Light Guide Solar Concentrator Group C

Matthew Armogan Kyle Merritt Justin Kolnick Computer Engineer Optics and Photonics Computer Engineer

Project Goals

1. Design a compact concentrated photovoltaic system suitable for rooftop or on ground mounting

2. Create an attractive design that system owners will be proud of

3. Provide a way for owners to clearly understand the benefits of their system by providing a software interface

Overall Design

- Solar Concentrator
- Tracking System
- Energy Transfer and Battery
- Android Application

Specifications and Requirements

- Less than 5 cm thick
- Tracking angle: -60 degrees to 60 degrees
- Concentration factor: 2.5x
- Optical system efficiency: 70%
- Electronics system efficiency: 85%
- Android app must be easy to use and provide high utility

Block Diagram

Solar Concentrator

Weight: 0.6 kg

Expected Loss Factor: 8%

Excitation plane: Top

Emission plane: 2 sides

Next steps: practice bonding layers and test for losses and cut plexiglass

Optical Device Characterization

Predicted Sources of Optical Loss

Fresnel Reflection - 2% to 12%

Mirror Surface - 4%

Matlab script was used to characterize

Tracking Mechanism

Prototype will be a scale model

Premade frame

Easily controlled servos

Servo torque: 1.4 km/cm

Next step: Test servos with a test weight

Solar Direction Sensor

Pinhole L **Quadrant Photodiode and Pinhole**

Scanning Mode and Sensing Mode

$$X = \frac{(x+)-(x-)}{Q_1+Q_2+Q_3+Q_4} = \frac{(Q_1+Q_4)-(Q_2+Q_3)}{Q_1+Q_2+Q_3+Q_4} = \frac{X_{Diff}}{SUM}$$
$$Y = \frac{(y+)-(y-)}{Q_1+Q_2+Q_3+Q_4} = \frac{(Q_1+Q_2)-(Q_3+Q_4)}{Q_1+Q_2+Q_3+Q_4} = \frac{Y_{Diff}}{SUM}$$

Optical Loss Test Results

Tests performed with 532 nm laser diode, without the prisms attached

Electrical System and Sensors

- MPPT PWM
 - DC-DC Buck Circuit
 - Reduce voltage, increase current
- Servos
 - Adafruit high torque, metal gear
- Sensors: Temp, Sunlight, Voltage, Current
 - Analog to Digital conversion
 - Voltage and current values are required at solar cell array and battery to determine solar cell generation and battery intake.
- Sending data via WiFi
 - ESP8266 via serial communication

Next Step: Test breadboard version in lab

Output: 3.4V, 3.8mA

3 cells connected in parallel to form combined output of **3.4V**, **11.4mA**

2 arrays in series to form combined output of 6.8V, 11.4mA

Microcontroller

PIC18F46K22

- Linear program memory addressing to 64 Kbytes
- Up to 16 MIPS operation
- 28 ch, 10-bit ADC Input
- Up to 4 PWM outputs
- Temperature Range (C): -40 to 125
- Operating Voltage Range (V): 1.8 to 5.5

ESP8266-12

- Interfaces: I²C, SDIO, SPI, UART
- Data Transfer Rate: 54Mbps
- Frequency: 2.4GHz

MPPT - PWM Control

Utilizes "Hill-climbing" Algorithm

Buck Converter Circuit

Voltage Regulators

Needed for step-up DC-DC conversion between low-voltage microcontroller and servo motors.

