
MOIST

(Mesh-Operated Irrigation Sensor Technology)

Department of Electrical Engineering and Computer Science

University of Central Florida

Group G

Fall 2018

Ahmed Hamdy ahamdy1995@gmail.com EE, CS minor

Pierre Elange elange.pierre@knights.ucf.edu EE

Gabriel Santos gabetsantos@knights.ucf.edu CpE

mailto:ahamdy1995@gmail.com
mailto:elange.pierre@knights.ucf.edu
mailto:gabetsantos@knights.ucf.edu
mailto:gabetsantos@knights.ucf.edu

Documentation Contents:
1.0 Executive Summary
2.0 Project Description
 2.1 Problem Statement
 2.2 Project Goal
 2.3 Motivation & Major Objectives
 2.4 Requirements Specifications
 2.4.1 House of Quality
 3.0 Research
 3.1 Existing Designs
 3.1.1 Commercial Solutions
 3.1.2 Senior Design Projects
 3.2 Strategic Components for Hardware
 3.2.1 Solar Panel & Battery
 3.2.1.1 NUZAMAS 2W
 3.2.1.2 Customized 18650
 3.2.2 MCU
 3.2.2.1 Microchip PIC16F15354
 3.2.2.2 TI MSP430
 3.2.2.3 Parallax BASIC Stamp 2
 3.2.2.4 Atmel ATmega328p-PU
 3.2.3 RF Module
 3.2.3.1 Wi-Fi
 3.2.3.2 Bluetooth 5.0
 3.2.3.3 Zigbee
 3.2.3.4 Nordic nRF24L01
 3.2.3.5 Nb-IoT
 3.2.3.6 LoRa
 3.2.4 Geolocation
 3.2.5 Sensor
 3.2.5.1 Triton
 3.2.5.2 VH400
 3.2.6 Central Hub
 3.2.6.1 Pine64
 3.2.6.2 Raspberry Pi B
 3.2.6.3 Banana Pi M3
 3.3 Strategic Components for Software
 3.3.1 Programming Languages
 3.3.2.1 Java
 3.3.2.2 C Code
 3.3.2.3 HTML
 3.3.2.4 Python

 3.3.2 Integrated Development Environments
 3.3.1.1 Android Studio
 3.3.1.2 Microsoft Visual Studio
 3.3.1.3 Code Composer Studio

 3.3.1.4 NativeScript
 3.3.1.5 Atom
 3.3.1.6 Notepad++
 3.4 Online File Management
 3.4.1 FileZilla
 3.5 Abstraction
4.0 Project Design Detail
 4.1 Node: Power System
 4.1.1 Solar Panel
 4.1.2 Charge Controller
 4.1.3 Voltage Regulator
 4.1.4 Battery
 4.2 Node: Processing System
 4.2.1 Micro Processing Unit
 4.2.2 MCU Programmer
 4.3 Node: Communications System
 4.3.1 RF Module
 4.3.2 External Antenna
 4.4 Node: Geolocation System
 4.5 Node: Environmental Sensor System
 4.6 Node: Enclosure
 4.6.1 Material
 4.6.2 Shape
 4.7 Node: Optional Watering System
 4.8 Gateway: Central Hub
 4.8.1 Dedicated Server
 4.8.2 OS
 4.9 Gateway: OS
 4.9.1 RF Module
 4.10 Network Topology
 4.10.1 Mesh Topology
 4.11 Web-Application
 4.11.1 Setup
 4.12 API’s
 4.12.1 Login API
 4.12.2 Status API
 4.12.3 Search API
 4.12.4 Add/Delete API
 4.12.5 Operations API
 4.13 Database
 4.13.1 Database Format
 4.13.2 Database Server Configuration
 4.13.3 MySQL Database Client
 4.14 Useful Data Representation
 4.15 System Architecture
 5.0 Standards & Design Constraints

 5.1 Standards
 5.2 Design Constraints
 5.1.1 Supply Constraints
 5.1.2 Power Constraints
 5.1.3 Economic Constraints
 5.1.4 Environmental Constraints
 5.1.5 Social/Interdisciplinary Constraints
 5.1.6 Political Constraints
 5.1.7 Ethical Constraints
 5.1.8 Health & Safety Constraints
 5.1.9 Manufacturability Constraints
 5.1.10 Sustainability Constraints
6.0 Project Prototype Build
 6.1 Hardware Prototype
 6.1.1 Development Board
 6.1.2 Node PCB Design
 6.1.3 Gateway PCB Design
 6.2 Software Prototype
 6.3 Enclosure Prototype
 6.3.1 3D Print
 6.3.2 Plastic Mold
7.0 Prototype Testing
 7.1 Hardware Testing
 7.1.1 Power Testing
 7.1.2 Sensor Testing
 7.1.3 RF Testing
 7.2 Software Testing
 7.2.1 Node Location Testing
 7.2.2 Operations Control Testing
 7.2.3 Status Testing
 7.3 Durability Testing
8.0 Administrative Content
 8.1 Milestones
 8.2 Budget & Finance
 8.2.1 Bill of Materials
9.0 Conclusion & Summary
10.0 Appendices
 10.1 Glossary
 10.2 Datasheets
 10.3 Permissions
 10.4 Bibliography

Figure List:

Figure 1- Node Block Diagram

Figure 2- Gateway Block Diagram

Figure 3- Python Image Angle Recognition

Figure 4- LAMP Stack Functionality

Figure 5- Node Flowchart

Figure 6- Gateway Flowchart

Figure 7 - Web-App Flowchart

Figure 8- Database Flowchart

Figure 9- API Flowchart

Figure 10- NUZAMAS 2W 12V

Figure 11- LTC4079 Pinout

Figure 12- LTC4079 chip

Figure 13- Voltage Regulator Package

Figure 14- Customized 18650

Figure 15- ATmega328P-TQFP

Figure 16- nRF24L01+ Mini

Figure 17- GP-20U7 GPS Module

Figure 18- VH400

Figure 19- Raspberry Pi Model B

Figure 20- Mesh Network

Figure 21 - Data Aggregation Network Topology

Figure 22- System Architecture

Figure 23- Arduino Development Board

Figure 24- Node PCB Schematic

Figure 25- Gateway PCB Schematic

Figure 26- Enclosure Model

Figure 27- Final Encapsulation

Table List:

Table 1- House of Quality Figure 9- API Flowchart

Table 2- nrf24l01 and Raspberry Pi Connection

Table 3- MySQL Location Database Example

Table 4- Experimental Value Threshold Spreadsheet

Table 5- Milestone Chart EEL 4914

Table 6- Milestone Chart EEL 4915

Table 7- Budget Listing

Code List:

Code 1- Java Send Function for Mobile Application

Code 2- Raspberry Pi Mesh Config

Code 3- Mesh Operation

Code 4- Login PHP Code

Code 5- Database Install Commands

Code 6- DHT22 Readings

1

1.0 Executive Summary

At the forefront of today’s standard irrigation systems for open fields lies the
sprinkler system: a both labor and time-efficient group of devices that waters grass
and plants on its own without the need of human supervision, for the most part. As
technology progresses, new ways to accomplish just about any task are constantly
discovered. MOIST (Mesh-Operated Irrigation Sensor Technology) focuses on
innovating the modern irrigation system. The format in which most sprinklers
currently operate has its advantages in terms of autonomy, but has major
repercussions in terms of efficiency and power consumption.

According to the EPA (Environmental Protection Agency), around half of the water
currently used to water plants and grass outdoors is wasted because of
evaporation, wind, or overwatering. MOIST aims to be vastly more efficient than
current sprinkler systems due to its ability to respond to changes in moisture in the
grass it is overseeing. Sensors will be placed throughout the plane of grass and
will be distributed evenly enough so that moisture in all sections of the grass is
accounted for. Instead of the grass being watered for the same amount of time
every week like they currently are with sprinklers, the sensors will give out a
moisture reading on an hourly basis stating whether each area of the grass has
consumed enough water for the day or not. If the moisture readings are too low,
the network of sensors works together to send out a signal detailing what section
of the field needs to be watered and how much watering the section needs based
on the moisture level.

We previously worked with a company that has a sensor built with this functionality
in mind. MOIST focuses on implementing this sensor into a mesh network that will
tell an autonomous watering vehicle what areas of a grass field needs watering.
Our previous sponsor intends to, one day, have their technology efficiently
watering large areas of grass, such as golf courses and commercial real estate.
The area of study for this project, however, will be on a 20 by 30 feet backyard
area comprised of grass native to the average backyard of a residential home in
Florida for the sake of time and cost efficiency. With that being said our research
and development of this technology will take it beyond everyday irrigation process
and impact the environment in a positive manner.

With the evolution of the Internet of Things and Smart Automation, current irrigation
systems is one more application most landscapes use today that require human
supervision unnecessarily, but with implementation of MOIST irrigation will result
in less energy consumption, less waste of resources, and less costs overall,
making it a solution that will surely become more popular as such systems become
more commercialized and prominent in the irrigation market.

Although MOIST is considered a stand-alone project, it is also part of a three-group
interdisciplinary project consisting of two teams of computer engineering and
electrical engineering students, and one mechanical engineering group. The other
groups will oversee creating and commanding a watering robot that will water
different areas of grass at a time based on the readings that MOIST sensors relay

2

out. This system was designed to be a solution for our previous sponsor’s
Interdisciplinary project, and double up as an add-on to common sprinkler systems.
With considerations taken, MOIST aims to be the best solution for the next
generation of irrigation systems.

3

2.0 Project Description

As a soon to be graduate engineers, there are many motives to doing projects.
Our collective interest in bettering our community brought us together to work on
this project and resolve the given problem beyond the academic scope. With many
arising issues in the twenty-first century, there can never be enough engineers to
solve every problem. Yet when the situation arises we must work together, work
hard, and work in a clever manner to collaborate and compromise for the best
solution the team finds to be fit.

2.1 Problem Statement

This project began with a specific problem regarding the conventional irrigation
systems. Ones based on underground piping, fixed sprinkler heads, and
rudimentary controls. The issue lies with over spraying water, damages that can
spew wasted water and, costs of such installation and maintenance. We needed
a new-found solution to revoke these concerns, particularly a solution that avoids
any of these issues and adds new features for further irrigation improvement.

2.2 Project Goal

Understanding our problem was the first step to our solution. We analyzed why
water was being wasted, and our conclusion is that our yards are not being
monitored appropriately. A form of a wireless self-powered sensor was needed,
and that it was durable to withstand weather and other forms of damages. Many
designs and variations were thought but our deciding factor relied on cost,
maintenance, and easy installation.

This design of monitoring the yard had two parts, the multiple sensor nodes spread
across the yard and a base station the acted as controller and a gateway for the
user interface. This provided a sense of control, real-time status updates of the
yard and a bridge to the Autonomous Irrigation Vehicle. This will allow the
necessary watering as a next immediate step if need be. We plan to coordinate
with Autonomous Irrigation Vehicle designed by another group to accomplish this.
This design rids of unnecessary piping, and prevents damages of the non-existent
sprinkler heads.

2.3 Motivation & Major Objectives

What sparked the interest of the students involved in this project are the career
preparation skills that will be gained from solving problems that were faced in the
realms of electrical and computer engineering using critical thinking. One of the
students working on this project already works with plumbing at his current
internship, and plans on implementing the technology produced in this project into
his future endeavors to continue making the watering of plants a more efficient
process. This project also provides plenty of opportunities for us to improve on
concepts related to our majors, but that are barely touched upon or spoken of in

4

our classes. These concepts include creating our powered devices and using a
web application to track the status of the sensor network we will create.

The main goals that this project was set out to accomplish are enhancing an
irrigation system to be more efficient than sprinklers, receiving real-life career
experience by working as a group for two semesters, delegating different tasks
between the group, and compromising on conflicting ideas, and getting hands-on
experience creating our own PCBs and implementing hardware and software
communication between devices in a network.

2.4 Requirement Specifications

Quantitative measurements for the preliminary requirements for the hardware in
this project are estimates based on research that are likely to change as this project
is further delved into. Sensor nodes should require no more than 10W to operate.
System should be able to be remotely operated via web app. The field of grass
that we will base our research and models on will be 30 X 20 ft. There should be
at least ten different sections of the field that are separately accounted for, and at
most 20. None of the node areas should overlap with each other.

These specifications remained the same as we entered and finished EEL 4915.

The minimum range between two communicating nodes should be no less than 15
ft. Max soil moisture that sensors can detect before the irrigation system is
engaged is 20%. The irrigation system should be able to relay control for the
duration of the watering. The minimum span of ground that the irrigation system
should cover is 600 square feet. The irrigation nodes should be self-powered with
minimum maintenance. The web-app should be able to map all nodes and display
them in a GUI. The gateway should support the database of nodes and send
signals for override control. The GUI should be able to display the status of a
selected node and give an option for a manual control for the user.

Plenty of project constraints were discovered as more research and hands-on
implementations were conducted. Refer to Table 1 for more details as to what
exactly the constraints are and the requirements we need to achieve. The
constraints for the irrigation system will vary depending on what hardware and
software is ultimately used in the end. This is where prototyping comes into play.
For now, the project constraints include the signal strength and speed of the
hardware used to allow the mesh nodes to communicate with the central gateway.
Also, what measurements can be taken by the sensors used to analyze the
networks’ actions. The range and accuracy of the sensors. As well as performance
when more nodes are introduced.

Other constraints and requirements depended on the other two groups involved in
this project. This includes the potential of the watering robot, as well as the range
and duration that the robot can handle. Our biggest concern involving this
multidisciplinary project is compatibility of information and how to appropriately
manipulate the data for the other subsystems to make use with. By sketching
diagrams and tables, we can convey useful information.

5

2.4.1 House of Quality

It was very important for us to understand what our client needs and how we can
provide a satisfactory solution. Determining the problem is the first layer of problem
solving, next is to break down the general problem into a series of smaller more
specific sub-problems to analyze the components and how it contributes to the
original problem. A Quality Function Deployment is a table designed for this
scenario. It compares given solution requirements, usually stated by the client, and
possible solution specifications, determined by the engineers at work. In our
situation the sponsor gave our project requirements and as a team we came up
with specification our design is projected to implement, all listed on Table 1.

After working on the House of Quality it is easier for us to understand the areas of
concern and not get distracted by ideas that will not contribute to the solution.
Quality Factor Deployment is an ideal form of planning and progressing our state
in project design.

Referring to Table 1, there are six major criteria our client wants to accomplish and
those are relating to initial cost, resource consumption, and ease of use. We then
used the table to state our target of a system under $1000.00, solar-powered with
efficiency of 35-50%. A system deploying a wireless communication with nodes of
a small profile, 87.1 x 58.5 mm enclosure withstanding severe weather conditions.
A signal strength of 150 ft., with %60 more effectiveness then a traditional sprinkler
system. After initial planning and first phase designing, researching the right
components is mandatory to achieve our target.

The House of Quality design was inspired by the design that was shown to us in a
Senior Design I lecture. The roof was implemented along with the base of the
House of Quality to display the relationships between the different components
mentioned in the House of Quality. Two arrows up in one box means that there is
a strong correlation between the two components that match up in that box. Two
arrows down in one box means that there is a strong correlation between the two
components that match up in the box. The roof allows the components in the top
box to be compared to each other, rather than solely with the components in the
lower left side.

6

Table 1- House of Quality

7

3.0 Research

To solve a problem, one must first understand a problem. Design starts with
research, hence the acronym R&D. Our steps in research, which were simple but
repetitive, consisted of analyzing potential sub-systems and understanding it’s
implementation. For our system we browsed available systems from local off the
shelf product and high-tech exclusive system to past accomplished senior designs

3.1 Existing Designs

There have been several technologies created that perform similar functions to the
products that will be used in our senior design project. This section will discuss the
different technologies that have been researched that provided insight and
inspiration for the mesh network. Another aspect of existing designs that was
explored are UCF senior design projects that have been completed in the past.
There are two in particular, the FARM project and the Triton sensors that the last
group sponsored by Guard Dog Valves worked on. These projects involve
products and methods that have guided the designs of our mesh network.

3.1.1 Commercial Solutions

Comparative study of commercial solutions has been carried out for small scale
farms. The solutions that incorporate sensors do not include systems based on
fuzzy logic which allow to establish the watering quantities in a precise way. Aifro
WaterEco [1] considers climatology in order to lower or increase irrigation but it is
focused on the definition of threshold values and does not include fuzzy logic or
sensors, such as soil and land humidity. Blossom [2], encompasses crop irrigation
and generation of calendars, depending on the climate these calendars can be
edited manually, it has common functionalities but allows for remote management,
it also does not include fuzzy logic in its behavior. BlueSpray [3] includes seasonal
information to adjust irrigation as in the previous example, it does not include fuzzy
logic based behavior. GreenIQ [4] and IrrigationCaddy [5] are conventional
programs that can be managed remotely from mobile applications and include the
feature of creating irrigation calendars. Lono [6] incorporates threshold values and
seasonal information and reduces crop watering according to the thresholds, as in
the previous cases it does not include fuzzy logic and does not have weather
sensors. On the other hand, the Orbit B-Hyve [7] system incorporates a control
through smartphones that is able to change some parameters in order to edit the
system schedule. The parameters that device takes into account when configuring
the irrigation timer are: the slope of the site, the soil type, if it is in the sun or shade,
history of rainfall in the area and the current weather. The Rachio Smart Sprinkler
Controller [8] system also has a Wi-Fi connection and is able to send the data from
the sensor to the user’s smartphone. This device requires an initial configuration
which is established by indicating the type of crop and the type of soil. In this way,
the system can estimate the irrigation time required by the crop. The fuzzy system
is not applied, nor are the flexible rules. Rainmachine [9] is another commercial
system which incorporates an automatic irrigation program. It is capable of

8

calculating the percentage of evaporation and transpiration of the soil, according
to the weather conditions obtained from the data of the meteorological service.
This system, like the others, does not include fuzzy knowledge. The Spruce
irrigation [10] system combines the information obtained from all the temperature
and humidity sensors and rainfall forecasts. Lastly, we list the Rain Commander
[11] system for its ease of use and its integration with mobile devices for remote
irrigation control. However, this system lacks an intelligent configuration, it has no
fuzzy logic rules, and only considers the schedule and the irrigation time that has
been configured manually by the user.

