements, we did our best to ensure every requirement
was abstract and quantifiable. Table 1 shows software requirement specifications,
Table 2 depicts hardware requirement, and Table 3 displays system requirement
specifications. As we got more involved in the project, we noticed that some
limitations we set might’ve been extremely lenient or we might have set the bar too
high. Because of this, we were open to altering or adjusting our requirements as
we see fit.

 4

2.3.1 Software Requirements

Table 1 specifies the software level requirements for our project

The drone will be able to convert the signal received over Bluetooth within 500
milliseconds.
The user interface will be able to recognize each of the 8 gestures.
The feedback/reading pane will highlight the correct predicted gesture within 1
second.
The Neural Network will produce an accuracy of a minimum of 95 percent.
The user interface GUI will consist of a webcam pane, log pane, and
miscellaneous pane.

 Table 1 Software Requirements

2.3.2 Hardware Requirements

Table 2 specifies the hardware level requirements for our project

The drone frame will be no larger than 550mm.

The drone will not weigh more than 2 pounds.

The drone will be powered by 3.7V lithium polymer batteries.

The microcontroller will be powered by a 9v DC battery.

The drone will utilize propellers of 10 inches or smaller.

The drone will utilize 4 electronic speed controllers to help control the propellers.

The drone will utilize 4 brushless motors with KV above 900.

The drone will utilize an ATmega328P microcontroller.
 Table 2 Hardware Requirements

 5

2.3.3 System Requirements

Table 3 specifies the system level requirements for our project

The drone will be able to receive signals over Bluetooth communication from within
a range of 20 feet.

The drone will be able to react to commands within 1 second.

The drone will be able to land, and motors will terminate within 5 seconds.

The drone will be able to take off to 3 feet within 3 seconds.

The Bluetooth signal will maintain connection within 15 feet.

When the drone’s Bluetooth signal is lost, the drone will hover in place and land
within 10 seconds.

The time from the user doing the gesture to the drone reacting to it will be a
maximum of 2 seconds.

The drone will communicate its current altitude to the GUI with a maximum latency
of 3 seconds.

The drone will maintain its altitude when moving left, right, forwards, and
backwards.

When the drone accelerates in a specific direction, it will rotate less than 90
degrees to perform the given action, as to not tip the drone over.

The drone’s altitude will be able to be read with a maximum 1 second delay on the
miscellaneous pane of the GUI.

The drone will be able to reach a height of 10 ft.
 Table 3 System Requirements

 6

2.4 House of Quality

The image below, Figure 1, is the proposed house of quality for our drone design.
We compare the model we are planning to create with top market competitors
including DJI, GoPro and PowerVision.

Figure 1 House of Quality

 7

3.0 Standards and Constraints

3.1 Constraints

Along with our planning came a lot of different constraints that governed the
choices we made and the path we took with our project. Those range in various
types such as economic, environmental, ethical, health, manufacturability, safety,
social, and sustainability. This project was fully funded by our group. We came up
with the idea of this project as a group and did not involve any third parties. As a
result, we did not have any sponsors for our project. It was nice to plan the project
ourselves, however the assets from a sponsor would’ve alleviated some of the
economic stress. We understood that we had to allocate a lot of money to fund the
project. As students we had limited funds and wanted to do our best to make our
project as affordable as possible. There were a lot of steps we could have taken
to make that more plausible. A lot of the components we bought were sensitive
and needed to be taken care of properly. If we could have avoided breaking pieces
unnecessarily, we could have saved a lot of money in the long run. Also, we made
sure not to waste money on the wrong parts. Another benefit of scanning the
market thoroughly was finding the best balance of price and quality where we could
obtain the best option possible. Having to buy replacements was inevitable but
limiting the number of mishaps lessened the economic constraints. We did not
have unlimited funds and we kept that in our minds when we chose our parts.

Environmentally our drone is constrained by its ability to only be flown indoors. It
is not easy to find indoor spaces where flying the drone is allowed without
permission. It is important that our drone could perform well in tight situations.
Having the constraints of four walls around the drone can complicate some of the
testing. To work around this, we received permission from our local gymnasium
that worked with us. They have extra indoor basketball courts that are used
throughout the day, but they had given us the times when the gym was typically
empty and free for us to fly our drone around. When we were unable to use the
gym, we used our own personal garages. These had far less room to work with but
had enough space to practice basic maneuvers and test what needs to be looked
at. Environmentally we were also legally constrained. To fly the drone outdoors in
the state of Florida a license is required. To save money and time we decided to
avoid flying the drone outdoor completely and to focus on only flying indoors. The
benefit of this was the controlled environment that we have indoors. There are no
factors like wind and rain to worry about. Having an indoor drone lessened the
constraints of the more unpredictable conditions of the outdoors.

There were also socially acceptable and ethical places to fly the drone. Before
flying a drone in any location, it is important to have permission, whether this is a
public gym or our personal apartments, it was essential we let everyone know that
we were flying a drone. It is not socially acceptable to fly our drone over people.
Drones sometimes have a negative connotation and are often banned, as they can
be a disturbance. Drones are typically associated with having cameras and even

 8

though our drone does not have a camera, people may feel as if we are spying on
them. It would also be unethical of us to fly our drone in certain places. If we fly our
drone in the wrong places not only can be it be illegal but also offensive. Because
of this we limited the places we flew our drone. We wanted to ensure that we did
not cross any ethical or social borders when testing and flying our drone.

Drones can be dangerous, and we needed to know the safety and health
constraints went into our building process. There are extremely fast-moving parts
that can be damaging if touched. We could not cover the propellers and they
needed to be exposed for the drone to function properly. Knowing this we stood
clear of the drone while in flight or while the propellers are turned on. Luckily our
lightweight indoor design did not pose as much a threat as some of the heavier
commercial drones. If a collision were to unfortunately happen, there would most
likely not be any major injuries however the possibility is out there. Other than
injuries from the drone, there are no other health and safety constraints.

When manufacturing the drone there were a couple constraints that we needed to
be aware of. One of the main constraints was the range of our device. Bluetooth
has become more advanced and can range quite far however we believe that once
we cross 30ft, our design will no longer be able to connect. As this is an indoor
drone, we did not often exceed these limits. However, in the right setting, that might
have been a possibility and we needed to be aware of this. As we classified this
as a lightweight indoor drone, we had size constraints to fit that classification. We
did not want to have drone that is heavier than two pounds. Some more advanced
better functioning components are heavier, and more expensive, so this constraint
encouraged us to get the most efficient cost-effective part. We also did not want
the frame to exceed 550mm.

Two of the largest constraints that we had to work around are the number of
recognizable gestures and the battery life. It was important that the hand gestures
we defined were different enough to be recognized by the webcam. If a hand
gesture was too close to another there could have been a mistake that occur. As
we tested our initial flight gestures, we gained a better understanding of how similar
we can make them. Our initial gestures were very different, but as we increased
movements, we had to find hand gestures that were unique enough to not interfere.
The battery life is another obstacle we had to work around or try to overcome.
Further into the document we how we tried to maximize the battery life however
for the time being we need to work with the limited battery life we are seeing in our
prototype. Implementing rechargeable batteries helped a lot with some of the
financial stress replacing batteries could have caused.

In the table below is a more concise and clearer version of some of the topics
discussed above. A lot of these values are more quantifiable. As the project goes
on, we discovered that some of the values we found in research or predicted might
be wrong and are subject to change.

 9

Constraint Value

Drone laws Flying outdoors

Wireless range Less than 200ft

Drone Frame Size Less than 150mm

DroneBattery Runtime 20 minutes

Drone Weight Less than 2 pounds

Number of gestures At least 7 gestures, but limited, as similar gestures may
be hard to differentiate by webcam

Budget Affordability

Table 4 Project Constraints

3.2 Project Standards

When working on our project, standards were essential as they created a level of
quality and expectation across the board. It also helped make the project adaptable
and easy to incorporate. If another company or team were to incorporate our
project, they would easily be able to adapt to our industry standard protocols. In
Table 5 below, we map out the standards that we are following.

I2C Communication Protocol

IEEE 802.15.1 (Bluetooth)

UART Communication Protocol

ISO/TC 20/SC 16 (Unmanned Aircraft Systems)

IPC-A-610

Table 5 Project Standards

Both I2C and UART are very common communication peripherals, and most third-
party sensors and devices we are using are compatible. Most flight controllers
utilize UART, while all the sensors we have investigated use I2C. Using the I2C
bus significantly simplified and made our design more efficient.

Drones all must follow the ISO/TC 20/SC 16 standard for unmanned aircraft
systems. A drone is an unmanned aircraft system and these standards map out
what is allowed and what is not allowed in regard to locations to fly your drone.

 10

This allows for a more responsible and better educated population of drone
operators, which is especially important as drones gain popularity.

IEEE defines Bluetooth as a standard for Wireless Personal Area Network
(WPAN). We decided to use this standard for our wireless communication because
it is heavily supported and continually updated. This allowed for us to implement a
technology that is familiar to the common user and is a respected engineering
standard.

IPC-A-610 is the Acceptability of Electronic Assemblies. This standard verified that
our product has a highly reliable printed wiring assembly. This was a crucial
criterion for our project to meet because it allowed us to verify our product even
further to allow it to be more marketable. This also allowed us to proceed to
manufacture the product faster because it already meets the industry standard and
does not need to be verified in that regard again.

4.0 Project Design

Information in this section outlines our approach in designing our Gesture
Operated Drone prototype. Majority of the research we have done regarding the
project will be in this large section. This covers all the flight controls, physical drone
properties, communication and the computer vision aspects of the project.

4.1 System Block Diagram

Figure 2 depicts the proposed block diagram for the project. All blocks are
currently in the research phase. Our system design is divided into 4 groups,
Application/GUI, Power, Drone Hardware, and Wireless Connectivity.

 11

Figure 2 System Level Block Diagram

4.2 Neural Networks Overview

Before building a Neural Network application, understanding of the components,
features, and constraints of Neural Networks is necessary. Neural Networks are a
subset of Machine learning in terms of hierarchy. Figure 3 shows the hierarchy of
different concepts in artificial intelligence.

Figure 3 Hierarchy of AI

 12

Artificial Intelligence is a broader group that encompasses Machine learning.
Machine learning allows a system to learn and progress from past inputted data
without being explicitly programmed. Neural Networks are a subset of machine
learning because certain components and properties of Neural Networks allow for
this learning to occur. Essentially, a Neural Network is a set of algorithms that are
designed to recognize patterns and learn from these patterns to perform some task
without being explicitly programmed to do so. Some popular applications of Neural
Networks include speech recognition, object detection, image processing, and text
recognition. Neural Networks are modeled after our brain and how our brains
processes information. They consist of interconnected nodes or neurons that take
in input from and give output to different neurons. All nodes are connected via
weighted edges. A weight represents the strength of a connection between nodes
and governs how much influence one node has on another. The higher the weight
between two nodes the higher the influence that node has on the other. Neural
Networks are typically trained on some set of data, while this training is occurring
the weights are updated in order to give optimal results. Neural networks are also
split up into 3 generalized layers, the input layer, the hidden layers, and the output
layer. Figure 4 depicts the general architecture of a neural network. The input layer
provides the initial data for the neural network. The hidden layers are the between
the input and output layers and is where all the computation and learning is done.
The more hidden layers that exist, the deeper we say the Neural Network is. The
number of hidden layers in a network all depends on the machine learning
application itself. The output layer is the final layer in the network and produces a
result. The idea of having a machine train itself to process and learn from data
without explicitly teaching the machine is known as deep learning. The hidden
layers of the neural network allow for this learning to occur.

 Figure 4 Neural Network Architecture
 Permission to use from open source

4.2.1 What are Convolutional Neural Networks (CNNs)

In today’s day in age, there are many different types of neural networks, some
examples include, Recurrent Neural Network, Long/Short Term Memory,

 13

Convolutional Neural Networks, etc. For our project, the neural network that we
will choose to implement is the Convolutional Neural Network. This specific type
of neural network help bridges the gap between computer vision and deep
learning. Convolutional neural networks have proven to be effective in areas
related to image recognition and classification and have been very successful in
tasks related to object detection. We chose to implement a Convolutional Neural
Network in our project because of these facts. The challenge of accurately
recognizing and classifying hand gestures in real time can easily be solved by
training a Convolutional Neural Network. Figure 5 shows the basic architecture of
a CNN.

 Figure 5 Basic CNN Architecture

Permission to use from open source

CNNs take an image in as input, in our project this will be an image of a hand
gesture. Next, the image is sent through hidden layers where the image is broken
down and different features of the hand gesture image are extracted and learnt by
the network. For example, some features that can be extracted are edges and
corners. A close fist hand gesture image will have different looking edges than an
open palm hand gesture image. As the features are being extracted and learned,
the weights associated with each node in the network are modified to account for
newly learnt features. This is referred to as the feature learning stage. The
classification stage is where the network makes a prediction on what it thinks the
input image is or classifies the image based on the features the network extracted.
In our project, an input hand gesture image can only be one of eight different hand
gestures therefore the network will need to classify the input hand gesture image
as one of eight different classes. The specific components that go into feature
learning and classification are known as the building blocks of the CNN and will be
discussed in section 4.2.2.

4.2.2 Building Blocks

Before building a Convolutional Neural Network, understanding of the certain
building blocks is necessary. With a proper understanding of each building block,
it is possible to create a robust and accurate Neural Network. In the subsequent
sections, characteristics of each main building block will be explained as well as
how each building block will be used in creating the Gesture Recognition Neural
Network.

 14

4.2.2.1 Convolutional Layers

Convolutional Layers are an essential part of Convolutional Neural Networks. The
main purpose of convolutional layers is to extract features and detect patterns from
the input image. Patterns in images can be anything from edges, corners, circles,
squares etc. A specific filter is used within convolutional layers to detect specific
patterns. A filter is essentially a matrix that is used to convolve over the input image
matrix. Figure 6 portrays what computation occurs in the convolution layers.

Figure 6 Convolution Layer Computation

The convolution layer essentially does the convolution operation on two matrices.
One of these matrices is the kernel or filter and is usually a 3x3 matrix. The other
matrix is the image in matrix form. The values that make up the image matrix are
all the pixel intensity values. For example, a 50x50 image is converted to a 50x50
matrix with 2500 different pixel intensity values ranging from 0 to 255. The
convolution is the dot product of the two matrices. According to Figure 6, the kernel
can only perform the dot product on a 3x3 region of the image matrix at a time.
After the convolution operation is complete, the result is saved into a new matrix
and the 3x3 kernel acts like a sliding glass window and shifts over one pixel to the
right. The convolution process then repeats itself, saving the result in a different
matrix, until the whole input image matrix has convolved by the kernel. The matrix
in which the results of the convolution operation is saved is known as the feature
map. A feature map or activation map is a mapping of where different kinds of
features are found in the input image. Within the convolutional layers, there are
different filters that are used to extract different features of the input image. The
number of feature maps is determined by the number of filters used in the
convolutional layer. There is one feature map per filter used. Convolutional layers
will be used in our model architecture as they prove to be the most efficient way to
extract different features from our hand gesture dataset.

 15

4.2.2.2 Pooling Layers

The one limitation of feature/activation maps is that they are sensitive to the
location of features in the input image. For instance, the feature map of a closed
fist hand gesture will look different than the feature map of another closed fist that
is slightly rotated. The goal is to create a model such that the correct hand gesture
regardless of translations, a closed fist should be recognized as a closed fist
regardless of how its rotated or translated. To solve the sensitivity issues, pooling
layers will be used in our model architecture. Pooling layers solve this issue by
essentially down sampling images. By down sampling images, small features will
not be captured and only the more robust and general features are retained. This
idea is referred to as local translation invariance, minute features should be
ignored but broader features should be captured.

Pooling works by summarizing the features present in feature maps in patches and
is used on the feature maps after the activation function has been applied. Figure
7 shows an example of the pooling process

 Figure 7 Pooling Process

 Permission to use from open source

Essentially, pooling works by splitting the feature map matrix on the left into
patches, According to Figure 7, these patches are 2x2 boxes. The highest pixel
value is taken from each patch and copied to a new matrix on the right which is ¼
the size of the feature map matrix. This process is repeated for every 2x2 patch
until the down sampled matrix, on the right, is filled. The resulting pooled matrix is
fundamentally a summary of the features detected in the input and helps provides
invariance to small changes or translations in the input. If the input is translated a
small amount, the pooled matrix values should not change.

4.2.2.3 Fully Connected Layers

Fully connected layers are typically used at the end of the model architecture in
the classification stage. The convolutional and pooling layers allow the model to
detect features, but the fully connected layers use the detected features to classify
the input images. The output of the feature learning phase is set of feature maps

 16

that have been through multiple convolutional, activation, and pooling layers. In
order to achieve classification, these feature maps need to be flattened and
mapped to a N dimensional vector. N represents the number of classes the model
can assign an input image to. In other works, if the last layer of the feature learning
phase outputs a 14x14x3 volume, it means there are 3 feature map matrices all of
size 14x14. This output volume is then mapped and connected to vector of size
588 since 14 * 14 * 3 equals 588. This vector is again mapped to another fully
connected layer known as the output layer of dimension N. For our project, the
fully connected output layer must be of dimension 8 since there are 8 different
potential hand gestures that can be recognized. The actual classification occurs
when the output layer is applied a SoftMax activation function. By applying a
SoftMax activation function to the output layer, the output vector is transformed
into a vector of probabilities of what class the model believes the input image
belongs to. In our project, fully connect layers will be used with SoftMax activation
in our Convolutional Neural Network model because if provides us an efficient way
to achieve classification within the model itself as opposed to using an external
conventional classifier, like a Support Vector Machine, which adds to the
complexity of the code and overall computation time.

4.2.2.4 Activation Functions

Activation functions are critical to the learning performance of a convolutional
neural network. These functions are inspired by certain activity in our brain.
Different brain neurons are activated by different triggers. The main purpose of an
activation function is to convert an input signal of a node to an output signal so it
can be used in the next layer in the model architecture. The weighted sum of each
node in the network is inputted into the activation function, the resulting output is
a number bounded between a lower and upper limit and is used in the next layer
of the model. In Convolutional Neural Networks, activation functions are used after
convolutional layers and fully connected layers. If activation functions are not
applied to layers, output signals between nodes would be a linear function. Linear
functions are constrained by their complexity and will not be as powerful when
learning features from image data. Therefore, in order to make the model more
robust and powerful in its ability to learn from image data, it is essential to introduce
non linearities in our model. Non linearities are introduced in our model by using
activation functions as it makes the easy for the model to adapt to different types
data. The most common activation functions include Sigmoid, TanH, and ReLU.
Figure 8 shows the graphs of these activation functions.

 17

Figure 8 Common Activation Functions

The Sigmoid activation function takes in an input signal of a node and transforms
the signal between 0 and 1. If the input signal is a negative number, this number
will be transformed to a value close to zero. If the input signal is a positive number,
the signal will be transformed to a value close to 1. If the input signal is close to
zero, it will be transformed to a value between 0 and 1. The closer the transformed
signal is to one, the more “firing” or active the node is in the network. If the
transformed signal is close to zero, the less active the node in the network is. Since
the sigmoid activation functions maps signals between zero and one, it is typically
used for models that predict probabilities because probability of something is
always between zero and one. In practice, the sigmoid activation function suffers
from many issues such as the vanishing gradient problem which makes this
activation function not as popular today.

The Tanh activation function is preferred over the Sigmoid function due to the fact
that it is zero centered meaning the function is bounded between -1 and 1. Very
negative input signals get mapped to -1 whereas very positive input signals get
mapped to 1. Input signals close to zero are mapped to values close to zero. The
Tanh activation function, however, still does not solve the vanishing gradient
problem.

The Rectified Linear Units or ReLU activation is the most popular activation
function used today. If an input signal is zero or negative, it will be mapped to the
value of zero. If the input signal is greater than zero it will be mapped to that same
value. Therefore, this activation function only has a lower bound of zero. The one
main advantage of the ReLU activation function is that is solves the vanishing
gradient problem.

For our project, the plan was to use ReLU after each convolutional layer and fully
connected layer. Since the ReLU activation involves simpler mathematical
operations it proves to be more efficient and less computationally expensive than
the Sigmoid and TanH activation functions. Because of this fact, using ReLU
activation can lead to better model performance.

