Project Document

Project Life Watch

University of Central Florida
Department of Electrical Engineering and Computer Science
Dr. Lei Wei

Senior Design 11

Group 9
Josue Ortiz — Electrical Engineering
William Toledo — Electrical Engineering
Carter Lankes — Electrical Engineering

John Alcala — Electrical Engineering

Table of Contents

2 EXECULIVE SUMMAIYoeiiiiiie ittt ettt te e eesneenne s 1
2.1 Project DESCIIPLION........ciieie ettt sae e ens 2
2.2 IMIOEIVALION ...ttt bbbttt reene e 2
2.3 GO0als and ODJECLIVEScc.eoiiiieiieee e s 2
24 FUNCLION ..ttt e e e esreenteenteaneenneas 3

Pt R o T -1 (=0 BT o] S 4
2.5 SPECITICALIONScveeeieciiesie ettt e e e e e nnes 4
2.6 HOUSE OFf QUANILYceeeieieceiee e 4
2.7 System Overall BIOCK Diagramcccccovivieiieie e 5

3 PrOJECt RESEAICH. ...t 7
3.1 Existing and Similar TEChNOIOGIESccviieiiiiiiiiece e 7
3.2 Relevant TEChNOIOGIES.c..ciiiiiiiiiecereee e 7

3.2.1 Wireless COMMUNICALION.........cccverueiieriieie e seesie e seesie e sae e sre e nns 7
B2 L1 WIF Lottt 8
3.21.2 WIFI Chip OPLIONS ..c.vecviceic ettt 10

3.21.2.1 CC32XX WIreless MCUS.......ccccoiiiiiiieiieniesie e 10
3.2.1.2.2 ESP 8266 WIFI MOAUIEScooriiieiiieiiiiiiiieieieiese e 10
3.2.1.2.3 ESP WROOOM 2.....coiiicieieeese ettt 11
3.2.1.3 BIUBLOOLN ..o 11
3.2.1.4 BIUEtOOth BEACONS.......ccuiiiiiiiiiieieie e 12
3.2.1.4.1 Shenzhen Sato Intelligent Technology.........ccccceviviviiieiieciicienn, 13
3.2.1.4.2 DSD Tech HM-10 BLE MOAUIEcccooviiiiiieieeicsecceeeeenes 13
3.21.5 Bluetooth MOAUIESccoiiiiiiieeee e 13
3.2.1.5.1 ESP-WROOM-32......ccocotiieieieiesie st stese s eeeeesie e ste e ssessaenaeeenees 14
3.2.1.5.2 RNAD20ocieieieciece ettt ettt 14
3.2.1.6 Radio Frequency Identification (RFID)ccccooevirininiinieninineen, 15
3.21.7 RFID Chip OPLIONS ...cveeiiciiccieee e 16
3.2.1.7.1 PasSIVE RFIDccocoiiiiiiieieee st 16
3.2.1.7.2 Passive RFID OPLIONSccoeiiiiiieiiic e 16
3.2.1.7.2.1 Passive RFID Model AT88RFO4C-MX1GA........cccovvvevernne. 16
3.2.1.7.2.2 RFID Model LXMSJZNCMF-198........ccccocevmriiiieieseeeeienns 17

3.2.1.7.2.3 Passive HF MIFARE Classic EV1 1K RFID Tags.......c.ccc...... 17

3.2.1.7.2.4 3M Glue Waterproof NFC Tag RFID Sticker...........cc.ceoveuee. 17

3.2.1.7.2.5 RFID transponder model: M24SR64-YDWG6T/2.........ccccuen... 17
3.2.1.7.3 ACHVE RFID ..ottt 17
3.2.1.7.4 Active RFID OPLIONSccveiiiiieiieiie et 18

3.2.1.7.4.1 Active RFID Model: Model: RF430CL330Hccccovvevennnne. 18

3.2.1.7.4.2 RFID COMPArISON ...cvveiviiiiieiiie et siie st srae e 18

3.2.1.7.4.3 Picking an REIDccooiiiiiiiiie e 20

3.2.1.7.4.4 Breakout Boardcccceoviieiiieiiiiesiene e 21

3.2.1.8 RFID SCANNEL ...ciutiiiii ittt 21
3.2.2 Near Field Communication (NFC)ccceviiiiiiieirsie e 22
3.2.2.1 Using NFC with mobile deviCe.........cccoeiieiiiiiiicse e 22
3.2.3 Power Supply, Regulation, and Rechargingccccocevvevieiiiieiiie i 23
3.2.3.1 Power SUPPIY TECN. ..o 23
3.2.3.1.1 Power SUPPlY OPtIONS.......ccoveiiiiiiiieiiseseeeee e 23

3.2.3.1.1.1 Polymer Li-ion Model: DTP502535, 3.7V/400mAh................ 24

3.2.3.1.1.2 Li-Polymer Battery Model:552035 3.7V/350mAh................... 24

3.2.3.1.1.3 Model: RID3555HPPV30M 3.7V/500MARccoovrviiiiinnne 25

3.2.3.1.1.4 Lithium lon RID3048HPPV30M 3.7V/300mANh.........cccurneee. 26

3.2.3.1.1.5 18650 Battery Lithium-10N.........cccccovviieiiiiiiiciie e 26

3.2.3.1.1.6 Power Supply COMPAariSON..........cccovvrerieiienienenese e 27

3.2.3.1.1.7 Picking a Power SUPPIYcooviiiiiiiiiiee e 28

3.2.3.2 Power Distribution (Regulation)c.ccocvriiriiiniinene s, 28
3.2.3.2.1 Voltage ReQUIALOIS..........ccveiiiieiieie et 28
3.2.3.2.2 LMI1084IT-ADJ/NOPB......ccociiieiiieiiseseeee e 29
3.2.3.2.3 TPSB3036.....cuveueeiiieiiiesiisieeiiesiesie st st sbe st sse ettt 29
3.2.3.2.4 Comparing Voltage Regulators............ccccoveriiieiiiieiieseee e 29
3.2.3.2.5 Choosing a VVoltage Regulatorccocvvveiieieniienceseees 29

3.2.3.3 Power SUpply Chargingcccceoererenineniseeeee e 30

3.2.3.4 MEdiCal SENSOIS.....cc.iiiiiiiiiiiiieiee e 31

3.2.35 MAXSBOLL2 ..ottt 33

3236 MAXSBOLOL ..ottt 34

3.2.3.7 MAX3B0003......cooieieiieeiieeeeeee ettt 35

3.2.3.8 ADB233 ... 35

3.2.3.9 AFEA400..... .ot 36

3.2.4 TeMPEratUre SENSONcviiiieiiiieiiti ettt 36

3.2.5 ACCEIEIOMETENeeiieei ettt nee e 37
3251 ADXL3AS ..o 38
3252 MPU-=6050cciiiiiiriiiiiiiisiisesieie et 39
3.2.5.3 Accelerometer SEIeCtioN.........ccoovveieiiiiniiiee e 39

3.2.6 MICIOCONIIOIIEN ... 39

3.2.7 Serial CoMMUNICALIONScoivieieiieiiieie ettt ne e 40
3271 PPC ettt 40

3.2.7.1.1 Addresses OF PartScccciuereerierieesieiesiesesieseeste e seeseeeessneeseeas 40
3.2.7.1.1 Choosing PUlIUP RESISIONcccvueiiriiiiieie e 41
3.2.7.2 Serial Peripheral Interface (SPI)......ccccccoiiiieiieiiecevr e 41
3.2.7.3 INEEITACE ...eieieece e 44

3.2.8 UART COMMUNICALIONSeevieiieiiieiieiesieesieeiesieesie et sie e sseeseesseesseessens 44

3.2.9 BULIONS .. 45
3.2.9.1 PaniC BULTONocvviiiiciice et 45
3.2.9.2 RESELBUION ..o 46

3.2.10 VIBFAION .ottt 46

3.2.11 AlArM/SPEAKETocveeiicie et 47

3.3 Strategic Component and Parts Selectioncccccveveeiii i cie e 48

K T T8 A VL | o O 3T o LSRR 48

3.3.2 BIUELOOTN ChHIPS ..o s 50

3.3.3 Microcontroller ChIPS.......c.oiiiiiiiieiee s 51
3.3.3.1 COSt ANAIYSIS ...ccvieieieieeie et 51
3.3.3.2 Power CoNSUMPLIONc..ociiiieeieiiesie ettt 51
3.3.3.3 MEMOIY STOTAQE ...vvvveiiiiesiiie ettt e sre e stre et rire e e e e e aa e e asee e 52
3.3.3.4 Packages and GPIO PiINScccoiiiiiiiiiiie e 54

3.3.3.4.1 Package Definition and Visualsccoceveiiiinnininiiieens 54
3.3.3.4.2 Available Packages with GPIO Countccccevvviieneniiiiieienns 56
3.3.3.4.3 Specialized use of GPIO PiNS.........ccccocviiiiiiii e 56
3.3.3.4.3.1 Analog to Digital COnNVerter............ccooveveivieiiere e 56
3.3.3.4.3.2 LCD Compatibility........cccceivieiieiiiieieesese e 59
3.3.3.4.3.3 Serial COMMUNICALIONSceeiieiiiiiiieeiesie e 59
3.3.3.5 EASE OF USE ..ottt 61

3.3.3.6 SUMMArY OF MCUocviiiiiiiiiiiceee e 62

3.3.4 LCD DISPIAY ...t s 62
3.4 Parts Selection SUMMAIYccccuiieiiieieie ittt 63
AL RFID .o 63
3.4.2 Analog Front End / Pulse OXIMEter.........ccccovevviiieiiiiie e 64
3.4.3 V0ltage REQUIALONS.cviiiieiecc e 64
344 POWET SUPPIY ..ot 65
345 DISPIAY .. s 65

4 Related Standards and Realistic Design CONSLraintscccoeeevenenenenininieeennn, 66
Ot S - 1 =T o SRS SSESRRS 67
4.1.1 Search for StANardsS...........cocoviiiiiiiniie e 67
4.1.2 Wireless Communication Standards............ccoeevviienininienenene e 67
41.2.1 ANSI C63.27 Evaluation of Wireless COEXIStenceccvcvvvverennens 68
4.1.2.2 ANSI C63.18 RF Emission On-Site Evaluation.............c.cccoceeveiinnnn, 68
4.1.2.3 1EEE 802.11N-2009ccceiviierieieieriesiesie st 68
4124 BLE V4.2 SPECITICALIONSccvviiiiiiiiiieie s 69
4.1.3 LOQIC SANAAITSecvveveeiieiieie e ee et nne s 69
4.1.3.1 TTL LOGIC. ittiuiaiieieiesie sttt sttt sttt sttt 69
4.1.3.2 CMOS LOQIC...utiuiiiiiiiiieiiesiisiesiasiesie et sbe st eeee et stesiessesnesnesneas 69
4.1.4 Design impact of relevant standards...........cccccvvvivieiiiiiic i 70
4141 Impact Of ANSI CB3.27......ccoiiiiiiieiieieee e 70
4.1.4.2 Impact Of ANSI CB3.18......ccoiiiiiiiiiiee e 70
4.1.4.3 Impact of IEEE 802.11n & BLE v4.2 Specifications.............c.ccecuenee. 70
4.1.4.4 Impact of LOQIC LEVEIS........coeieeeiiece e 71

4.2 Realistic Design CONSIIAINTSccueiieiieiieieese e 71
4.2.1 Economic and TImMe CONSLraINTScceeueiiiriiiisieseee e 71
4.2.2 Environmental, Social, and Political constraintscccccevevvvreiiciieeeenne 72
4.2.3 Ethical, Health, and Safety CONSraintscccoovvienreninnierece e 72
4.2.3.1 HIPAA o s 72
4.2.3.1.1 Hospital Information on Patients.............ccceevevviieiiienii e 73

5 Project Hardware and Software Design Details............ccccoovvieiieie i, 74
5.10 Initial Design Architectures and Related Diagrams...........c.cccceeevvevecviesieenenn, 74
5.11 First Subsystem, Breadboard Test, and Schematicscccccovevveiiieecienneenn, 76
512 SECONd SUDSYSTEIM ...ttt 76
513 Third SUDSYSIEIM ...t 77

5.14 FOUIth SUDSYSTEIM.....c.eiiiiiiiiiei st 78

5.15 SOMWAIE DESIGNueiiiiiiiitiiiisie ettt bbbttt 79
5.15.1 Patient info Read/Written VIa NFC..........ccoccoiiiiiiininie s 79

oI R0 |V o] o 1T OSSR 80
5.15.2.1 Initial Mapping and Server SEtUPcccevveieiieeieeie e 80
5.15.2.2 Watch-side 10CalZationccccooviiieiiiiniieee e 81
5.15.2.3 GEO-TENCING ...vviveiiiiiiie st 84
5.15.3 PANIC MOUEeeeiieciieiieie ettt nteene e ree e e 85
5.15.4 Watch (Real Time CIOCK)ccccvvieiiiiieie e 87
5.15.5 Patient INfo 0N DISPIaYcccoveiiiieiiee e 87
5.15.6 POWEr SAVING IMOTESccveiieiieciieie ettt 88
516 SUMMArY OF DESIGN ..eoiiieiiiie ettt 89
6 Project Prototype Construction and Codingccccereerierenienenne e 90
6.1 Integrated SCHEMALICSciiiiiiiieiee s 90
6.1.1 NFC SChEMALICecvveeieieiieecieeie et ra e 90
6.1.2 Voltage Regulator SCNEMALICccceevveiieiieiesi e 91
6.1.3 WIFI SChEMALICovveveiiie it 93
6.1.4 Analog Front End SChematiC..........cccoeveiieii i, 94
6.1.5 Microcontroller SCNEMALIC..........c.ceiiiiiiiiieie e 95
6.2 PCB Vendor and ASSEMDIYcoiiiiiii e 96
6.3 FINal Coding PIanccooiiiiiiiiii e 96
LCI0C 00 R 0T 172 L1 o] SRRSO 96
6.3.2 SeNSOr MONITOTING ...ccvviieiieiie ettt re e ra e e 97
6.3.3 Programming the MCU ONPCB.........cccccoveiiiieiiece e 98
6.3.4 COMMON MCU PrOCESSESviiiieiieiiie st eiee ettt n e 98

7 Project Prototype Testing Plan.........cccooeiiiiiii i 100
7.1 Hardware TeSt ENVIFONMENTcooiiieiiiieiiee e 100
7.2 Hardware SPeCifiC TESTING......cccuuurierieierierierie st 101
7.2.1 Testing Wi-Fi LOCALION..........ccoeiiiiiiiecis e 101
7.2.2 Testing Wi-Fi Transmission of Data............ccccceeveveeiieiesieese e 102
7.2.3 WIF] COBXISIEINCEovviuveieieiciieiieiieiieie ettt st 102
7.2.4 RF Emission Interference On-Site TeStiNgccccevvereririienenie e 103
7.2.5 Testing NFC Reading and WIIINGcccoooeveriiininieieeese e 103

7.2.6 TeStiNg NFC RANGE.coiiiiiiiiiieeiee e 104

7.2.7 Testing PulSe OXIMELEcciiiiiiieieeee e 105

7.2.8 TESHNG LCD....uiiiiiiiieie ettt 105
7.2.9 Testing Battery Lifeccoccviiveiiiieseeie e 106
7.2.10 Testing Voltage RegQUIALOrS...........cciveiiiiii e 109

7.3 Software TeSt ENVIFONMENTccviiiiiiiie et 109
7.4 Software SPecific TESHINGcccviiie i 109
741 TeStiNG MAPPING ...cviiiiiiiiiiieieee et 109
7.4.2 Testing Server Transfer of Patient Data.............ccocvvvvierineninincceseeees 110
7.4.3 Testing Power Saving OPtiONS........cccoeiveriereninineeieiesese e 110

8 Device IMPIeMENLALIONcccocieiieieee e 110
8.10 SUDSYSIEIMS.....cviiiiiie ittt ae e re et e e sr e e nae e nns 110
BL10.1 POWET ..ttt ettt ettt bt e e nne e n e nnne s 111
B.10.2 IMCU ..ottt bttt 111
8.10.3 Wireless COMMUNICALION..........ccviieiieiieie e e s 111
B.10.3.1 WIF Lttt 111
8.10.3.1.1 Data CommuNICAtioN t0 SEIVENccovvviririeieiene e, 111
8.10.3.1.2 LOCAHZALIONciviieiiiiiieiieieie e 113

B.10.3.2 INFC ittt bbbt 113
8.10.4 PeriPhEralS......ccoiiiiiiie it 114
ST] = PSSP 115
812 SEIVEL ..ttt bbbt ene e ne e beenree s 116
8.13 Life WaALCH APP i 118
8.14 Printed HOUSING CaSE.....c.eciveiiieiieeieiteesieeiesee e ste e se e sae e taesbe e sne e ans 120

9 AAMINISratiVe CONTENT.......cviieieiiie et 121
9.1 MiIlESTONE DISCUSSION ...ttt sttt ettt nae s 121
9.2 Budget and FINANCE.........couiiieiiee et 126
0.3 ASSIGNEU ROIES......coeiiiieieie e 130
O |V - T (o URTPRURTRPP 137
L1 MASTEI. N bbb 164
12 RFAB0.C ittt ettt bbbttt bbbt r et 168
13 RFAB0. Nt 173
14 LCDIMSP.Cooniiiieiit ittt sttt n ettt bt neene e e e 176
15 LCDMSP LNttt ettt re e e 181

16 WIFLLC oo 183

Figure Index

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

House of quality Chart ... 5
Overall system block diagramcccevviieiieieie e 6
ACCESS POINES UEPICTION.eiiiiiiiiciie et 8
INSSIDEN SCIEEN CAPLUIE ...ttt 9
Bluetooth technology [8]cveoveiiee e 12
RN4020 block diagram [10]ccovveiiiiiieiieecec e 14
RFID teCNOIOQYiiiiiiiiiiiie s 15
RFID Smart watCh OVEIVIEW PrOCESSeccveieerieeieeriesieeieaiesreeseeeeesseeneens 15
PASSIVE RFID ..ot ettt 16
ACHIVE RFID ...ttt 18
Different Types of RFID N OFrderccoeiiiiiiiiniiieeee e 20
RFID Breakout BOArdcccceiiiiiinieieie e 21
RFID Scanner/Reader OVEIVIEWcccoieeieiieneeieneesieesiesee e sie e e 21
NFC General OVEIVIEWcccccveiieiiieieieesieeie e e esie e ste e sneesse e sns 22
NFC Tag [L6]. .o vevirieeieeiieieie ittt bbb 22
Power supply general diagram...........cccveiieiieeiie i 23
PKCELL LIPO 552035 [17] ..ecveeeieieeieiiesiesesiese e sie e snn e 25
Different Types of Power SUPPHIES........ccovvvveiiiiiiiee e 27
Overall Diagram of Power Distribution with VVoltage Regulators.............. 28
Types of Voltage Regulators in ordercocoovveieieneneneienceeseeen, 29
Battery Charger using an LM2576-ADJ [20]ccccevvvvvvveieiiesiece e 30
Using the LM35 to signal the Temperature [20]ccoovveviveiiicviciiiei, 31
Diode OXIMELIY [22]....cceeieieieiie e 32
ECG WaAVETOIM ..o 33
MAX300112 Block Diagram [25]ccooveiieiiiiiiieiie e 34
IMAXSBOLOL ..ttt ettt re e na s 35
IMAXSB0003 ...ttt et e e 35
ADB233...c ettt e e 36
POSIEION EFTOF [26] .o 37
ADXL346 BIOCK DIagramcoceieieiininienieieieee e 39
EXAMPIE 12C BUS [28]vvvveeeececeeeeeeeee ettt 40
SPI Clock timing diagram.........cocceeiiiiiiieiie e 43
SPEBUS [29] ...ttt 43
UART FFaME ..ot 44
Diode Protection against Reverse Voltage of MOtors..........cccooevvervenenne. 47
BUZZEI SCNEMALIC.c.viieiecieeie e 48
Map of ATmega328PB’S SRAM.......coociiiiiiiiiiie i 53
NES Motherboard with Through-hole Components [32]ccccccevivvennnnn 54
Different Package OPLtioNnSccoviirieiieiiiiesiseseeie e 55
SAR ADC [B4] ..ottt e 57
DB25 Male Header and Wiring GUITEccoecveiiiieiieiiieeiie e 59
HardWare OVEIVIEWcooveieiieiieie ettt ens 74

Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.

