
Park Shark Parking Garage

Monitoring System

Travis Bangs, Keegan Conway, Marcelino Galarza,

Beatriz Jimenez

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

 Abstract – The Park Shark system aims to provide students
with accurate information about the parking availability in the
school’s parking garages. The Park Shark system uses a
combination of computer vision software and ultrasonic sensors
to monitor the parking spots throughout the garage. Each
computer vision module will monitor three parking spots at a
time. The sensor modules will monitor the parking spots that are
not within the camera’s field of view and all the parking spots on
the roof of the parking garage. The information about the spot’s
availability from the sensor modules is then relayed wirelessly via
Bluetooth to the computer vision module. The information
gathered from both modules is then transmitted to the database
over Wi-Fi. The parking availability throughout the garage can
be viewed in real-time on the website and mobile application.
Utilizing the Park Shark system will reduce the amount of time it
will take for the students find a parking spot. By implementing a
multi-sensor system, the required amount of hardware necessary
to monitor the parking spots and overall cost of the system will be
reduced.

Index Terms – Computer vision, mobile application, Nordic
nrf52832, parking garage, ultrasonic sensor, website, wireless
communication.

I. INTRODUCTION

At the University of Central Florida, finding a parking

spot on campus is one of the everyday struggles a student will

inevitably face. Every morning is a battle to see who succeeds

in getting a parking spot before the parking garage reaches full

capacity and then the real hunt begins. One solution to mitigate

this problem would be to build more parking garages, but that

would require more land and more money. The other solution

would be to create a system that can report the availability of

parking spots in each garage. By implementing such a system,

time spent searching for a parking spot will be significantly

reduced. This way students won’t arrive late to class and miss

important class material. The parking garages at UCF currently

have a monitoring system implemented that is quite unhelpful.

Their system utilizes sensors at the entrance of the parking

garage to keep track of the number of cars entering and exiting

the premises. Their monitoring system then uses this

information and number of spots the garage possesses to report

the estimated number of parking spots available. By utilizing

this method, inaccurate information is reported to the student.

The idea behind Park Shark is to create a system that will

monitor each parking spot and report an accurate number of

available parking spots left to students quickly and effectively

via the internet. The Park Shark system utilizes a multi-sensor

approach to monitor each parking spot in the parking garage.

A single computer vision module is set to monitor three

parking spots simultaneously. Any parking spots out of the

camera’s field of view is monitored by an ultrasonic sensor

module. Each sensor module will relay the parking spot’s

status to the computer vision module via Bluetooth

communication. The data gathered by both the sensor and

computer vision systems will be transmitted to the database

over Wi-Fi. This information will then be displayed on a

website and mobile application. Ultimately, the parking spot

availability for each parking garage will be available to the

student’s disposal at a click of a button.

II. REQUIREMENT SPECIFICATIONS

 The main goal of the Park Shark system is to create an

accurate and efficient monitoring system at a low cost per

sensor unit. The system should be able to provide extremely

accurate parking information, so users may use the app in real

time to determine where to park. An additional goal of the

Park Shark system is to create a user-friendly application for

users to view up-to-date parking information quickly and

efficiently. The below requirements and specifications layout

how we will accomplish this task.

▪ The final system shall utilize two sensors, an

Ultrasonic unit as well as a Computer Vision (CV)