 18

4.2.2.5 Putting It All Together

By combining these layers in a certain order, the model architecture was built.
Typically, in a conventional convolutional neural network the order in which the
programmer places the layers are as follows, the convolutional layer followed by
the activation layer followed by the pooling layer. An activation does not follow a
pooling layer due to the fact that the pooling layer only down samples the feature
maps and its outputs don’t need be normalized by an activation layer. Fully
connected layers are typically found at the end of the network and are typically
followed by the output layer or more fully connected layers. The big question when
putting together the different layers to create the model architecture is how many
different layers to use. There is no set standard on how many layers to use as it
was all based on the application and characteristics of the dataset. For our project,
we didn’t foresee using a lot of layers since our application of the neural network,
which is to recognize hand gestures in real time, would have needed many layers
of abstraction to accurately differentiate between gestures. We are confident that
keeping our network shallow, i.e.. Not using as many layers, allowed us to meet
our requirements of accurately recognizing different hand gestures and doing so
in real time. The specifics on what layered our model will utilize and the order the
layers will be arranged are presented in section 4.3.4.

4.2.3 How do CNNs Learn/Train

Convolutional Neural Networks learn through a process called Backpropagation
and takes place during the training of the neural network. This process is split up
into 4 different stages, the forward pass, the loss function, the backward pass, and
weight updating. Throughout the forward pass stage, the input data is passed
through the model. In our project, the input data that we will pass through our model
are hand gesture images. Because the weights are randomly chosen at the very
beginning of the model training phase, the output classification predictions or
probabilities will be very uniform in nature. For instance, if an image of a closed fist
hand gesture is sent through our model in the earlier stages of the model training
phase, the expected output classification probabilities would be around 15 percent
for each class of hand gestures. Having uniform classification probabilities
specifies that the model, with its current node weights, can’t extract enough
features from the input image to help make an educated prediction about what the
classification of the image may be. The loss function is then computed to measure
how different the predicted classification is from the actual ground truth label of the
input image. The more different these two are, the higher the loss value. The lower
the loss value, the more accurate the model is. There are many popular loss
functions we can configure our network to use but the one that we will use in our
model architecture is known as the Cross-Entropy Loss function. This loss function
is popular to use with classification problems because the loss value increases as
the predicted classification probability deviates from the ground truth label. One
important aspect of using this loss function is that it penalizes severely
classification predictions that are confident by wrong. For example, the loss value

 19

will be extremely high if the neural network model predicted a thumbs up hand
gesture, but a closed fist was gestured by the user to begin with. Every time a loss
value is calculated, the goal is to find which weights or nodes contributed most to
the loss in the network, this occurs during the backward pass stage. During the
backward pass stage, the weights that effected the loss the most are found by
taking the gradient of the loss function at each weight. The gradient of the loss
function is simply the derivative of the loss with respect to weight of each specific
node or, !(#)

!(%)
 where L represents the loss and W represents the weight of the

specific node. After the derivative is calculated, the last step is to perform an
update of the specific weight value tied to each node. In order to calculate the new
weight value for each node, the value of the derivative is multiplied by a number
known as the learning rate. Choosing the learning rate value is up to the
programmer. A good learning rate value will allow for the model to converge on an
ideal set of weights that gives the best prediction accuracy. A learning rate that is
too high will result in big changes in weights which will lead to non-optimal results.
For our project, we will start by using a learning of .001 and will adjust this value if
the loss in the model is not improving. As stated before, the gradient of the loss
function or derivative is multiplied by this learning rate to achieve a new weight
value. The new weight replaces the old weight associated with the node. The
process of backpropagation occurs at the end of each training iteration and is
repeated until all weights are updated to achieve minimum possible loss and
highest possible accuracy for the model. Figure 9 illustrates a flowchart that
describes the backpropagation process of one iteration.

Figure 9 Backpropagation Flowchart

4.3 Gesture Recognition Neural Network

Building a good gesture recognition application was an immensely important
aspect of this project. Failure to create a robust recognition application would not
only lead to wrong gesture recognition predictions but also lead to drone control
issues. One of our main goals of this project was to create a model that will produce
extremely accurate gesture predictions based on the users given gesture. Machine
learning and Neural Networks are great for applications in which classification of
data is involved. For example, you are creating an app that can classify what dog
breed a specific dog is in real time using your phone camera. Trying to approach
a solution to this classification problem without using machine learning would have

Perform forward
pass by feeding

hand gesture
images through

network

Calculate the loss
of the model

based on
classification

prediction results

The gradient of the
loss function is

multiplied with the
learning rate to
update weights

 20

proven to be time consuming and inefficient because the developer would have
needed to come up with and hard code complex algorithms in order to teach the
computer how to differentiate between different dog breeds. Using Machine
learning and Neural Networks, the developer can give the computer the chance to
learn what all the different dog breeds look like beforehand so when given new
input data, i.e.. A picture of a German Shepard, the output prediction will be a
German Shepard. In our project, the classification task at hand is categorizing
different hand gestures in real time. Just like in the example given above, trying to
use non machine learning techniques would have posed to be extremely difficult
and complex. Therefore, our solution to this classification problem allows for the
computer to learn the physical characteristics of a set of different hand gestures
and was able to accurately predict a newly inputted hand gesture, in real time.
There are many aspects into creating and deploying a robust and accurate neural
network application. If the steps in creating a Neural Network are followed correctly
it can be surprisingly simple to achieve a highly accurate prediction (97% accurate
or more). These facets will be explained in detail in subsequent sections.

4.3.1 Hardware Requirements

Solutions to classification problems using Machine learning and Neural Networks
are extremely computationally expensive. The main reason being that the basic
building blocks for machine learning computation is matrix multiplication and
convolution. These tasks may not seem as computationally demanding but when
training a neural network, specifically a convolutional neural network, millions or
even billions of these matrix multiplications and convolution operations need to be
completed. The training of a neural network can take days even weeks on a basic
office computer with average hardware specifications. Therefore, it was imperative
that the correct hardware was used so that Neural Network training time and
prediction time was minimized.

There are many different types of hardware that we could have used to
successfully create and run Machine learning applications. Some of the different
types of hardware include Central Processing Units or CPU’s, Graphical
Processing Units or GPU’s, Field Programmable Gate Arrays or FPGA’s, or
Specialized Accelerators. When it comes to Machine learning we need the right
hardware that will be able to lower prediction time, achieve higher throughput
through training, and lower power costs. Being able to speed up the matrix
multiplication and convolution operations will ultimately lead faster training time.
Since training a Neural Network takes the most time in creating and deploying
Machine learning applications choosing the right hardware to help minimize
computation time is key. Out of the hardware types listed above, the Graphical
Processing Units are used the most used in the Machine learning world with
Central Processing Units being second most popular. The main advantage of
Graphical Processing Units is that they handle mathematical computation
significantly faster. Computer graphics in general, involve an immense amount of
matrix mathematical functions therefore these Graphical Processing Units are

 21

designed specifically to minimize computation time. Because of this fact, Graphical
Processing Units are far superior to any other Machine learning hardware when it
comes to training Neural Networks as most of the intense computation is done
during this stage. As mentioned before, the deeper the Neural Network, the more
intense the computation gets. The Central Processing Unit can also be used to
train Neural Networks and is used most on systems with integrated cards.

For our project, the system that was used to train our Neural Network was a 2017
MacBook Pro. The basic specifications for this system are shown in Table 6.

Table 6 Host Computer System Specifications

Since the graphics card on the system is an integrated graphics card, the
processor will be used as the computation source when training the network. Due
to hardware restrictions and our budget, we do not believe it is feasible to buy an
expensive GPU just to train the model. As mentioned before, the CPU can handle
Neural Network training computation, just not as fast as a GPU. Training time is
highly dependent on training data dimensions and size as well as network
architecture. For example, a network with 100 layers and 5000 images of input
data with dimensions 720 x 480 will train a lot slower than a network with 50 layers
and 5000 images of input data with dimensions 50 x 50 if the same hardware is
used to train the model. A CPU can be used for our application since the input
training data will be small and the network architecture will not be as deep. The
specifics of the training data and network architecture will be discussed in later
sections. Overall, the 3.1 GHz dual-core Intel Core i5 will be a capable processing
unit that will be able to train the model with an estimated training time of less than
24 hours.

In the event that the MacBook Pro CPU could not handle the computational
requirements of training and real time recognition of hand gestures, we had to
consider other approaches to help boost our computational power. There are many
options to help solve the computational restrictions we may face during the training
and deployment of our gesture recognition network. One option was to buy an
external GPU and connect it to the MacBook Pro to help give enough computation
power in order to speed up training time and the deployment of the gesture
recognition application. The major downfall of that approach is the cost of acquiring
this hardware. External GPUs tend to cost around $500 USD which will essentially
double are proposed budget. Due to budget restrictions, acquiring and using an
external GPU will not be the approach to solve potential computational restrictions.
The other option we can turn to for solving this issue is to use Machine learning as
a Service or MLaaS. MLaaS provides users with Machine learning tools and
algorithms via a cloud computing service. Some of the best know providers of
MLaaS include Microsoft Azure, Amazon Web Services, and Google Cloud.

Processor 3.1GHz dual-core Intel Core i5
Memory 16GB 2133MHz LPDDR3
Graphics Intel Iris Plus Graphics 650 (Integrated)
Storage 512GB SSD

 22

Amazon Web Services offer an abundant amount of services geared towards
machine learning. One popular service AWS offers is Amazon SageMaker which
allows one to build, train, and deploy machine learning models. The big advantage
of using this service is that a developer does not need to learn complex machine
learning algorithms as there are tools and wizards that allow you to create the
machine learning model without generating any code. Google Cloud’s machine
learning engine is another popular cloud computing service for machine learning
tasks. This engine is built upon the TensorFlow framework which makes this
engine highly flexible. Google Cloud’s machine learning engine allows users to
both use a GUI to implement neural network models or use an environment
dedicated to coding the model from scratch. Microsoft Azure’s ML studio is
Microsoft’s version of implementing machine learning tools in the cloud. The main
disadvantage is that there is a steep learning curve in using ML studio and
everything from data preprocessing to exploring the model results need to be done
manually. ML Studio’s GUI interface, however, allows for easy building, training,
and deployment via its drag and drop GUI mechanism.

For our project, the first option was to use the existing hardware, the MacBook Pro,
to train and deploy our model as this is the most cost-effective approach. In the
event that our hardware does not meet the computational requirements of
performing gesture recognition in real time, we will explore the options described
earlier. Google Cloud’s machine learning engine will be option we will choose if we
need to upgrade our computation throughput. Google Cloud offers the cheapest
price point for using its machine learning tool with monthly fees of $52 per month.
Another attractive aspect of Google Cloud’s machine learning engine is that it
provides environments to both code and use a GUI to create neural network
models. In our opinion, being able to code Neural Networks from scratch allows
for better flexibly during the development stage of the model. Again, using these
cloud computing services is a backup plan if our current hardware does not meet
computational and accuracy requirements. However, our existing hardware
performed well enough to meet these requirements.

4.3.2 Software Choices

In order to start building a Machine learning application, software related decisions
need to be made. When starting a new Machine learning project selecting the right
programming language, development environment, and API/Framework are all
crucial decisions that can either allow for seamless creating and deployment of a
Machine learning application or cause the developer many issues if wrong
decisions are made.

There are many factors that went into choosing the right programming language
for a Machine learning application. Factors such as robustness, readability, ease
of coding, experience with the language, documentation/support, and most
importantly, compatibility with Machine learning APIs and frameworks. Some of
the most popular programming languages for machine learning today are Python,

 23

Java, R, Lisp, and Prolong. Lisp is one of the oldest AI suited language. Some
features of Lisp include ease of creating new objects, ability to process symbolic
information, automatic garage collection, and good prototyping capability. Prolog
is similar to Lisp in the machine learning aspect. Features of Prolog include
automatic backtracking, tree-based data structuring, and efficient pattern
matching. R is a programming language that is used mainly for statistical data
manipulation. With the right packages installed R can be a powerful tool for
machine learning usually with raw data. Java is one of the more popular general-
purpose programming languages. In addition to the easy use, widespread support,
and the number of packages available, Java can handle computation required by
machine learning such as search algorithms and neural network model building.
Python is another popular general-purpose programming language but has even
more regard in the machine learning world. Python has a very simple syntax which,
in turn, allows for readability and coding ease. In addition, there is an immense
number of libraries that make programming certain tasks easier. Most importantly,
popular machine learning API’s and Frameworks are compatible with Python.
Based on these factors, Python is the language that we will choose to code our
Neural Network application.

After selecting the right programming language, where you develop the
application, or the development environment was an important software choice in
the overall software development lifecycle. Choosing the right development
environment can save the developer an immense amount of time especially when
creating a Neural Network model. There are two options for development
environment either an Integrated Development Environment (IDE) or a Text Editor.
Some examples of IDE’s include PyCharm, Eclipse, and Visual Studio. Examples
of text editors include Atom, Sublime Text, and Visual Studio Code. A pure text
editor is just a place for one to write code. There is no ability to run code from within
the text editor application or check for syntax errors before run time. Usually when
one wants to run code written in a text editor, the command prompt is used to call
and run the code. Text editors are used mainly for coding small programs and
typically not used for big projects. Integrated Development Environment are far
superior to basic text editors as IDE’s contain all the functionality of text editors
and much more. A big feature of IDE’s is that most comprise of built in debuggers.
A developer can code and debug their program within the IDE as opposed to
having a separate compiler when using a text editor. Some other features of IDE’s
include automatic code completion, built in project file explorer, package installers,
and being able to run code with a click of a button. Therefore, an IDE was used for
the development environment of this project. The only restriction when it comes to
selecting an IDE is programming language. It was imperative to select an IDE that
was compatible with the programming language being used for development. The
PyCharm IDE was used for our development environment. PyCharm is an IDE
created by Jet Brains and is an IDE geared towards developing Python and Django
projects. PyCharm is compatible with Mac OS, which is the operating system that
our project was developed on. In addition to having all the features described
above, the main reason PyCharm was selected is because of the free educational

 24

license Jet Brains offers for students. With this license we are given the full product
at no cost.

Now that the programming language and development environment choice has
been made, the next major software decision was selecting a machine learning
API/Framework. There are many different APIs and frameworks geared towards
Machine learning that allow for one to create Neural Network models easier. Some
of the most popular API’s and frameworks include TensorFlow, PyTorch, and
Keras. TensorFlow is an open source library developed by Google that is used for
building Neural Networks. PyTorch is another open source machine learning
library specifically for Python and was developed by Facebook. Keras is an open
source neural network API that is built on top of TensorFlow and is primarily used
to create and experiment with deep neural networks. There are many factors that
go into selecting the right Machine learning API/Framework for the project such as
ease of use, debugging, and dataset considerations. As for ease of use, these
API/Frameworks all operate on different levels of abstraction. Keras is a higher-
level API where commonly used functions are wrapped in callable functions.
PyTorch is a lower level API where the programmer can do more customization
when creating the Neural Network Model architecture. TensorFlow is more of a
middle ground between Keras and PyTorch in terms of abstraction. Figure 10 and
Figure 11 show code for creating a simple Neural Network Model using Keras and
PyTorch respectively.

Figure 10 Example Keras Code for Creating a Model

Figure 11 Example PyTorch Code for Creating a Model

It is clearly shown using Keras is easier to both read and code. Which ultimately
leads to easier debugging. Keras is said to be the easiest to debug whereas
TensorFlow is the hardest with PyTorch coming in as the middle ground. The final

 25

consideration when choosing the right machine learning API/Framework is the
dataset. The input dataset is the data being fed into the network in order to train
the model. Keras is used when dataset is typically small. For example, if the input
dataset consists of thousands of images, Keras would have been a good choice
as it is comparatively slower. PyTorch and TensorFlow are optimized for speed
therefore a good choice for larger dataset, usually millions of input dataset images.
Our dataset will be relatively small, consisting of thousands of images of different
hand gestures. Given all the stated considerations, Keras was the API/Framework
used to build, train, and test our Neural Network model.

 26

4.3.3 Building the Dataset

 Table 7 Initial Hand Gesture Set

The first step for creating a Convolutional Neural Network was building and
preprocessing the dataset. This input dataset set was used to train our model. In
Convolutional Neural Networks the main goal is to create an input dataset that has
good coverage so the model will be able to achieve maximum prediction accuracy
when faced with brand new input. We used supervised learning in our model.
Supervised learning is the idea where all training data is associated with a label
identifying what the training data represents.

For this project, our dataset consists of thousands of different hand gesture
images. The set of hand gestures that our application will be able to recognize are
shown in Table 7. In order to build our dataset, we used our MacBook Pro webcam.
Using this webcam, we could manually take thousands of pictures of different hand
gestures, but this task would prove to be tedious and time consuming. To improve

 27

efficiency, given that the MacBook Pro webcam has the capability to record at 60
frames per second, it made more sense to record a 17 second video of someone
doing a specific hand gesture. With that video, we processed each frame
individually for a total of 17 * 60 = 1020 images of a specific hand gesture. This
approach was less time consuming than the manual approach described above.
One main challenge we faced was dealing with processing each frame. Our
Convolutional Neural Network needed to be able to universally recognize hand
gestures no matter the users skin color or changes in users background
environment. For example, our model needs to be able to predict the correct hand
gesture of someone of dark skin sitting outside and do the same when faced with
a user of light skin sitting indoors. It would be inefficient and virtually impossible to
train a model taking into account all skin color and environment variables. So how
did we train our model in a way that it does not need to take such variables into
account? Our plan was to simply extract and threshold the hand gesture from each
frame before sending it through our neural network for training and testing. In order
to extract the hand gesture, the idea of image background subtraction will be used.
In essence, we captured the background of the environment before the hand is in
the frame. This creates a “mask” that will remove or subtract everything but the
hand. If background subtraction is done correctly, the resulting image will be just
the hand gesture with a black background. This solved the problem of varying
environments. To solve the issue of varying skin colors, binary thresholding was
used on the already background subtracted image. By using a binary threshold,
we can segment an image based on a certain pixel intensity. Given the background
subtracted image we can threshold the image such that all the dark black pixels
remain black and all every other pixel will be converted to white. This will create a
silhouette of the hand gesture. The process of extracting and thresholding an
image is shown in Figure 12 through Figure 14.

Figure 12 Original Image Figure 13 Background Subtraction Figure 14 Binary Threshold

Our Neural Network is only to be fed images that have been background
subtracted and been applied a threshold to ensure skin and environment
independency which maximizes our model’s total prediction accuracy.

A utility written in Python was used to create and organize our dataset. A basic
flow diagram of this utility is shown below in Figure 15.

 28

Figure 15 Utility Flowchart

OpenCV is an open source computer vision library that can be used to interface
with the computer webcam. The webcam recorded a certain number of frames and
the utility loaded all the captured frames into a directory associated with the hand
gesture being recorded. The directory name served as the label for each specific
frame. For example, frames that show a closed fist will be put into directory named
thrust_upwards. This name will also act as the label for each of the frames residing
in that directory. The utility then transverses through the created directory and
modify each frame using background subtraction and thresholding to create
frames that are both skin and background environment independent. The resulting
image will be cropped so that only the hand gesture is shown and then resized to
50 x 50 pixels to ensure uniformity across all dataset images. This same process
will be executed for each hand gesture. Pseudo-code for this utility is shown in
Figure 16.

Figure 16 Dataset Creator Utility Pseudo-Code

4.3.4 Building the CNN Model

After our training dataset was created, the next step was to create our
Convolutional Neural Network Model architecture. There were two approaches to
creating the model architecture. One option was to create our own model

Capture
Frames

Modify Each
Frame

(Background Sub
& Thresholding)

Organize into File
Structure

 29

architecture or the other option being using an already defined architecture. The
main advantage to creating your own model is that you have full freedom to use
the different building blocks, as discussed before, in any way. However, the main
disadvantage is optimizing the architecture if needed. In building a Convolutional
Neural Network Model, the developer doesn’t know how good the model will
perform without taking the time to train the model. In some cases, this could take
days and if accuracy is low and optimization to different layer parameters is
needed, it could take weeks before the model is producing the right accuracy. In
essence, implementing our own Convolutional Neural Network Model from scratch
would have involved a good amount of trial and error and with the hardware being
used to train and test our model, the process would not have been time efficient.
Based on this fact, we used an already defined model. This approach was much
better since these models have been created, tested, and optimized for accuracy
by experts in the machine learning field. In addition, there are an immense amount
of defined architectures to choose from. Of course, no matter what defined
architecture we chose, there would be some tweaking of some parameters to allow
for compatibility between our dataset and model architecture itself. In general, the
more layers a model has the more computation is needed however the model
accuracy is generally higher in deeper networks. For our project, we wanted to stay
away from using deep networks due to our hardware constraints and due to the
fact that the model needs to produce prediction results in real time. Given these
constraints we need to base our model after a predefined model that is shallow
(less layers) and produces the best accuracy for our application.
There are many well defined Convolutional Neural Network model architectures
that are optimized for different Machine learning applications. LeNet-5 and AlexNet
are two Convolutional Neural Network architectures that posed to be a good fit to
implement for our gesture recognition application. LeNet-5 is one of the earliest
CNN model architectures and its main advantage being how shallow the network
is. LeNet-5 consists of 7 total layers and was originally used to classify handwritten
or machine printed digits. A representation of the Le-Net architecture is shown in
Figure 17.