Flowchart of SOFIWArEccoeiiiiieie s 75
First SUDSYSTEM-MCU ..o 76
Second Subsystem Overall Diagramccccccveveiiieiieie s, 77
Third SUDSYSEEM OVEIVIEWc.viiiiiiiieiiiiee e 78
NFC Software FIOWCHhartcoooeiiieciecee e 80
Acquisition of data by watch for localizationcccccccveveiieiecii e, 82
Flowchart of location data processing by Server..........ccccooevvieniiiieniene. 83
Flowchart of finger printing algorithmccocooiiiiiiniee, 83
Flowchart of trilateration algorithm............cccccoeeeiieii e 84
Software flowchart of geo-fencingccccovevieiiiiiniii e 85
Software flowchart of panic MOde. ..., 86
Main Screen 0f WALCh ... 87
Time Screen of WALChooviiiiiii e 87
Software flowchart of power consumption strategyccocevervrvrveeennn, 88
NFC SChEMALIC ..ot 91
Regulator SChematiCcoveiiiiiieiie e 92
WIFT SCREMALIC ..ot 93
AFE SCHEBMALIC ..ot 94
IMCU SCREMALICvveevienieie et 95
Custom made inductor for Antenna designcccceeerereneneneeieeeens 104
Logic Level Shifter, TTL 10 CMOScccoeiieiecieceee e 106
CoNStaNt CUITENT SOUICEeeiiiiiieiee ettt 107
Testing Constant Current CIrCUIL...........coovririiiiieieeesee e 108
Op Amp Output Driving MOSFETcccoooiiiiiiiiiee e 108
ESP WROOM 32 software flowchart...........cccocevvriiiineiiicinienn 112
Localization RAW Data..........cccovreeiieieiiesiesieee e 113
NFC COMMUNICALIONvveieeiieciiecie e nee e 114
LITEWALCH V1.0 116
LIFEWALCN V2.0, 116
Database, patient ID table created in OUr SEIVENcccccvvvvvierveieeneeennn, 117
ADP INLEITACE VIEBW ...t 118
Flowchart of how device works with applicationcccccceveveieniennene. 119
Case components Top, Bottom, Loop holes (left, right, bottom) 120

Table List

Table 1. RFID COMPAIISONccviiieiiiecieeieseesie e seestaeste e eeste e e e saeeaesneesreaaesneesneas 19
Table 2. Electrical Characteristics of Battery DTP502535..........cccovveiiiiiiiiiieiie e 24
Table 3. Electrical Characteristics 552035.........ccoviieiieieiieieese e 24
Table 4. Electrical Characteristics RID3555HPPV30M [18]covvvvevveiieiieieeiecieenn 25
Table 5. Power Supply Comparison Chart.............ccceiveiiiieieccecc e 27
Table 6. WIFI Chips Current Consumption, and Technology Comparison..................... 49
Table 7. Bluetooth Modules COMPATISONccceceiieiireriecieseese e se e 50
Table 8. Time to Discharge 30mAh Battery with only Microcontroller.......................... 52
Table 9. Microcontroller Feature COMPAriSONSccovereriririnieeienese e 56
Table 10. Microcontroller Communication Features COmparisonscc.cueveeveeeenn. 58
Table 11. Microcontroller ADC COMPATISONS........ccveirerieiieieesieeie e sieeseeseeseeseeseesaeas 58
Table 12. ATmMega328PB PiN USAQE.......ccoviieiieieiiesieeie ettt 60
Table 13. Communication Standards Differenceccoccveveiieieiie i 61
Table 14. MCU COMPAIISONS.......ccviiieitiiieiiesieeieseesteesie e seestesaessaesreesesseesseessesseessens 62
Table 15. Final SEIECted PAITS.......ccviiieiie e 65
Table 16. WIFI Chip current CONSUMPLIONcooveriirieriiriesisisieiee e 112
Table 17. Android vs 10S for App Developmentcccooveveiieiicce e 118
Table 18. AdMINISIIALIVEccuiiieiieiie e e 124
Table 19. TECNICAL........ceeiiee e 125
Table 20. ADMINISIIAtIVE SD2.......ccoiiiiiiiiiiee e 125
Table 21. TeChNICAl SD2.......cc.ooiiiieie e 126
Table 22. ESHIMALEA COStcueiieiieieeie sttt nnes 127

Table 23.

P AN ot (0| O) TR 129

2 Executive Summary

In the recent years, wearable technology such as smart watches have become increasingly
popular. Things such as the Apple Watch have even been marketed for their health and
fitness capabilities. Wearable devices are quickly becoming more advanced, the demand
and need for these wearables to serve in medical applications is a huge growing field in
the medical industry. Embedded system design serves as a means for implementing
medical sensors and solutions to outdated means of patient information systems.
Gathering data from medical sensors and sending it to devices used by medical staff
through modern IT systems can become a solution to old systems and become continuous
around the clock monitoring system which will solve many issues.

The Project Hospital Smart Watch is a small wrist-worn embedded system which
combines Wi-Fi, Bluetooth, Microcontroller, and LCD to provide heart-rate
measurements, localization abilities, and patient information. We are exploring the
possibility of replacing the outdated plastic hospital wristband with a small embedded
system that will become the future of biomedical type devices and hopefully last for
many years to come.

Hospitals are large buildings with many patients moving in and out of it’s doors. Having
an outdated means of identifying patients and tracking where they go to has led to many
medical errors that cause unintended harm to patients. Hospitals should be a place of
comfort for the patient where they can rest and recover back to full strength, not a place
of worry where errors can occur and something detrimental could happen to the patient
because of a minor mix up of information. The smart watch aims to help eliminate even
the smallest errors in the hospital environment by allowing easy verification of the
patient’s information and stay there.

The device is designed to be comfortably wrist worn rectangular case enclosing the
device. The LCD displays the type of information you would see on a typical hospital
wristband such as name and basic patient information. A NFC tag will communicate with
a nearby device to associate the device with a specific person in the IT system serving as
an instant means of pulling up all important information and also the ability to modify
and write information onto the smart watch in case of a last minute change or something
new coming to be known. The patient wearing the device will also have his/her local
location inside the hospital communicated through the IT system using Wi-Fi on the
device by interacting with the Wi-Fi routers throughout the hospital structure.

The cost of the device is ideally meant to be kept within $200, with the components
planned for this project we do not expect to incur an amount exceeding that due to it only
being a prototype. Although this project is for academic purposes, a real-world device of
this type would need to remain well within the price range we have set to be a viable
option on the market.

2.1 Project Description

Patients are occasionally misidentified within the hospital. This can result in small
inconveniences -- being placed in the wrong room to more serious situations where a
patient can be given the wrong medication or possibly taken to have major surgeries
when not necessary. According to the World Health Organization, the failure to correctly
identify patients results in medication errors, transfusion errors, wrong person
procedures, and the discharge of infant families [3]. A hospital should be the last place
where a person or patient should feel fearful of harm due to a mistake of his information
since they are entrusting their lives into the hospital’s hands. This hospital mistake
actually occurred to the mother of one of our team members, and if he had not been there,
his mother would have potentially undergone open heart surgery when she was not
supposed to. With this in mind, our team decided to design a potential solution to this
problem.

2.2 Motivation

The principle motivation for this project was to provide a secondary safety net that will
help patients stay safe when inside hospitals such that they are not taken to a operating
room mistakenly. This desire resulted from on of group member’s mother almost being
mistakenly taken into open heart surgery when she was on heavy sedatives. If the
member had not been present when the mix-up occurred, the results of the hospital visit
could have been catastrophic. The secondary pair of eyes of an automated machine would
provide a helping hand to reduce the human error of hospitals. It would also provide a
better net of emergency response with the panic system, and also include medical
monitoring as a stretch goal.

2.3 Goals and Objectives

This system will use aprogrammable RFID or NFC tag to contain the medical and
identification information of the patient that will then be scanned to verify the identity of
patients in the hospital. This allows for all the information to be contained inside a small
chip that can constantly be updated. This also eliminates the small delay that occurs
when a traditional barcode is scanned, and the information must be retreated from a
database. This also allows for improvement in scanning technology.

The main chip, which will contain the RFID/NFC tag, will communicate through the
hospital’s WIFI network to the main computer network of the hospital. This WIFI
network will be used to communicate between the hospital’s databases and servers and
the patients chip. With the advance of technology, this allows for this communication to
be very reliable.

As a stretch goal, using the WIFI network of the hospital, the chip will constantly
communicate with the servers to track the location of the patient inside the patient. With
the accuracy anreliability of WIFI, a virtual fence will be used to know not only where
the patient currently is but also where the patient should be. The latter of which will be

2

implemented by communicating with the patient schedule information on the hospital’s
database.

Another feature included on the chip will be a panic button. This panic button will be
activated by the patient when urgent help is needed. The signal will be sent to the
hospital network and will alert the staff of the emergency. Of course, safe guards will be
put in place to minimize false alarms or accidental button pushes since this can decrease
hospital efficiency.

Additional features as a stretch goal that will be incorporated into the chip will be
medical sensors that can measure heart rate and temperature. This will allow for wireless
monitoring of the patient when the patient is not inside the room or if the patient for some
other reason is not connected to the already present medical devices.

Since this device will be used within a hospital, cosmetic considerations will be taken
into account. The chip will be designed to fit into a housing that will be small as
possible, comfortable, hygienic, disposable, and water resistant. Rubber like materials
will be considered for attaching the chip to the patient’s arm or wrist. It will be
disposable so that the same chip can be used after a patient has left. It will be water
resistant so that the chip will continue to function even if the patient showers or if bodily
fluids come into contact with PCB board. This will allow and increase the reliability of
the device.

This device is meant to be a low-cost device as to motivate the consumers (in this case
hospitals) to switch over to buy this device. The goal of this device is not to be cheaper
than the already in use system; it is meant to be more secure and “smarter”. The main
features of patient tracking/virtual fencing and patient identification will reduce the
number of minor and major mistakes and in the long run reduce the number of lawsuits
stemming from these mistakes.

2.4 Function

The main function of this device is to provide an easier way to scan a patient’s
information compared to the- barcode method used in the majority of hospitals. With the
barcode method, hospitals must invest in a scanner and the appropriate technology to
display and record the information: at times this additional hardware can seem outdated
and easily replaced with mobile solutions. With the advance of technology, easier
solutions (such as the one presented in this report) are possible. The advantage of using
an RFID chip is that it can be scanned using a variety of solutions such as tablets, mobile
phones, etc. eliminating the need for extra hardware. The main goal of this device is to
scan an ID onto the RFID chip and have the WIFI module download the information and
then display it to the LCD screen.

Besides the functions, we will also build an app as a stretch goal that can then scan the 1D
on the RFID chip and download the information and display it on the apps screen. We
will also try to put some medical sensors in the actual device that can monitor patient
health signals.

2.4.1 Related Work

Patient identification using RFID chips already exist in some hospitals but all attempts at
monitoring patient location have been through the use of RFID and Bluetooth beacons
and mostly for equipment. For example, at Florida Hospital’s Celebration Health facility
they implemented an indoor tracking system using technology from Stanley Healthcare
which is a “...RFID-based staff tracking system...” according to the information of their
website. This same provider also has a patient tracking system that seems to mainly use
RFID with some help of WIFI to track patients. On the contrary, we seek a solution that
would not only exclusively use WIFI but also provide that extra layer of protection
explained in the section above.

2.5 Specifications

e Device will contain patient info necessary for medical staff (e.g. name, condition,
medication, medication allergies, vital signs)

e Transmit this data using Wi-Fi to a tablet device or computer used by medical
staff

e Device will be low power

e Low heat generation

e Battery powered (LI-ION) with a goal of at least 24 hours of continuous use out
of a single charge

e Charging ability via USB to AC

e Compact and able to fit on the wrist of a patient without impacting movement of

wrist or comfort

Wi-Fi and NFC ability

Meet HIPAA requirements

Plastic case which encloses hardware that can be cleaned easily

Disposable wrist strap

Device shall not cost more than $250

Some of the stretch specifications are the following:

e Device will track patient wirelessly and provide map of loaciton

e Implement as many medical sensors as possible

e Abitlity to have emergency signal set off an alarm and communicate a warning
wirelessly to hospital staff

2.6 House of Quality

The following house of quality figure allows us the designers to see the relationship
between the customer wants and needs and the engineering needs. With this house of
quality in mind, the goal is to find a good median point: some compromises must be
made in order to achieve a good equilibrium of features. Such a graph is useful in
visualizing the relationships between the two aspects. The most important of these

relationships are the ones that have negative and a strong negative correlation since this is
where the compromises will be made. For example, if the customer desires to monitor
the location of a patient continuously, this will consume more battery life as opposed to
monitoring a patient’s location at intervals. On the other hand, the latter of these designs
will not be as accurate as the first, but it will be more energy conservative. Of course, the
main aspect affected in any change is cost: better quality parts and designs go “hand-in-
hand” with a higher cost. With all of this in mind, the following house of quality table
was constructed:
1

=i
+
Lonelation +
o &
=X o L
t Pasitive * - &
1 Megative - L)
1 Strong Positive - o
1l Strong Megative + o AN
ER 5
3 § @ = B @
E 5 =
£ S .| E|=|52]ez
P 2| = | 3 |l 2| E =| T | &
o = 9 = - a = o =
E| 2| < s |l 5| z|=|2|%
Customer E = o @ =) & =
Requirements = Ele | 2w =
[Explicit and E
Implicit]
- - + + 0+ |+ + |+ | -
Cost - t t t t Tt
Easze of Use + l T T
Location Accuracy + T 1] t
Medical Azcuracy + t t t 1 t
Comfart + 1 1 T
Responze Relizbility + t tt t 1l 1 1
Reusable + t
Battery Life + t t l l T ! 1
o = - =
o -] = =
Target E g IE E o E £ E %
=30 A R e B I IR 4
W k] -

Figure 1. House of quality chart

2.7 System Overall Block Diagram

The specifications detailed in section 2.4 will now be attributed to different subsystems
which will implement those functions. In this manner, an overall system can be built.
The following diagram gives a brief summary of the overall system including the
subsystems.

Location
Ping

Sensor
Qugut

Power Patient Sensor
Info Output

Power

Patient
Info

Figure 2. Overall system block diagram

The system showed above in the block diagram can be summarized into four key
subsystems: 1) Microcontroller, 2) Power Supply, 3) Medical Sensors, and 4) Wireless
Connectivity; and two “add-on” subsystems: 1) Display and 2) NFC/RFID. The reason
the latter two have been determined by the group to be “add-on” or secondary is because
their function is not vital to the overall performance of the system: they simply facilitate
or enhance the system.

This overall block diagram provides the direction and orientation which the group needs
to head: now that overall goals were specified and systems were made to satisfy these
goals, designing these systems can now be implemented in a methodical manner.

3 Project Research

Now that the design requirements and specifications have been detailed, the first step of
designing this product can begin: research. The main areas of research will be the
following: medical sensors, micro-controllers, and wireless communication.

3.1 Existing and Similar Technologies

Some similar technologies and devices that we can observe, research, and learn from to
help us in our project are as listed:

Bluetooth enabled Heart-rate monitors
Pedometers and fitness bracelets such as the fit bit
Life-alert emergency communication/panic alert
Indoor Localization with Wi-Fi

The apple watch

Bluetooth beacons

NFC in mobile devices

e RFID tags and scanners

3.2 Relevant Technologies

In this portion we will see that there are many technologies to consider for our smart
hospital watch. The technologies we will be researching is wireless location, RFID and
NFC to read and write information, medical sensors, and more. The options are
practically limitless to what we can choose, which is great because we will have the
options to research and compare what will be best for us.

3.2.1 Wireless Communication

There are two main communication functions that the device will need to accomplish: 1)
Communicate patient information to a scanner, 2) Communicate patient location and
information to a computer network. RFID or NFC will be used to communicate patient
information directly from the device to the nurse or staff member scanning the device,
and WIFI will be used to update the information on the RFID or NFC chip. WIFI will
also be used to implement the location tracking and to communicate any medical
information from the sensors to staff electronic devices. By using WIFI, the cost of this
medical system is greatly reduced since WIFI is already widely used in many areas of the
hospital: this system will work on the already established WIFI network of the hospital.
This does increase the risk of interference, but in the event that WIFI alone cannot satisfy
the design specifications and requirements, Bluetooth and/or RFID technology will be
considered in order to meet the consumer’s expectations. Of course as in all things, this
addition of technology will be done so sparingly because of the objective of also
achieving an affordable product that is not expensive.

3211 WIFI

Since WIFI is not a new technology, the inner workings and different protocols of WIFI
communications will be ignored; only relevant information will be presented here. In
large industrial or commercial areas (such as a hospital) different types of hardware are
installed around the hospital to make sure that the wireless network connection covers the
whole building. In the most usual and simplest case, this comes in the form of access
points abbreviated as APs. Access points are “networking devices that allow wireless
WIFI devices to connect to a wired network.... [It] acts as a central transmitter and
receiver of wireless radio signals” [4]. These access points each have its own unique
media access control address (MAC) and also assign an individual MAC address for each
independent WIFI network it is used to transmit and receive. This MAC address is also
known as the BSSID for a specific wireless network [5]. The figure below helps
demonstrate this function.

BSSID = AP MAC address
SSID = name of network

g041300

Figure 3. Access points depiction

In Figure 2, all of the devices can be considered connected to the same wireless network
(they are all receiving the same signal), but depending on their location, they are
connected to different access points shown by the green circles; and each green circle has
a unique ID “tag” called the MAC address or BSSID.

This all leads up to the end goal of indoor localization. Indoor localization using
WIFI is generally achieved by the use of two data “points”: 1) Received signal strength
and 2) Access point MAC address. Much has already been investigated, tested, and
researched on empirical equations and different methods that predict distance from the
access point depending on the RSS (received signal strength), but that will not be
presented here. The basic concept behind it is as follows: first, a WIFI enabled device

8

must be able to detect the strength of the different WIFI signals it is receiving from
various APs. Then, by comparing the received signal strength to the transmitted strength
(this data is usually known by AP product specifications) for each AP, a relationship can
be determined between signal attenuation and distance. Since the location of the AP is
fixed and known, the location of the mobile device can also be known and attributed to a
“real” place as well.

As mentioned above, this can only happen since each AP will have a different MAC
address than the others; therefore, each signal received by the WIFI device can be
distinguished and attributed to the correct access point. A screenshot from a software
program called inSSIDer demonstrates this perfectly [5]. This program is a free, online
software program that provides useful information of the WIFI networks that your device
is detecting. Here part of the screenshot taken.

SSID RSSI MAC Address
UCF_Guest - -70 08:1F:F3:E1:B4:FD
[Unknown] - FC:FB:FB:D8:6E:2E
UCF_Guest 91 FCFB:FB:D8:6E:2D
UCF_WPA2 - - 66 08:1F:F3:22:82:00

[Unknown] -84 08:1F:F3:23:9D:51

UCF_Guest ~ -6 08:1F:F3:B3:F9:12
UCF_WFPA2 -85 08:1F:F3:B2:3A:20
UCF_WFA2 -77 08:1F:F3:83:42:40
UCF_WPA2 61 08.1F.F3:E1:B4:F0

Figure 4. inSSIDer screen capture

Figure 4 shows that the SSID UCF Guest (name of the network) repeats throughout the
list but is associated with different MAC addresses which correspond to different APs
and displayed is also the received signal strength in decibels. The software program
designed for this project will need to accomplish a similar feat.

The other duty WIFI will be used to fulfill is communicating information from the device
to other hospital devices where its stores patient information. This communication must
be bi-directional: initial patient information is synced to the device over WIFI, and
updated patient information (sensor information and location) must be sent from the
device to the hospital’s devices. The devices will all be connected to the same wireless-
local-area network enabling them to send information to the AP they are connected to,
and then the AP will send the data to the correct destination device.

3.2.1.2 WIFI Chip Options

To perform the function stated above or any WIFI connectivity, our design needs to
include a WIFI module. As this project is about designing a product, the team will not be
looking to make their own WIFI chip but instead look for one that is already made and
includes the firmware to operate it. The most popular chips considered in this project
will be the Texas Instrument WIFI connectivity modules and the ESP WIFI modules as
well.

3.2.1.2.1 CC32xx Wireless MCUs

Based on familiarity, the WIFI modules from Texas Instrument were the first to be
considered since some classes in the electrical engineering track involved using and
getting to understand the MSP430 micro-controller and the programming code and
syntax developed for Tl systems. The CC32xx Wireless MCUs modules and ICs are the
chip solutions TI has developed for projects or problems dealing with wireless
connectivity. They are incredibly capable chips hosting two physically separate MCUs:
one that is composed of an ARM Cortex application processor with 256KB of RAM and
a second network processor MCU that runs the “WIFI and Internet logical layers” stated
on the datasheet.

