Light Guide Solar Concentrator Group C

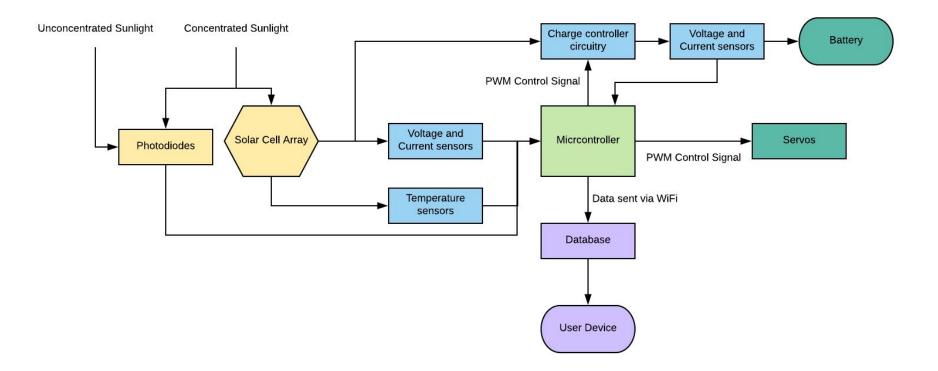
Matthew Armogan Kyle Merritt Justin Kolnick Computer Engineer Optics and Photonics Computer Engineer

Project Goals

1. Design a compact, scalable CPV system

2. Create an attractive design

3. Simplify understanding the system status

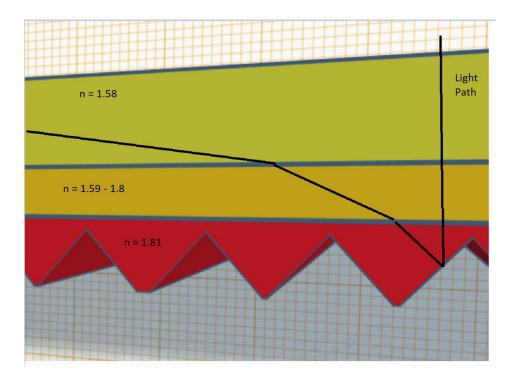


Specifications and Requirements

- Concentrator should be less than 5 cm thick
- Tracking angle: -60 degrees to 60 degrees
- Concentration factor: 2.5x
- Optical system efficiency: 80%
- Electronics system efficiency: 85%
- Android app must be easy to use and provide high utility