Figure 17 LeNet-5 Architecture
 Permission to use approved

 30

The input image to LeNet is a 32x32 greyscale image and the architecture consists
of 3 convolutional layers (C1, C3, and C5), 2 subsampling layers (S2 and S4), and
1 fully connected (F6) followed by the output layer. What made this architecture
attractive for our application is that the model itself is shallow therefore training
time will be comparatively shorter and predictions can occur in real time. In terms
of error rate/accuracy, Le-Net-5 was able to achieve an error rate below 1% on
certain datasets. AlexNet is another considered Convolutional Neural Network
architecture for our gesture recognition application. AlexNet has a similar
architecture to LeNet-5 but it is deeper (has more layers) than LeNet-5. AlexNet
also outperforms LeNet-5 in terms of accuracy due to the fact that AlexNet is a
deeper network architecture. Figure 18 shows the architecture of AlexNet.

Figure 18 AlexNet Architecture

 Permission to use approved

AlexNet consists of 4 convolutional layers, 3 subsampling layers, and 3 fully
connected layers followed by an output layer. AlexNet is typically used for
classification of high-resolution colored images and due to the fact that AlexNet is
deeper than LeNet-5, it could cause slower prediction time given our hardware
constraints.

Both LeNet-5 and AlexNet are good defined Convolutional Neural Network
architectures that have been proven to produce accurate predictions. For our
project, we plan on implementing the LeNet-5 architecture first to see what results
we can achieve. LeNet-5 is a simple and shallow network that we believe can
produce accurate results in real time. In addition, LeNet-5 was designed for a
dataset consisting of greyscale and low-resolution images. Our dataset falls into
this category since our input images will also be in greyscale and of size 50 x 50.
AlexNet is a very capable architecture but given the characteristics of our dataset
and our hardware constraints, we believed using AlexNet for our real time gesture
recognition application could be overkill. However, if using the LeNet-5 architecture
did not meet our accuracy requirements, we would have been forced to use
AlexNet or a similar architecture as it is more robust and capable of achieving
higher prediction accuracies.

To build/code the model we will use Keras, TensorFlow, and Python as mentioned
in earlier sections. The plan was to create a single Python file that will contain code

 31

to preprocess our dataset, the model architecture in code form, and commands to
initiate training as well as saving our model weights after training is complete.
Coding the model architecture was done completely using Keras since it provides
the simplest and readable way to create Neural Network Models.

4.3.5 Training the Built Model

Once our Neural Network model architecture is defined, the we can begin training
the Convolutional Neural Network. Our input dataset of hand gesture images was
used to train and test our model. Before the training begins, the input data set was
split into two parts, train data and validation (or test) data. Typically, there is more
train data than validation data, a 9 to 1 split. For example, if there are a total of
10000 input dataset images, 1000 of those images will be grouped into the
validation data and the remaining 9000 will be grouped into the training data. The
training data is used to help the model learn whereas the validation data is used
to test the model’s accuracy at that point in the training process. For our project,
the dataset will consist of about 1000 images of each hand gesture for a total of
around 8000 images. The plan is to split the dataset, grouping 7000 images to be
used for training the Neural Network and the remaining 1000 images will be used
as validation data. An example of a Convolutional Neural Network being trained
using Keras is show in Figure 19.

Figure 19 CNN in Training Phase

The example shown in Figure 19 has an input dataset of 7000 samples, 6000 of
these samples are used for the training dataset whereas 1000 samples are used
for the validation or test dataset. This model is trained for 3 epochs. An epoch is
essentially the number of times the model cycles through all the data. Within each
epoch the same 6000 samples are used to train the model and the same 1000
samples are used to test the model’s accuracy at that specific epoch. In general,
the more epochs that are run, the more the model’s accuracy will increase.
However, there is an upper bound on the number of epochs that can be run until
there is no more improvement in accuracy. There is no way of knowing what this
upper bound is, so it is a general rule to set the number of training epochs to a high
value, around 50 epochs. There is always an option to stop training if there are no
noticeable or decreases in accuracy. At the end of each epoch the model evaluates
its performance and performs backpropagation to update the weights, the specifics
of backpropagation are mentioned in Section 4.2.3.

 32

4.3.6 Testing the Neural Network

 Testing of the Neural Network itself occurs at the end of each epoch. The
model first trains itself using the training dataset and immediately after the model
tests itself on the validation data. This process occurs during every epoch. After
each epoch, metrics are calculated to show how well the model is responding to
the training and testing. The loss metric is the output of the loss function which
measures how well or how poorly the model behaves by finding the difference
between the predicted value and the ground truth value of an image and is used
to optimize the model. Accuracy measures how well the model performed by taking
the number of correct prediction and dividing by the total number of predictions.
The accuracy metric is not taking into account when optimizing the model as it is
just a metric for us to reference in order to see if the model is training well. If a
model is training well, we see a decrease in the loss and an increase in accuracy.
Figure 20 depicts the ideal trends of a model in the training phase if the loss metric
and accuracy metric is plotted. It is shown that accuracy generally increases, and
loss generally decreases as number of epochs increase. According to Figure 19,
the loss and acc metrics are calculated from using the training dataset images to
test the model whereas the val_loss and val_acc are calculated from using the
validation dataset images to test the model. The metrics that we are most
interested in are the val_loss and val_acc because they measure how good the
model is performing to seeing new hand gesture images. For our project, we will
make sure monitor these different metrics during the training because they are the
only indication of how good the model is responding to training.

Figure 20 Accuracy (Orange) and Loss (Blue) vs Epoch

 33

4.3.7 Real-Time Recognition

One major aspect of our project which also poses to be a main challenge achieving
real time recognition of hand gestures so our drone can also be maneuvered in
real time. Given that our model trains successfully and produces an acceptable
accuracy it was imperative that we use our model in a way to achieve real time
results.

Once our model was done training and the model’s architecture, weights, and
optimizer state is saved into a .h5 file, the plan was to create a python program
that handles the real time recognition of hand gestures and the sending of
messages over Bluetooth. Figure 21 shows a flow chart of the proposed program

 Figure 21 Recognition Program Flowchart

The first step is to load the previously saved model architecture, weights, and
optimizer state. In Keras, the function load_model(filepath) can be used to load the
model at the specified file path. The next step is to initiate and load all visual
aspects of our graphical user interface or GUI. The specifics of the GUI will be
covered in section 4.4. The third step is to extract and process the hand gestures
shown to the webcam. Each frame is first background subtracted, applied a
threshold, resized to 50 x 50 resolution, and finally converted to greyscale. After
the frame containing the hand gesture is processed, it is passed through our
loaded model in order to get a prediction of what the hand gesture is. In Keras, the
model.predict function is used to get prediction results on the inputted image. This
function returns an array of size equal to the number of classes. In our
implementation, there is a class per hand gesture totaling to 8 gestures. The values
in the array represent how close the model thinks the input image is to belonging
in the specific class. The higher the value, the more the model thinks the input
image belongs to the class. For example, in our project we have 8 gestures which
corresponds to 8 different classes. When model.predict is called on a new input
image it will produce an array of 8 values, [.21, .26, .56, .86, .95, .12, .03, .42].
The model predicts that the input image is closest to class 5 since that value is
highest. The 5th class could represent a closed fist so therefore a closed fist is the
final prediction. After the prediction is made the next step is update the GUI to
reflect this. In addition, a corresponding Bluetooth message will be sent to the
drone to specify what maneuver the drone must perform based on the recognized

Load
the

Saved
Model

Initiate
GUI

Extract
and

Process
Gesture

Make
Prediction

Send
Message/

Update
GUI

 34

hand gesture. The Extract and Process Gesture, Make Prediction, and Send
Message/Update GUI steps all should be done in real time.

4.3.8 Foreseeable Issues

One obvious issue that could potentially have arisen during the model training and
testing is bad prediction accuracy. Bad prediction accuracy can be a caused by a
handful of things such as characteristics of the dataset, model architecture, model
parameters. If the dataset doesn’t provide good converge over the different
classes, there is a potential for some accuracy issues. For example, if our dataset
contains 1000 images of a closed fist hand gesture but only 50 images of an open
palm hand gesture, the model might run into accuracy issues when trying to
classify open palm hand gestures because it was not given much data for the
particular hand gesture to be trained on. In our project, by creating and using a
dataset that was composed of an equal number of images per hand gesture, and
having an abundant number of images per gesture, we eliminated the possibility
that bad prediction accuracy will be caused by the dataset. The model architecture
itself can lead to bad prediction accuracy. Having too many layers or having a
sparse number of layers in your model can affect how accurate the model is. If an
insufficient number of layers are used then the network will have a hard time
recognizing features that make each image different, thus leading to bad prediction
accuracy. Having too many layers in a model or having a very “deep” model could
have resulted in longer training time but even worse, longer prediction time.
Because we needed the hand gesture predictions to be made in real time, we
avoided building an architecture with too many layers. Model parameters such as
the number of filters in each convolutional layer or the learning rate value can either
contribute to good model prediction accuracy or bad model prediction accuracy.
The science behind choosing right parameters for your model is still a field in
machine learning research as it is highly dependent on the application. At the time
of developing this project, there was no general standard to use when defining
parameters in the model and it is essentially a trial and error process in order to
achieve maximum accuracy. As stated before, we planned on using a predefined
model, LeNet-5, that had been researched and optimized for performance. Of
course, it was possible that we will need to tweak model parameters or completely
change the model architecture if prediction accuracy is low. We are confident that
by using the LeNet-5 architecture, our prediction accuracy will be high enough and
there won’t be a need to completely change the architecture of our model.

Overfitting is one of the most common and most researched problem with neural
networks. The model is overfitting when the training dataset accuracy continues to
increase or stay the same while the validation dataset accuracy declines. This
means the model is memorizing rather than generalizing. Since the training data
is the exact same for each epoch, the model is memorizing the training data and
therefore when tested on the same training data the prediction accuracy will be
high. When tested on new data, the model will not perform well and will show a
decrease in validation accuracy due to the fact the model is not generalizing well

 35

enough. Detecting overfitting in a model is straightforward. By line plotting the
training data accuracy and the validation data accuracy, it can easily be shown if
a model is overfitting. Figure 22 shows a line plot of a model that is overfitting.

Figure 22 Overfitting Graph

For our project, we will implement different overfitting prevention techniques if
necessary. One way to prevent overfitting is to implement early stopping. Early
stopping essentially stops model training when the validation accuracy starts to
decline rapidly. We can specify in the Keras code that we want to apply early
stopping right before when the validation test accuracy starts to decline. Another
popular technique that we will consider using in the event of overfitting is the use
of dropout layers. Dropout refers to ignoring a random set of nodes during the
model training phase. Each node is either kept or removed from the network with
a certain probability. This helps prevent overfitting because in an overfitted network
some nodes that make up the network are too dependent on other nodes in the
same network which leads to memorizations. Strong dependences between nodes
are denoted by higher weighted edges between the two nodes. By dropping some
nodes from the network, the dependences between nodes are broken forcing
nodes not to rely on each other by distributing weights evenly across all nodes.
Dropout can easily be implemented in Keras by simply adding a Dropout Layer. In
essence, if our model does overfit during training, we use the early stopping
technique first, as it was the easiest to implement. Using dropout layers was our
second option as choosing the right amount of dropout layers and the right
probability that a node will be dropped would have involved some trial and error.

4.3.9 Other Approaches to Gesture Recognition

Computer Vision is still an up-and-coming field in research, therefore there isn’t a
lot of other approaches to gesture recognition. The one notable approach that
differs from the Machine learning approach is the use of the python library known
as OpenCV. OpenCV offers users an abundant number of functions that help with

 36

computer vision applications. OpenCV can be used to recognize simple hand
gestures by essentially counting the number of fingertips is sees. This is a big
limitation since there can only be six recognized hand gestures. In order to be able
to count the number of fingertips in the image, a contour or outline of the hand
must be found first. The next step is to find the edges of the found contour, this is
effective in trying to find the fingertips of the hand. After the edges are found, the
next step is to ignore all edges that are not fingertips. This is done by computing
the angle between two edge points, if the angle is small enough, the edge points
will be considered an edge point. Some advantages to this approach compared to
the machine learning approach is there is no need to gather a dataset to train a
model, this cuts back on development time as the OpenCV approach is more of a
“plug and play” way of recognizing gestures. In addition, the speed of producing a
prediction is generally quicker using OpenCV than using the Machine learning
approach. Some disadvantages of using OpenCV to recognize hand gestures is
the limitations on the different hand gestures that can be used, and the code
complexity that goes into distinguishing between different hand gestures. The
algorithms needed in order to achieve gesture recognition are more complex and
the gestures are limited to the basic numeric gestures with OpenCV. The more
advanced gestures used the more complex the algorithms get in order to
distinguish between the set of hand gestures. The most prominent difference
between OpenCV and Machine learning approaches is that with OpenCV, the
developer is essentially teaching the computer how to distinguish between hand
gestures by hard coding the characteristics to look for that differentiates each hang
gesture. Therefore, the complexity of the code is dependent on how many gestures
are used in the application. Machine learning, on the other hand, allowed the
computer to learn the different features of each hand gesture. The code complexity
is not dependent of the set of hand gestures as the same model architecture is
used to train any set of hand gestures. This approach was more robust, allowing
the developer to add or remove hand gestures from the dataset with little code
modifications.

 37

4.4 Graphical User Interface

4.4.1 GUI Overview

The graphical user interface acts as what the user interacts with to communicate
with the drone. The goal was to keep this interface as simple and user friendly as
possible. Figure 23 shows the final layout of the GUI.

Figure 23 GUI Layout

The GUI consists of 3 different sections or windowpanes the webcam pane,
feedback/reading pane, and a log/drone data pane.

4.4.2 Webcam Window Pane

The webcam window consists of a real time feed of the webcam and takes up
majority of the overall GUI space. This is where the user’s gestures are displayed
and captured so the captured gesture can be processed by the Neural Network in
the backend. The processed frame is also displayed next to the webcam feed. The
real time feed will be displayed with a green box overlay. Figure 24 displays an
example of what the webcam window will show. The green box overlay acts as a
region of interest. This region is where the user will display their gesture and will
ultimately be cropped out, processed, and sent through the Neural Network model
for a real time gesture prediction.

 38

Figure 24 Webcam Window Real Time Feed

4.4.3 Feedback/Readings Window Pane

The feedback/reading windowpane gives the user a visual representation of the
prediction result after being passed through the Neural Network model. This
windowpane consists of radio buttons, one for each gesture, with labels identifying
the specific drone action. Ideally, while the user gives the specific gesture that
correlates to having the drone thrust upwards, the radio button labeled Thrust
Upwards will be filled. Only one radio button can be filled at a time as only one
drone action can be done at once. In the feedback/reading pane there will be one
radio button for every drone action/gesture.

4.4.4 Log Window Pane

The log windowpane serves as a textual representation of all actions being
performed and be located at the bottom of the GUI. Essentially, every action taking
place in the system is recorded in the log window. In addition, there will be an
altitude field that displays the drone’s altitude in real time and fields that show the
drones motor speeds, pitch/roll angles, and battery level. An ultrasonic sensor on
the drone side will communicate the drone’s altitude to the graphical user interface
via Bluetooth, the gyroscope communicates the drone axis angle via Bluetooth,
and the flight controller communicates the drone battery level via Bluetooth. From
experience, if debugging is needed for your system, looking at log files is a good
place to start. We decided to implement the idea of using logs to ease the
debugging process and to have a good idea of commands being sent throughout
the system. Table 8 shows the final set of log messages based on actions being
performed in the system.

 39

System Action Example Log Message
Host system successfully connects to
drone via Bluetooth

Bluetooth pairing successful

Users hand gesture is recognized User displayed a Closed Fist
Mapping of hand gesture to drone
action is sent to drone

Host sent Thrust Upward command to
drone

Drone sends an acknowledgement
back to host after receiving command

Drone received Thrust Upward
command

Drone sends altitude data to the GUI Received drone altitude data – 5 ft
Table 8 Log Message Format

In essence, all log messages are to be written to a specific log file. This log file will
be monitored, and its contents will be displayed, in real time, to the log window.
The tail -f command will be used to achieve a real time log feed.

4.4.5 Building the GUI

For our project, we wanted to build a GUI as it provides the user a simple and
attractive way to interact with the system with all different components
consolidated in one GUI window. Since our project will be coded in Python, we will
be consistent and use Python to create our GUI. Fortunately, there are many open
source libraries that assist with creating a GUI using Python. Some main open
source Python GUI frameworks include Tkinter and PyQt. Tkinter is native to
Python and is a basic GUI package and provides common GUI elements that is
used to build the interface. Some elements include buttons, entry fields, display
areas, etc. These elements are also referred to as widgets. Some main
advantages of Tkinter include that it is part of Python and there was nothing extra
to download. It also had a very simple syntax and provides an abundant number
of widgets. Some main disadvantages of Tkinter is that the graphics look old and
outdated and it can be difficult to debug. PyQt is a set of Python bindings for the
popular Qt application framework. It is not native to Python and requires extra
downloads. It is easier to design GUI’s with PyQt and is typically used to design
more advanced GUIs. In contrast, Tkinter is generally used for smaller, less
advanced, GUI applications

We used Tkinter to create our GUI as no extra installs were needed and due to the
fact that our GUI itself is not advanced and the look of the GUI was not an important
aspect to us. Essentially, the purpose of the GUI was to create some organization
of all the different aspects of the gesture recognition processes. When creating a
GUI, the concept of event-driven programming was utilized. Event driven
programming is a programming paradigm where the flow of the program is
determined by events. Events can be mouse clicks, messages from other threads,
key presses, etc. Usually, when creating a GUI there is a main loop that waits and
listens for events to occur. When a specific event occurs, a callback function is
triggered to appropriately respond to that event. In our GUI implementation, a
specific event will occur every time a new hand gesture is predicted. There will be

 40

8 events, one for each hand gesture. If a closed fist hand gesture is recognized,
the callback function/event handler sends a specific message to the drone via
Bluetooth, updates the Feedback/Readings windowpane to fill in the closed fist
radio button, and writes a message to the log file that will be shown in the log
windowpane. The drone also sends its altitude via Bluetooth to the GUI. Upon
receiving the altitude information from the drone, an event is triggered to update
the altitude field in the Feedback/Reading windowpane to reflect the newly updated
altitude of the drone.

One potential optimization in building and executing our GUI was to incorporate
multithreading to our GUI application. Multithreading has the potential to improve
computational performance by using different CPU cores in parallel. In our GUI
implementation multithreading was used perform tasks that do not depend on each
other. For example, reading in altitude data from the drone and updating the
altitude field was not dependent on recognizing hand gestures, sending the
specific message via Bluetooth and updating the GUI fields. Therefore, a single
thread handles receiving and processing the altitude data and another single
thread was used to handle gesture recognition. If multithreading wasn’t used a
potential blocking scenario can occur. For example, if the execution of the program
was currently processing a frame for recognition and at the same time the drone
sends altitude data to the GUI, the updating of the altitude field would be blocked
since the CPU was executing instructions to process the frame. The updating of
the altitude field would have to wait until the frame recognition is complete before
continuing. Therefore, with multithreading, productivity and response time of
certain GUI aspects were increased.

4.5 Wireless Communication

Because a drone is controlled by RC, we needed to plan for some sort of wireless
communication. The requirement of ours to control the drone from a remote
location was imperative to a drone project, because there were several safety
concerns involved with operating an unstable drone due to the speed and torque
that the motors spin. To circumvent the safety concerns, we wanted to operate the
drone wirelessly, which allowed us a safer testing environment and a more usable
product overall. Additionally, it is one of the main features of any drone on the
market to be wireless, because the idea of a drone is to be able to fly
independently. One of the core ideas for our project was to build a drone that is
very user-friendly and easily manageable, which goes hand-in-hand with being
wireless. This means that we had to perform thorough research on forms of
wireless communication to carry our data to and from the drone and decide which
particular medium was best for our implementation.

