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1.0 Executive Summary 
 
Drones have become increasingly popular over the last decade. Every year their 
abilities are rapidly increasing, and we wanted to do our part to add to this 
continuously growing field. With the knowledge we have obtained throughout our 
studies we wanted to challenge ourselves and develop a drone that strictly 
controlled by human hand motions. Our team wanted to build a product that 
combined every aspect of our computer engineering coursework. With this in mind, 
we were able to collaborate on the idea to utilize PCB construction, embedded 
programming, and machine learning to build a useful and sound product.  
  
Because we, as a team, believed that drones can sometimes be difficult and so 
wanted to offer the ability to control a drone with a much simpler interaction. This 
allowed for us to build in actions for the drone that will automatically account for 
stabilization and move as expected without having to try to keep the drone flat and 
level via remote control. This product has not yet found its way on the market and 
we wanted to be the first to make this a reality.  
  
Our plan to create a widely marketable product forced us to consider the usability 
of the product, the cost, and the ability to use devices that customers were already 
familiar with to allow for an easier interaction with the drone. We were able to fulfill 
all those goals in our project plan. We were able to maximize usability by creating 
hand gestures to control the drone that are generally universal, meaning that 
people around the globe can understand many of the basic gestures and would 
immediately think to use those gestures to operate the drone. In order to make the 
cost of the drone low, we were taking into account the cost of each and every 
component when planning our prototype, and once the build process and 
components list were finalized, we had the ability to improve upon that even 
further. Since our product required the use of an external device, we decided to 
make it so that other people can simply install the software required to operate the 
drone on their local laptops or PCs. This allows for users to interact with something 
they are familiar with and make the drone user experience more seamless. 
  
Throughout this document we explore why creating this drone would be beneficial, 
our creative process and map out how we plan to build and test the device. 
Consisting of four main components, we have a user interface, the drone flight 
controls, power system, and the communication network all working in harmony to 
control the drone. With the simple hand motions explored in the following sections, 
the drone can perform all the necessary actions needed for flight.  
 
 

2.0 Project Description  
 
We proposed a small indoor drone that was entirely driven with hand gestures. 
The project has a user-friendly webcam-based GUI, that communicates with the 
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drone. The GUI’s main component is the webcam, along with other indicators 
showing the drone’s current status and useful live information. From the users end, 
the user will perform the desired hand gesture and the drone reacts accordingly. 
For example, the user can signal a thumbs up and the drone responds, within a 
reasonable response time, and increase its flying altitude. We have a set number 
of hand movements we incorporated. As the project is improved further, we can 
add functionality and push ourselves to create as many movements as possible. 
As a group of computer engineers, we have a fundamental understanding of the 
programming and electrical skills necessary for this project. We developed the 
flight controller ourselves and correctly applied the corrective features of a closed 
loop system. Furthermore, this project allowed us to work with and learn about 
popular technologies of the time, including Computer Vision and Machine 
Learning. Both are emerging industries and are growing rapidly. As this is a self-
funded project and there were no sponsors, our goal was to make this project as 
low cost as possible. This ensured that the product can be supremely accessible 
to the public and can be improved upon moving past our first prototype.  
 
2.1 Project Motivation 
 
When discussing all the options for possible senior design projects, we had a 
couple ideas of varying complexities and price points. This project was on the more 
complex and relatively more expensive, however we were most enthusiastic about 
researching and creating this project. With all three of us equally eager to research 
and plan this project, it justified the higher cost and the increased complexity. As 
strictly computer engineers our education covered a wide variety of topics and 
overall this project incorporated everything we have learned. In the latter half of 
our education we took many courses regarding microcontrollers, communication 
networks, creating graphic user interfaces, programming embedded systems, and 
PCB routing/design. Individually we also chose to study computer vision and linear 
control systems which play key roles in the project. With this knowledge we built a 
product that, from our extensive research, has not been built before. This was also 
another motivating factor. Both drones and computer vision are extremely popular, 
and in some cases the two have been combined for tracking purposes. There is 
not yet a commercial product that is strictly controlled by hand movements. Being 
the first to achieve this would be an extremely satisfying accomplishment. 
 
Flying a drone for the first time can be complicated and can give a user a lot of 
trouble. With the use of your own hand movements, it adds a sense of ease and 
fluidity not found in a typical hand-held controller or smartphone. In addition, our 
solution involves controlling the drone with one hand, which is unlike traditional 
drones in which you use both hands to operate a physical remote controller. Our 
solution allows the user to only need to use one hand to control the drone, as long 
as that hand stays in the correct field of vision. This allows for freedom of motion 
for their alternate hand, which is something that is overlooked often when it comes 
to drones. Oftentimes, drones are used to record something in motion, whether it 
be action sports outdoors or photographers and videographers trying to get a bird's 
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eye view that isn’t easily attained without one. Given this, allowing for a free hand 
is immediately beneficial to drone users.  
 
2.2 Goals and Objectives 
 
Our objective was to create a low-cost hand gestured controlled drone. We had 
limited time to complete the project, and we wanted to make the most of our time. 
After spending the first few months researching and planning the project, our goal 
was to start building in early August 2019 and have a working prototype by the end 
of September 2019. Once we had a working product, our goal was to add as many 
hand signals as possible. We started with eight essential hand signals and we 
strived to get that number up to around 15 different hand signals. Another objective 
of ours was to make the build process as simple as possible and as repeatable as 
possible. During our production process we needed to spend more money on 
replacement parts during testing and other unexpected factors. Once we got the 
working product, we can limit our costs to the bare minimum of what needs to be 
completed and make the project as affordable as possible. 
 
2.3 Requirement Specifications  
 
When describing our requirements, we did our best to ensure every requirement 
was abstract and quantifiable. Table 1 shows software requirement specifications, 
Table 2 depicts hardware requirement, and Table 3 displays system requirement 
specifications. As we got more involved in the project, we  noticed that some 
limitations we set might’ve been extremely lenient or we might have set the bar too 
high. Because of this, we were open to altering or adjusting our requirements as 
we see fit.   
  



 4 

 
2.3.1 Software Requirements 
 
Table 1 specifies the software level requirements for our project 
 
The drone will be able to convert the signal received over Bluetooth within 500 
milliseconds. 
The user interface will be able to recognize each of the 8 gestures. 
The feedback/reading pane will highlight the correct predicted gesture within 1 
second. 
The Neural Network will produce an accuracy of a minimum of 95 percent. 
The user interface GUI will consist of a webcam pane, log pane, and 
miscellaneous pane. 

    Table 1 Software Requirements 
   
2.3.2 Hardware Requirements 
 
Table 2 specifies the hardware level requirements for our project 
 
The drone frame will be no larger than 550mm. 

The drone will not weigh more than 2 pounds.  

The drone will be powered by 3.7V lithium polymer batteries. 

The microcontroller will be powered by a 9v DC battery.  

The drone will utilize propellers of 10 inches or smaller. 

The drone will utilize 4 electronic speed controllers to help control the propellers. 

The drone will utilize 4 brushless motors with KV above 900. 

The drone will utilize an ATmega328P microcontroller.  
    Table 2 Hardware Requirements 
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2.3.3 System Requirements  
 
Table 3 specifies the system level requirements for our project 
 
The drone will be able to receive signals over Bluetooth communication from within 
a range of 20 feet.  

The drone will be able to react to commands within 1 second. 

The drone will be able to land, and motors will terminate within 5 seconds. 

The drone will be able to take off to 3 feet within 3 seconds.  

The Bluetooth signal will maintain connection within 15 feet.  

When the drone’s Bluetooth signal is lost, the drone will hover in place and land 
within 10 seconds.  

The time from the user doing the gesture to the drone reacting to it will be a 
maximum of 2 seconds.  

The drone will communicate its current altitude to the GUI with a maximum latency 
of 3 seconds.  

The drone will maintain its altitude when moving left, right, forwards, and 
backwards.  

When the drone accelerates in a specific direction, it will rotate less than 90 
degrees to perform the given action, as to not tip the drone over.  

The drone’s altitude will be able to be read with a maximum 1 second delay on the 
miscellaneous pane of the GUI. 

The drone will be able to reach a height of 10 ft.  
     Table 3 System Requirements 
 
 
 
 
 
 
 
 
 
 
 



 6 

2.4 House of Quality  
 
The image below, Figure 1, is the proposed house of quality for our drone design. 
We compare the model we are planning to create with top market competitors 
including DJI, GoPro and PowerVision. 

 

 
Figure 1 House of Quality 
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3.0 Standards and Constraints 
 
3.1 Constraints 
 
Along with our planning came a lot of different constraints that governed the 
choices we made and the path we took with our project. Those range in various 
types such as economic, environmental, ethical, health, manufacturability, safety, 
social, and sustainability. This project was fully funded by our group. We came up 
with the idea of this project as a group and did not involve any third parties. As a 
result, we did not have any sponsors for our project. It was nice to plan the project 
ourselves, however the assets from a sponsor would’ve alleviated some of the 
economic stress. We understood that we had to allocate a lot of money to fund the 
project. As students we had limited funds and wanted to do our best to make our 
project as affordable as possible. There were a lot of steps we could have taken 
to make that more plausible. A lot of the components we bought were sensitive 
and needed to be taken care of properly. If we could have avoided breaking pieces 
unnecessarily, we could have saved a lot of money in the long run. Also, we made 
sure not to waste money on the wrong parts. Another benefit of scanning the 
market thoroughly was finding the best balance of price and quality where we could 
obtain the best option possible. Having to buy replacements was inevitable but 
limiting the number of mishaps lessened the economic constraints. We did not 
have unlimited funds and we kept that in our minds when we chose our parts.  
 
Environmentally our drone is constrained by its ability to only be flown indoors. It 
is not easy to find indoor spaces where flying the drone is allowed without 
permission. It is important that our drone could perform well in tight situations. 
Having the constraints of four walls around the drone can complicate some of the 
testing. To work around this, we received permission from our local gymnasium 
that worked with us. They have extra indoor basketball courts that are used 
throughout the day, but they had given us the times when the gym was typically 
empty and free for us to fly our drone around. When we were unable to use the 
gym, we used our own personal garages. These had far less room to work with but 
had enough space to practice basic maneuvers and test what needs to be looked 
at. Environmentally we were also legally constrained. To fly the drone outdoors in 
the state of Florida a license is required. To save money and time we decided to 
avoid flying the drone outdoor completely and to focus on only flying indoors. The 
benefit of this was the controlled environment that we have indoors. There are no 
factors like wind and rain to worry about. Having an indoor drone lessened the 
constraints of the more unpredictable conditions of the outdoors.  
 
There were also socially acceptable and ethical places to fly the drone. Before 
flying a drone in any location, it is important to have permission, whether this is a 
public gym or our personal apartments, it was essential we let everyone know that 
we were flying a drone. It is not socially acceptable to fly our drone over people. 
Drones sometimes have a negative connotation and are often banned, as they can 
be a disturbance. Drones are typically associated with having cameras and even 
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though our drone does not have a camera, people may feel as if we are spying on 
them. It would also be unethical of us to fly our drone in certain places. If we fly our 
drone in the wrong places not only can be it be illegal but also offensive. Because 
of this we limited the places we flew our drone. We wanted to ensure that we did 
not cross any ethical or social borders when testing and flying our drone.  
 
Drones can be dangerous, and we needed to know the safety and health 
constraints went into our building process. There are extremely fast-moving parts 
that can be damaging if touched. We could not cover the propellers and they 
needed to be exposed for the drone to function properly. Knowing this we stood 
clear of the drone while in flight or while the propellers are turned on. Luckily our 
lightweight indoor design did not pose as much a threat as some of the heavier 
commercial drones. If a collision were to unfortunately happen, there would most 
likely not be any major injuries however the possibility is out there. Other than 
injuries from the drone, there are no other health and safety constraints.  
 
When manufacturing the drone there were a couple constraints that we needed to 
be aware of. One of the main constraints was the range of our device. Bluetooth 
has become more advanced and can range quite far however we believe that once 
we cross 30ft, our design will no longer be able to connect. As this is an indoor 
drone, we did not often exceed these limits. However, in the right setting, that might 
have been a possibility and we needed to be aware of this. As we classified this 
as a lightweight indoor drone, we had size constraints to fit that classification. We 
did not want to have drone that is heavier than two pounds. Some more advanced 
better functioning components are heavier, and more expensive, so this constraint 
encouraged us to get the most efficient cost-effective part. We also did not want 
the frame to exceed 550mm. 
 
Two of the largest constraints that we had to work around are the number of 
recognizable gestures and the battery life. It was important that the hand gestures 
we defined were different enough to be recognized by the webcam. If a hand 
gesture was too close to another there could have been a mistake that occur. As 
we tested our initial flight gestures, we gained a better understanding of how similar 
we can make them. Our initial gestures were very different, but as we increased 
movements, we had to find hand gestures that were unique enough to not interfere. 
The battery life is another obstacle we had to work around or try to overcome. 
Further into the document we how we tried to maximize the battery life however 
for the time being we need to work with the limited battery life we are seeing in our 
prototype. Implementing rechargeable batteries helped a lot with some of the 
financial stress replacing batteries could have caused. 
 
In the table below is a more concise and clearer version of some of the topics 
discussed above. A lot of these values are more quantifiable. As the project goes 
on, we discovered that some of the values we found in research or predicted might 
be wrong and are subject to change.  
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Constraint Value 

Drone laws  Flying outdoors 

Wireless range Less than 200ft 

Drone Frame Size Less than 150mm 

DroneBattery Runtime 20 minutes 

Drone Weight Less than 2 pounds 

Number of gestures At least 7 gestures, but limited, as similar gestures may 
be hard to differentiate by webcam 

Budget Affordability 

 
Table 4 Project Constraints 

 
3.2 Project Standards 
 
When working on our project, standards were essential as they created a level of 
quality and expectation across the board. It also helped make the project adaptable 
and easy to incorporate. If another company or team were to incorporate our 
project, they would easily be able to adapt to our industry standard protocols. In 
Table 5 below, we map out the standards that we are following.  
 

I2C Communication Protocol  

IEEE 802.15.1 (Bluetooth) 

UART Communication Protocol  

ISO/TC 20/SC 16 (Unmanned Aircraft Systems) 

IPC-A-610 

 
Table 5 Project Standards 

 
Both I2C and UART are very common communication peripherals, and most third-
party sensors and devices we are using are compatible. Most flight controllers 
utilize UART, while all the sensors we have investigated use I2C. Using the I2C 
bus significantly simplified and made our design more efficient. 
  
Drones all must follow the ISO/TC 20/SC 16 standard for unmanned aircraft 
systems. A drone is an unmanned aircraft system and these standards map out 
what is allowed and what is not allowed in regard to locations to fly your drone. 
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This allows for a more responsible and better educated population of drone 
operators, which is especially important as drones gain popularity. 
  
IEEE defines Bluetooth as a standard for Wireless Personal Area Network 
(WPAN). We decided to use this standard for our wireless communication because 
it is heavily supported and continually updated. This allowed for us to implement a 
technology that is familiar to the common user and is a respected engineering 
standard. 
  
IPC-A-610 is the Acceptability of Electronic Assemblies. This standard verified that 
our product has a highly reliable printed wiring assembly. This was a crucial 
criterion for our project to meet because it allowed us to verify our product even 
further to allow it to be more marketable. This also allowed us to proceed to 
manufacture the product faster because it already meets the industry standard and 
does not need to be verified in that regard again.   
 

4.0 Project Design 
 
Information in this section outlines our approach in designing our Gesture 
Operated Drone prototype. Majority of the research we have done regarding the 
project will be in this large section. This covers all the flight controls, physical drone 
properties, communication and the computer vision aspects of the project. 
 
4.1 System Block Diagram 
 
Figure 2 depicts the proposed block diagram for the project. All blocks are 
currently in the research phase. Our system design is divided into 4 groups, 
Application/GUI, Power, Drone Hardware, and Wireless Connectivity.  
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Figure 2 System Level Block Diagram 
 
4.2 Neural Networks Overview 
 
Before building a Neural Network application, understanding of the components, 
features, and constraints of Neural Networks is necessary. Neural Networks are a 
subset of Machine learning in terms of hierarchy. Figure 3 shows the hierarchy of 
different concepts in artificial intelligence. 
 

 
Figure 3 Hierarchy of AI 
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Artificial Intelligence is a broader group that encompasses Machine learning. 
Machine learning allows a system to learn and progress from past inputted data 
without being explicitly programmed. Neural Networks are a subset of machine 
learning because certain components and properties of Neural Networks allow for 
this learning to occur. Essentially, a Neural Network is a set of algorithms that are 
designed to recognize patterns and learn from these patterns to perform some task 
without being explicitly programmed to do so. Some popular applications of Neural 
Networks include speech recognition, object detection, image processing, and text 
recognition. Neural Networks are modeled after our brain and how our brains 
processes information. They consist of interconnected nodes or neurons that take 
in input from and give output to different neurons. All nodes are connected via 
weighted edges. A weight represents the strength of a connection between nodes 
and governs how much influence one node has on another. The higher the weight 
between two nodes the higher the influence that node has on the other. Neural 
Networks are typically trained on some set of data, while this training is occurring 
the weights are updated in order to give optimal results. Neural networks are also 
split up into 3 generalized layers, the input layer, the hidden layers, and the output 
layer. Figure 4 depicts the general architecture of a neural network. The input layer 
provides the initial data for the neural network. The hidden layers are the between 
the input and output layers and is where all the computation and learning is done. 
The more hidden layers that exist, the deeper we say the Neural Network is. The 
number of hidden layers in a network all depends on the machine learning 
application itself. The output layer is the final layer in the network and produces a 
result. The idea of having a machine train itself to process and learn from data 
without explicitly teaching the machine is known as deep learning. The hidden 
layers of the neural network allow for this learning to occur.  
 

 
    Figure 4 Neural Network Architecture 
          Permission to use from open source 
 
4.2.1 What are Convolutional Neural Networks (CNNs) 
 
In today’s day in age, there are many different types of neural networks, some 
examples include, Recurrent Neural Network, Long/Short Term Memory, 
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Convolutional Neural Networks, etc. For our project, the neural network that we 
will choose to implement is the Convolutional Neural Network. This specific type 
of neural network help bridges the gap between computer vision and deep 
learning. Convolutional neural networks have proven to be effective in areas 
related to image recognition and classification and have been very successful in 
tasks related to object detection. We chose to implement a Convolutional Neural 
Network in our project because of these facts. The challenge of accurately 
recognizing and classifying hand gestures in real time can easily be solved by 
training a Convolutional Neural Network. Figure 5 shows the basic architecture of 
a CNN.  
 

 
     Figure 5 Basic CNN Architecture 

Permission to use from open source 
 
CNNs take an image in as input, in our project this will be an image of a hand 
gesture. Next, the image is sent through hidden layers where the image is broken 
down and different features of the hand gesture image are extracted and learnt by 
the network. For example, some features that can be extracted are edges and 
corners. A close fist hand gesture image will have different looking edges than an 
open palm hand gesture image. As the features are being extracted and learned, 
the weights associated with each node in the network are modified to account for 
newly learnt features. This is referred to as the feature learning stage. The 
classification stage is where the network makes a prediction on what it thinks the 
input image is or classifies the image based on the features the network extracted. 
In our project, an input hand gesture image can only be one of eight different hand 
gestures therefore the network will need to classify the input hand gesture image 
as one of eight different classes. The specific components that go into feature 
learning and classification are known as the building blocks of the CNN and will be 
discussed in section 4.2.2.   
 
4.2.2 Building Blocks 
 
Before building a Convolutional Neural Network, understanding of the certain 
building blocks is necessary. With a proper understanding of each building block, 
it is possible to create a robust and accurate Neural Network. In the subsequent 
sections, characteristics of each main building block will be explained as well as 
how each building block will be used in creating the Gesture Recognition Neural 
Network. 
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4.2.2.1 Convolutional Layers 
 
Convolutional Layers are an essential part of Convolutional Neural Networks. The 
main purpose of convolutional layers is to extract features and detect patterns from 
the input image. Patterns in images can be anything from edges, corners, circles, 
squares etc. A specific filter is used within convolutional layers to detect specific 
patterns. A filter is essentially a matrix that is used to convolve over the input image 
matrix. Figure 6 portrays what computation occurs in the convolution layers.  
 

 
Figure 6 Convolution Layer Computation 

 
The convolution layer essentially does the convolution operation on two matrices. 
One of these matrices is the kernel or filter and is usually a 3x3 matrix. The other 
matrix is the image in matrix form. The values that make up the image matrix are 
all the pixel intensity values. For example, a 50x50 image is converted to a 50x50 
matrix with 2500 different pixel intensity values ranging from 0 to 255. The 
convolution is the dot product of the two matrices. According to Figure 6, the kernel 
can only perform the dot product on a 3x3 region of the image matrix at a time. 
After the convolution operation is complete, the result is saved into a new matrix 
and the 3x3 kernel acts like a sliding glass window and shifts over one pixel to the 
right. The convolution process then repeats itself, saving the result in a different 
matrix, until the whole input image matrix has convolved by the kernel. The matrix 
in which the results of the convolution operation is saved is known as the feature 
map. A feature map or activation map is a mapping of where different kinds of 
features are found in the input image. Within the convolutional layers, there are 
different filters that are used to extract different features of the input image. The 
number of feature maps is determined by the number of filters used in the 
convolutional layer. There is one feature map per filter used. Convolutional layers 
will be used in our model architecture as they prove to be the most efficient way to 
extract different features from our hand gesture dataset. 
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4.2.2.2 Pooling Layers 
 
The one limitation of feature/activation maps is that they are sensitive to the 
location of features in the input image. For instance, the feature map of a closed 
fist hand gesture will look different than the feature map of another closed fist that 
is slightly rotated. The goal is to create a model such that the correct hand gesture 
regardless of translations, a closed fist should be recognized as a closed fist 
regardless of how its rotated or translated. To solve the sensitivity issues, pooling 
layers will be used in our model architecture. Pooling layers solve this issue by 
essentially down sampling images. By down sampling images, small features will 
not be captured and only the more robust and general features are retained. This 
idea is referred to as local translation invariance, minute features should be 
ignored but broader features should be captured.  
 