Block Diagram

Solar Concentrator

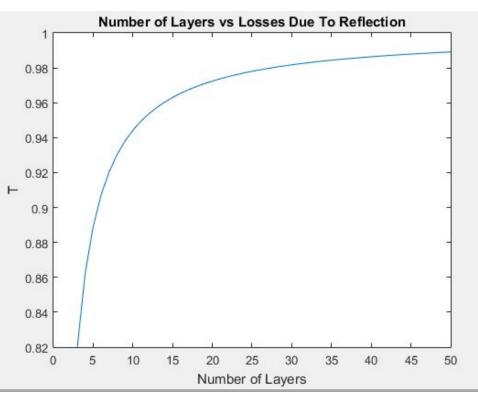

Weight: 0.6 kg

Expected Optical Losses: 20%

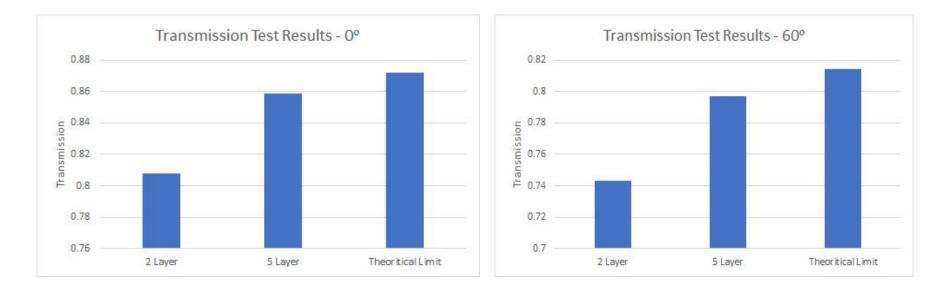
Excitation plane: Top

Emission plane: 2 sides

Index matching fluids


Optical Device Characterization

Predicted Sources of Optical Loss


Fresnel Reflection - 2% to 12%

Mirror Surface - 4%

Matlab script was used to characterize

Optical Loss Test Results



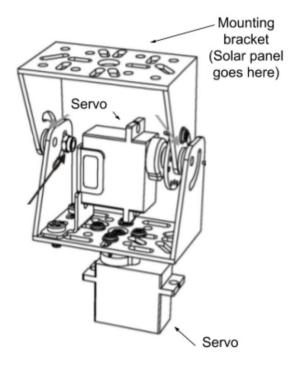
Tests performed with 532 nm laser diode, without the prisms attached

Tracking: Solar Direction Sensor

Pinhole L Quadrant Photodiode and Pinhole Scanning Mode and Sensing Mode

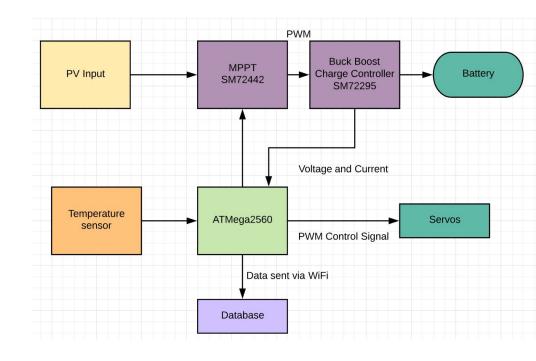
$$X = \frac{(x+)-(x-)}{Q1+Q2+Q3+Q4} = \frac{(Q1+Q4)-(Q2+Q3)}{Q1+Q2+Q3+Q4} = \frac{X_{Diff}}{SUM}$$
$$Y = \frac{(y+)-(y-)}{Q1+Q2+Q3+Q4} = \frac{(Q1+Q2)-(Q3+Q4)}{Q1+Q2+Q3+Q4} = \frac{Y_{Diff}}{SUM}$$

Tracking: Physical Mechanism


Prototype will be a scale model

Premade frame

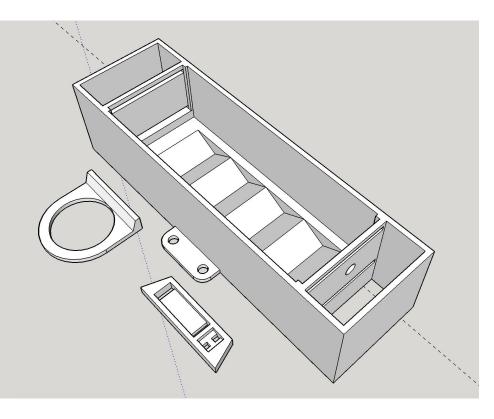
Easily controlled servos


Servo torque: 5 km/cm

Had to swap kit servos with more powerful ones

Hardware Architecture

- MCU, MPPT, and Buck/Boost embedded onto single board design
- Traces for Serial and I2C communication for MCU/WiFi and MPPT/MCU respectively.
- Headers on board for longer distance sensor connections, tracking control, and reprogramming of MCU


3D Printed Housing Unit

Unit Dimensions (mm):

144.35 x 41.75 x 36.88

Active Concentration (mm):

86 x 30.25 x 24

Solar Cells Selection

Model: IXYS KXOB22-01X8F

Output: 3.4V, 3.8mA

2 cells connected in series to form combined output of 6.8V, 3.8mA

3 arrays in series to form combined output of **6.8V**, **11.4mA**

Bypass and blocking diodes needed to prevent backflow of current from battery and ICs

Power Control System

- MCU ATMega2560
 - Interfaces with servos via PWM signals
- MPPT H-Bridge driven buck/boost topology
 - DC-DC Conversion
 - Reduce voltage, increase current
- Sensors: Temp, Sunlight, Voltage, Current
 - Analog to Digital conversion
 - Voltage and current values are required at solar cell array and battery to determine solar cell generation and battery intake.
- Sending data via WiFi
 - ESP8266 via serial communication