unit

▪ The cost for an Ultrasonic unit shall not exceed $50

▪ The cost for a CV unit shall not exceed $200

▪ The dimensions of the Ultrasonic unit shall not

exceed 4 x 3.7 x 3.1 inches

▪ The dimensions of the CV unit shall not exceed 8 x

8 x 3.5 inches

▪ The Ultrasonic unit will be able to communicate

with the CV unit via Bluetooth

▪ The CV unit will be able to send data over Wi-Fi to

an external database

▪ The Ultrasonic unit will pull no more 50 mA and

shall run off a small battery pack and require a

battery change every month

▪ The CV unit will be powered by a 12-volt battery

pack and require a battery change every 24 hours

▪ The Ultrasonic unit should be able to detect vehicles

at least 5 ft. from the wall or the ceiling

▪ The Ultrasonic unit should also be able to enter a

sleep mode if the parking garage is near empty to

save power

▪ The CV unit should be able to provide availability

for a minimum of 3 spots with an accuracy greater

than 90%

▪ The data displayed on the website and mobile

application will be updated every 30 seconds or less

▪ The website and mobile application will be able to

display parking availability and statistics in a simple

and efficient way to the users

III. PARK SHARK SYSTEM

 The Park Shark system consists of five major

development areas: the PCB design, the Nordic nRF52

microcontroller’s coding, the MongoDB database, the website,

and the mobile application.

Fig 1. This figure shows the overall block diagram of the Park Shark

system.

 The block diagram displays the components that make up

the system, how they communicate between each other, and

how their power supplies. On the left side of the diagram, the

sensor modules are shown to be powered by AA batteries and

controlled by the MCU. The information gathered by the

sensor modules are sent to the computer vision module via

Bluetooth which is powered by a 12V battery. The data

received by the CV module and its own data is transmitted to

the database over Wi-Fi. The information is then displayed on

the website and mobile application providing the user with up

to date parking availability in the parking garage.

IV. DESIGN

A. Computer Vision Unit

 The computer vision unit was designed to allow for a

more efficient way of counting cars across multiple spots.

From our research of other systems, most parking garage

monitoring systems used an individual sensor for each spot.

Our goal was to improve upon this by using computer vision to

monitor multiple spots. To accomplish this a form of object

detection was necessary, as well as a central computing device

that could handle running object detection. Several devices

were considered such as the Raspberry Pi, BeagleBone, and

Jetson TX1. While the Jetson TX1 offers incredible

computation power and would allow for a much faster

implementation of our system, the price difference ($299 for

students) is simply too expensive for the desired price range of

our product. If there was no issue in budget, and the desire was

to make the fastest and most accurate system, the Jetson TX1

would be the ideal computational device for this project. The

Raspberry Pi boasted better specifications compared to the

BeagleBone and a much lower price compared to the Jetson,

so ultimately the Raspberry Pi was selected. The computer

vision unit is also responsible for receiving data from the

Ultrasonic unit via Bluetooth, which can then be transferred to

the database via Wi-Fi, which the Raspberry Pi is well suited

for. The Raspberry Pi features a 1.4 GHz quad-core ARM

processor which allows for more complicated forms of object

detection to be used.

 For object detection, several methods were researched and

tested such as Cascade Classifiers and Histogram of Oriented

Gradients, but eventually the team decided on an extremely

new method that utilizes convolutional neural networks called

You Only Look Once (YOLO). While the other methods of

detection could reasonably be used for this project, they are

relatively old versions of object detection compared to the

much newer YOLO, which achieves high object detection

accuracies with relatively fast detection times. The YOLO

algorithm looks at an image once and divides the image into a

grid of 13 by 13 cells with each cell being responsible for

predicting 5 bounding boxes. This produces a total of 854

bounding boxes. It then produces a confidence score for each

box and tells us if the bounding box is accurate. This

confidence value is used to get rid of a large amount of the

boxes created. It also predicts the class of an object, trying to

classify the object within the box, such as a car or dog. The

presence of overlapping boxes at the end of detection was

detrimental to the overall detection, and therefore the process

of non-max suppression is used to remove any boxes that

overlap with each other.

Fig 2. This figure shows the result of the YOLO detection from the

computer vision unit.