Pooling works by summarizing the features present in feature maps in patches and 
is used on the feature maps after the activation function has been applied. Figure 
7 shows an example of the pooling process 
 

 
         Figure 7 Pooling Process 

                                              Permission to use from open source 
 
Essentially, pooling works by splitting the feature map matrix on the left into 
patches, According to Figure 7, these patches are 2x2 boxes. The highest pixel 
value is taken from each patch and copied to a new matrix on the right which is ¼ 
the size of the feature map matrix. This process is repeated for every 2x2 patch 
until the down sampled matrix, on the right, is filled. The resulting pooled matrix is 
fundamentally a summary of the features detected in the input and helps provides 
invariance to small changes or translations in the input. If the input is translated a 
small amount, the pooled matrix values should not change. 
 
4.2.2.3 Fully Connected Layers 
  
Fully connected layers are typically used at the end of the model architecture in 
the classification stage. The convolutional and pooling layers allow the model to 
detect features, but the fully connected layers use the detected features to classify 
the input images. The output of the feature learning phase is set of feature maps 

 



 16 

that have been through multiple convolutional, activation, and pooling layers. In 
order to achieve classification, these feature maps need to be flattened and 
mapped to a N dimensional vector. N represents the number of classes the model 
can assign an input image to. In other works, if the last layer of the feature learning 
phase outputs a 14x14x3 volume, it means there are 3 feature map matrices all of 
size 14x14. This output volume is then mapped and connected to vector of size 
588 since 14 * 14 * 3 equals 588. This vector is again mapped to another fully 
connected layer known as the output layer of dimension N. For our project, the 
fully connected output layer must be of dimension 8 since there are 8 different 
potential hand gestures that can be recognized. The actual classification occurs 
when the output layer is applied a SoftMax activation function. By applying a 
SoftMax activation function to the output layer, the output vector is transformed 
into a vector of probabilities of what class the model believes the input image 
belongs to. In our project, fully connect layers will be used with SoftMax activation 
in our Convolutional Neural Network model because if provides us an efficient way 
to achieve classification within the model itself as opposed to using an external 
conventional classifier, like a Support Vector Machine, which adds to the 
complexity of the code and overall computation time. 
 
4.2.2.4 Activation Functions  
  
Activation functions are critical to the learning performance of a convolutional 
neural network. These functions are inspired by certain activity in our brain. 
Different brain neurons are activated by different triggers. The main purpose of an 
activation function is to convert an input signal of a node to an output signal so it 
can be used in the next layer in the model architecture. The weighted sum of each 
node in the network is inputted into the activation function, the resulting output is 
a number bounded between a lower and upper limit and is used in the next layer 
of the model. In Convolutional Neural Networks, activation functions are used after 
convolutional layers and fully connected layers. If activation functions are not 
applied to layers, output signals between nodes would be a linear function. Linear 
functions are constrained by their complexity and will not be as powerful when 
learning features from image data. Therefore, in order to make the model more 
robust and powerful in its ability to learn from image data, it is essential to introduce 
non linearities in our model. Non linearities are introduced in our model by using 
activation functions as it makes the easy for the model to adapt to different types 
data. The most common activation functions include Sigmoid, TanH, and ReLU. 
Figure 8 shows the graphs of these activation functions.  
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Figure 8 Common Activation Functions 

 
The Sigmoid activation function takes in an input signal of a node and transforms 
the signal between 0 and 1. If the input signal is a negative number, this number 
will be transformed to a value close to zero. If the input signal is a positive number, 
the signal will be transformed to a value close to 1. If the input signal is close to 
zero, it will be transformed to a value between 0 and 1. The closer the transformed 
signal is to one, the more “firing” or active the node is in the network. If the 
transformed signal is close to zero, the less active the node in the network is. Since 
the sigmoid activation functions maps signals between zero and one, it is typically 
used for models that predict probabilities because probability of something is 
always between zero and one. In practice, the sigmoid activation function suffers 
from many issues such as the vanishing gradient problem which makes this 
activation function not as popular today. 
 
The Tanh activation function is preferred over the Sigmoid function due to the fact 
that it is zero centered meaning the function is bounded between -1 and 1. Very 
negative input signals get mapped to -1 whereas very positive input signals get 
mapped to 1. Input signals close to zero are mapped to values close to zero. The 
Tanh activation function, however, still does not solve the vanishing gradient 
problem. 
 
The Rectified Linear Units or ReLU activation is the most popular activation 
function used today. If an input signal is zero or negative, it will be mapped to the 
value of zero. If the input signal is greater than zero it will be mapped to that same 
value. Therefore, this activation function only has a lower bound of zero. The one 
main advantage of the ReLU activation function is that is solves the vanishing 
gradient problem.  
 
For our project, the plan was to use ReLU after each convolutional layer and fully 
connected layer. Since the ReLU activation involves simpler mathematical 
operations it proves to be more efficient and less computationally expensive than 
the Sigmoid and TanH activation functions. Because of this fact, using ReLU 
activation can lead to better model performance.   
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4.2.2.5 Putting It All Together  
 
By combining these layers in a certain order, the model architecture was built. 
Typically, in a conventional convolutional neural network the order in which the 
programmer places the layers are as follows, the convolutional layer followed by 
the activation layer followed by the pooling layer. An activation does not follow a 
pooling layer due to the fact that the pooling layer only down samples the feature 
maps and its outputs don’t need be normalized by an activation layer. Fully 
connected layers are typically found at the end of the network and are typically 
followed by the output layer or more fully connected layers. The big question when 
putting together the different layers to create the model architecture is how many 
different layers to use. There is no set standard on how many layers to use as it 
was all based on the application and characteristics of the dataset. For our project, 
we didn’t foresee using a lot of layers since our application of the neural network, 
which is to recognize hand gestures in real time, would have needed many layers 
of abstraction to accurately differentiate between gestures. We are confident that 
keeping our network shallow, i.e.. Not using as many layers, allowed us to meet 
our requirements of accurately recognizing different hand gestures and doing so 
in real time. The specifics on what layered our model will utilize and the order the 
layers will be arranged are presented in section 4.3.4.  
 
4.2.3 How do CNNs Learn/Train 
 
Convolutional Neural Networks learn through a process called Backpropagation 
and takes place during the training of the neural network. This process is split up 
into 4 different stages, the forward pass, the loss function, the backward pass, and 
weight updating. Throughout the forward pass stage, the input data is passed 
through the model. In our project, the input data that we will pass through our model 
are hand gesture images. Because the weights are randomly chosen at the very 
beginning of the model training phase, the output classification predictions or 
probabilities will be very uniform in nature. For instance, if an image of a closed fist 
hand gesture is sent through our model in the earlier stages of the model training 
phase, the expected output classification probabilities would be around 15 percent 
for each class of hand gestures. Having uniform classification probabilities 
specifies that the model, with its current node weights, can’t extract enough 
features from the input image to help make an educated prediction about what the 
classification of the image may be. The loss function is then computed to measure 
how different the predicted classification is from the actual ground truth label of the 
input image. The more different these two are, the higher the loss value. The lower 
the loss value, the more accurate the model is. There are many popular loss 
functions we can configure our network to use but the one that we will use in our 
model architecture is known as the Cross-Entropy Loss function. This loss function 
is popular to use with classification problems because the loss value increases as 
the predicted classification probability deviates from the ground truth label. One 
important aspect of using this loss function is that it penalizes severely 
classification predictions that are confident by wrong. For example, the loss value 
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will be extremely high if the neural network model predicted a thumbs up hand 
gesture, but a closed fist was gestured by the user to begin with. Every time a loss 
value is calculated, the goal is to find which weights or nodes contributed most to 
the loss in the network, this occurs during the backward pass stage.  During the 
backward pass stage, the weights that effected the loss the most are found by 
taking the gradient of the loss function at each weight. The gradient of the loss 
function is simply the derivative of the loss with respect to weight of each specific 
node or, !(#)

!(%)
 where L represents the loss and W represents the weight of the 

specific node. After the derivative is calculated, the last step is to perform an 
update of the specific weight value tied to each node. In order to calculate the new 
weight value for each node, the value of the derivative is multiplied by a number 
known as the learning rate. Choosing the learning rate value is up to the 
programmer. A good learning rate value will allow for the model to converge on an 
ideal set of weights that gives the best prediction accuracy. A learning rate that is 
too high will result in big changes in weights which will lead to non-optimal results.  
For our project, we will start by using a learning of .001 and will adjust this value if 
the loss in the model is not improving.  As stated before, the gradient of the loss 
function or derivative is multiplied by this learning rate to achieve a new weight 
value. The new weight replaces the old weight associated with the node. The 
process of backpropagation occurs at the end of each training iteration and is 
repeated until all weights are updated to achieve minimum possible loss and 
highest possible accuracy for the model. Figure 9 illustrates a flowchart that 
describes the backpropagation process of one iteration.  
 
 
 
 
 
 
 
 
 

Figure 9 Backpropagation Flowchart 
 
4.3 Gesture Recognition Neural Network 
 
Building a good gesture recognition application was an immensely important 
aspect of this project. Failure to create a robust recognition application would not 
only lead to wrong gesture recognition predictions but also lead to drone control 
issues. One of our main goals of this project was to create a model that will produce 
extremely accurate gesture predictions based on the users given gesture. Machine 
learning and Neural Networks are great for applications in which classification of 
data is involved. For example, you are creating an app that can classify what dog 
breed a specific dog is in real time using your phone camera. Trying to approach 
a solution to this classification problem without using machine learning would have 
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proven to be time consuming and inefficient because the developer would have 
needed to come up with and hard code complex algorithms in order to teach the 
computer how to differentiate between different dog breeds. Using Machine 
learning and Neural Networks, the developer can give the computer the chance to 
learn what all the different dog breeds look like beforehand so when given new 
input data, i.e.. A picture of a German Shepard, the output prediction will be a 
German Shepard. In our project, the classification task at hand is categorizing 
different hand gestures in real time. Just like in the example given above, trying to 
use non machine learning techniques would have posed to be extremely difficult 
and complex. Therefore, our solution to this classification problem allows for the 
computer to learn the physical characteristics of a set of different hand gestures 
and was able to accurately predict a newly inputted hand gesture, in real time. 
There are many aspects into creating and deploying a robust and accurate neural 
network application. If the steps in creating a Neural Network are followed correctly 
it can be surprisingly simple to achieve a highly accurate prediction (97% accurate 
or more). These facets will be explained in detail in subsequent sections.  
 
4.3.1 Hardware Requirements 
 
Solutions to classification problems using Machine learning and Neural Networks 
are extremely computationally expensive. The main reason being that the basic 
building blocks for machine learning computation is matrix multiplication and 
convolution. These tasks may not seem as computationally demanding but when 
training a neural network, specifically a convolutional neural network, millions or 
even billions of these matrix multiplications and convolution operations need to be 
completed. The training of a neural network can take days even weeks on a basic 
office computer with average hardware specifications. Therefore, it was imperative 
that the correct hardware was used so that Neural Network training time and 
prediction time was minimized.  
 
There are many different types of hardware that we could have used to 
successfully create and run Machine learning applications. Some of the different 
types of hardware include Central Processing Units or CPU’s, Graphical 
Processing Units or GPU’s, Field Programmable Gate Arrays or FPGA’s, or 
Specialized Accelerators. When it comes to Machine learning we need the right 
hardware that will be able to lower prediction time, achieve higher throughput 
through training, and lower power costs. Being able to speed up the matrix 
multiplication and convolution operations will ultimately lead faster training time. 
Since training a Neural Network takes the most time in creating and deploying 
Machine learning applications choosing the right hardware to help minimize 
computation time is key. Out of the hardware types listed above, the Graphical 
Processing Units are used the most used in the Machine learning world with 
Central Processing Units being second most popular. The main advantage of 
Graphical Processing Units is that they handle mathematical computation 
significantly faster. Computer graphics in general, involve an immense amount of 
matrix mathematical functions therefore these Graphical Processing Units are 
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designed specifically to minimize computation time. Because of this fact, Graphical 
Processing Units are far superior to any other Machine learning hardware when it 
comes to training Neural Networks as most of the intense computation is done 
during this stage. As mentioned before, the deeper the Neural Network, the more 
intense the computation gets. The Central Processing Unit can also be used to 
train Neural Networks and is used most on systems with integrated cards.  
 
For our project, the system that was used to train our Neural Network was a 2017 
MacBook Pro. The basic specifications for this system are shown in Table 6. 

Table 6 Host Computer System Specifications 
 
Since the graphics card on the system is an integrated graphics card, the 
processor will be used as the computation source when training the network. Due 
to hardware restrictions and our budget, we do not believe it is feasible to buy an 
expensive GPU just to train the model. As mentioned before, the CPU can handle 
Neural Network training computation, just not as fast as a GPU. Training time is 
highly dependent on training data dimensions and size as well as network 
architecture. For example, a network with 100 layers and 5000 images of input 
data with dimensions 720 x 480 will train a lot slower than a network with 50 layers 
and 5000 images of input data with dimensions 50 x 50 if the same hardware is 
used to train the model. A CPU can be used for our application since the input 
training data will be small and the network architecture will not be as deep. The 
specifics of the training data and network architecture will be discussed in later 
sections. Overall, the 3.1 GHz dual-core Intel Core i5 will be a capable processing 
unit that will be able to train the model with an estimated training time of less than 
24 hours.  
 
In the event that the MacBook Pro CPU could not handle the computational 
requirements of training and real time recognition of hand gestures, we had to 
consider other approaches to help boost our computational power. There are many 
options to help solve the computational restrictions we may face during the training 
and deployment of our gesture recognition network. One option was to buy an 
external GPU and connect it to the MacBook Pro to help give enough computation 
power in order to speed up training time and the deployment of the gesture 
recognition application. The major downfall of that approach is the cost of acquiring 
this hardware. External GPUs tend to cost around $500 USD which will essentially 
double are proposed budget. Due to budget restrictions, acquiring and using an 
external GPU will not be the approach to solve potential computational restrictions.  
The other option we can turn to for solving this issue is to use Machine learning as 
a Service or MLaaS. MLaaS provides users with Machine learning tools and 
algorithms via a cloud computing service. Some of the best know providers of 
MLaaS include Microsoft Azure, Amazon Web Services, and Google Cloud. 

Processor  3.1GHz dual-core Intel Core i5 
Memory  16GB 2133MHz LPDDR3  
Graphics  Intel Iris Plus Graphics 650 (Integrated) 
Storage  512GB SSD 



 22 

Amazon Web Services offer an abundant amount of services geared towards 
machine learning. One popular service AWS offers is Amazon SageMaker which 
allows one to build, train, and deploy machine learning models. The big advantage 
of using this service is that a developer does not need to learn complex machine 
learning algorithms as there are tools and wizards that allow you to create the 
machine learning model without generating any code. Google Cloud’s machine 
learning engine is another popular cloud computing service for machine learning 
tasks. This engine is built upon the TensorFlow framework which makes this 
engine highly flexible. Google Cloud’s machine learning engine allows users to 
both use a GUI to implement neural network models or use an environment 
dedicated to coding the model from scratch. Microsoft Azure’s ML studio is 
Microsoft’s version of implementing machine learning tools in the cloud. The main 
disadvantage is that there is a steep learning curve in using ML studio and 
everything from data preprocessing to exploring the model results need to be done 
manually. ML Studio’s GUI interface, however, allows for easy building, training, 
and deployment via its drag and drop GUI mechanism.  
 
For our project, the first option was to use the existing hardware, the MacBook Pro, 
to train and deploy our model as this is the most cost-effective approach. In the 
event that our hardware does not meet the computational requirements of 
performing gesture recognition in real time, we will explore the options described 
earlier. Google Cloud’s machine learning engine will be option we will choose if we 
need to upgrade our computation throughput. Google Cloud offers the cheapest 
price point for using its machine learning tool with monthly fees of $52 per month. 
Another attractive aspect of Google Cloud’s machine learning engine is that it 
provides environments to both code and use a GUI to create neural network 
models. In our opinion, being able to code Neural Networks from scratch allows 
for better flexibly during the development stage of the model. Again, using these 
cloud computing services is a backup plan if our current hardware does not meet 
computational and accuracy requirements. However, our existing hardware 
performed well enough to meet these requirements.  

 
4.3.2 Software Choices 
 
In order to start building a Machine learning application, software related decisions 
need to be made. When starting a new Machine learning project selecting the right 
programming language, development environment, and API/Framework are all 
crucial decisions that can either allow for seamless creating and deployment of a 
Machine learning application or cause the developer many issues if wrong 
decisions are made. 
 
There are many factors that went into choosing the right programming language 
for a Machine learning application. Factors such as robustness, readability, ease 
of coding, experience with the language, documentation/support, and most 
importantly, compatibility with Machine learning APIs and frameworks. Some of 
the most popular programming languages for machine learning today are Python, 
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Java, R, Lisp, and Prolong. Lisp is one of the oldest AI suited language. Some 
features of Lisp include ease of creating new objects, ability to process symbolic 
information, automatic garage collection, and good prototyping capability. Prolog 
is similar to Lisp in the machine learning aspect. Features of Prolog include 
automatic backtracking, tree-based data structuring, and efficient pattern 
matching. R is a programming language that is used mainly for statistical data 
manipulation. With the right packages installed R can be a powerful tool for 
machine learning usually with raw data. Java is one of the more popular general-
purpose programming languages. In addition to the easy use, widespread support, 
and the number of packages available, Java can handle computation required by 
machine learning such as search algorithms and neural network model building. 
Python is another popular general-purpose programming language but has even 
more regard in the machine learning world. Python has a very simple syntax which, 
in turn, allows for readability and coding ease. In addition, there is an immense 
number of libraries that make programming certain tasks easier. Most importantly, 
popular machine learning API’s and Frameworks are compatible with Python. 
Based on these factors, Python is the language that we will choose to code our 
Neural Network application.  
 
After selecting the right programming language, where you develop the 
application, or the development environment was an important software choice in 
the overall software development lifecycle. Choosing the right development 
environment can save the developer an immense amount of time especially when 
creating a Neural Network model. There are two options for development 
environment either an Integrated Development Environment (IDE) or a Text Editor. 
Some examples of IDE’s include PyCharm, Eclipse, and Visual Studio. Examples 
of text editors include Atom, Sublime Text, and Visual Studio Code. A pure text 
editor is just a place for one to write code. There is no ability to run code from within 
the text editor application or check for syntax errors before run time. Usually when 
one wants to run code written in a text editor, the command prompt is used to call 
and run the code. Text editors are used mainly for coding small programs and 
typically not used for big projects. Integrated Development Environment are far 
superior to basic text editors as IDE’s contain all the functionality of text editors 
and much more. A big feature of IDE’s is that most comprise of built in debuggers. 
A developer can code and debug their program within the IDE as opposed to 
having a separate compiler when using a text editor. Some other features of IDE’s 
include automatic code completion, built in project file explorer, package installers, 
and being able to run code with a click of a button. Therefore, an IDE was used for 
the development environment of this project. The only restriction when it comes to 
selecting an IDE is programming language. It was imperative to select an IDE that 
was compatible with the programming language being used for development. The 
PyCharm IDE was used for our development environment. PyCharm is an IDE 
created by Jet Brains and is an IDE geared towards developing Python and Django 
projects. PyCharm is compatible with Mac OS, which is the operating system that 
our project was developed on. In addition to having all the features described 
above, the main reason PyCharm was selected is because of the free educational 
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license Jet Brains offers for students. With this license we are given the full product 
at no cost.  
 
Now that the programming language and development environment choice has 
been made, the next major software decision was selecting a machine learning 
API/Framework. There are many different APIs and frameworks geared towards 
Machine learning that allow for one to create Neural Network models easier. Some 
of the most popular API’s and frameworks include TensorFlow, PyTorch, and 
Keras. TensorFlow is an open source library developed by Google that is used for 
building Neural Networks. PyTorch is another open source machine learning 
library specifically for Python and was developed by Facebook. Keras is an open 
source neural network API that is built on top of TensorFlow and is primarily used 
to create and experiment with deep neural networks. There are many factors that 
go into selecting the right Machine learning API/Framework for the project such as 
ease of use, debugging, and dataset considerations. As for ease of use, these 
API/Frameworks all operate on different levels of abstraction. Keras is a higher-
level API where commonly used functions are wrapped in callable functions. 
PyTorch is a lower level API where the programmer can do more customization 
when creating the Neural Network Model architecture. TensorFlow is more of a 
middle ground between Keras and PyTorch in terms of abstraction. Figure 10 and 
Figure 11 show code for creating a simple Neural Network Model using Keras and 
PyTorch respectively. 