Microprocessor Selection

PIC18F46K22

- C Compiler optimized architecture
- Linear program memory addressing to 64 Kbytes
- Up to 16 MIPS operation
- 28 ch, 10-bit ADC Input
- Up to 4 PWM outputs

<u>CC3220</u>

- ARM Cortex M4
- WiFi module built into chip
- Allows for I2C, SPI, SD and UART
- 1MB of Flash and 256KB of RAM
- Only 4 analog pins available, requires multiplexing

Microprocessor Selection

ATMega328

- Interfaces: I²C, Serial
 - Only one serial connection available
- Significant libraries for basic functions like servo control
- Massively simplifies implementation and board design
- Requires the use of multiplexing for analog signals

ATMega2560

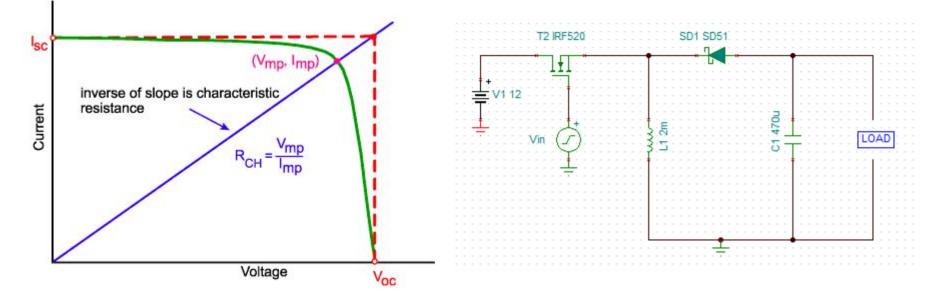
- Interfaces: I²C, Serial
 - Up to three serial connections available
- Significant libraries for basic functions like servo control
- Includes up to 16 analog pins, removing the need for multiplexing

Temperature Sensor Selection

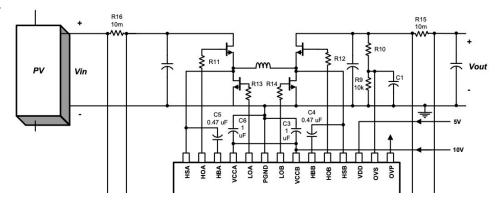
Texas Instruments: SM72480

- Low 1.6V Operation
- Accuracy, Trip Point Temperature 0°C to 150°C ±2.2°C

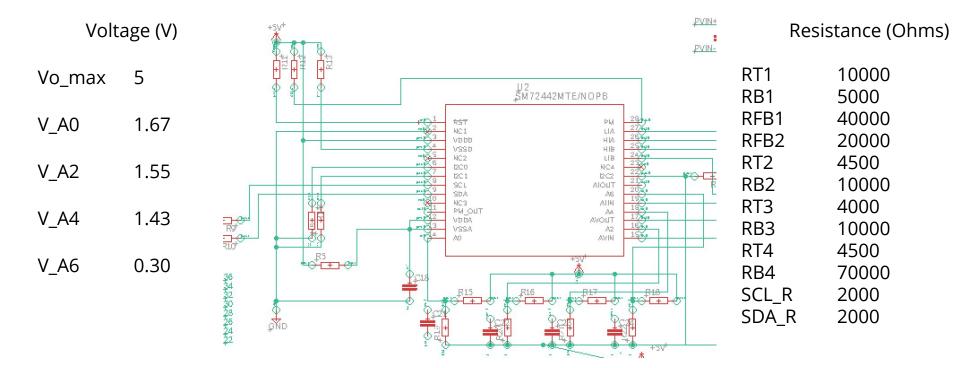
TE Connectivity Measurement Specialties: NB-PTCO-006