These families of chips include attracting features such as the following: advanced low
power modes (1 pA, 5 pA), DC/DC converter, SW IP protection, 4-channel, 12-bit
Analog-to-Digital Converters, and much more. This kind of chip is self-sufficient since it
already includes a built in micro-controller unit (MCU) which can process other
information from our design such as the sensors or RFID tag. All in all, this module
could serve as an almost complete solution to our design, making the search for a micro-
controller almost unnecessary. The cost of the most basic module (without any memory
expansion) is listed as $17.08 [6]

3.2.1.2.2 ESP 8266 WIFI Modules

The other popular candidate found in many forums and project websites online was the
ESP 8266 WIFI modules and the expansion modules that are based off this module. This
module also includes general digital 1/0 pins, memory, and a low power 32-bit micro-
CPU.

This device operates on 3.3 V and cannot step down the voltage from a higher, standard 5
V. To interface this with the microcontroller, this action will need to be handled by a
separate part of the design. A feature to keep in mind is that in sleep mode, this module
consumes less than 12 pA. The cost of this module before tax and shipping is listed as
$6.95 [7].

The other expansion modules include the ESP8266 as part of a chip that includes an
MCU much like the TI modules explained above such as the ESP8266-12E. This module
contains a 80 MHz microcontroller, memory, and 1/O ports.

10

3.2.1.2.3 ESP WROOOM 2

The ESP WRoom 2 WIFI module is another WIFI module under consideration. This
WIFI module is 802.11b/g/n, but does not include IPv6 network protocol; this will have
to be considered when making the final decision on WIFI modules. This WIFI module
has an operating voltage range of 2.7V - 3.6V. Its average operating current is 80 mA.
This WIFI module contains 16 GP1O (general purpose Input/Output) pins some which are
reserved for controlling the UART.

This module also has 3 low power modes which can be implemented. Of these, the
power mode that we would likely use is called “Light-Sleep” and it consumes an average
of 0.9 mA. This low power mode is achieved by suspending the operation of the CPU
until needed while maintaining WIFI connectivity. This is key for us since this implies
that the chip will be constantly monitoring the WIFI signals and occasionally the CUP
can be woken up to process the data and transmit it. Besides this it also includes a crystal
oscillator, a PWM, and a built-in antenna.

3.2.1.3 Bluetooth

Like WIFI technology, Bluetooth is a wireless communication technology that uses radio
waves and a standard protocol to communicate. Also just like WIFI, it is a fairly recent
technology that was released just two decades ago (WIFI was released a little less than 3
decades ago). The advantage that Bluetooth has over WIFI is that Bluetooth connects or
“pairs” to devices directly whereas WIFI simply provides the means of connecting a
device wirelessly to a network (access point, router) but not directly to a device.
Although Bluetooth and WIFI can operate in a similar frequency (2.4 GHz), when placed
together, there is hardly any interference from one to the other.

This makes Bluetooth technology a viable option to implement on this project; adding
Bluetooth to the project can further expand the possibilities and capabilities of this device
since Bluetooth beacons can be placed around the hospital and provide countless
applications of a more integrated environment. Besides this, Bluetooth can also provide a
means by which our device can pair with another medical device if any Bluetooth
medical device is ever made or implemented in the near future. An example of this
would be the pairing of a nurse’s mobile platform (smart phone or tablet) with another
Bluetooth enabled device inside the patient’s room that can let the nurse know the latest
updates on her patient. The diagram below provides a good visual of this when compared
to the WIFI figure (Figure 2).

11

J CHM
o \ .
a2
S = s == T~
DIGITAL CAMERA MOBILE PHONE
7O COMPUTER TO MOBILE PHONE
® ia
i Al
MOBILE PHONE & COMPUTER
TO HEADSET TO NETWORK HUB

Figure 5. Bluetooth technology [8]

This allows Bluetooth to be used for a unique kind of indoor localization than WIFI
through the use of Bluetooth beacons. “Bluetooth beacons are no more than small
Bluetooth devices that broadcast a radio signal...called an “advertisement” and follows
standard Bluetooth protocols...” [9]. These beacons can be placed strategically
throughout the hospital (depending on the quality, signal transmission strength, etc.).
Once the beacons are placed, any Bluetooth device that pairs with the beacons will
receive the transmission signals from the beacons and calculations of the received signal
strength indicator (RSSI) can be used to determine the position, like the method using
WIFI. The advantage that Bluetooth presents is that it is not very prone to interference
by WIFI signals. The challenges of using Bluetooth are cost and its ability to only
transmit radios waves for short ranges reliably (although there are specifications that say
that certain Bluetooth technologies can transmit about 100 m, but this will need to be
tested), therefore in a large setting like a hospital, a big quantity of Bluetooth beacons
will need to be purchased to implement a reliable system.

3.2.1.4 Bluetooth Beacons

An initial search on the internet seem to show that Bluetooth technology would not be
hard nor costly to implement: the consensus was that Bluetooth beacons were cheap, but
the contrary has been the result of this project research. Most Bluetooth beacons from
established technology companies sell at a price $20 to $30 each: this is for the basic and
cheapest ones. Right off the bat, these Bluetooth beacons are “disqualified” from our
parts choosing since a major design specification was that the product must be affordable,
and the total cost could not exceed $250 dollars.

For an adequate demonstration, at least 3-4 of these beacons would need to be bought and
this would take up about a third of the cost. This price for these beacons would also
make it hard to scale for the target consumer which is the hospital. For this reason, the

12

group is considering buying Bluetooth beacons from foreign suppliers which can be
acquired for about $3 to $6 dollars. The disadvantage with trying to buy from foreign
suppliers is that many times it is not properly documented (missing datasheet) and is
sometimes not compliant with FCC standards and requirements. Despite all this, an
attempt will be made since the other standard Bluetooth beacons are too expensive for
this project.

3.2.1.4.1 Shenzhen Sato Intelligent Technology

The cost-efficient Bluetooth beacons were found on the global trade site name Alibaba
whose market focus is based in China. On this website we found an attractive Bluetooth
beacons produced by the company named above. Its range varies from 22-300 meters
depending on the use; it uses the NRF51822/52832 chipset, it is a Bluetooth 4.0 low-
energy iBeacon, and most importantly it is certified by CE and FCC. This Bluetooth
module already comes ready to use in its own external casing and its broadcasting
information (UUID, Major, Minor values) can all be modified. The cost of this device
must be negotiated from $3.15-$13.50.

3.2.1.4.2 DSD Tech HM-10 BLE Module

Another option is to use a Bluetooth module that can transmit radio signals and build our
own Bluetooth modules. This HM-10 module is a four-pin module that will serve as a
master device (the main device other devices connect to). It operates using Bluetooth
4.0. Its working voltage is from 3.6 V to 6 V; its power consumption in the active state is
8.5 mA which is a great feature since this is low power. This module is made by DSD
Technology and the module is based on the third-party chips and the datasheet is not
specific on which exact chip is uses. This module will first need to be configured using
its serial ports to edit the information it broadcast. Its TX and RX pins will be used.
After the information has been edited, the module will broadcast the information
independent of a micro-controller, only a power supply is needed. Several projects have
used this chip to perform similar projects involving Bluetooth beacons. Other modules
like the HM-11 were considered but found not to be needed as the only advantage it
offers is a chip “enable” pin and a chip “state” pin which are not needed in this project
since the Bluetooth beacons will always be on. This module cost $10 before shipping
and taxes.

3.2.1.5 Bluetooth Modules

Not only would Bluetooth modules need to be used to make beacons but also to give our
project Bluetooth capabilities. The HM-10 module discussed above can both be
configured to transmit and to receive. This module can also be considered as a Bluetooth
module to place on the chip.

13

3.2.15.1 ESP-WROOM-32

This module is a combination chip of both Bluetooth and WIFI capabilities. Its operating
frequency range is 2.4-2.5 GHz. Its Bluetooth protocol is v4.2 and BLE and WIFI
protocol supports 802.11 b/g/n with WIFI network protocols including IPv4 and IPv6. Its
operating voltage is between 2.7V and 3.6V with an average operating current of 80 mA,
but this fluctuates depending on the programming mode that the chip is set. This chip
contains 38 pins. What is most important about this device is the different power modes
it has. Its power modes are like the ESP-WROOM-2. The challenge will be how often
we wish to “listen” or receive Bluetooth and WIFI signals constantly to increase
accuracy, the current consumption becomes 95 to 100 mA: this is a lot of power
consumption.

3.2.1.5.2 RNA4020

The RN4020 Bluetooth module is manufactured by Microchip Technology. Below is a
block diagram of the chip.

RN4020 Bluetooth® 4.1 Low Energy Module
High-Performance
Integrated Antenna
UART Interface
< > UART —>
64KB serial
3x Anglog lle] _ l 10-bit ADG IC:: ’ ity
N] User profiles
4PWM 1/0, 12C Comm.| | | GPIO and scripts
N i BTLE v 4.1 Core
with BT SIG Certified
Firmware GATT/GAP 1.8-3.6V
128b AES Encryption k:: C::% VReg
A N
N r Crystal

Figure 6. RN4020 block diagram [10]

This is a Bluetooth 4.1 chip that is also backwards compatible with previous Bluetooth
versions such as Bluetooth 4.0 (like the Bluetooth beacons mentioned above). It does
have I°C compatibility as well as the UART interface. Additional benefits of using this
module is that it has its own voltage regulator, 64 kB flash memory, and antenna. Other
chips found did not include antennas or included antennas that protruded from the
module; this modules antenna is “on-board.” According to the datasheet, the typical
current at 3V while have the TX/RX active is 16 mA. The operation range is 100 m
under ideal conditions. This chip also includes GPIO and an ADC converter, but these
features have yet to prove under what circumstance they would be useful. The cost of
this module before tax and shipping is $10.60.

14

3.2.1.6 Radio Frequency ldentification (RFID)

The RFID chip or tag, as stated before, will be used to communicate the patient's
information by scanning it and then updating the information over WIFI. RFID is not
new technology, but there are a few types and variations to look at. For us we will most
likely be deciding between the RFID being an active or passive unit. We will also need to
decide either to use Low frequency or High frequency depending on our needed distance
of scanning the chip. Encrypting the RFID will be necessary as well due to the standards
of operating in a hospital setting.

-
/// 2 Reacdler o
/ 7/ 1,;/ Interrogator

Tag or — —
Transponder

% Computer

Figure 7. RFID technology

h

Scan RFID 1ag - Enter Patients o Saan FtFID_tag 0 If infarmation is
on watch with > nformation > check patients incorrect
scanner infarmation
A
Send information to Send information
data base from data base

Figure 8. RFID Smart watch overview process

15

3.2.1.7 RFID chip options

The two main options for RFID tags are either passive or active. They both do the basic
requirements of what we need, but active could be used along with our location service
for precision on accuracy.

3.2.1.7.1 Passive RFID

The passive RFID seems to be the best suitable type for our project. It doesn't require an
internal battery because it uses the RFID readers energy to power itself, very cheap,
durable and flexible, small, and comes in multiple varieties of tag options. The passive
RFID can also operate at either a Low Frequency 125-134 KHZ for a 1 to 10 centimeters
range or High Frequency of 13.56 MHz for about 1 meter of range.

Inc;f;D

Signal) >
S

FPowers Chip
within RFID

Chips modifies signal

h 4

Dut_g;rD Antenna sends radio

signal 5 signal back

J\"'u.__,da-"/d_
Figure 9. Passive RFID

3.2.1.7.2 Passive RFID Options

As for what Passive RFID transponder to use we will look at a few and decide which has
the best durability, cost, size, frequency range, product life, and security.

3.2.1.7.2.1 Passive RFID Model AT88RF04C-MX1GA

A possible RFID transponder to use would be the AT88RF04C-MX1G. This transponder
offers many useful features that will work great with the smart watch and in the hospital
setting. It operates at a frequency of 13.56 MHz, it is encrypted to secure the patients
information, compliant with industry standards, flexible for comfort and small in size. It
is good that the signal does not go to far because there is less chance of patient

16

information theft. This RFID transponder meets all of the requirements necessary for our
device.

3.2.1.7.2.2 RFID Model LXMSJZNCMF-198

This RFID transponder is quite different from the previous option. It is a lot smaller (1.25
mm x 1.25 mm x 0.55 mm) and cheaper at $0.96 a piece. This transponder also sends 96
bits, which should be enough since the patient information isn't too much data and
operates at 865 MHz to 920 MHz.

3.2.1.7.2.3 Passive HF MIFARE Classic EV1 1K RFID Tags

These passive RFID tags are another great option for all aspects of the smartwatch
especially on the cost of being only $0.08 - 0.29. They are made of paper, which could be
an issue for liquids being spilt, but we could probably build a water proof casing. It
operates at the 13.56 MHz and has a range of about 1-10 centimeters. It is also small in
size at 45 by 45 mm. It also has a data endurance of 10 years and write endurance of
100,000 times. [12]

3.2.1.7.2.4 3M Glue Waterproof NFC Tag RFID Sticker

This passive RFID is another top option to choose from. It is only $0.05-1 a piece, can
operate at 125 Khz/13.56Mhz/860-960Mhz, range of 1-10 centimeters, data retention of
10 or more years, and is also small in size (26 x 42mm). This RFID also has the ability to
be encrypted, but one of the best features is that it is waterproof

3.2.1.7.2.5 RFID transponder model: M24SR64-YDW6T/2

This passive RFID transponder is quite different from the previous ones because this one
can directly connect to our board and send data to our microprocessor. It operates at
13.56 frequency and has a memory size of 64 kbit. The price is $1.86, which is not too
bad. It also has the It also has the ability of 12C serial interface, requiring 2.7V to 5.5V,
which will help depending on what microcontroller we choose. The data retention is very
good as well being 200 years and up to 1 million writes depending on the temperature
[12].

3.2.1.7.3 Active RFID

Active RFID is another possible option to use for storing the patient's information.
Compared to passive it can store more information, assist with location services because
it is always sending a signal out, and have a longer range of signal using 433MHz or
915MHz. Although, the downside of active RFID is that it is usually more expensive, and
bulkier than passive.

17

Battery Powering
Chip

Incoming

Signal Chips modifies signal

Antenna sends radio
signal back

Outgaing
Signal

Figure 10. Active RFID

3.2.1.7.4 Active RFID Options

As for what Active RFID transponder to use we will look at a few and decide which has
the best durability, cost, size, frequency range, product life, and security.

3.2.1.7.4.1 Active RFID Model: Model: RF430CL330H

A possible active RFID transponder we could use is the model RF430CL330H. This part
also operates at 13.56 MHz and has an internal battery and can use SPI or 12C interface to
connect the device, which is great for our use of microcontrollers. It only requires a 3.3V
power supply, which our possible power supplies are easily capable of [13].

3.2.1.7.4.2 RFID Comparison

There are many RFID and NFC devices available in the market. Based on our research,
the following table summarizes the different specifications and characteristics used to
compore the various RFID or NFC known devices that were found as a result of our
research:

18

Table 1. RFID Comparison

Type AT88RFO LXMSJZ Passive
4C- NCMF- EV11K
MX1GA 198 RFID tag
Active or
Passive Passive Passive Passive
Voltage ov ov ov
Frequenc 13.56MH 865- 13.56MH
y z 920MHz z
Range 1-8cm 1-7cm 1-10cm
Price $1.56 $0.96 $0.08-
0.29

Waterpro

of NFC
Tag
RFID
Sticker

Passive

ov

125kHz/1
3.56MHz/
860-
960Mhz

1-10cm

$0.05-1

M24SR64

YDWG6T/
2

Active

2.7-5.5V

13.56MH
zZ

1-8cm

$1.86

RF430CL330H

Active

3.3V

13.56MHz

1-12cm

$1.48

19

Ra¥ix “_‘;-‘:;"i-;; *j;“lé"f‘f’g"’r"‘* 2
SN «}L&(&?&' “ji &is

Pt G h |
g

Figure 11. Different Types of RFID in order

3.2.1.7.4.3 Picking an RFID

The RFID/NFC component we chose to use for our overall project was the
RF430CL330H because it has the most useful features for our device. It operates within
range of our power supply at 3.3V, is small in size, uses the standard frequency of
13.56MHz. The extra special features of it too are that it can directly connect to our
microcontroller and share data with 12C or SPI. It can also be written or read, has
Bluetooth pairing capabilities which could be useful for the future if we decide to pair
with a mobile device. It also has 3KB of SRAM for NDEF messages, which is plenty for
our needs. The chip overall will be easy to test because the pins stick out for breadboard
use. Overall this chip was definitely the best candidate for our project.

20

3.2.1.7.4.4 Breakout Board

When choosing the RF430CL330H it is important to also purchase a breakout board to be
able to test the component out on a breadboard. Without a breakout board the component
is too small to test and is hard to verify it's actual capabilities. For us we purchased the

same package type of TSSOP 14 to be able to use the 14 pins on the chip. The breakout
board we purchased was PA0033.

Figure 12. RFID Breakout Board

3.2.1.8 RFID Scanner

Along with the RFID chip/tag we will need a scanner device to intake and transmit the
patient's information to the database. We can either buy or build this depending on our
limitations and budget. There is a decently cheap scanner that works with the Arduino.

OUTGOING

Database of - SIGNAL

patient information

Microcontroller

L

Y

RF Signal Generator

F ¢

[RFID tag J
Y

Receiver/Signal
Detector

A

Figure 13. RFID Scanner/Reader Overview

21

3.2.2 Near Field Communication (NFC)

Another option for storing and transmitting the patient's information would be to use near
field communication (NFC). NFC is very similar to RFID, but with this you can read and
write data, where RFID is read only. They both operate at 13.56Mhz, but NFC still
requires close up interaction. Compared to RFID though NFC is designed to be more
secure for data exchange and capable of being a reader and tag. Allows peer-to-peer
communication which is great for checking and entering patient information. NFC
devices are also able to read passive HF RFID tags that are compliant with ISO 15693
[15].

Read/\Write

MFC Device #1 MFC Device #2
L

Read/\Write

Figure 14. NFC General Overview

3.2.2.1 Using NFC with mobile device

In today's times practically all Mobile phones have NFC chips built into them for use of
different types of applications, which is great for us. This will allow us to be able to use
our mobile device as an NFC reader instead of having to go out and make or buy one.
This will also greatly help in the aspect of making a simple app to use for our device
because we can use a common style of coding and not start from scratch. We will have a
head start for making the app that will display and allow the user to enter information of
the patient over NFC capabilities. The NFC will work great with the RFID/NFC chip,
RF430CL330H, we have chosen as well because it specifies that it is very compatible
with smart phones for this purpose.

Figure 15. NFC Tag [16].

22

3.2.3 Power Supply, Regulation, and Recharging

For power supply we have a few options to choose from, but we are mainly looking for a
battery that is good for low power products, long durations, rechargeable, and small in
size. The best battery for this seems to be a lithium ion battery because it is mainly used
in all small electronics today that do similar applications to what we are looking for.
Depending on which sensors we choose overall will mainly determine which battery we
want to use, but if it can power everything and last at least a day it will meet the criteria.

Wireless Localization

Y

Medical Sensors [« Power Supply Microcontroller

Display

Figure 16. Power supply general diagram

3.2.3.1 Power Supply Tech
There are many power storage devices available for electronics. Some of the more
common include batteries and capacitors, while non-storage solutions include solar,

motion, and even thermal. In our case, the best option would be a battery technology, sor
its long term storage, higher capacity, and nonvolatility.

3.2.3.1.1 Power Supply Options

Now we will explore the possible options to be used as a power supply that will meet the
expected requirements for our sensors, size, and duration of use.

23

3.2.3.1.1.1 Polymer Li-ion Model: DTP502535, 3.7V/400mAh

A possible lithium battery we could use is the DTP502535 model. It can operate up to 3.7
volts where most of the sensors require between 3.1V to 5.25V and the micro controllers
operate at about 3V, although the MAX30101 could not work due to the LEDs requiring
5 volts. The size of this battery is also quite small, 1.04" L x 1.45" W x 0.20" H (26.5mm
X 36.9mm x 5.0mm) [16] which meets the size requirement and can easily connect or
disconnect with the jst-phr-2 connector. This will allow the consumer to recharge the
battery at ease. It can also operate at 400mAH which should be good for the MSP430s
operating at about 0.5mA or the ATmega328PB operating at about 1.4mA. This battery is
very durable as well passing vibration, bump, drop, and other tests, which is good for the
smart watch due to the potential of it being knocked around a bit. The price is only $4.95
and it is rechargeable, overall this battery is a good option.