 

 
Figure 10 Example Keras Code for Creating a Model 

 

 
Figure 11 Example PyTorch Code for Creating a Model 

 
It is clearly shown using Keras is easier to both read and code. Which ultimately 
leads to easier debugging. Keras is said to be the easiest to debug whereas 
TensorFlow is the hardest with PyTorch coming in as the middle ground. The final 
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consideration when choosing the right machine learning API/Framework is the 
dataset. The input dataset is the data being fed into the network in order to train 
the model. Keras is used when dataset is typically small. For example, if the input 
dataset consists of thousands of images, Keras would have been a good choice 
as it is comparatively slower. PyTorch and TensorFlow are optimized for speed 
therefore a good choice for larger dataset, usually millions of input dataset images. 
Our dataset will be relatively small, consisting of thousands of images of different 
hand gestures. Given all the stated considerations, Keras was the API/Framework 
used to build, train, and test our Neural Network model.  
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4.3.3 Building the Dataset 
 

 
       Table 7 Initial Hand Gesture Set 

 
The first step for creating a Convolutional Neural Network was building and 
preprocessing the dataset. This input dataset set was used to train our model. In 
Convolutional Neural Networks the main goal is to create an input dataset that has 
good coverage so the model will be able to achieve maximum prediction accuracy 
when faced with brand new input. We used supervised learning in our model. 
Supervised learning is the idea where all training data is associated with a label 
identifying what the training data represents. 
  
For this project, our dataset consists of thousands of different hand gesture 
images. The set of hand gestures that our application will be able to recognize are 
shown in Table 7. In order to build our dataset, we used our MacBook Pro webcam. 
Using this webcam, we could manually take thousands of pictures of different hand 
gestures, but this task would prove to be tedious and time consuming. To improve 
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efficiency, given that the MacBook Pro webcam has the capability to record at 60 
frames per second, it made more sense to record a 17 second video of someone 
doing a specific hand gesture. With that video, we processed each frame 
individually for a total of 17 * 60 = 1020 images of a specific hand gesture. This 
approach was less time consuming than the manual approach described above. 
One main challenge we faced was dealing with processing each frame. Our 
Convolutional Neural Network needed to be able to universally recognize hand 
gestures no matter the users skin color or changes in users background 
environment. For example, our model needs to be able to predict the correct hand 
gesture of someone of dark skin sitting outside and do the same when faced with 
a user of light skin sitting indoors. It would be inefficient and virtually impossible to 
train a model taking into account all skin color and environment variables. So how 
did we train our model in a way that it does not need to take such variables into 
account? Our plan was to simply extract and threshold the hand gesture from each 
frame before sending it through our neural network for training and testing. In order 
to extract the hand gesture, the idea of image background subtraction will be used. 
In essence, we captured the background of the environment before the hand is in 
the frame. This creates a “mask” that will remove or subtract everything but the 
hand. If background subtraction is done correctly, the resulting image will be just 
the hand gesture with a black background. This solved the problem of varying 
environments. To solve the issue of varying skin colors, binary thresholding was 
used on the already background subtracted image. By using a binary threshold, 
we can segment an image based on a certain pixel intensity. Given the background 
subtracted image we can threshold the image such that all the dark black pixels 
remain black and all every other pixel will be converted to white. This will create a 
silhouette of the hand gesture. The process of extracting and thresholding an 
image is shown in Figure 12 through Figure 14. 
 

                                    
Figure 12 Original Image   Figure 13 Background Subtraction          Figure 14 Binary Threshold 
 
Our Neural Network is only to be fed images that have been background 
subtracted and been applied a threshold to ensure skin and environment 
independency which maximizes our model’s total prediction accuracy.  
 
A utility written in Python was used to create and organize our dataset. A basic 
flow diagram of this utility is shown below in Figure 15. 
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Figure 15 Utility Flowchart 
 
OpenCV is an open source computer vision library that can be used to interface 
with the computer webcam. The webcam recorded a certain number of frames and 
the utility loaded all the captured frames into a directory associated with the hand 
gesture being recorded. The directory name served as the label for each specific 
frame. For example, frames that show a closed fist will be put into directory named 
thrust_upwards. This name will also act as the label for each of the frames residing 
in that directory. The utility then transverses through the created directory and 
modify each frame using background subtraction and thresholding to create 
frames that are both skin and background environment independent. The resulting 
image will be cropped so that only the hand gesture is shown and then resized to 
50 x 50 pixels to ensure uniformity across all dataset images. This same process 
will be executed for each hand gesture. Pseudo-code for this utility is shown in 
Figure 16. 
 
 

 
 

Figure 16 Dataset Creator Utility Pseudo-Code 
 
4.3.4 Building the CNN Model 
 

After our training dataset was created, the next step was to create our 
Convolutional Neural Network Model architecture. There were two approaches to 
creating the model architecture. One option was to create our own model 
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architecture or the other option being using an already defined architecture. The 
main advantage to creating your own model is that you have full freedom to use 
the different building blocks, as discussed before, in any way. However, the main 
disadvantage is optimizing the architecture if needed. In building a Convolutional 
Neural Network Model, the developer doesn’t know how good the model will 
perform without taking the time to train the model. In some cases, this could take 
days and if accuracy is low and optimization to different layer parameters is 
needed, it could take weeks before the model is producing the right accuracy. In 
essence, implementing our own Convolutional Neural Network Model from scratch 
would have involved a good amount of trial and error and with the hardware being 
used to train and test our model, the process would not have been time efficient. 
Based on this fact, we used an already defined model. This approach was much 
better since these models have been created, tested, and optimized for accuracy 
by experts in the machine learning field. In addition, there are an immense amount 
of defined architectures to choose from. Of course, no matter what defined 
architecture we chose, there would be some tweaking of some parameters to allow 
for compatibility between our dataset and model architecture itself. In general, the 
more layers a model has the more computation is needed however the model 
accuracy is generally higher in deeper networks. For our project, we wanted to stay 
away from using deep networks due to our hardware constraints and due to the 
fact that the model needs to produce prediction results in real time. Given these 
constraints we need to base our model after a predefined model that is shallow 
(less layers) and produces the best accuracy for our application.  
There are many well defined Convolutional Neural Network model architectures 
that are optimized for different Machine learning applications. LeNet-5 and AlexNet 
are two Convolutional Neural Network architectures that posed to be a good fit to 
implement for our gesture recognition application. LeNet-5 is one of the earliest 
CNN model architectures and its main advantage being how shallow the network 
is. LeNet-5 consists of 7 total layers and was originally used to classify handwritten 
or machine printed digits. A representation of the Le-Net architecture is shown in 
Figure 17. 

 

 
Figure 17 LeNet-5 Architecture 
        Permission to use approved 
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The input image to LeNet is a 32x32 greyscale image and the architecture consists 
of 3 convolutional layers (C1, C3, and C5), 2 subsampling layers (S2 and S4), and 
1 fully connected (F6) followed by the output layer. What made this architecture 
attractive for our application is that the model itself is shallow therefore training 
time will be comparatively shorter and predictions can occur in real time. In terms 
of error rate/accuracy, Le-Net-5 was able to achieve an error rate below 1% on 
certain datasets. AlexNet is another considered Convolutional Neural Network 
architecture for our gesture recognition application. AlexNet has a similar 
architecture to LeNet-5 but it is deeper (has more layers) than LeNet-5. AlexNet 
also outperforms LeNet-5 in terms of accuracy due to the fact that AlexNet is a 
deeper network architecture. Figure 18 shows the architecture of AlexNet. 
 

 
Figure 18 AlexNet Architecture 

    Permission to use approved 
 
AlexNet consists of 4 convolutional layers, 3 subsampling layers, and 3 fully 
connected layers followed by an output layer. AlexNet is typically used for 
classification of high-resolution colored images and due to the fact that AlexNet is 
deeper than LeNet-5, it could cause slower prediction time given our hardware 
constraints.  
 
Both LeNet-5 and AlexNet are good defined Convolutional Neural Network 
architectures that have been proven to produce accurate predictions. For our 
project, we plan on implementing the LeNet-5 architecture first to see what results 
we can achieve. LeNet-5 is a simple and shallow network that we believe can 
produce accurate results in real time. In addition, LeNet-5 was designed for a 
dataset consisting of greyscale and low-resolution images. Our dataset falls into 
this category since our input images will also be in greyscale and of size 50 x 50. 
AlexNet is a very capable architecture but given the characteristics of our dataset 
and our hardware constraints, we believed using AlexNet for our real time gesture 
recognition application could be overkill. However, if using the LeNet-5 architecture 
did not meet our accuracy requirements, we would have been forced to use 
AlexNet or a similar architecture as it is more robust and capable of achieving 
higher prediction accuracies.  
 
To build/code the model we will use Keras, TensorFlow, and Python as mentioned 
in earlier sections. The plan was to create a single Python file that will contain code 
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to preprocess our dataset, the model architecture in code form, and commands to 
initiate training as well as saving our model weights after training is complete. 
Coding the model architecture was done completely using Keras since it provides 
the simplest and readable way to create Neural Network Models. 
 
4.3.5 Training the Built Model 
 
Once our Neural Network model architecture is defined, the we can begin training 
the Convolutional Neural Network. Our input dataset of hand gesture images was 
used to train and test our model. Before the training begins, the input data set was 
split into two parts, train data and validation (or test) data. Typically, there is more 
train data than validation data, a 9 to 1 split. For example, if there are a total of 
10000 input dataset images, 1000 of those images will be grouped into the 
validation data and the remaining 9000 will be grouped into the training data. The 
training data is used to help the model learn whereas the validation data is used 
to test the model’s accuracy at that point in the training process. For our project, 
the dataset will consist of about 1000 images of each hand gesture for a total of 
around 8000 images. The plan is to split the dataset, grouping 7000 images to be 
used for training the Neural Network and the remaining 1000 images will be used 
as validation data. An example of a Convolutional Neural Network being trained 
using Keras is show in Figure 19. 
 
 

 
Figure 19 CNN in Training Phase 

 
The example shown in Figure 19 has an input dataset of 7000 samples, 6000 of 
these samples are used for the training dataset whereas 1000 samples are used 
for the validation or test dataset. This model is trained for 3 epochs. An epoch is 
essentially the number of times the model cycles through all the data. Within each 
epoch the same 6000 samples are used to train the model and the same 1000 
samples are used to test the model’s accuracy at that specific epoch. In general, 
the more epochs that are run, the more the model’s accuracy will increase. 
However, there is an upper bound on the number of epochs that can be run until 
there is no more improvement in accuracy. There is no way of knowing what this 
upper bound is, so it is a general rule to set the number of training epochs to a high 
value, around 50 epochs. There is always an option to stop training if there are no 
noticeable or decreases in accuracy. At the end of each epoch the model evaluates 
its performance and performs backpropagation to update the weights, the specifics 
of backpropagation are mentioned in Section 4.2.3. 
 
 



 32 

4.3.6 Testing the Neural Network 
 
 Testing of the Neural Network itself occurs at the end of each epoch. The 
model first trains itself using the training dataset and immediately after the model 
tests itself on the validation data. This process occurs during every epoch. After 
each epoch, metrics are calculated to show how well the model is responding to 
the training and testing. The loss metric is the output of the loss function which 
measures how well or how poorly the model behaves by finding the difference 
between the predicted value and the ground truth value of an image and is used 
to optimize the model. Accuracy measures how well the model performed by taking 
the number of correct prediction and dividing by the total number of predictions. 
The accuracy metric is not taking into account when optimizing the model as it is 
just a metric for us to reference in order to see if the model is training well. If a 
model is training well, we see a decrease in the loss and an increase in accuracy. 
Figure 20 depicts the ideal trends of a model in the training phase if the loss metric 
and accuracy metric is plotted. It is shown that accuracy generally increases, and 
loss generally decreases as number of epochs increase. According to Figure 19, 
the loss and acc metrics are calculated from using the training dataset images to 
test the model whereas the val_loss and val_acc are calculated from using the 
validation dataset images to test the model. The metrics that we are most 
interested in are the val_loss and val_acc because they measure how good the 
model is performing to seeing new hand gesture images. For our project, we will 
make sure monitor these different metrics during the training because they are the 
only indication of how good the model is responding to training.  
 

 
Figure 20 Accuracy (Orange) and Loss (Blue) vs Epoch  
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4.3.7 Real-Time Recognition 
 
One major aspect of our project which also poses to be a main challenge achieving 
real time recognition of hand gestures so our drone can also be maneuvered in 
real time. Given that our model trains successfully and produces an acceptable 
accuracy it was imperative that we use our model in a way to achieve real time 
results. 
 
Once our model was done training and the model’s architecture, weights, and 
optimizer state is saved into a .h5 file, the plan was to create a python program 
that handles the real time recognition of hand gestures and the sending of 
messages over Bluetooth. Figure 21 shows a flow chart of the proposed program 
 
 
 
 
 
 
  

 
     Figure 21 Recognition Program Flowchart 

 
The first step is to load the previously saved model architecture, weights, and 
optimizer state. In Keras, the function load_model(filepath) can be used to load the 
model at the specified file path. The next step is to initiate and load all visual 
aspects of our graphical user interface or GUI. The specifics of the GUI will be 
covered in section 4.4. The third step is to extract and process the hand gestures 
shown to the webcam. Each frame is first background subtracted, applied a 
threshold, resized to 50 x 50 resolution, and finally converted to greyscale. After 
the frame containing the hand gesture is processed, it is passed through our 
loaded model in order to get a prediction of what the hand gesture is. In Keras, the 
model.predict function is used to get prediction results on the inputted image. This 
function returns an array of size equal to the number of classes. In our 
implementation, there is a class per hand gesture totaling to 8 gestures. The values 
in the array represent how close the model thinks the input image is to belonging 
in the specific class. The higher the value, the more the model thinks the input 
image belongs to the class. For example, in our project we have 8 gestures which 
corresponds to 8 different classes. When model.predict is called on a new input 
image it will produce an array of 8 values, [.21,  .26,  .56,  .86,  .95,  .12,  .03,  .42]. 
The model predicts that the input image is closest to class 5 since that value is 
highest. The 5th class could represent a closed fist so therefore a closed fist is the 
final prediction. After the prediction is made the next step is update the GUI to 
reflect this. In addition, a corresponding Bluetooth message will be sent to the 
drone to specify what maneuver the drone must perform based on the recognized 
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hand gesture.  The Extract and Process Gesture, Make Prediction, and Send 
Message/Update GUI steps all should be done in real time. 
 
4.3.8 Foreseeable Issues 
  
One obvious issue that could potentially have arisen during the model training and 
testing is bad prediction accuracy. Bad prediction accuracy can be a caused by a 
handful of things such as characteristics of the dataset, model architecture, model 
parameters. If the dataset doesn’t provide good converge over the different 
classes, there is a potential for some accuracy issues. For example, if our dataset 
contains 1000 images of a closed fist hand gesture but only 50 images of an open 
palm hand gesture, the model might run into accuracy issues when trying to 
classify open palm hand gestures because it was not given much data for the 
particular hand gesture to be trained on. In our project, by creating and using a 
dataset that was composed of an equal number of images per hand gesture, and 
having an abundant number of images per gesture, we eliminated the possibility 
that bad prediction accuracy will be caused by the dataset. The model architecture 
itself can lead to bad prediction accuracy. Having too many layers or having a 
sparse number of layers in your model can affect how accurate the model is. If an 
insufficient number of layers are used then the network will have a hard time 
recognizing features that make each image different, thus leading to bad prediction 
accuracy. Having too many layers in a model or having a very “deep” model could 
have resulted in longer training time but even worse, longer prediction time. 
Because we needed the hand gesture predictions to be made in real time, we 
avoided building an architecture with too many layers. Model parameters such as 
the number of filters in each convolutional layer or the learning rate value can either 
contribute to good model prediction accuracy or bad model prediction accuracy. 
The science behind choosing right parameters for your model is still a field in 
machine learning research as it is highly dependent on the application. At the time 
of developing this project, there was no general standard to use when defining 
parameters in the model and it is essentially a trial and error process in order to 
achieve maximum accuracy. As stated before, we planned on using a predefined 
model, LeNet-5, that had been researched and optimized for performance. Of 
course, it was possible that we will need to tweak model parameters or completely 
change the model architecture if prediction accuracy is low. We are confident that 
by using the LeNet-5 architecture, our prediction accuracy will be high enough and 
there won’t be a need to completely change the architecture of our model. 
 
Overfitting is one of the most common and most researched problem with neural 
networks. The model is overfitting when the training dataset accuracy continues to 
increase or stay the same while the validation dataset accuracy declines. This 
means the model is memorizing rather than generalizing. Since the training data 
is the exact same for each epoch, the model is memorizing the training data and 
therefore when tested on the same training data the prediction accuracy will be 
high. When tested on new data, the model will not perform well and will show a 
decrease in validation accuracy due to the fact the model is not generalizing well 
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enough. Detecting overfitting in a model is straightforward. By line plotting the 
training data accuracy and the validation data accuracy, it can easily be shown if 
a model is overfitting. Figure 22 shows a line plot of a model that is overfitting.  
 

 
Figure 22 Overfitting Graph 

               
For our project, we will implement different overfitting prevention techniques if 
necessary. One way to prevent overfitting is to implement early stopping. Early 
stopping essentially stops model training when the validation accuracy starts to 
decline rapidly.  We can specify in the Keras code that we want to apply early 
stopping right before when the validation test accuracy starts to decline. Another 
popular technique that we will consider using in the event of overfitting is the use 
of dropout layers. Dropout refers to ignoring a random set of nodes during the 
model training phase. Each node is either kept or removed from the network with 
a certain probability. This helps prevent overfitting because in an overfitted network 
some nodes that make up the network are too dependent on other nodes in the 
same network which leads to memorizations. Strong dependences between nodes 
are denoted by higher weighted edges between the two nodes. By dropping some 
nodes from the network, the dependences between nodes are broken forcing 
nodes not to rely on each other by distributing weights evenly across all nodes. 
Dropout can easily be implemented in Keras by simply adding a Dropout Layer. In 
essence, if our model does overfit during training, we use the early stopping 
technique first, as it was the easiest to implement. Using dropout layers was our 
second option as choosing the right amount of dropout layers and the right 
probability that a node will be dropped would have involved some trial and error. 

 
4.3.9 Other Approaches to Gesture Recognition  
  
Computer Vision is still an up-and-coming field in research, therefore there isn’t a 
lot of other approaches to gesture recognition. The one notable approach that 
differs from the Machine learning approach is the use of the python library known 
as OpenCV. OpenCV offers users an abundant number of functions that help with 
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computer vision applications. OpenCV can be used to recognize simple hand 
gestures by essentially counting the number of fingertips is sees. This is a big 
limitation since there can only be six recognized hand gestures. In order to be able 
to count the number of fingertips in the image, a contour or outline of the hand 
must be found first. The next step is to find the edges of the found contour, this is 
effective in trying to find the fingertips of the hand. After the edges are found, the 
next step is to ignore all edges that are not fingertips. This is done by computing 
the angle between two edge points, if the angle is small enough, the edge points 
will be considered an edge point. Some advantages to this approach compared to 
the machine learning approach is there is no need to gather a dataset to train a 
model, this cuts back on development time as the OpenCV approach is more of a 
“plug and play” way of recognizing gestures. In addition, the speed of producing a 
prediction is generally quicker using OpenCV than using the Machine learning 
approach. Some disadvantages of using OpenCV to recognize hand gestures is 
the limitations on the different hand gestures that can be used, and the code 
complexity that goes into distinguishing between different hand gestures. The 
algorithms needed in order to achieve gesture recognition are more complex and 
the gestures are limited to the basic numeric gestures with OpenCV. The more 
advanced gestures used the more complex the algorithms get in order to 
distinguish between the set of hand gestures. The most prominent difference 
between OpenCV and Machine learning approaches is that with OpenCV, the 
developer is essentially teaching the computer how to distinguish between hand 
gestures by hard coding the characteristics to look for that differentiates each hang 
gesture. Therefore, the complexity of the code is dependent on how many gestures 
are used in the application. Machine learning, on the other hand, allowed the 
computer to learn the different features of each hand gesture. The code complexity 
is not dependent of the set of hand gestures as the same model architecture is 
used to train any set of hand gestures. This approach was more robust, allowing 
the developer to add or remove hand gestures from the dataset with little code 
modifications.  
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4.4 Graphical User Interface 
 
4.4.1 GUI Overview 
 
The graphical user interface acts as what the user interacts with to communicate 
with the drone. The goal was to keep this interface as simple and user friendly as 
possible. Figure 23 shows the final layout of the GUI. 
 

 
Figure 23 GUI Layout 

 
The GUI consists of 3 different sections or windowpanes the webcam pane, 
feedback/reading pane, and a log/drone data pane.  
 
4.4.2 Webcam Window Pane 
 
The webcam window consists of a real time feed of the webcam and takes up 
majority of the overall GUI space. This is where the user’s gestures are displayed 
and captured so the captured gesture can be processed by the Neural Network in 
the backend. The processed frame is also displayed next to the webcam feed. The 
real time feed will be displayed with a green box overlay. Figure 24 displays an 
example of what the webcam window will show. The green box overlay acts as a 
region of interest. This region is where the user will display their gesture and will 
ultimately be cropped out, processed, and sent through the Neural Network model 
for a real time gesture prediction.  
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Figure 24 Webcam Window Real Time Feed 

 
4.4.3 Feedback/Readings Window Pane 
 
The feedback/reading windowpane gives the user a visual representation of the 
prediction result after being passed through the Neural Network model. This 
windowpane consists of radio buttons, one for each gesture, with labels identifying 
the specific drone action. Ideally, while the user gives the specific gesture that 
correlates to having the drone thrust upwards, the radio button labeled Thrust 
Upwards will be filled. Only one radio button can be filled at a time as only one 
drone action can be done at once. In the feedback/reading pane there will be one 
radio button for every drone action/gesture.  
 