3.1.2 Senior Design Projects

Past senior design projects like F.A.R.M. (Fundamental Agriculture Resource
Monitor) [12] offered a low powered, wireless, plant monitoring system. Although
it achieves its goal, its design concentrated more on studying the plant for gardens
and pots to print out reports for its users. Our system needed to achieve that key-
point in addition to automated irrigation aimed for scalable landscape while
withstanding weather climates and prone accidents. It is the project that we based
the concept of MOIST on, with a slight variation of focus on the sensors that have
already been developed by Guard Dog Valves, rather than create our own or buy
other existing ones. Also, our project focuses less on providing a farmer or
gardener with various conditions that their plants are experiencing, and hones
down specifically on the moisture level of plants. However, with the loss of
generality this project undertakes compared to F.A.R.M., it makes up for in the
improvement of water efficiency for grass. MOIST only focuses on water moisture
in grass, but the involvement with a mesh network to send the reading levels of
each node in a field’s moisture to a central hub and have only these specific areas
watered is what makes this project the next step toward extreme water efficiency
in the future. In addition, this project allows us to only water different areas of grass
for as long as the node has a low moisture level. This feature would allow
gardeners using the F.A.R.M. system who don’t have too much time on their hands
to have their plants watered for them for the right amount of time and with the right
amount of water while they are away from their gardens.

Irrigated Water Monitoring System [13], a project previously sponsored by Guard
Dog Valves was aimed for this purpose. Initially presented by the UCF Department
of Mechanical and Aerospace Engineering focused on the material of the sensor
probe. Their design research involved extensive testing of possible material used
for an anode and a cathode of the device. The study and design included a
correlating resistive value and moisture level. Our intent is to take this designed
sensor and improve on the electronics and network. Thus, helping our previous
sponsor obtain a state-of-the-art irrigation system.

9

3.2 Strategic Components for Hardware

Considering previous designs, we came up with list of major components of a node
we needed to further investigate. This breaks down the design into smaller
sections of design that all must be analyzed to integrate appropriately. These sub-
parts include the following: A sustainable power system, that does not need
constant maintenance; a central controller dedicated to keep the operations and
program running; a communication system, to link with the network; a sensor for
reading measurements; and an enclosure to house all of this. This is a single PCB
called a node is a design produced in scale. Figure 1 details the individual parts
and their links

Figure 1- Node Block Diagram

The second set of components include an embedded computer used as a server,
that hosts a web-application, the database, and all of software needed to start the
network. This gateway called a hub has a designed PCB stacked onto it which
involves a communication system, and possible solenoid control system for the
hose of the Autonomous Irrigation Vehicle. This Gateway is the head link between
the nodes so only one per network is needed. Figure 2 represents the hardware
and software needed for a Gateway.

10

Figure 2- Gateway Block Diagram

This is a potential way of designing our solution, understanding the necessary
components and its function lays out the design for us, our client, and others in a
detailed manner. This our final design and abstraction for the project. The potential
for solenoids was removed since there was no need for it in our project.

3.2.1 Solar Panel & Battery

In order to maintain the functionality of our project, an independent power system
is required to supply the main key components of our system such as: solar panel
which is comprised of solar cell that convert light energy to electrical energy;
charge controller that threshold the output voltage from the solar panel going into
the battery; the voltage regulator that regulate to a non-changing voltage; the
battery that provide power directly to the components.

Solar panel is available in three types (monocrystalline, polycrystalline, and
amorphous). Between the three-solar panel technology, amorphous is the
cheapest but also the least efficient; the polycrystalline combine efficiency and cost
which is the best choice for our project because of the high cost of monocrystalline.
Because of the portability of the project the parameters for choice of the battery
are crucial such as size, voltage, spillage free, and environment friendly.

We ultimately decided to go with a polycrystalline solar panel.

11

3.2.1.1 NUZAMAS 2W

NUZAMAS provides 2W at a 12V output. It is a poly-crystalline solar panel. It is
17% efficient in power retention, and resistant to corrosion and humidity, which is
ideal for our sensors out in the field.

3.2.1.2 Customized 18650

This is a Li-Ion rechargeable battery meant to power small devices. Has a nominal
capacity of 7.4V with a charge capacity of 1800mAh with a cut-off of 6.0 volt. The
18650 will provide the power to the system which require no more than 3.3 volt for
the microcontroller. The 46.5 gram weight, the 18 mm diameter, and 65 mm height
dimension of the battery make it very suitable for the portability of the project. The
discharge capacity of the cell with 1.3 amperes down to 3.0 volt is 1 hour which in
our case might be more than 3 hours because of our low power system design. In
order to mitigate any power conundrum we have decided to pair. the battery with
a solar panel which constitutes as a charger for the battery.

3.2.2 MCU

When designing any embedded device, some form of control is required to operate
the hardware, this is where the MCU (Microcontroller Unit) comes to play. Its sole
purpose is to be programmed with the right algorithm to coordinate the process of
its peripherals, it is the connection between the sensor and RF module, as well as
monitoring the battery level. Most MCUs have few dedicated pins used for
programming the chip through a programmer and an associated IDE for writing the
code.

3.2.2.1 Microchip PIC16F15354

PIC16 family is one of the simplest existing microcontroller available with 8-bit data
word and 14-bit instruction word of. Only costing under a dollar it is fundamentally
a straight forward mid-range component. This chip offers 28 pins. This device
stores up to 14 KB of program memory and 1 KB of data. At 32 MHz clock and a
voltage range from 2.3-5.5V, this chip dissipates a max power of 800mW.

PIC16 is similar to the RISC architecture and based on Harvard architecture. This
device is a candidate for our design

3.2.2.2 TI MSP430

The MSP430 was introduced to us here at UCF in a programming course. The
benefits of using this device is the familiarity working with the device in C-
Programming or Assembly. MSP430 comes in a development board that has
integrated peripherals and a programmer.

3.2.2.3 Parallax Basic Stamp 2

12

The Basic Stamp 2 was introduced in an intro to engineering course here at UCF.
The main difference between this device and the rest is that instead of it being a
single chip, it is a small module with few components. The BASIC Stamp 2 uses a
variant of BASIC programming called PBASIC, it is a simple language used but
lacks the power of C-programming.

3.2.2.4 Atmel ATmega328P-PU

This chip is most commonly used microcontroller whether it’s users realize this or
not. It is found on the Arduino Uno hardware. With easy to use interface and pin
headers for accessing the MCU pins. This is a candidate to consider. The
supported IDE runs a variation of C++ meant for embedded systems. With low cost
and adequate power consumption it evenly compares to other MCUs.

We decided to go with the Atmel ATmega328P-PU

3.2.3 RF Module

It was difficult to foresee all potential IoT applications having in mind the
development of technology and the diverse needs of potential users. The IoT
applications are addressing the societal needs and the advancements to enabling
technologies such as electronics and cyber-physical systems continue to be
challenged by a variety of technical (i.e., scientific and engineering), institutional,
and economical issues. Present communication technologies span the globe in
wireless and wired networks and support global communication by globally-
accepted communication standards. The Internet of Things Strategic Research
and Innovation Agenda (SRIA) intends to lay the foundations for the Internet of
Things to be developed by research through to the end of this decade and for
subsequent innovations to be realized even after this research period. Within this
time frame the number of connected devices, their features, their distribution and
implied communication requirements will develop; as will the communication
infrastructure and the networks being used. Everything will change significantly.
Internet of Things devices will be contributing to and strongly driving this
development. Changes will first be embedded in given communication standards
and networks and subsequently in the communication and network structures
defined by these standards. Data management is a crucial aspect in the Internet
of Things. When considering a world of objects interconnected and constantly
exchanging all types of information, the volume of the generated data and the
processes involved in the handling of those data become critical. A long-term
opportunity for wireless communications chip makers is the rise of Machine-to-
Machine (M2M) computing, which one of the enabling technologies for Internet of
Things. This technology spans a broad range of applications. While there is
consensus that M2M is a promising pocket of growth, analyst estimates on the size
of the opportunity diverge by a factor of four. Conservative estimates assume
roughly 80 million to 90 million M2M units would be sold in 2014, whereas more
optimistic projections forecast sales of 300 million units. According to strategy
Analytic the global M2M industry size is forecast to grow to around 200 billion us
dollar in revenue by 2020[16]. Based on historical analyses of adoption curves for

13

similar disruptive technologies, such as portable MP3 players and anti-lock braking
systems for cars, it is believed that unit sales in M2M could rise by as much as a
factor of ten over the next five years. There are many technologies and factors
involved in the “data management” within the IoT context. Some of the most
relevant concepts which enable us to understand the challenges and opportunities
of data management are:

• Data Collection and Analysis

• Big Data

• Semantic Sensor Networking

• Virtual Sensors

• Complex Event Processing.

Based on our research we are going to present different wireless protocols and
standard for possible used in our project in their prior application in other project.
This strategic component is the sole piece that allows the singular device to
connect to the rest of the network giving it the capability of exchanging data
wirelessly. With that being said there are two main standards to consider that
dictates the protocol: IEEE 802.11, and IEEE 802.15.4.

3.2.3.1 Wi-Fi

Wi-Fi is the most common wireless communication used. Primarily used to connect
a device to the internet giving it access to the web. Although Wi-Fi is an option
there are many underlying issues with the using this protocol. It can quickly crowd
an existing network, constricting the bandwidth and slowing internet speed. Neither
does it not support a mesh network setup, forcing limited range without scalability,
and processing on the gateway. Out all possible RF protocol this is the only one
dictated by the IEEE 802.11 standard. Wi-Fi has a suitable communication
distance of about 20 m and 100 m in indoor and outdoor environments,
respectively. In PA applications, Wi-Fi extends diverse architectures by connecting
several types of devices via an ad hoc network. Wi-Fi and 3G wireless
technologies were employed in to estimate the agricultural applications of mobile
phones. Remote access and short message services have Given that Wi-Fi
requires much power, long communication time, and huge data payload. Wi-Fi
technology is not preferable for our project in spite of the fact that a Wi-Fi server
prevents data losses by adopting data redundancy techniques. In addition, Wi-Fi
cannot be employed for multi-hope applications and influenced by number of users
and the signal intensity; thereby, it is inappropriate for WSNs. Moreover, the W-Fi
nodes listen all the time, so power consumption will increase.

14

3.2.3.2 Bluetooth 5.0

This protocol also runs on the 2.4 GHz bandwidth, but is very low power and limited
range. With the latest version 5.0 Bluetooth now supports a mesh setup for local
devices. Bluetooth 5.0 is the newest technology and therefore not a lot of support
and hardware are readily available, plus with no previous experience between our
group members with this technology makes this choice a questionable candidate.
Bluetooth (BT) Wireless Protocol The BT standard has been utilized to establish a
communication link between movable and portable devices, such as laptops, over
a short distance of up to 10 m. Given its pervasive nature and availability in most
mobile devices, BT has been employed to satisfy multilevel agricultural
requirements. Weather information, soil moisture, sprinkler position, and
temperature are monitored remotely using Global Positioning System (GPS) and
BT technologies. Bluetooth (BT) Wireless Protocol The BT standard has been
utilized to establish a communication link between movable and portable devices,
such as laptops, over a short distance of up to 10 m. Given its pervasive nature

3.2.3.3 ZigBee

ZigBee also runs on the 2.4 GHz bandwidth but is dictated by the IEEE 802.15.4
standard. ZigBee is viable candidate with long ranges, low power consumption and
mesh capability. The is a lot support for this hardware, the only downside is the
cost of the device and since ZigBee is a proprietary protocol, a paid license must
be acquired to use commercially. ZigBee wireless protocol is considered one of
the best candidate technologies for the agriculture and farming domains. Given its
low duty cycle, ZigBee is considered appropriate for PA applications, such as
irrigation supervision, water quality management, and fertilizer and pesticide
control, all of which require a cyclic information update. Based on this technology,
the sensor nodes in the agricultural field can communicate with the router or
coordinator node over a long range (i.e., 100 m) when XBee Series 2 is used.
ZigBee can also reduce the communication distance by up to 30 m for indoor
conditions.

3.2.3.4 Nordic nRF24L01+

This leaves us with our last candidate, the nRF24L01. Similar to ZigBee,
nRF24L01 supports long range mesh network, with low cost and many variations
from different vendors makes this choice optimal. Abiding by the IEEE 802.15.4
standards makes this protocol widely available with existing libraries from
supporting communities. The ease of integration of this device is very beneficial
for what we aim to accomplish with our expertise.

15

3.2.3.5 NB-IoT

Narrowband-IoT (NB-IoT) is a new IoT system constructed from current Long Term
Evolution (LTE) functionalities. Subsequently, NB-IoT is possible to share the
spectrum of LTE without coexistence problems and to utilize the same pieces of
equipment, as well as it is possible to connect seamlessly into the LTE main
network. This permits all network facilities such as security, tracking, policy,
charging, and authentication to be totally supported. The design goals of NB-IoT
cover high coverage area, extended battery life (i.e., 10 years), high network size
(52,000 devices/channel/cell), and low-cost devices.

3.2.3.6 LoRa

Long Range Radio (LoRa) Protocol is introduced by the LoRa Alliance as a
protocol stack for low power and wide area Internet of Things (IoT) communication
technologies that are associated with indoor transmission. The basic network
architecture of a LoRaWAN consists of LoRa end devices, LoRa gateways, and a
LoRa network server. The LoRa end device communicates with gateways that
employ LoRa with LoRaWAN. LoRa gateways pass raw LoRaWAN packets from
the end devices to a LoRa network server with a high throughput based on the
backhaul interface, which is typically 3G or Ethernet. Accordingly, LoRa gateways
act as a bidirectional communication or protocol adapter with the LoRa network
server. In this case, the LoRa network server takes charge of decoding the data
packets transmitted by the LoRa devices and creating the frames that would be
directed back to the devices. LoRa offers a bidirectional solution that matches
machine-to-machine (M2M) Wi-Fi or cellular technologies. LoRa presents a cost-
effective method for linking batteries or mobile devices to the network or to end
devices.

We decided to go with the nRF24L01+ for our communication between the nodes
and the gateway.

3.2.4 Geolocation

Our system is based on real world positioning and identification of these Nodes, to
map our network and to relay accurate information to the Autonomous Irrigation
Vehicle. The Nodes must have a way to retrieve that data without too much hassle
during installation and maintenance. Geolocation serves this purpose, for our
project. There are hundreds of satellites orbiting Earth at any given time, and few
are dedicated to geolocating and are accessible globally.

3.2.4.1 Bearing Measurement System

This system uses a directed radio antenna to locate a radio fix, a transmitted signal
from a fixed position. This requires a minimum of two transmission to find the
intersection of the radio waves. The disadvantage of this system is the size of the
required antenna, although accurate this is more implemented for buildings and

16

stations of that size. The antenna must constantly move to stay connected, but for
our system we need something lightweight and stationary.

3.2.4.2 Beam System

Beam system as also an old technology that requires a dedicated aircraft to
broadcast a narrow beam. The aircraft created the airway and uplifted the load on
the receiver, and as long as the receiver was in sync the airway would hop stations
to keep the airway stable. The disadvantage of this system is the required aircraft
needed for this, and if the receiver was outside the range of the beams transmitted,
the navigation was no longer maintained.

3.2.4.3 Transponder System

With any two measurements of angle or distance this system determines the
position with high accuracy. Radar has been introduced since the World War era
and used this type of technology for geolocation. Since then aviation are the
primary users. With dedicated towers for radars that sweep a wide region, and
Time of Flight technique, this system can detect any object resonating in the radars
frequency band. The downside of this system is the cost and the need for a radar.

3.2.4.4 Hyperbolic System

A modification of the Transponder System, this system is based on fixed hyperbolic
lines, hence the name, charted down. Two measurements produce a fix on
location. These systems eliminate the need of an airborne transponder and
therefore eliminating manual triangulation that the Transponder system uses. By
using Time Difference of Flight from known stations, position is found along the
charted lines. More stations can receive this signal, improving the accuracy of the
lines and eventually fixing in on a point.

3.2.4.5 Satellite System

This system also known as GPS (Global Positioning System) is also a form of a
Transponder System, that supersedes it by replacing the airborne transponder with
a space satellite, this what most of the world uses as their geolocating technology.
The satellite works in conjunction with few others and each transmit an ephemeris
data, an accurate calculation of its location as well as a clock signal dictated by an
onboard atomic clock all to the receiver. The receiver then takes this information
to triangulate its position. This system is the most accurate there form of
geolocating with the push of technology development and marketing. This is the
cheapest solution for geolocating.

We ultimately settled on the satellite system due to our network being mainly used
outdoors.

17

3.2.5 Sensor

There is a wide variation of sensors available for many purposes. The kind of
sensor we need is one that is capable of measuring the soil moisture. For this
strategic component allows us to give feedback to our users for irrigation purpose,
potentially saving water, thus saving the agriculture, and finally saving cost.

3.2.5.1 Triton

This is the sensor developed by the Integrated Water Monitoring System project.
It entails what we need for our system and is a viable candidate since it comes
from our sponsor. The measured data is in the form of resistance making the value
universal compared to other sensors. Since it is not a predetermined scale testing
the accuracy is in our favor.

3.2.5.2 VH400

The VH400 is a moisture sensor from Vegetronics that we decided to go with for
our nodes. It is a little more expensive than your average moisture sensor at over
forty dollars per sensor, but in return it offered us a precise measurement between
areas that are wet and dry.