4.5.1 Possible Connection Mediums

When it comes to the wireless communication for the project, we researched each
and every one of our options, because we wanted to ensure that we were using

 41

the most beneficial medium possible. Our possible options boiled down to Wi-Fi,
Radio, Zigbee/Z-Wave, and Bluetooth. We explored each of the mediums of
wireless communication, but we found that Wi-Fi and Bluetooth were the leading
ones, so we weighed out the advantages and disadvantages for the two.

The industry leading form of wireless communication is undoubtedly Wi-Fi, as it is
a household term known world-wide, and even is seen by some as hard to live
without. This is because it is our way to connect to the Internet, and for it to be so
widely used, Wi-Fi must be reliable and fast. For us to leverage the advantages of
Wi-Fi, we would need either a common Wi-Fi network for both the drone and the
master computer for quick communication across the same network. Alternatively,
we could have the devices connect to the Internet, from different or same access
points, and communicate via an API microservice to communicate with POST
requests from the computer to be received by the drone. This implementation
would allow us to control the drone from long distance remote locations. We could
also have built the drone to be a Wi-Fi access point, which would have allowed us
to just connect to it from the laptop computer and directly communicate to the drone
so long as we stay in range of the Wi-Fi access point, we could control the drone
that way. This would have been like the way that you connect to a Google
Chromecast, in which the device contains a Wi-Fi access point and you connect
to it to feed it information to set it up. We decided against Wi-Fi because of a few
reasons. The implementation that would allow us to control the drone from a long
distance did not interest us, due to the fact that we are operating a drone, and you
would always want to at least see the drone to understand its surroundings to not
bump into anything and be able to navigate properly. Another reason we decided
to move away from Wi-Fi was that it would have been a much more complicated
configuration and is much less cost effective. The Wi-Fi access point
configurations mentioned above would all require at least one Wi-Fi access point
and one Wi-Fi receiver for the communication to work properly. While Wi-Fi is great
in being speedy and communicating large amounts of data in short periods of time,
popularity of Bluetooth for wireless communication for projects similar to this one
was much higher than Wi-Fi.

One of the primary advantages of Wi-Fi would have been the ability to connect a
vast number of devices to the network, however for our particular implementation
this would not have been beneficial. This is due to us not wanting to send the drone
commands from multiple sources, which would have caused the drone to behave
unpredictably and could result in injury or damage to the surroundings because it
does not know which signals to prioritize. As this device is meant to be a personal
drone, we only planned on having one device connected to control it, as having
multiple devices connected and sending signals would have caused the drone to
perform unpredictable behaviors. This requirement lends itself nicely to one of the
primary limitations of Bluetooth.

 42

4.5.2 Why Bluetooth

Bluetooth is also being used because of how popular it is in everyday life. Bluetooth
has been around since the early 2000s and has continually been maintained and
upgraded through the past 2 decades. This technology remains a worldwide
wireless standard and it is evident why it is when one understands the power and
ease-of-use of it. It is completely standardized and has been continually optimized
to reduce interference, reduce cost, increase data throughput, and reduce power
usage. This continual optimization provides us another reason to use this
technology, because it is only evolving more in the future, we are protecting our
product for the future as it can be upgraded to the newer Bluetooth version without
much difficulty. This is opposed to using other forms of wireless communication
such as infrared signals or satellite communication.

4.5.2.1 Complexity

In regard to compatibility and difficulty, we have also researched this topic.
Arduinos are very popular for basic DIY projects, and so, the Software
Development Environment they provide to program it is very intuitive and hundreds
of thousands of projects have been done developing on them. Because of this,
there are a plethora of resources in regard to establishing the Bluetooth
connection, as well as communicating data via Bluetooth. There are plenty of
samples of source code for various projects that will provide us a great start on the
embedded code that we will need to implement on the Arduino. As the sole data
that is being communicated between a laptop computer and the Arduino is the
gesture and the ultrasonic sensor, we did not have many issues in data loss. In
essence, we send a code from the laptop, after deciphering the correct gesture,
with a dictionary for the code implemented on the Arduino board, to determine the
action that the drone should perform. From the drone, all we are sending is the
value for the altitude that will be directly read from the sensor, the motor speeds,
and the battery voltage for the LiPo battery. Simply put, we will only need a few
bytes going each way in terms of immediate data transfer. The fact that we are
deciphering the gesture on the laptop allows for the computation done for the drone
to be focused on maintaining flight and performing the actions. Our plan was to
continue sending the signal from the laptop to the Arduino to tell the drone what to
do. For example, if you give the ‘thumbs up’ gesture, the determinant code for that
action will be communicated over Bluetooth to the Arduino continually, until the
gesture is changed or until there is no gesture. In either of those cases, we will
then switch to sending the appropriate signal continually until the signal is either
changed or no longer shown. We anticipated that we may experience some data
loss because Bluetooth is not 100% efficient and reliable in certain conditions,
however, we did not experience data loss for longer than 500ms, because we were
continually sending the signals. By this I mean that we were sending several
signals, and so it was not a large issue if one of those signals was lost, because
they were being sent many times per second.

 43

4.5.2.2 Bluetooth Version

Bluetooth has various versions available, as the people maintaining and upgrading
the technology have been making it faster, allowing for more range, and increasing
the reliability of it. This means that it is continually updating and there are many
different versions of it. We will be using Bluetooth 2.x, which is the release that has
been out for well over 10 years now. We chose this particular implementation of
Bluetooth because it will be, without a doubt, the cheapest version for us to use.
Bluetooth modules with Bluetooth 2.x are extremely widely available and cheap.
This allows us to keep the cost of the project down, which will increase the
accessibility of the final product. Using an older implementation of Bluetooth also
allows for the most available support regarding troubleshooting issues we may
have when building it out. The most recent version of Bluetooth has only recently
been making its way as a standard in the market, as the technology came out in
late 2016 but companies generally take some time to actually add it in to all of their
products. We also chose this version for its Low Energy feature, which allows for
us to preserve the drone battery for actually operating the drone, which is one of
the major pain points of drones. We decided against Bluetooth 5.0 as well due to
its only new feature (that would be beneficial to us) being Slot Availability Masking,
which detects and prevents interference on neighboring frequency bands. This
feature was not a particularly necessary thing for us because we stay very close
to the drone when operating it, as it was not meant to travel so far.

4.5.3 Pairing Setup

In regard to our particular implementation of Bluetooth, we are pairing the drone to
the laptop computer that is reading the hand signals. This pairing is a very simple
process that nearly everyone with a smartphone is familiar with. It involves putting
the Arduino (with the Bluetooth module) into pairing mode and searching for
available (‘visible’) devices from the laptop computer. This process need only be
done a single time, because after the first connection, each device will have the
other device’s Bluetooth ID saved and stored. This allowed the devices to connect
automatically going forward, so long as Bluetooth was enabled on both devices.
This also is not limited to connecting to one device. If we decide to run our software
on different machines, we need only to pair the devices once again per device. To
clarify, the drone will only be connected to one device at a time and will only be
receiving signals from one device at a time.

4.5.3.1 Trusted Devices and Security

The pairing system usually has a built-in security check, which allows for external
devices that you do not want to connect to your device to be filtered out. The usual
process is, upon the pairing request, a security passkey is requested. This allowed
for some sense of security with the data being exchanged, because if we had some
external device sending signals to our drone, it could have malfunctioned, and the
damages could have been costly and/or dangerous. This built-in security check let
us make sure that only the devices we wanted connecting to our drone were able

 44

to send it signals. Figure 25 shows what the pairing request looks like from the
HC-05 module to an Android phone, however it is very similar to a computer.

Figure 25 Bluetooth Pairing Request

4.5.4 Limitations

There are several limitations to Bluetooth, and so we will discuss what in particular
we were limited by in our project specifically. Our project in regard to wireless
communication was quite simple, but there were a few hurdles to get over in regard
to the data that was communicated and reliability.

4.5.4.1 Data Limitations

In specific, the amount of data being sent over Bluetooth is a limitation. Bluetooth
does not have a very high data throughput, and so we cannot send large amounts
of data quickly and efficiently. We considered this limitation of Bluetooth when
scoping out the project, and so we decided to make the data communicated very
small and simple. We plan on communicating only bytes of data, because the data
will be sent very often, so we want to send small amounts of data for it to be
communicated quickly and efficiently. Sending data over Bluetooth is via radio
waves, and so it is difficult to send large data through the air whilst blocking out
any interference. Additionally, we wanted the signals to be sent rapidly so that the
drone would able to respond quickly to a new command. The signal needed to be
read quickly and then communicated to the drone quickly to ensure that the drone
moves with a near real-time response. This requirement for us dictated that we
needed to send small data but extremely fast.

As far as code complexity goes for the Bluetooth communication, we are only
communicating bytes of data, as the information coming from the drone are

 45

numbers for the ultrasonic sensor, motor speeds, and gyroscope data, and the
information coming from the computer will just be a one-byte character to
determine the action that the drone will need to do. This allowed for very small data
and ensured that the on-board memory was not exceeded, and data was not lost.

4.5.4.2 Range Limitations

Another limitation of Bluetooth is the range through which it can reliably
communicate. This tends to vary from module to module, but generally, Bluetooth
2.0 is meant to have a limited range of roughly 30 feet, which is determined by the
Bluetooth Special Interest Group (SIG). It was vital for us to find a reliable Bluetooth
module due to this limitation, as there was a large possibility for an increasing
number of interferences with the signal. A rapidly growing number of devices
communicate through radio waves in this time, and so interference-blocking is a
key feature that signals need to have. The expected range is actually determined
by the Power Class, which is a standard in Bluetooth that allows you to determine
the difference between the capabilities of certain Bluetooth modules. Power Class
1 has a maximum range of 100 meters, while Power Class 2 has a maximum range
of 10 meters, and Power Class 3 has a maximum range of 10 centimeters. Based
on this, we will be absolutely unable to use a Bluetooth module that falls under
Power Class 3, and so will be looking to find something in Power Class 2, since
we developed an indoor drone. However, the further the range, the more power
that the Bluetooth module will use, which was one of our primary project
constraints because drone flight time was very hard to maintain. Due to this, we
prototyped a Bluetooth module in Power Class 2 first, to determine if the range is
enough for us to maintain decent functionality of the drone. If that did not work, we
will then fall back on trying something in Power Class 1 to be able to communicate
the signals at a larger distance.

4.5.4.3 Interference Limitations

Another primary concern that was on our minds was avoiding the heavy amount
of interference that we will deal with when it comes to an indoor drone. Building an
indoor drone helped us greatly with avoiding drone laws that would impede our
product's use, but it also had its cons. The main con to building an indoor drone
was that we have to block out an extreme amount of interference. This is due to
the fact that in a room there are several wireless signals that are transferring very
large amounts of data at all times. This will especially be the case when we are
presenting our project for the Senior Design showcase, and so we will need to test
that does not get interrupted or lost along the travel to and from the drone. This
was, without a doubt, a great challenge to us, and we had to test in order to make
sure that our drone was easily able to communicate with the laptop computer while
we are feeding the signals to the camera.

 46

4.5.4.4 Device Count Limitations

Bluetooth 2.0 allows for a maximum of seven devices connected at one time. This
is a limitation that Bluetooth has due to the signal frequencies it has available to it.
However, this limitation actually is not a constraint for us, because in our
implementation of our gesture-operated drone, we planned on restricting data
emissions to one device, meaning that only one device can control the drone. In
doing so, we made it to disallow any more than one device connected via
Bluetooth. We were required to do this to make sure that the drone does not fly
uncontrollably and is not confused as to the action that the drone should perform.

4.5.4.5 How Will We Accommodate

Because we wanted to keep the data being communicated to a minimum to ensure
a faster delivery, we used a library built for ultrasonic sensors that will convert the
data that it receives via its sensors and converts it into one floating value. This
allowed us to communicate the small amount of data rapidly and repeatedly so
that we were able to see near real-time updates of the altitude of the drone, with a
relatively quick response time.

4.5.4.6 Dictionary Setup

Because we received the data via an integer, we created an on-board dictionary
of sorts, so that the data we receive can automatically be converted to a
maneuver/motion for the drone to perform. The dictionary will be defined based on
Table 9 provided below. This table dictates what will happen based on each signal
sent by the laptop computer after the gesture is converted to one of the 8 below
numbers.

Dictionary Value Maneuver

0000 Hover in place/auto level

0001 Thrust upwards

0002 Drone flies forwards

0003 Drone flies to the left

0004 Drone flies backwards

0005 Drone flies to the right

0006 Thrust Down

0007 Drone will land at current position

Table 9 Dictionary for Drone Commands

 47

Below, in Table 10, naming each mode, describing the mode, and describing each
use-case that our drone will be using for each.

Mode
Name

Mode Description Drone Usage

Active Regular connection mode, device is
actively communicating data to
paired device

This will be the mode that the
drone is in most often during the
prototype stage, further into later
implementations we will use this
mode less to preserve battery

Sniff Power-saving mode, checking for
transmissions at a set interval, this
mode is activated when the data is
not actively being
communicated/transferred

This is the ideal mode for the
drone to be in for most of the time.
As we are able to configure the
interval for the check for
transmissions, we will be
continually altering this to make
our drone response be a
reasonable time while also saving
as much energy as we can

Hold Different power-saving mode,
device sleeps for a set interval and
returns to active mode after that,
master can command the slave
device to go into hold directly

This mode may be used when the
drone has landed initially, and
after a certain amount of time we
can send the drone’s Bluetooth
module into “Park” mode

Park Deep sleep power-saving mode,
master can directly put slave device
in Park Mode to deactivate the
slave device until told by master to
wake up

This mode will be used when the
drone has been grounded for a
longer interval, and so it is unlikely
that the user is going to return to
use the drone anytime soon, and
will receive a signal from the
master to wake back up when
they need to launch the drone
again

Table 10 Bluetooth Modes

4.5.4.7 Bluetooth Modules

There were several Bluetooth modules available to use in conjunction with the
Arduino board. Majority of them are very simple to setup as they are made to use
with the simple-to-use Arduino, but they all have varying libraries, configurations,
and ranges to make each one different.

 48

4.5.4.8 Module Limitations

There are several limitations that we had to consider when choosing our exact
Bluetooth module.

For example, we needed to take into account the cost of the module because we
were completely funding this project ourselves and were trying to make our product
as accessible as possible to introduce the value of our product.

Another limitation we were considering was the amount of power drawn by the
module roughly. While this depended heavily on how we are using the Bluetooth
connection and how often we were communicating with it and what mode it stays
in, particular modules do use different amounts of power because they can
communicate either more reliably or are able to communicate over longer
distances.

Range was the second most important limitation of this choosing, because we
needed to ensure that we were able to at least communicate to the drone at a
reasonable distance, because a drone is not often controlled from a distance of
under one foot. If we were limited to that kind of range, it would be hazardous to
even operate the product due to the rapidly spinning propellers that could catch
body parts and maybe even injure people nearby.

The most important factor in choosing a Bluetooth module was its ability to
communicate signals without interference causing the signal to be lost on the
receiving end. This could have been very dangerous as well because a user could
ask the drone to increase its altitude and interference could cause the signal to be
altered and then the drone would receive, say, an incorrect command to speed up
forward, which could be hazardous to people and objects nearby. This means that
we absolutely had to ensure that the drone operates based on the user’s
commands with 100% precision, hence why we required that the Bluetooth module
be able to communicate the signals with 100% precision.

4.6.4.9 Module Options

Primarily, for these types of projects the most common module to use is the HC-
05 module. The reasons for this are that the module is able to communicate reliably
within about 30ft and can work as either a master or a slave. This would mean that
the module is able to create its own piconet as a master, and several external slave
devices would be able to connect to this module. This is a functionality that we did
not need, however with this particular module, since it is so popular for DIY
projects, would have the most support in regard to troubleshooting issues that we
may have with it.

Another popular option for these projects is the HC-06 module. This one in
particular is very similar to the HC-05 module, as it has the same range and brand,
but simply without the functionality to operate as a master device. This one was

 49

very suitable for our use case because we only need the Arduino to be a slave
device to the computer that is configured as a master device.

If we found that we require a greater distance for the connection, we could have
relied on switching to the BlueSMiRF Bluetooth module, because that module is
able to communicate over 100 meters.

Another option for us was to use the BLE Link Bee Bluetooth module. The
downside to this module is that it is relatively new, and so there would not be as
much support and tutorials when we were trying to configure or troubleshoot errors
with it. However, it has many benefits to it. Primarily the range that is twice that of
the HC modules of 60 meters, along with a typically rare functionality for Bluetooth
modules of having an integrated voltage regulator that supports both 5V and 3.3V
MCUs. This functionality will be very beneficial to us as we begin building the
prototype because we will likely end up going back and forth between different
power configurations.

4.6.4.10 Reasons for Choosing

We decided to go with the HC-06 module as it was very simple, we only needed
to connect it directly to the Arduino board (as shown in the picture below), configure
the module, then continually read from the module through the Serial object to read
the input. We can also send the altitude data through in the same loop as we are
using the Bluetooth connection as a Full Duplex connection. The configuration we
will be using will need to be tested when we build the prototype, however the
default baud rate is 9600. We only need to tell it to save the connection info so that
the connection is easier to setup next time. We decided on this module because it
is extremely cheap and allowed us to very easily set up the Bluetooth connection
in the beginning when prototyping, and because our drone will be operating
indoors it may have a greater range. We will likely need more range than this
module provides, but this module is so cheap that we could at least use it for testing
and prototyping because it is so easy to configure. This also allowed us to hit the
ground running faster in testing the flight control components, which will
undoubtedly be the most difficult part of the project to figure out.

4.5.5 Low Power Mode

Because power usage is such a prominent issue in all technological devices in this
day and age, we were trying to create the most efficient product possible, to allow
for the power-on time to be maximized. As this is especially important in drones
that use high-power motors to keep the device suspended in the air or thrust
upwards, we were trying at every step to preserve as much power as possible.
Luckily, Bluetooth offers several low-energy modes that allow users to preserve
power in their implementations of the technology. This was especially a focus on
the Bluetooth 4.0 version because of the ever-growing requirement to save battery
to increase efficiency of technology. Due to this constraint, we planned on using

 50

Bluetooth’s several modes to our advantage as these modes have primarily been
made to preserve as much energy as possible.

4.6 Drone Hardware Design

4.6.1 Model Overview

Our drone design is a classic quadcopter with four arms, four brushless motors,
and four dual blade propellers. Each motor is accompanied by its own ESC which
are all powered by rechargeable lithium batteries. The ESCs are connected to the
flight controller, which communicates to the user via Bluetooth. Each command is
received by the Bluetooth module and interpreted by the microcontroller on our
printed circuit board. Figure 26 depicts an overview of the drone design.

Figure 26 Drone Design

 51

4.6.2 List of Materials

Below is a list of all the major components used to build the drone.

● Usmile 450 Quadcopter Drone Frame
● RC 1000KV Brushless Motor
● 30A Electronic Speed Controllers
● 3 Cell-Lithium Battery
● MPU 6050 - Accelerometer & Gyroscope
● Printed Circuit Board
● Bluetooth Module
● Ultrasonic Sensor

4.6.3 Drone Frame

The drone frame was an essential aspect of the design. It is the core foundation.
Even with sound electronics, a weak or misaligned drone frame could have lead
to future complications. There were a couple features we kept in mind when
choosing our drone frame. The two most important aspects we had to decide were
the size of the drone and what material the frame was made of. Our decision
processes and decisions are mapped out in the sections below.

4.6.3.1 Dimensions

Our drone was designed to be flown indoors and that was an important
consideration when choosing parts. Being in a confined space the smaller the
design the better. A large bulky frame would limit the room we have to fly indoors.
While a small frame might have been easier to fly, we needed enough room to
mount all the components. The arms needed to be large enough for the ESCs
while the middle needed to be big enough to house the batteries and the PCBs.
Without the need for a camera or a gimbal, commonly found on commercial
drones, we did not need an extended landing gear to account for the added depth.

Most drones are measured in millimeters and are measured across
horizontally/vertically. Each drone arm is the same length and the overall square
design, means drones are measured with only a single value. We have decided
that a 450 mm is small enough to fly indoors but will have enough space for all the
materials. If we built our drone and had an excess of space, or a cumbersome
design, we could always have decreased the length of the frame.