4.4.4 Log Window Pane 
 
The log windowpane serves as a textual representation of all actions being 
performed and be located at the bottom of the GUI. Essentially, every action taking 
place in the system is recorded in the log window. In addition, there will be an 
altitude field that displays the drone’s altitude in real time and fields that show the 
drones motor speeds, pitch/roll angles, and battery level. An ultrasonic sensor on 
the drone side will communicate the drone’s altitude to the graphical user interface 
via Bluetooth, the gyroscope communicates the drone axis angle via Bluetooth, 
and the flight controller communicates the drone battery level via Bluetooth. From 
experience, if debugging is needed for your system, looking at log files is a good 
place to start. We decided to implement the idea of using logs to ease the 
debugging process and to have a good idea of commands being sent throughout 
the system. Table 8 shows the final set of log messages based on actions being 
performed in the system. 
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System Action Example Log Message 
Host system successfully connects to 
drone via Bluetooth 

Bluetooth pairing successful  

Users hand gesture is recognized  User displayed a Closed Fist  
Mapping of hand gesture to drone 
action is sent to drone  

Host sent Thrust Upward command to 
drone 

Drone sends an acknowledgement 
back to host after receiving command 

Drone received Thrust Upward 
command 

Drone sends altitude data to the GUI Received drone altitude data – 5 ft 
Table 8 Log Message Format 

 
In essence, all log messages are to be written to a specific log file. This log file will 
be monitored, and its contents will be displayed, in real time, to the log window. 
The tail -f command will be used to achieve a real time log feed.  
 
4.4.5 Building the GUI 
 
For our project, we wanted to build a GUI as it provides the user a simple and 
attractive way to interact with the system with all different components 
consolidated in one GUI window. Since our project will be coded in Python, we will 
be consistent and use Python to create our GUI. Fortunately, there are many open 
source libraries that assist with creating a GUI using Python. Some main open 
source Python GUI frameworks include Tkinter and PyQt. Tkinter is native to 
Python and is a basic GUI package and provides common GUI elements that is 
used to build the interface. Some elements include buttons, entry fields, display 
areas, etc. These elements are also referred to as widgets. Some main 
advantages of Tkinter include that it is part of Python and there was nothing extra 
to download. It also had a very simple syntax and provides an abundant number 
of widgets. Some main disadvantages of Tkinter is that the graphics look old and 
outdated and it can be difficult to debug. PyQt is a set of Python bindings for the 
popular Qt application framework. It is not native to Python and requires extra 
downloads. It is easier to design GUI’s with PyQt and is typically used to design 
more advanced GUIs. In contrast, Tkinter is generally used for smaller, less 
advanced, GUI applications 

 
We used Tkinter to create our GUI as no extra installs were needed and due to the 
fact that our GUI itself is not advanced and the look of the GUI was not an important 
aspect to us. Essentially, the purpose of the GUI was to create some organization 
of all the different aspects of the gesture recognition processes. When creating a 
GUI, the concept of event-driven programming was utilized. Event driven 
programming is a programming paradigm where the flow of the program is 
determined by events. Events can be mouse clicks, messages from other threads, 
key presses, etc. Usually, when creating a GUI there is a main loop that waits and 
listens for events to occur. When a specific event occurs, a callback function is 
triggered to appropriately respond to that event. In our GUI implementation, a 
specific event will occur every time a new hand gesture is predicted. There will be 
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8 events, one for each hand gesture. If a closed fist hand gesture is recognized, 
the callback function/event handler sends a specific message to the drone via 
Bluetooth, updates the Feedback/Readings windowpane to fill in the closed fist 
radio button, and writes a message to the log file that will be shown in the log 
windowpane. The drone also sends its altitude via Bluetooth to the GUI. Upon 
receiving the altitude information from the drone, an event is triggered to update 
the altitude field in the Feedback/Reading windowpane to reflect the newly updated 
altitude of the drone.   

 
One potential optimization in building and executing our GUI was to incorporate 
multithreading to our GUI application. Multithreading has the potential to improve 
computational performance by using different CPU cores in parallel. In our GUI 
implementation multithreading was used perform tasks that do not depend on each 
other. For example, reading in altitude data from the drone and updating the 
altitude field was not dependent on recognizing hand gestures, sending the 
specific message via Bluetooth and updating the GUI fields. Therefore, a single 
thread handles receiving and processing the altitude data and another single 
thread was used to handle gesture recognition. If multithreading wasn’t used a 
potential blocking scenario can occur. For example, if the execution of the program 
was currently processing a frame for recognition and at the same time the drone 
sends altitude data to the GUI, the updating of the altitude field would be blocked 
since the CPU was executing instructions to process the frame. The updating of 
the altitude field would have to wait until the frame recognition is complete before 
continuing. Therefore, with multithreading, productivity and response time of 
certain GUI aspects were increased.   
 
4.5 Wireless Communication 
 
Because a drone is controlled by RC, we needed to plan for some sort of wireless 
communication. The requirement of ours to control the drone from a remote 
location was imperative to a drone project, because there were several safety 
concerns involved with operating an unstable drone due to the speed and torque 
that the motors spin. To circumvent the safety concerns, we wanted to operate the 
drone wirelessly, which allowed us a safer testing environment and a more usable 
product overall. Additionally, it is one of the main features of any drone on the 
market to be wireless, because the idea of a drone is to be able to fly 
independently. One of the core ideas for our project was to build a drone that is 
very user-friendly and easily manageable, which goes hand-in-hand with being 
wireless. This means that we had to perform thorough research on forms of 
wireless communication to carry our data to and from the drone and decide which 
particular medium was best for our implementation. 
 
4.5.1 Possible Connection Mediums 
 
When it comes to the wireless communication for the project, we researched each 
and every one of our options, because we wanted to ensure that we were using 
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the most beneficial medium possible. Our possible options boiled down to Wi-Fi, 
Radio, Zigbee/Z-Wave, and Bluetooth. We explored each of the mediums of 
wireless communication, but we found that Wi-Fi and Bluetooth were the leading 
ones, so we weighed out the advantages and disadvantages for the two. 
 
The industry leading form of wireless communication is undoubtedly Wi-Fi, as it is 
a household term known world-wide, and even is seen by some as hard to live 
without. This is because it is our way to connect to the Internet, and for it to be so 
widely used, Wi-Fi must be reliable and fast. For us to leverage the advantages of 
Wi-Fi, we would need either a common Wi-Fi network for both the drone and the 
master computer for quick communication across the same network. Alternatively, 
we could have the devices connect to the Internet, from different or same access 
points, and communicate via an API microservice to communicate with POST 
requests from the computer to be received by the drone. This implementation 
would allow us to control the drone from long distance remote locations. We could 
also have built the drone to be a Wi-Fi access point, which would have allowed us 
to just connect to it from the laptop computer and directly communicate to the drone 
so long as we stay in range of the Wi-Fi access point, we could control the drone 
that way. This would have been like the way that you connect to a Google 
Chromecast, in which the device contains a Wi-Fi access point and you connect 
to it to feed it information to set it up. We decided against Wi-Fi because of a few 
reasons. The implementation that would allow us to control the drone from a long 
distance did not interest us, due to the fact that we are operating a drone, and you 
would always want to at least see the drone to understand its surroundings to not 
bump into anything and be able to navigate properly. Another reason we decided 
to move away from Wi-Fi was that it would have been a much more complicated 
configuration and is much less cost effective. The Wi-Fi access point 
configurations mentioned above would all require at least one Wi-Fi access point 
and one Wi-Fi receiver for the communication to work properly. While Wi-Fi is great 
in being speedy and communicating large amounts of data in short periods of time, 
popularity of Bluetooth for wireless communication for projects similar to this one 
was much higher than Wi-Fi.  
 
One of the primary advantages of Wi-Fi would have been the ability to connect a 
vast number of devices to the network, however for our particular implementation 
this would not have been beneficial. This is due to us not wanting to send the drone 
commands from multiple sources, which would have caused the drone to behave 
unpredictably and could result in injury or damage to the surroundings because it 
does not know which signals to prioritize. As this device is meant to be a personal 
drone, we only planned on having one device connected to control it, as having 
multiple devices connected and sending signals would have caused the drone to 
perform unpredictable behaviors. This requirement lends itself nicely to one of the 
primary limitations of Bluetooth.  
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4.5.2 Why Bluetooth 
 
Bluetooth is also being used because of how popular it is in everyday life. Bluetooth 
has been around since the early 2000s and has continually been maintained and 
upgraded through the past 2 decades.  This technology remains a worldwide 
wireless standard and it is evident why it is when one understands the power and 
ease-of-use of it. It is completely standardized and has been continually optimized 
to reduce interference, reduce cost, increase data throughput, and reduce power 
usage. This continual optimization provides us another reason to use this 
technology, because it is only evolving more in the future, we are protecting our 
product for the future as it can be upgraded to the newer Bluetooth version without 
much difficulty. This is opposed to using other forms of wireless communication 
such as infrared signals or satellite communication.  
 
4.5.2.1 Complexity 
 
In regard to compatibility and difficulty, we have also researched this topic. 
Arduinos are very popular for basic DIY projects, and so, the Software 
Development Environment they provide to program it is very intuitive and hundreds 
of thousands of projects have been done developing on them. Because of this, 
there are a plethora of resources in regard to establishing the Bluetooth 
connection, as well as communicating data via Bluetooth. There are plenty of 
samples of source code for various projects that will provide us a great start on the 
embedded code that we will need to implement on the Arduino. As the sole data 
that is being communicated between a laptop computer and the Arduino is the 
gesture and the ultrasonic sensor, we did not have many issues in data loss. In 
essence, we send a code from the laptop, after deciphering the correct gesture, 
with a dictionary for the code implemented on the Arduino board, to determine the 
action that the drone should perform. From the drone, all we are sending is the 
value for the altitude that will be directly read from the sensor, the motor speeds, 
and the battery voltage for the LiPo battery. Simply put, we will only need a few 
bytes going each way in terms of immediate data transfer. The fact that we are 
deciphering the gesture on the laptop allows for the computation done for the drone 
to be focused on maintaining flight and performing the actions. Our plan was to 
continue sending the signal from the laptop to the Arduino to tell the drone what to 
do. For example, if you give the ‘thumbs up’ gesture, the determinant code for that 
action will be communicated over Bluetooth to the Arduino continually, until the 
gesture is changed or until there is no gesture. In either of those cases, we will 
then switch to sending the appropriate signal continually until the signal is either 
changed or no longer shown. We anticipated that we may experience some data 
loss because Bluetooth is not 100% efficient and reliable in certain conditions, 
however, we did not experience data loss for longer than 500ms, because we were 
continually sending the signals. By this I mean that we were sending several 
signals, and so it was not a large issue if one of those signals was lost, because 
they were being sent many times per second.  
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4.5.2.2 Bluetooth Version 
 
Bluetooth has various versions available, as the people maintaining and upgrading 
the technology have been making it faster, allowing for more range, and increasing 
the reliability of it. This means that it is continually updating and there are many 
different versions of it. We will be using Bluetooth 2.x, which is the release that has 
been out for well over 10 years now. We chose this particular implementation of 
Bluetooth because it will be, without a doubt, the cheapest version for us to use. 
Bluetooth modules with Bluetooth 2.x are extremely widely available and cheap. 
This allows us to keep the cost of the project down, which will increase the 
accessibility of the final product. Using an older implementation of Bluetooth also 
allows for the most available support regarding troubleshooting issues we may 
have when building it out. The most recent version of Bluetooth has only recently 
been making its way as a standard in the market, as the technology came out in 
late 2016 but companies generally take some time to actually add it in to all of their 
products. We also chose this version for its Low Energy feature, which allows for 
us to preserve the drone battery for actually operating the drone, which is one of 
the major pain points of drones. We decided against Bluetooth 5.0 as well due to 
its only new feature (that would be beneficial to us) being Slot Availability Masking, 
which detects and prevents interference on neighboring frequency bands. This 
feature was not a particularly necessary thing for us because we stay very close 
to the drone when operating it, as it was not meant to travel so far.  
 
4.5.3 Pairing Setup 
 
In regard to our particular implementation of Bluetooth, we are pairing the drone to 
the laptop computer that is reading the hand signals. This pairing is a very simple 
process that nearly everyone with a smartphone is familiar with. It involves putting 
the Arduino (with the Bluetooth module) into pairing mode and searching for 
available (‘visible’) devices from the laptop computer. This process need only be 
done a single time, because after the first connection, each device will have the 
other device’s Bluetooth ID saved and stored. This allowed the devices to connect 
automatically going forward, so long as Bluetooth was enabled on both devices. 
This also is not limited to connecting to one device. If we decide to run our software 
on different machines, we need only to pair the devices once again per device. To 
clarify, the drone will only be connected to one device at a time and will only be 
receiving signals from one device at a time.  
 
4.5.3.1 Trusted Devices and Security 
 
The pairing system usually has a built-in security check, which allows for external 
devices that you do not want to connect to your device to be filtered out. The usual 
process is, upon the pairing request, a security passkey is requested. This allowed 
for some sense of security with the data being exchanged, because if we had some 
external device sending signals to our drone, it could have malfunctioned, and the 
damages could have been costly and/or dangerous. This built-in security check let 
us make sure that only the devices we wanted connecting to our drone were able 
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to send it signals. Figure 25 shows what the pairing request looks like from the 
HC-05 module to an Android phone, however it is very similar to a computer. 
 

 
Figure 25 Bluetooth Pairing Request 

 
4.5.4 Limitations 
 
There are several limitations to Bluetooth, and so we will discuss what in particular 
we were limited by in our project specifically. Our project in regard to wireless 
communication was quite simple, but there were a few hurdles to get over in regard 
to the data that was communicated and reliability.  
 
4.5.4.1 Data Limitations 
 
In specific, the amount of data being sent over Bluetooth is a limitation. Bluetooth 
does not have a very high data throughput, and so we cannot send large amounts 
of data quickly and efficiently. We considered this limitation of Bluetooth when 
scoping out the project, and so we decided to make the data communicated very 
small and simple. We plan on communicating only bytes of data, because the data 
will be sent very often, so we want to send small amounts of data for it to be 
communicated quickly and efficiently. Sending data over Bluetooth is via radio 
waves, and so it is difficult to send large data through the air whilst blocking out 
any interference. Additionally, we wanted the signals to be sent rapidly so that the 
drone would able to respond quickly to a new command. The signal needed to be 
read quickly and then communicated to the drone quickly to ensure that the drone 
moves with a near real-time response. This requirement for us dictated that we 
needed to send small data but extremely fast.  
 
As far as code complexity goes for the Bluetooth communication, we are only 
communicating bytes of data, as the information coming from the drone are 
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numbers for the ultrasonic sensor, motor speeds, and gyroscope data, and the 
information coming from the computer will just be a one-byte character to 
determine the action that the drone will need to do. This allowed for very small data 
and ensured that the on-board memory was not exceeded, and data was not lost.  
 
4.5.4.2 Range Limitations 
 
Another limitation of Bluetooth is the range through which it can reliably 
communicate. This tends to vary from module to module, but generally, Bluetooth 
2.0 is meant to have a limited range of roughly 30 feet, which is determined by the 
Bluetooth Special Interest Group (SIG). It was vital for us to find a reliable Bluetooth 
module due to this limitation, as there was a large possibility for an increasing 
number of interferences with the signal. A rapidly growing number of devices 
communicate through radio waves in this time, and so interference-blocking is a 
key feature that signals need to have. The expected range is actually determined 
by the Power Class, which is a standard in Bluetooth that allows you to determine 
the difference between the capabilities of certain Bluetooth modules. Power Class 
1 has a maximum range of 100 meters, while Power Class 2 has a maximum range 
of 10 meters, and Power Class 3 has a maximum range of 10 centimeters. Based 
on this, we will be absolutely unable to use a Bluetooth module that falls under 
Power Class 3, and so will be looking to find something in Power Class 2, since 
we developed an indoor drone. However, the further the range, the more power 
that the Bluetooth module will use, which was one of our primary project 
constraints because drone flight time was very hard to maintain. Due to this, we 
prototyped a Bluetooth module in Power Class 2 first, to determine if the range is 
enough for us to maintain decent functionality of the drone. If that did not work, we 
will then fall back on trying something in Power Class 1 to be able to communicate 
the signals at a larger distance.   
 
4.5.4.3 Interference Limitations 
 
Another primary concern that was on our minds was avoiding the heavy amount 
of interference that we will deal with when it comes to an indoor drone. Building an 
indoor drone helped us greatly with avoiding drone laws that would impede our 
product's use, but it also had its cons. The main con to building an indoor drone 
was that we have to block out an extreme amount of interference. This is due to 
the fact that in a room there are several wireless signals that are transferring very 
large amounts of data at all times. This will especially be the case when we are 
presenting our project for the Senior Design showcase, and so we will need to test 
that does not get interrupted or lost along the travel to and from the drone. This 
was, without a doubt, a great challenge to us, and we had to test in order to make 
sure that our drone was easily able to communicate with the laptop computer while 
we are feeding the signals to the camera.  
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4.5.4.4 Device Count Limitations 
 
Bluetooth 2.0 allows for a maximum of seven devices connected at one time. This 
is a limitation that Bluetooth has due to the signal frequencies it has available to it. 
However, this limitation actually is not a constraint for us, because in our 
implementation of our gesture-operated drone, we planned on restricting data 
emissions to one device, meaning that only one device can control the drone. In 
doing so, we made it to disallow any more than one device connected via 
Bluetooth. We were required to do this to make sure that the drone does not fly 
uncontrollably and is not confused as to the action that the drone should perform. 
 
4.5.4.5 How Will We Accommodate 
 
Because we wanted to keep the data being communicated to a minimum to ensure 
a faster delivery, we used a library built for ultrasonic sensors that will convert the 
data that it receives via its sensors and converts it into one floating value. This 
allowed us to communicate the small amount of data rapidly and repeatedly so 
that we were able to see near real-time updates of the altitude of the drone, with a 
relatively quick response time.  
 
4.5.4.6 Dictionary Setup 
 
Because we received the data via an integer, we created an on-board dictionary 
of sorts, so that the data we receive can automatically be converted to a 
maneuver/motion for the drone to perform. The dictionary will be defined based on 
Table 9 provided below. This table dictates what will happen based on each signal 
sent by the laptop computer after the gesture is converted to one of the 8 below 
numbers. 
 

Dictionary Value Maneuver 

0000 Hover in place/auto level 

0001 Thrust upwards 

0002 Drone flies forwards 

0003 Drone flies to the left 

0004 Drone flies backwards 

0005 Drone flies to the right 

0006 Thrust Down 

0007 Drone will land at current position 

 
Table 9 Dictionary for Drone Commands 
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Below, in Table 10, naming each mode, describing the mode, and describing each 
use-case that our drone will be using for each.  
 

Mode 
Name 

Mode Description Drone Usage 

Active Regular connection mode, device is 
actively communicating data to 
paired device 

This will be the mode that the 
drone is in most often during the 
prototype stage, further into later 
implementations we will use this 
mode less to preserve battery 

Sniff Power-saving mode, checking for 
transmissions at a set interval, this 
mode is activated when the data is 
not actively being 
communicated/transferred 

This is the ideal mode for the 
drone to be in for most of the time. 
As we are able to configure the 
interval for the check for 
transmissions, we will be 
continually altering this to make 
our drone response be a 
reasonable time while also saving 
as much energy as we can 

Hold Different power-saving mode, 
device sleeps for a set interval and 
returns to active mode after that, 
master can command the slave 
device to go into hold directly 

This mode may be used when the 
drone has landed initially, and 
after a certain amount of time we 
can send the drone’s Bluetooth 
module into “Park” mode 

Park Deep sleep power-saving mode, 
master can directly put slave device 
in Park Mode to deactivate the 
slave device until told by master to 
wake up 

This mode will be used when the 
drone has been grounded for a 
longer interval, and so it is unlikely 
that the user is going to return to 
use the drone anytime soon, and 
will receive a signal from the 
master to wake back up when 
they need to launch the drone 
again 

 
Table 10 Bluetooth Modes 

 
 
4.5.4.7 Bluetooth Modules 
 
There were several Bluetooth modules available to use in conjunction with the 
Arduino board. Majority of them are very simple to setup as they are made to use 
with the simple-to-use Arduino, but they all have varying libraries, configurations, 
and ranges to make each one different. 
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4.5.4.8 Module Limitations 
 
There are several limitations that we had to consider when choosing our exact 
Bluetooth module.  
 
For example, we needed to take into account the cost of the module because we 
were completely funding this project ourselves and were trying to make our product 
as accessible as possible to introduce the value of our product.  
 
Another limitation we were considering was the amount of power drawn by the 
module roughly. While this depended heavily on how we are using the Bluetooth 
connection and how often we were communicating with it and what mode it stays 
in, particular modules do use different amounts of power because they can 
communicate either more reliably or are able to communicate over longer 
distances. 
 
Range was the second most important limitation of this choosing, because we 
needed to ensure that we were able to at least communicate to the drone at a 
reasonable distance, because a drone is not often controlled from a distance of 
under one foot. If we were limited to that kind of range, it would be hazardous to 
even operate the product due to the rapidly spinning propellers that could catch 
body parts and maybe even injure people nearby.  
 
