
The Smart Garden Controller –

Automating and Analyzing a

Garden

Alexander Burns, Geovanny Chirino, Temple A.

Corson IV, & Renan Coelho Silva

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — Cultivating a home garden is common pastime

among families and individuals in the United States and
around the world. The objective of the design for this project
is to assist home gardeners and small farmers in maintaining
and understanding their garden. The system autonomously
waters a garden’s contents with an automated schedule and
on-demand watering features, records sensor data, and
interfaces with the user through a web based application as
well as buttons and an LCD placed on the device. The data to
be collected by this system includes, but is not limited to,
Temperature, Humidity, Pressure, and Soil Moisture.

Index Terms — Autonomous Systems, Environmental
Factors, Humidity Measurement, Soil Moisture, Temperature
Measurement, User Interfaces.

I. INTRODUCTION TO THE SMART GARDEN CONTROLLER

Gardening is time consuming. Having to go to out of the

house to turn on watering systems and trying to determine

for how long to water the plants can be difficult. The smart

garden controller is a solution to some of the work involved

in making sure the home garden or a small farm is taken

care of. The smart garden controller also collects data

regarding soil moisture, temperature, and light. The metrics

collected by the smart garden controller sensors are very

useful in determining how often and how long to water the

garden.

 The primary goal for the smart garden controller is to

take away the manual labor involved in watering plants and

automate the watering maintenance. The smart garden

controller will allow the gardener to set a schedule for each

zone of the garden independent of one another. The

gardener will be able to control how often to trigger the

irrigation as well as for how long to water the plants. The

Smart Garden controller will also allow for on demand

watering session if more time is deemed necessary. Both on

demand and scheduled watering sessions will be controlled

via a web interface. An LCD and buttons will also allow for

on demand watering sessions to be triggered directly via the

device as a fall back to the web application.

 The second goal of the smart garden controller is to

provide metrics about the garden. Moisture sensors in the

soil will detect the capacitance of the soil to determine the

moisture. The soil sensor will also gather temperature and

light. Another sensor will collect air temperature, humidity,

and pressure. All the data collected will be uploaded back

to a database. Based on the metrics collected, the user will

be able to adjust how often the different zones should be

watered while taking into account the sensor data collected.

All the metrics should be available for review via a web

application.

 Once the system is setup the user should be able to

fully control the watering system and review metrics via the

web application. The smart garden controller lets the user

manage and analyzer his garden without ever leaving his

computer or home. Therefore, the following are the main

detailed requirements for the system.

1) The controller should be able to control and regulate

watering service for the garden. Each watering section will

be independent of the others, meaning that each zone could

be watered according to a different schedule, and any

number of zones could be watered on-demand.

2) The system should collect sensor data from at least

three of the following six physical phenomena:

temperature, relative humidity, atmospheric pressure, soil

moisture, ambient light, and wind speed.

3) The system must have a user-interface for the user to

set a watering schedule for at least one zone, initiate an on-

demand watering order for at least one zone, and to view

the data collected by the system.

II. EXISTING SOLUTIONS

Most technologies build upon existing ideas and

technologies, the smart garden controller does as well.

Comparing our requirements and design to that of existing

technologies is time well spent. Review of previous

products can help a project stay on track by keeping

requirements realistic. Also, evaluation similar technology

and previous projects can help avoid pitfalls seen in other

projects. Finally, knowledge of existing device similar to

the smart garden controller will show if this solution is well

developed.

The following are some projects which are similar to the

Smart Garden Controller. The main difference to note is

that some of the following projects are for hydroponics

rather than soil based growing. Another difference is that

most of the mentioned projects were geared towards

growing plants inside the home, while the Smart Garden

Controller focuses on growing plants outside the home.

Also, most of the following projects were fully contained

systems, while the Smart Garden Controller’s goal is to

integrate with an existing garden.