 The team initially planned to use a version of the YOLO

algorithm called Tiny-YOLO, which utilizes a smaller model

and provides extremely fast detection times at the loss of some

accuracy. While the Tiny-YOLO version offers much faster

detection times, the loss in accuracy was far too great. For our

project, with the goal of updating the database at least every 30

seconds, accuracy was favored over speed. The latest version

of the YOLO algorithm, YOLOv3 completes detection in

under 30 seconds on the Raspberry Pi, with very high

accuracy. Because of this the full version of YOLO is utilized

over the Tiny-YOLO version. The team initially utilized

TensorFlow and Keras implementations of the algorithm (such

as Yad2k), but ultimately ended up running the algorithm

using pure OpenCV with similar runtimes and accuracies. The

ability to run the algorithm using pure OpenCV was made

possible by the addition of a neural net module added to

OpenCV past version 3.4 called DNN. This module allows the

creation of neural networks which can then be used by the

YOLO algorithm. Python is used as the primary language, as

the languages ease of prototyping, simple installation of

packages, and straightforward syntax made the language ideal

for prototyping and the final design.

 An issue in the original design of the computer vision

sensor become apparent upon initial testing. Upon installing

two computer vision sensors, if both sensors look over the

same spot, the same car would be counted twice. Several

attempts were made to remedy this issue. One attempt sought

to create a panorama image from the images taken from each

computer vision sensor and perform detection on the

panorama. To accomplish this, the use of the SIFT algorithm

and OpenCV libraries to stitch images together were used. If

two computer vision sensors are installed, two images would

be taken and transferred via scp to one of the Raspberry Pi’s.

The stitching algorithm would then be run and result in one

image. YOLO would then run on the resulting image giving us

a final count of detected vehicles. However, upon testing, the

inability of SIFT to find unique key points within the images to

perform the stitching on proved this technique to be

inefficient, as the two images taken within the garage were

extremely similar. The unfortunate solution to this problem

was to install the camera, view the resulting image from the

sensor location, and crop the image to look at the intended

spots. While this solution is not entirely practical for non-

trained individuals to accomplish, the result is a guaranteed

number of occupied spots within the parking garage.

 Upon the desire to report not just availability, but also the

availability of individual spots, some additional methods were

necessary. The goal was to attempt to use the white lines that

separate each parking spot to create bounds for each spot.

With the bounds created, we could then calculate the center

point of the detected cars and determine if that spot if full or

not. We first attempted to create the bounds using Hough Line

detection, attempting to use the white lines of the parking spots

to create the bounds. Upon testing, this method proved

extremely inaccurate. Depending on where the car parked in

the image, the lines where not always visible from the

perspective of the camera, as well as depending on the time of

day, the white lines were washed out by the parking garages

lights. Another unfortunate solution to this problem was to

install the camera, view the resulting image, and manually set

the bounds for the parking spots. Again, this requires more

work in the installation process, but allows guaranteed spot

availability.

Fig 3. Parking garage D at night. This figure shows the issues of

detecting the parking spot lines using computer vision.

The Computer Vision Unit is also responsible for getting

the information from the Ultrasonic Unit and sending it the

database. The communication between the CV unit and the

Ultrasonic unit is done over Bluetooth, utilizing a Python

library called PyGatt. This module is a wrapper for the GATT

tool and allows us to gather the information by connecting to

the individual Ultrasonic sensors and gathering the data from

the characteristic being broadcasted by the devices. The

communication between the CV unit and the database is

handled by the Python Requests library, which allowed for the

sending of GET and PATCH requests to the API to send and

receive the necessary information to update parking

availability as well as relay updated information that is used by

the ultrasonic sensor.

B. Ultrasonic Sensor

One of the major components that makes up the sensor

module is the sensor itself. After considering various sensor

devices, the ultrasonic sensor was chosen due to its high

sensing range, low power consumption, and low cost. The

ultrasonic sensor can measure distance by emitting ultrasonic

waves at a certain frequency and retrieving the reflected sound

wave. The time it took for the wave to return to the sensor is

used to calculate the distance between the device and the target

of interest. The main advantage about the ultrasonic sensor is

that has a high sensing range (about 4 meters). Hence, the

sensor module could be placed on the ceiling, wall, or floor

depending on the user’s preference. It will still be able to

detect a car in the parking spot no matter its orientation. The

distance threshold of the device is set by modifying the

module’s code.