Drones can have varying number of arms extending from the base. Some drones
have as few as three and others have up to eight drone arms. When you increase
the number of arms, the drone becomes more powerful and the thrust increases.
Since our drone was strictly for indoor flight only, we were not overly concerned
about making our drone very powerful. Four arms gave us plenty of thrust, allow

 52

for a more efficient design, and made designing the flight controller much more
feasible.

4.6.3.2 Frame Material

The material of the drone plays a large role in a drone’s design and can have
various effects on the flight and strength of the device. Frames that tend to be
stronger are often heavier, while those that are lighter, are generally weaker. The
best combination is a lighter drone that is sturdy enough to withstand minor
crashes and stiff enough to have minimal bending. A lot of high-end drones use
carbon fiber. Carbon fiber would have been a great option, but it was more
expensive than other materials. It is both very strong, hard to damage, and also
extremely light. We did not think the added strength would be worth the increase
in budget as our drone was not going to be flown in extreme conditions. On the
other side of the spectrum would be a wooden drone. It is very cost efficient, but
wood is extremely heavy and not strong enough to withstand crashes we expected
during the testing phases.

The best option for our design was a fiber reinforced plastic drone. Strong enough
to withstand the impact of minor crashes we might experience indoors and fairly
light weight. There were plenty of frames on the market that were affordable and
made of reinforced plastic. Another benefit of using plastic over the more
expensive carbon fiber, was that plastic does not have any communication issues.
Carbon fiber is notorious for blocking radio waves and could have caused
complications when controlling the drone. When using carbon fiber, it is important
to place electronics in a way where the signal will not be blocked by the frame.
Plastic was a good lightweight and sturdy alternative to the other frame materials
on the market.

4.6.3.3 Drone Assembly Process

When assembling the drone, it was important to ensure all the components were
properly balanced and tightly secured. There are a few bad side effects on flight
as a result of an unbalanced drone. A poorly aligned drone can lead to shaking.
As a result, certain electrical components can be loosened and give off incorrect
readings. Shaking can especially throw the gyroscope off, which is a key part of a
stable flight. Shaking is not the only problem; bad alignment can cause undulations
throughout the drone that could result in sporadic flight patterns. If you assemble
the drone properly, this issue can be avoided. Eliminating these issues made
testing and debugging a lot easier.

There are two options we considered when discussing the frame of our drone, was
whether we should custom the drone and 3D print it ourselves or build a pre made
frame. Customizing the drone ourselves would have given us a lot of design
freedom but would have required a lot of excess work. Many drone frames on the
market are well made and we would not have gained much of an advantage

 53

designing it ourselves. Assembling a premade drone would have been a time
saving options and also a reliable option. Putting the drone together ourselves we
were able to be extra careful to ensure all components are aligned properly and
ensure all the components are tightly secured in place.

4.6.4 Motors

4.6.4.1 Overview of Motor Orientation

Of the four motors at the end of each drone arm, the direction of the spin is
extremely important. A drone consists of three main types of movements. The first
is the drone’s ability to vertically change height, the second is rotation, and the last
type of movement is a directional change. Below, Figure 27, is an image showing
the orientation we used for our design. The four motor positions are front left, front
right, rear left and rear right. These can be represented with the following
abbreviations, FL, FR, RL, and RR, respectively.

Figure 27 Motor Orientation

For the drone to change height, it uses the speed of the motors to control how
much air is being pushed. The thrust of the motors and the drone’s vertical flight
path go hand-in-hand. When the motors are spinning there are two main forces
present. The air being pushed down, and the counter force expressed in Newton’s
third law. When these two forces are equal, the drone remains level. With an
increase in thrust, the force pushes downwards, and the drone starts to rise. The
opposite happens when the thrust is decreased.

 54

For the drone to not rotate the angular momentum needs to be zero. If the drone
needs to be rotated, the angular momentum needs to be changed. This change
can be done through a change in speed of one of the motors. If a singular motor
has an increase in speed, the drone would rotate but it would also cause the drone
to move vertically. As a result, the drones motors work in pairs to prevent this from
happening. The FR and RL motors are pair while the other two are also a pair.
While one set of opposing motors are decreased or increased the opposite occurs
to the other pair to prevent a change in height. For a drone to rotate to the right,
the front right and rear left motors will increase thrust while the, front left and rear
right motors decrease their speed. If the front left and rear right motors did not
decrease their speed, the drone would begin to rise. This decrease in speed
counteracts this motion.

When talking about directional movements, it does not matter what way the drone
moves, as the drone is symmetrical, it is the same explanation for all directions.
Rotational uses diagonal pairs while, directional movement uses adjacent pairs.
These pairs will change depending on which direction. If the pilot wanted to move
the drone to the left, it would increase the speed of the front left and the rear left
motors. If only the two motors increased speed, the drone would life up. To
compensate for this, similarly to rotation, the other two motors decrease their
speed. This keeps all other forces zeroed out and will just move the drone in the
desired direction. All of balancing is going on simultaneously, and with the correct
orientation everything will work in harmony. Prior to first flight it was crucial that we
take the time to ensure all the motors are properly orientated.

4.6.4.2 Electronic Speed Controller

Motors rely on electronic speed controller to function properly. Essentially the
electronic speed controller, abbreviated ESC, communicates between the motors
and the flight controller. It governs the speed that the motors spring and can be
programmed to perform as desired. Both brushless motors and brushed motors
require different types of ESC. In our case, we used a brushless motor, so we
needed the corresponding ESC. ESC for brushless motors are easy to distinguish
as they have three motor wires, as opposed to the two motor wires on a brushed
ESC. These wires carry the signals from the flight controller to the motor. A
stronger signal will spin the motors faster, this is all determined by the flight
controller which receives the instructions from the user.

Inside of an ESC there are six MOSFET transistors that are all chained together.
Certain combination of transistors when activated will correspond to a specific
phase inside the motor. It was programmed to take the signal given from the flight
controller and performs the correct gate changes to output the desired rotation.
The higher the signal, the faster the cycle of phases will occur. It was important
that we position our ESCs in a way where they will be exposed to open air to
prevent them from overheating.

 55

Choosing ESC can be a difficult task. There were a large variety of electronic
speed controllers on the market all that have their pros and cons. After searching
through a bunch of ESCs we narrowed our selection to a couple. Areas we put our
focus on while searching was the compatibility, size, amperage rating, and the
weight. Compatibility was important and the software needed to program the ESCs
played a large role in our decision making. If we were not comfortable with the
corresponding software, we would be hesitant to choose the ESC.

The size of the ESC needed to be able to fit securely in the arm of the drone frame.
The more powerful the ESC, the larger it is typically. ESCs can get big and the last
thing we wanted were the ESCs to be protruding from the arms of the drone. We
were looking for a good combination of power and size. Having a drone designed
for stable indoor conditions, we were able to sacrifice the power for the overall size
of the electronic speed controller. With a smaller size, the weight was also
decreased. Weight and size were directly related and the more lightweight our
drone was, the more efficient our design would be.

Lastly, amperage rating is very important. These will be drawing the majority of our
batteries power and minimizing this could elongate our battery life. ESCs are rated
by the maximum number of amps allowed. A higher amperage ESC can run at a
lower amperage, but once the value is exceeded, there is a risk of overheating or
destroying the ESCs. For our design we limited our search for ESCs with at least
an amp reading of twenty Amps. We did not want to exceed thirty amps but during
our search we did not limit ourselves to ESCs over 30 amps. Below, in Table 11,
is a comparison of potential ESCs.

 Size Weight Price Amp Rating Compatibility

Emax
BLHeli

3.1 x 2.0 x
3.1
inches

4 oz $40 20A ✔

RC Electric
Parts

2.1 x 1.0 x
0.5
inches

4.5 oz $16 30A ✔

Crazepony 1.0 x 0.5 x
0.2
inches

1 oz $45 35A ✔

Table 11 Comparing ESCs

All three options were good options that could work with our design. The first
options by EMAX, is slightly bulkier than the other two. This added size did not
come with another strong advantage. The price was on the more expensive side
while the amp rating was the lowest. It was a good option but was not the best

 56

choice. Craze pony’s 35 A model was extremely lightweight and compact. This
would have been the most efficient choice; however, the cost was three times more
than the other RC Electric Parts option. We decided that the added benefits of the
Crazepony design did not justify that increased cost. At almost three times the
cost, it would have been a lot more expensive to choose the Craze pony. Needing
possibly more than four for backups or testing purposes, the Crazepony ESCs put
us at risk of using much more of the allocated funds on ESCs. The RC Electric
Part ESC was small enough with a high enough amp rating. The one downside
was that they are the heaviest of the three designs. This added weight does not
work in our favor; however, it is still fairly light, and the difference is rather
negligible. Figure 28 shows of the ESC designed by Electric Part that we used in
our drone design.

Figure 28 RC Electronic Part ESC

4.6.4.3 Brushless Motors

Brushless motors were the best option for our drone because they have a longer
life-span than brushed motors. With no internal friction, the motor did not
deteriorate as quick as a brushed motor would. Brushless motors use magnetic
power which waste less energy and is more reliable. Brushless motors can be
divided into two categories, in runner and out runner motors. Performance wise
they are both very similar however in our case we are using an out-runner motor.
Outrunning motors are commonly used for drones. In running motors tend to be
taller and narrower, however with the extension of our drone arms, space was not
an issue. The wider outrunning motors are more suitable for drones. They are
slightly less efficient but are capable of producing more torque.

 57

4.6.4.4 Motor Power

Section 4.6.6 goes further in depth about our power design. Our ESCs are
connected to our lithium polymer battery power source. The motors we used are
1000KV motors designed for RC quadcopters. 1000KV motor produced more than
enough thrust, however if in we ran into issues during our testing, we always had
the option of using more powerful motors. The motors and the ESCs drew a lot of
power however our plan was to implement rechargeable batteries. With a
rechargeable battery, it saved us from having to buy batteries every time the drone
was dead. We started with three 3.7V batteries and planned on upgrading if we
found that our flight time was simply too short.

4.6.4.5 Propellers

Propellers come in various shapes and sizes. The number of propeller blades per
motor is a tradeoff between efficiency and thrust. Motors with more propellers have
more thrust but are more inefficient. For our design we chose to use dual blade
propellers because sacrificing efficiency for thrust was not worth it for our drone
designed for indoor use only. It was important to position the propellers properly
depending if the motor is spinning clockwise or counterclockwise. The image below
shows the orientation of the propeller depending on the direction of spin.

Similar to the number of blades, the longer the propeller the more thrust it gives
however it came at the cost of efficiency. Bullnose propeller are shorter and have
a more square cut off however we are using longer propellers that may draw more
current however the added thrust will help our dual blade propellers.

4.6.4.6 Motor of Choice

Choosing motors had a large effect on the drone’s performance. The motor is one
of the key elements that governs choices for many other decisions. The size of the
motor determined the length of the propellers while the type of the motor needed
to match the ESCs. Starting with weight, this was one of the more important
aspects to determine. The motor must be chosen with the frame size in mind. The
size of the motors needed to be relative to how big the drone frame is. With a lot
of room to work with on our drone frame, we opted for a fairly larger motor. Besides
weight, the power of the drone and how efficient it was were also selling points.
Some of the original motors that caught our eyes are listed in Table 12.

 58

 Weight Type Price Strator
Size

KV

Hobbypow
er

1.5 oz Brushless
Outrunner

$40 2212 1000

LiTacc
Model

2.0 oz Brushless
Outrunner

$48 2212 1200

Woafly 2.5 oz Brushless
Inrunner

$31 2212 920

abcGoodef
g

1.44 oz Brushless
Outrunner

$45 2212 2200

 Table 12 Motor Comparison

If we were to choose any of the following four motors, we would have a solid
product, but out of the four we were able to narrow our selection down to one. All
motors are within our desired rotor size range. The LiTacc Model was a very good
choice, relatively lightweight, however it was the most expensive model out of the
four, and the increased cost was not justified as the other models had similar or
better specs. The Woafly was significantly cheaper than the other two options,
however it was also the heaviest motor. Not only was it more weight, but it is also
the only inrunner out of the four. Even though we preferred an outrunner, we did
not rule out all inrunner motors. We did not feel that the heavier weight and
brushless inrunner motor was worth the decrease in price. Both the Hobbypower
and abcGoodefg were very similar but the increased voltage on the abcGoodefg
was not what we were looking for.

In summary, we were looking for a prop size ranging from eight inches to ten
inches. With the prop size you can determine the desired size of the motor’s stator.
We were shooting for something greater than 2200. Another important
specification was that our individual motors do not exceed 2oz. With these in mind,
our motor of choice was the A2212 1000KV by Hobbypower shown in Figure 29.
With a stator size of 2212, we had the option of using our desire propeller size
range. We could have varied the size of the propellers and compare the efficiency;
our concrete propellers size was determined in our testing phase. This motor
weighs roughly 1.5oz which is below our constraint of 2oz. With a diameter of just
over an inch, we had plenty of room to mount it on our frame. It is also fairly shallow
with a height just under 2 inches. One of the most attractive aspects of this motor
is the low cost.

 59

Figure 29 A2212 1000KV Hoppypower RC Motor

4.6.5 Sensors

4.6.5.1 Overview of Drone Sensors

The drone has a total of three different sensors all serving their own each individual
purpose. The three sensors are the gyroscope, accelerometer, and the ultrasonic
sensor. They are all connected to our flight controller and their data was used to
balance the drone and move the drone to the user indicated position. There are a
lot of varying types of sensors on the market and a big part of our research was
going through all the options and figuring out which were the best. Some of the
factors we considered were the cost of the sensor, the functionality of the sensor,
the overall size, and the communication protocol. Our decision processes are
mapped out below, along with the sensor we built our prototype with.

4.6.5.2 Gyroscope

Gyroscopes come in various different types. Space shuttles use laser gyros while
something more common like your car uses a vibration gyroscope. The gyroscope
used by our drone is also a vibration gyro and it was an essential part of our design.
It is especially important for the PID control loops that will keep the drone’s flight
stable. The MPU-6050 is a popular option and we used it for our design. The MPU-
6050 has more than just a gyroscope, section 4.6.6.2 dives further into greater
detail regarding all the chips functionality. One of the main reasons it is widely used
is because it has a very helpful auto leveling compatibility which will facilitate with
the balancing process. The sensor vibrates in certain way when the device is
rotating. The gyroscope feeds this information to the flight control and the
appropriate action is taken. The MPU-6050 is pictured below in Figure 30.

 60

Figure 30 MPU 6050 Gyroscope and Accelerometer

 Permission to use from open source

It was important to keep in mind when the gyroscope is being mounted, to ensure
the gyroscope is aligned with the frame of the drone. Otherwise the drone will
balance incorrectly. The sensor measures the how fast the drone is rotating. The
rotation of the drone and angular velocity is explained in greater detail, in section
4.6.4.1. There are three coordinates the gyroscope measures, x, y, and z. Both x
and y can be determined depending on which way the gyroscope is rotated. That
being said, it must be sat perfectly flat so the vertical measurement, z
measurement, is accurate.

When looking through motion sensors, it is important to look at the number of axes
on the chip. Starting at three, a three-axis motion sensor only measures position
and functions as an accelerometer. A six-axis motion sensor now adds the
gyroscope rotational measurements. For the purpose of this project, we used a 6-
axis motion sensor. A nine-axis motion sensor includes a magnetometer which for
the purposes of this project we did not need.

4.6.5.3 Accelerometer

The accelerometer we used shares the same chip, MPU-6050, as the gyroscope.
Accelerometers are equipped on most electronic devices that are moving. They
are used on most aircrafts and measure both orientation and a devices
acceleration. The accelerometer is constantly measuring all of the forces acting on
the drone. Some are constant, like gravity, while others are user induced. Newton's
second law defines acceleration as the net forces divided by the mass of the object.
The accelerometer works in the same manner. There is a mass attached that
measures the change in forces and determines the acceleration value. This is
given to the flight controller and is used to move as desired and prevent the drone
from tilting.

Doing research, we had some slight doubt regarding the effectiveness of the MPU-
6050. The combined accelerometer and gyroscope are an ideal set up. This being

 61

said, we ran the risk of increased noise and disturbed signals. An alternative
solution if we ran into problems were to buy separate accelerometers and
gyroscopes. Two good reliable backups would be Invensense ICM-42605 or the
MPU-9250.

The MPU-6050 board can connect to the Arduino board. These connections are
very simple, as the Vcc input and Gnd pins are used for power, the SCL (I2C Clock)
and SDA (I2C Data) pins are connected to the general GPIO pins on the Arduino
board, and the Arduino SDE allowed us to work with the data passing through
those pins directly.

4.6.5.4 Ultrasonic Sensor

Measuring altitude can refer to many different things. Simply speaking, in our case
it is a measurement of how high the drone is flying. However, it is all based off a
reference point. This can either be absolute or relative. Different ways to measure
altitude include measuring atmospheric pressure, height above sea level or height
above the ground. In order to measure the distance from the ground, we used an
ultrasonic sensor mounted to the bottom of the drone in order to communicate the
drone’s height from the ground.

The ultrasonic sensor our drone is using is the HC-SR04 as shown in Figure 31.
This is a small yet powerful device that measures distance from an object in its
path. This sensor is fairly inexpensive and supports I2C which integrated nicely in
our PCB. The layout of this sensors connection to our PCB is discussed in section
5.0.

Figure 31 HC-SR04 Ultrasonic Sensor

 Permission to use from open source

 62

4.6.5.5 Indicators

The drone is equipped with numerous LED indicators to help the user understand
which direction the drone is flying and what state the drone is in. The drone has an
indicator that turned on when the drone is powered on. This was a small LED that
would flash three times when the drone was powering on. Once on, the LED
remained illuminated and would turn off if the drone lost power or the drone was
turned off. This is a good quick indicator to the user the state of the drone. When
the drone is turned off, the LED will flash twice and promptly turn off, demonstrating
the drone is now powered off. The LED has various colors to indicate the battery
life. Figure 32 below shows the different colors and their corresponding battery
value. Our drone and most drones on the market do not have very long-lasting
batteries. It is important that the user knows the state of the battery and knows
how long they have until the device loses power.

Figure 32 LED Indicators

Another indicator we are using, is a directional indicator. On the bottom of the
drone will be four LEDs. The two front motors, FR and FL, both have a green LED,
while the other two have a red LED. This is on the ends of the arms, so the user
can have easy visibility to the directional LEDs from every angle. These LEDs can
be referenced when the drone is being directed. Moving the drone forward, is in
reference to the two green LEDs. Regardless of where the drone is rotated, the
forward movement is always be directed towards the two green LEDs. The image
below shows how to read the LEDs and determine which direction needs to be
shown to move the desired direction.

4.6.6 Power

4.6.6.1 Overview of Power

Power is one of the most important things to have a deep understanding of when
it comes to this project, as we wanted to create a product that was as efficient as

 63

possible while retaining a low cost due to the project being locally funded and
maintaining a good value to make it accessible. All of these things are heavily
dependent on power when it comes to drones because in-air flight time is the
greatest limitation when it comes to drones, given that most professional drones
only have roughly a 30-minute flight time, which is industry leading. While that
timing is for outdoor drones that reach a very high elevation, we are building an
indoor drone, but the drone will have a lot of things pulling power from the power
source. Overall, the power source provides voltage to the drone’s propellers and
the Arduino board (which in turn powers the ultrasonic sensor, the Bluetooth
module, the gyroscope/accelerometer, and the flight controllers). This shows that
there are several things at work that require power here, and so our power source
needed to be reliable and large. Unfortunately we were also limited to how large
the battery could have been because this would weigh the drone down, and our
motors would need to use more power to keep the drone in air (if they can even lift
it off the ground) and it would have put more stress on the motors too. This would
also have caused the product to run much hotter, which could have resulted in
unsafe conditions for the other electrical components and eventually a
malfunctioning of several parts of our drone.

4.6.6.2 Gyroscope

For the gyroscope, we used the MPU-6050. This particular component has a low
power mode built into it, in which it will draw under .1 milliamps. This very low
current draw is ideal for our implementation because we tried to be as preservative
as possible with our power. This .1 milliamp is being used up by .02 milliamps for
the low power mode and roughly .06 milliamps for the voltage regulator that is built
into the MPU-6050. Because the MPU-6050 was being powered by the
ATMega328p, this will cause our ATMega328p to draw less power, which allowed
for more power to be used to keep the drone in the air, which increased the runtime
for our product.