3.2.6 Central Hub

The final strategic component is the central hub, this is the origin of our network
and thus a vital component for relaying data back to our user. The central hub
consists of a server with a RF module stacked. Selecting the right CPU is crucial
for our network speed and internet connectivity

3.2.6.1 Pine64

A 64-bit CPU capable of up to 512 MB of RAM and expandable MicroSD Card slot
up to 256 GB makes this near-unbeatable candidate. Supporting a USB 2.0 ports
and a Gigabit Ethernet port makes certain that the internet speed is in par with our
system. OS supported includes various Linux distribution at a cost of only $15.00.
With this new of a technology, widespread support is readily available.

3.2.6.2 Raspberry Pi

At a price of $40.00, Raspberry Pi is the most known single board credit card sized
computer today. It supports 512 MB of RAM, USB ports, and a 10/100 Ethernet
controller. Raspberry Pi is aimed for hobbyists and supports a resourceful
community. With our group having access to one and experience on the Linux OS
makes the Raspberry Pi a suitable candidate.

3.2.6.2 Raspberry Pi

18

We also considered using the Banana Pi M3 in EEL4915, which offers similar
components as the other two choices. We decided to go with the Raspberry Pi
because of our familiarity with it already and the amount of open source
documentation available online to help us use it to control our mesh network.

3.3 Strategic Designs for Software

Just as important as the technology used to power the mesh network system is the
software integrated inside all of the hardware parts that governs the behavior that
the mesh network will take on and how it will respond to user interactions. Various
software options exist for the number of operations that the web application is
capable of carrying out. With these various options comes different programming
languages, IDE’s, and website developers that can be used to produce the most
functional software results possible. In order to have made our final decisions on
the software that was used in this project, several factors were considered heavily
and equally, such as ease of use by group members, the functionality that it brings
into the project, the cost worthiness, and whether the software used assists our
group with potential jobs and schoolwork assignments in the future.

3.3.1 Programming Languages

Throughout the undergraduate experience of the members of this group, several
programming languages have been used to code different types of functions,
games, programs, and applications. The choice made for what programming
language will be used in this project largely depends on what languages we can
master and implement into our project the most compatibility.

3.3.1.1 Java

Java is a language that only the sole computer engineering student of the group
behind MOIST has proficient experience in. Java is the main code behind Android
Studio and would be beneficial should our group decide to extend our web
application functionality into a mobile app.

3.3.1.2 C Code/C++

All members of the group working on this project have worked with C in at least a
couple classes throughout our undergraduate experiences. C can be used to code
the TI MSP430 and other hardware devices that we are interested in using. This
programming language was used in this project due to the hardware devices that
can be programmed via C code. Working with C to make MOIST functional
prepared the students working on the software side of this project for possible
projects requiring the use and knowledge of C in their future careers and
endeavors.

3.3.1.3 Assembly

19

Assembly is a rather complicated coding language, compared to the other coding
languages featured in this report, that all members of this group have prior
experience with. Assembly was used in a couple of our core engineering classes
program a TI MSP430 alongside the use of C code. Although a more complex code
than C in terms of not being a high-level language, Assembly offers plenty of power
and support. This language is used heavily alongside MSP430’s and can be used
to have this specific hardware device perform a myriad of tasks, such as
temperature sensor data collection and displaying different characters and
patterns on an LCD screen connected to an MSP430.

3.3.1.4 HTML Languages

The coding for the web application that was used to monitor and send commands
to the different nodes within the mesh network proved to be some of the most
complicated coding that the students of this group have been involved with. This
is due to the lack of experience our group had in web development and in having
data be constantly accessed and altered in a database that can have data stored
in it via the commands of the web application and changes in moisture level
readings of the sensors.

The main web development programming languages that we considered using are
JavaScript and PHP incorporated with HTML coding. Both languages offered
opportunities to make a presentable web application that can be monitored by all
members of this group with some learning and practice put into place. JavaScript
ended up being used as an assistant in styling the web application and running
commands on through it as well.

3.3.1.5 Python

Python is considered a more modern programming language than most of the
other languages being considered for use in this project. Python was beneficial to
the results of this project in that it possesses the capability to perform powerful
functions and data interpretations based on a relatively small amount of code and
coding experience. For instance, in one of the students working in this group’s
classes based on robotics, this student was able to scan multiple pictures of a
single object taken from various angles and find perfect matches between these
pictures, despite these pictures being scattered within pictures of several different
types of objects. This scan match was performed using only a maximum of twenty
lines of code which is minimal considering the multiple projects that the computer
engineering student in this group has had to write hundreds of lines of code for
when programming in Java. This technology could potentially be used in
conjunction with the other EE/CpE group working on the interdisciplinary portion
of our project to detect sensors from different angles when the AIV approaches a
node. Figure 3 shows different angles of one object that the AIV would be able to
recognize as the same object from using Python coding.

Python ended up being used to generate a graph of the node coordinates on the
web application below the sensor data table. Looking at this graph, MOIST users

20

could get a more direct interpretation of what nodes in their system were picking
up specific data.

Figure 3- Python Image Angle Recognition

3.3.2 Integrated Development Environments

21

A vital part of the software that was used to govern our mesh network includes the
IDE’s that were used to program the hardware involved in our project. There are
several options for IDE’s in terms of what type of programming languages we
wanted to code in, and what capabilities each coding environment contributed to
the functionality of this project.

3.3.2.1 Android Studio

Android Studio provides a user-friendly interface for coding a mobile application
on an Android device. Using the layout template, users can drag and drop UI
features, such as text boxes and buttons, into a screen and toggle the UI settings
to have the application function as the user sees fit. An emulator projecting the
features of an actual Android mobile device of the user’s choosing can then be
displayed in conjunction with the IDE to display how the designs constructed inside
Android Studio would actually appear and function when accessed on a mobile
device. The benefits that come along with using Android Studio include the
familiarity that the computer engineering student working on this project already
has with this IDE in one of his programming classes this semester, and also the
amount of community support that already exists for Android Studio due to the
popularity of Android mobile devices throughout the world. The Java code below
written in Android Studio returns a screen on an Android app with the ability to
send information to a database written in a textbox with the tap of a button.

public class MainActivity extends AppCompatActivity {

 public static final String EXTRA_MESSAGE =
"com.example.MOIST.MESSAGE";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 /** Called when the user taps the Send button */

 public void sendMessage(View view) {

 Intent intent = new Intent(this, DisplayMessageActivity.class);

 EditText editText = (EditText) findViewById(R.id.editText);

 String message = editText.getText().toString();

 intent.putExtra(EXTRA_MESSAGE, message);

22

 startActivity(intent);

 }

}

Code 1- Java Send Function for Mobile Application

3.3.2.2 Microsoft Visual Studio

Microsoft Visual Studio is the IDE that the members of the group working on this
project are the least familiar with. This IDE can be used in all portions of the
software side of our project, including web services and web applications. The
main reason that this IDE may be implemented into our project is its compatibility
with NativeScript. With a download of all the features that NativeScript offers
comes along the ability to write mobile application codes in Visual Studio as well.
There are commands preinstalled into Visual Studio that can open, run, and edit
NativeScript applications without the need for opening a command prompt,
switching to the correct directory that contains the application, and running manual
lines of code to edit the application.

Microsoft Visual Studio was not used in our project to code in.

3.3.2.3 Code Composer Studio

Code Composer Studio is an IDE used in some electrical engineering classes that
focuses on computer abilities as well. This IDE is what the C and Assembly
language codes that the members of our group have written to program the TI
MSP430. Although it is an uncommon program for our group in terms of usage
outside of a classroom setting, there is enough support both online and from the
documents accessible to UCF students to write plausible code in this cleanly-styled
editor to program the TI hardware we have previously used in a couple of our
classes.

CCS is the least preferred IDE to use that every student in the group working on
this project has experience with. Although coding in C and Assembly allows
powerful commands to be programmed into a TI MSP430, the IDE’s use is limited
to only this specific type of TI hardware as far as our expertise in this field is
concerned. There are various hardware devices that Code Composer Studio can
program as well, but most likely this IDE would only be used if we were to have
ended up implementing the TI MSP430 into our final design plans.

3.3.2.4 NativeScript

NativeScript is another IDE that may have been used to create a mobile application
to further enhance user capabilities of this project. NativeScript takes its name from
the ability given to those who use the program to create mobile apps that have
completely native code, or code that is executed straight from the CPU of a
computer, running them. The benefit that NativeScript brings to the table is its
compatibility with JavaScript coding and with Microsoft Visual Studio. If a web

23

application that performs the same functions as a mobile application has all the
code needed to run it written already, making the mobile application using Android
Studio requires restructuring of all the code that has already been written for the
web application. JavaScript code written for the web application would essentially
have to be converted into Java code. However, the use of NativeScript allows for
JavaScript implementation, meaning that a majority of the code used to program
the web application could also be used for the mobile application with minor tweaks
made to the JavaScript code. This would save our group a significant portion of
time creating the mobile application, allowing us to test the functionality of our web
and mobile applications at a sooner time than using Android Studio would allow.

However, we did not have to use it since we only made a web-application and not
a mobile on.

3.3.2.5 Atom

Atom is a highly-functional IDE that the computer engineering student in the group
working on this project has used to code and debug programs written in Java. Atom
can be used in conjunction with Android Studio to write code for a possible mobile
application extension to this project. Atom also has downloadable extensions that
make it compatible with most of the other programming languages that may be
used in this project and offers its own compiling services.

This was not used either.

3.3.2.6 Notepad++

Notepad++ is the simplest IDE out of the ones being considered for use in this
project. This editor will be used to access and program the HTML languages used
in the web application development that is integral to the user interactions that will
occur with the mesh network. PHP pages that control the structure of the web
pages in the web application are easily editable and readable in Notepad++.

This was the main IDE used to code in this project since it supports every type of
coding language that was necessary for MOIST to function properly.

3.4 Online File Management

The two web development stacks that may have been implemented in this project,
LAMP (Linux, Apache, MySQL, PHP) and MEAN (MongoDB, Express, Angular,
Node.js), both require a file directory for the pages that the web application will
contain and display. To upload changes to the web application to the actual server
that it will be hosted on, rather than just making changes to it on a local host such
as a student’s laptop, the edited files will be placed in the file directory of the web
application’s server using one of a few file hosting programs. Figure 007 shows
how the LAMP stack will be structured in terms of the different components that
are involved in it. The code along with the server will pair up with and contact the
database to deliver and retrieve new information picked up by the sensors.

24

For MOIST, both stacks have their own advantages. The MEAN stack would have
been useful for providing this project with simpler access to more modern action
commands and UI capabilities. For instance, using the NativeScript IDE to create
a mobile application to govern the mesh network is simpler writing in the code that
responds well with the MEAN stack, TypeScript, than using JavaScript, the code
that corresponds with the LAMP stack. Using MEAN would have allowed us to
create a nicer looking design for the mobile application through NativeScript than
using the other option.

Given the advantages of the MEAN stack, the LAMP stack will still most likely be
used to create the web and/or mobile application that governs the mesh network
due to the familiarity that this group of students has with web development using
the components of the LAMP stack. Figure 4 below shows the functionality of the
different components of the web stack. The operating system used to code the
web application for this project will be Linux based, or Windows if too much
difficulty is encountered trying to use Linux to code the application. The Apache
web server will be connected with and the PHP pages will be coded using the Linux
OS. These components will incorporate JavaScript on the front-end to create the
user-interface of the web application. The Apache, Linux, and PHP pages are
considered the back-end of the application, since they all center around the
aspects of a web page that is invisible to the common user. These back-end
components will connect the web application to the database, MySQL, whenever
a change is authorized or requested by the user through the front-end.

Figure 4- LAMP Stack Functionality

25

3.4.1 FileZilla

FileZilla is a free FTP (File Transfer Protocol) program that transfers files between
a local host and a directory that the local user connects to via a secure login
procedure. To access a certain server, the correct host location and user and
password credentials must be entered into the site manager option in

In order for a connection to be made between a local host and a server on a
different computer using the internet FileZilla has to be used. This program allows
for secure connections to be made between a user and a private server using the
different options for connectivity that FileZilla provides such as SFTP (Secure File
Transfer Protocol). This program will likely be used manage the web application
due to the experience that the computer engineering student in the group working
on this project already has with creating a website using FileZilla.

3.5 Abstraction

With all of the strategic components listed, abstract diagrams showing how the
components work together and what the flow of operation in this project is helps
solidify our design. From the hardware algorithm to the user’s front-end web
application, these components are all concurrently working together to achieve our
objective. Each diagram gives insight into a different aspect of MOIST that, when
paired together with each other, display the inner workings of this project and how
it ultimately functions.

Careful thought was put in to the design of the diagrams in this section. The group
of students working on this project did a large amount of discussion and
collaboration before deciding how the components of these diagrams, such as the
nodes and the firmware, were going to be structured. After a large amount of
deliberation, the connection between all of the components in this project was
decided upon. The diagrams are a reflection of this connection, and shows how
each key area in the project, which each of us focused primarily on separately,
comes together to make the project flow and run smoothly.

As insightful as these diagrams are, they are only the preliminary plans of the
operations that this project will carry out. Although the actions taken to complete
this project still mirror the designs in this abstraction, the actual in-detail designs
of the different components in MOIST are more complex than what is shown in this
section. The main layouts that are found in this section were studied and then
expanded upon to allow adjustment for the products that would ultimately end up
being used in this project. This implementation of the actual products used only
made the designs in this section slightly more in-depth than what the abstraction
diagrams contain. Figure 5 details the process of the Node.

These firmware flowchart diagrams did not change since EEL 4914. The Node and
Gateway Block Diagrams were altered to display the updated connection between

26

the different parts of our project. Color was also added to these diagrams to further
show the distinction between these sections.

27

Figure 5- Node Flowchart

To start the network, individual Nodes need to transmit and receive at different
addresses paired to a single parent Node and few child Nodes forming a tree
topology. The Gateway will be the head of the network and doesn’t have a parent
Node. After a Node is connected it saves the setup so when it reboots its already
connected. The normal procedure initiates in an endless loop. It waits for any
signal received from the user, if it times out, the Node checks for watering day, if it
is then proceeds to read sensor level. If not, it goes back to a timed sleep. Figure
6 details the operations of the Gateway and Uses its APIs to connect its own
hardware to the internet and web-app as well as having APIs for accessing the
database.

28

Figure 6- Gateway Flowchart

The Gateway starts by connecting to a LAN and hosts the web-app, and database
for the Nodes. The root code will make these calls as it transmits to the nearest
Node.

The next set of figures explains the procedures of the APIs: primarily the web-app
and the database of the system. They detail how the connection is made and
maintained so network is stable as the users accesses the interface. Figure 7
describes how the menu operations would precede.

Figure 7 - Web-App Flowchart

The web application is more of the front end of the user interface. It is what our
client or any user would see when accessing the system. It starts with the script

29

accessing the database via an internal API, and plots the points on a graphic grid.
This would be relative it the position of the Nodes on the field. After the Nodes are
updated it runs in a loop and waits until a user selects a Node on the web-app,
make a call for a status or command and use an API to accomplish the request.
Figure 8 outlines what is happening internally in the database as it waits for a
request.

Figure 8- Database Flowchart

The database is a huge component for the server. It holds, and organizes all the
data for each Node entered, it is accessed directly or through API calls in functions

30

of the main code. When that happens the database search for the correct entry
and returns the data to the firmware and through the mesh, web-app or even to
the Autonomous Irrigation Vehicle. Then it waits again for another request. Figure
9 maps one for the login screen, three more to connect to the database, and an
additional one for the firmware script.

Figure 9- API Flowchart

31

With all the sub programs in the server running, some internal connectivity is
required to make the operations run smoothly. Hence API (Application
Programming Interface), snippets of code or executed apps, that are used when
calls from one service is requested for another. There are five main APIs that help
the Web-App make its connection. These APIs are not a main concertation of our
design but more so of supplements and therefore are necessary.

32

4.0 Project Design Detail

In this section exists a detailed layout of how our system is implemented for our
project. As with any project, brainstorming and then finalizing the components is a
must. Here our system is broken down into two main hardware subsystems and
few software programs to achieve our objective.

4.1 Node Power System

A sensor node is usually equipped with rechargeable batteries, which have limited
capacity and pose a challenge to long-term application. These batteries supply
power to the sensor nodes by providing the necessary current to maintain each
part of the sensor nodes working properly. The total power consumption of a
sensor node is the sum of each element in the node (i.e. sensor, microcontroller
unit, and RF module) each component may operate at different energy states.
Therefore, the lifespan of a sensor node is the time consumed to exhaust its
batteries under a sustainable operation threshold. We need to provide sensor
nodes with an infinite lifespan.

● Solar panel for charging the batteries; the choice for solar panel

● Charger controller to prevent over charging

● Voltage regulator for regulating a constant 5V DC

● Battery indicator which indicates the remaining voltage left inside the battery

● Cover box to contain all the electronics circuit

● Rechargeable battery capable of holding adequate charge and output
enough power

4.1.1 Solar Panel

Solar energy has become an alternative source of energy because of its efficiency
and affordability, and also because of the arising cost of other sources of energy.
The power needed for our project requires independent power source to aliment
the sensors and wireless communication module in order to maintain scalable
mesh network. The main factors for the choice of power source are cost, efficiency,
and portability. The renewable energy such as solar energy which is mainly
available was used as a power source for each node in that project. The poly-
crystalline solar panel is chosen among the three types of solar panel technology,
because it balances cost and efficiency. The size of the solar panel as well as the
wattage matter. In this project we selected a 2W solar panel manufactured by
NUZAMAS shown in Figure 10. Since we need a solar panel capable of charging
a 7.4 Volt rechargeable battery then the open circuit voltage of the solar panel
must be greater than 7.4 volt which is the reason that we chose a 2 watts solar
panel with a Voc(Open Circuit Voltage) of 14.9 volt.

33

Figure 10- NUZAMAS 2W 12V 160mA

Designing the holder for our solar panel will be crucial, as the position of the solar
panel determines how effective its light to electricity conversion in any weather in
comparison to a better position in that same weather.