While researching ultrasonic sensor, it turns out that there

are two version of the HC-SR04 sensor. The HC-SR04

requires a minimum operating voltage of 4.5V meanwhile the

HC-SR04+ requires a minimum of 3V. Since the Nordic

nRF52 chip requires an operating voltage of 3.3V, the HC-

SR04+ was chosen. By doing so, the circuit design for the

power supply is simplified by not requiring the use of two

voltage regulators which also results in a lower cost. The

following table list the specifications of the ultrasonic sensor

used for the sensor module.

Table 1. HC-SR04+ ultrasonic sensor specifications.

Specification HC-SR04+

Operating Voltage 3.0 to 5.5 V (DC)

Operating Current 10 to 20 mA

Quiescent Current 3 mA

Frequency 40 kHz

Range 0.2 m to 4.5 m

Resolution 3 mm

Temperature Range -15 to 70 ̊C

Dimensions 43 mm x 20 mm x 15 mm

Weight 8.5 g

Sensing Angle 30 ̊ cone

Angle of Effect 15 ̊ cone

Trigger Input Signal 10µs TTL pulse

Echo Output Signal Output TTL PWL signal

Price $1.44

C. Microcontroller

The ultrasonic sensing units are powered by a Nordic

nRF52832 microcontroller unit. This microcontroller chip

contains an ARM Cortex M4 CPU and a Nordic Bluetooth

transceiver in the same chip. This means that the CPU and the

Bluetooth stack can communicate easily rather than having to

design dedicated hardware connections between the Bluetooth

transceiver and a separate dedicated CPU.

The ARM Cortex M4 is more than powerful enough to

handle the calculations involved in the seconds-long sensing

intervals of the battery-powered ultrasonic sensing unit.

Another benefit of a combined solution is a much lower power

draw. Overall the power draw of the Nordic nRF52 chip is

much lower than the more common and less powerful MSP430

or ATMega128 CPUs. Minimizing power draw within the

battery-powered sensing unit relies on putting the CPU to

sleep as much as possible between sensing intervals, only

waking up to check the ultrasonic sensor or to send/receive

Bluetooth data.

The microcontrollers on the circuit boards are

programmed via the Nordic nRF52 Development Kit. The

development kit has debug passthrough pins that allow

external Nordic-powered boards to be flashed and debugged

by the Development Kit’s internal SEGGER J-Link debugger.

This eliminates the need for the group to purchase the much

more expensive standalone J-Link debugger or the need to use

an unauthorized cheaper clone in order to download the

firmware programming onto the ultrasonic sensing unit’s

processors.

D. Power Supply

In the Park Shark system, the sensor modules require an

operating voltage of 3.3V. The goal is to create a sensor

module that can operate for at least a year before demanding a

battery change. Before selecting the power supply, the

consumption characteristics of each active element in the

sensor module was taken into consideration and an activation

plan was created for the sensor module. The activation plan

will ensure that the battery life will last for as long as possible

by activating the MCU and sensor only at specific intervals.

For example, the MCU will simply go into sleep mode when

the parking garage is not at near capacity.

Once the overall power consumption of the device is

calculated, a battery that supplies the necessary voltage needed

to power the device for a year can be selected. To select a

battery for the sensor module, the required voltage supply for

the sensor module must be considered. The two main

components in the sensor module that require voltage input are

the Nordic nRF52832 chip and the ultrasonic sensor. The

nRF52832 chip requires a supply voltage of 3.3V. The supply

voltage range for the ultrasonic sensor is between 3 and 5.5V.

Thus, a supply voltage of 3.3V was selected for the ultrasonic

sensor because it’s the same voltage required to power the

nRF52 chip. By doing so, the circuit is simplified by utilizing

one voltage regulator instead of one for each component. This

will also lower the total manufacturing cost of the PCB since it

would eliminate the need to purchase two separate regulators.

Based on this information, the supply voltage necessary to

power the sensor module is about 3 to 4.5 volts.