Table 2. Electrical Characteristics of Battery DTP502535

Storage Humidity Range

4. Cell Dimension

ltem | Dimension (mm?
T
w

zl=|B|R| 5|

3.2.3.1.1.2 Li-Polymer Battery Model:552035 3.7V/350mAh

This battery is very similar to the previous one, DTP502535, although it is smaller in
size,1.42" L x 0.79" W x 0.22" H (36.0mm x 20.0mm x 5.6mm), which is better for
comfort and space on the smart watch. The cons are that it only operates at 350 mAh and
is more expensive at $6.95.

Table 3. Electrical Characteristics 552035

24

https://www.digikey.com/product-detail/en/sparkfun-electronics/PRT-13851/1568-1493-ND/6605199

No. Item Characteristics Remarks
. . Standard discharge
1 Nominal Capacity _thmlmulfn. g’ggm:p (0.2C5A)
ypicat: m after Standard charge
2 | Nominal Voltage 3.7V —
Charging Cut-off —
3 Voltage 4.2v
Discharge Cut-off —
4 Voltage 3.0V
Constant Current 0.5C5A Charae Time - Approx
5 | Standard Charge Constant Voltage 4.2V 4.0h 9 - ApP
0.01 CsA cut-off '
Maximum Constant
6 Charging Current 350mA (1.0C)
7 Standard Discharge Discharge at 0.2 CsA to —
3.0v
Maximum Continuous
8 Discharging Current 523mA (1.5C) B
g |Operating Charge 0—457 -
Temperature Discharge —20—60°C
-20~457C for 1Month
10 | Storage Temperature 10~35°C for BMonths —
11 | Storage Voltage 3.7-3.85V —
If the materials of the
product and packaging
12 | Environmental request | RoHS accord with RoHS
standard, there will be a
RoHS Id on the box.

Figure 17. PKCELL LIPO 552035 [17]

3.2.3.1.1.3 Model: RID3555HPPV30M 3.7V/500mAh

Another battery type which would be very compatible with the overall smart watch
design is the coin battery. This battery is very small, 1.39" Dia x 0.22" H (35.2mm X
5.7mm), very powerful, operating at 500mAh, and easy connectivity. Although the
biggest con is the price which is $34.48. This battery definitely meets all the requirements

best, but the cost may be too much.

Table 4. Electrical Characteristics RID3555HPPV30M [18]

25

Nominal Voltage 3.7VDC (4.2vDC to 3.0vVDC)
Operating Temperature 20°C to +60°C
Range
-20°C to +60°C (one month)
Storageﬂzir::erature -20°C to +40°C (up to 3 months)
-20°C to +25°C (up to 1 year)
. Nominal See part listing 0.2C rate, 3.0V cut-off
Storage Capacity Minimum See part listing 0.2C rate, 3.0V cut-off
Charging Voltage 4.2vVDC + 0.03v
Charging current 0.5CA
Charging Time < 3.0 hours
Charging method Constant Current/ Constant Voltage (CCCV)
. Standard 0.2CA
Discharge Current Maximum oCA
Discharge Cut-off Voltage 3.0V
Anode Graphite
Cathode Lithium nickel manganese cobalt oxide
Capacit i Discharge Maximum)
ic l:rEAh}y Charging Curreﬁ Internal Weight Mi_numum Height
Part Current) Diameter
Number Nom. | Min. (mA) (mA) Resistance (@) (mm) (mm)
STD | MAX (mQ)
RJD2032C1 85 80 40 16 160 600 3.4 20 3.5
RJD2048 120 110 60 24 240 700 4.2 20. 5.0
RJD2430C1 110 104 55 22 220 500 4.5 24.5 3.15
RJD2440 150 140 75 30 300 700 5.4 24.5 4.3
RJD2450 200 180 100 40 400 500 6.5 24.5 54
RJD3032* 200 190 100 40 400 600 7.2 30 3.4
RJD3048* 300 290 150 60 600 400 9.3 30 4.8
RJD3555* 500 490 250 100 1000 200 14 352 5.7
* Additional stocked standard cells with PCM (protection circuit module) & connector
RJD3032HPPV30M
RJD3048HPPV30M
D3555HPPV30M

3.2.3.1.1.4 Lithium lon RJID3048HPPV30M 3.7V/300mAh

This battery is exactly like the model above. The pros to this one is that its smaller, 1.18"
Dia x 0.19" H (30.0mm x 4.8mm) and less expensive at $17.13, although the con is that it
only operates at 300 mAh. Refer to tables above.

3.2.3.1.1.5 18650 Battery Lithium-ion

Our last option for a power supply is quite different from the other options. This power
supply is the cylindrical shaped standard battery and is by far the biggest, but our
expected size of our prototype device is 100mm x 100mm and this meets those
requirements coming out to be 18mm x 65mm. It is 3.7V and has the best supply at
3000mAh, which is fantastic for our device because this will allow it to last a very long
time especially if we can manage it to be low power and efficient. This battery is also
rechargeable and a good price for a bundle of 4 of them coming out to be $11.99. They
can be recharged up to 1200 times.

26

3.2.3.1.1.6 Power Supply Comparison

Now we will compare our options of power supplies to see which will be best to choose
from. There are many give and takes for each type, but this chart will help clarify in an
overall view.

Table 5. Power Supply Comparison Chart

Model 502535 552035 RJD3555H RJD3048H 8650 Battery
PPV30M PPV30M Lithium-ion

Voltage 3.7V 3.7V 3.7V 3.7V 3.7V
Current 400mAh 350mAh 500mAh 300mAh 3000mAh

26.5mm x 36.0mm x 352mm x 30.0mm x 18mm X

Size 36.9mm x 20.0mm x 5.7mm 4.8mm 65mm
5.0mm 5.6mm

Cost $4.95 $6.95 $34.48 $17.73 $11.99

Type Block Block Coin Coin Cylinder

Figure 18. Different Types of Power Supplies

27

3.2.3.1.1.7 Picking a Power Supply

We have many options to choose from for a power supply, but the one that will be best
for our prototype design will be the 18650 Lithium ion battery because it contains the
most power. We are not fully sure what our power consumption will exactly come out to
be, so it is best to go above what we need then exactly what we need at the moment. The
main con to this power supply is definitely the size, but if need be we can probably find a
smaller cylindrical battery easily. The price for this battery is not bad either considering it
is a four pack, and if there are issues with batteries or we are not satisfied there is a
warranty on them. As for now though this is our power supply and it will be nice having
3000mAnh to be able to use for our overall device.

3.2.3.2 Power Distribution (Regulation)

One of the most important aspects of this project will center around power: power
distribution and power efficiency. These topics are a common theme in all electronics:
the more efficient the device is the better. Due to all the different modules and sensors
involved in this project, careful consideration will be taken. The following sub-sections
will detail the devices or methods use to ensure efficiency and adequate power
distribution.

3.2.3.2.1 Voltage Regulators

Due to the sensors requiring different voltages and currents many voltage regulators will
be needed to meet these requirements. We will evaluate the possible voltage regulators
that could be used for the smart watch.

Wireless Localization

-

Voltage Regulator

Medical Sensors 1—{ Voltage Regulator }4* Power Supply —b{ Voltage Regulator }—r Microcontroller

h J

‘Voltage Regulator

¥

Display

Figure 19. Overall Diagram of Power Distribution with VVoltage Regulators

28

3.2.3.2.2 LM1084IT-ADJ/NOPB

This voltage regulator has the ability to output voltage from 1.2V to 15V which is in our
range of use. Most of the sensors operate at about 1V to 3V and the microcontroller
operates at around 3 volts as well. Its input voltage is minimum 2.6V and is a through
hole mounting style. It is also decently small and priced for $2.59. [20]

3.2.3.2.3 TPS63036

Another option for a voltage regulator is the TPS63036 High Efficient Single Inductor
Buck-Boost Converter with 1-A Switches. We were able to find this highly efficient DC
to DC converter from a similar device that used a lot of the same functions we are using.
Input voltage range is 1.8V to 5.5V and can output 1.2V to 5.5V which meets all of our
requirements. It is also very compact in size being 1.854 mm x 1.076 mm and efficiency
up to 94% which is great. Another pro is that the data sheet even suggests using it for
personal medical products and LEDs. It even has a power save mode and
overtemperature protection all for just $1.71. This will most likely be the chosen voltage
regulator because the amount of pros are enormous.

3.2.3.2.4 Comparing Voltage Regulators

Model Input (Volts) Output (Volts) Size (mm) Cost
LM1084IT- 2.6V - 29V 1.2V - 15V 10.18 x 8.41 $2.59
ADJ/NOPB

TPS63036 1.8-5.5V 1.2V - 5.5V 1.854x1.076 $1.71

Figure 20. Types of Voltage Regulators in order

3.2.3.2.5 Choosing a Voltage Regulator

As predicted we are going with the model TPS63036 because it was highly recommended
by Texas Instruments for a device they made that used sensors and similar qualities to

29

what we are trying to do. The efficiency is great for low power since we are trying to
make our device last as long as possible. It also outputs a voltage necessary for
everything we have listed and should be able to power everything well. Plus it helps
when the data sheet suggests that is recommended for personal medical devices and
powering LEDs. This voltage regulator will be a great addition to our overall device and
provide us with exactly what we need.

3.2.3.3 Power Supply Charging

Mobile devices have a constant cycle of surviving on battery and being recharged. In
order to keep the longevity of the battery, we must assure that the battery is being
charged correctly. Some of the important characteristics of correct charging are the rate at
which the device is charged, the current used to charge the battery, and the temperature
result of the battery.

There are a few methods at which the rate of charging the battery affects. There is the
slow charge and the fast charge. The key difference is that the slow charge uses “trickle”
method of charging that allows the battery to safely charge without damaging the battery,
and is very dependent on the chemistry of the battery. A slow charge for a Ni-Cd is
defined as having a charging current equal to 10% of the Ah rating of the battery.
However some fast charge Ni-Cd batteries can use up to 33% of the Ah rating. Ni-MH
batteries on the other hand cannot handle continuous charging as much so the slow
charging rate can range from 2.5% and the 10% of the Ah value, which would take much
longer [20].

Fast charging tends to be used more often that the slow charge, since the slow charge rate
of 12 hours is often impractical. The fast charge is defined as 1 hour recharge time, which
corresponds to 120% of the Ah rating. This is very damaging to the battery and therefore
most devices do not use these values.

The circuit below shows an option for a charging circuit that allows for slow charge and
fast charge. The slow charging is implemented when the LM2576 Buck Converter is
turned off. This allows the resistor Rtr to determine the trickle current into the battery.
When the Buck converter is on, it acts like a constant current source of 2.6A. A circuit
like this allows for variable battery charging profiles.

*RTR 1N4001
LM2576-ADJ [o
VIN - IN swW
20-30V ION GND FB + PVR2ANR
H+ ——m L2A-|
100pF e —
35v —— NI-CD/NI-MH
0.05Q
GND -
Y
s/D
(TO END-OF-
CHARGE 4
DETECTION

CIRCUITS)

.

Figure 21. Battery Charger using an LM2576-ADJ [20]

30

Another critical point when dealing with battery charging is the ability to keep the
temperature stable. Charging a battery too quickly can result in an increase in
temperature, which can lower the resistance of the battery, increasing the current, and
therefore increasing the charging rate. This positive feedback loop can result in batteries
that combust, like with Samsung Note 7, which could explode after reaching 80%
charged. A temperature sensing circuit can help stop this positive feedback loop and keep
the product safe. The circuit below shows an example of a temperature sensing circuit
that stop the charging.

78L05 =/ |\ (8-30V) m
470K

AMBIENT °
sensor | OUT tpc - T'\l\/:l—b S/D
LM35 [3>
GND M 662 (FAST-CHARGE

TERMINATION
SIGNAL TO
BATTERY PACK I 239,(CURRENT SOURCE)

5.1K§ §9.1K 1M€
+
— |our
— LM35
I GND 5.1K
L P VBAT-

Figure 22. Using the LM35 to signal the Temperature [20]

P VBAT+

|_

N SENSOR

? BATTERY |

This circuit uses the LM35 ambient temperature sensor to determine the temperature near
the battery. When the temperature is above 10 degrees Celsius, the voltage of the LM35
passes through the unity gain of the LPC662 and is compared to the reference voltage at
the rightmost op-amp. If the voltage is higher than at the bottom pin coming from the
LM35 near the battery, then the battery is 10 degrees C higher than the ambient, resulting
in an output from the op amp. This can be used as a signal to stop the fast charging.

3.2.3.4 Medical Sensors

The need for medical sensors is fundamental to our design requirements, in particular the
ability to measure heart rate and blood oxygen levels. These two measurements can be
achieved by integrated circuit chips which there are several of available on the market.
The technology from which these ICs achieve the measurements is relatively all the
same, through two methods: transmissive and reflectance oximetry. This non-invasive
method and has a good accuracy (error is within +/- 2%), therefore is a reliable means of
measuring oxygen saturation (SaO) through reading the peripheral oxygen saturation
(SpO.). This approach is clinically accepted for monitoring oxygen saturation [21].

31

LED @ - _Cari, JJ) DETECTOR

'\

Transmissive oximetry

Reflectance oximetry

LED G mf
DETECTOR
Figure 23. Diode oximetry [22].

ECG (Electrocardiogram) measure the electrical signals inside the heart, often performed
in a hospital. This measurement is done by expensive equipment that connects to analog
leads which are put on the patient’s chest. This standard equipment in hospitals although
expensive is very accurate but not portable and does not always have the ability to
provide data wirelessly to a device for remote constant monitoring.

Modern electrical engineering applications have made it possible to have small integrated
circuits that can perform this measurement with very low power and when combined with
wireless technology such as Bluetooth, the analog leads with cumbersome wires can be
eliminated and wireless single-pole patches can be used. The measurement data can also
be sent wireless over Wi-Fi to an Android device or computer, providing constant
measurement without the need to be next to the patient. There are several integrated
circuits on the market that provide these ECG measurement abilities.

An ECG waveform represents the electrical signals of the heart using a voltage vs. time
graph. P-waves represent atrial depolarization. The PR-interval represents a period of
time (in milliseconds) taken for the atria and ventricle electrical activity. The QRS
duration is the depolarization of the ventricles. The ST-interval represents an isoelectric
line which is a time period between the depolarization and repolarization of the
ventricles. The basic understanding of these waveforms is important to us so we obtain
the correct output.

32

1.0 It
05 > ST interval o
PR segment ST segment
" T
= p
= U
] JH
 -erer—-
PR imterval q
(1.5 5
] QRS duration
1’.1"' interval :‘ ":
{ 0.2 (0.4 (.G
Time(sec.)

Figure 24. ECG Waveform

The analog connection through electrodes is commonly used through a wet/dry electrode
that makes an ohmic contact to the body. Recent research has developed no contact
electrodes that use a capacitance electrode which can be connected on the clothing.
According to the Intelligent Assistive Technology and Systems Lab at the University of
Toronto “The sensor produced highly accurate heart rate measurements (<; 2.3% error)
via either direct skin contact or through one and two layers of clothing. The sensor
requires no gel dielectric and no grounding electrode, making it particularly suited to the
“zero-effort” nature of an autonomous smart home environment [24].”

The possibility of using no contact capacitive sensors is something we might try but there
are none on the market, so we will have to design our own. If designing capacitive no
contact electrodes becomes too complicated, there are several wireless ohmic contact
ECG electrodes on the market — Alibaba has many options ranging from a few cents per
unit. Considering our constraint of low cost and limited time, this might be the best
option. We will have to further research and investigate this engineering problem.

3.2.3.5 MAX30112

Maxim Integrated manufactures several pulse oximeter and heart ICs. The
MAX30112EWG+ has an analog front end with a high-resolution, optical readout signal-
processing channel with built-in ambient light cancellation, as well as high-current

LED driver DACs, to form a complete optical readout signal chain. Maxim integrated
states “the MAX30112 offers the lowest power, highest performance heart rate detection
solution for wrist applications. The MAX30112 operates on a 1.8V main supply voltage,
with a separate 3.1V to 5.25V LED driver power supply. The device supports a standard

33

I2C compatible interface, as well as shutdown modes through the software with near-zero
standby current, allowing the power rails to remain powered at all times.” [25].

This IC meets the constraints of our design; it doesn’t have all the features of other
sensors available but does include low power and optical pulse oximetry. The
MAX300112 uses 12C to communicate data which is slower than Serial Peripheral
Interface (SPI) and might prove to be a disadvantage of a constant reading on
measurements. The chip also provides flexibility on the location of the sensor which is
benefit in case the application of sensor on the wrist proves be an issue. The price on
Mouser Electronics is $5.89 per unit, assuming our device will implement only one
sensor of this kind the price is well within our budget.

VDD_ANA VDD_DIG

| |

1 AMBIENT DIGITAL NOISE
l CANCELLATION CANCELLATION

PDN
PLE
19-8IT CURRENT ADC »> 32 ‘S‘l‘\g LE >
PD_GND —

VLED g{i

——— SDA

SOL

12C INTERFACE

NT

LED DRIVERS

LEDI_DRV

REFERENCE ‘

LED2 DRV () maxsonz

l

PGND GND_ANA crp GND_DIG

Figure 25. MAX300112 Block Diagram [25]

3.23.6 MAX30101

The MAX30101 is another integrated pulse oximetry and heart-rate monitor
manufactured by Maxim Integrated that implements finger based sensor location. It is a
complete system solution to make the design process easier for wearable devices. The
chip operates on a single 1.8V power supply and a separate 5.0V power supply for
internal LEDs, it also uses 12C interface. The Heart-Rate Monitor and pulse oximeter are
implemented using a LED reflective solution.

Size will not be an issue with this chip, it is 5.6mm x 3.3mm x 1.5mm 14-Pin. It includes
an Ultra-Low Power operation mode including a programmable sample rate and LED
Current which will be very useful to our device to meet our power requirements. The
Low-Power Heart-Rate Monitor is operational at < 1ImW and can use a shutdown current
of 0.7uA. These specifications meet all our constraints and similar to the MAX300112
but does not offer the flexible of sensor location; it must be measured at the fingertip
which will need an analog device connected to the fingertip.

34

Figure 26. MAX30101

3.23.7 MAX30003

The MAX30003 manufactured by Maxim Integrated has a single biopotential channel for
providing ECG waveforms and heart rate detection. It uses a 28-PIN TQFB with Clinical-
Grade ECG Analog Front End. The built-In heart rate detection with interrupt features
prevents the need to use a heart rate algorithm on the microcontroller freeing up resources
for other tasks. The device is applicable to single lead wireless patches, single lead event
monitors for arrhythmia detection, chest band heart rate monitor, bio authentication and
ECG-On-Demand applications. It uses SPI protocol to communicate data which is much
faster than 12C. This device provides a lot of applications for more sensors which is the
goal of our project to implement as many medical sensors as possible. It is also
programmable to send data to an android device which will serve as the data gathering
tool in our project.

Figure 27. MAX30003

3.23.8 AD8233

Analog Devices offers the AD8233, another IC for ECG and biopotential measurement
applications. Like the MAX30003, the AD8233 is a fully integrated single-lead heart rate
monitor with an analog front end and useful for the type of implementation we are trying
to achieve. In comparison with the MAX3003, the supply current of the AD8233 is less
(50uA) vs the 100pA of the MAX3003. The package size of this IC is 2mm x 1.7mm x

35

0.5mm, which is meets our constraints of small form factor. The price from Digi-Key
Electronics is $4.42 per unit which is very cheap but price is not the only factor in our
choice.

Figure 28. AD8233

3.239 AFE4400

Texas Instruments manufactures the AFE4400, another fully-integrated analog front-end
for pulse oximeter applications. It features a LED driver with H-Bridge, Push, or Pull.
Low-noise receiver channel with an integrated analog-to-digital converter The timing
control is very customizable, which is needed for us because we do not yet know how we
will need our device to be programmed until it is fully tested. The Low Power operates at
100pA. The device communicates to the microcontroller using SPI interface. The
package size is very small, VQFN-40 (6 mm x 6 mm).

3.2.4 Temperature Sensor

A temperature sensor for the watch would be an excellent addition to the medical sensors
available. Unfortunately, measurement from extremities tends to fluctuate more than the
core body temperature, which makes measurements unreliable. We can discuss some
workarounds an possible part selection that could still work.

A possible workaround to solve the issue of the imprecise temperature sensor would be to
get the measurements from the core of the body. A solution could be to have a
thermocouple run up the arm of the patient, an rest somewhere near the torso. While the
mouth is a common location to measure the temperature, there are sanitary concerns
when this takes place. A better location would be under the armpit, which is considerably
less germ-filled.