The first being the Autobot. Initially, it started out as a

smart garden with soil and regular sprinklers. However,

eventually the project moved to hydroponics. The project

had PH, light, and a water sensors. Based on sensor

readings the water level and PH could be adjusted. Also,

the project had wireless communication. The project aimed

at scaling down an outdoor garden to fit into a house. This

project was similar to the smart controller presented here in

which it aimed at growing plants. However, the AutoBott

aimed at growing plants inside the house while the smart

garden controller aims at the outside garden

The second being the Energy Sustainable Hydroponics

with Automated Reporting and Monitoring. The system

aimed at automating some of the tasks necessary for

maintaining a hydroponics system. The system was similar

to the AutoBott project previously mentioned, and in

addition uploaded data collected from the system to a web

server.

The design found which most closely matched the smart

controller was the PASS, Plant Automated Sustainable

System. The PASS did not have a web interface and was

controlled via Bluetooth. The PASS used regular soil,

compared to most of the other projects found which focused

on hydroponics. The user needed either a tablet or a phone

to interact with the device. The system used a network of

sensors to determine when to water the plants. However,

the system did not provide metrics for the user for review.

Also, the main focus of the system seemed to be portability

and for an audience which needed to plant indoors.

Thorough research and examination was expended in the

effort to properly design and implement a suitable and

successful project. The system design in any project is a

crucial piece of design work that takes the projects end

goals and makes them realizable using the technology that

is available, and in a way that is in line with the financial

and functional goals of the end product or user. The system

design must account for the financial, economic,

technological, and ethical requirements and constraints

throughout the life of the project to ensure that all goals are

met within the limits of the constraints. A good system

design requires research on relevant technologies and is

often accompanied by a number of trade studies that offer

a tradeoff analysis of certain aspects and characteristics that

pertain to the overall system performance. These tradeoffs

are often compared between competing technologies so that

the designer is easily able to discern what options seem best

suited for an application, and what the tradeoff with that

selection would be.

The following subsections detail our research in each

specific area and provide clarification on the final part

selections with supporting evidence for each item. For each

subsection there will be a trade analysis that demonstrates

the different options that were available and the pros and

cons of each option that ultimately led to the final decision

III. STRATEGIC COMPONENTS & DESIGN DECISIONS

A microcontroller is an embedded system that contains a

processor, memory, and peripheral interfaces all contained

within a single chip or module. Microcontrollers are used

in almost all electronics and embedded devices.

Microcontrollers are cost effective. Most microcontrollers

use very little power and have sleep options that greatly

improve battery performance. Some of today’s

microcontrollers even provide wireless connectivity. In a

way, microcontrollers are platforms which abstract the

circuitry necessary to control hardware. Therefore,

microcontrollers are great for improving reliability and

efficiency of products.

For the purposes of this project, the microcontroller will

serve as the brains of the entire system. The microcontroller

will be responsible for running the main firmware of the

system which executes the decision algorithm based on the

sensor and user inputs. The microcontroller will also be

responsible for all timer based and calendar functions,

including setting up and properly running and monitoring

the necessary timers, and executing the necessary functions

based on the timer interrupts. The microcontroller will be

responsible for handling the wireless interface and

communicating with the web server used for the user

interface. This user interface will allow the user to access

the device via WiFi and update settings as well as monitor

sensor analytics. Finally, the microcontroller is responsible

for running all peripheral devices including; LCD display,

user interface buttons, weather sensors, soil sensors, water

valve control, etc. Our microcontroller needs for this

project drove us to evaluate the following three

microcontrollers as possible solutions. The main

requirements that were evaluated in our microcontroller

selection were the microcontrollers WiFi capabilities and

ease of use and integration for WiFi. The microcontroller

needs to be low power so that battery life could be

optimized. The microcontroller needs to have sufficient

interface options to easily optimize the system design.

