Gesture Operated Drone

Anshul Devnani, CPE Pranay Jay Patel, CPE Bernardus Swets, CPE

Group 3

Project Description

- DIY Indoor Drone
- Remotely Controlled
- Operated by Hand Gestures
- User-Friendly GUI to show live drone info

Motivation

- Drones are not easily flown
 - Can cause safety concerns if incorrectly flown
- Remote Control is not directly intuitive, takes practice
- Allows for free hands while controlling the drone
- Puts together concepts learnt throughout our coursework that interests us (Machine Learning, Wireless Comm, Embedded Systems, GUI Development)

Goals and Objectives

- Improve ease-of-use for drones
- Achieve quick response time to gesture commands
- Build GUI that is understandable to the untrained eye
- Maintain stability during drone flight
- Sustain connection to drone at usable distance

Software Requirements

Requirement	Pass/Fail
The drone will convert the signal received over Bluetooth within 500 ms.	\checkmark
The user interface will be able to recognize each of the 8 gestures.	\checkmark
The feedback/reading pane will highlight the correct predicted gesture within 1 second.	~
The Neural Network will produce an accuracy of a minimum of 95 percent.	\checkmark
The user interface GUI will consist of a webcam pane, log pane, and miscellaneous pane.	V

Hardware Requirements

Requirements	Pass/Fail
The drone will not weigh more than 2 pounds.	×
The drone will be powered by 3.7V lithium polymer batteries.	V
The microcontroller will be powered by a 9v DC battery.	v
The drone will utilize propellers of 10 inches or smaller.	v
The drone will utilize 4 electronic speed controllers to help control the propellers.	V
The drone will utilize 4 brushless motors with KV above 900.	V
The drone will utilize an ATmega328P microcontroller as a flight controller.	\checkmark

System Requirements

Requirements	Pass/Fail
The drone will be able to receive signals over Bluetooth communication from within a range of 20 feet.	\checkmark
The drone will be able to react to commands within 1 second.	V
The drone will be able to land, and motors will terminate within 5 seconds.	×
The drone will be able to take off to 3 feet within 3 seconds.	×
The drone will maintain its altitude when moving left, right, forwards, and backwards.	×
When the drone accelerates in a specific direction, it will rotate less than 90 degrees to perform the given action, as to not tip the drone over.	V

Constraints

Constraint	Value
Drone Laws	Flying Outdoors
Wireless range	30 ft Radius
Drone Frame Size	Less than 600mm
Drone Battery Runtime	20 Minutes
Drone Weight	Less than 3 pounds
Number of Gestures	At least 8 gestures, but limited, as similar gestures may be hard to differentiate by webcam
Budget	Affordability

Gesture Recognition

Gesture Recognition Goals

Two Main Goals:

- 1. Should be accurate regardless of skin color and background
- 2. Recognition needs to be done in real time

Ways To Achieve Recognition

Two most popular approaches - our pick Neural Networks

- More complex code, can lead to accuracy errors
- Not easily scalable
- Teaching the computer what to look for

- Minimal code complexity
- Easily scalable
- Computer learns what to look for, let the computer do the hard work

Convolutional Neural Network

- There are many different types of neural networks, choice is based on the problem at hand
- Most popular machine learning technique for image recognition is using a Convolutional Neural Network
- CNN's use images from a dataset (hand gestures) and learns what makes each subset different from each other (palm vs thumbs up) by extracting features from each image (through convolutional operations) - Known as the training phase
- CNN's are then tested on images it has not seen to verify how well the model trained Known as the testing phase

Building the Gesture Recognition Application

- 1st step is to build our own dataset
- Characteristics of a good dataset
 - Provide good coverage
 - 2000+ images per hand gesture
 - Different angles and focuses
 - Independent of skin color and background
 - Background Subtraction -> Binary Threshold

User Action	Result
No Gesture	Hover in place/autolevel
A	Thrust Upwards
¥	Drone flies forwards
¥.	Drone flies to the left
ě.	Drone flies to the right
1	Drone lands in current position
Lin	Drone flies backwards
×	Thrust down

Building the Gesture Recognition Application Cont.

- 2nd Step is to build the CNN architecture/model
- Two Options: Create your own* vs. Use existing architecture
- G.O.D Architecture
 - 5 Convolutional Layers Responsible for learning features of image
 - Shallow Only 5 layers Good for real time recognition
- How to code?
 - Use Keras + TensorFlow frameworks to build in Python

Original Image published in [LeCun et al., 1998]

Building the Gesture Recognition Application Cont.

- 3rd step is to train and test the CNN model
- Training is done by splitting the dataset into two subsets. Training set and Validation set
 - \circ 80 20 training to validation split

• Model parameters are saved

Building the Gesture Recognition Application Cont.

- Final step is to use the saved model to predict hand gestures in real time

Gesture Recognition Application Flowchart

• All done in real time!!!

GUI

- Increase organization and usability
- Used PyQT for designing layout

GUI - Utility Buttons

GUI - Camera Feeds

GUI - Model Predictions

GUI - Debug/Drone-Side Data

Wireless

Communication

Wireless Communication - Overview

- Which type of communication did we use?
- Why did we choose that type?
- What part did we implement for this?
- How was it configured?
- What were its limitations?

Why Bluetooth?