4.6.6.3 Lithium Polymer Batteries

To power our drone, we used a Lithium Polymer (or LiPo) battery. We used this
particular type of battery because they were much more efficient and powerful. The
downside to using them was that they tend to run up the price of the drone,
however because power is one of the biggest limitations when it comes to drones,
we decided as a group to invest well into a good battery so that our product can
have a longer runtime. The type of battery was primarily determined by the motors
and propellers that we are choosing, since heavier and more powerful ones would
require a heavier and bigger battery. LiPo batteries are differentiated by the
Capacity, C Rating, and the Cell Count. The Capacity of the battery is generally
measured in milli-ampere hours (mah) which is generally the measurement that
you often see to measure store-bought AA and AAA batteries. This measurement
means that your device could draw that number of milliamps for one whole hour to
drain the battery from 100% to 0%. The C Rating gives the maximum discharge
current that can be drawn from the battery without damaging it. This just ends up

 64

being the Cell Count multiplied by the Capacity. The Cell Count is just that, the
number of cells that the battery contains in total. Generally, you will find 3S or 4S,
aka 3 cells or 4 cells, where each cell has a nominal voltage of 3.7V.

4.6.6.4 Our Choice

We experimented with these LiPo batteries to build our product, but we began
testing with a few 3S batteries. We essentially bought one of a lower capacity and
then continue testing to figure out if we need a bigger one or can continue to use
that one. Ideally, we wanted at least roughly 5 minutes of flight time for our first
prototype. In the future, we can work on upgrading the battery and bettering our
product to be able to have a longer flight time should we not receive enough from
the 3S batteries, however our drone was meant to be very miniature, and so we
were hoping that a 900mAh capacity 3S LiPo battery will suffice for our first
prototype.

4.6.6.5 Rechargeable Battery

For our product, we used a rechargeable battery. The reasoning for this is that we
were building this product for hobby use, rather than competition use because the
idea of this product was to use it indoors and build a new way to control a drone.
Generally, we were not building this drone for a one-time use, and so it would be
a great hassle to need to replace the battery every time you are done using the
drone. Therefore, we will be using a rechargeable Lithium Polymer battery
(specifications previously discussed). This also helped us in testing and keeping
the cost down, because we undoubtedly needed to test the drone’s flight and
runtime vigorously and having to buy new batteries every time it was discharged
would have driven the price of our drone up exponentially.

We purchased a Lithium Polymer battery charger that was able to charge our
battery safely along with the battery. The charger came with connectors that plug
into the battery and provided a screen interface so that you can view the battery
percentage or the battery content. This feature was especially useful in our power
testing because we were able to use the screen to tell us how much battery was
left in the drone after we performed a controlled test with the drone and it still had
power after landing. This greatly helped us in writing out usage instructions for the
end-user.

4.6.6.6 Voltage Regulator

For each component receiving power, mainly the motors and the Arduino, we
needed to regulate the voltage so that we were not over-supplying them and in
turn damaging the components. While the power supplied to the motors did not
need to be very strictly regulated, the power to the Arduino needed a very defined
voltage regulation.

 65

4.6.6.7 Battery Life

As previously mentioned, the battery life of the drone is one thing that we expected
to be our greatest limitation for the drone. The reason for us thinking this was
because drones typically do not have a very long battery life even when
professionally made. Furthermore, we planned on using a very small battery. We
hoped to have at least an estimated 5 minutes of battery life from 100% battery to
0%, but we needed to see how close we were to that in the first prototype when
we start testing out batteries and combine all of the electrical components together
to see the amount of power that they are going to draw. Our plan was to use the
low power modes in all of the sensors and the Bluetooth wireless communication
to give us the most efficiency with our battery, and we also planned on testing how
long the drone can hover, how long it could continually move forward, and other
similar tests so that we had a very good idea of how the drone can operate and to
understand how to instruct the drone user when a good time was to bring the drone
back closer to the user, so that the drone can land before the battery is completely
discharged and has a crash landing. Because of this, we needed to test the drone’s
flying time with the motors connected but without the propellers, allowing us to
determine the kind of flight time before actually letting the drone fly by itself, which
helped us reduce damage costs.

4.7 Drone Software Design

4.7.1 Flight Controls

4.7.1.1 Overview of Flight Controller

Flight controllers control the speed of all the motors, dissect commands from the
user and balance the drone. They were vital to the drone and can vary in
functionality. For our design we had the option of programming our own flight
controls or using a pre-programmed flight controller. Flight controllers use the
onboard sensors and constantly feedback information for correction purposes.
This is how the drone remains level. This PID tuning process allowed us to
customize how our drone reacts to certain movements and gives us a lot of
freedom when designing our drones flight controls.

4.7.1.1 Dedicated Flight Controller

Drones have become widely popular over the last few years and the market is
saturated with various kinds of drones. With all these drones, there are a ton of
preprogrammed flight controllers to choose from. If we were to use a dedicated
flight controller, it would have saved us the trouble of having to balance the
quadcopter ourselves. If we did use a dedicated flight controller, the integration
process would have been more difficult. Communicating our controls to the already
preprogrammed device, would have limited our freedom and could also lead to

 66

more complications. This was not our first choice. We understood that
complications could have lead us towards a dedicated flight controller.

The dedicated flight controller is just another microcontroller that is pre-
programmed to have a stable drone. We thought it was important to have a couple
options selected in case we needed to use a dedicated flight controller. Like a lot
of the other components in this project, there are several different kinds and it took
a lot of research to find the best fit for our project. One component that will help is
having a floating-point unit, abbreviated FPU. This is a component to speed up the
computation of floating-point numbers. With an FPU, the mathematics would be
calculated at a faster rate and will alleviate stress on the MCU and allow for quicker
corrections.

Flight controllers are measured by their speed on a scale ranging from F1 to H7.
These values determine a lot of components regarding the drone, but the higher
the value, the more functionality and the better the processor. For our case, we do
not need more advanced than a F3 processor. These processors are powerful
enough and come with all the necessary components, including the FPU. The
Frsky Rx & OSD V2 is an F3 flight controller that would be a good option if we
decide to go the dedicated flight controller route.

4.7.1.2 Combined Flight Controller

Instead of purchasing a preprogrammed flight controller, using the Arduino
platform we developed our own. Having full control allowed us to expand our
capabilities to the fullest potential. The commands were to be received and directly
converted into the desired reaction. There will be no integration process with an
external flight controller. This made our design simpler and limited the number of
components controlling the drone. That being said, combining our flight controller
and all the other devices under one MCU, might have been a lot for the
microcontroller to handle. It was important that the device we picked was powerful
enough to handle everything. It was also important that we had a backup plan in
case, we cannot make it work. Our microcontroller decision is further explored in
section 4.7.1.4.

4.7.1.3 Flight Control Schematic

If we decided to go with a dedicated flight controller there would have been a
change reflected in our block diagram. This will be the separation of the MCU and
the flight controller. The flight controller would be connected to the ESC and given
instructions from the MCU. Figure 33 shows and updated block diagram.

 67

 Figure 33 Dedicated Flight Controller Schematic

4.7.1.4 Microcontroller

The microcontroller is the brain of our drone and connects the ESC to the user
giving them control of the device. The microcontroller we used was the
ATmega328p. The ATmega328p has a clock rate of 16 MHz, 2KB RAM, and 32KB
of storage. We did not need much storage space as the code we were using is
concise. We have predicted the processing power will be fine to work as a flight
controller and read in commands from the user.

If the processor turned out to not be powerful enough to fly efficiently, the
AT91SAM3X8E was a safe backup that we considered. It has significantly more
space, higher clock rate and a lot more RAM. The larger microcontroller was not
needed. However, another option was to use the ATmega328p to feed information
to a dedicated flight controller. The ATmega328p is quite good at relaying
information. We were trying to avoid a dedicated flight controller but, in the
scenario, if we needed more power, this could have been a feasible option. In
Table 13 below we list the three options we were interested in. The
ATSAMD21G18 is a happy medium between the ATmega328p we plan to use and
the backup AT91SAM3X8E. If the ATmega328p is slightly overworked, upgrading
to the ATSAMD21G18 would be a smarter move than the bigger change to the

 68

AT91SAM3X8E.

 Clock

Rate
RAM Flash Price

ATmega328p 16 MHz 2 KB 32 KB $10

AT91SAM3X8E 84 MHz 96 KB 512 KB $20

ATSAMD21G18 48 MHz 32 KB 256 KB $15

Table 13 MCU Comparison

4.7.1.5 ESC Calibration

Calibration of the ESC was extremely important. Subtle differences have large
negative effects on the drone’s stability. All the motors needed to be in unison and
spinning at the same speeds. The calibration process was crucial but fairly
straightforward. No external program was used to calibrate the ESCs. All the
calibration was programmed through the Arduino platform. A certain value needed
to be set to determine what no throttle is and what maximum throttle is. This will
vary depending on the motor. In our case, when the ESC gives a signal of 500
microseconds, the throttles are not spinning, and maximum speed when the ESCs
send a signal of 1500 microseconds.

4.7.1.6 Balancing the Propellers

Once the propellers were arranged properly, they needed to be balanced. Just like
most other components, symmetry and balance were a must. Using the
accelerometer discussed in section 4.6.5.3 and the Arduino platform, the number
of vibrations can be measured. Each motor would be isolated and checked to
ensure not much vibration is being produced. Too much vibration would affect the
flight of the drone and would cause it to be extremely difficult to control. With
constant starting and stopping and adding small increments of weight to the
appropriate side of the propeller they were balanced. For the smoothest possible
flight, the level of vibration needed to be as minimal as possible and equal across
the four motors. If all four motors had a little vibration the sensor can run without
being disturbed. Taking our time on balancing the propellers benefitted us greatly
in the long run with getting steadier flight.

4.7.1.7 Explanation of Flight Control Code

Arduino programming language works very well with servo motors. It makes it very
simple to program the ESCs as necessary. After including the servo package, we
had the ability to use very helpful built in functions to control the motors. This was
especially helpful when controlling the PID loops. The actual PID tuning process is

 69

discussed more in section 4.7.2. However, the following is a general summary of
what the Arduino program consists of. Initially the servo libraries were imported,
opening the door to plenty of helpful functions. The next step was to define values
that would be used throughout the program globally so they can be referenced
from across the board. It was important to look at the data sheet and observe how
the information from the different sensors were given and how we can convert that
to helpful information that could be used to create calculations. This information is
discussed in more detail in the individual sensor section 4.6.5.

Now that all the preliminary information is taken care of, the next step is to define
each of the motors and assign them the necessary signal to be in the off position.
The program runs in an endless loop that is constantly looking for a direction. The
values received via Bluetooth correspond to a signal and a conditional statement
will match the value with a movement. Each digit will correspond to a different hand
movement. When no action is being received, it will remain stationary (or ‘hover’
in place). At this point, the PID loops are constantly giving feedback correcting the
drone’s movement and ensuring it remains upright. While the drone is hovering,
the device is constantly getting feedback from all the sensors, which is the data
being used to calculate the PID value. The program also monitors the battery level
of the drone, the motor speeds, and the measured angle from the gyroscope. The
different levels of battery correspond to different LED colors specified in section
4.6.5.5. The other LEDS were also controlled by the flight program. These include
the power LED and the directional LED. The directional LEDs remain the same
color while the other LEDs are constantly changing depending on the state of the
drone.

4.7.2 PID Tuning

4.7.2.1 Introduction to PID Tuning

PID is an acronym for Proportional Integral and Derivative. In a closed loop system
these values can be used to control the flight and allow the drone to make
corrections as quickly as possible. This control system is constantly getting
feedback and correcting errors. Changing the values of P, I and D will change how
quickly and how the drone fixes these errors. Setting your own PID values can give
us a lot of freedom to have the drone react best to our motions. Ideally the drone
should not oscillate and move right back to an auto leveled position once the drone
has finished its action.

Starting with the P value, it monitors the current error. A drone without any PID
tuning would not correct itself. Including the P value will cause the drone to start
oscillating. At this point it reads the error that the drone is too far to one side and
tries to compensate. The higher the value, the more it tries to correct. This
correction alone will not be enough. It will try to correct and overcompensate
causing a continuous back and forth action.

 70

The I value monitors the past corrections and applies it under the situation where
external forces are applied to the drone. Initially the I value is not a necessity. The
P and D values are the first priority. The D value looks at potential future errors
and correct accordingly. The combination of the P and D values are what create
the quick reactive correction that is common across commercial drones. If the D
value is increased it will work harder to stop the over corrections caused by a
higher P value.

4.7.2.2 PID Schematic

Below, in Figure 34, a representation of the basic PID model. It shows how the
output is fed back into the controller and altered by the PID values, affecting the
output.

 Figure 34 PID Model

4.7.2.3 Using Multiwii to Balance the Drone

There are numerous programs that facilitate with PID tuning including control
station, MathWorks and MultiWii. After looking through various different options
and possibilities we decided the best third-party tool to help balance the drone was
MultiWii. MultiWii is a tool designed specifically for RC drones and has a wide
variety of helpful capabilities. It gets its name as it was originally based upon a
component of Nintendo’s game console Wii, which heavily used motion tracking
abilities. It does a good job graphing the PID process and these visuals helped
give us insight on how we can improve our current design. With the useful
Horizontal Situation Indicator (HSI) and all the angular measurements calculated,
getting the rough Kp, Ki, and Kd values through MultiWii was made much simpler.
This is explained further in section 4.7.2.4. MultiWii integrates extremely easily with
the Arduino software and the two made balancing the drone much easier.

 71

4.7.2.4 Process for tuning PID Loops

In order to test the motors, we had a structure designed to hold the drone in place.
From this stationary position the drone was easier to see where the corrections
need to be made. We either used this or we held the drone and observed the
motors as they increased and decreased speeds. These corrections can be easily
felt, however being so close to the spinning motors was a reason we typically
avoided this method. The stationary mount was the most effective and safest
method. Starting out we isolated the test to one axis. Starting with one axes we did
find the best working PID values and apply th mto the other axis and work from
there. Everything done on the first axis, was applied to the second axis. After
setting the untested axis, we checked to see if the values work and adjusted the
value accordingly. It worked alright at first but after subtle adjustments, we saw
major improvements.

There is not a combination of PID value that are universally correct. There are
guidelines that helped guide us in the right direction. Every motor was different,
and every drone has its own unique inconsistencies. Separate motors draw varying
amounts of power, and the stronger motors caused the drone to lift towards the
more powerful motor. This is what was corrected with the PID tuning. The best PID
tuning process we found was starting with the P value. Increase the P value till a
steady oscillation was obtained. This oscillation should be relatively quick. It
bounced back and forth but did take a very long time to get stable. Once the drone
was oscillating from the overcorrections, the D value was introduced. The D value
monitored the time a PID loop took and related that to the current angle. Now the
drone was correcting faster. With that information it will be able to prevent the
drone from over correcting drastically and will limit the time of complete correction
to the desired set point. The next process was tedious but with different P values
and corresponding D values, we found the highest functioning set of values that
balance the drone as quickly as possible. When the D value was too low, it was
almost negligible, and when it was too high the system acted unpredictably. Having
an understanding of these reactions helped us determine the next move to find the
correct P and D values. Including the I value tightened up the drone’s corrective
process. The drone balanced itself without the I value although the I value mad
subtle important changes. Once the drone was balanced close enough to zero the
P and D values were no longer of use. Here is where the I value came into play
and mad our subtle changes that ensured the drone was as close to set point as
possible.

It is important that the drone’s range did not exceed a real angle of -45 degrees or
+45 degrees, and also that the drone remained perfectly horizontal when no
movement was occurring. If the drone was to exceed these ±45-degree angles,
the drone would have flipped over. Once the drone flips over, it would have not
been able to hold itself up and this would result in a crash. If the drone did not
remain at a real angle of 0, it will float around and wouldn’t remain still which will
make controlling the drone very difficult. The importance of PID tuning cannot be
stressed enough and we knew this was going to be a major part of our project.

 72

This took up a large amount of time and was started as early as possible to get our
drone working. Once balanced, we had more time to focus on all the other aspects
and improved our design to the best of our ability.

4.7.2.5 Explanation of the PID Code

The program needed to read in the values from the motion sensor and use that
information to actively balance the drone. The value received could be broken into
two categories, the accelerometer readings and the gyroscope. The accelerometer
had a 16-bit value that was converted to a more digestible unit of the pull of gravity.
Gravity is roughly 32 ft/ s^2, and a register value of 16384 is equal to 1g. When
the gravity was equal to 1g, the drone was level and a change in value most likely
means the drone was changing direction. Using the pull of gravity, we calculated
the angle of the drone using basic trigonometric functions. These angles are
important and were used with the gyroscope to monitor the position and angular
changes in the drone. The information can be extremely sporadic, and it is
important to use filters to clean up the data received from the motion sensor.
Through a combination of complementary and kalman filters, we took that
information and eliminated most noise and random errors that had occurred.

Using the Arduino environment controlling our flight controls, we used that data to
help with the PID tuning. The three main PID constants were represented by Kp,
Ki, and Kd. Kp corresponds to the P value, Ki corresponds to the I value, and Kd
corresponds to the D value. It is important to track the error, how far off the drone
is from stable and use the PID values to correct that. The desired angles were
simple, either 0 for horizontal flight or 30 degrees in the desired direction. The PID
controllers’ job was to compare this value and correct accordingly to the desired
set point. It was important to define which side is positive and which side is
negative. Directionally, the forwards and right position were positive on the y and
x axis, respectively. The backwards and left position were negative on the y and x
axis, respectively. Each k value is individually calculated and summed together to
create the singular PID value. This one PID value can then be used to monitor and
correct the motor speeds. The error was constantly fed back into the closed loop
system, the difference was then taken for the desired set point value and the
necessary corrections were made.

4.7.2.6 Effects of the Battery Life on the Motors

As the battery life declines, the power being delivered to each motor decreased.
This was addressed in our flight controller, as this had an relatively large effect on
the drone’s flight patterns. With a short life span, the drone batteries drained quite
rapidly. As the battery declined in overall charge, the motors all together delivered
less power. These inconsistencies needed to be closely monitored and expected.
As the power started to drain, the PID loops corrected the speeds of each motor
to ensure the drone remains stable. The power of the drown is explained more in
section 4.6.6. We had two extra wires connected from our power distribution board

 73

that fed into our microcontroller. These helped us monitor the level of charge in the
battery.

4.7.3 Prototype Testing

Prior to our prototype being built, we spent the time waiting for our parts, to develop
our graphic user interface and improved our hand gesture recognition model. We
tested the accuracy of each hand signal and added to the dataset until the
accuracy was at a high enough level. Initially we had issues with hand signals that
were too similar. As we developed the model further, we removed hand signals
that resulted in false positives. Varying our hand signals as much as possible
helped improve our model’s performance.

Once the GUI and hand gesture recognition were finished, we did testing on a
single motor. We tried using different hand signals to change the motors speed,
read values from our sensors, and output to the serial monitor. Testing all these
different things was essential to ensure all aspects of our final project were
feasible. After all of our parts came in, we were able to start assembling the drone.
At the same time our working PCB had arrived and were able to test and make
sure there were not issues with the board. We started by simply turning on the
drone motors and changing their speeds. Once all of the motors were properly
functioning and the gyroscope was giving us accurate values, we were able to
begin the PID process.

The PID process was made easier by isolating the separate axis of the drone. We
were able to do this by slide a pole through the center of the drone and stabilizing
it down the middle. We built a wooden frame that held the poles in place shown in
Figure 35. We were able to remove the poles, rotate the drone to the desired axis
and put the poles back through the drone keeping it stable. For the pitch and roll
axis we found the best kp, ki, and kd values. We initially tested these separately,
and once we had values for both, we tested them together. With the combine axes
correcting together, we noticed some over corrections and adjusted accordingly.

Figure 35 Test Setup

 74

During our testing process, one of the biggest issues we faced was noise and a
drifting gyroscope. We isolated the issue down to the vibration of the motors. In
order to solve this issue, we took two approaches, hardware and software
solutions. At the early stages of our testing we had the flight controller screwed
down to the center of our drone. Once we removed the screws and soft mounted
our motor, we saw major improvements. Using anti vibration foam, we eliminated
any metal in contact with the flight controller. In doing so we center the gyroscope
as much as possible, as the center of the drone has minimal vibrations. We also
wanted to dampen the vibrations at the source, and we used silicone TPU soft
mounts that sat underneath the motor. For the software we implemented different
filter and changed the gyroscope settings to improve the gyroscope. The MPU6050
gyroscope we used had an internal low pass filter that we were able to use to block
out extra noise. Decreasing the gyroscope sensitivity was also beneficial. The best
software solution we found was a Kalman filter. Initially we used a complimentary
filter to eliminate noise. It was a low processing cost and was quite easy to
implement however, we still had an issue with the gyroscope drifting. This drift was
eliminated with the Kalman filter. It was harder to implement but it was more
customizable and allowed us to have a fairly stable gyroscope.