The Texas Instruments CC3220MODA is a low power

IoT microcontroller. The wireless microcontroller module

that contains the built in WiFi connectivity is FCC, IC, CE,

and Wi-Fi Certified. The CC3220MODA uses an 27 ARM

Cortex-M4 processor running at 80 MHz for faster more

reliable processing. The microcontroller contains a wide

array of peripheral interfaces, including I2S, SD/MMC,

UART, SPI, I2C, and a 4 channel ADC. The Wi-Fi network

subsystem contains an additional ARM MCU that off loads

Wi-Fi tasks from the application MCU. The network

subsystem contains the 802.11 radio, a baseband layer,

MAC layer, Driver layer, Supplicant layer, TCP/IP layer,

SSL layer, and IP layer. The network subsystem on this

module would allow for 256-bit encryption and supports

WPA2 personal and enterprise, as well as WPS 2.0. All of

these features combined lead Texas Instruments to claim

that this module requires no prior Wi-Fi experience for

development. The CC3220MODA utilizes Texas

Instruments’ Integrated Development Environment (IDE),

Code Composer Studio. This IDE is familiar with all team

members as all members of the team have used this IDE for

development with the MSP430 microcontroller in previous

projects. The level of comfort the team has with Code

Composer Studio did play a part in the decision between

these three microcontroller modules. The CC3220MODA

also comes equipped with an on-board chip antenna, which

would offer better wireless performance than the trace

antennas of the alternative modules. Some wireless

microcontrollers did not have an antenna. For such cases,

and antenna would need to be built into the PCB or

connected to the device. Therefore, the built in antenna

contained in the CC3220MODA MCU removes the risk

and effort involved in either creating our own antenna or

attaching it. Knowing that the CC3220MODA is intended

to be interfaced with using Code Composer Studio and

taking into account the fact that the module is designed for

Internet of Things low power applications with a focus on

easy Wi-Fi integration, it was not a difficult choice to select

the CC3220MODA. Along with the obvious advantages of

using the CC3220MODA by analyzing the features out of

the box, our group is also able to leverage historical

knowledge of development with this part. At least one team

member has been intimate in the electrical design and

system application of the CC3220MODA in a real-world

project that was the result of an internship opportunity.

Documentation can often make or break the efficiency of a

team when developing software for an MCU. Texas

Instruments has multiple online resources which will be

helpful in developing, troubleshooting, and understanding

the MCU used. Some of the resources include online

tutorials, pdf, and an active user community. While in the

battle of price per module the CC3220MODA came in last

place, there were many other considerations that influenced

the decision to move forward with the CC3220MODA as

our microcontroller/WiFi module for the Smart Home

Garden project. The CC3220MODA uses the Cortex-M4

processor, which is a well-known high performance, and

reliable processor. The current consumption was

comparable to the ATWINC1500 during receive and

transmit conditions, but neither compared to the low current

consumption of the WiFi activity of the ESP8266. While

this low power usage for WiFi activity would help the unit

conserve battery life, therefore creating a longer run time

between charges. But the determination was made that, in

the trade between low current consumption and complexity

of design and implementation, a less complex design and

easier to use integration environment were more favorable

than the lower current consumption. The memory

allocation between the three different modules was another

major factor that was taken into consideration, and in this

category, the CC3220MODA reigned supreme with 256KB

of RAM, which is double that of the ATWINC1500, and

more than quadruple that of the ESP8266. This memory

would allow for larger code and execution space and

reduces the risk of having to optimize code that is too large

to run on a given microcontroller. The flash memory is less

than that of the ATWINC1500, but with the SD/MMC

interface of the CC3220MODA we maintain the ability to

upgrade the unit with an SD Card or SD memory interface

to expand the flash memory if it is deemed necessary. The

final characteristic that led us to settle on the

CC3220MODA is the fact that it is able to operate down to

2.3V rather than 2.6V as in the ESP8266 and

ATWINC1500. This extra 0.3V of operating voltage will

allow the unit to maintain its normal operational state for a

longer period of time as the battery degrades and the

voltage drops lower and lower. The ability to leverage the

experience of the previous implementation of this module

in an electrical design, along with the functionality

provided by the module itself and the deterministic factors

that were derived from the trade study, led us to choose this

part as the microcontroller and wireless interface for the

Smart Garden Controller.