The most important factor in choosing a Bluetooth module was its ability to 
communicate signals without interference causing the signal to be lost on the 
receiving end. This could have been very dangerous as well because a user could 
ask the drone to increase its altitude and interference could cause the signal to be 
altered and then the drone would receive, say, an incorrect command to speed up 
forward, which could be hazardous to people and objects nearby. This means that 
we absolutely had to ensure that the drone operates based on the user’s 
commands with 100% precision, hence why we required that the Bluetooth module 
be able to communicate the signals with 100% precision. 
 

4.6.4.9 Module Options 
 
Primarily, for these types of projects the most common module to use is the HC-
05 module. The reasons for this are that the module is able to communicate reliably 
within about 30ft and can work as either a master or a slave. This would mean that 
the module is able to create its own piconet as a master, and several external slave 
devices would be able to connect to this module. This is a functionality that we did 
not need, however with this particular module, since it is so popular for DIY 
projects, would have the most support in regard to troubleshooting issues that we 
may have with it.  
 
Another popular option for these projects is the HC-06 module. This one in 
particular is very similar to the HC-05 module, as it has the same range and brand, 
but simply without the functionality to operate as a master device. This one was 
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very suitable for our use case because we only need the Arduino to be a slave 
device to the computer that is configured as a master device.  
 
If we found that we require a greater distance for the connection, we could have 
relied on switching to the BlueSMiRF Bluetooth module, because that module is 
able to communicate over 100 meters.  
 
Another option for us was to use the BLE Link Bee Bluetooth module. The 
downside to this module is that it is relatively new, and so there would not be as 
much support and tutorials when we were trying to configure or troubleshoot errors 
with it. However, it has many benefits to it. Primarily the range that is twice that of 
the HC modules of 60 meters, along with a typically rare functionality for Bluetooth 
modules of having an integrated voltage regulator that supports both 5V and 3.3V 
MCUs. This functionality will be very beneficial to us as we begin building the 
prototype because we will likely end up going back and forth between different 
power configurations.  
 
4.6.4.10 Reasons for Choosing 
 
We decided to go with the HC-06 module as it was very simple, we only needed 
to connect it directly to the Arduino board (as shown in the picture below), configure 
the module, then continually read from the module through the Serial object to read 
the input. We can also send the altitude data through in the same loop as we are 
using the Bluetooth connection as a Full Duplex connection. The configuration we 
will be using will need to be tested when we build the prototype, however the 
default baud rate is 9600. We only need to tell it to save the connection info so that 
the connection is easier to setup next time. We decided on this module because it 
is extremely cheap and allowed us to very easily set up the Bluetooth connection 
in the beginning when prototyping, and because our drone will be operating 
indoors it may have a greater range. We will likely need more range than this 
module provides, but this module is so cheap that we could at least use it for testing 
and prototyping because it is so easy to configure. This also allowed us to hit the 
ground running faster in testing the flight control components, which will 
undoubtedly be the most difficult part of the project to figure out.   
 
4.5.5 Low Power Mode 
 
Because power usage is such a prominent issue in all technological devices in this 
day and age, we were trying to create the most efficient product possible, to allow 
for the power-on time to be maximized. As this is especially important in drones 
that use high-power motors to keep the device suspended in the air or thrust 
upwards, we were trying at every step to preserve as much power as possible. 
Luckily, Bluetooth offers several low-energy modes that allow users to preserve 
power in their implementations of the technology. This was especially a focus on 
the Bluetooth 4.0 version because of the ever-growing requirement to save battery 
to increase efficiency of technology. Due to this constraint, we planned on using 
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Bluetooth’s several modes to our advantage as these modes have primarily been 
made to preserve as much energy as possible.  
 
4.6 Drone Hardware Design 
 
4.6.1 Model Overview 
 
Our drone design is a classic quadcopter with four arms, four brushless motors, 
and four dual blade propellers. Each motor is accompanied by its own ESC which 
are all powered by rechargeable lithium batteries. The ESCs are connected to the 
flight controller, which communicates to the user via Bluetooth. Each command is 
received by the Bluetooth module and interpreted by the microcontroller on our 
printed circuit board. Figure 26 depicts an overview of the drone design.  
 

 
Figure 26 Drone Design 
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4.6.2 List of Materials 
 
Below is a list of all the major components used to build the drone. 

● Usmile 450 Quadcopter Drone Frame 
● RC 1000KV Brushless Motor 
● 30A Electronic Speed Controllers 
● 3 Cell-Lithium Battery 
● MPU 6050 - Accelerometer & Gyroscope 
● Printed Circuit Board 
● Bluetooth Module 
● Ultrasonic Sensor 

 
4.6.3 Drone Frame 
 
The drone frame was an essential aspect of the design. It is the core foundation. 
Even with sound electronics, a weak or misaligned drone frame could have lead 
to future complications. There were a couple features we kept in mind when 
choosing our drone frame. The two most important aspects we had to decide were 
the size of the drone and what material the frame was made of. Our decision 
processes and decisions are mapped out in the sections below.  
 
4.6.3.1 Dimensions 
 
Our drone was designed to be flown indoors and that was an important 
consideration when choosing parts. Being in a confined space the smaller the 
design the better. A large bulky frame would limit the room we have to fly indoors. 
While a small frame might have been easier to fly, we needed enough room to 
mount all the components. The arms needed to be large enough for the ESCs 
while the middle needed to be big enough to house the batteries and the PCBs. 
Without the need for a camera or a gimbal, commonly found on commercial 
drones, we did not need an extended landing gear to account for the added depth. 
 
Most drones are measured in millimeters and are measured across 
horizontally/vertically. Each drone arm is the same length and the overall square 
design, means drones are measured with only a single value. We have decided 
that a 450 mm is small enough to fly indoors but will have enough space for all the 
materials. If we built our drone and had an excess of space, or a cumbersome 
design, we could always have decreased the length of the frame. 
 
Drones can have varying number of arms extending from the base. Some drones 
have as few as three and others have up to eight drone arms. When you increase 
the number of arms, the drone becomes more powerful and the thrust increases. 
Since our drone was strictly for indoor flight only, we were not overly concerned 
about making our drone very powerful. Four arms gave us plenty of thrust, allow 
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for a more efficient design, and made designing the flight controller much more 
feasible. 
 
4.6.3.2 Frame Material 
 
The material of the drone plays a large role in a drone’s design and can have 
various effects on the flight and strength of the device. Frames that tend to be 
stronger are often heavier, while those that are lighter, are generally weaker. The 
best combination is a lighter drone that is sturdy enough to withstand minor 
crashes and stiff enough to have minimal bending. A lot of high-end drones use 
carbon fiber. Carbon fiber would have been a great option, but it was more 
expensive than other materials. It is both very strong, hard to damage, and also 
extremely light. We did not think the added strength would be worth the increase 
in budget as our drone was not going to be flown in extreme conditions. On the 
other side of the spectrum would be a wooden drone. It is very cost efficient, but 
wood is extremely heavy and not strong enough to withstand crashes we expected 
during the testing phases. 
 
The best option for our design was a fiber reinforced plastic drone. Strong enough 
to withstand the impact of minor crashes we might experience indoors and fairly 
light weight. There were plenty of frames on the market that were affordable and 
made of reinforced plastic. Another benefit of using plastic over the more 
expensive carbon fiber, was that plastic does not have any communication issues. 
Carbon fiber is notorious for blocking radio waves and could have caused 
complications when controlling the drone. When using carbon fiber, it is important 
to place electronics in a way where the signal will not be blocked by the frame. 
Plastic was a good lightweight and sturdy alternative to the other frame materials 
on the market. 
 
4.6.3.3 Drone Assembly Process 
 
When assembling the drone, it was important to ensure all the components were 
properly balanced and tightly secured. There are a few bad side effects on flight 
as a result of an unbalanced drone. A poorly aligned drone can lead to shaking. 
As a result, certain electrical components can be loosened and give off incorrect 
readings. Shaking can especially throw the gyroscope off, which is a key part of a 
stable flight. Shaking is not the only problem; bad alignment can cause undulations 
throughout the drone that could result in sporadic flight patterns. If you assemble 
the drone properly, this issue can be avoided. Eliminating these issues made 
testing and debugging a lot easier. 
 
There are two options we considered when discussing the frame of our drone, was 
whether we should custom the drone and 3D print it ourselves or build a pre made 
frame. Customizing the drone ourselves would have given us a lot of design 
freedom but would have required a lot of excess work. Many drone frames on the 
market are well made and we would not have gained much of an advantage 
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designing it ourselves. Assembling a premade drone would have been a time 
saving options and also a reliable option. Putting the drone together ourselves we 
were able to be extra careful to ensure all components are aligned properly and 
ensure all the components are tightly secured in place. 
 
4.6.4 Motors 
 
4.6.4.1 Overview of Motor Orientation 
 
Of the four motors at the end of each drone arm, the direction of the spin is 
extremely important. A drone consists of three main types of movements. The first 
is the drone’s ability to vertically change height, the second is rotation, and the last 
type of movement is a directional change. Below, Figure 27, is an image showing 
the orientation we used for our design. The four motor positions are front left, front 
right, rear left and rear right. These can be represented with the following 
abbreviations, FL, FR, RL, and RR, respectively. 
 

 
Figure 27 Motor Orientation 

 
For the drone to change height, it uses the speed of the motors to control how 
much air is being pushed. The thrust of the motors and the drone’s vertical flight 
path go hand-in-hand. When the motors are spinning there are two main forces 
present. The air being pushed down, and the counter force expressed in Newton’s 
third law. When these two forces are equal, the drone remains level. With an 
increase in thrust, the force pushes downwards, and the drone starts to rise. The 
opposite happens when the thrust is decreased. 
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For the drone to not rotate the angular momentum needs to be zero. If the drone 
needs to be rotated, the angular momentum needs to be changed. This change 
can be done through a change in speed of one of the motors. If a singular motor 
has an increase in speed, the drone would rotate but it would also cause the drone 
to move vertically. As a result, the drones motors work in pairs to prevent this from 
happening. The FR and RL motors are pair while the other two are also a pair. 
While one set of opposing motors are decreased or increased the opposite occurs 
to the other pair to prevent a change in height. For a drone to rotate to the right, 
the front right and rear left motors will increase thrust while the, front left and rear 
right motors decrease their speed. If the front left and rear right motors did not 
decrease their speed, the drone would begin to rise. This decrease in speed 
counteracts this motion. 
 
When talking about directional movements, it does not matter what way the drone 
moves, as the drone is symmetrical, it is the same explanation for all directions. 
Rotational uses diagonal pairs while, directional movement uses adjacent pairs. 
These pairs will change depending on which direction. If the pilot wanted to move 
the drone to the left, it would increase the speed of the front left and the rear left 
motors. If only the two motors increased speed, the drone would life up. To 
compensate for this, similarly to rotation, the other two motors decrease their 
speed. This keeps all other forces zeroed out and will just move the drone in the 
desired direction. All of balancing is going on simultaneously, and with the correct 
orientation everything will work in harmony. Prior to first flight it was crucial that we 
take the time to ensure all the motors are properly orientated. 
 
4.6.4.2 Electronic Speed Controller 
 
Motors rely on electronic speed controller to function properly. Essentially the 
electronic speed controller, abbreviated ESC, communicates between the motors 
and the flight controller. It governs the speed that the motors spring and can be 
programmed to perform as desired. Both brushless motors and brushed motors 
require different types of ESC. In our case, we used a brushless motor, so we 
needed the corresponding ESC. ESC for brushless motors are easy to distinguish 
as they have three motor wires, as opposed to the two motor wires on a brushed 
ESC. These wires carry the signals from the flight controller to the motor. A 
stronger signal will spin the motors faster, this is all determined by the flight 
controller which receives the instructions from the user. 
 
Inside of an ESC there are six MOSFET transistors that are all chained together. 
Certain combination of transistors when activated will correspond to a specific 
phase inside the motor. It was programmed to take the signal given from the flight 
controller and performs the correct gate changes to output the desired rotation. 
The higher the signal, the faster the cycle of phases will occur. It was important 
that we position our ESCs in a way where they will be exposed to open air to 
prevent them from overheating. 
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Choosing ESC can be a difficult task. There were a large variety of electronic 
speed controllers on the market all that have their pros and cons. After searching 
through a bunch of ESCs we narrowed our selection to a couple. Areas we put our 
focus on while searching was the compatibility, size, amperage rating, and the 
weight. Compatibility was important and the software needed to program the ESCs 
played a large role in our decision making. If we were not comfortable with the 
corresponding software, we would be hesitant to choose the ESC.  
 
The size of the ESC needed to be able to fit securely in the arm of the drone frame. 
The more powerful the ESC, the larger it is typically. ESCs can get big and the last 
thing we wanted were the ESCs to be protruding from the arms of the drone. We 
were looking for a good combination of power and size. Having a drone designed 
for stable indoor conditions, we were able to sacrifice the power for the overall size 
of the electronic speed controller. With a smaller size, the weight was also 
decreased. Weight and size were directly related and the more lightweight our 
drone was, the more efficient our design would be.  
 
Lastly, amperage rating is very important. These will be drawing the majority of our 
batteries power and minimizing this could elongate our battery life. ESCs are rated 
by the maximum number of amps allowed. A higher amperage ESC can run at a 
lower amperage, but once the value is exceeded, there is a risk of overheating or 
destroying the ESCs. For our design we limited our search for ESCs with at least 
an amp reading of twenty Amps. We did not want to exceed thirty amps but during 
our search we did not limit ourselves to ESCs over 30 amps. Below, in Table 11, 
is a comparison of potential ESCs. 
 
 Size Weight Price Amp Rating Compatibility 

Emax 
BLHeli 

3.1 x 2.0 x 
3.1 
inches 

4 oz $40 20A ✔ 

RC Electric 
Parts 

2.1 x 1.0 x 
0.5 
inches 

4.5 oz $16 30A ✔ 

Crazepony 1.0 x 0.5 x 
0.2 
inches 

1 oz $45 35A ✔ 
 

 
Table 11 Comparing ESCs 

 
All three options were good options that could work with our design. The first 
options by EMAX, is slightly bulkier than the other two. This added size did not 
come with another strong advantage. The price was on the more expensive side 
while the amp rating was the lowest. It was a good option but was not the best 
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choice. Craze pony’s 35 A model was extremely lightweight and compact. This 
would have been the most efficient choice; however, the cost was three times more 
than the other RC Electric Parts option. We decided that the added benefits of the 
Crazepony design did not justify that increased cost. At almost three times the 
cost, it would have been a lot more expensive to choose the Craze pony. Needing 
possibly more than four for backups or testing purposes, the Crazepony ESCs put 
us at risk of using much more of the allocated funds on ESCs. The RC Electric 
Part ESC was small enough with a high enough amp rating. The one downside 
was that they are the heaviest of the three designs. This added weight does not 
work in our favor; however, it is still fairly light, and the difference is rather 
negligible.  Figure 28 shows of the ESC designed by Electric Part that we used in 
our drone design.  
 

 
Figure 28 RC Electronic Part ESC 

 
4.6.4.3 Brushless Motors 
 
Brushless motors were the best option for our drone because they have a longer 
life-span than brushed motors. With no internal friction, the motor did not 
deteriorate as quick as a brushed motor would. Brushless motors use magnetic 
power which waste less energy and is more reliable. Brushless motors can be 
divided into two categories, in runner and out runner motors. Performance wise 
they are both very similar however in our case we are using an out-runner motor. 
Outrunning motors are commonly used for drones. In running motors tend to be 
taller and narrower, however with the extension of our drone arms, space was not 
an issue. The wider outrunning motors are more suitable for drones. They are 
slightly less efficient but are capable of producing more torque. 
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4.6.4.4 Motor Power 
 
Section 4.6.6 goes further in depth about our power design. Our ESCs are 
connected to our lithium polymer battery power source. The motors we used are 
1000KV motors designed for RC quadcopters. 1000KV motor produced more than 
enough thrust, however if in we ran into issues during our testing, we always had 
the option of using more powerful motors. The motors and the ESCs drew a lot of 
power however our plan was to implement rechargeable batteries. With a 
rechargeable battery, it saved us from having to buy batteries every time the drone 
was dead. We started with three 3.7V batteries and planned on upgrading if we 
found that our flight time was simply too short. 
 
4.6.4.5 Propellers 
 
Propellers come in various shapes and sizes. The number of propeller blades per 
motor is a tradeoff between efficiency and thrust. Motors with more propellers have 
more thrust but are more inefficient. For our design we chose to use dual blade 
propellers because sacrificing efficiency for thrust was not worth it for our drone 
designed for indoor use only. It was important to position the propellers properly 
depending if the motor is spinning clockwise or counterclockwise. The image below 
shows the orientation of the propeller depending on the direction of spin. 
 
Similar to the number of blades, the longer the propeller the more thrust it gives 
however it came at the cost of efficiency. Bullnose propeller are shorter and have 
a more square cut off however we are using longer propellers that may draw more 
current however the added thrust will help our dual blade propellers. 
 
4.6.4.6 Motor of Choice 
 
Choosing motors had a large effect on the drone’s performance. The motor is one 
of the key elements that governs choices for many other decisions. The size of the 
motor determined the length of the propellers while the type of the motor needed 
to match the ESCs. Starting with weight, this was one of the more important 
aspects to determine. The motor must be chosen with the frame size in mind. The 
size of the motors needed to be relative to how big the drone frame is. With a lot 
of room to work with on our drone frame, we opted for a fairly larger motor. Besides 
weight, the power of the drone and how efficient it was were also selling points. 
Some of the original motors that caught our eyes are listed in Table 12. 
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 Weight Type Price Strator 
Size 

KV 

Hobbypow
er 

1.5 oz Brushless 
Outrunner 

$40 2212 1000 

LiTacc 
Model 

2.0 oz Brushless 
Outrunner 

$48 2212 1200 

Woafly 2.5 oz Brushless 
Inrunner 

$31 2212 920 

abcGoodef
g 

1.44 oz Brushless 
Outrunner 

$45 2212 2200 

 
    Table 12 Motor Comparison 
 
If we were to choose any of the following four motors, we would have a solid 
product, but out of the four we were able to narrow our selection down to one. All 
motors are within our desired rotor size range. The LiTacc Model was a very good 
choice, relatively lightweight, however it was the most expensive model out of the 
four, and the increased cost was not justified as the other models had similar or 
better specs. The Woafly was significantly cheaper than the other two options, 
however it was also the heaviest motor. Not only was it more weight, but it is also 
the only inrunner out of the four. Even though we preferred an outrunner, we did 
not rule out all inrunner motors. We did not feel that the heavier weight and 
brushless inrunner motor was worth the decrease in price. Both the Hobbypower 
and abcGoodefg were very similar but the increased voltage on the abcGoodefg 
was not what we were looking for. 
 
In summary, we were looking for a prop size ranging from eight inches to ten 
inches. With the prop size you can determine the desired size of the motor’s stator. 
We were shooting for something greater than 2200. Another important 
specification was that our individual motors do not exceed 2oz. With these in mind, 
our motor of choice was the A2212 1000KV by Hobbypower shown in Figure 29. 
With a stator size of 2212, we had the option of using our desire propeller size 
range. We could have varied the size of the propellers and compare the efficiency; 
our concrete propellers size was determined in our testing phase. This motor 
weighs roughly 1.5oz which is below our constraint of 2oz. With a diameter of just 
over an inch, we had plenty of room to mount it on our frame. It is also fairly shallow 
with a height just under 2 inches. One of the most attractive aspects of this motor 
is the low cost.  
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Figure 29 A2212 1000KV Hoppypower RC Motor 

     
4.6.5 Sensors 
 
4.6.5.1 Overview of Drone Sensors 
 
The drone has a total of three different sensors all serving their own each individual 
purpose. The three sensors are the gyroscope, accelerometer, and the ultrasonic 
sensor. They are all connected to our flight controller and their data was used to 
balance the drone and move the drone to the user indicated position. There are a 
lot of varying types of sensors on the market and a big part of our research was 
going through all the options and figuring out which were the best. Some of the 
factors we considered were the cost of the sensor, the functionality of the sensor, 
the overall size, and the communication protocol. Our decision processes are 
mapped out below, along with the sensor we built our prototype with. 
 
4.6.5.2 Gyroscope 
 
Gyroscopes come in various different types. Space shuttles use laser gyros while 
something more common like your car uses a vibration gyroscope. The gyroscope 
used by our drone is also a vibration gyro and it was an essential part of our design. 
It is especially important for the PID control loops that will keep the drone’s flight 
stable. The MPU-6050 is a popular option and we used it for our design. The MPU-
6050 has more than just a gyroscope, section 4.6.6.2 dives further into greater 
detail regarding all the chips functionality. One of the main reasons it is widely used 
is because it has a very helpful auto leveling compatibility which will facilitate with 
the balancing process. The sensor vibrates in certain way when the device is 
rotating. The gyroscope feeds this information to the flight control and the 
appropriate action is taken. The MPU-6050 is pictured below in Figure 30. 
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Figure 30 MPU 6050 Gyroscope and Accelerometer 

       Permission to use from open source 
 

It was important to keep in mind when the gyroscope is being mounted, to ensure 
the gyroscope is aligned with the frame of the drone. Otherwise the drone will 
balance incorrectly. The sensor measures the how fast the drone is rotating. The 
rotation of the drone and angular velocity is explained in greater detail, in section 
4.6.4.1. There are three coordinates the gyroscope measures, x, y, and z. Both x 
and y can be determined depending on which way the gyroscope is rotated. That 
being said, it must be sat perfectly flat so the vertical measurement, z 
measurement, is accurate. 
 