We ultimately decided to use a NUZAMAS 2W solar panel because it met all of
our requirements for a solar panel while consuming less power than the one we
originally intended on using.

4.1.2 Charge Controller

The charge controller prevents over charging of the battery by automatically
reducing the current to a low level when the battery is fully charged. The input is
connected to the solar panel and the output is connected to the battery. The state
of the switch is determined by two voltage thresholds.

When the battery is bulk charging, the load switch is open and the full solar panel
output is applied to the battery. When the upper threshold is reached, the load
switch closes and the battery discharges through the load until the lower threshold
is reached and the switch opens allowing the battery to charge once again. In a
series controller design, a relay or solid-state switch either opens the circuit
between the array and the battery to discontinue charging or limits the current in a
series-linear manner to hold the battery voltage at a high value. As these on-off
charge cycles continue, the ‘on’ time becomes shorter and shorter as the battery
becomes fully charged. In our project, we are choosing LTC4079 from linear
Technologies.

34

The LTC4079 is a low quiescent current, high voltage linear charger for most
battery chemistry types including Li-Ion/Polymer, Lead-Acid or NiMH battery
stacks up to 60V. The maximum charge current is adjustable from 10mA to 250mA
with an external resistor. The battery charge voltage is set using an external
resistor divider. With an integrated power device, current sensing and reverse
current protection, a complete charging solution using the LTC4079 requires very
few external components. Thermal regulation ensures maximum charge current
up to the specified limit without the risk of overheating. Charging can be terminated
by either C/10 or adjustable timer. Input voltage regulation reduces charge current
when the input voltage falls to an adjustable level or the battery voltage, making it
well suited for energy harvesting applications. Other features include temperature
qualified charging, bad battery detection, automatic recharge with sampled
feedback in standby for negligible battery drain, and an open-drain CHRG status
output.

Figure 11 depicts the pinouts of the chip. This will inidcate how we wire the chip to
the PCB.

Figure 11- LTC4079 Pinout (Permission was requested to Analog Devices)

IN (Pin 1): Input Supply Pin. This input provides power to the battery charger.
Bypass this pin with a ceramic capacitor of at least 1μF [14].

35

EN (Pin 2): Enable Input. Charge current starts flowing when this input rises above
1.190V, its regulation threshold. When using a current limited power source,
connect this input to an external resistor divider from IN to GND to avoid UVLO
oscillations. This configuration can also be used to maintain the source voltage (IN
pin) at the maximum power threshold (e.g., for solar panel). Pulling this pin below
0.750V shuts down the device. This pin should not be left floating [14].

PROG (Pin 3): Charge Current Program Pin. The current out of this pin is 1/250th
of the current out of the BAT pin. A resistor connected from PROG to ground sets
the charge current in constant-current mode. This pin servos to 1.190V during
constant-current charging. Do not leave this pin open. Limit parasitic capacitance
on this node to less than 50pF[14].

NTCBIAS (Pin 4): NTC Thermistor Bias Output. Connect a low drift bias resistor
from NTCBIAS to NTC pin, and a thermistor from NTC pin to GND. The value of
the bias resistor is typically equal to the nominal resistance of the thermistor at
25°C. Minimize parasitic capacitance on this pin[14].

NTC (Pin 5): Input to the Battery Temperature Sense Circuit. Connect the NTC
pin to a negative temperature coefficient (NTC) thermistor, which is typically co-
packaged with the battery, to signal the charger if the battery is too hot or too cold
to charge. The room temperature value of the thermistor should be at least 2kΩ. If
the battery’s temperature is out of range, charging is paused until the

battery temperature re-enters the valid range. Connect a 1%, low drift bias resistor
from NTCBIAS to NTC and a thermistor from NTC to ground. Minimize parasitic
capacitance on this pin. Tie the NTC pin to GND to disable battery temperature
sensing [14].

TIMER (Pin 6): Timer Capacitor Input. A capacitor on this pin sets the maximum
duration for battery charging from charger enable or from the beginning of a
recharge cycle. For maximum charge duration of tTIMER (in Hours), the

required capacitance value can be determined as follows: CTIMER = (tTIMER •
18.2nF/Hr) A typical value of CTIMER is 100nF which terminates the

charge cycle after 5. hours. Minimize leakage on this pin to maintain timer
accuracy. The timer is disabled when this pin is tied to GND. In this case charging
terminates when the charge current falls below 1/10th of the programmed charge
current ICHG [14].

CHRG (Pin 7): Open-Drain Charge Status Output. Typically pulled up to a voltage
source through a resistor or a low power LED and a resistor. This pin is pulled low
by an internal NMOS when LTC4079 is charging the battery. The pin goes to high
impedance when the charge current drops below 1/10th of the programmed
current, or the charge cycle is timer terminated. [14]

FBG (Pin 8): Ground Reference for Battery Voltage Divider. This pin is connected
to ground internally through an NMOS switch when the battery is charging and
disconnects the battery voltage divider from GND when it is not needed. When

36

sensing the battery voltage the NMOS switch presents a low resistance (RFBG
=160Ω) to GND[14].

FB (Pin 9): Sense Pin for Divided Battery Voltage. This pin servos to 1.170V
(VFB(CHG)) during the constant-voltage phase of the battery charge algorithm.
The battery charge voltage is set by using an appropriate resistor divider from BAT
to FB to FBG. Minimize leakage and parasitic capacitance on this pin.

BAT (Pin 10): Battery Charger Output. This pin provides charge current to the
battery.

GND (Exposed Pad Pin 11): Ground. The exposed pad must be soldered to a
continuous ground plane of the printed circuit board for electrical connection and
the rated thermal performance.

Setting The Battery Charge Voltage

The battery charge voltage is set by connecting a resistor divider from the battery
to the FB and FBG pins as shown . The charge voltage is determined as follows:

VCHG = 1.170V • (1+RFB1)/(RFB2 +RFBG)

where RFB1 is the resistor from BAT to FB, RFB2 is the resistor from FB to FBG
and RFBG is the resistance of the internal switch of the FBG pin (160Ω typical.
Figure 12 is an image of how an actual package looks like.

Figure 12- LTC4079 chip (Permission was requested to Analog Devices)

37

The package is of a surface mount type with unique flat pinouts. A design of the
Eagle library was required since it is not a common shape, size, and number of
pins.

4.1.3 Voltage Regulator

The voltage regulation (VR) set point is one of the key specifications for charge
controllers. The voltage regulation set point is defined as the maximum voltage
that the charge controller allows the battery to reach, limiting the overcharge of the
battery. Once the controller senses that the battery reaches the voltage regulation
set point the input voltage supplied by the battery is suitable for the microcontroller
and other peripheral devices of the nodes such as wireless chips and sensors
which need a voltage regulator to regulate a constant 3.3 volt to aliment the board.

Figure 13 is the schematic for our voltage regulator.

Figure 13- Voltage Regulator Package (Permission was granted by TI)

After careful consideration we have chosen a switching regulator which is
constitute of LM1117 integrated circuit. The tab is connected to the second pin and
is intended for a heatsink.

38

4.1.4 Battery

Solar panels are non-ideal power sources; batteries are often paired with solar
panels to provide energy storage. The battery used for this project is the
Customized 18650 5 V output with a 2200 mAh. Figure 14 shows how the battery
looks. The battery was paired with the solar panel so that when there is not a
proficient amount of energy provided by sunlight to power the Node’s functions,
then the battery assists the node with the rest of the power it needs to maintain the
node’s functionality.

Figure 14- Customized 7.4 18650

4.2 Node: Processing System

As with any form of system, there had to be a main controller to direct all the micro-
operations of the node. Our choice of a micro-controller unit came down to many
factors primarily including power consumption, adequate IO and ADC pins, and
ease of programmability. Our candidate is the ATmega328P-PU, this choice was
finalized based on our familiarity with this chip. The ATmega328P-PU is an Atmel,
now owned by Microchip, IC commonly found on the known development board
called Arduino.

4.2.1 Micro Processing Unit

This device has a power consumption of only 26 mW when active and drops to 6
mW when idling. With this low of a power consumption rate, it’s a fit for our
wireless, solar powered design. The biggest advantage of this chip is the stated
familiarity of the device. Arduino provides an IDE that is user-friendly to program
in and debug. We used an existing Arduino board as a programmer for this chip.
This enables us to easily program the chip without adding excess hardware to our

39

project design. And if in the case of a MCU failure, the PDIP socket allows for easy
swap-out of chips.

ATmega328P-PU is based on the 8-bit AVR family of microcontrollers with a RISC
architecture meant for low power consumption and IO peripherals in an embedded
environment. Figure 15 shows the package for the MCU. The advantage of this
MCU is that it features multiple types wired communication which is needed to
interface with the rest of the hardware.

With 28 available pins, UART, I2C, and SPI can all be used simultaneously with
additional IO pins allocated. In our design we only need a certain number of pins.
Pin 7 is the VCC for powering the MCU ranging from 3.3-5.0V, Pin 8 and 22 are
the ground pins for sinking current. Pin 24 is PC1 which can be configured as and
ADC input for our sensor. Pins 15, 17, 18, 19 will be configured as IO for selecting
a slave device, specifically the RF module, MOSI (Master Out Slave In), MISO
(Master In Slave Out), and SCK (Serial Clock) respectively. This is the SPI
interface which is required for communication with the RF module.

Figure 15- ATmega328P-TQFP (Permission was requested to Microchip)

40

This variant of the MCU is a surface mount device, therefore making it one-sided
and avoids excess drilling. With modern electronics being mostly surface mount,
most of our design was aimed to be kept up with this standard.

The Arduino community and Atmel as a whole provides a lot of support to
troubleshoot any arising problems. Since Arduino is an open-source hardware,
integration of the device is readily available, and marketable under the correct
licenses.

4.2.2 MCU Programmer

The advantage of using the ATmega328P-PU is the Arduino hardware available
for this device. The Arduino was initially used as a breadboard prototyping for
testing components as well as doubling as a chip programmer. First upload the
Arduino with ArduinoISP file, this allows it to be used a programmer. Then attach
the new chip via SPI and burn the bootloader from the Arduino IDE to chip. Last
write the code for the node, then upload using the Arduino. Once completed the
chip is then disconnected and soldered into our PCB while maintaining the written
code.

4.3 Node: Communication System

Our design is based on a mesh network of sensor to accurately measure soil
across a wide range of field. For this to happen a form of RF communication is
needed. A mesh is a type of wireless multipoint network where any one device, a
sensor node in our project, can relay a message to any other device. The
advantage of this is the possible scalability across a field. A gateway is responsible
for collecting data and issuing commands to any node. If the requested node is set
at a distance past the wireless range limit, an arbitrary node located in some mid-
point between the gateway and the requested node acts as a repeater of message.
The gateway broadcasts the message, the arbitrary node receives that message
and rebroadcast it, and finally the requested node listens in on the rebroadcast.
The larger the distance, the increased number of bounces happen.

Our decision on a viable component came down to these main requirements listed.
First and foremost, the compatibility between the RF module and our
ATmega328P-PU, with the support for an existing library to simplify our code and
ease of programmability. Second requirement was the choice of frequency and
protocol, which was decided upon the 2.4 GHz ISM radio band defined by the IEEE
802.15.4 standard. This type network is proven to be effective for personal multi-
device set up. The last main requirement was an access for an external antenna
via U.FL (IPEX) connection. This allows for a burrow of the device without the
sacrifice of RF range.

41

4.3.1 RF Module

After extensive research our choice for this component came down to nRF24L01+
mini. It is a surface mount module with nRF24L01 chip embedded, this device is
wired to the MCU via SPI, a four-wire interface which out performs the I2C in terms
of data speed up to 10 Mbps. This module has a wireless transmission rate of up
to 2 Mbps. While active the module consumes 42.9 mW during transmission of
data and 37.95 mW during reception of data. And only consumes as low as 3.3
uW during sleep.

nRF24L01 consists of eight surface mount pads used to wire to the rest of our PCB
depicted in Figure 16. Pin 1 is the VCC at 3.3V, pin 2 being the ground. Pin 3 is
CE(Chip Enable) for powering down the device. Pins 4, 5, 6, 7 are CSN(Chip
Select), SCK, MOSI, and MISO respectively, wired to the MCU for interfacing. Pin
8 is IRQ, an interrupt request pin, not currently implemented in our design.

The device is readily available with a low cost and power consumption made this
a desired device in our design.

Figure 16- nRF24L01+ Mini

Since this module uses the nRF24l01+ as its transceiver, it’s compatible with open-
source libraries and know uses mesh networking. The module made
communication easy and integration applicable.

4.4 Node: Geolocation System

The need to setup a coordinate for each node is a need for our database, and for
our web-app to accurately map the Nodes with potential location. As an initial
install a GPS is only needed when setting or editing a location. This location also
provides information to the Autonomous Irrigation Vehicle for accurate watering,
thus achieving our objective.

4.4.1 GP-20U7

42

Based on research and availability, the Satellite System, also known as the GPS,
is the best fit for our application. In particular the GP-20U7 is the optimal choice,
with UART interface making it easy to communicate and available libraries to
command this device. This very GPS module only draws 40 mA at 3.3V.

Figure 18- GP-20U7

Figure 17 depicts an image of a GPS module. With a small size and a shielding for
its internal circuit. This module was easily integrated into our design. Making our
Nodes capable of Geolocation.

4.5 Node: Environmental Sensor System

The system has taken into consideration power consumption which was aimed be
minimized as much possible at every level of the system design. Each node is
constituting of a probe with multiple sensors to monitor the moisture and
temperature in the soil. Each sensor in the probe was calibrated to measure the
data from the soil in order to properly convert the output of sensor to a measured
unit, and the output of the sensor is interfaced with a microcontroller. To optimize
the quantity, diversity and accuracy of information extracted from a precision
irrigation deployment, a variety of reliable, high-performance and cost-effective
sensor technologies were required. Many parameters were controlled such as
temperature, humidity, soil moisture. These Nodes allowed for the installation of a
large number of sensors with wireless data transfer to a base station. Several soil
parameters had to be controlled to have an efficient irrigation system. Measuring
soil moisture is important to calculate the exact quantity of water needed for each
region in a field. Measuring temperature indicates when to open the water
container or send a message to an AIV to start irrigating an area. There are
different principles of moisture sensors such as capacitive sensors where soil
moisture content is determined via its effect on dielectric constant by measuring

43

the capacitance between two electrodes implanted in the soil. In our project the
chosen system is the resistive method which consists of two electrodes enclosed
in a block of porous material. Resistance blocks work on the principle that water
conducts electricity. The electrical resistance between the two electrodes
increases as the water content of the porous block decreases. The principle key
to implement this method is the voltage divider circuits which reads out the voltage
drop across the soil samples and converts the voltage drop reading to the moisture
level of the soil. As the moisture level increases, resistance of the metal (usually
metal pins) decreases, that is, conductance of the metal increases and similarly
when the moisture level decreases the resistance of the metal increases, that is,
conductance then decreases. Therefore, this sensor was used instead of a
conductivity sensor because it is insensitive to salinity and it is not corrosion over
time. Indeed, the sensor used is small, rugged and of lower power. The soil
moisture sensor was provided by UCF for soil monitoring, and with sensor (DHT22)
we can control ambient temperature and humidity. The two-wire serial interface
and internal voltage regulation allows for easy and fast system integration. The tiny
size and low-power consumption makes DHT22 the ultimate choice for our project.
When urgent conditions are detected on other nodes, a signal will be given to an
AIV or the actuator to open or not the water valve for irrigation. To control the
irrigation process, we would have used solenoid valves provided by Orbit Irrigation
for testing purpose. The electric valve is a low-power consumption device and it is
powered with 24 V for 50/60 Hz. In other words, sensor nodes went to sleep when
idle and woke up to transmit data when required. The irrigation valves opened or
closed depending on the values stored in the coordinator node.

4.5.1 VH400

We decided to use the VH400 sensor primarily for its accuracy and relevant data
format. This sensor is made by Vegetronix, making this device reliable. Its output
as an analog voltage reading correlated to moisture content. Integrating this device
was easy since it only requires an ADC, and manipulation of the reading to convert
it to VMC. Figure 19 is an image of the sensor.

44

Figure 18- VH400 Sensor

This picture depicts the probe, which is powered via 5V and reads the
measurement based on capacitance.

4.5 Node: Enclosure

We are not creating the sensors that will make our network system more efficient,
we are instead seeking methods to build on to the beneficial impact of these
sensors to society that the group who built these sensors were not able to
implement themselves due to a lack of time or due to a degree of difficulty. The
main way we attempted to improve the already existing design of these sensors

45

was by enclosing the sensors along with the other hardware components we would
have been included in each node of the network with a cover that keeps all the
materials inside of this enclosure safe from the harm that outside conditions can
impose on electrical equipment. The enclosure was not made to be fully
impenetrable, however, to allow the hardware inside each node to receive solar
energy through their solar panels.

4.5.1 Material Composition

The material of the enclosure had to be an acceptable balance between durable
and lightweight, so that the enclosure could be easily movable and so that it would
not self-implode and break inward, harming the contents of the Node, but also
could not have been too light to the point that an insignificant force, such as a light
wind, could relocate or deface enclosure material used.

4.5.2 Shape

Along with being lightweight and durable, the enclosure had to embrace a shape
that covers the whole area of the node without being obtrusive to the field of grass
that these Nodes were placed on. The shape had to also be as small as it can
possibly be made while also covering the whole node with enough breathing room
to spare for all the hardware located within each node to run at its standard level
without suffering from heat damage in a small enclosure. This minimal design
helped our group save money that was properly allocated toward other getting a
hold of other necessary products.

4.6 Node: Optional Watering System

When the concept of our project was initially thought of, our solution to efficient
irrigation involved using our own solenoids to connect our own mesh network. After
we talked to our professor and previous sponsor, we decided that we would not be
focusing solely on the networking aspect of our initial concept rather than
incorporating sprinklers into it. As a result, we decided to leave pins on our nodes
that can connect to a solenoid and be tested with a sprinkler network should our
group ever decide to explore the capability that our network will have with different
instruments of watering plant life.