Fig. 1 Microcontroller Trade Analysis

The sensor chosen for our application is the I2C Soil

Moisture Sensor version 2.7.5 by Catnip Electronics. It

delivers readings for relative moisture level, Temperature,

and Ambient light. This sensor was chosen considering its

communication protocol (I2C), its price, and its

measurement methods and capabilities. Compared to other

sensors which can only read a single metric, this choice was

able to cover three of our six major data points, and

therefore was a clear superior. The moisture level

measurements are taken by this sensor using a capacitive

moisture sensor. This technology is widespread and

reliable, as it is used in several fields on consumer

electronics including but not limited to touchscreen

devices, position & acceleration sensors, and humidity

sensors. When the sensor is taking measurements in soil,

the capacitive surface will form a circuit with conductive

substances, water for our purposes, and cause a specific

voltage drop corresponding to a moisture level datum that

is sent to the microcontroller. The capacitance of this circuit

will increase or decrease depending on the amount of water

in the soil touching the sensor (respectively).

This sensor operates reliably within the temperature

range 0°C to 85°C (32°F to 185°F). Temperature readings

below this range within reason are not expected to damage

the sensor, but the temperature measurement will never

read a negative value. Temperature readings above this

range are not possible in the operational environment.

Moisture readings taken in an environment above 30°C

(86°F) are expected to show some drift from the expected

value, but this variation is well within reasonable error. The

figure above shows that the moisture reading reaches a

maximum of less than 4% error in environments above

50°C (122°F). Any measurement error above these

temperatures is negligible due to the impracticality of the

systems use in environments with temperatures consistently

above that threshold.

This sensor also has the ability to continuously sample

data at a maximum rate of 16 MHz. When the sensor is in

the state, it uses an average of 4.5mA with a supply voltage

of 5.0V (2.8mA at 3.3V), which is significantly less current

than the single measurement consumption rate.

Considering this, if several measurements are necessary in

a short period of time, the constant polling mode is superior

in terms of current consumption. There is variation seen

caused by voltage drop over time due to loss in the

capacitive circuit. This drop is corrected consistently with

a change in applied voltage to the capacitive surface. The

peaks of the data indicate the current relative moisture

level, approximately 530, which is based on the capacitance

of the sensor. The temperature data recorded by this sensor

is saved to the I2C bus in terms of tenths of degrees Celsius,

giving our application three significant figures of accuracy

for temperature. Ambient light and moisture levels are

recorded and saved in terms of a single scaler integer of

three significant figures and five, respectively. Both of

these measurements are approximately linear.

The sensor chosen to measure Humidity and

Atmospheric Pressure is the Bosch BME280 Humidity and

pressure sensor. This sensor was chosen considering its

communication protocol (I2C), its price, and its

measurement capabilities. Several versions of this sensor

are available, with different target data points including

temperature and ambient light, however this version was

chosen in conjunction with the other sensors to reduce the

number of sensors needed for the system. The atmospheric

pressure is recorded by this sensor and saved to the I2C bus

in terms of hectopascals (hPa) with a range of 300 hPa to

1100 hPa, and the Humidity is recorded in terms of

Percentage of relative humidity with a standard range of 0%

to 100%.

The LCD screen selected for use in this system is the

LCD-013-420 Display Module. This component can

display four 20-character lines of white text on a blue

surface with a backlight. The backlight will improve

readability in low light conditions, for example in case the

user has to configure the device at night and outside. The

LCD turned out to be a bit bigger than expected, however

we believe this turned out to be a good point for readability.

This module uses I2C serial interface protocol to

communicate with the CC3200MODA microcontroller.

This screen was ideal for use in our application due to its

price, size, interface protocol, and its ability to meet the

functional requirements of the design. This screen can

display all necessary characters essential to user

understanding and manipulation.

The system design originally included Smart Home

Speaker integration using devices such as Amazon Alexa

and/or Google Home. After careful consideration and

development of the system our team decided to omit this

functionality in favor of successful implementation of the

basic system features.

Fig. 2 Part Selection Summary

IV. HARDWARE DESIGN DETAILS

The initial architecture for this design is intended to assist

the user in the proper maintenance and care for a home

garden. The architecture is intended to allow the user to set

up and operate the system with ease. The architecture for

this design was based around the fact that wireless

connectivity via WiFi would play an essential role in this

system. The idea was that with the ability for the system to

access the internet and collect data, as well as giving the

user wireless control, would set this device apart in the

marketplace. With this in mind the initial step in the system

architecture design was to determine the method of gaining

internet connectivity. It was determined by the team that

WiFi connectivity would be the most feasible as well as

offering the broadest customer base possible. If we were to

have chosen a different wireless interface that is not as

commonplace as WiFi the product would likely have

suffered due to that fact that most users do have easy access

to WiFi but are less likely to have access to another form of

standalone wireless technology. This also means that

without WiFi there may have been additional hardware that

would need to be supplied to the user for proper operation

of the device. For these reasons and more, the decision was

made to use WiFi 802.11 as our wireless protocol for this

proof of concept prototype design.