A better solution would be to avoid contact with the patient at all. Infrared sensors allow
for measuring thermal heat as it approaches the infrared ration levels. This could be
implemented by having the patint raise their watch to their forehead in order to read the

36

skin temperature. Compraing ti the ambient temperature, a temperature gradient can be
deduced.

Both of thses solutions are impractical though. The thermovoule runingup the boddy
defeats the putpose of a mobile watch, and the burden of having to raise the watch get the
temperature makes the watch more cumbersome than helpful. More solutions can be
sought, but the temperature sensor will be a stretch goal.

3.2.5 Accelerometer

During our initial discussion and project research we entertained the possibility of
implementing an accelerometer to have an additional orientation and inertial navigation
to our device. Upon further research we found this implementation is not entirely
accurate although, the error can be corrected through software.

Using the equations of motion it is known that to obtain position from an acceleration
value you need to integrate twice, this method has very bad error and it is essentially not
useful. It is not the accelerometer noise that makes this error but rather but gyro white
noise according to findings by the University of Cambridge [26]. The figure below from
the technical report by the Computer Laboratory at Cambridge illustrates this error

Mix-Simulated INS Position Ermor
120

All Gyro Noise H H H
Gyro White Moise Only
_ Gyro Bias Instability Only -+

60

DY)) EESRROTI SRR SUMHUSS MU SUSUANS SSSNUU SUL NUS 17 AU S ST S

Mean Eudlidian Distance From Origin (m)

20

Time (s)

Figure 29. Position Error [26]

There are many types of different accelerometers that are used for purposes of measuring
position of a human body in medical and wearable device applications. All of these
different kinds of accelerometers are designed on integrated circuits. “Characteristics of
physical activity are indicative of one’s mobility level, latent chronic diseases and aging
process. Accelerometers have been widely accepted as useful and practical sensors for
wearable devices to measure and assess physical activity.”[27].

37

These inertial sensors use linear acceleration along spatial directions to determine
position as according to Newton’s Second Law. Some other possible features we will try
to include that are made possible by these types of sensors: patient sleep time, fall
detection and wake up of the LCD display on the device. According to a study submitted
to the National Library of Medicine, “Sleep time duration can be determined from a
wrist-worn accelerometer” [27].

The difficulty of implementing fall detection, postural sway, and other types of
movement that would be of interest in a medical type device is the location of the
sensors. When reviewing the study of accelerometer sensors in the National Library of
Medicine cited in this paragraph, when these sensors are placed on the wrist they are only
useful for determining steps, MET (metabolic heat measurement), activity intensity level.
The study used for their wrist mounted sensor an activity monitor GT3X by ActiGraph,
which contains a 3-axis accelerometer and has digital filtering technology. There are
several 3-axis accelerometers on the market that we can implement in our design. For our
purposes we only require a sensor that will measure up 2.5g or 3g.

3.25.1 ADXL345

Analog Device’s ADXL335 is a 3-axis digital accelerometer sensor measuring up to +/-
20,49,89,16g of acceleration with 282LSB/g of sensitivity at all g-ranges. The
communication protocol is both 12C and SPI interfaces. The sensor can measure static
acceleration of gravity for angular-sensing and dynamic acceleration from motion.
Activity and inactivity sensing are a feature including on this chip that we also desire to
have for purposes for the LCD display and possibly a movement algorithm. It features an
integrated memory management system with a 32-level FIFO buffer that will help keep
our device low power (23uA measurement mode, 0.2uA standby mode) and free up
system resources. The size of the IC is 3mm x 5mm x 0.95mm, LGA package. Digikey
offers the ADXL345 for $8.06 per unit.

The benefit of this particular accelerometer is the reference designs provided by Analog
Device’s. The reference design is a low-g acceleration using the ADuC7024 Precision
Analog Microcontroller. This design can be useful in providing a position sensing ability
in our device, particularly if the patient was suddenly moved. Wi-Fi cannot provide the
sensing abilities of sudden impulse based movement and it is difficult to measure vertical
changes using Wi-Fi positioning as well. If we decide to use this particular MCU, then
this reference design will be very useful in providing a feature of movement detection
and vertical position.

38

FUNCTIONAL BLOCK DIAGRAM

Vs Voouo

ADXL345 POWER
MANAGEMENT

I Tespl

Ay p| CONTROL INT1
- SENSE | apc AND
ELECTROMICS DIGITAL INTERRUPT

40

3-AXIS FILTER ¥ LOGIC INT2

LT

32 LEVEL 4
FIFO

SDASSDVSDIO

SDO/ALT
ADDRESS

(L SCUSCLK
r
cs

SERIAL 1'D

)
L
GHND

Figure 30. ADXL346 Block Diagram

3.25.2 MPU-6050

The MPU-6050 is a 6-axis accelerometer and gyroscope by TDK, which offers us an
additional dimension of measurement — rotation and twist. It offers the same g-ranges,
protocol communication (I2C and SPI), and FIFO buffer as the ADXL346. The sensor
has DMP (“Digital Motion Processor”) a firmware that can do complex calculations with
the provided sensor values directly on the chip. The low power mode has selective rates
(10pA@1Hz, 20pA@5HZ, 7T0uA@20HZ, 140pA@40HZ). The package size is 4 mm x 4
mm x 0.9 mm, QFN package with a price of $8.29 per unit on Digi-Key Electronics.

3.2.5.3 Accelerometer Selection

For our implementation the TDK MPU-6050 exceeds our requirements for an
accelerometer and includes a gyroscope. The on-chip firmware which can perform its
own calculations without using additional resources of the microcontroller is a huge
bonus. There are a few source codes on the internet we can evaluate for calculation
purposes.

3.2.6 Microcontroller

The brains of the smart hospital watch will need to be able to communicate and control
multiple sensors, displays, and other peripherals. The engineering requirements for the
watch require that the processing unit be both compact and energy efficient while still
being able to perform computations and be more affordable. Microcontroller units
(MCUs) are all-in-one integrated chips (ICs) that fill these criteria. Three MCUs that will
be compared are the ATMega328PB, MSP430FR4132, and the MSP430FR2033;
specifically comparing the cost, power consumption, ease-of-use, and memory size.

39

3.2.7 Serial Communications

Serial communications are ways to allow communication between devices using fewer
pins. This is very critical when concerning MCUs because of their limited pin count and
missing communication buses.

3.2.7.1 1°C

I2C Protocol is a synchronous, multi-master, packet switched, single-ended serial
computer bus which was invented by Philips Semiconductor in 1982. It uses an Open-
drain/Open-collect circuit to communicate the data signal. Bitrate modes of 0.1 /0.4 /1.0
/ 3.4 | 5.0 Mbit/s can be selected. The bidirectional interface contains a controller
(master) that communicates to slave devices. The slave must be addressed by the master
to transmit data. Every individual device contains a specific address. Devices can have
one or multiple registers where data is read, written, or stored. [28]. The two signals of
the bus are SCL (clock) and SDA (data), these two lines make I1°C simpler than SPI.
Another advantage of this protocol is the ability to support multiple slaves (devices) on a
single bus through chip addressing eliminating the need for select lines unlike SPI which
requires select lines. Acknowledgement and no acknowledgement (ACK, NACK)
communication is another feature of this protocol that SPI does not include. This protocol
follows a standard that ensures there are not several different variations of the protocol.
The downsides are that 12C uses more power than SPlI, it is slower than SPI

vCC Ve

ifo ERH LD == 4
Expanders [Blinkers T 7 Expanders
SCLO Hub

rY + Repeater ——
SDAD Buffer
__vcc

Microcontroller Multiplexer f
or Processor Switch

SCL1
SDAL
Data . TEmperatul'E
Converter e Sensor

Figure 31. Example I°C Bus [28]

3.2.7.1.1 Addresses of Parts

Unlike the other serial communications, the 12C does not have any chip select wires. This
is beneficial because it lowers the number of necessary wires. On the other hand, each

40

device must have a unique address in order to be called upon. When the address uses 7
bits, there are a maximum of 127 devicees that can be called. To add to this, many
devices have their addresses built into the IC and might only have a single bit that can
chage, resulting in two possible addresses. The table below summarizes the known
addresses of the components that we will be using.

Compnent I2C Address Alternate 12C Addresses
MPU9150 (Motion Sense) 1101000 1101001
RF430CL330H (NFC) 0101000 to 0101111
ESP-WROOM32(WIFI) 0000000 to 1111111

3.2.7.1.1 Choosing Pullup Resistor

The 12C requires an external pullip resistor in order to drive the output to a high voltage
when no IC is using it. This makes it so that any device canstart the communication by
pulling down the voltage lines of the data line. However, differing resistors have different
affects. The minimum resistance is given as

(Vee — Vol(max)

lol
Where Vcc is the high voltage (5V), Vol is the valid logical low (0.7V), abd lol is the
valid logical low. In conjunction with the line capacitance, the RC circuit determines the

delay time in order to get switch. The time constant would be 1/RC. However, if the
resistance is too high, the line might not rise to at the right time.

Rp(min) =

In out design, we chose Rp to be 4.7 kOhm, but more testing might be required.

3.2.7.2 Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) is a synchronous interface bus developed by Motorola in
the 1980’s while there is no official standard for SPI, the protocol has become an
unofficial standard among electrical engineers in embedded systems. SPI uses full duplex
instead of half duplex used by 12C, and can only use one master to communicate to many
slaves.

SPI has four major lines as follows:
e MOSI (Master Output/Slave Input) — Master TX to slave
e MISO (Master Input/Slave Output) — Slave TX to master

41

SS[N] (Slave Select, “N-number of slaves” active-low signal) — Master controls
this signal, which selects that slave that is to be TX or RX data to or from the
slave device.

SCLK (Serial Clock) — data synchronization clock

These lines can be daisy chained together to connected multiple slave devices. All
communication is controlled by the master. When data is requested (RX) or sent (TX) to
a slave it pulls the SS line low for that device to activate the clock frequency for the
master and slave. Full duplex mode will allow transmission of data over the MOSI to the
slave from the master. Data to the slave from the master is sent over the MISO line.
There are four main modes in SPI:

Mode 0 (non-inverted clock logic low): Clock is configured in a manner so that
the data is sampled at on the rising edge of the clock and pushed out on the
falling edge

Mode 1 (non-inverted clock logic low): Data sample on falling edge and pushed
out on rising edge of clock

Mode 2 (inverted clock logic high): Data sample on rising edge and pushed out
on falling edge

Mode 3 (inverted clock logic high): Data sample on falling edge pushed out on
rising edge

42

= = = SAMPLE
- = = = SHIFT
= = = = SAMPLE
= = = = SHIFT
- = = = SAMPLE
= = = = SHIFT
= = = = SAMPLE
= = = = SHIFT
= = = = SAMPLE

= = = = SHIFT
= = = = SAMPLE

CLOCK

DATA INVERTED NON-INVERTED

X BiT * BIT * BET * BIT * BIT * BIT

Figure 32. SPI Clock timing diagram

Advantages of SPI: protocol is simpler, faster speeds (push-pull instead of open-
drain/open-collector), select lines allow chips of the same type to be connected).
Disadvantages: Bus voltage has to be supported by all devices (logic levels cannot be
mixed like 12C), three lines plus select lines (one for each device).

SLAVE 1 SLAVE 2 SLAVE n

=2 hr
el —i

S51
§52

SCK
MOSI
MISO
S8
SCK
MOSI
MISO

Figure 33. SPI Bus [29]

43

3.2.7.3 Interface

There will not be much of a user interface with the device: this is done on purpose to
reduce the possibility of user created mistakes and misuse of the device that could put the
patient in danger. Most of the interface will be either notifications and at most will be
buttons.

However, watch faces will allow the communication of data through the display. More is
discussed about the software design in a future section.

3.2.8 UART Communications

UART Communications is a physical two wire connection to transmit data between
devices. The benefit of UART over other methods is the simplistiy of using only two
wires to connect two devices, one for a transmission and one for a recevice. The data is
transmitting asynchronously, meaning that no clock is required to synchronize all the bits.
Asynchronous transmission makes use of the bits telling the transmission when to start
and stop. A sample rate between the two devices is called the baud rate.

The devices are hooked in a parallel structure to transmit data from their respective data
bus. Every frame or packet of the UART has certain properties which determine the
actions of the frame. A start bit, parity bit, and stop bit — these bits are removed when the
frame is sent back out to the data bus by the receiving device.

Packet
0 to 1
L oElEn 5 to 9 data bits parity 102
G) stop bits
bits
_ _/
~

Data Frame

Figure 34. UART Frame

44

Start bit — the receiving device will monitor the line which contains a high voltage at idle,
when a transmission occurs the line is pulled to low and the receiving device will
recognize that a transmission is occurring and starts to read the data frame.

Data frame — this portion of bits is the data being sent (5-8 bits parity, 5-9 bits no parity).

Parity bit — this bit is a method of error detection, it determiners if the number is odd or
even. The error detection is accomplished by telling the device if the bits have been
altered during transmission. The 0 (even bit parity), the on bits in the frame should
correlate to an even number. The 1 (odd bit parity) the off bits in the frame should
correlate to an odd number. This ensures that the data in the data frame has not been
altered in transmission.

Stop bits — like the opposite of the start bits, the line is pulled from low to high to signify
the end of a the frame.

3.2.9 Buttons

There will be a couple of buttons on the watch to provide minimal control of the watch.
Since the watch will be mostly autonomous, the watch does not need a capacitive touch
screen, and was simplified to a reset button, a menu button, and a panic button
combination.

3.29.1 Panic Button

A simple button that can be included on the project is a panic button. To interface this
button to the microcontroller, a simple connection can be made from the button to the
micro-controller input. From here, the software code for the micro-controller would take
care of the rest. Such that if the button is pressed, an interrupt occurs, and a signal is sent
from the device to hospital system: whether that be a pager system or just straight to their
computers. This signal would be sent using the WIFI module; when the interrupt occurs
on the micro-controller, a certain signal will be sent to the WIFI module and then
transmitted.

Of course, for added patient security and benefit, a mechanism would need to be placed
such that the signal continues to be transmitted to the hospital system until the hospital
responds to the distress call. This would avoid any failure in signal transmitting but also
any accidental cancellation or “no-registration” of the signal. Of course, this feature
would need to be well thought out as a constant raise of non-emergency by the patients
can be tasking for hospital staff. An alternative to this is the use of a sensor or sensor
information instead of a button. If the sensors’ information suddenly changes, then an
alert can be raised. This will reduce the possibility of “non-emergency” but will depend
on the accuracy of the device’s sensor. Since this is such a sensitive feature, adequate
testing will need to be conducted.

45

3.2.9.2 Reset Button

A simple but valuable button to have on this device is a reset button. This feature will be
added on this device to restart any chip or device that seems to be out of “whack.” This
would save time since many problems can be solved by simply resetting a device: the
common “Have you tried turning it on and off again?”’ comes into play at this point.
Usually such a button would be present directly on the board, but because our PCB board
will be inside the case, we will need to have an external button. This button will be
placed like common reset buttons found on other devices where the use of a pen or of a
small tip object needs to be used to press the reset button. This reset button will probably
be connected to the input of the MCU such that when this signal is received a command
of resetting is executed. If the MCU has an option of a reset pin, then the button will be
tied to this pin.

3.2.10 Vibration

A vibration feature will be added so that a hearing and visually impaired can also receive
notifications from the device. Such an application would be if some sort of alarm is
going off by the watch; the hearing impaired could be notified by the vibrating feature of
the watch. This vibration mechanism is done by placing a simple vibrating mini motor
disc placed on the inner surface of the device. A $2.00 mini motor disc found on this
website [30] starts vibrating when it receives a voltage between 2V and 5V and stops
vibrating when it is disconnected; it only contains two wires which serve as the voltage
connections. This can easily be interfaced with the MCU by supplying the voltage
directly from it.

An unfortunate effect of having moving parts connected to a circuit is the momentum of
those parts inducing a current. When a motor’s supply voltage is stopped abruptly, the
momentum of the part will keep the part rotating. This motion will produce a current
spike back into the MCU and could result in unintended behaviours of even damage. One
way to combat this is to include a ramp down in the software. The more electrical
solution to the problem is to put a diode in parallel to the motor. That way when the
voltage is reversed due to the momentum of the motor, the diode provides a safety
measure against reverse voltage and current.

46

—

S

N S

D1 =
vl OF
r

g 9
_.‘ >

Figure 35. Diode Protection against Reverse Voltage of Motors

3.2.11 Alarm/Speaker

An audio output can be a beneficial component to the smart watch. The most important
function of the audio device would be as an alarm. This alarm can sound when the panic
mode is activated. This assure that any personal around the patient will be more able to
find the patient. Another possible use for the speaker could be to notify the patient if their
heart rate is lower than expected, similar to how hospital heart monitors already do.
Finally, the speaker can beep when a patient is not near where they are expected to be.

A few a device that can be used as speakers, buzzers, and piezos. Speakers allow for
much more complex sounds, including voices, but are often more expensive and use
much more current. Piezo and buzzers are low cost sound systems that convert a voltage
to motion, resulting in a sound. The Limitation of these sound systems is that they can
only output one tone at time, resulting in less than natural sounds. However, it suffices
for alarms and beeps.

Many speakers will often require a higher voltage in order to resonate and create sound.
Many MCUs cannot provide the adequate voltage in order to provide the sound, so a
MOSFET can be used to trigger the sound. The voltage difference at the gate is provided
by the MOSFET, allowing for the current to run through the speaker from the higher
voltage source.

This design allows for PWM to be provided at a 3.3V level while still allowing the 5V
across the speaker. The other protection taken is a current limiting resistor. The 150 Ohm
resistor allows for a maximum current of 5/150=33mA.Many speakers have a very low
resistance and can be easily blown.

47

SV

BUZZERH1 Rig ™
" 150
+
2
Q2 l——
2N7000 \

&= Ec

Figure 36. Buzzer Schematic

3.3 Strategic Component and Parts Selection

Comparisons of components with tables including key traits (efficiency, size, power
consumption, etc.) and chosen components.

Part selection is a major part and process of any project. Using the house of quality
diagram and individual intelligent part requirements, the most ideal chips, sensors, etc.
were chosen and the details of “how” and “why” will be detailed in the subsections to
come. Much research was made during this process and the research for each individual
part of the project can be found in the main section named “Research.” Since actual
implementation of the whole system has not taken place, it is possible for there to be a
change from one chip to another one that was also researched due to new and arising
demands or needs.

3.3.1 WIFI Chips

There are countless WIFI chips and modules available from many different providers:
even within the same company or manufacturer. To boil it down to the ones shown
below two strict requirements were placed: the module must include an antenna, and the
module must have ample developer support already existing on the internet. The antenna
requirement was used to facilitate the design by avoiding the need for designing/buying
an external antenna and then having to go through the process of tuning it which can
increase cost and implementation time. The support requirement was placed to avoid any
chip that might be under-developed or too new to the market that might not have enough
examples for us to use in order to more quickly and easily solve problems encountered
during implementation and write code for this application. Both of these pre-filter
requirements will help us save a lot of time that would otherwise be spent trying to make
original functions for the chip or trying to be the first group trying implement a certain
function on this chip. Although these two aspects could provide a good learning
experience, the focus of this project is on the overall design of the system. If the sole

48

focus of this project were to learn the workings of a particular chip, then both of these
requirements would not be needed since learning these skills would be valuable.