When looking through motion sensors, it is important to look at the number of axes 
on the chip. Starting at three, a three-axis motion sensor only measures position 
and functions as an accelerometer.  A six-axis motion sensor now adds the 
gyroscope rotational measurements. For the purpose of this project, we used a 6-
axis motion sensor. A nine-axis motion sensor includes a magnetometer which for 
the purposes of this project we did not need. 
   
 
4.6.5.3 Accelerometer 
 
The accelerometer we used shares the same chip, MPU-6050, as the gyroscope. 
Accelerometers are equipped on most electronic devices that are moving. They 
are used on most aircrafts and measure both orientation and a devices 
acceleration. The accelerometer is constantly measuring all of the forces acting on 
the drone. Some are constant, like gravity, while others are user induced. Newton's 
second law defines acceleration as the net forces divided by the mass of the object. 
The accelerometer works in the same manner. There is a mass attached that 
measures the change in forces and determines the acceleration value. This is 
given to the flight controller and is used to move as desired and prevent the drone 
from tilting. 
 
Doing research, we had some slight doubt regarding the effectiveness of the MPU-
6050. The combined accelerometer and gyroscope are an ideal set up. This being 
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said, we ran the risk of increased noise and disturbed signals. An alternative 
solution if we ran into problems were to buy separate accelerometers and 
gyroscopes. Two good reliable backups would be Invensense ICM-42605 or the 
MPU-9250. 
 
The MPU-6050 board can connect to the Arduino board. These connections are 
very simple, as the Vcc input and Gnd pins are used for power, the SCL (I2C Clock) 
and SDA (I2C Data) pins are connected to the general GPIO pins on the Arduino 
board, and the Arduino SDE allowed us to work with the data passing through 
those pins directly.  
 
4.6.5.4 Ultrasonic Sensor 
 
Measuring altitude can refer to many different things. Simply speaking, in our case 
it is a measurement of how high the drone is flying. However, it is all based off a 
reference point. This can either be absolute or relative. Different ways to measure 
altitude include measuring atmospheric pressure, height above sea level or height 
above the ground. In order to measure the distance from the ground, we used an 
ultrasonic sensor mounted to the bottom of the drone in order to communicate the 
drone’s height from the ground. 
  
The ultrasonic sensor our drone is using is the HC-SR04 as shown in Figure 31. 
This is a small yet powerful device that measures distance from an object in its 
path. This sensor is fairly inexpensive and supports I2C which integrated nicely in 
our PCB. The layout of this sensors connection to our PCB is discussed in section 
5.0. 

 
Figure 31 HC-SR04 Ultrasonic Sensor 

               Permission to use from open source 
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4.6.5.5 Indicators 
 
The drone is equipped with numerous LED indicators to help the user understand 
which direction the drone is flying and what state the drone is in. The drone has an 
indicator that turned on when the drone is powered on. This was a small LED that 
would flash three times when the drone was powering on. Once on, the LED 
remained illuminated and would turn off if the drone lost power or the drone was 
turned off. This is a good quick indicator to the user the state of the drone. When 
the drone is turned off, the LED will flash twice and promptly turn off, demonstrating 
the drone is now powered off. The LED has various colors to indicate the battery 
life. Figure 32 below shows the different colors and their corresponding battery 
value. Our drone and most drones on the market do not have very long-lasting 
batteries. It is important that the user knows the state of the battery and knows 
how long they have until the device loses power. 

 
Figure 32 LED Indicators 

 
Another indicator we are using, is a directional indicator. On the bottom of the 
drone will be four LEDs. The two front motors, FR and FL, both have a green LED, 
while the other two have a red LED. This is on the ends of the arms, so the user 
can have easy visibility to the directional LEDs from every angle. These LEDs can 
be referenced when the drone is being directed. Moving the drone forward, is in 
reference to the two green LEDs. Regardless of where the drone is rotated, the 
forward movement is always be directed towards the two green LEDs. The image 
below shows how to read the LEDs and determine which direction needs to be 
shown to move the desired direction. 
 
4.6.6 Power 
 
4.6.6.1 Overview of Power 
 
Power is one of the most important things to have a deep understanding of when 
it comes to this project, as we wanted to create a product that was as efficient as 
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possible while retaining a low cost due to the project being locally funded and 
maintaining a good value to make it accessible. All of these things are heavily 
dependent on power when it comes to drones because in-air flight time is the 
greatest limitation when it comes to drones, given that most professional drones 
only have roughly a 30-minute flight time, which is industry leading. While that 
timing is for outdoor drones that reach a very high elevation, we are building an 
indoor drone, but the drone will have a lot of things pulling power from the power 
source. Overall, the power source provides voltage to the drone’s propellers and 
the Arduino board (which in turn powers the ultrasonic sensor, the Bluetooth 
module, the gyroscope/accelerometer, and the flight controllers). This shows that 
there are several things at work that require power here, and so our power source 
needed to be reliable and large. Unfortunately we were also limited to how large 
the battery could have been because this would weigh the drone down, and our 
motors would need to use more power to keep the drone in air (if they can even lift 
it off the ground) and it would have put more stress on the motors too. This would 
also have caused the product to run much hotter, which could have resulted in 
unsafe conditions for the other electrical components and eventually a 
malfunctioning of several parts of our drone.  
 
4.6.6.2 Gyroscope 
 
For the gyroscope, we used the MPU-6050. This particular component has a low 
power mode built into it, in which it will draw under .1 milliamps. This very low 
current draw is ideal for our implementation because we tried to be as preservative 
as possible with our power. This .1 milliamp is being used up by .02 milliamps for 
the low power mode and roughly .06 milliamps for the voltage regulator that is built 
into the MPU-6050. Because the MPU-6050 was being powered by the 
ATMega328p, this will cause our ATMega328p to draw less power, which allowed 
for more power to be used to keep the drone in the air, which increased the runtime 
for our product.  
 
4.6.6.3 Lithium Polymer Batteries 
 
To power our drone, we used a Lithium Polymer (or LiPo) battery. We used this 
particular type of battery because they were much more efficient and powerful. The 
downside to using them was that they tend to run up the price of the drone, 
however because power is one of the biggest limitations when it comes to drones, 
we decided as a group to invest well into a good battery so that our product can 
have a longer runtime. The type of battery was primarily determined by the motors 
and propellers that we are choosing, since heavier and more powerful ones would 
require a heavier and bigger battery. LiPo batteries are differentiated by the 
Capacity, C Rating, and the Cell Count. The Capacity of the battery is generally 
measured in milli-ampere hours (mah) which is generally the measurement that 
you often see to measure store-bought AA and AAA batteries. This measurement 
means that your device could draw that number of milliamps for one whole hour to 
drain the battery from 100% to 0%. The C Rating gives the maximum discharge 
current that can be drawn from the battery without damaging it. This just ends up 
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being the Cell Count multiplied by the Capacity. The Cell Count is just that, the 
number of cells that the battery contains in total. Generally, you will find 3S or 4S, 
aka 3 cells or 4 cells, where each cell has a nominal voltage of 3.7V.  
 
4.6.6.4 Our Choice 
 
We experimented with these LiPo batteries to build our product, but we began 
testing with a few 3S batteries. We essentially bought one of a lower capacity and 
then continue testing to figure out if we need a bigger one or can continue to use 
that one. Ideally, we wanted at least roughly 5 minutes of flight time for our first 
prototype. In the future, we can work on upgrading the battery and bettering our 
product to be able to have a longer flight time should we not receive enough from 
the 3S batteries, however our drone was meant to be very miniature, and so we 
were hoping that a 900mAh capacity 3S LiPo battery will suffice for our first 
prototype.  
 
4.6.6.5 Rechargeable Battery 
 
For our product, we used a rechargeable battery. The reasoning for this is that we 
were building this product for hobby use, rather than competition use because the 
idea of this product was to use it indoors and build a new way to control a drone. 
Generally, we were not building this drone for a one-time use, and so it would be 
a great hassle to need to replace the battery every time you are done using the 
drone. Therefore, we will be using a rechargeable Lithium Polymer battery 
(specifications previously discussed). This also helped us in testing and keeping 
the cost down, because we undoubtedly needed to test the drone’s flight and 
runtime vigorously and having to buy new batteries every time it was discharged 
would have driven the price of our drone up exponentially.  
 
We purchased a Lithium Polymer battery charger that was able to charge our 
battery safely along with the battery. The charger came with connectors that plug 
into the battery and provided a screen interface so that you can view the battery 
percentage or the battery content. This feature was especially useful in our power 
testing because we were able to use the screen to tell us how much battery was 
left in the drone after we performed a controlled test with the drone and it still had 
power after landing. This greatly helped us in writing out usage instructions for the 
end-user.  
 
4.6.6.6 Voltage Regulator 
 
For each component receiving power, mainly the motors and the Arduino, we 
needed to regulate the voltage so that we were not over-supplying them and in 
turn damaging the components. While the power supplied to the motors did not 
need to be very strictly regulated, the power to the Arduino needed a very defined 
voltage regulation. 
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4.6.6.7 Battery Life 
 
As previously mentioned, the battery life of the drone is one thing that we expected 
to be our greatest limitation for the drone. The reason for us thinking this was 
because drones typically do not have a very long battery life even when 
professionally made. Furthermore, we planned on using a very small battery. We 
hoped to have at least an estimated 5 minutes of battery life from 100% battery to 
0%, but we needed to see how close we were to that in the first prototype when 
we start testing out batteries and combine all of the electrical components together 
to see the amount of power that they are going to draw. Our plan was to use the 
low power modes in all of the sensors and the Bluetooth wireless communication 
to give us the most efficiency with our battery, and we also planned on testing how 
long the drone can hover, how long it could continually move forward, and other 
similar tests so that we had a very good idea of how the drone can operate and to 
understand how to instruct the drone user when a good time was to bring the drone 
back closer to the user, so that the drone can land before the battery is completely 
discharged and has a crash landing. Because of this, we needed to test the drone’s 
flying time with the motors connected but without the propellers, allowing us to 
determine the kind of flight time before actually letting the drone fly by itself, which 
helped us reduce damage costs.  
 
4.7 Drone Software Design 
 
4.7.1 Flight Controls 
 
4.7.1.1 Overview of Flight Controller 
 
Flight controllers control the speed of all the motors, dissect commands from the 
user and balance the drone. They were vital to the drone and can vary in 
functionality. For our design we had the option of programming our own flight 
controls or using a pre-programmed flight controller. Flight controllers use the 
onboard sensors and constantly feedback information for correction purposes. 
This is how the drone remains level. This PID tuning process allowed us to 
customize how our drone reacts to certain movements and gives us a lot of 
freedom when designing our drones flight controls. 
 
4.7.1.1 Dedicated Flight Controller 
 
Drones have become widely popular over the last few years and the market is 
saturated with various kinds of drones. With all these drones, there are a ton of 
preprogrammed flight controllers to choose from. If we were to use a dedicated 
flight controller, it would have saved us the trouble of having to balance the 
quadcopter ourselves. If we did use a dedicated flight controller, the integration 
process would have been more difficult. Communicating our controls to the already 
preprogrammed device, would have limited our freedom and could also lead to 
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more complications. This was not our first choice. We understood that 
complications could have lead us towards a dedicated flight controller.  
 
The dedicated flight controller is just another microcontroller that is pre-
programmed to have a stable drone. We thought it was important to have a couple 
options selected in case we needed to use a dedicated flight controller. Like a lot 
of the other components in this project, there are several different kinds and it took 
a lot of research to find the best fit for our project. One component that will help is 
having a floating-point unit, abbreviated FPU. This is a component to speed up the 
computation of floating-point numbers. With an FPU, the mathematics would be 
calculated at a faster rate and will alleviate stress on the MCU and allow for quicker 
corrections.  
 
Flight controllers are measured by their speed on a scale ranging from F1 to H7. 
These values determine a lot of components regarding the drone, but the higher 
the value, the more functionality and the better the processor. For our case, we do 
not need more advanced than a F3 processor. These processors are powerful 
enough and come with all the necessary components, including the FPU. The 
Frsky Rx & OSD V2 is an F3 flight controller that would be a good option if we 
decide to go the dedicated flight controller route. 
 
4.7.1.2 Combined Flight Controller 
 
Instead of purchasing a preprogrammed flight controller, using the Arduino 
platform we developed our own. Having full control allowed us to expand our 
capabilities to the fullest potential. The commands were to be received and directly 
converted into the desired reaction. There will be no integration process with an 
external flight controller. This made our design simpler and limited the number of 
components controlling the drone. That being said, combining our flight controller 
and all the other devices under one MCU, might have been a lot for the 
microcontroller to handle. It was important that the device we picked was powerful 
enough to handle everything. It was also important that we had a backup plan in 
case, we cannot make it work. Our microcontroller decision is further explored in 
section 4.7.1.4. 

 
4.7.1.3 Flight Control Schematic 
 
If we decided to go with a dedicated flight controller there would have been a 
change reflected in our block diagram. This will be the separation of the MCU and 
the flight controller. The flight controller would be connected to the ESC and given 
instructions from the MCU. Figure 33 shows and updated block diagram. 
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                     Figure 33 Dedicated Flight Controller Schematic 
 
4.7.1.4 Microcontroller 
 
The microcontroller is the brain of our drone and connects the ESC to the user 
giving them control of the device. The microcontroller we used was the 
ATmega328p. The ATmega328p has a clock rate of 16 MHz, 2KB RAM, and 32KB 
of storage. We did not need much storage space as the code we were using is 
concise. We have predicted the processing power will be fine to work as a flight 
controller and read in commands from the user.  
 
If the processor turned out to not be powerful enough to fly efficiently, the 
AT91SAM3X8E was a safe backup that we considered. It has significantly more 
space, higher clock rate and a lot more RAM. The larger microcontroller was not 
needed. However, another option was to use the ATmega328p to feed information 
to a dedicated flight controller. The ATmega328p is quite good at relaying 
information. We were trying to avoid a dedicated flight controller but, in the 
scenario, if we needed more power, this could have been a feasible option. In 
Table 13 below we list the three options we were interested in. The 
ATSAMD21G18 is a happy medium between the ATmega328p we plan to use and 
the backup AT91SAM3X8E. If the ATmega328p is slightly overworked, upgrading 
to the ATSAMD21G18 would be a smarter move than the bigger change to the 
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AT91SAM3X8E. 
 
 Clock 

Rate 
RAM Flash Price 

ATmega328p 16 MHz 2 KB 32 KB $10 

AT91SAM3X8E 84 MHz 96 KB 512 KB $20 

ATSAMD21G18 48 MHz 32 KB 256 KB $15 
 

Table 13 MCU Comparison 
 
4.7.1.5 ESC Calibration 
 
Calibration of the ESC was extremely important. Subtle differences have large 
negative effects on the drone’s stability. All the motors needed to be in unison and 
spinning at the same speeds. The calibration process was crucial but fairly 
straightforward. No external program was used to calibrate the ESCs. All the 
calibration was programmed through the Arduino platform. A certain value needed 
to be set to determine what no throttle is and what maximum throttle is. This will 
vary depending on the motor. In our case, when the ESC gives a signal of 500 
microseconds, the throttles are not spinning, and maximum speed when the ESCs 
send a signal of 1500 microseconds. 
 
4.7.1.6 Balancing the Propellers 
 
Once the propellers were arranged properly, they needed to be balanced. Just like 
most other components, symmetry and balance were a must. Using the 
accelerometer discussed in section 4.6.5.3 and the Arduino platform, the number 
of vibrations can be measured. Each motor would be isolated and checked to 
ensure not much vibration is being produced. Too much vibration would affect the 
flight of the drone and would cause it to be extremely difficult to control. With 
constant starting and stopping and adding small increments of weight to the 
appropriate side of the propeller they were balanced. For the smoothest possible 
flight, the level of vibration needed to be as minimal as possible and equal across 
the four motors. If all four motors had a little vibration the sensor can run without 
being disturbed. Taking our time on balancing the propellers benefitted us greatly 
in the long run with getting steadier flight. 
 
4.7.1.7 Explanation of Flight Control Code 
 
Arduino programming language works very well with servo motors. It makes it very 
simple to program the ESCs as necessary. After including the servo package, we 
had the ability to use very helpful built in functions to control the motors. This was 
especially helpful when controlling the PID loops. The actual PID tuning process is 
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discussed more in section 4.7.2. However, the following is a general summary of 
what the Arduino program consists of. Initially the servo libraries were imported, 
opening the door to plenty of helpful functions. The next step was to define values 
that would be used throughout the program globally so they can be referenced 
from across the board. It was important to look at the data sheet and observe how 
the information from the different sensors were given and how we can convert that 
to helpful information that could be used to create calculations. This information is 
discussed in more detail in the individual sensor section 4.6.5. 
 
Now that all the preliminary information is taken care of, the next step is to define 
each of the motors and assign them the necessary signal to be in the off position. 
The program runs in an endless loop that is constantly looking for a direction. The 
values received via Bluetooth correspond to a signal and a conditional statement 
will match the value with a movement. Each digit will correspond to a different hand 
movement. When no action is being received, it will remain stationary (or ‘hover’ 
in place). At this point, the PID loops are constantly giving feedback correcting the 
drone’s movement and ensuring it remains upright. While the drone is hovering, 
the device is constantly getting feedback from all the sensors, which is the data 
being used to calculate the PID value. The program also monitors the battery level 
of the drone, the motor speeds, and the measured angle from the gyroscope. The 
different levels of battery correspond to different LED colors specified in section 
4.6.5.5. The other LEDS were also controlled by the flight program. These include 
the power LED and the directional LED. The directional LEDs remain the same 
color while the other LEDs are constantly changing depending on the state of the 
drone. 
 
4.7.2 PID Tuning 
 
4.7.2.1 Introduction to PID Tuning 
 
PID is an acronym for Proportional Integral and Derivative. In a closed loop system 
these values can be used to control the flight and allow the drone to make 
corrections as quickly as possible. This control system is constantly getting 
feedback and correcting errors. Changing the values of P, I and D will change how 
quickly and how the drone fixes these errors. Setting your own PID values can give 
us a lot of freedom to have the drone react best to our motions. Ideally the drone 
should not oscillate and move right back to an auto leveled position once the drone 
has finished its action.  
 
Starting with the P value, it monitors the current error. A drone without any PID 
tuning would not correct itself. Including the P value will cause the drone to start 
oscillating. At this point it reads the error that the drone is too far to one side and 
tries to compensate. The higher the value, the more it tries to correct. This 
correction alone will not be enough. It will try to correct and overcompensate 
causing a continuous back and forth action. 
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The I value monitors the past corrections and applies it under the situation where 
external forces are applied to the drone. Initially the I value is not a necessity. The 
P and D values are the first priority. The D value looks at potential future errors 
and correct accordingly. The combination of the P and D values are what create 
the quick reactive correction that is common across commercial drones. If the D 
value is increased it will work harder to stop the over corrections caused by a 
higher P value. 
 
4.7.2.2 PID Schematic 
 
Below, in Figure 34, a representation of the basic PID model. It shows how the 
output is fed back into the controller and altered by the PID values, affecting the 
output. 
 

 
    Figure 34 PID Model 
 
4.7.2.3 Using Multiwii to Balance the Drone 
 
There are numerous programs that facilitate with PID tuning including control 
station, MathWorks and MultiWii. After looking through various different options 
and possibilities we decided the best third-party tool to help balance the drone was 
MultiWii. MultiWii is a tool designed specifically for RC drones and has a wide 
variety of helpful capabilities. It gets its name as it was originally based upon a 
component of Nintendo’s game console Wii, which heavily used motion tracking 
abilities. It does a good job graphing the PID process and these visuals helped 
give us insight on how we can improve our current design. With the useful 
Horizontal Situation Indicator (HSI) and all the angular measurements calculated, 
getting the rough Kp, Ki, and Kd values through MultiWii was made much simpler. 
This is explained further in section 4.7.2.4. MultiWii integrates extremely easily with 
the Arduino software and the two made balancing the drone much easier. 
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4.7.2.4 Process for tuning PID Loops 
 
In order to test the motors, we had a structure designed to hold the drone in place. 
From this stationary position the drone was easier to see where the corrections 
need to be made. We either used this or we held the drone and observed the 
motors as they increased and decreased speeds. These corrections can be easily 
felt, however being so close to the spinning motors was a reason we typically 
avoided this method. The stationary mount was the most effective and safest 
method. Starting out we isolated the test to one axis. Starting with one axes we did 
find the best working PID values and apply th mto the other axis and work from 
there.  Everything done on the first axis, was applied to the second axis. After 
setting the untested axis, we checked to see if the values work and adjusted the 
value accordingly. It worked alright at first but after subtle adjustments, we saw 
major improvements. 
 
There is not a combination of PID value that are universally correct. There are 
guidelines that helped guide us in the right direction. Every motor was different, 
and every drone has its own unique inconsistencies. Separate motors draw varying 
amounts of power, and the stronger motors caused the drone to lift towards the 
more powerful motor. This is what was corrected with the PID tuning. The best PID 
tuning process we found was starting with the P value. Increase the P value till a 
steady oscillation was obtained. This oscillation should be relatively quick. It 
bounced back and forth but did take a very long time to get stable. Once the drone 
was oscillating from the overcorrections, the D value was introduced. The D value 
monitored the time a PID loop took and related that to the current angle. Now the 
drone was correcting faster. With that information it will be able to prevent the 
drone from over correcting drastically and will limit the time of complete correction 
to the desired set point. The next process was tedious but with different P values 
and corresponding D values, we found the highest functioning set of values that 
balance the drone as quickly as possible. When the D value was too low, it was 
almost negligible, and when it was too high the system acted unpredictably. Having 
an understanding of these reactions helped us determine the next move to find the 
correct P and D values. Including the I value tightened up the drone’s corrective 
process. The drone balanced itself without the I value although the I value mad 
subtle important changes. Once the drone was balanced close enough to zero the 
P and D values were no longer of use. Here is where the I value came into play 
and mad our subtle changes that ensured the drone was as close to set point as 
possible. 
 