After selecting the wireless interface, it was necessary to

evaluate the market for the appropriate wireless chipset that

would allow for our desired connectivity. Much research

was put into the decision to move forward with the

CC3220MODA as you can see in previous sections of this

document, but the decision was based on the familiarity

with the part and the use of modules from the same chipset

family in other successful designs. The CC3200MODA is

a robust module with a highly integrated WiFi stack and

standalone WiFi processor so that the wireless interface

does not burden the processor. While the option of using a

chip down version of this part was considered, it was

determined that using the module involved less risk as the

amount of integrated circuitry on the module, including the

antenna, could be quite burdensome to design from scratch.

Once the microcontroller and wireless interface portions

of the architecture were solidified, the next step was to

determine the proper process for moving, querying, and

storing data from the internet. For this it was determined

that there should be a web client for the user interface. This

web client would be hosted by the web server that is created

to handle the wireless interface portion of our system. The

web server would access a database that stores all relevant

data for the system as well as the user. This database will

be the powerhouse of the wireless infrastructure and will

allow the device to operate the appropriate algorithms

based on collected data and watering profiles that add a

deeper level of intelligence to the Smart Home Garden.

These aspects of the design collectively make up the

wireless portion of the system that can be thought of as a

small cloud for the device.

Consideration was made for users who may not have

access to internet as well as a situation where a user may

not be able to access their WiFi network temporarily but

still need to interface with the Smart Home Garden. For

these cases it was necessary to give the user some form of

manual control of the device. This would require both

inputs and outputs as the user would need some verification

that whatever operations are being entered manually into

the device are being properly acknowledged. This led us to

incorporate an LCD display as well as pushbuttons for the

user. This manual user interface will give the user the

ability to trigger on demand watering without having access

to WiFi. Aside from the user interface, the device has other

system components that are contained in the main chassis

housing. At the top of this list is very obviously the

CC3320MODA. While this wireless module handles the

wireless portion of the system, it is also the master

microcontroller for the entire system. All analytics and

algorithms will be run on this module which will be able to

determine complex metrics based on a variety of inputs.

The CC3200MODA will be the master for all

communications within the system, and will collect, store,

analyze, distribute, and report the appropriate data based on

the configuration. The microcontroller will handle all

memory allocations and data transmissions. This is really

the heart and brain of the entire system.

Outside of the microcontroller, but still on our custom

PCB, there are a number of other components that allow the

Smart Home Garden system to operate properly and

efficiently. There is a JTAG interface for device

programming. This JTAG interface is a standard

programming interface that allows the designer to easily

program the device. There is a USB to UART interface that

allows terminal access to the microcontroller for debug.

This interface is controlled using an FTDI chipset that

converts USB terminal data into UART data automatically

so that you can use terminal functions on the

microcontroller for debug and testing purposes. Also, on

the main board within the chassis housing is the

humidity/barometric sensor that is used to measure the

atmospheric pressure in the air as well as the humidity level

of surrounding air. This combination sensor will aid in the

weather data collection.

To power the microcontroller and all of its peripherals

and architecture for a power system needed to be designed

and incorporated into our custom circuit card assembly.

The initial plan for the power architecture was to use battery

power to operate the device in most cases and send an alert

to the user when the battery needed to be charged. This

initial architecture was determined to be unfeasible after

investigation into the power consumption of solenoid

valves for water flow control deemed to be far too power

hungry for a purely battery powered implementation. Once

the determination to move away from battery power was

made, it was decided to power the device off of the grid

using the user’s home AC power. With this determination,

a power architecture was created that implemented the use

of an AC to DC power adapter that converts the higher

voltage AC into a lower voltage DC. This power adapter

will be located outside of the Smart Home Garden chassis

and will require access to a power outlet. This AC to DC

power adapter feeds our custom circuit board with DC

voltage so that the electronics are able to operate. Once the

DC voltage hits the board, it is run through multiple power

components that translate the DC voltage to the appropriate

levels needed to operate the different components on the

board. Special care was taken in choosing these power

components to ensure that the current draw of downstream

components would be easily handled by the power design

with enough overhead to account for worst case situations.