After applying these two requirements, the group was able to boil down the plethora of
WIFI chips to just a few. The following table summarizes the key information used when
the WIFI chips were compared. This information was also used to determine which
specific WIFI chip to be used. There were key features that were considered when
reading the different datasheets but some of those features and specifications were
common across these chips so that information was not used:

Table 6. WIFI Chips Current Consumption, and Technology Comparison

Name TI ESP-WROOM- | ESP-WROOM-32
CC3220MODASF12 02
Active 53 mA (Rx 1DSSS, 50, 56, 56 mA 95-100 mA (Rx
Current OFDM) (Rx b,g,n b,g,n)
Consumption respectively)
CPU (Modem 690 pA (DTIMM1) 15 mA (DTIMM 1-4 mA
Sleep) 3) (DTIMM3)
CPU (Light 115 pA 0.9 mA (U- 0.8 mA
Sleep) APSD DTIMM
3)
Technology WIFI (802.11 b/g/n) WIFI (802.11 WIFI (802.11
b/g/n) b/g/n) & BT 4.2
& BLE
Communication 12S (2) ,SPI (1),12C 12S (1) ,SPI 12S (2), SPI (3),
(1),UART(2) (3),12C 12C (2), UART (3)
(1),UART (2)
CPU Cores 2 1 2
Dimensions 20.5 mm x 25.50 18 mm x 20 25.50 mm x 18
mm mm mm
Price $11.69 $2.70 $3.80

Of these three WIFI chips, the one this group has chosen to use is the ESP-WROOM-32.
The main reason this chip was chosen was its compatibility with both Bluetooth BLE and
WIFI which gives us the flexibility (if needed) to also use Bluetooth in the indoor
localization (using Bluetooth beacons) and patient sensor information monitoring and

49

transmitting. (to mobile devices for example). This does come at the price of greater
power consumption, but the group is confident that the power supply designed for this
device is more than capable of handling its power consumption. A plus side to this chip
is the amazing price of $3.80 which makes it much more inexpensive than the TI chip.
(this includes also the big difference in development board prices: $15 and $40
respectively.) The TI chip does offer better development support than the ESP chip and
also includes the benefit of being able to use the same IDE as the MCU the group will be
using as their main MCU. Just as a backup, the TI chip will be used if the ESP chip
cannot perform or do what we need it to do. The two main reasons the ESP chip was
chosen over the T1 chip were the following: 1)Price of the DEV board and 2) The lack of
Bluetooth technology in the TI chip. So for now, the ESP chip and the ESPS dev board
will be used.

3.3.2 Bluetooth Chips

As with WIFI chips, there are also an abundance of Bluetooth chips. In order to narrow
our search, the same two restrictions used for WIFI were used for the Bluetooth chip: a
module containing the chip with an antenna must be available and as well as good
developer support. The following table will compare the chips that met that criteria:

Table 7. Bluetooth Modules Comparison

Name Sablex_R2 HM-10 RN4871 ATBTLC1000ZR
Current
Consumption (at | 7.4, 8.4 mA (R, 5.66, 5.43 mA
RF Port) Tx respectively) 8.5 mA 13 mA (Rx,Tx) (Rx, Tx)
Technology BLE (4.2) BT 4.0 & BLE BLE 4.2 BLE 4.1

12S (1), SPI (2), SPI (1), 12C (1), | SPI (2), 12C(2),
Communication 12C (1), UART (1) | UART (1) UART (1) UART(2)
CPU Cores 2* 0 0 1

1163 mm x 7.5 mm x 10.5
Dimensions 17.86 mm 27 mm x 13 mm 9mmx11.5mm | mm
Price $14.44 $12.99 $7.25 $6.10

When it came to selecting Bluetooth chips, the main purpose for these chips would be for
Bluetooth beacons; this means that the ideal chip does not need to be so complicated
since the only thing it needs to do is broadcast a signal containing its UID and
identification to the device. All the chips above can do this simple task, all are relatively
small in size, BLE 4.0 compatible, and have similar antenna specs. Because of these
reasons, the main deciding factor for choosing the ideal chip is the price: this makes the
ATBTLC1000ZR the chip chosen for this project. In addition to being the cheapest, it
also includes an integrated MCU which ensures that we will not need a host or external
MCU in order to use this as a beacon. It is important to remember that this chip will only
come into play if we decide to incorporate Bluetooth technology in our indoor
localization mechanism. This decision will only be made after the device has been
implemented and the accuracy of localization through WIFI is measured and recorded.

50

3.3.3 Microcontroller Chips

The microcontroller is the brains of a circuit, filled with the logic and programming.
Below will be the comparison between three different MCUs. The first MCU is the
ATmega328PB which is loved by electronics enthusiasts because of its integration in the
Arduino Uno boards. The next two chips are part of the MSP430 family of MCUs created
by Texas Instruments. They are designed to be low-power while still allowing heavier
computations when necessary. The two MCUs from TI are the MSP430FR2033 and the
MSP430FR4132. Some critical points when determining which MCU to use are the
following: cost, power consumption, memory storage, size/packaging, GP1O pin usage,
and the ease of use including programming environment and developer community.

3.3.3.1 Cost Analysis

MCUs are relatively low cost ranging between $0.10 and $10, averaging at just over
$1.09. [31] On the other hand, dedicated computer processors like those from Intel can
range between from $100 to $1800, averaging around $600 and microprocessors can
average between $50 and $250 {digikey}. According to Digi-Key, ATmega328PB has a
cost of $1.61, falling at just over the median price for a microcontroller. The MSP430s
both fall under the median price with the FR4132 at $0.99 and the FR2033 at $0.87,
according to the Texas Instruments website. The advantage falls to the MSP430FR2033
for being the least cost.

3.3.3.2 Power Consumption

As the brain of the watch, the MCU must be running at all times that the device is reading
from sensors, communicating, or even calculating. Therefor the power consumption of
the MCU plays a vital part in the battery life. There are different ways to measure the
power consumption of devices, but most batteries use milliamp-hours, or mAh. For the
MCUs, we will use the maximum current drawn at a clock rate of 4Mhz and then
standardize to an hour. Any special power saving modes will also be considered.

The ATmega328PB can operate at a few different power modes. Active mode uses the
maximum computing power and therefore the most electrical power as well. At 4AMHz
and Vcc of 3V, the ATmega typically uses 1.4 mA. It also has an idle mode which allows
for interrupts but stops the CPU, which typically consumes 0.4 mA. A special power-save
mode with a frequency of 32kHz and voltage of 3V can consume 2.1 pA, however the
only interrupt can come from the clock.

The MSP430s are specifically designed for reduced power consumption, including many
power saving modes. The FR2033 and the FR4132 both use 126uA/MHz, resulting in 0.5
mA at 4MHz and Vcc of 3V. The MSP430 equivalent of the ATmega’s idle mode is
LPMO, which halts the CPU as well but allows for interrupts and immediate response.
This mode uses 80 pA at the same voltage and clock rate. The counterpart to the power-
save mode is the LPM3.5, which can only use an interrupt from a 32kHz clock, and uses
0.77pA.

51

The advantage of the power consumption ties both the MSP430FR2033 and the
MSP430FR4132, both with identically low power consumption. The ATmega328PB was
not nearly as power efficient. The table below shows an estimated time that a 30mAh
battery would last if just the processor was used. (Assuming it would be perfectly
efficient.)

Table 8. Time to Discharge 30mAh Battery with only Microcontroller

Hours if | Hours if | Hours if | Hours if

100% 20% Idle | 20% LP | 20% Idle

Active 20% LP
ATmega328PB 21.4 25.0 26.8 32.6
MSP430s 60.0 721 75.0 94.9

Realistically though, most power would be consumed by the sensors, communication
systems, displays, and any other peripherals.

3.3.3.3 Memory Storage

A key difference between microprocessors and microcontrollers is the memory. Like in
computer processors, microprocessors have very limited onboard storage and have to rely
on external memory storages like RAM chips and hard drives. Microcontrollers on the
other hand have storage built into the chip. Each IC has its own form of storage which
can range from read-only memory, write-once, rewriteable flash, or even purely volatile
memory. The data on these devices is normally divided into nonvolatile memory and
some sort of RAM. The nonvolatile memory is normally used to store the programming
of the MCU and data that will be mostly constant. The size of the nonvolatile memory
can often determine how complex expansive the program can be. On the other hand,
RAM is significantly faster and is used to store variables that are adjusted frequently and
for calculations. A small RAM could mean that the calculations will take much longer
due the high cache miss rates, resulting in having to pull date from the nonvolatile
memory. The memory type and size of each MCU must be compared.

The ATmega328PB has three different kinds of memory: Flash program memory, SRAM
data memory, and EEPROM data memory. The flash program memory is meant a
readable section of the memory where the instructions of the program are written once.
However, the ATmega has protocols to reprogram (rewrite) this memory. This memory is
32KB, organized as 16K *16. The next memory that the ATmega has is the SRAM,
which stand for Static Random Access Memory. An important note of this memory is

52

that SRAM s a volatile memory and data will be lost of the power supply drops too low
or the device shuts down. SRAM starts 303 Bytes for the general-purpose registers, 1/0
registers, and External 1/0O registers. Following this, there are 2KB of data called the
internal SRAM. The figure below shows a map of the SRAM.

Load/Store
0x0000 — Ox001F

32 registers

0x0020 — 0x005F
160 Ext I/O registers 0x0060 — OxO0FF

{
[
f 0x0100

64 1/0O registers

N NN

Internal SRAM
(2048x8)

Ox08FF
Figure 37. Map of ATmega328PB’s SRAM

The final data used for the ATmega is the EEPROM data memory, which stand for
Electronically Erasable Programable Read Only Memory. This data is non-volatile, and
contrary to the name, is not just read only. While the EEPROM is normally written using
an external programmer, the ATmega has procedures to write to the 1KB of EEPROM.
However, this process can lead to data corruption and requires many steps in order to
safely assure no data loss.

The MSP430s have similar memory types but the data is organized somewhat differently.
The two main types of data storage are FRAM and the SRAM. The FRAM is similar to
the Flash memory of the ATmega in that it is a nonvolatile memory that is used for
storing the programs and constants. FRAM stands for Ferroelectric Random Access
Memory. This memory uses a special ferroelectric transistor that changes magnetic
polarity when under an electric field but keeps the polarity when the field is removed.
This means that FRAM uses less power than Flash and has better write/read performance.
[sThe FR2033 has 16KB of FRAM and 2 KB of SRAM while the FR4132 has 8 KB of
FRAM and 1 KB of SRAM.

By absolute size comparison, the ATmega328PB seems to have the advantage with 33
KB of nonvolatile memory while matching the 2KB of volatile memory of the
MSP430FR2033. However, a key note is that the slow read/write speeds of the flash

53

memory (and even slower times of the EEPROM) might make the FRAM based systems
more efficient with their data.

3.3.3.4 Packages and GPIO Pins

The usage of any integrated circuit will determine the limitations that will be imposed
when considering PCB design. Many different packages have different number of GPIO
pins, different sizes (which affect the footprint on the PCB), and even the ease of
soldering that is required to add to the PCB. Each of these components will be discussed
for each available package of each chip. First some definitions are important.

3.3.3.4.1 Package Definition and Visuals

As electronics continue to shrink and condense, the components of the circuits must also
find a way to take up less space. Traditionally through-hole components were used, as
can be seen by many 80s and 90s video game systems. As the circuits condensed, surface
mount devices (SMD) became necessary.

Figure 38. NES Motherboard with Through-hole Components [32]

A smart watch must be compact and light, meaning that we must use SMD in our design.
A few different packages for ICs (from least to most space saving) are DIP, TSSOP,
TQFP, QFN, and BGA. Our MCU must have a package that will allow for saving space
and easy circuit design.

54

The most commonly seen package for electronics enthusiasts are the dual in-line
packages (DIP) because of their simple way of mounting to a breadboard/perfboard for
prototyping. DIP have pins on the longest sides of the IC, with the first pin nearest the
dot/semicircle and the rest following in order counter clockwise. These packages cover
the most amount of space and require through-hole PCB design. The thin shrink small-
outline package (TSSOP) is the next easiest for a hobbyist to use. It looks like DIP except
the leads are much shorter and must be surface mounted. The thin quad flat-pack (TQFP)
is very similar to the TSSOP except that the pins go on all four sides of the IC and are
generally square instead of rectangular. The quad flat no-lead is similar to the TQFP
except that the leads are removed entirely. At this point, hand soldering becomes very
difficult. The final package is the ball grid array, which places the pins under the chip and
requires a soldering oven to properly mount. This is the most space saving but requires
much more planning when designing the PCB.

PDIP

TQFP

QFN BGA
Figure 39. Different Package Options

Another important point when deciding the best package is the number of general
purpose 1/O pins. A limited number of pins could require extra hardware to multiples the
pins, and thus inducing a higher cost and program complexity. The number of GPIO pins
should be maximized while choosing the most streamlined version of the package.

55

3.3.3.4.2 Available Packages with GP1O Count

The ATmega328PB has a predecessor which came in many different packages including
DIP, however this model only comes in TQFP and QFN, both of which are very space
saving. However, due to the specialized soldering equipment needed for the QFN, the
TQFP would be the desired package. Notably, this MCU has a total of 32 pins of which
23 are GPIO. The total size of the 32 pin TQFP ATmega 328 is 9x9mm”2 with leads.

On the other hand, both MSP430s come in TSSOP and LQFP (Light QFP, very similar to
TQFP but slightly taller. 1.0mm vs 1.4mm) [33]. The LQFP package would be ideal since
it would use the least amount of space due to its pins being on all four sides. Both the
FR2033 and the FR4132 have 64 pins of which 60 are GP10. The advantage goes to the
MSP430s because of the larger number of GPIO Pins

Table 9. Microcontroller Feature Comparisons

Package | Pins | GPIO Pins | L (mm) | W (mm) | Area (mm”2)
Atmega328PB | TQFP 32 27 9 9 81

VFQFN |32 | 27 5 5 25
MSP430FR4132 | TSSOP | 48 44 8.3 12.6 104.58

TSSOP |56 |52 8.3 14.1 117.03

LQFP |64 |60 12.2 12.2 148.84
MSP430FR2033 | TSSOP |48 |44 8.3 12.6 104.58

TSSOP |56 |52 8.3 14.1 117.03

LQFP |64 |60 12.2 12.2 148.84

3.3.3.4.3 Specialized use of GPIO Pins

Microcontrollers often multiplex their GPIO pins in order to add extra functionality to the
MCUs. These extra functionalities can come in a variety of options but the ones
addressed in this section will include analog-to-digital converters, LCD compatibility,
and Serial communications.

3.3.3.4.3.1 Analog to Digital Converter

The world around us is filled with information that often has a range of possible results.
The sound that we hear are waves with a volume and frequency, the colors we see have
different hues and saturation. Our human minds can understand these values as being
within a range without specifically having to know exactly how much red is in an apple.
Computers on the other hand must model their understanding of the world with numbers.
Computers must quantify the amount of red in an apple as a series of ones and zeroes,
binary.

56

When a sensor takes a measurement of the real world, it will often convert it to an analog
voltage. An example would be a photodiode. When the photodiode has no light, it
produces no voltage, but as the light increases, it outputs more voltage. Analog to digital
converters (ADCs) approximate this voltage into a sequence of binary numbers.
Therefore, MCU needs an analog converter when getting measurements from sensors.

One of the most common analog to digital approximation is the successive approximation
ADC (also known as SAR because a register is used to store the result). The way that
SAR ADC works is by successively comparing whether a voltage is above or bellow a
specific reference voltage, and then storing the result. For example, if an ADC has a
maximum voltage of Vmax, the reference voltage Vref would be begin at ¥2VVmax. If the
input voltage Vin is below Vref, the most significant bit (MSB) is set to 0. Then the new
Vref would be the middle value between 0V and %2Vmax, meaning Vref is YaVmax. If
Vin is above that value, then the second MSB would be 1. The next Vref would be half
between YsVmax and %Vmax, or %Vmax. The process continues until the least
significant bit is approximated.

Clock S— SAR EOC
DN 1 DN 2 D2 Dl DO
\ A 4 Yy VYV
VRer DAC
Comparator
Vi S/H s

Figure 40. SAR ADC [34]

The key points when looking at an MCUs ADC are the number of analog inputs, the
number of bits in the SAR, the conversion time, and the sample per second. The number
of analog inputs will determine how many analog devices can be used without the need
of extra hardware like external muxes.

57

The ATmega328PB has 8 channels that can be used for the analog inputs, however 2 pins
are used in an I12C and another 4 in an SPI, however the ATmega has multiple SPI and
I2C. The MSP430s both have 10 channels that are used for analog inputs, with 4 pins
used for SPI and two of those are also used for UART. Both the ATmega and the
MSP430s have a 10 bit resolution. At 3V max, the precision can be calculated to the 3/21°
V or roughly 3mV.

Table 10. Microcontroller Communication Features Comparisons
Bits Analog | Used for Serial | Alternate
Resolution | Pins Communication | Comm Port?
ATmega328PB | 10 8 6 Y
MSP430FR4132 | 10 10 4 N
MSP430FR2033 | 10 10 4 N

The final key points to the ADC are the conversion times and samples per second. The
conversion time determines how quickly the value can be converted and used by the
MCU for calculations. This is a bottleneck in the program that can immensely slow down
the efficiency of the MCU. The ATmega328PB claims to convert between 13 and 260 ps.
The MSP430s claim to have a conversion time between 2.18 and 2.67 ps, an immense
improvement. The number of samples per second are describe in the table below.

Table 11. Microcontroller ADC comparisons

Min. Max. Min Samples | Max Samples

Conversion | Conversion | per Second | per Second

Time (us) | Time (us) | (ksps) (Ksps)
ATmega328PB | 13 260 3.85 76.92
MSP430FR4132 | 2.18 2.67 374.53 458.72
MSP430FR2033 | 2.18 2.67 374.53 458.72

For our purposes, the analog devices that we will measure will be sampled less than 200
times so both chips surpass the requirement. The MSP430s have the advantage of having
more analog pins but they are used by the serial communications and have no
alternatives. Effectively, the ATmega takes the edge because it ends up with more
available analog channels with more than enough sampling rate.

58

3.3.3.4.3.2 LCD Compatibility

Our watch will require a way to display the data that t is tracking, including the heart rate,
oxygen levels, the patients name, ID, and allergens, and even the current time. While the
specific LCD options will be discussed in a later section, a very important note about
these displays is that they often require may GPIO pins and sometimes additional drivers
to control properly. One benefit that the MSP430FR4132 has is that allows for driving a
variety of LCDs within the MCU, not requiring an external driver. The FR4132 allows
for controlling an LCD by directly writing to onboard memory, and has the option for 2-
MUX, 4-MUX, and even 8-MUX which allows for controlling large displays simpler. It
also allows for the display to be used in its lowest power state, LPM3.5, which could
prove useful for saving energy on computation.

The ATmega328PB and the MSP430FR2033 do not have specialized hardware for
driving LCDs so the advantage goes to the MSP430FR4132 in this case. However, all of
the chips can use GPIO pins to control the LCDs as well, it would just be more complex.
Another note is that many LCDs also come with the drivers built into the package,
including their onboard memory and settings. These displays require less complicated
controls to modify, and also mean fewer GPIO pins necessary. Some LCDs have built in
processing hardware and will just communicate with the MCU using just a few pins and
serial communications.

3.3.3.4.3.3 Serial Communications

Serial communications provide ways to communicate with external devices using only a
few pins. Parallel communications transmit lots of data at a time using many pins, like for
example the parallel port in older desktop computers used the DB25 standard which used
25 pins to communicate. Microcontrollers simply cannot commit all the pins or else it
could not have many GPIO left. Fortunately, serial communications use much fewer
wires at the cost of sending the information serially, or bit by bit.

ﬁ—saem

25 C——Signal ground
12 o——Paper out
24 o———Signal ground
11 o——Busy
2 3———Signal ground
10So——Acknowledge
2 20— —Signal ?round
—Data bit 7

21 o———Signal iF[mmund
—Data bit 6

20— Signal i‘?mund
Data bit 5

DB 25 male
-
i

18 o———Signal ?round
Go——Data bit 4
18o———Signal ?round
fo——Data bit 3

17 o————Select

14— Autotesd

%—Strobe

Figure 41. DB25 Male Header and Wiring Guide

59

The serial communication standards are discussed more thoroughly in section 2.8, but
here the different communication methods available to each microcontroller.

The ATmega328PB has a few different available modes of communication. Atmel has
adjusted the standard of 12C and formed TWI, however they function nearly the same and
so will be called I°C.

The benefit of the 12C standard is that it uses only two wires to interface with a number of
devices. The ATmega can use two separate 12C buses, one using pin 27 and 28 as the data
and clock lines, respectively; and the other using pins 3 and 6 as the data and clock lines,
respectively.

The next serial communication used by the ATmega is the Universal Synchronous
Asynchronous Receiver Transceiver, or USART. The benefit of this communication
standard is that it is highly customizable, allowing for different baud rates, odd or even
parity, synchronous or asynchronous communication, and much more. The ATmega can
use two different USART busses. Bus 1 uses pin 2, 30, and 31 as the clock, receive, and
transmit lines, respectively; and Bus 1 uses pin 15, 16, 17, and 31 as the clock, receive,
and transmit lines, respectively

The final serial communication built into the ATmega is the Serial Peripheral Interface,
SPI. The benefit of this standard is that it allows for the MCU to decode the clock and
rate of transfer to the devices, making the MCU the master and the devices the slaves.
This is connected in a circular pattern where the data is passed from the master, through
the slaves, and back to the master. However, the standard uses at least 4 wires. The
ATmega has 2 SPIs using pins 14, 15, 16, and 17 for the slave select, master-out slave-in,
master-in slave out, and clock, respectively, for the first SPI; and pins 19, 22, 23, and 24
for the slave select, master-out slave-in, master-in slave out, and clock, respectively, for
the second SPI.