- Resistance @ 0°C: 1 kOhms
- Accuracy: ±0.3%
- For $T \ge 0$ °C: R(T) = R(0) * (1+a * T + b * T 2)
- For T < 0 °C: R(T) = R(0) * [1+a * T + b * T2 + c * (T-100°C) * T3]
- Coefficients: a = 3.9083E-03 b = -5.775E-07 c = -4.183E-12

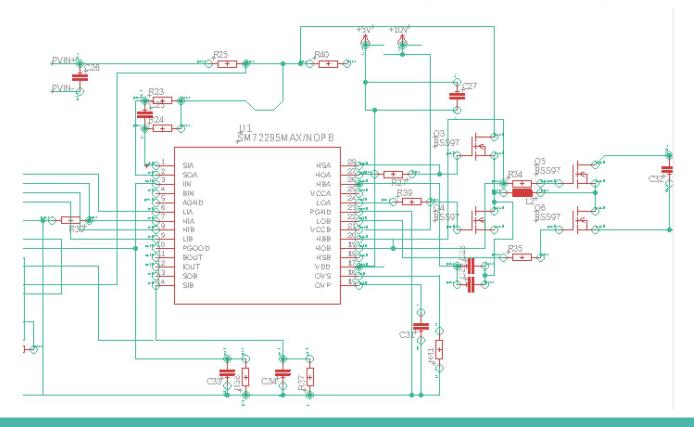
MPPT Method 1 - Single PWM Control


Utilizes "Hill-climbing" Algorithm

Buck Converter Circuit



MPPT Method 2 - Buck/Boost Topology


- Four PWM control signals to switch four N-channel mosfets in order to allow or block current flow from the solar cells into the inductor
- PWM control signals are generated by adding a second feedback loop indicating resulting inductor current
- The driver signals are powered by 3A of peak current for fast switching
- Convergence to the MPPT typic
 - Switching Frequency: 100MHz

MPPT Schematic - MPPT Configuration (SM72442)

MPPT Schematic - Buck Boost (SM72295)

Battery Selection

Tattu Li-Poly Battery

- Nominal Voltage: 3.7V
- Nominal Capacity: 220mAh
- Discharged Voltage 3.2V
- Charged Voltage: 4.2V
- Typical applications: Remote Control Helicopters

Due to design constraints, the battery has a small capacity.

WiFi Module Selection

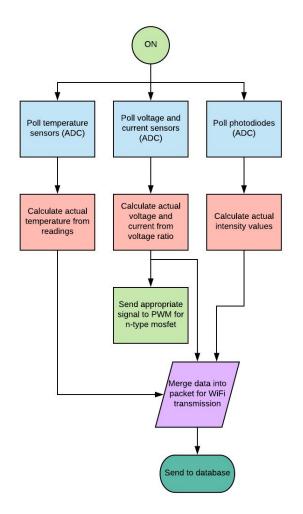
<u>RN1810</u>

- Communication via UART
- Protocol: 802.11 b/g/n
- Vin 3.3V
- Lacking support
- Data rate: 54 Mb/s

ESP8266-12E

- Communication via UART (Serial)
- Protocol: 802.11 b/g/n
- Vin: 3.3V
- Data rate: 7 Mb/s
- Significant support for implementation
- Pre-existing libraries for Firebase data manipulation

Microcontroller Code Flow Diagram


ADC Calculations

Calculating Temperature

Calculating PWM signal to servos

Calculating Voltage

Calculating Current

Motivation For Android App

Solar generation statistics not readily accessible to consumer

Desire to acquire data instantly (not wait for energy bill)