Outside of the main chassis housing is where the real

purpose of the Smart Home Garden becomes clear. Cabled

into the main chassis housing is a series of sensors that are

placed in the user’s different gardening zones. These

sensors are able to collect data about the moisture levels of

the soil, as well as collecting temperature and ambient light

data all individually. These sensor cables will be coupled

with a hose that will provide each zone the ability to water

separately when it is appropriate. The intent is that the user

runs the coupled cable and hose to the desired location,

which would likely be in the center of what is being

considered by the system a zone of the garden. The sensor

is able to collect data that is specific to that zone, and this

will allow the user to adjust the watering cycle for each

specific zone based on what that zone may require

dependent on its crop. The hoses will have sprinkler heads

attached to the end so that each zone can be watered

effectively using the proper sprinkler head. The watering is

controlled by solenoid valves that are actuated by the

microcontroller. The valves are normally closed unless the

proper voltage is introduced across the terminals. This

means that the water to the system would have to be on and

ready so that when the system determined watering was

necessary, there would be water available. It is the group’s

intention to instruct users to dedicate a certain spigot to the

Smart Home Garden so that this spigot can be left on to

supply water to the system at all times. This overall system

architecture is what has led this project down the path to

create the design we have today. While there are items that

may change based on unknowns that currently exist in the

development process, we are confident that we have a solid

architecture that will be successful as a prototype.

Fig. 3 System Hardware Architecture

V. SOFTWARE DESIGN DETAILS

The MCU and the web application will communicate to

the web server via representational state transfer (REST).

REST “is an architectural style that defines a set of

constraints and properties based on HTTP. Web Services

that conform to the REST architectural style, or RESTful

web services, provide interoperability between computer

systems on the Internet. REST-compliant web services

allow the requesting systems to access and manipulate

textual representations of web resources by using a uniform

and predefined set of stateless operations.” In other words,

both the controller and the web interface will retrieve data

from the database via HTTP requests. The results of such

requests will be in plain text formatted either JSON or

XML, which can then be processed by either the controller

or the web user interface. The web server will communicate

with the database directly using a database connector. The

connector is the code called to perform queries against the

database and return the data back to the web server. The

following image is a high graphical representation of the

communication between the controller and web user

interface to the web service. Because each of these sections

are decoupled, not dependent on each other, development

should be simplified and independent.

Fig. 4 Web Interface Block Diagram

The database will hold all the data collected by the

sensors, user data, etc. The controller will periodically send

data to the web server. The web server will process the data

and insert it into the database. The data in the database will

be used by the web application and by the microcontroller.

The user via the web application will connect to the

database to review the data collected by the controller. The

user, based on the data collected, can then make decisions

for future watering schedules, whether to increase or

decrease watering. The microcontroller will connect to the

database and use it mostly for scheduling. The database will

be the “memory” of the system.

Once the database is setup, SQL queries will be run to

create the database and the tables. Such queries can be run

directly against the command line. However, another

software will be used to connect to the database for the

purposes of setting up the data. The software, MySQL

Workbench, will allow for configuration of the database via

a GUI, a graphical user interface. Using this open source

software will help in development and implementation

time. The workbench will simplify how the database and

the tables are created. More time would be needed for

creating queries, tables, and relationships without the

workbench. The work bench will also be used for creating

table diagrams, which are helpful in understanding the

logical layout of the database.

The web server software will control the flow of

communication from the controller to the database, and

from the web application to the database. Very often a web

server will provide data which is used in building a web

page. However, to simplify development we decided that

the web server would mostly be processing REST requests.