Once the drone was flying stable from our serial input commands, we combined
our hand gesture GUI and our drone. During initial integration we had some
communication issues between the drone and the GUI. Once resolved we used
the GUI to test the drone for the remainder of the project. We adjusted the baud
rate to account for amount of data being sent back and forth. Once both were
working in harmony, we fine-tuned our PID values and assigned each hand signal
to the necessary drone command.

The flight testing is being performed in a local gym. We needed a space with plenty
of room to try out different flight control settings. We chose an inside setting as the
drone is designed for flying indoors and we eliminate all the hazards and excess
forces outdoors. The space we used had heights exceeding our max height
requirement so we were able to confirm our drone could reach the desired height
of 10 feet. After PID settings and all the equipment is mounted, we took the drone
to our testing location and flew around observing how the drone reacts to certain
motions and how it corrects. Observing these components, we would keep that in
mind for what corrections would need to be made. Using gym mats, we covered
the floor and did our best to keep the drone low. Are biggest goal with testing is to
do as little damage to the drone as possible. Without the mats, the hard floor below
could potentially break a propeller or damage other extending parts of the drone.
The mats will absorb some of the impact and prolong the life of our drone in the
event of a crash landing. For the majority of the testing we will keep the drone fairly
low to the ground and avoid exceeding certain heights to prevent major crashes.
The huge amount of space allocated for a testing helps minimizes unwanted
crashes.

 75

We want the flight to be demonstrable in a small indoor environment. When the
project is to be showcased, it is important to have a fail proof procedure to show
all the functionalities. That means our battery must last a certain amount of time
and all the gestures must be repeatable upon command. During our testing this is
what we are looking out for. Exhaust a battery and become aware of what time
span we are limited too. If this time is shorter than we presumed, adjustments will
need to be made. Make our design more efficient or add batteries to the drone.
Below in Figure 36 our final prototype is shown.

 Figure 36 Final Prototype

6.1.6 Bluetooth Testing

In regard to testing with Bluetooth, we were able to test that the module connected
to the laptop computer by seeing the connection indicator LED on the module, as
well as verify that on the laptop computer. We also were able to verify this easily
when setting up with new devices as we have several laptop computers, and were
able to connect to the module without it being connected to the drone. We
rigorously tested the connection of the module at varying distances, with various
obstacles in the way, as well as test the communication of the data with these
variables to clearly define the limitations around our product. These were very
important things to verify because the drone, if it gets out of control, can be very
hazardous to surrounding objects and people. When we tested the communication,
we simply communicated the data across without the drone actually flying or
spinning the motors. As we were only communicating numbers across the
Bluetooth connection, we very easily outputted the numbers to the console of each
respective device to ensure that all of the data was coming through accurately and
precisely.

 76

6.1.3.1 Ultrasonic Sensor Testing

In regards to testing with the HC-SR04 ultrasonic sensor, we verified this very
easily by connecting it to the Arduino, and reading the output of the sensor in the
Arduino’s console that is accessible by the Arduino Software Development
Environment, as that is how you debug most Arduino programs and we commonly
used that tool. We developed tests in which we elevate the sensor to previously
measured heights and then look at the output given in the console to ensure that
it is accurate to the level described in the technical specs of the sensor, which is a
very low difference of 18 centimeters. The output described essentially the output
of the elevation level in relation to the floor level. It put its estimated elevation level
after a set interval that we provided it using the Spark Fun library to convert the
sensor’s data to a readable elevation level. Below is similarto the output that we
are expecting to see in the Arduino SDE when debugging/testing the ultrasonic
sensor. Figure 37 is a screenshot of the log output showing from the Arduino’s
Integrated Development Environment. The output is what we received using
Sparkfun’s library to show the exact height at a given time.

Figure 37 Ultrasonic Sensor Output

4.7.4 Expected and Actual Adjustments

Building our project, we ran into dead ends and times we need quick improvements
and adjustments. It was important to be open to change and not get to focused on
something that halted the progress of the project. One of the changes we expected
might have needed to be made was upgrading to a microcontroller with more
space and a stronger processor. If our current processor couldn’t manage both
flight controls and communicating to the user, we would have had to upgrade our
processors. Fortunately, we did not run into this problem and we were able to easily
use the ATmega328p with storage and processing power to spare. Another
change we predicted was having to add more power or making our design more

 77

efficient. Even commercial drones are notorious for having fairly short battery life.
This also did not turn out to be an issue. We were comfortable just using two
batteries. As one was in use, we were charging the other. We never ran into any
problems with battery life. Making the system as efficient as possible was an
ongoing goal for us.

We expected to need PCB reprinted, and this issue did occur. Errors occurred
during the production phase and other boards were damaged. Regardless of how
the issue was caused it is important that we had reliable backups. Most sites were
reliable and can give us a low-cost board in a time no longer than a week and gave
them to us in bulk. This was comforting and changes did have to be made. As we
tested and tried out our initial designs, we realized where the changes had to
made, and adjusted accordingly. Having expected this, we were able to leave
enough time, so we weren't rushing to get the boards back. Same goes to say with
individual components. Our goal was to choose reliable sensors and other key
functional parts; however, incidents did happen. Crashes caused breaking and
defects caused various other issues, therefore we had backups readily available
to avoid wasting time. With testing our main priority was to not waste time waiting
for parts to arrive. Being constantly at a stage of testing and improving lead to the
best result and possible outcomes for our project

Another area we had room to explore is what to do when the drone loses
connection. Whether this is caused by a loss in power, out of range or interference,
the drone needed a safe solution to land properly. The simplest solution was once
connection is lost, or when the battery reached are certain percentage, the drone
performed a landing sequence and powered down. This solution was simple to
implement. If this was an outdoor drone there might have been some
complications, like landing over something it should not have. Because this was
an indoor drone with lower altitudes, this implementation worked fine. This can be
avoided by the user, when flying to always keep the drone out of danger and over
a safe place to land. There is a lot of room to explore in this category and now that
our drone is working properly, we can focus on improving this afterwards and take
this project further.

4.7.5 Research and investigations

Drones have become increasingly popular in recent years, along with computer
vision technology. When the idea came up for this project, as a group we
researched the web for similar products. Although the market is super saturated
with drones, there was no product exactly alike what we attempted to design. This
exclusivity was enticing and was another driving factor to do our best at designing
and improving our product.

That being said computer vision and drones do go hand in hand. On the market, a
popular product is a drone that follows motion. These are mainly used for tracking
purposes and the drone will choose a target and track its movement. This utilizes

 78

the same computer vision concepts but differs in the sense that, our design was
independent of the user movement unless directly intended for the drone.

5.0 Printed Circuit Board

5.1 Printed Circuit Board Overview

We ordered the printed circuit board from online in attempt to meet our goal of a
very low cost and a relatively short delivery time. This helped us combine the
electrical components that we needed to work together to get the drone up and
running.

5.1.1 Ordering the PCB

To order the PCB, we needed to build the PCB design, and then upload the design
to the website that we are ordered with. We also needed to know how many pieces
exactly that we were ordering, the number of layers we wanted, and the thickness
of the chip. There are several other options that can be customized when it comes
to PCBs, but for the purpose of our project we did not believe that we would need
anything particularly customized.

5.1.1.1 PCB Company Options

When it comes to choosing the company that we will order the PCB from, there
are limitless options. The primary requirements that we have are a relatively quick
turnaround time and a low cost for a low volume. We only planed on ordering a
few boards, some for our main use and some backups in case something went
wrong in the mounting process of the components. We were able to find boards
for under $10 each and were able to receive the boards within, at most, one week
from order time. This of course came with extra shipping cost, but with the limited
time frame it was a necessity. We leveraged a website called pcbshopper.com in
order to determine which company we should purchase the PCB from that meets
our needs.

We found the most popular company to order PCBs from was JLCPCB.com, which
is a company that has a special offer to provide prototype PCBs for roughly $2
each, however their minimum order count is 5 pieces. This company simply
required us to upload a ‘gerber’ file, which is the industry-standard file type for PCB
designs. This website was especially appealing to us because of their low cost for
each board.

An alternative to JLCPCB was Elecrow, which is a company based in China that
will offer a total price of $13 with a turnaround of 7 days. This offer was our back
up if we are on more of a time crunch, however we did not need to use Elecrow at
all for the purpose of our project. It was comforting having a backup however with
good planning, we had not timing issues with our PCBs.

 79

After looking at more results from the pcbshopper.com resource, we narrowed
down and concluded that most other companies are offering higher prices for
similar products, and there are no companies that have 100% satisfaction with
their products. We felt comfortable with our decision to use JLCPCB and had no
issues.

5.1.2 Building PCB Design

We needed to build a very comprehensive design for the PCB in order to provide
to our company of choice, in the format of a GERBER file. This design had to be
built with a specific PCB design software, which we were able to upload to the
various companies that we ordered from; therefore it was built exactly to our
expectations.

5.1.2.1 PCB Design Software Options

Eagle is one application that allows for designing electronics hardware. It has a
very fast and user-friendly wiring tool to allow us to route all of our components to
each other easily. This software offers also a parts catalog which will likely allow
us to find common parts that users choose and offer much more information about
(i.e. which pins are for Vcc and Gnd and more) the components that we are using,
if they are available in their library of components.

Another option is called ZenitPCB, which is a user-friendliness focused program
that will allow us to quickly spin up our PCB design, and it offers the functionality
of directly converting the schematic design to a PCB if we are able to provide that
to the software. We did not take advantage of this feature, however if we were on
a large-scale this feature would be very useful because we would very likely have
the schematic to convert automatically.

Several other tools are available, however many of them are Operating System
specific, which is not ideal as well as being less commonly used and so there is
less support in the online community for them. Because of this, we built our PCB
design with Eagle, as it seems to be the most popular option and is the highest
rated free software. From Eagle, we generated a GERBER file to upload to the
PCB design company that we ordered the boards from.

5.1.3 Mounting Parts on PCB

In order to mount all of our parts onto the PCB, we took advantage of a service
offered nearby us called Quality Manufacturing Services, Inc. This incorporation
offers a free service to mount most of our parts onto the PCB, so long as we
provide the PCB and the design of where the components are meant to be fitted.
This allowed for a professional to mount our components, which reduced the
likelihood of error that would occur if we had mounted it ourselves with our lack of
better equipment and experience. This is a very common service that many

 80

students used to mount components onto their PCBs for their Senior Design
projects and so we also followed suit to ensure a better product.

The PCB needed multiple components mounted onto it. The largest portion of the
PCB will be taken by the ATmega328p board and the 9V battery, as those are the
primary components powering everything and feeding most of the parts data and
receiving all the data. The Arduino is complemented by the Bluetooth module, the
accelerometer, and the ultrasonic sensor in terms of components that will be
feeding it data. Then, the ATMega328p also is connected as the flight controller
and communicates to the ESCs to provide the drone motors the appropriate
speeds they should fly at. The voltage regulator needed both places on the PCB
to be connected, as the ESCs will be directly connected to the motors.

5.2 Hardware Requirements

Because this project is heavily hardware-focused, we had requirements based
solely on the hardware. We also had our requirements directly lined up to our tests,
so that our tests are exactly testing our requirements, and ensuring functionality.
Our core functionality however is divided up into Software Requirements,
Hardware Requirements, and System Requirements. Our hardware requirements
are more focused on how the hardware parts work together.

5.3 Project Risks

While building this project, there are numerous potential risks we faced. Primarily,
the risks involved failing parts and electrical hazards. We intended to prototype at
various levels to mitigate these risks. We tested each individual electrical
component, such as the Arduino, the ATmega328p, the motors, and the ESCs.
We mitigated any risk of electric shock by measuring via multimeter the output of
each component with the battery connected to it. This allowed us to understand
exactly what the output of the components in order to build a project that does not
electrically fail or short. We also tested in a closed environment due to the danger
of drone motors hurting people. This allowed us to fly the drone legally because
we did it indoors and without anybody in the room, as to protect their privacy. In
the beginning of our initial prototype testing, we had the issue of propellers that
were not tightened strongly enough. This resulted in propellers being flung off at
high speeds. Luckily none of us were hurt in the process.

5.3.1 Drone Laws

Currently, in Florida, drones are not able to be flown without restrictions. We are
required to submit for permission to fly our drone via the Federal Aviation
Administration, which will require a registration process and a description of the
drone and why we intend to fly it. Flying a drone and invading someone’s privacy
is illegal, and because of the risk of several drone operators committing this crime,
there have been laws placed to circumvent this risk. The laws are about registering
the specific drone, following safety guidelines, keeping the drone within the line of

 81

sight, getting authorization to fly in any controlled airspace, and flying below 400
feet in any uncontrolled airspace. Because we did not build this product for outdoor
flight, we did not need to worry about this risk. Therefore, we flew our drone
completely indoors with authorization from the entire room without breaching any
person’s privacy. Being indoors also meant that we were able to fly the drone
without any licensing or certification. This allows our product to be much more
marketable and accessible. The indoors setting also means that the airspace is
private, which means that our drone’s flight is not regulated by the FAA, however
fault is still gone to the pilot if anyone is harmed during the drone’s flight.

6.0 Prototype Construction

We constructed the prototype after all of the individual parts had undergone their
associated tests. Similar to how a software application is tested with unit tests and
system tests, we performed the same type of testing on our project to ensure that
all of our parts worked individually, and that they all work together. We constructed
the prototype by first connecting the motors to the ESCs, then mounting those
parts to the frame. From there we connected the PCB that we designed for the
combination of microchips and sensors, that we used for the project. We then
connected power and tested the drone out.

In order to build the prototype, we needed to go through a number of steps.
Primarily, we needed to start with the drone motors connected to the ESCs. Then
we tested operation of the motors directly through the ESCs and the ATmega328p
to see how the motors worked. From there we needed to attach the motors and
ESCs with wiring to the drone frame that we purchased.

Next, we needed to mount all of the components onto our designed PCB which
was then to be mounted onto the drone frame in the very center, attempting to do
our best to keep the weight balanced as central as possible to allow for the
smoothest balancing mechanism for the drone’s motors and flight controller.

Once those parts were mounted, we moved on to the software side of the project.
This part of the project was done in conjunction to the actual hardware construction
of the drone, as they are two separate parts that are not dependent of each other
until we wanted to fly the drone.

The Arduino and the ATmega328p had to be programmed along with the sensors
and Bluetooth module connected, which we needed to work on having them all
working in conjunction simultaneously.

The neural network first needed to be trained, and then we had to create the GUI
that shows the signal that it is being read from the webcam, along with the altitude
of the drone and a log output to verify that the computer is sending the appropriate
signals and that the drone is receiving those signals clearly.

 82

Once the hardware and software have been completed, we connected to the drone
via Bluetooth and verified whether the drone was able to respond to our hand
gestures passed to our laptop’s webcam.

This concluded our process of building our prototype. Of course, this is a very high
level and very simple method of building our prototype, but we came across
unexpected hurdles that delayed processes and required last minute adjustments.
At each of these bumps in the road, we did our best to work as a team and find
solutions or work arounds.

7.0 Owner’s Manual

Our product was built with ease-of-use as a primary benefit of our drone compared
to other drones available in the market. However, taking off for the first time does
involve a generally lengthy process. In order to setup the drone for its first flight,
the following steps will need to be followed:

1. Install the GUI software on the controlling laptop computer
2. Test every one of the hand motions in the table provided containing the

hand gestures and make sure the correct output is shown in the log output
3. Charge the drone’s battery to 100%
4. Turn on the drone’s power
5. The drone will automatically go into pairing mode if it does not detect a

nearby previously connected device
6. Open the controlling computer’s Bluetooth settings

a. Select G.O.D. to connect to the drone
b. Enter the provided PIN to authenticate

7. Verify that the Bluetooth connection was successful on the log output of the
GUI

8. Verify that the ultrasonic sensor feature is providing output on the GUI, and
that it is responding to actual changes in altitude for the drone (this can be
done by manually picking up the drone or by flying it using the motors)

9. Start giving the drone commands via hand gesture

This product can be very dangerous, so please use caution when flying. As this
product is a prototype, please fly this product in an area clear of animals and
obstacles to prevent any injury or damage to the surroundings or the drone.

During prototyping, the laptop computer used was a 2017 MacBook Pro, with a
3.1GHz CPU. While you are welcome to use your own laptop, please understand
that we do recommend something similar to what we were prototyping with or
better to ensure that your hand gestures are read in and converted to commands
to the drone quickly and efficiently.

Upon opening up the GUI, please verify that all components are visible and are
structured like the picture shown below in section 4.4.3. This will allow you to make
sure that the software has been installed correctly.

 83

7.1 Troubleshooting Steps

If you find that the GUI software is not responding, please try all troubleshooting
steps below:

1. Uninstall and reinstall the software
2. Restart your laptop computer
3. Check your camera settings for your specific computer.

If there are issues in which the hand gestures are not being recognized by the GUI
software:

1. Verify that you are allowing the GUI to utilize the camera on your laptop
computer

2. Please check every gesture to see if any of them are registered
3. Please verify that you have a high contrast between your hand and the

background, so that the camera is able to clearly distinguish your gesture
4. Try using your alternate hand to mimic the gestures

If there are issues with connecting to the drone via Bluetooth, verify the below:

1. Is the blue LED light on the drone flashing when the drone has been turned
on?

2. If the blue LED is flashing rapidly, the drone is still in pairing mode, which
means that it is searching for a new device to connect to

a. Ensure that your controlling device is within 30 feet of the drone
3. If the blue LED is flashing slowly, it has connected to a previously connected

device and is awaiting input from that device
4. Should that be the incorrect device, please disable Bluetooth on the

incorrect device to put the drone back into pairing mode so that your desired
controlling laptop computer can see the drone in the Bluetooth settings

If the drone is not able to fly based on your commands, please verify the below:

1. Is the drone’s battery charged to 100%?
2. If the motors are not moving at all, there is likely an issue with an on-board

connection to the ESCs or from the ESCs to the motors
3. Verify that the log output shows the signal that the command has been

received
4. If none of the above work, please reset the drone and quit the GUI

a. Open the GUI
b. Connect again via Bluetooth
c. Verify on your laptop that you are connected to the correct device
d. Verify the camera is enabled and your hand is visible in the frame
e. Send a ‘fly upwards’ command

8.0 Schematics and PCB Design

The following section goes over the schematic and PCB designs of our project.
The application we used to design both the schematic and PCB was done in Eagle.

 84

Eagle is one of the most widely used software for designing a schematic and PCB
and we decided to use Eagle as we had prior experience using the software in
previous classes.

8.1 Power Circuit

Figure 38 shows the power circuit schematic for our PCB board. The Atmega
328p, HC-05 Bluetooth module, and the HC-SR04 Ultrasonic Distance Senor all
need 5 volts of input voltage, whereas the MPU6050 Gyroscope needs 3.3 volts
of input voltage. Therefore, we choose that the total input voltage of our circuit will
be 9 volts. The 9-volt power will then be split between two voltage regulators that
steps down the 9 volts to 3.3 volts and 5 volts. Bypass capacitors are used around
both regulators to reduce the noise in the input signal. The output of the voltage
regulators is then fed to the various sensors on our PCB that require either 3.3
volts or 5 volts as input voltage. Finally, a LED circuit is used as an indication to if
the 9-volt battery is actually producing power.

Figure 38 Power Circuit

8.2 Sensor Circuit

Figure 39 shows the circuit design for the three sensors used in the project. The
MPU-6050 Gyroscope is only sensor that will be soldered on-board the PCB. The
MPU-6050 is connected via I2C to the Atmega 328p, two 10k pull up resistors are
used in order to make the I2C communication possible. In addition, multiple bypass
capacitors are used around the chip to reduce the electrical noise that might be
produced. Finally, a green led is connected to the input voltage pin of the MPU-
6050 as an indication to whether or not the MPU-6050 is on. Since both the HC-

 85

05 Bluetooth Module and the HC-SR04 Ultrasonic Distance Sensor are plug in
modules, pin headers are used so that these modules can be connected to the
board. The pin headers are then routed to the respective pins on the Atmega 328p
flight controller.