The limitation of the ATmega328PB when it comes to the serial communications is that
the USART _1 and the SPI_0 share some pins and therefore cannot be used at the time.
Luckily there are alternative versions of each communication protocol so there is always
an alternative. The table below shows the pins used in each serial communication.

Table 12. ATmega328PB Pin Usage

Communication | Pins Used Conflict
USART 0 2,30, 31

USART 1 15, 16, 17 SPI 0

SP1 0 14, 15, 16, 17 USART 0
SPI 1 19, 22, 23, 24

12C 0 27, 28

12C 1 3,6

The MSP430 use the same communication standards that the ATmega328PB does
besides the USART, instead just using the UART and leaving out the synchronized

60

version. However, the MSP430s use just 8 pins total for all the standards. The
communication standards are divided into two groups eUSCEI_AO and eUSCEI_BO
(Enhanced Universal Serial Communication Interface). eUSCEI_AO can be used for
either SPI (using pins 32 to 29 as slave select, master-out slave-in, master-in slave out,
clock, and slave select, respectively) or UART (Using pin 24 for tansmit and pin 23 for
receive). eUSCEI_BO can be used for either SPI (using pins 24 to 21 as slave select,
master-out slave-in, master-in slave out, clock, and slave select, respectively) or I12C
(Using pin 30 for data line and pin 29 for clock line). This limitation means that Three
communication types can’t be used at the same time. The table below hows the
information more clearly.

Table 13. Communication Standards Difference

PIN UART SPI
24 TXD MOSI
eUSCEI_AO | 23 RXD MISO
22 CLK
21 SS
PIN 12C SPI
32 SS
eUSCEI_BO | 31 CLK
30 SCL MISO
29 SDA MOSI

3.3.35 Ease of Use

A critical factor when selecting the appropriate microcontroller is the ease of
programming the MCU. Each Microcontroller uses each its own development hardware
and software environment.

While the ATmega has a vast community of hobbyist that use it through the Arduino, the
MSP430s have professional documentation and programming software. The Code
Composer Studio is the IDE for the TI chips, and it has interactive memory management
of the chip while debugging. And most helpful is the single step instruction steps which
aloe for immense debugging capabilities.

61

3.3.3.6 Summary of MCU

The chosen component is the MSP430FR4132, and if that part is unavailable, the
MSP430FR4133, which is the same chip with more memory. The table bellow
summarizes the key features of the chips.

Table 14. MCU Comparisons

ATmega328PB MSP430FR2033 MSP430FR4132
Cost $1.61 $0.87 $0.99
Lowest Power Mode 2.1uA 0.77uA 0.77uA
Idle Power 400uA 80uA 80uA
Typical Power 1.4mA 0.5mA 0.5uA
Memory (Volatile) 2KB 2KB 1KB
Memory(Nonvolatile) 32KB 16KB 8KB
Smallest Package 81mm? 148.84mm? 148.84mm?
Pins 32 64 64
ADC Resolution 10 10 10
LCD Chargepump N N Y
SPI Y Y Y
12C Y Y Y
Best Compiler - W W
Largest Community W - -

3.3.4 LCD Display

The LCD display we would like to implement has to be small enough to fit on the wrist
but large enough to clearly display information. This size would be comparable to a

62

display commonly found on a smartwatch (1.5-2 in). We do not require our display have
touch capability. Ideally we would like to use a cheaper TFT display to keep the cost low.

A potential choice for our display is the NHD-1.8-128160EF-CSXN#-F which has a
resolution of 128x160 with a 1.8 in display that uses parallel interface. It requires an
operating supply voltage of 2.8V and supply current 30mA. We desire to turn off the
screen after a couple of seconds until movement is detected to converse power since there
is no low power mode. The unit cost from Mouser Electronics is $16.25

Another option would be the NHD-0216HZ-FSW-FBW-33V3C, which offers a simpler
display. It is a 16x2 charater LCD display with serial communications. It has a white
LED backlight which can be turned off to conserve energy. Without the backlight, the
device consumes 1.5mA and about 20mA with the Backligh on. The unit costs $11.60
from Mouser.

3.4 Parts Selection Summary

After comparing a majority of different components we have come to a decision for each
technology and chosen what we feel is best for our device. The final parts we chose are
the ones that meet our requirements and standards and will be expected to perform as we
planned. Along the way some parts may still need to be swapped for a different one, but
we will find that out as we go into testing the overall system in senior design two. The
way we chose parts was by splitting the different technologies between our group and
then individually researching similar devices with the features we desire. We then looked
further into the variety of components in that realm of application and this is where we
decided ourselves what parts are best for us to use based on comparing the voltages,
current flow, price, size , and more to decide on our components.

3.41RFID

As stated before we will be using RFID technology to store the patient's information for
medical applications around the hospital. Looking between the many RFID options of
being active, passive, separate, or connected to the main circuit we finally decided on the
RF430CL330H. This part was the best RFID/NFC chip to choose because it was only
$1.89, could do both SPI and 12C communication, NFC is more secure than normal RFID
because it is one on one device communication, NFC can also be read and written.
Allowing the NFC to be read and written is very convenient for our product due to the
fact that we want to be able to modify the information if anything happens or changes.
More features of our choice were that it can easily be used with a smart phone device
allowing us to be able to test it very well. It also has the ability to do blue tooth pairing
and the best feature of all is that it is extremely compact, giving us plenty of work room
for our watch design. This chip even states in the datasheet that it is good for medical
devices, which is perfect for us. The RF430CL330H was by far the best choice for RFID
technology.

63

3.4.2 Analog Front End / Pulse Oximeter

The Texas Instruments AFE4400 was chosen for our final selection in the analog front
end part of our design which will drive the LED signals and convert the analog signal
from the Nellcor-DS100 pulse oximeter probe. The reason we chose this particular
component was the support and reference designs with this AFE in conjunction to the
MSP430. All the other researched AFE’s were acceptable but the reference design was a
huge plus when considering all the other circuitry involved in this project, it was
imperative to make sure that the pulse oximeter functioned correctly — which the AFE
provides the signal and communication to the MCU.

The Nellcor-DS100 pulse-oximeter SP02 fingertip sensor was select for the probe to
receive the data for the heart rate measurement. This sensor was chosen because of it’s
accuracy and wide usage throughout the medical industry. It also uses a DB9 connection
that is easily interfaced with the chosen TI AFE and MSP430 using the TI reference
design which will ease our design process throughout the limited timeframe.

Further ensuring accuracy the sensors features a digital memory chip that is embedded
into the sensors. This memory chip provides calibration inside the sensors before it is
calculated with an algorithm.

3.4.3 Voltage Regulators

Our main desires for choosing a voltage regulator to use was size and efficiency. We
wanted something very compact, but at the same time very efficient so our device could
be powered by the battery without wasting too much power and run for a long time. What
we first came down to using was the TPS6306 that we actually found from a similar
application device in the medical field. These voltage regulators are the smallest parts |
have ever used, which was alarming at first but after much thought very good for our
watch dimensions. It also operates at about 94% efficiency and can output 1.2 to 5.5 volts
which covers all of our components requirements, which are all around 3.3 or 5 volts.

It even contains overtemperature protection and a low power mode which will be great
for our watch to last a long duration of time. It will be a bit tricky getting these regulators
on the board ourselves if we want to try and bake them on, but we may look into the
option of a professional putting these small components on.

As we began to assemble and test our design we realized the TPS63036 were actually not
as straight forward as we had hopped for. We had done all of the calculations for ouput
voltage and making sure it worked properly, but due to lack of time, only making one
PCB, and not being able to dissect it due its compactness we went with the REG104FA-
3.3500. This regulator was a low dropout voltage type and automatically converted the
input to 3.3V without any calculations. Very straight forward and easy to use, which was
good for us time wise.

64

3.4.4 Power Supply

Now when it came to deciding what type of battery to use we knew from the beginning it
was going to be lithium ion, but we didn’t know how large, the capacity of it, and what
type. There are many types of batteries out there from coin to block to cylindrical. At first
when deciding what type of battery to use we were thinking of using a block battery
which could easily fit underneath or above the over all device. Then we thought about it
some more and realized for our prototype design the dimensions gave us a lot of room for
a somewhat big battery to start out with.

We then changed our layout and looked into the cylindrical style battery to put off to the
side of the over all device and settled on the EBL 18650 lithium ion battery. We chose
this battery because it was very powerful with about 3000 mAh and a very long life.
Although the major down fall to this battery is it is quite big, which is not bad for testing
and the prototype. As time goes on though we may look into getting a smaller battery and
determine how efficient our battery can actually be.

Later on in the experiment we changed our battery once more and finally went with the
Adafruit 3.7V 2.5 amps per hour battery because it was flatter and could lay underneath
our PCB nicely in the case.

3.4.5 Display

The final decision of the display was NHD-0216HZ-FSW-FBW-33V3C. It allowed for a
simpler design since it used only character dispay which was simpler to program while
still providing the critical information. With the toggling of the backlight, the LCD
consumes 1.5 mA without the backlight and 20mA with it on.

Table 15. Final selected parts
Parts Selected

Nellcor-DS100
AFE 4400
REG104FA-3.3500
RF430CL330H
3.7V 2.5 Ah Adafruit battery
NHD-0216HZ-FSW-FBW-33V3C
MSP430FR4133
ESP-WROOM-32
MSP430FR4133

65

Pulse Oximeter Prode
Nelicor ds-100a

Speaker
2 Buttons
_ Red LED
N/ Infrared LED
. Photodiode
RF430CL330H

-

AN

LDO REG104A-3.3

D QgeRagauaay
nhd-0216hz-fsw-fbw-33v3c

MSP430FR4133IPMR
ESP-WROOM-32 MSP-EXP430FR4133IPMR

4 Related Standards and Realistic Design Constraints

Intro to standards and constraints and how they can affect design, both on the engineering
and marketing. What they are, how they can improve quality, etc.

Standards are usually codes or rules that a designer must take into account when
developing a product to ensure that once the product goes to the market, it will be
compatible with other systems that already exist. This limits the designer in some aspects
by deciding what the designer must include in his design to meet the standard; in the long
run this is good because it helps the designer narrow in his options and guide him to
produce a good quality product. Design constraints are usually “wants’ or “needs” of the
user or market imposed usually by the customer or person requesting the product. Design
constraints usually point to a feature or a goal of the design like maximum speed desired,
size desired, etc. but they can also be constraints that are placed by the environment such
as climate, weather, operation region. These constraints give the designer broad or small
goals that he must achieve in his design; good constraints give flexibility to the designer,

66

but constraints can be generic and specific (eg. watch must be able to locate patient:
watch must be able to locate a patient within 1 m accuracy and within 0.5 seconds.) This
portion of the document focuses on the impact of realistic design constraints and how
they affect the design of the Smart Hospital Watch. It will also identify and examine any
standards that are related to the technology used in our system design.

4.1 Standards

“Engineering standards are documents that specify characteristics and technical details
that must be met by the products, systems and processes that the standards cover” [X].
Some standards are mandatory and at times are voluntary; nevertheless, abiding by
existing standards ensure safety, practicality, and compatibility with systems that already
exist. Trying to “create” something without using standards would be dangerous and
result in a product that would not fit in with the rest of the world making it some cases
useless. There are many standards and regulations to meet when designing the smart
hospital watch. Especially in the environment of a hospital setting where there is sensitive
personal data, medical equipment for monitoring people, and much more. Meeting the
standards will allow us to create a product that is simple to develop and easily accepted
into the hospital setting. A few standards we will encounter are wireless communications,

4.1.1 Search for standards

Searching for standards can be quite difficult depending on where you look. Some
websites require you to purchase the documents while some are free due to the status of
being students at the University of Central Florida. The main websites we used to
research the standards that will affect us and our device were https://ieeexplore-ieee-
org.ezproxy.net.ucf.edu/document/7927764/ and
https://www.fda.gov/medicaldevices/digitalhealth/wirelessmedicaldevices/default.htm.
These two websites were very helpful in finding the standards that applied to our device
and the technologies we are using.

4.1.2 Wireless Communication Standards

Wireless Communication standards cover a very broad spectrum of topics covering
communication protocols, frequency spectrum usage, RF coexistence, etc. With the
advancement of wireless technology, there has been a similarly large development of
“wireless” standards. These standards exist to ensure that wireless communication,
wireless devices, and wireless networks does not become a “big mess” to the point where
it is impossible to communicate wirelessly or operate in specific frequency bands due to
strong interference. This following section will present some of these wireless
communication standards that are relevant to this project.

67

https://ieeexplore-ieee-org.ezproxy.net.ucf.edu/document/7927764/
https://ieeexplore-ieee-org.ezproxy.net.ucf.edu/document/7927764/
https://www.fda.gov/medicaldevices/digitalhealth/wirelessmedicaldevices/default.htm

4.1.2.1 ANSI C63.27 Evaluation of Wireless Coexistence

As the title of this standards denotes. this standard deals with the appropriate ways to
evaluate the co-existence of a final product (not of individual WIFI chips that make up
the system since the standard states this can lead to very large inaccuracies) in the
intended product environment: this is largely a testing standard. This standard provides 4
main evaluation setups for wireless devices depending on the kind of network and
expected function that they are to make as well as guidance for test setup, parameter
identification, and more. The evaluation setups in this standard are based on using an
unintended signal or signals to interfere with the device and the intended signal to
evaluate whether the device can still function properly. It also specifies the
characteristics that the unintended signal or signals such that a proper test can be taken.
For example, if testing a wireless device that uses a WIFI signal, Zigbee signals or
Bluetooth signals cannot be used as unintended signals (according to the standard)
because it has been shown that these signals have little to no interference with a WIFI
signal: a separate WIFI signal needs to be used to test the intended WIFI signal. This
standard also helps to define how to push the system to the point of failure so that the
failure region can also be identified.

4.1.2.2 ANSI C63.18 RF Emission On-Site Evaluation

The full name of this standard is the “American National standard Recommended
Practice for an On-Site, Ad Hoc Test Method for Estimating Electromagnetic Immunity
of Medical Devices to Radiated Radio-Frequency (RF) Emissions from RF
Transmitters.” This standard provides an on-site (non-laboratorial) way of testing
medical devices to other RF signals and was not made to replace the more rigorous
laboratory EMC testing described in IEC 60601-1-2. This standard explains how to set
up the test, what kind of RF transmitters to be used for testing, distance from transmitter
from device, and variability control. These tests are conducted to make sure that an
electronic device (such as the one the team is designing) can operate correctly even while
receiving relatively powerful RF signals (relative to WIFI signals). This kind of testing is
essential in hospitals where medical devices are exposed to other kinds of power RF
signals incidentally: a perfect example of this would be in an emergency rom or in a
patient room.

4.1.2.3 IEEE 802.11n-2009

The 802.11n standard was introduced to replace the outdated 802.11a and 802.11g with
its main feature being the increase in maximum data rate (54 Mbit/s to 600 Mbit/s). This
standard includes the hardware specification needed for wireless communication
hardware such that the new technology can be implemented on it. The main new
specification for the new hardware was the addition of MIMO technology which stands
for multiple-input multiple-output, channels of 40 MHz to the physical layer, and
multiple frame in one transmission (frame aggregation) to the MAC layer. This standard

68

is backwards compatible with 802.11a and 802.11g, and newer standards there were
developed post-2009 are compatible with 802.11n

41.2.4 BLE v4.2 Specifications

Although once standardized by IEEE (IEEE 802.15.1), the standard is no longer kept by
IEEE. Instead, the specification for Bluetooth technology is kept by the Bluetooth
Special Interest Group (SIG); although not explicitly called a standard, these
specifications serve as qualifications for both communication protocols and technology
requirements for hardware to be able to operate using BLE v4.2. This cover all the
communication specifics including all the layers of the architecture. A comprehensive
list of material can be found on their website; they also include qualification test
requirements and specifications in development.

4.1.3 Logic Standards

Computers work in a binary state, having a state that is logic 0 and another that is logic 1.
Different technologies can distinguish the states by using electrical properties of
semiconductor materials. The two discussed standards will be CMOS and TTL, two
voltage levels and thresholds that will play a critical part in module compatibility
between the MCUs and components.

4131 TTL Logic

Transistor-Transistol Logic was the standard that was mostly used when Bipolar Junction
Treansistors were the primary source of logic components. TTL needed many more
transistor in order to accomplish the same things that current Field Effect Transistors can
do more efficiently. The primary difference in the logic difference is that the “low” or
“zero” state could be read in a range between 0V to 0.7V, and the “high” or “one” could
be read between 2V and 5V. The range when outputting is slightly narrower with “zero”
being OV to 0.5V and “high” is between 2.7V and 5V [35].

4,1.3.2 CMOS Logic

CMOS stands for Complementary Metal Oxide Semiconductor, and is the standard that
followed FET devices. While BJTs are minority carriers and are current controlled, FETS,
or field-effect transistors, are majority carriers and are voltage controlled devices. This
means that the power consumption is more efficient and can require fewer components
when compared to BJTs. The standard is more variable when it comes to the value for the
“high” state with the lowest range centralizing around 5V and the highest centralizing
around 15V.

When dealing with circuits and microcontrollers, the low value when reading is OV to
1.5V and the high value is from 3.5V to 5V. When outputting, the range dranstically
diminishes, with a low values from 0V to 0.05V, and high values of 4.95V to 5V [35].

69

4.1.4 Design impact of relevant standards

As explained in previous sections, standards must be considered for many reasons such as
safety, compliance, compatibility, usefulness, ease of use, etc. These standards directly
affect the design of a designer: therefore, good knowledge and preparation research is
needed to design a device properly. Based on the relevant standards presented on the
previous section, certain parameters and aspects had to be considered in our design. This
section will detail how the standards affected our design.

4,14.1 Impact of ANSI C63.27

This standard had a direct effect on the WIFI chip that the group researched to buy. A
major requirement when searching for a chip was to ensure that the chip could be found
in module form with a pre-made PCB trace antenna or a integrated chip antenna. This
gives us the security that the chip has an RF antenna that has been optimally designed by
its manufacturer, and therefore will more likely meet this standard that deals with
unintended or interference signal effect evaluation.

This standard also provides a blueprint for the testing of our device when it comes to
WIFI/RF signal reception and possible transmission. This standard will be one of the
main influencers for the way we test our device.

4.1.4.2 Impact of ANSI C63.18

This standard had a direct impact on the actual design of the product PCB. This standard
provides a blueprint and a testing “mark” that electronic devices must meet to be useable
inside a hospital. This standard deals with the testing of relatively powerful RF signals
emitting on a device and a device still being able to function properly. This made us
consider how to properly shield the electronics on the PCB (especially components
dealing with RF reception and transmission) while still providing ample operating space
for the antenna of the WIFI module and the RFID tag to operate properly.

This also effected the way we tested our PCB. Not only should we consider the RF
interference at the RF antennas but the interference with the actual device electronics.
This will serve as a basis for testing of our final product.

4.1.4.3 Impact of IEEE 802.11n & BLE v4.2 Specifications

These standards had just a mild impact on the device design. The focus when
considering these standards was to make sure the WIFI or BT module that we were
considering and buying had compatibility with these standards. Since we are not
developing our own WIFI or BT chip, the bulk of these standards (physical layers,
hardware specifications) are not used.

70

4.1.4.4 Impact of Logic Levels

The key effect of the different logic levels is finding the intercompatilbilty between the
microcontrollers and peripherals. Almost all devices are made with CMOS technology
because of the compact footprint, reduced componenet count, and power savings.
Howevers, many CMOS devices often use the TTL voltage ranges both for backwards
compaitibility with previous designs, and also because the lower voltage serves to save
power with the high switching devices.

The logic levels play an immense part with compatibility of design. Choosing
incompatible logic levels could require more hardware to regain compatibility between
devices; inquring a higher footprint size and higher costs.