The two most important parameters to take into

consideration when selecting a battery is its nominal voltage

and its battery capacity. The battery capacity necessary for the

device can be calculated knowing the total current drawn by

the active elements in the sensor module and the desired

battery lifetime. The desired battery lifetime is at least a year

and the calculated total current drawn by the module is 50µA.

By plugging these values into the equation shown below, the

calculated battery capacity necessary to power the device for a

year is 438mAh.

The batteries chosen to power the device are AA batteries

due to its small size, easy attainability, and low cost. These

batteries provide more than enough battery capacity

considering a single AA battery provides 2870mAh. By

utilizing AA batteries, the device is estimated to last for 6

years. Since the nominal voltage of an alkaline cell is 1.5V and

the necessary supply voltage for the device is 4.5V, three AA

batteries will be used.

After testing the final sensor module, it turns out that the

actual current drawn by the device is about 0.2 - 0.3mA. By

utilizing AA batteries, the device is estimated to last for at

least 1 year.

E. Bluetooth Communication

Each of the ultrasonic sensing units use the Nordic

nRF52832 Bluetooth MCU, which implements Bluetooth 4.2

and additionally supports some Bluetooth 5 features, such as

lower power consumption. This Bluetooth chip allows a far

more robust connectivity solution than older standards that

other parking systems may have used, as the newest Bluetooth

standards allow far more connections between devices and far

less power draw, making a battery-powered solution much

more feasible than mere years ago.

The Bluetooth SIG also has a Bluetooth Mesh standard,

allowing devices to connect through each other to reach a

specified device that would normally be out of range.

However, the official Bluetooth Mesh standard relies on

devices that are always broadcasting and receiving data

constantly and thus rely on being connected to a constant

power source. This is not compatible with the paradigm of

using a mesh of battery-powered units.

Therefore, a mesh implementation would have to be

manually created. It is simple to allow a device to passthrough

data from one other sensor, however allowing a sensor to

forward data from multiple other sensors is much more

complicated and would also result in much more time spent

scanning for new devices, which would have a very high

power draw. In the implementation, the devices send their

sensor info via Bluetooth to the constantly-powered Camera

unit of the Park Shark system, which passes the data along to

the backend on the Internet.

F. Backend / Database

At the beginning of the project, the Park Shark team

initially intended to create a backend using Node.js and

Redux, allowing for the front-end and the back-end to sit on

the same machine. Upon discussion of the implementation of

both the website and the mobile application, the decision to

split the two became more appealing. Hosting the backend on

a separate machine to serve as an API would allow the website

and the mobile application to make requests for the parking

availability, ensuring that both applications display the same

information. This also simplifies the job of the computer

vision module as now the unit only has to send requests to the

API instead of trying to separately update both applications.

This would also allow students at UCF to have a public API

for parking availability that they could use in projects or

hackathons. The backend was created using Node.js and

utilizes a MongoDB database to store all information. The use

of the Mongoose node package was utilized for all

communication between Node and the MongoDB database.

The database stores two models, Sensor and Garage, which

stores all parking availability information. The details of both

models can be seen in the data model given below. The API

was deployed to a Heroku server for all hosting purposes.

Fig 4. Data model figure for database

Each ultrasonic sensor and computer vision sensor are

manually given an ID and populated with which spots the

sensor is monitoring. This information is then used to create a

sensor model as well as update the garage model. The Node.js

backend itself follows the REST API principle, with routes for

GET, POST, PATCH, and DELETE HTTP requests.

G. Website

The website will be one of two ways the user of the Park

Shark system can access the UCF garage availability. We

understand that most user will be using the mobile application

as it’s always at the palm of their hands, but the Park Shark

team wanted an alternative to just a mobile application.

Having a website allows anyone from any device to be able to

access the garage systems information.

 When the website is launched it will not require any

information from the user just as the mobile app. The website

will simply display the current garages available for the

system. Once you click on one of the garages it will render the

statistics for that specific garage. It will have the title and the

remaining spots with a garage occupancy status percent bar.

Underneath that is the specific floor and spot availability,

which shows the spot ID and if it is taken or not. It also shows

the floor capacity.