Figure 39 Sensor Circuit

8.3 Flight Controller / Atmega 328p Circuit

Figure 40 shows the Atmega 328p which acts as our flight controller for our project.
A 2X4 ESC pin header is connected to the four PWM pins of the Atmega 328p. In
addition, two LEDs are connected to GPIO pins. One LED is used for general
purpose, the second LED is used as an indication to when the LIPO battery
powering the four ESCs goes below 10 volts to signify a low battery. Bypass
capacitors are used on various pins to reduce electrical noise and a yellow LED is
connected to the VCC pin of the Atmega 328p to indicate whether the flight
controller in on or not.

 86

Figure 40 Flight Controller Circuit

8.4 Miscellaneous

Figure 41 shows the miscellaneous circuits we have on board the PCB. A LIPO
battery level indicator circuit is used to get a numerical indication of the battery
level. A pin header is used so the LIPO battery can be connected to the PCB board.
In addition, a diode is used to restrict current going back into the battery from the
Atmega 328p. A voltage divider is used to scale down the max 13 volts from the
LIPO battery to 5 volts so it can be fed to an analog pin of the Atmega 328p. A
software solution is then used to get a numerical value of the current battery
voltage. A 2x1 pin header is used so that we can program the flight controller
without removing it from the PCB.

Figure 41 Battery Level / Programming Circuit

 87

8.5 PCB Design

Figure 42 shows the PCB design and routing for our project. The goal was to keep
connected components as close together as possible to minimize the number of
traces used. Our design is a two-layer PCB therefore the routing is done both on
the top layer and the bottom layer. Vias are used to connect traces between the
top and bottom layer. Additionally, two ground planes are used as a way to provide
a common ground for all components. All resistors and capacitors used are 0603
SMD size. In addition, four m4 screw holes were made on the corners of the PCB
so that we could properly mount the board on the drone itself. The final dimensions
of the PCB are 80mm x 80mm. The manufacture we used to get the PCB made
and mount our SMD components was JLCPCB.

Figure 42 PCB Design

 88

9.0 Administrative Content

9.1 Evaluation Plan

Our evaluation plan consisted of key points that our project was meant to meet,
evaluation questions that were to be answered with measurable outcomes, and an
evaluation design that highlighted our project’s objectives and addressed the key
shortcomings.

9.2 Key Evaluation Points

The key evaluation points that we tried to reach with our project were the ability to
fly the drone, the ability for our neural network to recognize the hand gesture
passed to the camera, and the ability to communicate the action paired with that
hand gesture to operate the drone.

9.3 Evaluation Questions

In order to meet those evaluation points, we need to be able to measurably test
those points. Below are the measurable key questions that we aimed to be able to
answer positively after the successful construction of our project:

1. Can the neural network recognize our hand gesture within 500ms?
2. Can the drone react to our hand gesture within 1s?
3. Can the drone ascend with full stabilization, maintaining level during

ascent?

9.4 Evaluation Design

For our evaluation, we reached out to three of our professors to go through all of
our measurable requirements shown in the beginning pages of this report and
verify that we have met majority of those requirements. Of course, those
requirements needed some change along the way, however we were sure to
provide the appropriate fields for the evaluator to fill in so that the input is unbiased
when it comes to measurements and having a holistic understanding of our project.
We also included a list of the primary constraints that we were tied to during the
making of the project and will leave a field for the evaluator to input how we
circumvented those constraints in order to complete our project. This allowed the
proctor to gain a much better understanding of the project, why everything has
been done in the way it has been done, and the ideology behind what we plan to
develop with our prototype.

Furthermore, to allow for more freedom for the evaluator, they were given a rubric
that allowed them to list their specific questions regarding the project. At the end
they asked us these questions and as a team we answered them.

 89

9.5 Project Schedule

Initially every week we met at least twice and discussed our research and
progress. As the due date approached we met even more frequently, and grouped
up nearly every day the last few weeks leading up to our demo. The project
milestones were tracked and listed below in Table 14.

Date Semester Milestone

May 27, 2019 Summer 2019 Divide & Conquer 1 Assignment

May 28, 2019 Summer 2019 Approved projects and began research

June 3, 2019 Summer 2019 Began our individual writing parts

July 2, 2019 Summer 2019 Completed parts and shared content

July 4, 2019 Summer 2019 Began integrating all three parts

July 16, 2019 Summer 2019 Finalized document and printed final copy

July 30, 2019 Summer 2019 Submitted the final document

August 27, 2019 Fall 2019 Ordered all the necessary parts

September 3, 2019 Fall 2019 Began assembling drone

September 10, 2019 Fall 2019 Ensured individual components were
working

September 17, 2019 Fall 2019 Built the first prototype

September 24, 2019 Fall 2019 Tested the prototype

September 26, 2019 Fall 2019 Used the following time to redesign and
rebuild

November 19, 2019 Fall 2019 Finalized the drone for final presentation

November 22, 2019 Fall 2019 Presented our project

November 25, 2019 Fall 2019 Senior Design Showcase

December 2, 2019 Fall 2019 Submitted Peer Reviews

December 4, 2019 Fall 2019 Submitted the final document

 Table 14 Milestones

 90

9.6 Budget and Finances

Budgeting was a very large concern when it comes to this project. Most drone
projects end up costing a very large amount, and we found in our research that
this was mostly due to parts breaking and expensive drone parts. Other reasons
for this can be due to students buying pre-built drones and add to its functionality.
This was among our options, however we decided to try and build as much of the
drone as we reasonably could, so that we would be able to have the drone be
marketable and cost us less in prototyping.

Because we were not buying a drone that was already built and just integrating our
solution to control it via controlling the given controller, we circumvented the entire
need of buying a controller as well, since our laptop computer is directly controlling
our drone now, with no middle man that could have been a dependency for our
project.

Furthermore, since we avoided buying an already built drone, we are able to
deeply understand all of the working parts of our drone, which allows us to
understand what is broken and how to fix or replace that piece that is broken,
whereas if we were to buy a built drone, we would have to dismantle the entire
thing to fix something that could be going wrong with the drone.

While we saved greatly on buying the drone in parts, we also tried to minimize our
spending on a part-level basis. This means that cost-effectiveness was a factor
when it comes to each and every part that we chose to use to build our product.

 91

Table 15 maps out our expected budget and our actual cost for our project. As
displayed in the table below, our initial expected cost was higher than the actual
cost.

Component Estimated Cost Actual Cost

Development Equipment $100.00 $50.00

Bluetooth Module $10.00 $5.00

Motors,ESCs, Propellers $210.00 $115.00

Drone Frame $20.00 $17.00

Voltage Regulator $5.00 $2.00

Batteries $40.00 $80.00

Sensors $40.00 $15.00

PCB Printing $30.00 $85.00

Miscellaneous Components $200.00 $200.00

Total: $655.00 $569.00
Table 15 Proposed Budget

9.6.1 Software Development

When it comes to the GUI, we developed the entire thing by ourselves. This was
attributed to the fact that among us are 3 computer engineers, and so we have a
strong background in software development. This allowed us to build the GUI for
the drone all with the use of free tools and the development was done entirely by
us.

In regard to the neural network, one of the members of the group, particularly
Anshul Devnani, had previous coursework experience in Machine Learning, and
so he was knowledgeable to help the 3 of us build the neural network free-of-
charge through the use of Keras.

The minimal hardware necessary for the neural network recognition system was
simply a computer that has a webcam and a GPU. After testing the neural
network’s speed from one laptop’s GPU specs to another, we confirmed there is
no major time difference in time taken to train the model as well as the time taken
to recognize the gesture. Most laptop computers are quite capable of handling this
task if it is the only one currently running on the computer and there are not several
other tasks running on the GPU. Since our intention was to minimize the spending,
we avoided the need of purchasing new hardware just to control the drone, and so

 92

we decided to use the computers that we already owned, as they already had
capable GPUs and had built-in webcams.

In terms of the flight controller, we used C++ and the Arduino software to develop
the flight controller. In this flight controller we handled everything from digesting
the retrieved hand signals and balancing the drone. The microcontroller we used
had no problems handling the workload and we only used about 50% of the
storage.

9.6.2 Wireless Communication

For the wireless communication, we decided to use Bluetooth, which we found to
be very cheap and accessible. Most of the Bluetooth modules were available for
under $40, however we decided to go with a very popular choice that was only a
fourth of that price. We chose this one because it was popular with DIY projects,
and it was cost-effective for us to use. This form of communication also proved
cost-effectiveness in the reasoning that most computers have Bluetooth built-in,
so it was something that computers already have installed and would not require
any additional hardware for the computer for the drone and the computer to
connect.

9.6.3 Battery

In terms of battery, we designed our product to be able to use a rechargeable
battery. This means that we are not required to spend large amounts of money on
several batteries that will only last a 15-20-minute flight and then be unusable
afterwards. Most drones typically use a rechargeable battery, and so we will be
using the same. We were very unsure about the capacity of battery we needed, so
we started with a 3S Rechargeable Lithium Polymer battery that is only a 1100mAh
capacity to start, however we assumed we would likely need to upgrade the
battery, this battery was sufficient. Fortunately, the low amperage batteries are
relatively cheap, most being under $20. We certainly benefited from spending an
additional amount on the rechargeable battery, which we had planned on
prioritizing despite price.

9.7 Division of Labor

A lot of work on the project was performed as a team although for individual
research we broke down the topics into sections and divided the work. We all
chose the topics that best suited our expertise and strengths. Anshul Devnani has
a passion for computer vision and is hoping to pursue a career in the field. As a
computer engineer, he is currently working as intern at Leidos as a system
integration engineer and previously work as a CWEP for two years. With his
professional programming experience and computer vision knowledge, gained
through courses at UCF, he took on the task of planning the graphic user interface
and research deep neural networks and computer vision.

 93

Pranay Patel has a history in network communication and power systems. He is a
computer engineering major and is researching all the different types of network
communications, memory management, PCB construction, and system power. He
currently works at Darden Restaurants as an implementation engineer intern
working with a skilled team of engineers to maintain and improve a back-end
system for digital marketing. He used the knowledge he had gained from work and
class to research what is necessary to connect the drone to the user interface and
how to power the drone.

Bernardus Swets is a computer engineering major at UCF, following the digital
track, and took on the task of researching the flight controls. He focused on looking
into the different drone designs and corresponding hardware. He also looked into
the flight control software. Having experience with linear control system, he
researched what it would take to balance our drone using PID loops. He works as
a system engineer CWEP at Lockheed Martin. Between his knowledge gained
from professional experience and in class he focused on designing and balancing
the drone.

10.0 Conclusions

To conclude, our project is a new way to interact with drones and can pave the
way for a new way to interact with other machines as well. The extensibility of
gesture-controlled devices is rapidly growing, and it is also extremely beneficial to
those with disabilities regarding sound. Because those with disabilities regarding
sound tend to communicate through sign language or the like because they are
unable to talk, this will allow them an easy way to communicate with devices via
gestures that they are already very familiar with. Our project, a gesture-operated
drone, is simply an implementation of a gesture-controlled device. The Gesture
Operated Drone allows for an extremely simple way to operate a drone in
comparison to the unwieldy RC remotes that commonly come with drones to
operate them.

Our gesture schema has been set up to be accessible to any and all that have full
motion of all of their fingers. This schema allows for an extremely wide market for
our drone, because most people are able to do all of these simple gestures with
ease. In addition, our target market for the product is people that want to pick up
drones as a hobby or for a just-for-fun purpose. This target market is extremely
wide because drones are a relatively new concept and there are an increasing
amount of people taking up photography and videography in today’s time.
Generally, most drones are either flown for fun or to get a photograph or video
from an angle that mimic’s a bird’s eye view. This allows for a very unique picture
or video and so is desired by many people exploring the hobby of photography.

While there are many people that want to take up flying a drone for whatever
purpose, unfortunately it can take time to learn how to operate the drone safely

 94

with the common RC remote that comes with most drones, and drones can be very
dangerous if flown incorrectly or if it goes off-course due to the operator not
knowing how to use the remote control. Our project was designed to skip this
extreme learning curve by making predefined actions for the drone, such as
elevate, de-elevate, move left, right, forward, and backward, so that the user can
simply pick up the drone and start using it without the worry of accidentally thrusting
the drone into a tree, damaging the several hundred dollar drone that they just
bought minutes after using it. On top of that, the user does not even need to
operate any extraneous hardware to perform those actions, they simply need to
only use their hands in front of their computer screen to make them happen.

Of course, there is one particular limitation that we immediately noticed when
compared to using a remote control that seemed to be a disadvantage to our
solution. That limitation would be the latency with which the signal is received. In
particular, there is much more computation going on when it comes to the two
forms of operating the drone. Both using a remote control and our solution of
communicating from a laptop computer requires a wireless communication method
to command the drone to act. However, they differ in the computation required to
create the command to the drone. Our solution converted the input hand signal
from a camera to match a model, while the remote control simply needs to convert
analog input to digital input and send the appropriate command accordingly. Our
projection was that this would cause an extreme latency that would impact the
drone’s functionality and wieldiness of the controls. However, as we are training
the model, we are seeing a much faster response time than we previously
expected.

This project was very helpful in combining our multitude of coursework to produce
a working drone from scratch and a GUI built from scratch with integrated Machine
Learning and Computer Vision applications. We were also able to communicate
between the two wirelessly. Every part of our project could of course be improved
upon, and when going to market we would be able to minimize costs by
manufacturing in bulk and not wasting as many parts as we did during testing. This
would allow for the product to be much more marketable.

Additionally, we could offer the product as a modular product, in which we offer the
drone with better Bluetooth modules for extended range, a faster chip to handle
flight control, better motors, a larger frame, and the like. This would make the
customer able to make the product more attuned to their use case.

Another addition that we could implement to our drone could be the ability for the
drone to have the camera on board, with a built-in processor able to handle the
neural network processing. This would allow the drone to be 100% hands free, and
completely without a remote at all. The primary condition that we would run into
there is keeping the subject’s hand in view at all times, or to train a neural network
to recognize hands despite all of the extraneous input received via the camera’s
lens.

 95

To sum up, this project was extremely educational and allowed us to follow the
lifecycle of an integrated project from start to finish. We were able to generate
actual user requirements based on measurable items, and we were able to build
a prototype that can scale to multiple things. This project can evolve in hundreds
of ways and can really make a large impact on consumer tech worldwide if it was
to reach the global market. The reasoning behind that is that as we progress in
technology, we are decreasing the direct touch interaction continuously. One
particular example of that is how fast voice recognition technology is spreading
and ramping up. However, our product is able to target those that are not able to
speak fluently or do not speak a common language that is supported for most
voice-recognition services out of the box. This allows for us to target a near-
universal market, because humans everywhere can understand some hand
signals, and we have designed our product to account for using hand signals that
are understandable no matter what differences a person may have origin-wise.

 96

Appendix A Resource and Citations

/@piotr.skalski92. “Preventing Deep Neural Network from Overfitting.” Medium,
Towards Data Science, 4 Jan. 2019, towardsdatascience.com/preventing-deep-
neural-network-from-overfitting-953458db800a.

“Convolutional Neural Network.” Wikipedia, Wikimedia Foundation, 29 July 2019,
en.wikipedia.org/wiki/Convolutional_neural_network.

/@_sumitsaha_. “A Comprehensive Guide to Convolutional Neural Networks - the
ELI5 Way.” Medium, Towards Data Science, 17 Dec. 2018,
towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53.

“Tkinter vs PyQt Detailed Comparison as of 2019.” Slant,
www.slant.co/versus/16724/22768/~tkinter_vs_pyqt.

CS231n Convolutional Neural Networks for Visual Recognition,
cs231n.github.io/convolutional-networks/.

“Comparing Machine Learning as a Service: Amazon, Microsoft Azure, Google
Cloud AI, IBM Watson.” AltexSoft,
www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-
amazon-microsoft-azure-google-cloud-ai-ibm-watson/.

“KDnuggets.” KDnuggets Analytics Big Data Data Mining and Data Science,
www.kdnuggets.com/2018/01/mlaas-amazon-microsoft-azure-google-cloud-
ai.html.

“AlexNet.” Wikipedia, Wikimedia Foundation, 26 June 2019,
en.wikipedia.org/wiki/AlexNet.

Rizwan, Muhammad. “LeNet-5 - A Classic CNN Architecture.” EngMRK, 30 Sept.
2018, engmrk.com/lenet-5-a-classic-cnn-architecture/.

Jeremy Jordan. “Common Architectures in Convolutional Neural
Networks.” Jeremy Jordan, Jeremy Jordan, 20 Oct. 2018,
www.jeremyjordan.me/convnet-architectures/.

“Keras vs TensorFlow vs PyTorch: Deep Learning Frameworks.” Edureka, 22 May
2019, www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/.

/@DevEconomics. “What Is the Best Programming Language for Machine
Learning?” Medium, Towards Data Science, 7 Jan. 2019,
towardsdatascience.com/what-is-the-best-programming-language-for-machine-
learning-a745c156d6b7.

 97

“A Beginner's Guide to Backpropagation in Neural Networks.” Skymind,
skymind.ai/wiki/backpropagation.

/@avinashsharmav91. “Understanding Activation Functions in Neural
Networks.” Medium, The Theory Of Everything, 30 Mar. 2017, medium.com/the-
theory-of-everything/understanding-activation-functions-in-neural-networks-
9491262884e0.

 “Online Diagram Software & Visual Solution.” Lucidchart, www.lucidchart.com/.
Clausing, John R. HauserDon. “The House of Quality.” Harvard Business Review,
1 Aug. 2014, hbr.org/1988/05/the-house-of-quality.

Brokking, J.M. “Project YMFC-AL - The Arduino Auto-Level
Quadcopter.” Brokking.net - Project YMFC-AL - The Arduino Auto-Level
Quadcopter - Home., www.brokking.net/ymfc-al_main.html.

Ryan, and General Electric. “Brushless Inrunner vs Outrunner Motor?” Go Back to
the Front Page, 24 Aug. 2018, www.radiocontrolinfo.com/brushless-inrunner-vs-
outrunner-motor/.

Osmanbasic, Edis. “Three-Phase Electric Power
Explained.” Engineering.com, www.engineering.com/ElectronicsDesign/Electroni
csDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx.

“Choosing the Right Quadcopter Frame.” QuadHangar, 14 June
2016, www.quadhangar.com/choosing-the-right-quadcopter-frame/.

“Best Indoor Drones - Fly in the Living Room without Wrecking the Place.” Drone
Rush, 30 July 2019, dronerush.com/best-indoor-drones-fly-living-room-11926/.

Allain, Rhett. “How Do Drones Fly? Physics, of Course!” Wired, Conde Nast, 3
June 2017, www.wired.com/2017/05/the-physics-of-drones/.

“Quadcopter PID Explained.” Oscar Liang, 20 Jan.
2019, oscarliang.com/quadcopter-pid-explained-tuning/.

“Electronic Speed Control.” Wikipedia, Wikimedia Foundation, 3 June
2019, en.wikipedia.org/wiki/Electronic_speed_control.

Corrigan, Fintan. “How A Quadcopter Works With Propellers And Motors
Explained.” DroneZon, DroneZon, 18 July 2019, www.dronezon.com/learn-about-
drones-quadcopters/how-a-quadcopter-works-with-propellers-and-motors-
direction-design-explained/.

 98

“How Gyroscopes Work.” Robot Academy, 30 July
2018, robotacademy.net.au/lesson/how-gyroscopes-work/.

“A-610 Acceptability of Electronics Assemblies Training and Certification
Program.” IPC, 22 Apr. 2019, www.ipc.org/ContentPage.aspx?pageid=IPC-A-
610.

Henney, Marc. “Bluetooth Versions Comparison & Profiles.” RTINGS.com, 6 July
2017, www.rtings.com/headphones/learn/bluetooth-versions-comparison-profiles.

“How to Set Up the BMP180 Barometric Pressure Sensor on an Arduino.” Circuit
Basics, 13 Aug. 2018, www.circuitbasics.com/set-bmp180-barometric-pressure-
sensor-arduino/.

Murison, Malek, and Malek MurisonMalek Murison. “ISO Proposes Global Drone
Standards.” DRONELIFE, 22 Nov. 2018, dronelife.com/2018/11/22/iso-proposes-
global-drone-standards/.

“The Guide to Bluetooth Modules for Arduino.” Into Robotics, Into Robotics, 18
Jan. 2015, www.intorobotics.com/pick-right-bluetooth-module-diy-arduino-
project/.

 99

Appendix B Copyright Permissions

Figure 43 Copyright Permission LeNet-5 Architecture

Figure 44 Copyright Permissions AlexNet Architecture