4.7 Gateway: Central Hub

Although personal computers are relatively inexpensive, there are distinct
disadvantages to using them in a sensor networks project, especially as sensor
nodes. If the sensors are located in areas where main power is unreliable or
unavailable, or where there is a risk of overheating, or where there is simply no
room to install a personal computer, we must either transmit the data to another
node for processing or store it locally and process it later. However, there is
another limitation to using a personal computer as a sensor node: a personal
computer has no general input/output (I/O) ports. We could have purchased
expansion cards for collecting data, but these are often built for use in server or

46

desktop computers. The cost of the computer and the data-collection card, the cost
of the sensor node becomes uneconomical. So what do you do in these cases? If
only there were a low-cost computer with sufficient processing power and memory,
that used standard peripherals, supported programmable I/O ports, and had a
small form factor. That’s exactly what the Raspberry Pi can do, and Figure 20
depicts an image. For the base station, we used a low power credit-card-sized
single-board computer Raspberry Pi Model B. The CPU on the board is an ARM
processor with 700 MHz clock speed. CPU performance can be compared to a
Pentium II 300 MHz processor. It has a variety of interfacing peripherals, including
USB port, HDMI port, 512MB RAM, SD Card storage and interestingly 8 GPIO port
for expansion. Monitor, keyboard, and mouse can be connected to Raspberry Pi
through HDMI and USB connectors and it can be used like a desktop computer. It
supports a number of operating systems including a Debian-based Linux distro,
Raspbian, which is used in our design. Raspberry Pi can be connected to a local
area network through Ethernet cable or USB Wi-Fi adapter, and then it can be
accessed through SSH remote login. Functional building blocks of the base station,
including gateway application, database, and web application, are shown in the
Abstraction section. Raspberry Pi is connected to the network with an attached
shield containing nRF24L01 module. The gateway application is the intermediate
layer between the sensor network and the database. It sends out configuration and
data collection commands to sensor nodes and inserts the data received from
sensor nodes into the MySQL database. The gateway application is programmed
in Python that comes built-in with Raspbian. Some of the required Python
packages include PySerial 2.7, MySQL-python 1.2.5, Advanced Python Schedule
(APScheduler 2.1.2)

47

Figure 19- Raspberry Pi Model B

With all taken into consideration for our application, the Raspberry Pi is the best fit
for our design and was used in our project accordingly.

4.8: Gateway: OS

All the data that is gathered and used during the usage of the sensor network in
this project travels from the sensors into the Raspberry Pi being used through the
Linux server that is used to control the functions of the network. Although the
students in this group all have Windows computers and perform most of their daily
tasks involving a computer on Windows, a Linux server has been chosen to
operate the functions of the mesh network due to the familiarity that a couple of
our students already have with running commands on Linux command prompt to
control a Raspberry Pi. This technology is designed to be better equipped for code
ran in a Linux environment. In addition to the ease of use between Linux and
Raspberry Pi, coding the Pi’s functions in Linux format allows for a deeper learning
and understanding of the Linux OS, which is not commonly used in most electrical
or computer engineering classes offered at UCF. Using Linux as the gateway
provides us with a beneficial change from the Windows programs that are usually
used by this project’s group members. There are several engineering companies
that are currently involved and will continue to be involved with projects that are
centered around a Linux programming environment. Working with a Linux OS has
provided us with a broader scope of technical range in terms of software and
hardware, widening the scope of jobs that we will be able to obtain upon
graduation. The students in this group currently have experience with running
Linux commands in a virtual machine running a less modern version of Ubuntu.
Since Linux is open-source under the GNU General Public License, support is
available via forums or other guides, and the support for a LAMP stack is easily
implemented. This support has lessened our learning curve for the OS.

4.9 Network Topology

There are many types of potential network setup each with pros and cons. By
carefully understanding these networks and how each can be implemented is
crucial for our design. Setting up the network is vital in terms of speed and power
consumption. If not networked correctly the overuse of a single Node or a fail in
data transfer can be a potential issue. Collaborating with our client to figure out the
land space and how to set up is necessary. Although many topologies exist, only
a few need to be considered for our application, based on number of devices,
distance, and frequency of communication.

4.9.1 Mesh Topology

Generally, a WSN consists of a number of sensor network nodes and a gateway
for the connection to the internet. The general deployment process of a Wireless
Sensor Network is as follows: firstly, the sensor network nodes broadcast their
status to the surroundings and receive status from other nodes to detect each

48

other. Secondly, the sensor network nodes are organized into a connected network
according to a certain topology (linear, star, tree, mesh, etc.). Finally, suitable
paths are computed on the constructed network for transmitting the sensing data.
The power of sensor network nodes is usually provided by batteries, so the
transmission distance of WSN nodes is short. The transmission distance can be
up to 800 to 1000 meters in the open outdoor environment with line of sight. It can
sharply decline in the case of a sheltered indoor environment to an estimated few
meters. In order to expand the coverage of a network, the sensor network uses
multi-hop transmission mode. That is to say the sensor network nodes are both
transmitter and receiver. The first sensor network node, the source node, sends
data to a nearby node for data transmission to the gateway. The nearby node
forwards the data to one of its nearby nodes that are on the path towards the
gateway. The forwarding is repeated until the data arrives at the gateway.

The positions of WSN nodes are random, and the nodes can be moved, sheltered
and interfered with. The topology of mesh networks have great advantages in
flexibility and reliability compared with other network topologies. The self-
organizing management approach of network nodes can greatly improve the
robustness of the network, resulting in a smart mesh networking technology, as
shown in Figure 18. In smart mesh ad hoc networking technology, the node first
monitors the neighbor nodes and measures the signal strength, and then it selects
the appropriate neighbor node for time synchronization and sends a joining
request. Then the neighbor node delivers the request to the gateway. The gateway
receives the request and assigns network resources for the node. Figure 21
displays an example of the mesh network.

Figure 20- Mesh Network

This network will ultimately vary between land spaces as more or less Nodes were
required in different instances. The position of the base station is also be

49

determined by the exterior faucet for hoses. This needs to be in close proximity as
required by the Autonomous Irrigation Vehicle. The implementation of the network
is based on RF24Mesh libraries from NRF24L01+.

RF24 supports a variety of Linux based devices via various drivers. Some boards
like Raspberry Pi can utilize multiple methods to drive the GPIO and SPI
functionality [17].

PIN NRF24L01 RPI
RPi -P1
Connector

1 VCC rpi-3v3 (17)

2 GND rpi-gnd (25)

3 CE rpi-gpio22 (15)

4 CSN rpi-gpio8 (24)

5 SCK rpi-sckl (23)

6 MOSI rpi-mosi (19)

7 MISO rpi-miso (21)

8 IRQ - -

Table 2- nrf24l01 and Raspberry Pi Connection

Code 2 manually configures a node via RF24Mesh, and sends data to the master
node. The nodes then refresh their network address as soon as a single write fails.
This allows the nodes to change position in relation to each other and the master
node[17].

#include "RF24Mesh/RF24Mesh.h"

#include <RF24/RF24.h>

#include <RF24Network/RF24Network.h>

RF24 radio(RPI_V2_GPIO_P1_15, BCM2835_SPI_CS0,
BCM2835_SPI_SPEED_8MHZ);

RF24Network network(radio);

RF24Mesh mesh(radio,network);

uint32_t displayTimer=0;

int main(int argc, char** argv) {

// Set the nodeID to 0 for the master node

http://tmrh20.github.io/RF24/classRF24.html
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html
http://tmrh20.github.io/RF24Mesh/RF24Mesh_8h.html
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a8f6cf4daca08e3fe0338e3e9d651f59c
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#aa7924d94ea32c8d33a81ff41f8678320
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a8f6cf4daca08e3fe0338e3e9d651f59c
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a8f6cf4daca08e3fe0338e3e9d651f59c
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#aa7924d94ea32c8d33a81ff41f8678320
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a3c04138a5bfe5d72780bb7e82a18e627

50

mesh.setNodeID(4);

// Connect to the mesh

printf("start nodeID %d\n",mesh.getNodeID());

mesh.begin();

radio.printDetails();

while(1)

{

// Call mesh.update to keep the network updated

mesh.update();

// Send the current millis() to the master node every second

if(millis() - displayTimer >= 1000){

displayTimer = millis();

if(!mesh.write(&displayTimer,'M',sizeof(displayTimer))){

// If a write fails, check connectivity to the mesh network

if(! mesh.checkConnection()){

// The address could be refreshed per a specified timeframe or only when
sequential writes fail, etc.

printf("Renewing Address\n");

mesh.renewAddress();

}else{

printf("Send fail, Test OK\n");

}

}else{

printf("Send OK: %u\n",displayTimer);

}

}

delay(1);

}

return 0;

}

http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a9d3e662216ffd890e019537a95297ed4
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a38be0ba49fea6986dedd976f18865912
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a4159edcb2a13c713cd9c524315270902
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a8f6cf4daca08e3fe0338e3e9d651f59c
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a7a07df36e2d69a9cdaa9519e32854130
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a34535daf39ead14698f3718037358394
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a6330a2502e680f13e6ded3ff07d71087
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a01e3844c6f04bf81bac6e45c3d75116e
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb

51

#include "RF24Mesh/RF24Mesh.h"

#include <RF24/RF24.h>

#include <RF24Network/RF24Network.h>

// Set the nodeID to 0 for the master node

mesh.setNodeID(4);

// Connect to the mesh

printf("start nodeID %d\n",mesh.getNodeID());

mesh.begin();

radio.printDetails();

while(1)

{

// Call mesh.update to keep the network updated

mesh.update();

// Send the current millis() to the master node every second

if(millis() - displayTimer >= 1000){

displayTimer = millis();

if(!mesh.write(&displayTimer,'M',sizeof(displayTimer))){

// If a write fails, check connectivity to the mesh network

if(! mesh.checkConnection()){

// The address could be refreshed per a specified timeframe or only when
sequential writes fail, etc.

printf("Renewing Address\n");

mesh.renewAddress();

}else{

printf("Send fail, Test OK\n");

}

}else{

printf("Send OK: %u\n",displayTimer);

}

}

http://tmrh20.github.io/RF24Mesh/RF24Mesh_8h.html
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a9d3e662216ffd890e019537a95297ed4
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a38be0ba49fea6986dedd976f18865912
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a4159edcb2a13c713cd9c524315270902
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a8f6cf4daca08e3fe0338e3e9d651f59c
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a7a07df36e2d69a9cdaa9519e32854130
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a34535daf39ead14698f3718037358394
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a6330a2502e680f13e6ded3ff07d71087
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#a97c1eaa120a7add40ebbfb9b3d9268a4
http://tmrh20.github.io/RF24Mesh/classRF24Mesh.html#a01e3844c6f04bf81bac6e45c3d75116e
http://tmrh20.github.io/RF24Mesh/RF24Mesh__Example_8cpp.html#ad695861895afdc79032ebba7436c5bdb

52

delay(1);

}

return 0;

}

Code 2- Raspberry Pi Mesh Config

As the master node is configured as the gateway node where almost every
communication occurs between Nodes and the master Node, we also need some
Node to Node communications which is provided by this code. This code defines
the node to node communication using four principals libraries: RF24,
RF24Network, SPI, and RF24Mesh. The code to make this node communication
operable, Code 3, is shown below.

#include "RF24.h"

#include "RF24Network.h"

#include "RF24Mesh.h"

#include <SPI.h>

//#include <printf.h>

//########### USER CONFIG ###########

/**** Configure the nrf24l01 CE and CS pins ****/

RF24 radio(7, 8);

RF24Network network(radio);

RF24Mesh mesh(radio, network);

/**

* User Configuration:

* nodeID - A unique identifier for each radio. Allows addressing to change
dynamically

* with physical changes to the mesh. (numbers 1-255 allowed)

*

* otherNodeID - A unique identifier for the 'other' radio

*

**/

#define nodeID 3

53

#define otherNodeID 2

//#################################

uint32_t millisTimer = 0;

uint32_t stringTimer = 0;

char dataStr[] =
{"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ12345678
90"};

char tmpStr[sizeof(dataStr) + 1];

uint8_t strCtr = 1;

uint32_t delayTime = 120;

void setup() {

Serial.begin(115200);

//printf_begin();

// Set the nodeID manually

mesh.setNodeID(nodeID);

// Connect to the mesh

Serial.println(F("Connecting to the mesh..."));

mesh.begin();

}

unsigned int sizeCtr = 2;

uint32_t errorCount = 0;

uint32_t duplicates = 0;

uint32_t totalData = 0;

void loop() {

mesh.update();

while (network.available()) {

RF24NetworkHeader hdr;

size_t dataSize = network.peek(hdr);

totalData += dataSize;

if (hdr.type == 'S') {

54

if (dataSize != sizeCtr) {

if (dataSize == sizeCtr + 1) {

duplicates++;

}

sizeCtr = dataSize + 1;

errorCount++;

} else {

sizeCtr++;

if (sizeCtr > sizeof(dataStr)) {

sizeCtr = 2;

}

//if(sizeCtr > 12){ sizeCtr = 2; }

}

network.read(hdr, &tmpStr, dataSize);

//Serial.println(tmpStr);

} else if (hdr.type == 'M') {

uint32_t mills;

network.read(hdr, &mills, sizeof(mills));

Serial.print(F("Rcv "));

Serial.print(mills);

Serial.print(F(" from nodeID "));

int _ID = 0;

_ID = mesh.getNodeID(hdr.from_node);

if (_ID > 0) {

Serial.println(_ID);

} else {

Serial.println("Mesh ID Lookup Failed");

}

Serial.print(F("Total Data Received: "));

Serial.print(totalData);

55

Serial.println(" bytes");

Serial.print(F("Detected Errors in data received (Including Duplicates): "));

Serial.println(errorCount);

Serial.print(F("Duplicates: "));

Serial.println(duplicates);

Serial.println(F("-------------------------------------"));

}

}

// Send to the master node every second

if (millis() - millisTimer >= 1000) {

millisTimer = millis();

// Send an 'M' type to other Node containing the current millis()

if (!mesh.write(&millisTimer, 'M', sizeof(millisTimer), otherNodeID)) {

Serial.println(F("Send fail"));

if (! mesh.checkConnection()) {

Serial.println(F("Renewing Address"));

mesh.renewAddress();

} else {

Serial.println(F("Send fail, Test OK"));

}

} else {

Serial.print(F("Send OK: ")); Serial.println(millisTimer);

}

}

if (millis() - stringTimer >= delayTime) {

stringTimer = millis();

//Copy the current number of characters to the temporary array

memcpy(tmpStr, dataStr, strCtr);

//Set the last character to NULL

tmpStr[strCtr] = '\0';

56

// Send the temp string as an 'S' type message

// Send it to otherNodeID (An RF24Mesh address lookup will be performed)

//bool ok = mesh.write(tmpStr,'S',strCtr+1,otherNodeID);

if (mesh.write(tmpStr, 'S', strCtr + 1, otherNodeID)) {

strCtr++;

delayTime = 333;

//Set the sending length back to 1 once max size is reached

if (strCtr == sizeof(dataStr)) {

strCtr = 1;

}

//if(strCtr == 12){ strCtr=1; }

}

}

}

Code 3- Mesh Operation

4.9.2 Data Aggregation Network

In the energy-constrained sensor network environments, it is unsuitable in
numerous aspects of battery power, processing ability, storage capacity and
communication bandwidth, for each node to transmit data to the sink node. This is
because in sensor networks with high coverage, the information reported by the
neighboring nodes has some degree of redundancy, thus transmitting data
separately in each node while consuming bandwidth and energy of the whole
sensor network, which shortens lifetime of the network. Data aggregation
technology saves energy and improves information accuracy, while sacrificing
performance in other areas. On one hand, in the data transfer process, looking for
aggregating nodes, data aggregation operations and waiting for the arrival of other
data are likely to increase in the average latency of the network. On the other hand,
compared to conventional networks, sensor networks have higher data loss rates.
Data aggregation significantly reduces data redundancy but lose more information
inadvertently, which reduces the robustness of the sensor network. Figure 22
depicts an example.

57

 Figure 21 - Data Aggregation Network Topology

As you can see in the figure above, the location of the base station is vital for our
network. Since the base station is more likely than not to be near the side of a
house, the range of connection is severely limited, thus putting a lot of network
strain on the base station and potentially causing a bottleneck of data.

4.10 Web Application

A major area of focus for MOIST, in order to enhance its efficiency and user-
friendliness, is the web application we incorporated into our design that can
assist users of the mesh network with checking the status of each node in the
network, maintaining an operable watering system, and deploying commands
through any of the nodes using a computer or smartphone with privileged access
to the network.

4.10.1 Web Application Setup

The web application from the user’s perspective initially was going to consist of a
login screen so that the network remains secure and only allows those authorized
to control the water usage of this patch of grass to have access to the system. The
login screen then takes the user to a home page displaying the status of every
sensor currently engaged within the mesh network. This page will indicate to the
user what sensors are active and their most recent readings. From this page, users

58

will be able to toggle the functionality of each sensor, such as what sensors should
be turned on or off. There will be five API’s (Application Programming Interface)
running on the web application that will make the user functions described
possible: login, search, status, and operations. There is only four in order to keep
the web application simple and allow users to log in and immediately check their
desired information.

The login screen was later deemed unnecessary since the network is already
secure because everything is running on a localhost and not on the internet.