Analyze data in a way that's comprehensible to non-technical user

React Native

Native Mobile Application

JavaScript Library

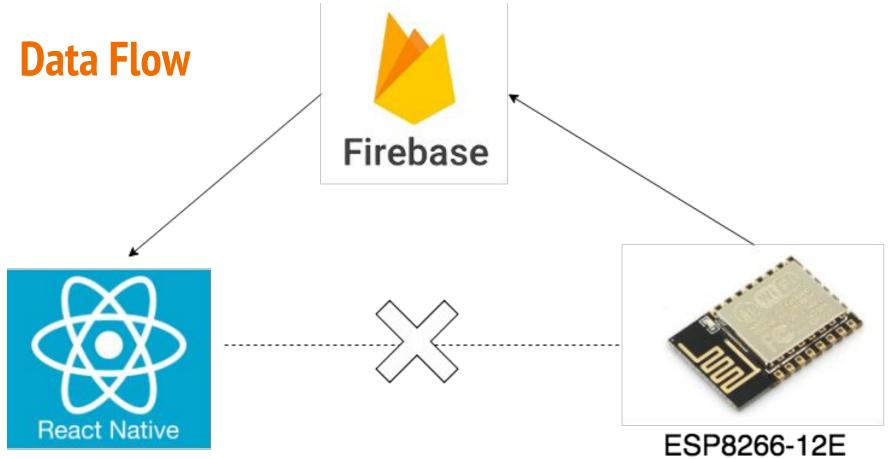
SVG Charting Tool

Live Reload

Firebase

Realtime database

Allow integration with Android Applications


Much simpler than custom server

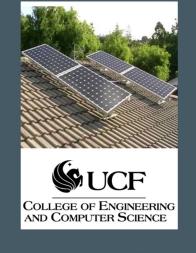
React API

Arduino API

Firebase

Wifi Module

Firebase Data Structure


String passed in from

microcontroller

• Updates every minute

fdkafakdl iin: 2.4 iout: 4.3 rotation: 85 ---- temp: 32 **tilt:** 87 time: "11-26-2018 20:31:00" ----- ucell: 3 updiode: 3 vin: 1 vout: 2

ITE 🗗 10:34

Light Guide Solar Concentrator Mobile Application

Enter

Ο

 \triangleleft

Click one of the buttons to display data on your Solar Device!

10:35

Current Status

Power Generated

Ο

 \triangleleft

•••

Current Status

← Time Last Updated: 11-26-2018 20:32:00

.....

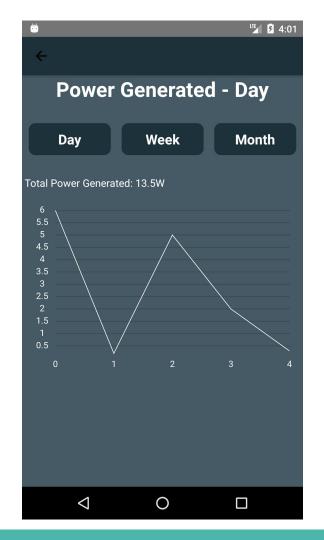
LTE 🛃 4:06

Cell Temperature: 26.7°C

Power Generated: 0.66W

Concentration Factor: 2.5

Tilt Angle: 54°


 \triangleleft

Rotation Angle: 88°

Ο

Power Generated

- Total Power Generated
- Power Generated vs. Time
 - Day
 - Week
 - Month

Project Budget and Financing

Item	Quantity	Price Estimate	Item	Quantity	Price Estimate		Item	Quantity	Price Estimate
Metal Framing Material	1	\$20	PIC16F46K22	1	\$20		Large high index glass sheet	2	\$200 \$40
Metal Support Material	1	\$10	Circuitry components	1	\$25-\$65		giass sheet		
Resistance Temperature Detectors	2	\$40	Buck Converter Components	1	\$20		Laser Diode for Testing Concentrator	1	
			Microcontroller	1	\$20				
Quadrant Photodiode	1	\$90	Microcontroller wifi chip	1	\$15		Optical Bench Setup for Testing Concentrator	1	\$120
Tube with Pinhole for Quadrant Photodiode	1	\$10	Voltage regulators	2	\$20				
Servos	2	\$30	Gem Refractometer	1	\$98		Anamorphic Prism Pairs	10	\$550
Batteries	1	\$100							
Custom PCB	1	\$30-\$100	Gem Refractometer Liquid	2	\$122		Silver Deposition Kit	1	\$75
High index glass samples (~3cm^2)	5	\$100	Various Tools for Glass Component Assembly	1	\$60		TOTAL		~1,590