LM2621 Low Input Voltage, Step-Up DC-DC Converter

- 1.2V-14V Input Voltage
- 1.24V-14V Adjustable Output Voltage

Servo Reference								
Speed	4.8V: 60 degrees in 0.2 sec							
	6.0V: 60 degrees in 0.16 sec							
Torque	4.8V: 8.5 kg-cm / 120 oz-in							
	6.0V: 10 kg-cm / 140 oz-in							

Temperature Sensors

TE Connectivity Measurement Specialties: NB-PTCO-006

- Resistance @ 0°C: 1 kOhms
- For T ≥ 0 °C: R(T) = R(0) * (1+a * T + b * T 2)
- For T < 0 °C: R(T) = R(0) * [1+a * T + b * T2 + c * (T-100°C) * T3]
- Coefficients: a = 3.9083E-03 b = -5.775E-07 c = -4.183E-12
- Tolerances: class F0.3 (B): ± (0.3+0.005* | T/°C |) °C (-50 ... +600 °C)

502030 Li-Poly Battery

- Nominal Voltage: 3.7V
- Nominal Capacity: 240mAh
- Operating Temperature: -20~+60C
- Discharged Voltage 3.4V

Due to design constraints, the battery has a small capacity.

With our excess voltage, we will utilize the buck circuitry to increase current and reduce voltage.

Schematic

Next steps: Test breakout demo in lab before finalizing PCB

Microcontroller Code Flow Diagram

ADC Calculations

Calculating Temperature

Calculating PWM signal to servos

Calculating Voltage

Calculating Current

Motivation For Android App

Solar generation statistics not readily accessible to consumer

Desire to acquire data instantly (not wait for energy bill)

Give user control over their device

Analyze data in a way that's comprehensible to non-technical user

React Native

JavaScript Library

Native Mobile Application

Live Reload

Future: Development Across Platforms

Firebase

Realtime database

Allow integration with Android Applications

Firebase

Primary Features

- Solar Power Generation
 - Current Status
 - Total Power Generated
 - Power Generated vs. Time

- Battery Charge
 - Current Charge Level

 $battery charge = \frac{current charge level}{capacity of battery}$

iPod 🔶 06:06 PM Power Generation Over Time ^Dower Generated (W) Time From April 11, 2018 - April 18, 2018 Total Money Saved: \$243 Total Power Generated: 2679 kW Current Status Manual Control Power Generation Over Time

Secondary Features

- Current Tilt Status
 - Tilt Angle
 - Rotation Angle
- Temperature of Solar Cells
- Cell Efficiency

Pod ç	08:15 AM
Current Status	
Power Generation: 143 W	Cell 1 Temperature: 53 degrees C
Battery Level: 95%	Cell 2. Temperature: 51 degrees C
Unconcentrated Diode Power Level: 12	2W
Concentrated Diode Power Level: 77	w
Axis 1 Tilt Angle: -24 degrees	
• Axis 2 Tilt Angle: 31 degrees	
Current Status Manual Co	ntrol Power Generation Over Time

Firebase Data Structure

Data Packet Standard

```
[{
```

```
"timePolled":"DateTime",
"batteryCharge":"number",
"powerIntoCell":"number",
"powerAfterCell":"number",
"tiltAngle":"number",
"rotationAngle":"number",
"cellTemperature":"number" },
...<]</pre>
```

Use Case Diagram

Project Budget and Financing

ltem	Quantity	Price Estimate	Item	Quantity	Price Estimate		Item	Quantity	Price Estimate
Metal Framing Material	1	\$20	PIC16F46K22	1	\$20		Large high index glass sheet	2	\$200
Metal Support Material	1	\$10	Circuitry components	1	\$25-\$65				
Resistance Temperature Detectors	2	\$40	Buck Converter Components	1	\$20		Laser Diode for Testing Concentrator	1	\$40
			Microcontroller	1	\$20				
Quadrant Photodiode	1	\$90	Microcontroller	1	\$15		Optical Bench Setup for Testing Concentrator	1	\$120
Tube with Pinhole for Quadrant Photodiode	1	\$10	Voltage regulators	2	\$20				
Servos	2	\$30	Gem Refractometer	1	\$98		Anamorphic Prism Pairs	10	\$550
Batteries	1	\$100							
Custom PCB	1	\$30-\$100	Gem Refractometer	2	\$122		Silver nitrate salt	100g	\$60
High index glass samples (~3cm^2)	5	\$50	Various Tools for Glass Component Assembly	1	\$60		TOTAL		~1,505
			1 '	1					

Percentage Complete