This way it will be easier to develop each integration

independently. Because the web server will not provide any

HTML, we will be able to use the same web application

interface for both the SGC and the web application. The

web server will also host the web application which will

contain HTML, JavaScript, and CSS code. However, the

way the setup works will allow for almost complete

independence from the java code and the rest of the code

used by the single page application.

Bootstrap will be used to simplify the styling of the

webpage. Bootstrap is a free and open-source front-end

framework. Bootstrap provides templates of how UI

elements should look. This way not a lot of time will be

needed for setting up the layout and looks of the web

application. Angular JS, a framework for dynamic web

applications, will be used to program the logic of the web

application, also known as the front-end. This framework

takes away a lot of the steps which would be necessary to

link the logic to the UI. This way, focus can be kept on the

programming rather than on setting up and linking the

different parts of the front-end.

The MCU software will control all the physical hardware

involved in the smart garden controller. This software will

communicate with the sensors to get metrics to upload to

the web server. It will control the valves which will let

water through to water the plants. It will also interact with

the user via push buttons and an LCD. Therefore, in a way

this software will be the brain of the device. This software

alone with the hardware will be enough to have the device

working and watering the. However, it will still need the

web server for the scheduling.

Fig. 5 MCU Software

The MCU software was all written in C. The components

chosen for this project did not have drivers available for the

real time operating system chosen. However, the same

components had drivers available for Arduino in C++.

Therefore, the group had to read the code for the drivers in

C++ for Arduino and recode them to work with our

platform. Re-writing these drivers took more time than

expected. Drivers were written for the LCD, BME sensor

and the soil moisture sensor as well.

VI. PROTOTYPE SCHEMATICS

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance of

Professors Zakhia Abichar, Suboh Suboh, & Junjian Qi on

the Review Board Committee.

BIOGRAPHY

Temple Corson IV will graduate with

a Bachelor of Science in Computer

Engineering in December 2018. He

aspires to work in the fields of Software

Engineering or Information Technology

with DropLit.io or Publix Supermarkets,

respectively.

Renan Coelho Silva is a senior

Computer Engineering student at the

University of Central Florida. Renan

works as a Staff Support Engineer for a

software as a service provider (SaaS).

Renan's days consist of reviewing code

and analyzing and resolving problems.

Renan's goal is to eventually start

working with hardware as well, in

addition to software.

Geovanny Chirino is a senior Electrical

Engineering student at the University of

Central Florida. His interest in electronics

began during high school, while enrolled

in a 4-year avionics program. Current

interests are 3D printing and

power/renewable energy. He hopes to

further work with 3D printing and explore the possibilities

the technology has to offer.

Alexander Burns will graduate

with a Bachelors in Electrical

Engineering. He is currently

working for a product development

company in Melbourne Florida and

plans to continue his career there for

the foreseeable future. His interest

in engineering was driven by his family and their

involvement in the space program.

REFERENCES*

[1]http://batteryuniversity.com/index.php/learn/article/secondary
_batteries

[2] http://i2c.info/i2c-bus-specification
[3]http://i2c.info/i2c-bus-specification
[4]http://ww1.microchip.com/downloads/en/DeviceDoc/7000530

4B.pdf
[5]http://www.aoml.noaa.gov/hrd/tcfaq/A5.html
[6]http://www.cablefree.net/wireless-technology/history-of-wifi-

technology/
[7]http://www.circuitbasics.com/basics-of-the-i2c-

communication-protocol/
[8]http://www.circuitstoday.com/pcb-manufacturing-process
[9]http://www.csd.uoc.gr/~hy428/reading/i2c_spec.pdf
[10]http://www.electronicdesign.com/4g/talk-multiple-devices-

one-uart
[11]http://www.futureelectronics.com/en/microcontrollers/micro

controllers.aspx
[12]http://www.hydraulicspneumatics.com/200/TechZone/Hydra

ulicValv es/Article/False/6409/TechZone-HydraulicValves
[13]http://www.informit.com/articles/article.aspx?p=23760&seq

Num=3
[14]http://www.ocfl.net/?tabid=371#.Wz59F9JKiUk
[15]http://www.oracle.com/technetwork/java/codeconventions15

0003.pdf

*Full list of references and permissions available in Final Project

Documentation.