It is important that the drone’s range did not exceed a real angle of -45 degrees or 
+45 degrees, and also that the drone remained perfectly horizontal when no 
movement was occurring. If the drone was to exceed these ±45-degree angles, 
the drone would have flipped over. Once the drone flips over, it would have not 
been able to hold itself up and this would result in a crash. If the drone did not 
remain at a real angle of 0, it will float around and wouldn’t remain still which will 
make controlling the drone very difficult. The importance of PID tuning cannot be 
stressed enough and we knew this was going to be a major part of our project. 
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This took up a large amount of time and was started as early as possible to get our 
drone working. Once balanced, we had more time to focus on all the other aspects 
and improved our design to the best of our ability. 
 
4.7.2.5 Explanation of the PID Code 
 
The program needed to read in the values from the motion sensor and use that 
information to actively balance the drone. The value received could be broken into 
two categories, the accelerometer readings and the gyroscope. The accelerometer 
had a 16-bit value that was converted to a more digestible unit of the pull of gravity. 
Gravity is roughly 32 ft/ s^2, and a register value of 16384 is equal to 1g. When 
the gravity was equal to 1g, the drone was level and a change in value most likely 
means the drone was changing direction. Using the pull of gravity, we calculated 
the angle of the drone using basic trigonometric functions. These angles are 
important and were used with the gyroscope to monitor the position and angular 
changes in the drone. The information can be extremely sporadic, and it is 
important to use filters to clean up the data received from the motion sensor. 
Through a combination of complementary and kalman filters, we took that 
information and eliminated most noise and random errors that had occurred. 
 
Using the Arduino environment controlling our flight controls, we used that data to 
help with the PID tuning. The three main PID constants were represented by Kp, 
Ki, and Kd. Kp corresponds to the P value, Ki corresponds to the I value, and Kd 
corresponds to the D value. It is important to track the error, how far off the drone 
is from stable and use the PID values to correct that. The desired angles were 
simple, either 0 for horizontal flight or 30 degrees in the desired direction. The PID 
controllers’ job was to compare this value and correct accordingly to the desired 
set point. It was important to define which side is positive and which side is 
negative. Directionally, the forwards and right position were positive on the y and 
x axis, respectively. The backwards and left position were negative on the y and x 
axis, respectively.  Each k value is individually calculated and summed together to 
create the singular PID value. This one PID value can then be used to monitor and 
correct the motor speeds. The error was constantly fed back into the closed loop 
system, the difference was then taken for the desired set point value and the 
necessary corrections were made. 
 
4.7.2.6 Effects of the Battery Life on the Motors 
 
As the battery life declines, the power being delivered to each motor decreased. 
This was addressed in our flight controller, as this had an relatively large effect on 
the drone’s flight patterns. With a short life span, the drone batteries drained quite 
rapidly. As the battery declined in overall charge, the motors all together delivered 
less power. These inconsistencies needed to be closely monitored and expected. 
As the power started to drain, the PID loops corrected the speeds of each motor 
to ensure the drone remains stable. The power of the drown is explained more in 
section 4.6.6. We had two extra wires connected from our power distribution board 
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that fed into our microcontroller. These helped us monitor the level of charge in the 
battery. 
 
4.7.3 Prototype Testing 
 
Prior to our prototype being built, we spent the time waiting for our parts, to develop 
our graphic user interface and improved our hand gesture recognition model. We 
tested the accuracy of each hand signal and added to the dataset until the 
accuracy was at a high enough level. Initially we had issues with hand signals that 
were too similar. As we developed the model further, we removed hand signals 
that resulted in false positives. Varying our hand signals as much as possible 
helped improve our model’s performance. 
  
Once the GUI and hand gesture recognition were finished, we did testing on a 
single motor. We tried using different hand signals to change the motors speed, 
read values from our sensors, and output to the serial monitor. Testing all these 
different things was essential to ensure all aspects of our final project were 
feasible. After all of our parts came in, we were able to start assembling the drone. 
At the same time our working PCB had arrived and were able to test and make 
sure there were not issues with the board. We started by simply turning on the 
drone motors and changing their speeds. Once all of the motors were properly 
functioning and the gyroscope was giving us accurate values, we were able to 
begin the PID process. 
 
The PID process was made easier by isolating the separate axis of the drone. We 
were able to do this by slide a pole through the center of the drone and stabilizing 
it down the middle. We built a wooden frame that held the poles in place shown in 
Figure 35. We were able to remove the poles, rotate the drone to the desired axis 
and put the poles back through the drone keeping it stable. For the pitch and roll 
axis we found the best kp, ki, and kd values. We initially tested these separately, 
and once we had values for both, we tested them together. With the combine axes 
correcting together, we noticed some over corrections and adjusted accordingly.  
 

 
Figure 35 Test Setup 
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During our testing process, one of the biggest issues we faced was noise and a 
drifting gyroscope. We isolated the issue down to the vibration of the motors. In 
order to solve this issue, we took two approaches, hardware and software 
solutions. At the early stages of our testing we had the flight controller screwed 
down to the center of our drone. Once we removed the screws and soft mounted 
our motor, we saw major improvements. Using anti vibration foam, we eliminated 
any metal in contact with the flight controller. In doing so we center the gyroscope 
as much as possible, as the center of the drone has minimal vibrations. We also 
wanted to dampen the vibrations at the source, and we used silicone TPU soft 
mounts that sat underneath the motor. For the software we implemented different 
filter and changed the gyroscope settings to improve the gyroscope. The MPU6050 
gyroscope we used had an internal low pass filter that we were able to use to block 
out extra noise. Decreasing the gyroscope sensitivity was also beneficial. The best 
software solution we found was a Kalman filter. Initially we used a complimentary 
filter to eliminate noise. It was a low processing cost and was quite easy to 
implement however, we still had an issue with the gyroscope drifting. This drift was 
eliminated with the Kalman filter. It was harder to implement but it was more 
customizable and allowed us to have a fairly stable gyroscope. 
  
Once the drone was flying stable from our serial input commands, we combined 
our hand gesture GUI and our drone. During initial integration we had some 
communication issues between the drone and the GUI. Once resolved we used 
the GUI to test the drone for the remainder of the project. We adjusted the baud 
rate to account for amount of data being sent back and forth. Once both were 
working in harmony, we fine-tuned our PID values and assigned each hand signal 
to the necessary drone command. 
 
The flight testing is being performed in a local gym. We needed a space with plenty 
of room to try out different flight control settings. We chose an inside setting as the 
drone is designed for flying indoors and we eliminate all the hazards and excess 
forces outdoors. The space we used had heights exceeding our max height 
requirement so we were able to confirm our drone could reach the desired height 
of 10 feet. After PID settings and all the equipment is mounted, we took the drone 
to our testing location and flew around observing how the drone reacts to certain 
motions and how it corrects. Observing these components, we would keep that in 
mind for what corrections would need to be made. Using gym mats, we covered 
the floor and did our best to keep the drone low. Are biggest goal with testing is to 
do as little damage to the drone as possible. Without the mats, the hard floor below 
could potentially break a propeller or damage other extending parts of the drone. 
The mats will absorb some of the impact and prolong the life of our drone in the 
event of a crash landing. For the majority of the testing we will keep the drone fairly 
low to the ground and avoid exceeding certain heights to prevent major crashes. 
The huge amount of space allocated for a testing helps minimizes unwanted 
crashes.  
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We want the flight to be demonstrable in a small indoor environment. When the 
project is to be showcased, it is important to have a fail proof procedure to show 
all the functionalities. That means our battery must last a certain amount of time 
and all the gestures must be repeatable upon command. During our testing this is 
what we are looking out for. Exhaust a battery and become aware of what time 
span we are limited too. If this time is shorter than we presumed, adjustments will 
need to be made. Make our design more efficient or add batteries to the drone. 
Below in Figure 36 our final prototype is shown. 
 

 
          Figure 36 Final Prototype 

 
6.1.6 Bluetooth Testing 
 
In regard to testing with Bluetooth, we were able to test that the module connected 
to the laptop computer by seeing the connection indicator LED on the module, as 
well as verify that on the laptop computer. We also were able to verify this easily 
when setting up with new devices as we have several laptop computers, and were 
able to connect to the module without it being connected to the drone. We 
rigorously tested the connection of the module at varying distances, with various 
obstacles in the way, as well as test the communication of the data with these 
variables to clearly define the limitations around our product. These were very 
important things to verify because the drone, if it gets out of control, can be very 
hazardous to surrounding objects and people. When we tested the communication, 
we simply communicated the data across without the drone actually flying or 
spinning the motors. As we were only communicating numbers across the 
Bluetooth connection, we very easily outputted the numbers to the console of each 
respective device to ensure that all of the data was coming through accurately and 
precisely.  
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6.1.3.1 Ultrasonic Sensor Testing 
 
In regards to testing with the HC-SR04 ultrasonic sensor, we verified this very 
easily by connecting it to the Arduino, and reading the output of the sensor in the 
Arduino’s console that is accessible by the Arduino Software Development 
Environment, as that is how you debug most Arduino programs and we commonly 
used that tool. We developed tests in which we elevate the sensor to previously 
measured heights and then look at the output given in the console to ensure that 
it is accurate to the level described in the technical specs of the sensor, which is a 
very low difference of 18 centimeters. The output described essentially the output 
of the elevation level in relation to the floor level. It put its estimated elevation level 
after a set interval that we provided it using the Spark Fun library to convert the 
sensor’s data to a readable elevation level. Below is similarto the output that we 
are expecting to see in the Arduino SDE when debugging/testing the ultrasonic 
sensor. Figure 37 is a screenshot of the log output showing from the Arduino’s 
Integrated Development Environment. The output is what we received using 
Sparkfun’s library to show the exact height at a given time. 
 

 
Figure 37 Ultrasonic Sensor Output 

 
4.7.4 Expected and Actual Adjustments 
 
Building our project, we ran into dead ends and times we need quick improvements 
and adjustments. It was important to be open to change and not get to focused on 
something that halted the progress of the project. One of the changes we expected 
might have needed to be made was upgrading to a microcontroller with more 
space and a stronger processor. If our current processor couldn’t manage both 
flight controls and communicating to the user, we would have had to upgrade our 
processors. Fortunately, we did not run into this problem and we were able to easily 
use the ATmega328p with storage and processing power to spare. Another 
change we predicted was having to add more power or making our design more 
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efficient. Even commercial drones are notorious for having fairly short battery life. 
This also did not turn out to be an issue. We were comfortable just using two 
batteries. As one was in use, we were charging the other. We never ran into any 
problems with battery life. Making the system as efficient as possible was an 
ongoing goal for us. 
 
We expected to need PCB reprinted, and this issue did occur. Errors occurred 
during the production phase and other boards were damaged. Regardless of how 
the issue was caused it is important that we had reliable backups. Most sites were 
reliable and can give us a low-cost board in a time no longer than a week and gave 
them to us in bulk. This was comforting and changes did have to be made. As we 
tested and tried out our initial designs, we realized where the changes had to 
made, and adjusted accordingly. Having expected this, we were able to leave 
enough time, so we weren't rushing to get the boards back. Same goes to say with 
individual components. Our goal was to choose reliable sensors and other key 
functional parts; however, incidents did happen. Crashes caused breaking and 
defects caused various other issues, therefore we had backups readily available 
to avoid wasting time. With testing our main priority was to not waste time waiting 
for parts to arrive. Being constantly at a stage of testing and improving lead to the 
best result and possible outcomes for our project 
 
Another area we had room to explore is what to do when the drone loses 
connection. Whether this is caused by a loss in power, out of range or interference, 
the drone needed a safe solution to land properly. The simplest solution was once 
connection is lost, or when the battery reached are certain percentage, the drone 
performed a landing sequence and powered down. This solution was simple to 
implement. If this was an outdoor drone there might have been some 
complications, like landing over something it should not have. Because this was 
an indoor drone with lower altitudes, this implementation worked fine. This can be 
avoided by the user, when flying to always keep the drone out of danger and over 
a safe place to land. There is a lot of room to explore in this category and now that 
our drone is working properly, we can focus on improving this afterwards and take 
this project further.  
 
4.7.5 Research and investigations 
 
Drones have become increasingly popular in recent years, along with computer 
vision technology. When the idea came up for this project, as a group we 
researched the web for similar products. Although the market is super saturated 
with drones, there was no product exactly alike what we attempted to design. This 
exclusivity was enticing and was another driving factor to do our best at designing 
and improving our product.  
 
That being said computer vision and drones do go hand in hand. On the market, a 
popular product is a drone that follows motion. These are mainly used for tracking 
purposes and the drone will choose a target and track its movement. This utilizes 
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the same computer vision concepts but differs in the sense that, our design was 
independent of the user movement unless directly intended for the drone. 
 
5.0 Printed Circuit Board 
 
5.1 Printed Circuit Board Overview 
 
We ordered the printed circuit board from online in attempt to meet our goal of a 
very low cost and a relatively short delivery time. This helped us combine the 
electrical components that we needed to work together to get the drone up and 
running.  
 
5.1.1 Ordering the PCB 
 
To order the PCB, we needed to build the PCB design, and then upload the design 
to the website that we are ordered with. We also needed to know how many pieces 
exactly that we were ordering, the number of layers we wanted, and the thickness 
of the chip. There are several other options that can be customized when it comes 
to PCBs, but for the purpose of our project we did not believe that we would need 
anything particularly customized. 
 
5.1.1.1 PCB Company Options 
 
When it comes to choosing the company that we will order the PCB from, there 
are limitless options. The primary requirements that we have are a relatively quick 
turnaround time and a low cost for a low volume. We only planed on ordering a 
few boards, some for our main use and some backups in case something went 
wrong in the mounting process of the components. We were able to find boards 
for under $10 each and were able to receive the boards within, at most, one week 
from order time. This of course came with extra shipping cost, but with the limited 
time frame it was a necessity. We leveraged a website called pcbshopper.com in 
order to determine which company we should purchase the PCB from that meets 
our needs. 
 
We found the most popular company to order PCBs from was JLCPCB.com, which 
is a company that has a special offer to provide prototype PCBs for roughly $2 
each, however their minimum order count is 5 pieces. This company simply 
required us to upload a ‘gerber’ file, which is the industry-standard file type for PCB 
designs. This website was especially appealing to us because of their low cost for 
each board.  
 
An alternative to JLCPCB was Elecrow, which is a company based in China that 
will offer a total price of $13 with a turnaround of 7 days. This offer was our back 
up if we are on more of a time crunch, however we did not need to use Elecrow at 
all for the purpose of our project. It was comforting having a backup however with 
good planning, we had not timing issues with our PCBs. 
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After looking at more results from the pcbshopper.com resource, we narrowed 
down and concluded that most other companies are offering higher prices for 
similar products, and there are no companies that have 100% satisfaction with 
their products. We felt comfortable with our decision to use JLCPCB and had no 
issues. 
 
5.1.2 Building PCB Design 
 
We needed to build a very comprehensive design for the PCB in order to provide 
to our company of choice, in the format of a GERBER file. This design had to be 
built with a specific PCB design software, which we were able to upload to the 
various companies that we ordered from; therefore it was built exactly to our 
expectations.  
 
5.1.2.1 PCB Design Software Options 
 
Eagle is one application that allows for designing electronics hardware. It has a 
very fast and user-friendly wiring tool to allow us to route all of our components to 
each other easily. This software offers also a parts catalog which will likely allow 
us to find common parts that users choose and offer much more information about 
(i.e. which pins are for Vcc and Gnd and more) the components that we are using, 
if they are available in their library of components. 
 
Another option is called ZenitPCB, which is a user-friendliness focused program 
that will allow us to quickly spin up our PCB design, and it offers the functionality 
of directly converting the schematic design to a PCB if we are able to provide that 
to the software. We did not take advantage of this feature, however if we were on 
a large-scale this feature would be very useful because we would very likely have 
the schematic to convert automatically.  
 
Several other tools are available, however many of them are Operating System 
specific, which is not ideal as well as being less commonly used and so there is 
less support in the online community for them. Because of this, we built our PCB 
design with Eagle, as it seems to be the most popular option and is the highest 
rated free software. From Eagle, we generated a GERBER file to upload to the 
PCB design company that we ordered the boards from.  
 
5.1.3 Mounting Parts on PCB 
 
In order to mount all of our parts onto the PCB, we took advantage of a service 
offered nearby us called Quality Manufacturing Services, Inc. This incorporation 
offers a free service to mount most of our parts onto the PCB, so long as we 
provide the PCB and the design of where the components are meant to be fitted. 
This allowed for a professional to mount our components, which reduced the 
likelihood of error that would occur if we had mounted it ourselves with our lack of 
better equipment and experience. This is a very common service that many 
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students used to mount components onto their PCBs for their Senior Design 
projects and so we also followed suit to ensure a better product.  
 
The PCB needed multiple components mounted onto it. The largest portion of the 
PCB will be taken by the ATmega328p board and the 9V battery, as those are the 
primary components powering everything and feeding most of the parts data and 
receiving all the data. The Arduino is complemented by the Bluetooth module, the 
accelerometer, and the ultrasonic sensor in terms of components that will be 
feeding it data. Then, the ATMega328p also is connected as the flight controller 
and communicates to the ESCs to provide the drone motors the appropriate 
speeds they should fly at. The voltage regulator needed both places on the PCB 
to be connected, as the ESCs will be directly connected to the motors. 
 

5.2 Hardware Requirements 
 
Because this project is heavily hardware-focused, we had requirements based 
solely on the hardware. We also had our requirements directly lined up to our tests, 
so that our tests are exactly testing our requirements, and ensuring functionality. 
Our core functionality however is divided up into Software Requirements, 
Hardware Requirements, and System Requirements. Our hardware requirements 
are more focused on how the hardware parts work together.  
 

5.3 Project Risks 
 
While building this project, there are numerous potential risks we faced. Primarily, 
the risks involved failing parts and electrical hazards. We intended to prototype at 
various levels to mitigate these risks. We tested each individual electrical 
component, such as the Arduino, the ATmega328p, the motors, and the ESCs. 
We mitigated any risk of electric shock by measuring via multimeter the output of 
each component with the battery connected to it. This allowed us to understand 
exactly what the output of the components in order to build a project that does not 
electrically fail or short. We also tested in a closed environment due to the danger 
of drone motors hurting people. This allowed us to fly the drone legally because 
we did it indoors and without anybody in the room, as to protect their privacy. In 
the beginning of our initial prototype testing, we had the issue of propellers that 
were not tightened strongly enough. This resulted in propellers being flung off at 
high speeds. Luckily none of us were hurt in the process. 
 
5.3.1 Drone Laws 
 
Currently, in Florida, drones are not able to be flown without restrictions. We are 
required to submit for permission to fly our drone via the Federal Aviation 
Administration, which will require a registration process and a description of the 
drone and why we intend to fly it. Flying a drone and invading someone’s privacy 
is illegal, and because of the risk of several drone operators committing this crime, 
there have been laws placed to circumvent this risk. The laws are about registering 
the specific drone, following safety guidelines, keeping the drone within the line of 
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sight, getting authorization to fly in any controlled airspace, and flying below 400 
feet in any uncontrolled airspace. Because we did not build this product for outdoor 
flight, we did not need to worry about this risk. Therefore, we flew our drone 
completely indoors with authorization from the entire room without breaching any 
person’s privacy. Being indoors also meant that we were able to fly the drone 
without any licensing or certification. This allows our product to be much more 
marketable and accessible. The indoors setting also means that the airspace is 
private, which means that our drone’s flight is not regulated by the FAA, however 
fault is still gone to the pilot if anyone is harmed during the drone’s flight.  
 
6.0 Prototype Construction 
 
We constructed the prototype after all of the individual parts had undergone their 
associated tests. Similar to how a software application is tested with unit tests and 
system tests, we performed the same type of testing on our project to ensure that 
all of our parts worked individually, and that they all work together. We constructed 
the prototype by first connecting the motors to the ESCs, then mounting those 
parts to the frame. From there we connected the PCB that we designed for the 
combination of microchips and sensors, that we used for the project. We then 
connected power and tested the drone out.  
 
In order to build the prototype, we needed to go through a number of steps. 
Primarily, we needed to start with the drone motors connected to the ESCs. Then 
we tested operation of the motors directly through the ESCs and the ATmega328p 
to see how the motors worked. From there we needed to attach the motors and 
ESCs with wiring to the drone frame that we purchased.  
 
Next, we needed to mount all of the components onto our designed PCB which 
was then to be mounted onto the drone frame in the very center, attempting to do 
our best to keep the weight balanced as central as possible to allow for the 
smoothest balancing mechanism for the drone’s motors and flight controller. 
 
Once those parts were mounted, we moved on to the software side of the project. 
This part of the project was done in conjunction to the actual hardware construction 
of the drone, as they are two separate parts that are not dependent of each other 
until we wanted to fly the drone.  
 
The Arduino and the ATmega328p had to be programmed along with the sensors 
and Bluetooth module connected, which we needed to work on having them all 
working in conjunction simultaneously. 
 