 The website was built using React and deployed on a

Heroku server. Unlike the mobile app the website does not

have an administrator login for the system. We decided that

since the mobile app is the main source to the system, we

would keep that functionality there and treat the website as an

auxiliary source to garage data.

Fig 5. Park Shark Website frontend displaying garage C information.

H. Mobile Application

The mobile application will be one of two ways the users

of the Park Shark system can access the UCF garage

availability. The mobile application is the main method for

students accessing specific garage availability, as most

students have a phone. It will be pulling data from the database

in order to display the parking garage availability.

 When the mobile application is launched it will not require

any information from the user. The user will not have to login

and enter any data to acquire access to the application. The

application should simply display the garages and the current

availability of each garage. The user will have an option to

click on any garage for more specific details if wanted. This is

only an option, and not required to get percentage filled. This

allows the mobile application to stay simple with the user in

mind.

 Although the mobile application does not have a user

login it does have an admin account login. This allows the

manager of the Park Shark system to edit the number of

garages available on campus. The status of garages can also be

adjusted. This is useful in the case of a garage being under

construction or expanded. A perfect example is garage C at

UCF which was temporarily unavailable to latter become

available with many more parking spots. There are also special

events that may require a garage to be closed off or made

partially available.

 The main page for any user will consist of a screen with

the current UCF garages. This is displayed with the letter

associated with the garage and right underneath it will be the

number of spots available in that garage. The main page will

also be the accessing point for our FAQ, contacts, and admin

login screens. The FAQ page has the most basic frequently

asked questions as well as a button to the UCF’s official FAQ.

The contacts page has information on all park shark team

members as well as their emails. If a specific garage is clicked,

then the user will be taken to that garage’s specific statistics.

Which will show what specific spot is taken and what floor it

is on.

 Fig 6. Main page for the mobile application.

 The admin login will take you to a login screen. There is

no registering option because the concept is that if this project

were being implemented by someone the admin user would be

created from the developers in to ensure security. Once the

admin logs in with valid credentials the admin page will

appear. From here the admin can disable a garage by simply

putting the garage letter and clicking the disable garage button.

To enable a garage the admin would have to put a garage letter

and the number of sensor/spots wanted for the garage and

clicking the enable garage button. As an added feature the

admin will have a button called sensor battery status which

will output a list of sensors that need their batter replaced.

 The application was built using React Native. React

Native allows the developers to create real native applications

without having to develop two separate apps. The alternative

to native apps would be developing an android app using Java

and using swift/objective-c for an iPhone app. This means that

any user not just android or iPhone user can use our mobile

application. Therefore, if our system were implemented for

UCF all attendants would be able to quickly check all garage

availability at the palm of their hands.

I. Housing and Assembly

 The housing for the sensor module and computer vision

module will be described in this section. The housing for the

sensor module was made to contain three components: the

battery pack, the PCB, and the ultrasonic sensor. On one side

of the housing, two holes were cut out to allow the ultrasonic

sensor to pop through. The other side, another hole was made

to allow easy access to the switch button on the battery pack.

The battery pack was attached to the inside of the lid of the

box for accessibility and convenience for the user to change

the battery when necessary.

Fig 7. CAD design of the housing for the sensor module.

 The main idea was to create a sensor module that was

small and light, so the user would have the option to place it in

a variety of locations. The sensor modules can be placed on

either the wall, ceiling, or floor. It all depends on the user’s

preference. Ideally, placing the sensor modules on the ceiling

will prevent anybody from accidently damaging the device.

Although, on the top floor of the parking garage, the user

would have to choose between placing the sensor either on the

wall or the floor due to there being no ceiling.

The housing for the computer vision module was made to

contain the 12V battery pack, the voltage regulator, the

Raspberry Pi, and the camera. The housing must be big

enough to fit all the components inside and have a hole for the

camera to fit through.

 The computer vision module will be mounted on the

ceiling clamped to one of the many beams in the garage. The

module will be positioned to oversee three parking spots.