The client-side web interface is implemented with HTML, CSS, JavaScript, Ajax,
jQuery, and Flot. HTML and CSS is used in combination to markup and style the
web page. JavaScript is used for client-side scripting to enable dynamic display
and interactive user interface. jQuery is a widely-used JavaScript library that
greatly simplifies JavaScript programming. Ajax, an acronym for Asynchronous
JavaScript and XML, is a group of interrelated web development techniques used
on the client side to create asynchronous web applications. With Ajax, client-side
web applications can exchange data with a server asynchronously in the
background without interfering with the display and behavior of the existing page.
Flot is a JavaScript plotting library for jQuery, with a focus on simple usage,
attractive looks and interactive features. Generally, it supports all browsers that
support the HTML5 canvas tag. In our design, we thought about using Flot which
can be used to visualize sensor data in both static and dynamic real-time graphical
displays. In the real-time display mode, instead of refreshing and redrawing entire
web page, Flot provides the capability to only update the chart with new data that
are fetched periodically from the server. Ajax and jQuery are used in our design to
feed the Flot charting functions with continuous flow of data from the MySQL
database on the server via the web services written in PHP. The data is serialized
into the JSON (JavaScript Object Notation) format to be communicated between
server and client. With the data access utility, users can download and view sensor
data stored in the database conveniently. also monitor the sensor data updates in
real-time using the real-time display utility. With the system configuration utility,
authorized users can configure the sensor network system with a number of global
and node-level settings, including measurement period, which sensor nodes to
measure, and which sensor to measure. The configuration requests generated by
users on the web interface are sent asynchronously to web service on the server
and the requests are inserted into a command table in the MySQL database. The
gateway application monitors the network command table periodically for any
configuration updates to be sent to sensor nodes. The command table is used to
share data between gateway application and web application. Such a design
decouples gateway application and web application and greatly simplifies the inter-
process data sharing problem. In general, environmental monitoring applications
are tolerant to delays in the order of seconds or even minutes, so that the amount
of delay introduced by such a method is acceptable in our targeted application
scenarios. The sensor nodes and base station can work independent of web
application. Authorized users can directly access the data and command tables in
the database and remotely configure sensor nodes from Raspberry Pi by logging

59

into its Linux system. On the other hand, the web application can be updated
without interfering or interrupting sensor nodes and the gateway application
residing inside the Raspberry Pi. Such a design makes it very convenient to
perform application-specific customization and revision of the system.

4.12 Web Application API’s

 The web application used in this project functions through the use of several API’s
(Application Programming Interfaces). Each API is in charge of carrying out a
process that can assist users of the app in monitoring the mesh system and
implementing commands when manual interaction with the node system is
required. The API is also responsible for interconnecting the different parts of the
server to each other.

4.12.1 Login API

The login API will consist of a login screen that takes in the user’s username and
password before allowing entry into the program. The login screen will have a sign
in and sign up button. For signing in, the API will ensure that only usernames and
passwords that have already been registered can access the application’s
functionalities. When signing up a new user, the registration screen will ensure that
emails have to be entered in the correct format (example@example.com) and that
the password corresponding to a user is at least 8 characters long. Since the
watering conditions of a property with grassland on it should only be alterable by
the persons in charge of the property, the web application will only store one
username and password. Users will have the option to change their username and
password and submit a new password, should they forget their old one, using email
confirmation. Code 4 is the PHP login code for the web application, containing
valuable information such as the URL of the server we will be using to host our
web application when it is online and functional.

<?php

 $con = mysqli_connect("groupGdb.co9dcxo307nm.us-east-

2.rds.amazonaws.com", "groupGDB" , "groupG" , "groupGDB");

 $username = $_POST["username"];
 $password = $_POST["password"];

 $statement = mysqli_prepare($con, "SELECT * FROM Testing WHERE
 username = ? AND password = ?");
 mysqli_stmt_bind_param($statement, "ss", $username, $password);
 mysqli_stmt_execute($statement);

 mysqli_stmt_store_result($statement);
 mysqli_stmt_bind_result($statement, $userID, $username, $password);

60

 $response = array();
 $response["success"] = false;

 while(mysqli_stmt_fetch($statement))
 {
 $response["success"]= true;
 $response["username"]= $username;
 $response["password"]= $password;
 }

 echo json_encode($response);

?>

Code 4- Login PHP Code

Depicted above is the code that not only connects the web application to the URL,
but also makes few calls to the database for accessing login credentials. Thus,
making the network secure from hacking and misuse.

The login API was ultimately left out of the web-app since hosting our software
locally is secure enough for the operation that our system undergoes.

4.12.2 Status API

The status API retrieves the status of each moisture sensor upon logging into the
web application. If a sensor is active, the data it is currently possessing is retrieved
and displayed on the web application screen. If the sensor is off, a “not available”
reading is displayed. This API functions through the RF device attached to each
sensor. When the status screen is being displayed on a user’s device, the most
recent moisture readings are then available. Users also have the option of
refreshing the status page to ensure that the most up-to-date readings are being
displayed to them.

4.12.3 Search API

The search API will allow a user to sort the sensors in current use by number,
activity status, and location and will allow a user to search for a certain sensor.
This command will simply consist of a search implementation into the web
application. The search bar will have autofill capability, meaning the name of each
sensor may come up in the search bar before the user is done typing in the full
name of the sensor.

The search API was left out of the web application since the number of nodes used
in testing our project (three) did not require us to have to search for any of them.

4.12.4 Add/Delete API

61

The Add/Delete API allows a user to add a new sensor to be used in the current
system of sensors in the initial setup of a network and after a network of sensors
already goes into use. When a user first uses the web application, the option to
add sensors into the current system is available until the user decides to start using
the system. After the system is already in use or has already been used, the user
has the option to add more sensors into the current network, given that the network
is not currently in use when the user decides to add a new sensor. Deleting a
sensor from the system functions similarly to the add API. Rather than creating a
new row for the new sensor when adding one, the row of the existing sensor in the
database is deleted.

4.12.5 Operations API

The operations API controls the sensors via the web application, placing the
current location of each sensor into the location database, and sending the location
of each sensor that reads a moisture level lower than the desired level to the
watering robot. Users have the option to turn sensors on and off, if they are
connected to a power source, and collect a reading from the sensors through the
press of a button. This functions by a signal being sent to the sensors when a user
presses a command in the web application. The location of each sensor is placed
into the location database through the user. Before the network is initially put into
use, the user goes up to the desired location of each sensor and presses a button
at these locations. A GPS system built into the web application tracks the current
latitude and longitude of the desired location and enters it into the location
database. If a previous location for the sensor already exists, the new location then
overwrites it. Once the locations for all the sensors that are being used are loaded
into the database, the web application tue emits the location of the sensors with
low readings as an X, Y coordinate on the plane which is the field of grass.

4.13 Database

At the base of the communication between the sensors and the central hub lies
the location database. This database keeps track of the positions of each sensor
in the field plane. The positions of these nodes are entered manually through a
web application once the sensors are placed in the ground. The choice to enter
these locations manually, rather than have GPS functionality on each sensor, was
chosen to decrease the cost of each sensor and the decrease the complexity of
each sensor’s setup. Any data that the sensors report corresponds to their location,
meaning the central hub considers the sensor readings to reflect the status of
moisture in that area. When changes in the sensors occur, the sensors’ current
status is then retrieved from the database and then altered to reflect its current
standing.

4.13.1 Database Format

A MySQL database is used to store the locations, along with the level of moisture,
temperature, and humidity at each location. When new readings are discovered,

62

the old information in the database is swapped out with the new readings. The
database is organized into four columns: the sensor number, its location, its level
of activity (on/off), and its moisture reading. There is a row for each sensor. The
information in the database is read to a user when accessing the web application
to check the status of the sensors. Table 2 is an example of the organized
database.

Table 3 is an example of how the data is stored, as you can see each record is
identified by a unique Node ID, that is associated to each Node out on the field.
The location is only updated at the initial setup and any other time the user wants
to edit this field of data. The on/off state and moisture readings are updated
periodically as new readings are registered from the Nodes. This database
organizes the data, and looks up the ones in need through an associated API
making the call. To the user this is all running in the background without much
visual indication of what is happening.

Sensor # Location On/Off Moisture Reading

1 28.5383° N,
81.3792° W

On 10%

2 28.5383° N,
81.3792° W

On 15%

3 28.5383° N,
81.3792° W

On 20%

4 28.5383° N,
81.3792° W

Off N/A

5 28.5383° N,
81.3792° W

On 30%

6 28.5383° N,
81.3792° W

Off N/A

7 28.5383° N,
81.3792° W

On 20%

8 28.5383° N,
81.3792° W

Off N/A

… … … …

63

Table 3 - MySQL Location Database Example

4.13.2 Database Server Configuration

MySQL uses the InnoDB storage engine by default. InnoDB is a fully transactional,
ACID storage engine. A transaction is a batch of statements that must all succeed
before any changes are written to disk. Code 5 is necessary for the Raspberry Pi
to communicate with the database is shown below:

pi@raspberrypi $ sudo apt-get update

Hit http://archive.raspberrypi.orgwheezy InRelease

Get:1 http://mirrordirector.raspbian.orgwheezy InRelease [12.5 kB]

Get:2 http://mirrordirector.raspbian.orgwheezy/main armhf Packages

Hit http://archive.raspberrypi.orgwheezy/main armhf Packages

Ign http://archive.raspberrypi.orgwheezy/main Translation-en_GB

Ign http://archive.raspberrypi.orgwheezy/main Translation-en

[...]

pi@raspberrypi $ sudo apt-get install mysql-server

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

heirloom-mailx libaio1 libdbd-mysql-perl libdbi-perl libhtmltemplate-

perl

libmysqlclient16 libnet-daemon-perl libplrpc-perl mysql-client-5.5

mysql-common mysql-server-5.5 mysql-server-core-5.5

Suggested packages:

exim4 mail-transport-agent libipc-sharedcache-perl libterm-readkeyperl

Tinyca

pi@raspberrypi $ mysql -uroot -psecret

Welcome to the MySQL monitor. Commands end with ; or \g.

64

Your MySQL connection id is 42

Server version: 5.5.28-1 (Debian)

Code 5- Database Install Commands

4.13.3 MySQL Database Client

When your sensor network is connected to the Internet—or, more precisely, your
slave is connected to the Internet—you can use your mobile phone to read the
data from anywhere. Several applications that you can download for your
smartphone and tablet allow you to access MySQL servers. For example, the
MySQL Lite app for iPhone. This feature is more of a developer use, as the web-
app was developing, we needed a way to make sure the data was being stored
and organized correctly. For the users, the web-app ultimately serves this purpose
in a more graphic manner. That is the only way that the necessary data is viewed
and all the data for the internal process is stripped and preventing a potential
misuse.

4.14 Useful Data Representation

Throughout the course of this project and throughout the testing of the nodes, there
is a vast amount of data that the mesh network takes in and spreads within itself.
One extra step we chose to take towards a more efficient solution to irrigation
problems that current irrigation systems in place right now have is to represent the
data collected by each node in a manner useful to promoting the efficiency of our
project. Over the course of a month of the irrigation method that this project uses’
performance, enough data that the nodes collect is sent to the computer in place
for this system and helpful charts and graphs are to be produced for users of this
specific irrigation, displaying statistics such as the average water that the area
surrounding each node received over the course of a month. This is useful for
showing potential customers the impact that switching from standard sprinkler
irrigation to using the node system has on their water and power conservation.
Depicted above is an example of multiple line graphs each representing a unique
Node and is plotted against a moisture level vs. week. Over the course of the
system lifetime, more and more data will be collected and plotted, giving a better
feedback, and a possible machine learning feature to predict when to water based
on the trend.

We ultimately chose to not incorporate this feature into our web application
because the testing of this would have required several lengthy testing periods,
such as several months, to accurately portray substantial data collection.

4.15 System Architecture

65

Understanding how the components are integrated together is just as important as
the individual components. Like the abstraction, a system architecture details the
interconnection of device and the protocols and platforms used for the system.
Figure 23 details the links and how they were all achieved.

Figure 22- System Architecture

5.0 Standards & Design Constraints

With any design and application, constraints are always existent and therefore
must be considered. Whether it be a client’s specification, or safety hazard,
engineers must work around these constraints and design a solution that still

66

meets the requirements. When faced with design constraints, we have treated
them the same given any field that they belong too. We have devised our preferred
level of performance for every part that has been used in our project, from software
to human resources available to us. We then did research to conclude what levels
of performance we can actually obtain from resources given to us. These levels of
performance that are realistically attainable were then sought after to the best of
our ability. These constraints were all met due to our planning and testing
throughout the second semester of senior design.

5.1 Standards

Standards are needed for interoperability both within and between domains. Within
a domain, standards can provide cost efficient realizations of solutions, and a
domain here can mean even a specific organization or enterprise realizing an IoT.
Between domains, the interoperability ensures cooperation between the engaged
domains, and is more oriented towards Internet of Things applications. There is a
need to consider the life-cycle process in which standardization is one activity. The
standardization bodies are addressing the issue of inter-operable protocol stacks
and open standards for the IoT. This includes as well expending the HTTP, TCP,
IP stack to the IoT-specific protocol stack. This is quite challenging considering the
different wireless protocols like ZigBee, RFID, Bluetooth, BACnet 802.15.4e,
6LoWPAN, RPL, and CoAP. One difference between HTTP and CoAP is the
transport layer. HTTP relies on the Transmission Control Protocol (TCP). TCP’s
flow control mechanism is not appropriate for LLNs and its overhead is considered
too high for short-lived transactions. In addition, TCP does not have multicast
support and is rather sensitive to mobility. CoAP is built on top of the User
Datagram Protocol (UDP)

For IoT, this is of particular importance. A complexity with IoT comes from the fact
that IoT intends to support a number of different applications covering a wide array
of disciplines that are not part of the ICT domain. Requirements in these different
disciplines can often come from legislation or regulatory activities. As a result, such
policy making can have a direct requirement for supporting IoT standards to be
developed. It would therefore be beneficial to develop a wider approach.

Standardization is a voluntary cooperation among industry, consumers, public
authorities and other interested parties for the development of technical
specifications based on consensus. The component layer basically reflects the
devices like sensors and actuators, but also gateways and servers which run the
applications. The communication layer is responsible for the data exchange
between the components while the information layer represents the actual data.
Standardization complements market-based competition, typically in order to
achieve objectives such as the interoperability of complementary
products/services, to agree on test methods and on requirements for safety, health
and environmental performance. In order for key components of our system to
work safely and properly, the power system which is a photovoltaic system was
built and operated according to certain standards such as IEC62253, IEC61194,
and IEC62124 [16].

67

5.2 Design Constraints

The initial idea of what the Node looked concrete at first, but it was quickly changed
as more and more restrictions were stated. These constraints are determined by
many factors ranging from basic economic impact to the potential ecological
hazards that can be involved. In the project we focused mainly on how to build a
small hand-sized object that can tolerate the dirt and rain. This need for durability
pushed our design in this direction.

5.2.1 Supply Constraints

Ideally, the system used to check the water moisture of a 20 X 30 feet yard has to
consist of about 20 sensors scattered throughout the yard in a perpendicular grid
format. Since the sensors only pick up the moisture of grass spanning a couple of
inches from the entry point of the sensors into the grass, each section of grass
surrounded by sensors at each of its four corners, or a node, is watered based on
the readings of its surrounding sensors. The project constraint facing this goal is
that Guard Dog Valves can currently only provide us with a maximum of three
sensors. This has altered our research so that only a 4 X 5 feet section of the
original yard size was tested. Based on the result of this smaller test, an estimate
of the results for a larger area of grass then came into fruition but may not
accurately represent the same levels of watering that would occur in a larger field.
Using a smaller portion of the size given to us by the sponsor can irregulate our
test results. For instance, if the watering robot that waters the areas of grass that
our sensor network deems in need of more water shoots out water at loads that
are proficient for a 20 X 30 feet yard, but are excessive in a smaller field of grass,
the sensor readings result in overwatering of the grass.

5.2.2 Power Constraints

A perfect irrigation system consists of sensors that report the exact levels of
moisture of grass at any given second, and these sensors instantly disperse a
signal when the moisture reading for a certain node is considered too low. These
perfect conditions are unattainable by the network of sensors in this project due to
the unrealistic power demands that such a system required. Because of the limited
power that each sensor can consume in order to take up a minimal amount of
space in a field of grass, the sensors only turn on in an hourly basis when the
watering system is engaged, and only make readings at a faster time of every
minute when water readings are lower than the desired moisture level. The small
amount of time that the sensors are actually engaged is also determined by how
large of a battery pack that can power the sensors. Too large of a power source
results in the sensors taking up too much space on a field, interrupting the motion
of the watering robot that is watering the grass, and providing a hindrance to
moving vehicles that come in to close proximity with any of the sensors.

5.2.3 Economic Constraints

68

In addition to the ideal performance criteria that this irrigation monitoring system
has been designated to meet lies the capabilities that weren’t be reached due to
the lack of enough financial assistance to have certain hardware and software
acquired for this project. The hardware that is used in this project has been capable
of accomplishing the goals set out by the group members of this project and the
sponsor initially backing the project. However, the network of sensors could
perform their duties even better than required, and to a higher standard, with more
expensive technology, used and attained only by prominent communication
companies. For instance, one type of hardware used in this project has been RF
communication chips because of the relatively short distance that the sensors have
had to communicate through in a typical residential backyard. The scope that we
planned on spreading our project out to involves large acres of commercial land
such as golf courses and farms. The tremendous size of these fields compared to
the one that is being tested in this project results in sensor nodes communicating
with each other at distances of over 1000 meters. This required range for larger
fields easily bypasses the range that the hardware used in this project can handle,
which is only 10 to 100 meters at a time.

5.2.4 Environmental Constraints

The environmental constraints that MOIST has faced are the most minimal out of
all the other constraints considered for this project due to one of the main goals
being set out to be accomplished is requiring new irrigation systems to use
substantially less water than sprinklers already use. That being said, even with the
sensor system in the project replacing a sprinkler system, there was still more
water used than necessary, even if this smaller amount has been significantly less
than what sprinklers use up. This is due to the sensors not being able to be on and
function at every given second. The sensors only turn on once every hour, so the
moment that a patch of grass goes from having enough water inside of it to lacking
water is in between the hourly check-ins that the sensors produce. The sensors
also are not able to sense changes in water moisture levels immediately once a
node that requires water has begun being watered. This may cause a patch of
grass to be overwatered slightly until the sensor is up-to-date on the moisture level
readings it gives out. Given these environmental constraints, there is less water
consumption with the sensor system that has been put in place.