The neural network first needed to be trained, and then we had to create the GUI 
that shows the signal that it is being read from the webcam, along with the altitude 
of the drone and a log output to verify that the computer is sending the appropriate 
signals and that the drone is receiving those signals clearly.  
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Once the hardware and software have been completed, we connected to the drone 
via Bluetooth and verified whether the drone was able to respond to our hand 
gestures passed to our laptop’s webcam.  
 
This concluded our process of building our prototype. Of course, this is a very high 
level and very simple method of building our prototype, but we came across 
unexpected hurdles that delayed processes and required last minute adjustments. 
At each of these bumps in the road, we did our best to work as a team and find 
solutions or work arounds. 
 

7.0 Owner’s Manual 
 
Our product was built with ease-of-use as a primary benefit of our drone compared 
to other drones available in the market. However, taking off for the first time does 
involve a generally lengthy process. In order to setup the drone for its first flight, 
the following steps will need to be followed: 

1. Install the GUI software on the controlling laptop computer 
2. Test every one of the hand motions in the table provided containing the 

hand gestures and make sure the correct output is shown in the log output 
3. Charge the drone’s battery to 100% 
4. Turn on the drone’s power 
5. The drone will automatically go into pairing mode if it does not detect a 

nearby previously connected device 
6. Open the controlling computer’s Bluetooth settings 

a. Select G.O.D. to connect to the drone 
b. Enter the provided PIN to authenticate 

7. Verify that the Bluetooth connection was successful on the log output of the 
GUI 

8. Verify that the ultrasonic sensor feature is providing output on the GUI, and 
that it is responding to actual changes in altitude for the drone (this can be 
done by manually picking up the drone or by flying it using the motors) 

9. Start giving the drone commands via hand gesture 
 
This product can be very dangerous, so please use caution when flying. As this 
product is a prototype, please fly this product in an area clear of animals and 
obstacles to prevent any injury or damage to the surroundings or the drone. 
 
During prototyping, the laptop computer used was a 2017 MacBook Pro, with a 
3.1GHz CPU. While you are welcome to use your own laptop, please understand 
that we do recommend something similar to what we were prototyping with or 
better to ensure that your hand gestures are read in and converted to commands 
to the drone quickly and efficiently.  
 
Upon opening up the GUI, please verify that all components are visible and are 
structured like the picture shown below in section 4.4.3. This will allow you to make 
sure that the software has been installed correctly.  
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7.1 Troubleshooting Steps 
 
If you find that the GUI software is not responding, please try all troubleshooting 
steps below:  

1. Uninstall and reinstall the software 
2. Restart your laptop computer 
3. Check your camera settings for your specific computer.  

 
If there are issues in which the hand gestures are not being recognized by the GUI 
software: 

1. Verify that you are allowing the GUI to utilize the camera on your laptop 
computer 

2. Please check every gesture to see if any of them are registered 
3. Please verify that you have a high contrast between your hand and the 

background, so that the camera is able to clearly distinguish your gesture 
4. Try using your alternate hand to mimic the gestures 

 
If there are issues with connecting to the drone via Bluetooth, verify the below: 

1. Is the blue LED light on the drone flashing when the drone has been turned 
on? 

2. If the blue LED is flashing rapidly, the drone is still in pairing mode, which 
means that it is searching for a new device to connect to 

a. Ensure that your controlling device is within 30 feet of the drone 
3. If the blue LED is flashing slowly, it has connected to a previously connected 

device and is awaiting input from that device 
4. Should that be the incorrect device, please disable Bluetooth on the 

incorrect device to put the drone back into pairing mode so that your desired 
controlling laptop computer can see the drone in the Bluetooth settings 

 
If the drone is not able to fly based on your commands, please verify the below: 

1. Is the drone’s battery charged to 100%? 
2. If the motors are not moving at all, there is likely an issue with an on-board 

connection to the ESCs or from the ESCs to the motors 
3. Verify that the log output shows the signal that the command has been 

received 
4. If none of the above work, please reset the drone and quit the GUI  

a. Open the GUI 
b. Connect again via Bluetooth 
c. Verify on your laptop that you are connected to the correct device 
d. Verify the camera is enabled and your hand is visible in the frame 
e. Send a ‘fly upwards’ command 

 
8.0 Schematics and PCB Design 
 
The following section goes over the schematic and PCB designs of our project. 
The application we used to design both the schematic and PCB was done in Eagle. 
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Eagle is one of the most widely used software for designing a schematic and PCB 
and we decided to use Eagle as we had prior experience using the software in 
previous classes. 
 
8.1 Power Circuit 
 
Figure 38 shows the power circuit schematic for our PCB board. The Atmega 
328p, HC-05 Bluetooth module, and the HC-SR04 Ultrasonic Distance Senor all 
need 5 volts of input voltage, whereas the MPU6050 Gyroscope needs 3.3 volts 
of input voltage. Therefore, we choose that the total input voltage of our circuit will 
be 9 volts. The 9-volt power will then be split between two voltage regulators that 
steps down the 9 volts to 3.3 volts and 5 volts. Bypass capacitors are used around 
both regulators to reduce the noise in the input signal. The output of the voltage 
regulators is then fed to the various sensors on our PCB that require either 3.3 
volts or 5 volts as input voltage. Finally, a LED circuit is used as an indication to if 
the 9-volt battery is actually producing power. 
 

 
Figure 38 Power Circuit 

 
8.2 Sensor Circuit 
 
Figure 39 shows the circuit design for the three sensors used in the project. The 
MPU-6050 Gyroscope is only sensor that will be soldered on-board the PCB. The 
MPU-6050 is connected via I2C to the Atmega 328p, two 10k pull up resistors are 
used in order to make the I2C communication possible. In addition, multiple bypass 
capacitors are used around the chip to reduce the electrical noise that might be 
produced.  Finally, a green led is connected to the input voltage pin of the MPU-
6050 as an indication to whether or not the MPU-6050 is on. Since both the HC-
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05 Bluetooth Module and the HC-SR04 Ultrasonic Distance Sensor are plug in 
modules, pin headers are used so that these modules can be connected to the 
board. The pin headers are then routed to the respective pins on the Atmega 328p 
flight controller.  
 
 

 
 

Figure 39 Sensor Circuit 
 
8.3 Flight Controller / Atmega 328p Circuit  
 
Figure 40 shows the Atmega 328p which acts as our flight controller for our project. 
A 2X4 ESC pin header is connected to the four PWM pins of the Atmega 328p. In 
addition, two LEDs are connected to GPIO pins. One LED is used for general 
purpose, the second LED is used as an indication to when the LIPO battery 
powering the four ESCs goes below 10 volts to signify a low battery. Bypass 
capacitors are used on various pins to reduce electrical noise and a yellow LED is 
connected to the VCC pin of the Atmega 328p to indicate whether the flight 
controller in on or not. 
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Figure 40 Flight Controller Circuit 
 
8.4 Miscellaneous 
  
Figure 41 shows the miscellaneous circuits we have on board the PCB. A LIPO 
battery level indicator circuit is used to get a numerical indication of the battery 
level. A pin header is used so the LIPO battery can be connected to the PCB board. 
In addition, a diode is used to restrict current going back into the battery from the 
Atmega 328p. A voltage divider is used to scale down the max 13 volts from the 
LIPO battery to 5 volts so it can be fed to an analog pin of the Atmega 328p. A 
software solution is then used to get a numerical value of the current battery 
voltage. A 2x1 pin header is used so that we can program the flight controller 
without removing it from the PCB. 
 

 
 

Figure 41 Battery Level / Programming Circuit 
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8.5 PCB Design 
 
Figure 42 shows the PCB design and routing for our project. The goal was to keep 
connected components as close together as possible to minimize the number of 
traces used. Our design is a two-layer PCB therefore the routing is done both on 
the top layer and the bottom layer. Vias are used to connect traces between the 
top and bottom layer. Additionally, two ground planes are used as a way to provide 
a common ground for all components. All resistors and capacitors used are 0603 
SMD size. In addition, four m4 screw holes were made on the corners of the PCB 
so that we could properly mount the board on the drone itself. The final dimensions 
of the PCB are 80mm x 80mm. The manufacture we used to get the PCB made 
and mount our SMD components was JLCPCB. 
 

 
Figure 42 PCB Design 
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9.0 Administrative Content  
 
9.1 Evaluation Plan 
 
Our evaluation plan consisted of key points that our project was meant to meet, 
evaluation questions that were to be answered with measurable outcomes, and an 
evaluation design that highlighted our project’s objectives and addressed the key 
shortcomings. 
 

9.2 Key Evaluation Points 
 
The key evaluation points that we tried to reach with our project were the ability to 
fly the drone, the ability for our neural network to recognize the hand gesture 
passed to the camera, and the ability to communicate the action paired with that 
hand gesture to operate the drone.  
 

9.3 Evaluation Questions 
 
In order to meet those evaluation points, we need to be able to measurably test 
those points. Below are the measurable key questions that we aimed to be able to 
answer positively after the successful construction of our project: 

1. Can the neural network recognize our hand gesture within 500ms? 
2. Can the drone react to our hand gesture within 1s? 
3. Can the drone ascend with full stabilization, maintaining level during 

ascent? 
 

9.4 Evaluation Design 
 
For our evaluation, we reached out to three of our professors to go through all of 
our measurable requirements shown in the beginning pages of this report and 
verify that we have met majority of those requirements. Of course, those 
requirements needed some change along the way, however we were sure to 
provide the appropriate fields for the evaluator to fill in so that the input is unbiased 
when it comes to measurements and having a holistic understanding of our project. 
We also included a list of the primary constraints that we were tied to during the 
making of the project and will leave a field for the evaluator to input how we 
circumvented those constraints in order to complete our project. This allowed the 
proctor to gain a much better understanding of the project, why everything has 
been done in the way it has been done, and the ideology behind what we plan to 
develop with our prototype. 
 
Furthermore, to allow for more freedom for the evaluator, they were given a rubric 
that allowed them to list their specific questions regarding the project. At the end 
they asked us these questions and as a team we answered them. 
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9.5 Project Schedule  
 
Initially every week we met at least twice and discussed our research and 
progress. As the due date approached we met even more frequently, and grouped 
up nearly every day the last few weeks leading up to our demo. The project 
milestones were tracked and listed below in Table 14. 
 
Date Semester Milestone 

May 27, 2019 Summer 2019 Divide & Conquer 1 Assignment 

May 28, 2019   Summer 2019 Approved projects and began research 

June 3, 2019 Summer 2019 Began our individual writing parts 

July 2, 2019 Summer 2019 Completed parts and shared content 

July 4, 2019 Summer 2019 Began integrating all three parts 

July 16, 2019 Summer 2019 Finalized document and printed final copy 

July 30, 2019 Summer 2019 Submitted the final document 

August 27, 2019 Fall 2019  Ordered all the necessary parts 

September 3, 2019 Fall 2019  Began assembling drone 

September 10, 2019 Fall 2019  Ensured individual components were 
working 

September 17, 2019 Fall 2019  Built the first prototype 

September 24, 2019 Fall 2019  Tested the prototype 

September 26, 2019 Fall 2019  Used the following time to redesign and 
rebuild 

November 19, 2019 Fall 2019  Finalized the drone for final presentation 

November 22, 2019 Fall 2019  Presented our project 

November 25, 2019 Fall 2019 Senior Design Showcase 

December 2, 2019 Fall 2019  Submitted Peer Reviews 

December 4, 2019 Fall 2019 Submitted the final document 
 

    Table 14 Milestones 
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9.6 Budget and Finances  
 
Budgeting was a very large concern when it comes to this project. Most drone 
projects end up costing a very large amount, and we found in our research that 
this was mostly due to parts breaking and expensive drone parts. Other reasons 
for this can be due to students buying pre-built drones and add to its functionality. 
This was among our options, however we decided to try and build as much of the 
drone as we reasonably could, so that we would be able to have the drone be 
marketable and cost us less in prototyping. 
 
Because we were not buying a drone that was already built and just integrating our 
solution to control it via controlling the given controller, we circumvented the entire 
need of buying a controller as well, since our laptop computer is directly controlling 
our drone now, with no middle man that could have been a dependency for our 
project.  
 
Furthermore, since we avoided buying an already built drone, we are able to 
deeply understand all of the working parts of our drone, which allows us to 
understand what is broken and how to fix or replace that piece that is broken, 
whereas if we were to buy a built drone, we would have to dismantle the entire 
thing to fix something that could be going wrong with the drone. 
 
While we saved greatly on buying the drone in parts, we also tried to minimize our 
spending on a part-level basis. This means that cost-effectiveness was a factor 
when it comes to each and every part that we chose to use to build our product.  
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Table 15 maps out our expected budget and our actual cost for our project. As 
displayed in the table below, our initial expected cost was higher than the actual 
cost. 
 
Component Estimated Cost Actual Cost 

Development Equipment $100.00 $50.00 

Bluetooth Module  $10.00 $5.00 

Motors,ESCs, Propellers $210.00  $115.00 

Drone Frame $20.00 $17.00 

Voltage Regulator $5.00 $2.00 

Batteries $40.00  $80.00 

Sensors $40.00 $15.00 

PCB Printing $30.00 $85.00 

Miscellaneous Components $200.00 $200.00 

Total: $655.00 $569.00 
Table 15 Proposed Budget 

 
9.6.1 Software Development 
 
When it comes to the GUI, we developed the entire thing by ourselves. This was 
attributed to the fact that among us are 3 computer engineers, and so we have a 
strong background in software development. This allowed us to build the GUI for 
the drone all with the use of free tools and the development was done entirely by 
us.  
 
In regard to the neural network, one of the members of the group, particularly 
Anshul Devnani, had previous coursework experience in Machine Learning, and 
so he was knowledgeable to help the 3 of us build the neural network free-of-
charge through the use of Keras.  
 
The minimal hardware necessary for the neural network recognition system was 
simply a computer that has a webcam and a GPU. After testing the neural 
network’s speed from one laptop’s GPU specs to another, we confirmed there is 
no major time difference in time taken to train the model as well as the time taken 
to recognize the gesture. Most laptop computers are quite capable of handling this 
task if it is the only one currently running on the computer and there are not several 
other tasks running on the GPU. Since our intention was to minimize the spending, 
we avoided the need of purchasing new hardware just to control the drone, and so 
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we decided to use the computers that we already owned, as they already had 
capable GPUs and had built-in webcams. 
 
In terms of the flight controller, we used C++ and the Arduino software to develop 
the flight controller. In this flight controller we handled everything from digesting 
the retrieved hand signals and balancing the drone. The microcontroller we used 
had no problems handling the workload and we only used about 50% of the 
storage. 
 
9.6.2 Wireless Communication 
 
For the wireless communication, we decided to use Bluetooth, which we found to 
be very cheap and accessible. Most of the Bluetooth modules were available for 
under $40, however we decided to go with a very popular choice that was only a 
fourth of that price. We chose this one because it was popular with DIY projects, 
and it was cost-effective for us to use. This form of communication also proved 
cost-effectiveness in the reasoning that most computers have Bluetooth built-in, 
so it was something that computers already have installed and would not require 
any additional hardware for the computer for the drone and the computer to 
connect.  
 
9.6.3 Battery 
 
In terms of battery, we designed our product to be able to use a rechargeable 
battery. This means that we are not required to spend large amounts of money on 
several batteries that will only last a 15-20-minute flight and then be unusable 
afterwards. Most drones typically use a rechargeable battery, and so we will be 
using the same. We were very unsure about the capacity of battery we needed, so 
we started with a 3S Rechargeable Lithium Polymer battery that is only a 1100mAh 
capacity to start, however we assumed we would likely need to upgrade the 
battery, this battery was sufficient. Fortunately, the low amperage batteries are 
relatively cheap, most being under $20. We certainly benefited from spending an 
additional amount on the rechargeable battery, which we had planned on 
prioritizing despite price. 
 
9.7 Division of Labor 
 
A lot of work on the project was performed as a team although for individual 
research we broke down the topics into sections and divided the work. We all 
chose the topics that best suited our expertise and strengths. Anshul Devnani has 
a passion for computer vision and is hoping to pursue a career in the field. As a 
computer engineer, he is currently working as intern at Leidos as a system 
integration engineer and previously work as a CWEP for two years. With his 
professional programming experience and computer vision knowledge, gained 
through courses at UCF, he took on the task of planning the graphic user interface 
and research deep neural networks and computer vision. 
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Pranay Patel has a history in network communication and power systems. He is a 
computer engineering major and is researching all the different types of network 
communications, memory management, PCB construction, and system power. He 
currently works at Darden Restaurants as an implementation engineer intern 
working with a skilled team of engineers to maintain and improve a back-end 
system for digital marketing. He used the knowledge he had gained from work and 
class to research what is necessary to connect the drone to the user interface and 
how to power the drone. 
 
Bernardus Swets is a computer engineering major at UCF, following the digital 
track, and took on the task of researching the flight controls. He focused on looking 
into the different drone designs and corresponding hardware. He also looked into 
the flight control software. Having experience with linear control system, he 
researched what it would take to balance our drone using PID loops. He works as 
a system engineer CWEP at Lockheed Martin. Between his knowledge gained 
from professional experience and in class he focused on designing and balancing 
the drone. 
 
10.0 Conclusions  
 
To conclude, our project is a new way to interact with drones and can pave the 
way for a new way to interact with other machines as well. The extensibility of 
gesture-controlled devices is rapidly growing, and it is also extremely beneficial to 
those with disabilities regarding sound. Because those with disabilities regarding 
sound tend to communicate through sign language or the like because they are 
unable to talk, this will allow them an easy way to communicate with devices via 
gestures that they are already very familiar with. Our project, a gesture-operated 
drone, is simply an implementation of a gesture-controlled device. The Gesture 
Operated Drone allows for an extremely simple way to operate a drone in 
comparison to the unwieldy RC remotes that commonly come with drones to 
operate them.  
 
Our gesture schema has been set up to be accessible to any and all that have full 
motion of all of their fingers. This schema allows for an extremely wide market for 
our drone, because most people are able to do all of these simple gestures with 
ease. In addition, our target market for the product is people that want to pick up 
drones as a hobby or for a just-for-fun purpose. This target market is extremely 
wide because drones are a relatively new concept and there are an increasing 
amount of people taking up photography and videography in today’s time. 
Generally, most drones are either flown for fun or to get a photograph or video 
from an angle that mimic’s a bird’s eye view. This allows for a very unique picture 
or video and so is desired by many people exploring the hobby of photography.  
 
While there are many people that want to take up flying a drone for whatever 
purpose, unfortunately it can take time to learn how to operate the drone safely 
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with the common RC remote that comes with most drones, and drones can be very 
dangerous if flown incorrectly or if it goes off-course due to the operator not 
knowing how to use the remote control. Our project was designed to skip this 
extreme learning curve by making predefined actions for the drone, such as 
elevate, de-elevate, move left, right, forward, and backward, so that the user can 
simply pick up the drone and start using it without the worry of accidentally thrusting 
the drone into a tree, damaging the several hundred dollar drone that they just 
bought minutes after using it. On top of that, the user does not even need to 
operate any extraneous hardware to perform those actions, they simply need to 
only use their hands in front of their computer screen to make them happen.  
 
Of course, there is one particular limitation that we immediately noticed when 
compared to using a remote control that seemed to be a disadvantage to our 
solution. That limitation would be the latency with which the signal is received. In 
particular, there is much more computation going on when it comes to the two 
forms of operating the drone. Both using a remote control and our solution of 
communicating from a laptop computer requires a wireless communication method 
to command the drone to act. However, they differ in the computation required to 
create the command to the drone. Our solution converted the input hand signal 
from a camera to match a model, while the remote control simply needs to convert 
analog input to digital input and send the appropriate command accordingly. Our 
projection was that this would cause an extreme latency that would impact the 
drone’s functionality and wieldiness of the controls. However, as we are training 
the model, we are seeing a much faster response time than we previously 
expected.  
 
This project was very helpful in combining our multitude of coursework to produce 
a working drone from scratch and a GUI built from scratch with integrated Machine 
Learning and Computer Vision applications. We were also able to communicate 
between the two wirelessly. Every part of our project could of course be improved 
upon, and when going to market we would be able to minimize costs by 
manufacturing in bulk and not wasting as many parts as we did during testing. This 
would allow for the product to be much more marketable. 
 
Additionally, we could offer the product as a modular product, in which we offer the 
drone with better Bluetooth modules for extended range, a faster chip to handle 
flight control, better motors, a larger frame, and the like. This would make the 
customer able to make the product more attuned to their use case.  
 
Another addition that we could implement to our drone could be the ability for the 
drone to have the camera on board, with a built-in processor able to handle the 
neural network processing. This would allow the drone to be 100% hands free, and 
completely without a remote at all. The primary condition that we would run into 
there is keeping the subject’s hand in view at all times, or to train a neural network 
to recognize hands despite all of the extraneous input received via the camera’s 
lens.  
 



 95 

To sum up, this project was extremely educational and allowed us to follow the 
lifecycle of an integrated project from start to finish. We were able to generate 
actual user requirements based on measurable items, and we were able to build 
a prototype that can scale to multiple things. This project can evolve in hundreds 
of ways and can really make a large impact on consumer tech worldwide if it was 
to reach the global market. The reasoning behind that is that as we progress in 
technology, we are decreasing the direct touch interaction continuously. One 
particular example of that is how fast voice recognition technology is spreading 
and ramping up. However, our product is able to target those that are not able to 
speak fluently or do not speak a common language that is supported for most 
voice-recognition services out of the box. This allows for us to target a near-
universal market, because humans everywhere can understand some hand 
signals, and we have designed our product to account for using hand signals that 
are understandable no matter what differences a person may have origin-wise. 
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