Thus, the module will be slightly tilted downwards to get a

clear view of the parking spaces.

Fig 8. CAD design of the housing for the CV module.

V. TESTING

 During Senior Design I and Senior Design II, the Park

Shark has been implementing testing on each individual

component of the system. Early testing was done to ensure all

individual components work as intended. For the ultrasonic

sensors a dev board was used to program the sensor

component. It was also used to test the sensing range. For the

mobile application testing was done throughout the whole

process of development. The terminal was used as a console

log to output intended results.

 Final testing and integration were performed during the

late mid Senior Design II semester. This testing focused on the

whole system working together. The computer vision and

ultrasonic sensors were set up in garage C and were tested for

accuracy and responsiveness. This was the integration testing

of the system working and verified that our system worked.

The mobile application was also tested on a physical mobile

app to ensure the app was rendering properly on a real device.

Due to constraints of not having a mac computer we were not

able test it on an iPhone.

VI. CONCLUSION AND REFLECTIONS

 Park Shark is a parking monitoring system that relies on

recent advancements in computer vision and wireless

communication technology. The computer vision unit allows

flexibility with client budgets for implementation, and the

lower power consumption allowed by Bluetooth 4.2 and

Bluetooth 5 results in far longer battery life than older systems

without compromising responsiveness, performance, or cost.

 Most of the challenge involved in the hardware design of

the project involved tuning the Bluetooth parameters in order

to ensure a minimal power draw without affecting

responsiveness or connectivity. The main challenge of the

software design of the project was that most of the group

members were unfamiliar with React Native, meaning that

creating the frontend and backend of the system took more

time than anticipated as members working on it had to get used

to React Native first before significant progress was made.

VII. FUTURE IMPROVEMENTS

One improvement for the park shark system would be the

ability to be implemented by multiple universities or

businesses. This could change some of the requirements for the

users because the system would need to know what

information is trying to be accesses so a register account

option could be made. An alternative would be to add a search

bar to find the system you are looking for on the app on

website end. In this case the system would be a group of

systems divide up the keys, keys most likely being the name of

the business.

A far more user-friendly way of displaying available

parking spaces would be to show them on a map for the user to

see. This functionality should already be easily supported by

the backend as each parking space is already tracked

individually as opposed to UCF’s current counting

implementation. The status of the spots merely needs to be

overlaid on top of a map of the parking section.

The Bluetooth sensor network can be improved by

allowing each node to communicate with more than one other

sub-node. This adds difficulty in that supporting multiple

connections would require the device to be constantly scanning

for other devices to add to its network tree. Scanning draws a

high amount of power, meaning that using regular scan

intervals is antithetical to long battery life. One solution is

adding a button to each sensor to manually enable pairing

mode during installation, meaning that scanning is only

enabled during the sensor’s first connection, which should

result in minimal power draw compared to regular scanning

intervals. Another similar solution is that the server can tell a

specific sensor to start scanning using a special command. This

feature was thought of before the project was finished,

however time constraints and the requirement of a new PCB

revision that adds a button prevented its implementation.

VIII. PARK SHARK TEAM

 The Park Shark team is made up of three computer

engineering students and one electrical engineering student.

Travis Bangs, a computer engineering student, worked on

the firmware design and programming of the ultrasonic sensing

units and their Bluetooth connections, and assisted with the

hardware schematic design for the wireless ultrasonic sensing

units.

Keegan Conway, a computer engineering student,

programmed the computer vision algorithms for the camera

sensing unit, created the parking information database, the

Park Shark website, and created an API to communicate the

sensors’ occupancy information to the server backend.

Marcelino Galarza, a computer engineering student,

designed and programmed the server backend, and mobile

application of the Park Shark system, creating the user

interface and database interaction required for the it to

function.

Beatriz Jimenez, an electrical engineering student,

designed the printed circuit board layout and assembled the

three circuit boards used in the demonstration of the project, in

addition to handling the budget and logistics of ordering parts

and manufacturing the circuit boards and housing.

Fig 9. Park Shark team