5.2.5 Social/Interdisciplinary Constraints

Throughout the completion of this project we have worked with two other
engineering groups, a mechanical engineering advisor, our previous sponsor, and
our professor for the Senior Design course. There are joint goals and missions that
were set at the beginning of the course by all parties involved. There is only so
much strict adherence that had to be followed when considering the requests of
the other two engineering groups to build or design our project a certain way that
meets their preferred criteria when our professor or sponsor asked us to carry out
certain tasks in a manner that may not fully function with the other groups. Part of
the challenge of this project was deciding what priorities we should focus on in

69

terms of the satisfaction of the other groups and in terms of our professor and
sponsor. The most important aspect of completing this assignment to the members
of this group is receiving an above satisfactory grade on the report, presentation,
and demo, and complying with the specifications of our initial design so that the
parts we needed to get to accomplish our tasks were obtainable in an affordable
manner. Satisfying the needs of the other groups we worked with is also vital to
our success in this course due the increased potential that working with more
people provides in terms of labor and efficiency. Positive collaboration between
the groups was established so that our group doesn’t receive any lower marks on
the work we turn in for Senior Design due to poor ratings that our group members
receive from students in the other interdisciplinary groups as a result of poor
collaboration efforts amongst each party involved.

5.2.6 Political Constraints

In a time where key members of our government are in disagreement over the
importance of water conservation and energy consumption, the political
constraints of this project are centered around the necessity of an irrigation system
that is more water-efficient than irrigation methods of the past. Although water is a
resource that is far from being scarce, a lot of energy is consumed when water is
pumped out to keep plants hydrated. This energy usage adds up in the long run.
The irrigation system that this project introduces has the ability to greatly decrease
the amount of water and energy used by not letting water run off as often as current
irrigation methods do. Should the methods used in this project ever be carried out
on a large scale in the future (ex. whole neighborhoods or golf courses), the
political constraints that ensue involve members of our nation’s government
approving of the use of such an irrigation system that is more efficient than current
ones, but also bring additional costs to taxpayers’ pockets for the installation of
these new systems. Trust and privacy are the cornerstone of our society. Users’
privacy concerns about the accessibility and use of information captured by IoT
devices and sensors is an important challenge, and users need to be assured that
the data collected does not provide any information that might violate their privacy.
They must be enabled to understand and manage and control the exposure of their
private and sensitive data.

5.2.7 Ethical Constraints

The goal of this project is to create a more efficient form of irrigation than the
standard ones that exist in our country today. A more efficient irrigation system
deals with some constraints that previous irrigation systems that exist today don’t
adhere to. Current sprinkler systems that water endless fields of grass in our
country are left turned on for a lot more time than necessary and cover a much
larger area with the water they let out than they need to. Keeping this information
in mind, one ethical constraint of this project, which is really the main goal that has
been set out to accomplish, is wasting as little water and energy as possible when
the mesh network is being used. This means ensuring that the data sent between
the nodes and the central hub is as accurate as possible. This also means picking

70

materials, hardware, and software to use for MOIST that are not too expensive
and that don’t require too much wasting of resources to create.

5.2.8 Health & Safety Constraints

The constraints that come along with this project in terms of the well-being of
plants, animals, humans, and structures that the node system may come into
contact with during its use are highly minimal due to the gentle nature of the
contents of each node. There are no moving parts involved in the sensors taking
in data and sending the data to other nodes or to the central hub. This results in
the node operations being safe. Some constraints in this subject regarding the
interdisciplinary project that MOIST is involved in as a whole include the safety and
well-being of the field of grass that the AIV will be navigating through as our nodes
give them the signal on whether the water near a node should be watered or not.
To ensure that the grass under the AIV isn’t damaged, the mechanical engineering
group had to have designed the rover so that it isn’t too heavy or intrusive. To
ensure that the nodes aren’t damaged when the area around each of them is being
watered, the node encapsulation had to be designed so that water is unable to
penetrate it and damage the hardware located inside each node. People and
animals have to avoid the area of grass that is being watered whenever the node
network is engaged to prevent accidents from slipping and falling. Plant life may
also be in danger if the wrong signals are transmitted via the mesh network,
resulting in a certain area receiving too much or not enough water and grass dying.

5.2.9 Manufacturability Constraints

Since this project involves a lot of water usage, a priority in the development of the
nodes of our mesh network had to be a sturdy case for the node that prevents
water from damaging the hardware inside of it. In addition, a method for placing
these nodes in the ground together and have all the hardware work together well
had to be developed as well. With these propositions in mind, the constraints that
were faced in terms of creating the necessary parts to house all the hardware used
in this project involve the price of the materials we wanted to use, the amount of
time we had to build the most efficient and sturdy node case possible, and the
students in this group’s limited knowledge and experience creating encapsulation
that can house multiple devices together. In terms of cost, there is only a limited
amount of money that can be obtained from our own funds to purchase the
necessary items for the project. This senior design project is only limited to two
semesters worth of time, so our allotted time to design the most beneficial node
encapsulation possible will have an impact on how well the encapsulation
performs. Although one of the students working on this project has his own 3D
printer and has experience with his own projects, the encapsulation that is covering
the nodes requires more expertise regarding its nature and had to be larger than
any other objects this student has previously produced on his own time.

5.2.10 Sustainability Constraints

71

The major areas of concern for our project in terms of sustainability are the
continuous access to Wi-Fi that our mesh network needs in order to communicate
and send data between the nodes, and the supply of power that is needed to power
the hardware used to have the nodes be turned on during the network’s usage. In
order for each node to communicate with each other, there has to be wireless
communication device engaged across every node that is being actively used to
monitor a particular field of grass’s moisture levels. This means that RF
communication has to be maintained whenever the mesh network is in use, and
that the communication between each node has to be constantly checked on to
ensure that the correct data is being transmitted between each one. For power, a
minimum of five watts has to always be supplied to the PCB’s used in this project
when the mesh network is running so that data is being accurately sent and
retrieved throughout the system. The nodes also have solar panels incorporated
into them, so the nodes are placed in areas where they receive enough sunlight to
produce the supplementary power that accompanies the battery power already
powering the hardware in each node and the central hub.

72

6.0 Project Prototype Build

To test our system in its full potential, a few iterations of prototyping had to be
developed. Whether it is to test the individual components, or the final design,
every iteration is crucial in its entirety. This phase of the project is where the ball
gets rolling. Actual development of operations occurred. Here we built a prototype
of our finalized design and tested it against its limitations. If it failed, we went back
and troubleshooted the issue to fix it up. Sometimes when the unexpected
outcome was severe, a whole redesign was required. To prevent excess redesign,
with time and cost involved, prototyping was broken down into smaller phases. We
started by testing the individual components on a development board and a
breadboard, this avoids soldering and board design. Once code works on the
development board then we design the PCB. We then tested it again and if any
issues occurred we troubleshooted back on the development board to implement
on the next board design.

6.1 Hardware Prototype

Before the project can be tested and put into use, a prototype of all the different
parts we had to use must be built so that we can test any conditions we desire
before moving on to producing our final products next semester. These prototype
materials are not of the best quality that we were capable of producing a product
due to time, financial restrictions, and, more importantly, the purpose of the
prototypes being solely a testing product not intended to be placed on market
shelves in their current formats. Prototyping is an optimal way to save money and
resources when having a finalized product in mind. If we were to skip the
prototyping process and skip straight to the final versions of our network system,
we would have wasted money and time with a product that is not optimally
functional, and going back in the design process to do testing on what failed would
then result in more money and resources being wasted than creating well-tested
prototypes to begin with.

6.1.1 Development Board

Our first executed prototype was just for testing the individual strategic
components primarily the power, RF, and sensor systems. Programming the logic
was also taken into account. We used an Arduino UNO R3 shown with a solderless
nRF24l01+ attached by jumper wires, and a 9V battery for testing the range in
Figure 25 we tested these components without wasting efforts on the PCB design.

73

Figure 23- Arduino Development Board

As we successfully used the RF module with another development board, we
moved on to focus on other strategic components like power setup and sensors,
adding more and more pieces without soldering a board. The firmware was then
constantly updated to include features as we added to the development board. The
Arduino has an easy programmable interface for this reasoning, and we used that
to our advantage to discover what the potential of our machine was capable of.

6.1.2 Node PCB

After finalizing our test results and calibrating our components, a singular PCB
design was then made for actual use. The advantage of creating a PCB was to
prevent loose wires and components as well as rid unnecessary material for
simplicity, size, and cost. Figure 26 is how the PCB was designeded for production
release and how it was laid out by this schematic, all the wiring correlating to actual
copper traces joined by common net name.

74

Figure 24- Node PCB Schematic

The Schematic details three sections of sub circuit, that are grouped based on
functionality and common junctions. The power circuit includes a port for a pair of
solar panel wires, the ECO-WORTHY 10W, a port for a pair of battery wires, the
LTC4079, and LM1117 surface mount components with their auxiliary capacitors
and resistors. The second circuit is the control and communications circuit, this
consists of the ATmea328P, surface mount variant, the E01-ML01IPX with their
auxiliary capacitors and resistor, and a port for programming the microcontroller.
This circuit was grouped together based on similarity of the shared SPI
communication lines.

The schematic was designed on a software called Eagle, it is a simple ECAD
interface used for creating PCB outlines and generate the manufacturing files. The
reason this choice was made because of ease of use, the online support, and
proficient experiment with the software an electrical engineering team member
has.

6.1.3 Gateway PCB

The second PCB that was designed is a shield that stacks on to the Raspberry Pi
and offers the RF capability to connect with mesh network. Figure 27 depicts the
schematic for the PCB design

75

Figure 25- Gateway PCB Schematic

Although much simpler than the Node PCB design, it has constraints of its own.
The PCB had to fit the dimension of the Raspberry Pi in order for it to properly
connect without any obtrusion involved. This creates the Gateway and then
implements the firmware and APIs with the rest of the mesh network. This
schematic was designed using Eagle as well.

6.2 Software Prototype (Coding Plan)

The web application was be coded in JavaScript, CSS, and HTML languages,
similar to most websites on the internet today. After researching different stacks to
use for the development of the web application, the LAMP stack was chosen due
to the familiarity that the computer engineering student working on this project
already possesses creating websites using LAMP. The nature of the web
application is fairly simple, as most of the complexity in this project can be found
on the hardware side of making the communication between the sensors and the
central hub possible. The web application allows a user to create a username and
log in through a secure server, add sensors to the network that is then placed on
a field, check the status of each sensor, search for specific sensors, delete
sensors, and turn the sensors on or off. The web application takes the format of a
website loaded on an Amazon server. To communicate with the sensors, a
Raspberry Pi that is connected to the central hub has the database of the web

76

application loaded into it. This information is then constantly updated whenever the
system is in use.

6.3 Enclosure Prototype

The need for an enclosure was necessary for housing our electronics in the field.
The design process for the enclosure had to be dictated by the PCB size. An initial
design was then started and revised as this project is progressed until reaching a
final option.

6.3.1 3D Print

The sensors we have used have already been built to withstand typical
inconveniences and damages that keeping something outside may inflict upon an
object. In order to improve the durability of these sensors, a 3D model was
designed that offers more protection to these sensors than they already contain
themselves. This model is designed using AutoDesk Inventor to produce a
lightweight, but durable, enclosure made out of PLA, a biodegradable substance
that further insulates the sensors from damage.

Figure 28 is a model generated on the Autodesk Inventor software application of
the general shape envisioned as the enclosure. This design had to accommodate
the need for a Node that was originally designed to be buried yet exposing the
solar panel, antenna and the sensors attached to it. As we modified this model we
had to take those factors and the shape of the PCB into thought. Constraints of
design was emphasized heavily as this was more of a mechanical issue than an
electrical one.

Figure 26- Enclosure Model

77

The 3D print serves for demonstrating our idea of MOIST because of the material
it used may not have been sufficient to withstand weather extremities.

6.3.2 Plastic Mold

Although the 3D printed cover that was implemented on the sensors would have
been practical for our testing purposes and useful for protecting them from harm,
3D printing for any material was meant only to be a prototype. If our network
system were to ever advance to a commercialization level and become a
professionally used product, the PLA material used in the 3D printing process
would have to be replaced with a professionally produced plastic cover that
provides longer-lasting durability than the environmentally-friendly material used
in the 3D process.

The file used for modeling the enclosure on the 3D printer is the same file used to
generate the G-code required to machine a mold. This mold is then injected with
molten hot plastic that quickly solidifies and takes shape of the model. This is an
expensive procedure and requires heavy machinery to produce. For a senior
design project and in the realm of knowledge, resources, and deadlines a 3D print
of this model has sufficed in our demonstration of the project.

6.3.2 Final Encapsulation Design

After testing out different methods for covering the Nodes, we decided that using
a plastic box a little larger than the Nodes’ PCB was the right fit for our project. An
encapsulation that is too large would be problematic for a user of our system
because these Nodes ideally can’t take up to much space on a field of grass or
else they interfere with activities that are performed on said field. Figure 29
contains the final encapsulation that was chosen when it’s open and closed.

Figure 27 - Final Encapsulation

78

7.0 Prototype Testing

The research portion of this project relied heavily on comparing current hardware
and software on the market and deciding which ones best suit the tasks our
network system had to accomplish. However, testing the products we decided to
incorporate into our project was just as important as the products themselves.
Sometimes the products may have seemed to be the right fit on paper, but then
behaved vastly different than what their expected outcome was. Here the testing
is broken down into a few procedures to carefully analyze the result with minimum
outlying variables. We started by testing the hardware, and its components like the
power and the communication and the sensor, then the integration of the
components, and then between a Node and a Gateway. Each step ensured that
the previous setup was working.

7.1 Hardware Testing

Hardware testing was simply comprised of testing out the different hardware
components used throughout this project to ensure that they all were in working
order. We used minimum code here to eliminate unnecessary variables that can
lead to varying results. We then built this open as we started testing for software.

7.1.1 Power Testing

This testing part functions as confirmation of the research and final decisions on
what hardware we were to use from the early stages of this project based on how
smoothly the hardware chosen runs and whether it actually ended up using less
power-consuming than their runner-up choices. The operations for this setup were
very straightforward. Wire the components and measure voltage against the
duration of sunshine and then observe the trend over time. This ensures that the
voltage level is stable and power is being generated and stored. Measuring power
consumption here also gives us feedback as to how the PCB performed in the
field.

7.1.2 Sensor Testing

Similar to the soil temperature sensors, the prospective commercial user would
want to know the amount of moisture within every 15 inches of the soil. With the
droughts that commonly go on, the efficiency of the roots absorbing water is key
to prevent over usage. The sensor we used in order to determine was the ITEAD
Electronic Brick Moisture Sensor. These sensors were resistive based so
essentially, they determine the resistance between the two metal prongs that
associate with a certain moisture level. This sensor was unique because an analog
or digital output could be read. The digital output would just indicate if the soil was
wet or not while the analog would give a particular reading based on the amount
of water. A total of 5 sensors were then used in order to calculate the reading. In
terms of calibration, after a series of trials, the calibration was very tedious because
the analog reading varied. The soil temperature sensor adopts DS18B20 provided

79

by Maxim integrated which is a lower-power consumption digital temperature
sensor. The temperature measuring of DS18B20 is −55 to +125°C, and the
precision is 0.0625° C, 9–12 bits A/D. Owing to its small size, it has been concluded
that it can save many lead wires and much logic circuitry. It requires only one pin
for communication and can be powered with 3V. It consists of three wires. The
black wire is connected to the ground, the red is connected to the voltage common
collector (VCC) and finally the white is connected to digital-analog converter (DAC)
channel pin.

The DHT22 is a simple digital sensor that produces digital signals. It requires a
single resistor to pull up from the data pin to voltage. Pull up in this case makes
sure the data value is “pulled up” to the voltage level to ensure a valid logic level
on the wire. We then jump right in and connect the hardware The hardware
required for this project includes an Arduino, a DHT22 humidity and temperature
sensor, a breadboard, a 4.7K Ohm resistor (colors: yellow, purple, red, gold), and
breadboard jumper wires. Next, the power is connected from the Arduino to the
breadboard. Use one jumper wire to connect the 5V pin on the Arduino to the
breadboard power rail and another for the ground (GND) pin on the Arduino to the
ground rail on the breadboard. With these wires in place, we were then ready to
wire the sensor. The library for this code can be found on GitHub [69].

DHT22 sensor had its own protocol. only a small part of that protocol: the part you
must include in your sketch. However, there is much more going on in the DHT
library.

Error Code Cause or Recommended Action

DHT_ERROR_CHECKSUM Checksum failed. Could indicate read/send errors.
Values read may not be accurate.

DHT_BUS_HUNG Error reading from sensor. Try again at the next cycle.

DHT_ERROR_NOT_PRESENT Cannot communicate with the sensor. Check the
wiring.

DHT_ERROR_ACK_TOO_LONG Too long between data sent and
acknowledgement. Try again at the next cycle.

DHT_ERROR_SYNC_TIMEOUT Synchronization failure during read. Try again at
the next cycle.

DHT_ERROR_DATA_TIMEOUT Timeout sending data. Try again at the next
cycle.

DHT_ERROR_TOOQUICK Wait at least 2 seconds between reads.