- IEEE Standard
- Widely used
- User-friendly
- Continually updated
- Backwards Compatibility
- DSDTech HC-05 Bluetooth Module
 - Reason for Choosing: Widely Used, Reliable
 - Cost: \$10

Configuration

- Two-way communication over UART
- Bluetooth module serves drone data to MacBook
- MacBook serves gesture commands to Bluetooth module

LiPo Voltage = 12.1V

Limitations - Bluetooth

- Bluetooth is not built for passing large amounts of data rapidly
- Due to this, we opted to make the data communicated minimal
 - Alternative to finding the Bluetooth module that had the fastest data throughput
- We intend to send it as often as we can within reason (high baud rate)
 - Ties to power consumption
- Recall:
 - Objective of project is to sustain connection at usable distance
- Due to this, connection range was of primary concern

Drone Design

Drone Frame Motors

ESC

Width	450mm
Height	55mm
Weight	280g
Manufacturer	YoungRC
Price	\$18.99

Weight	1.5 oz
Stator Size	2212
Max Efficiency	80%
Current Capacity	12 A
Туре	Brushless
KV	1000
Dimensions	45x24x11 mm
Manufacturer	Hobbypower
Price	\$40.00

Weight	4.5 oz
Amp Rating	30A
Dimensions	2.1x1.0x0.5 in
Manufacturer	Hobbypower
Price	\$16.00

Gyroscope (MPU-6050)

Operating Voltage	3.3V
Comm. Mode	I2C
Axes	6-axis
Manufacturer	InvenSense
Price	\$1.95

Distance Sensor (HC-SR04)

Operating Voltage	5V
Operating Current	15 mA
Measure Angle	15 Degrees
Max Range	4 meters
Manufacturer	ElecFreaks
Price	\$3.95

LiPo Battery

Voltage	11.1V
Cells	3S
Discharge Rate	30C
Size	105x34x24mm
Weight	467 g
Manufacturer	YoWoo
Price	\$21.99

Flight Controller

- We are designing our own flight controller through the Atmega328p microcontroller. Can be tested using the Arduino Uno board
- Microcontroller must be able to handle the workload

Clock Rate	16 MHz
RAM	2 KB
Flash	32 KB
Voltage Range	1.8-5.5 V
Price	\$2
Manufacturer	Atmel

Schematic Design - Power

Schematic Design - Sensors

Schematic Design - MCU/Flight Controller

Schematic Design - Miscellaneous

PCB Routing

Testing Plan

- Initial GUI Testing
 - Test the accuracy of each hand signals
 - Improve model, and change similar hand signals if necessary
- PID Tuning
 - Isolate each axis
 - Establish Kp, Ki, and Kd value for pitch and roll
 - Combine axises and adjust accordingly
- Adjust filter values to reduce noise and drift
 - Q-angle, Q-bias, and R measure
- Integrate GUI and Drone
 - Ensure commands are accurately interpreted and quickly executed

PID Tuning

- Set all values to 0
- Increase P until drone oscillates around the setpoint (desired angle) steadily
- Increase D until those oscillations are minimal
- Repeatedly tweak P and D values to find maximum stability
- Increase I so that the drone makes a swifter correction, to the point where you are okay with oscillations

Bumps In The Road

- Faulty/Broken Components
- Gyroscope Drift
- Noisy Gyroscope*
- Arduino Bootloader issue*
- Threading in PyQt

LESSONS LEARNED

*Unable to fix

Attempted Solutions for Noisy Gyroscope

Reducing Vibrations

- Foam mounted flight controller
 - Anti-vibration foam, eliminate any metal in contact with the flight controller
- Silicone TPU soft mounts for the motors
- Securely fastened drone frame
- Center the gyroscope to minimize vibrations

Software Solutions

- Utilizing MPU6050 internal LPF
- Filter Algorithms
 - Complementary Filter
 - Kalman Filter
- Decrease gyroscope sensitivity

Complementary Filter vs. Kalman Filter

- Complementary Filter
 - Low processing cost
 - Easy to implement
 - Improved gyroscope accuracy
 - Decreased the drones drift

- Kalman Filter
 - More complex
 - Higher processing cost
 - Handles the drones vibrations much better
 - Eliminated the gyroscopes drift
 - More customizable

Administrative Content

Proposed Budget

Component	Estimated Cost	Actual Cost	
Development Equipment	\$100.00	\$50.00	
Bluetooth Module	\$10.00	\$5.00	
Motors, ESCs, Propellers	\$210.00	\$115.00	
Drone Frame	\$20.00	\$17.00	
Voltage Regulator	\$5.00	\$2.00	
Batteries	\$40.00	<mark>\$80.00</mark>	
Sensors	\$40.00	\$15.00	
PCB Printing	\$30.00	<mark>\$85.00</mark>	
Miscellaneous Components	\$200.00	\$200.00	
Total:	\$655.00	\$569.00	

Work Distribution

	User Interface	Drone Design	Power	Computer Vision	Wireless Comm.	Flight Controller
Anshul	V			\checkmark	v	\checkmark
Pranay	\checkmark		V		V	\checkmark
Bernardus		V	\checkmark		V	\checkmark

Future Improvements - G.O.D V2.0

- Refocus drone design for dampening vibrations (Carbon fiber drone frame)
- Implement better motors for the drone in order to reduce vibrations
- Implement more accurate gyroscope, test more thoroughly (MPU-9250)
- Fine-tune Kalman filter for reducing all noise, without introducing drift
- PCB Improvements Remove Battery Holder, On-Board Bluetooth module, etc.
- Dedicated Flight Controller

Questions?