DHT_ERROR_NONE No error. Read values

Code 6 is used for DHT22 readings:

#include <SPI.h>

80

#include <DHT22.h>

#define DHT22_PIN 7 // DHT2 data is on pin 7

#define read_delay 5000 // 5 seconds

DHT22 myDHT22(DHT22_PIN); // DHT22 instance

void read_data() {

DHT22_ERROR_t errorCode;

errorCode = myDHT22.readData();

switch(errorCode)

{

case DHT_ERROR_NONE:

char buf[128];

sprintf(buf, "%hi.%01hi, %i.%01i\n",

myDHT22.getTemperatureCInt()/10,

abs(myDHT22.getTemperatureCInt()%10),

myDHT22.getHumidityInt()/10,

myDHT22.getHumidityInt()%10);

Serial.print("Data read:");

Serial.print(buf);

break;

case DHT_ERROR_CHECKSUM:

Serial.print("check sum error ");

Serial.print(myDHT22.getTemperatureC());

Serial.print("C ");

Serial.print(myDHT22.getHumidity());

Serial.println("%");

break;

case DHT_BUS_HUNG:

Serial.println("BUS Hung ");

break;

case DHT_ERROR_NOT_PRESENT:

81

Serial.println("Not Present ");

break;

case DHT_ERROR_ACK_TOO_LONG:

Serial.println("ACK time out ");

break;

case DHT_ERROR_SYNC_TIMEOUT:

Serial.println("Sync Timeout ");

break;

case DHT_ERROR_DATA_TIMEOUT:

Serial.println("Data Timeout ");

break;

case DHT_ERROR_TOOQUICK:

Serial.println("Polled too quick ");

break;

}

}

void setup() {

Serial.begin(115200); // Set the serial port speed

}

void loop() {

delay(read_delay);

read_data();

}

Code 6- DHT22 Readings

We used the same mocking test as the Integrated Water Monitoring System project
group who built the Triton system moisture sensor. The purpose of this test was to
correlate a quantity of water to resistivity readings from the moisture probe over
time, as well as compare it to the readings from a moisture sensor currently in
market. The soils tested were Miracle Gro Potting Mix and Miracle Gro Garden
Soil; the moisture probe used for comparison was the Digital PLUS Moisture Meter.
The experiment performed was designed to formulate a relationship between

82

water saturation in soil to moisture levels read by the prototype. This was done by
inserting the moisture probes in a controlled amount of soil and pouring varying
amounts of water onto it. In order to carry out this test, 549 grams of Miracle Gro
Potting Mix were placed into a plastic plant pot, and the moisture probes were
inserted. Then, 21 grams of water were then poured into the pot. After waiting
about five seconds for the water to permeate through the top layers of soil,
moisture measurements from the probe were collected. Since the probe code is
designed to take measurements every five minutes, a magnet was then used to
activate the Halifax switch on the probe in order to allow measurements to be taken
more often; measurements on the comparison sensor were also recorded.
Measurements were taken intermittently for about 5 minutes, and then 41 grams
of additional water was added to the pot; measurements were collected again for
about 5 minutes. Finally, 88 grams of water was added and measurements were
taken. This procedure was then repeated with the Miracle Gro Garden Soil. The
moisture probe was measuring the moisture of the Miracle Gro Potting Mix as a
controlled volume of water was added [13].

Another testing that was completed was weighing out dry soil, including adding
sufficient water to determine if it was moist. We measured the difference of weight,
and then let it dry out over a span of few days, and finally measured for the change
in weight once more. This, with the addition of resistance, painted a trend of
moisture levels and the threshold we had to set up.

7.1.3 RF Testing

To further understand our network implication, and how the RF behaves, an
extensive testing was conducted with the RF modules. WE had multiple devices
wired to the RF module and had them constantly relay messages. We did this by
by dynamically moving the devices out of range and into obstruction. With the test
method we studied the behavior of the communication to adapt our network on the
field.

We then setup a debugger window that connects to a Node and observes it as it
transmits and receives from a Gateway, then introduced a second Node to see the
outcome. We then disconnected to Gateway and observed if the network failed.
After that we tested for range between devices.

Our result was that the range between our Nodes and Gateway were only capable
of reaching two-three feet due to the lack of an external antenna being connected
to the Gateway. This would’ve allowed for a larger range within the whole system.

7.2 Software Testing

To ensure that the web application was correctly synced with the sensors when
they were turned on and when they are in their assigned locations, and to ensure
that the buttons and options in the web application performed their duties with no
bugs, a series of tests were done on the functionality of the web application
including node location testing, operations control testing, and status testing.

83

7.2.1 Node Location Testing

Before the watering maintenance of a field takes place, the web application
controlling the sensors ensures that each sensor is in the location that is loaded
for them in the location database.

7.2.2 Operations Control Testing

To test out the functionality of the controls that our web application is able to carry
out, we sent the commands through the gateway to the sensors using the web
application and observed if the right information got reported back. For example, if
a sensor is currently on and connected to the mesh network but is not taking any
readings in of water moisture levels at the moment, the command of retrieving the
current readings of the sensor is initiated through the web application. If nothing is
returned or if the data that is returned is an inaccurate representation of the
moisture levels being requested, than the testing of the operations was considered
a failure. In addition, if the current reading of a sensor is requested of a sensor that
is currently turned off, than the results retrieved should be that the sensor reading
is unavailable. A return of an actual percentage resulted in a failure as well.

Our software testing proved beneficial and resulted in all the bugs in our code
being worked out so that all the desired commands are carried out as we initially
intended them to be.

7.2.3 Status Testing

To test out if the correct status of each sensor that is currently connected to the
mesh network is being displayed, the status of each sensor that has been added
to the network has to be visible when a user logs on to the server and accesses
the user interface connected to the network. If the status of activity correctly
portrayed the actual status of each sensor, either on or off, then the testing of this
sensor was considered passed. If a sensor that is turned on displays a signal of
off to the user, or if the sensor is off but displays a status of on to the user, then
the status test for this sensor was considered failed. When this test is failed,
probable circumstances that may have occurred could be that the sensor’s power
button is broken and won’t turn off correctly, or that the sensor is off and is
dysfunctional, meaning it can no longer turn on without its hardware components
being repaired.

The status testing resulted in accurate data always being collected from the Node
sensors and in the data being relayed to the Gateway.

7.3 Durability Testing

While sensors are placed in the field and are in operational mode, the length of
time they can withstand the weather conditions that a typical outdoor Summer time
Floridian climate inflicts on the network of sensors will be the ultimate test of
durability for the network of sensors. How long, given a full charge of battery in all

84

the hardware components used in the system, that the sensor network can run
before the battery for one of the components dies, was the most valid indication of
the whole system’s durability in terms of time. In the terms of actual physical
durability of the components of the sensor network, the conditions that the
hardware components were all able to withstand during the testing and actual use
of our sensor network determined the overall strength of the network’s hardware,
and whether or not the materials chosen to be used in the project should have
been swapped out with materials that can last for longer periods of time than the
ones initially chosen. The amount of time and uses that the software side of the
network withstood before previously unforeseen bugs in the code were discovered
also contributed to the overall durability of our project

85

8.0 Administrative Content

The execution of MOIST flowed smoothly throughout the whole process due to the
level-mindedness of all the parties involved in completing tasks for this project.
This style of execution could’ve gone several different ways and other groups of
students doing the same project as us could have done it in a completely different
fashion based on their experiences with their professor and their own personalities.
The methods, products, and purchases to get this project done were completed in
the way they were because of the milestones and budgets that our group set and
re-established for ourselves throughout the course of our research.

8.1 Milestones

Our first milestone for the end of Senior Design I was to have documentation ready
that explains our objective, research, and design process for the sensor network
we created, and costs associated with the steps that were carried out during the
whole process. Our second milestone was to have a prototype built and tested that
confirms the research we have completed all semester. If the testing conducted
after our research has been done were to have resulted in faults being found that
were not considered during the initial research, the prototypes created were then
redesigned to fit the needs of the actual system we implemented in a real-life
environment. Ideally, we were to have a full-on working prototype ready before the
processes of Senior Design II were even commenced. This actually didn’t occur
due to hiccups we encountered while working on the prototypes. The prototypes
we created were built but were not extensively tested on due to further research
made as the first semester started to come to an end and further research was
done throughout Senior Design II.

Our milestone for Senior Design II was to build a final project that meets the
requirements set for our project during Senior Design I, ensure that the final project
meets or surpasses the objectives set during the planning stage, and fix or discuss
in detail the issues that were encountered during the actual implementations of our
design. At this stage of the project, there were still several factors we needed to
consider as we delved deeper into the designs of our hardware setup, software
applications, and node placement in a network. Our objectives for Senior Design
II were to have expanded if it was agreed upon by the professor and the students
in this group that not enough work was being done in our project to constitute the
receipt of a satisfactory passing grade for the students involved.

Our interdisciplinary milestone for both semesters was to work in unison with the
electrical/computer and mechanical engineering groups so that the work we
accomplished in each of our separate research and reports were linked to each
other and could be referenced when discussing the overall intentions of the project
we were working on ourselves. With this milestone we also aimed to focus primarily
on our own research and work, and view the compatibility of our designs with those
of the other groups we worked with as a second priority in the long run.

86

Table 5 & 6 lists all of the milestones we set up and persevered through throughout
the two semesters. Every week the group of students met up at least once between
the students solely involved in the mesh network and then at least once with all of
the students in the three groups involved in the interdisciplinary project. Every
week, the milestones and completions that our group had made involving MOIST
were recorded and assessed. Judging on how much progress was made every
week, and whether or not more progress or less progress was made every week
than planned, decisions on how much work should be added or removed from the
following week’s workload were made.

Following this detrimental guideline, the amount of weeks where more than enough
work was completed and the amount of weeks where not enough work was
completed balanced out, keeping the progress of our project on a constant
increase throughout the whole Spring semester. At the beginning of the semester,
a great deal of uncertainty clouded the group of student’s working on this project’s
judgements regarding whether the proper amount of research to carry out our
project was doable within one semester’s time frame. Individually, this skepticism
may have been proven correct. However, working together as a team proved to be
much more impactful to completing the tasks that MOIST brought up to the table
than previously imagined. Splitting up the tasks that needed to be carried out to
discover the right plan for carrying out the design and testing of this project allowed
us all to spend less time focusing on all aspects of the project and more time
focusing on individual areas. After conducting research separately, combining our
thoughts on what the best way to implement the design of this project would be
was as simple as all of the students involved in the creation of MOIST to review
each other’s’ research and use the methods that we each found individually that
function the best with the methods that the other students discovered on their own.

Week Milestone Accomplishments

Jan. 19 Formed group.

Jan. 26 Finished Divide & Conquer

Feb. 2 Researched initial design

Feb. 9 Discussed design of AIV with other groups

Feb. 16 Contacted Sponsor

Feb. 23 Finalized design parameters

Mar. 2 Picked out strategic components

Mar. 9 Finished Divide & Conquer 2

87

Mar. 16 Spring break

Mar. 23 Learned about mesh networking

Mar. 30 Researched Triton sensors

Apr. 6 Finished 45-page draft of Senior Design documentation

Apr. 13 Acquired Triton sensors from sponsor

Apr. 20 Finished 90-page draft of Senior Design documentation

Table 5 - Milestone Chart EEL 4914

Week Milestone Accomplishments

Aug. 20 Began putting our researched products to the test

Apr. 27 Decided on final software to be used for web application

Sep. 3 Began working on initial CDR

Sep. 10 Integrated MySQL database insertion into web-application

Sep. 17 Present initial CDR to professor and class

Sep. 24 Received all parts needed for project

Oct. 1 Finalized PCB design and put in order

Oct. 8 Received final PCB’s

Oct. 15 Combined assembled parts together

Oct. 22 Enabled communication between Gateway and Nodes

Oct. 29 Performed midterm demo

Nov. 5 Finalized conference paper

Nov. 12 Began final testing of our system

88

Nov. 19 Gathered professors for demo panel

Nov. 26 Performed final presentation/demo

Dec. 3 Turn in final documentation and finish SD2 website

Table 6 - Milestone Chart EEL 4915

By jotting down what we did, we checked our overall progress and determined the
pace we progressed at. This way we could make up if we slack or relax if we are
ahead of the game.

8.2 Budget & Finance

Since this project was relatively inexpensive to other projects we have come into
contact with, budget and finance was not a huge concern. Although we kept the
cost of parts in mind as we researched components and overall cost of the bill of
materials, our main concern was meeting the satisfied requirements while abiding
to all given constraints. For example, when we needed to sacrifice cost for
extended range or battery life, by all means we had no objection.

8.2.1 Bill of Materials

The bill of materials is a list of all components that is required to produce a single
Node and a single Gateway and all their cost. In a production company this list
would help sort what is needed across multiple products and quantity per unit.

Table 7 is our bill of materials. The majority of the costs that purchasing the
required products for this project imposed on us were from the Node and were
ultimately based on the size of the mesh network. Since this system is scalable the
bigger the field a potential client has, the higher the cost of the network. Our aim
was to find a low-cost solution by minimizing the number of required Nodes and
cost per Node. To minimize these costs, more accurate tests of the equipment that
we are in possession had to be taken. The initial plan of the Node layout was to
have more than we may need in order to get the most readings possible when
examining the grass they are placed on. Further testing the design then reveal that
the same accuracy could be reached with less nodes/expensive parts.

89

Table 7 - Budget Listing

90

9.0 Conclusion & Summary

MOIST has introduced many problems and challenges to the group of students
working on this project that were never encountered in other parts of the
undergraduate teaching curriculum. In order to persevere through the project and
produce a satisfactory result of our diligent research and design, we had to face
several issues that a project with such a broad deadline brought upon us, such as
time-management, working with a group and with professionals in the engineering
field to obtain certain knowledge and materials, and rethinking solutions to the
problems we faced that didn’t quite work out to our satisfaction the first time
around. Through the hardships that this project made us endure, we learned
valuable lessons on professionalism that we can take with us for the rest of our
lives and put into use immediately upon completing Senior Design and graduating.

10.0 Appendices

The glossary, permissions, datasheets, and references used for this report are
included in this section.

10.1 Glossary

API (Application Programming Interface)

PCB (Printed Circuit Board)

PLA (Polylactic Acid)

RF (Radio Frequency)

MCU (Microcontroller Unit)

OS (Operating System)

IOT (Internet of Thing)

BLE (Bluetooth Low Energy)

NB-IOT (Narrowband Internet of Things)

HTML (Hypertext Markup Language)

CSS (Cascading Style Sheet)

DAC (Digital to Analog Converted)

GPS (Global Positioning System)

WSN (Wireless Sensor Network)

XML (Extended Markup Language)

JSON (JavaScript Object Notation)

EPA (Environmental Protection Agency)

M2M (Machine to Machine)

LoRa (Long Range Radio)

Wi-Fi (wireless fidelity)

TCP (Transport Control Protocol)

UDP (User Datagram Protocol)

HTTP (Hypertext Transfer Protocol)

IP (Internet Protocol)

CoAP (Constraint Application Protocol)

IEC (International Electrotechnical Commission)

ACID (Atomicity,consistency,isolation,durability)

PA (Precision agriculture)

10.2 Permissions

Permissions for images used:

Figure 13:

10.3 Datasheets

ATmega328P-PU

E01-ML01IPX

Trimble Copernicus II

LCT4079

LM1117

10.4 Bibliography

[1] “Aifro WaterEco." Aifro, https://www.aifro.com/aifro-watereco.html.

[2] “Blossom." Blossom, https://www.myblossom.com/.

[3] "Bluespray." Bluespray, 25 Sept. 2016, https://www.bluespray.net/.

[4] "Green IQ." GreenIQ, 5 Jan. 2015, https://greeniq.com/.

[5] "Irrigation Caddy." GreenIQ, 22 Oct. 2013, http://irrigationcaddy.com/features.

[6] "Lono Quick Start Guide." Lono, 4 Apr. 2016, http://lono.io/quick-start.pdf.

[7] "BHyve." BHyve, https://bhyve.orbitonline.com/.

[8] "Rachio." Rachio, 6 Feb. 2017, https://rachio.com/.

[9] "Rain Machine: How it Works." Rain Machine, 13 Jun. 2016,
https://www.rainmachine.com/howitworks.html/.

[10] "Spruce." Spruce Irrigation, https://spruceirrigation.com/.

[11] "Rain Commander: Water from the Cloud.” Rain Commander, 26 Oct. 2014,
https://www.rainmachine.com/howitworks.html/.

[12] "F.A.R.M. (Fundamental Agriculture Resource Monitor.” UCF ECE Senior
Design, http://www.eecs.ucf.edu/seniordesign/fa2015sp2016/g25/.

[13] "Integrated Water Monitoring System.” UCF ECE Senior Design, 4 Dec.
2017, http://www.eecs.ucf.edu/seniordesign/sp2017fa2017/g8//.

[14] "LTC 4079.” Analog Devices, www.linear.com/LTC4079.
https://www.rainmachine.com/howitworks.html/.

[15] "Strategy Analytics.” Strategy Analytics, 26 Feb. 2016,
https://www.strategyanalytics.com/access-services/enterprise/iot/report.

[16] "IEC 62124:2004.” IECEE, 1 Oct. 2007,
https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:6483.

[17] "RF24Mesh.” GitHub, 27 Feb. 2007, https://github.com/nRF24/RF24Mesh.

[18]. "Arduino-DHT22.” GitHub, 16 Jul. 2012, https://github.com/ringerc/Arduino-

DHT22.

https://www.aifro.com/aifro-watereco.html
https://www.myblossom.com/
https://www.bluespray.net/
https://greeniq.com/
http://irrigationcaddy.com/features
https://bhyve.orbitonline.com/
https://rachio.com/
https://www.rainmachine.com/howitworks.html
https://www.rainmachine.com/howitworks.html
https://spruceirrigation.com/
https://www.rainmachine.com/howitworks.html
https://www.rainmachine.com/howitworks.html
http://www.eecs.ucf.edu/seniordesign/fa2015sp2016/g25/
http://www.eecs.ucf.edu/seniordesign/sp2017fa2017/g8/
http://www.linear.com/LTC4079
https://www.rainmachine.com/howitworks.html
https://www.rainmachine.com/howitworks.html
https://www.strategyanalytics.com/access-services/enterprise/iot/report
https://www.iecee.org/dyn/www/f?p=106:49:0::::FSP_STD_ID:6483
https://github.com/nRF24/RF24Mesh