4.2 Realistic Design Constraints

Any engineering design must meet or face many types of real world constraints in its
design process. These types of constraints are economic, time, environmental, social,
ethical, safety, and particularity in our case health constraints related to a medical setting.
Below are short discussions on how these types of constraints will be dealt with

4.2.1 Economic and Time constraints

A major constraint for this project is budget, this project consists of about roughly 80%
semiconductor chips. Although modern semiconductor chips are very cheap their
respective development boards for testing are not, this makes a rather difficult situation in
testing such a complex system to design without using pre-manufactured breakout boards
or sensor boards within our limited time frame. We must choose the main essential
components for which we spend a little more funds on to test. Our essential components
consist of the microcontroller (MCU), pulse oximeter sensor, battery, and Wi-Fi — all
other components are secondary to these main components functions and therefore we
must obtain a means of development testing even if a development board from its
respective manufacturer is outside of our budget. Another major constraint is the time and
cost of PCB making, during the design process mistakes can be made on the soldering
and another PCB will have to be used — which is expensive and time consuming. Time
overall is a big constraint generally for us doing this project due to the fact that taking
senior design one in the summer is very condensed compared to the fall semester. The
summer senior design required us to be diligent in researching our components and
especially ordering them on time. On top of that we had to test each component to make
sure it properly worked for us, which included ordering extra breakout boards,
development boards, and learning how to solder very precisely since our components are
extremely small. The time constraint could be very stressful at times considering we were
learning how to implement certain technologies we have never used before, but luckily
there is a lot of information on the web to help us in our endeavor.

71

4.2.2 Environmental, Social, and Political constraints

One of the main constraints of our device is being in the environment of the hospital
setting. In the hospital environment the need for certain health and privacy standards are
very necessary when it comes down to the patient. Also making sure our device does not
interfere with the other medical machines is a very big constraint.

A social constraint to be considered is the fact that someone may not want their exact
location to be monitored at all times while in the hospital or even the fact that their
information is stored on an RFID/NFC and could be stolen, even though the odds are
very low of that.

There are not too many political constraints when it comes to our product, but one to be
considered is if a hospital wants to purchase our product, but simply does not have
enough money due to budget cuts.

Workarounds could include logic level shifters that can bring up the voltage, or simple
pullup resistors. There even exist ICs that can solve the problem of shifting, without the
need of many external components.

4.2.3 Ethical, Health, and Safety constraints

Since the application of our device is in a hospital setting, ethical, health, and safety
constraints are extremely important. These constraints will be explained in the following
subsections.

4.2.3.1 HIPAA

Our project is intended to be in a medical setting, specifically a hospital. There are strict
guidelines in HIPAA compliance that covers Protected health information (PHI). PHI
under the US law is any medical record or medical information that can be traced back or
associated to a specific individual [36]. Since our design will contain a RFID tag
associated with a particular subject or patient (and important medical information stored)
and that tag will be associated with the device that contains location and heart rate, we
will need to comply carefully with these standards.

The Protected health information rules within HIPAA are defined as “individually
identifiable health information” that is stored and sent over any medium. Specific the
information referred to by the US Health & Human Services are [37]:

e Individual’s past, present, or future physical or mental health or condition

e The provision of health care to the individual

e The past, present, or future payment for the provision of health care to the
individual, and that identifies the individual or for which there is a reasonable
basis to believe can be used to identify the individual. Protected health info. (e.g.
name address, birth date, Social Security Number)

72

We will be storing sensitive information associated with a RFID tag tied to the device via
fields entered in a nearby device (Android/Laptop). We will have to take care to observe
these guidelines.

4.2.3.1.1 Hospital Information on Patients

Patient health information is extremely serious to hospitals; the management,
transmission, and storage of this information is therefore also very important. The major
authority governing this aspect of patient information is commonly referred to as HIPAA
(Health Insurance Portability and Accountability). This standard or set of rules and
regulation were made law in 1996 and are enforced strictly. Specifically, implementation
requirements for wireless transmission or communication of patient health data will not
be found in the actual HIPAA act (HIPAA was enacted pre-internet of things); the
information will actually be found in the Code of Federal Regulations Title 45, Part 14,
Subpart C. In the subsections to follow, different aspects of these codes will be explored
[37].

73

5 Project Hardware and Software Design Details

In the real world, if two different designers are given the same components and the same
design goal, both designs would be different; this is to say that when it comes to
designing, although a lot does depend on proven design methods, some of the design (if
not a lot of it) is also left up to the designer to decide. It is imperative to understand that
great parts with a poor design makes for a below average device, and this is why much
though and detail needs to be used when designing system. In almost every system in
work today, there are two major aspects: hardware and software. Hardware provides the
physical platform on which the software can run and implement the functions the
designer intends to do with the overall product. This section will focus on the details that
went into designing the hardware and software of our system. The following subsections
will focus on the overall system but also go into detail with each specific subsystem.
Each subsystem will focus on one major technology involved in the design of the overall
system or device. Underneath each subsystem details of specific systems underneath it
will also be explained and detailed.

5.10 Initial Design Architectures and Related Diagrams

The overall system consists of at least 6 total subsystems (4 key subsystems and 2
secondary subsystems). The following systems to come will expand on the 4 key
subsystems; this is because the 2 subsystems are not actual entire systems but rather just
an additional chip that will interfaced, and, as explained earlier, they are not vital to the
function of the overall system. The following diagram is similar to the overall block
diagram seen in section 2.6 but not updated with the final parts the group has decided to
use. This is the hardware over view of our system:

NFC: r 1
RF430CL330HC Power J
Y Y
Sensor Front End: MCU: WIFI/BT:
AFE440 MSP430FR4133 ESP-WROOM-32
LCD:
NHD-C0216AZ

Figure 42. Hardware overview

74

Hardware is just only half of the project: the other half is the software. The software or
code to be implemented in this project is complex but tthe following flowchart shows a
general description of the software to be implemented in this project.

Enter Data Transmit Data }

h 4 v
> Update Location Update Heart Rate
) 4 v
Location Heart Rate
[
> Display Data

.

Figure 43. Flowchart of software

This flowchart shows that the software code written on the MCU will have three main
tasks: display data, monitor data, and transmit data. The data will be displayed to an
LCD screen; the data to be displayed on here will be some of the patient health
information from the sensors such as heart rate. The data to be monitored will be the
sensor (health) data and the localization data. This will be monitored and updated at
interval times to save battery life of the MCU. All this data, both the sensor and the
location data, will be transmitted to the hospital communication network. The
description and block diagrams associated with these three main functions of the code
programmed on the MCU will be explained in sections to come.

75

5.11 First Subsystem, Breadboard Test, and Schematics

The first subsystem of the watch pertains to the microcontroller. The microcontroller is
the center of the design, connecting the logic of all other systems. The chosen MCU has 4
dedicated pins, two for power and two for crystals. The other sixty pins will be dedicated
to the LCD and other peripherals. An important section of the microcontroller subsystem
is the serial communication buses, particularly the SPI and the 12C buses.

Due to the very small nature of the microcontroller, the initial testing that took place was
based on the development board. The benefit of the EXP-MSP430FR4133 is that it had
an LCD built in, and therefore expedited the LCD testing even before we settled on a
display.

Fower Supply LCD Screen

¥

Microcontroller

¥

MFC Chip R Oximeter Sensor

o - Speaker
Wibration Maotor Wifi Module

Figure 44. First subsystem-MCU

5.12 Second Subsystem

The second subsystem will be the analog front-end that connects the DB9 pulse oximeter
sensor.

76

Pulse Oximeter
Probe

AR
_/

T
>

DBY Sensor :

A

h

Analag front end Analog front end

-,

Probe goes on finger

-

Patient

Figure 45. Second Subsystem Overall Diagram

5.13 Third Subsystem

The third subsystem will be the portion of our device that is power. This power
subsystem mainly consists of voltage regulators which will be used to interface the power
to the chips as shown in Figure 38. There will two separate parts of the power system.
One will be hosted on the wearable device: this is the one mentioned above. There will
also be another separate power system that will be responsible for re-charging the battery.
This separate power system will be an external device that will be made in addition to the
wearable device. This system will be composed of several more complex chips in
addition to voltage regulations. Things that will be kept in mind when designing this
charging power system are the following: voltage regulation, current limiter, and smart
charging chip. This latter power system will be of very careful thinking since recharging
a batter can be very dangerous especially if the recharging is done at a high current.

The latter system of recharging the battery has not be thoroughly planned or designed
since this aspect of the project is not a main part but rather a stretch goal. Nonetheless, if
this wearable health device were to be manufactured and sold, this part of the system will
have to be developed. Once the actual implementation of the device is done, this will be
one of the very first stretch goals that will be attempted to reach; but in the meantime, just
a few thoughts of “how” are documented and ready to be explored later on. This paper is
subject to future correction or updates since this project becomes more and more
“concrete” as testing and implementation is done concerning this project.

77

Wifi Module

T

FPower Supply —» voltage regulators g Microcontroller

: !

Fulse Oximeter

NFC Chip

Analog Front

End

Figure 46. Third subsystem overview

5.14 Fourth Subsystem

The fourth subsystem is the one in charge of wireless connectivity through WIFI and
possibly Bluetooth. A block diagram for this subsystem is not needed since all of the
parts of this subsystem is contained in the chip module itself. Since we will not mess
with the chip itself (no modification to the actual chip will be made) having a block
diagram of the chips itself would also not be beneficial. This chip module includes the
ESP32 Esspressif chip which is a dual core WIFI/BT compatible chip and incorporates a
PCB trace antenna among other things. This makes this chip a system-on-chip module.
this chip will be the gateway of communication to the outside world but will also be the
biggest consumer of current.

78

5.15 Software Design

The software design of any project is critical: it’s what gives life to a physical design
once the proper parts or components have been put in place. Without proper software
design, even chips or components that have been designed to operate in low power
consumption can end up consuming a lot of power. The software design of this project is
just as important as the hardware design. There will be two main programs in the
implementation of the software and coding of this device. One part will be run by the
wearable device itself using the main MCU and the MCUs included in the WIFI/BT chip,
and the other part will be run by a separate server which in its most simple and crude
implementation could just be a software on a separate computer. Because one of the
goals of this project is to make it as low power consuming as possible, the code that will
be run on the MCUs will primarily be to monitor the data from the sensors and WIFI/BT
chip. The calculations and logging of data will be done by a separate server (which can
be just a separate computer) that will communicate with the device over WIFI.

5.15.1 Patient info Read/Written via NFC

Due to the HIPPA regulations regarding safe wireless communications, personally
identifiable information must be transferred via Wi-Fi. This is due to the fact that NFC
does not have any built in encryption and safety measures like WIFI does. Also there is
risk of eavesdropping, where a malicious party can be a short distance away from the
NFC device and still intercept the data transfer [38]. To circumvent this issue, our
solution will be to send an encrypted patient ID via NFC, and then download the patients
data to the device using secure WIFI. A similar idea will happen when reading the watch
with an NFC reader, except that the encrypted ID will be sent to the reader and the reader
will download the info via WIFI. Although this does add additional “response time” of
this system, in this case, the safety and security of the patient information takes priority
although this additional time will not be particularly large. An extreme scenario where
this system might fail is when the WIFI of the hospital system is down; in this case, this
NFC reading and WIFI downloading process or system will not work. This system
failure would occur under two general scenarios in a hospital: 1) There is a power outage
at the hospital, and as a result, the WIFI system cannot operate or 2) The WIFI system
begins to experience issues to the point that it cannot operate correctly. In either case,
both of these major scenarios can be considered as a highly unlikely events that would
probably rarely occur at a hospital; this is because many hospitals if not all hospitals in
the US have backup generators that are designed to sustain the hospital when there is a
local power outage in the area (although there are documented cases of generators failing,
the majority have operated correctly). Also, in case of a WIFI system bug or issue that
does not allow the network to function properly, a support group which can help fix the
system is just a call away. For the second case, it would be interesting for a stretch goal
to research into portable, secure, HIPAA approved WIFI systems that can be
momentarily used while the main system of the hospital is restored to its original
functionality. Nonetheless, below is a block diagram which demonstrates the software
operation of the NFC system.

79

Start
(NFC Reader)

Display patient info
on reader, verify
patient ID

Write to watch or Read Encrypted ID | Reader connect to
read from watch? Read via NFC "1 server via WIFI

Write l

Pull up patient info on
computer from server

Y

Y

Display patient info
on watch, verify
patient ID

Generate Encrypted +| Write Encrypted ID Watch connect to
Patient ID ” via NFC "1 server via WIFI

4

Figure 47. NFC Software Flowchart

5.15.2 Mapping

The localization of the patient is one of the primary goals of the watch. It allows for a
second pair of eyes, making sure that patients do not get lost or are not taken to the wrong
location (like an ER). In order to localize the patient, we will be using WIFI trilateration
in combination with probabilistic mapping.

There are three major sections that will compose the mapping and localization. The first
section will be the initial mapping of the hospital grounds, and setting up a server with
the map data. The second step will be watch-side localization via WIFI, which will test
the connections and give the raw data to the server. The final section will involve taking
the raw data provided by the watch, determining the probabilistic location of the patient,
and alerting the patient if they are where they should not be.

5.15.2.1 Initial Mapping and Server Setup

Many robotics systems have the problem of imprecise movement when running for a
long time. Part of the issues is not having a feedback telling the robotic system where it
is. More complex systems can use radar and other sensors to survey the surroundings, and
using this information to build a map and localize the robot simultaneously, a process
known as SLAM (Simultaneous Localization And Mapping). This is crucial when

80

exploring unknown environments. However, maps are much more effective when the
environment is known. The first step of the project is to build the map.

The map can be based on existing blueprints of the building, but they must be digitized
and trained to know where the wireless routers are located. Once the router locations are
included on the map, a server can estimate where a patient will be depending on the
strength of three wireless signals, or even learn patterns and probabilities of how patients
can travel. Because Wi-Fi strength is fluctuating and prone to disturbances, the server
will need to analyze the data and find probability fields of where the patient could be.
The raw data will come from the next step, watch-side localization.

5.15.2.2 Watch-side localization

A little contrary to the title of the section, watch-side localization does not allow the
watch to independently figure out where the patient is located. The watch is only able to
accrue the raw data of the strength of the routers. This raw data can either be averaged or
transmitted in-full to the server. The watch could “technically” locate a patient
independent of a server, but this would involve complex algorithm processing on the
watch along with keeping a database of a plethora of access points on the memory of the
MCU. Not only would there be a concern for memory storage on a device as small as the
MCU but also, and most importantly, there would be power limitations and issues. There
IS no reason to delve into trying to accomplish this goal just on the watch when
communication with a server or external computer can be made possible over WIFI
because of the WIFI/BT chip incorporated on this design. The server will be much more
powerful than the watches and will not be hindered by limited battery power.

The watch will be programmed to wake up from a low power mode, either due to
movement or an elapsed amount of time. The watch will either then connect or remain
connected (there is a low power mode option on the WIFI chip which enables it to enter a
low power mode but remain connected to a WIFI network) to the strongest AP signal
while simultaneously scanning other AP signals. It will record the strength of each AP
signal for a set amount of time, T, or for a certain amount of measurements, M.
Increasing either T or M could increase the precision of the final result but would also
mean that more power would be consumed. Testing for an ideal amount will be discussed
in a later section since a balance between these two parameter aspects will need to be
found. After the strongest signal is measured, the second strongest will be measured
again. This will be repeated a third time to allow trilateration (a minimum of three AP
signals is needed to implement trilateration.)

The raw data is sent to the server which will process it and determine if the patient is
where they are expected. This will require additional integration with the hospital system
already in place (in actual testing this will need to be mocked or simulated using an
external software since the actual hospital software with patient schedules will probably
not be available to us under HIPAA). In order to make sure there is proper
communication, an “ok” signal will be sent from the server to the watch when there has
been proper transmission and reception. Until the watch receives this signal, it will

81

continue to attempt to transmit the information or new position information collected.
Below is a software flow chart from the “watch” perspective.

Start
(Watch)

PR 2 I 2 I

Connect to n-th Averanadsia Connect to server via
strongest router g WIFI, send raw data

! !

Low Power Mode >

A

No Timer or Yes Save signal strength if withi False Wait for OK from
Motion? measurement il server
expected values
from before
! ,
Wake Up MCU and Repeat for Truel
WIFI M measgrrememnts
or T ms.
Reset Counter, enter True if patient
i Low Power Mode location ok
\ 4
Falsel
n=1 ;
if n>3

(END Goto Geofencing

\ / Protocols
Fals v

True (END)
Figure 48. Acquisition of data by watch for localization

Once the server receives the information, it needs to process it and determine location.
From this server, this information will be available to authorized devices for accessing.
A main computer can easily access this information and from there additional software
can be coded to implement a map or even make the information available for hospital
systems and software that are already being used. One big implementation of this would
be in geofencing which will be discussed in a later section. If this information could be
made available to a patient’s schedule that is already recorded on a system, additional
software can be implemented to raise alerts when a patient’s location does not match his
itinerary.

In order for the server to localize the patient, it will receive the RSSIs and MACs data
from the watch, run two main algorithms, store this information and make it accessible to
authorized network devices. The following block diagram shows the data processes that
would need to be implemented by the hospital server in order to localize a patient:

82

Trilateration
Algorithim

y
Store in Server
Approximate Memory and Make
Location Available for Wireless
ACCess

Figure 49. Flowchart of location data processing by server

Finger Print
Algorithim

The finger print and trilateration algorithm are two separate ways for implementing
indoor localization. The combination of both can increase accuracy. Finger printing has
a “setup” stage where strategic positions are mapped according to the RSSI of the
surrounding APs and attributed a physical position. Then, these values of RSSI are used
to compare to the received data from the watch and the closest location is picked. This is
ideal because it is very immune to signal attenuation due to walls or objects. Trilateration
uses the RSSIs received from at least 3 APs, applies converts them to physical distances
through empirical formulas, and finds the meeting point of these distances (each distance
is a measurement of radius from its respective AP). This method is self-adaptive to
environmental changes but is subject to bigger issues stemming from signal attenuation
because of objects or walls. The following are block diagrams exemplifying them both.

Start Compare to pre- Choose Closest
Mapped Values Match

Y

Location Found
Back to Main Code

Figure 50. Flowchart of finger printing algorithm

83

Filter Received Data .
and Process the 3 ng'D‘:VE[';‘s:CQ Radial Algorithim
Strongest Signals

Y

Location Found
Back o Main Code

Figure 51. Flowchart of trilateration algorithm

5.15.2.3 Geo-fencing

The final section of the mapping would be the geo-fencing. Geo-fencing is a way to limit
where a person can be in without needing physical fencing. This is a key goal to keep the
patients out of where they should not be going, like for example an operating room when
they should be getting an x-ray. The watch-side localization is able to estimate the
position of the patient after communicating with the server once. (By comparing the
average values to the expected values of the wireless strength.) But how does the server
know where the watch and patient are?

Combining the initial mapping with the watch-side mapping, the server is able to employ
statistical analysis to determine where the patient could be. Due to the more imprecise
nature of WIFI, a set of probability clouds must be used to estimate the location of the
patient. This allows a refining of the raw data provided from the watch, and then allows
this data to be imposed over the map.

The next step of the server is to determine what locations the patient is allowed to venture
into. This is accomplished by providing the server with critical information on the
patient. These would include the patients intended room when not being tested, which
would be the default expected location. Then hallways and restrooms would be
considered accessible areas. The next data that the server would receive would be of any
upcoming or ordered test and procedures. That way, if a patient is scheduled to go to the
x-ray room, then the server would expand the available space of the patient ot include the
room.

The key point here would be that when certain areas on the map are accessed, the server
can tell the watch whether it should track the patient more precisely by increasing M or T
or alert the patient by putting the watch in high alert mode. In this mode, the watch would
vibrate and beep, making it clear to the patient and any transporters/nurses near them.

84

"

Receive Raw Data
from Watch

Listen for watch data

o Perform Statistical
Conneciton? Analysis, Generate
Probaility Cloud

v | !

Y

Is patient Is patient in
Get Encrypted ID stationary? No safe area? No
v Yes l Yes i v
.) Send OK signal to Send MONITOR Send ALARM signal
Access Patient Files -
watch signal to watch to watch

I

|®I

Figure 52. Software flowchart of geo-fencing

5.15.3 Panic Mode

Hospitals are full of patients that are not at their prime. Patients normally arrive at a
hospital due to an illness or ailment that they seek medical attention for. Hospitals expect
that the patients can possibly need emergency assistance even within the hospital. A
common emergency signal implemented in hospital bathrooms are a rope on the wall that
will notify the nurses. These come in handy when a patient is unable to stand up after
falling in the restroom. These rooms are often more isolated, and yelling might not be
enough to alert the patient.

Our system will include a similar idea of an emergency signal. The design will include a
few buttons to change between the different displays. When both buttons are pressed at
the same time for more than a couple of seconds, the device will go into alarm mode. In
this mode, the watch will do a few things in order to get attention to the patient as soon as
possible.

85

The first step will be to turn on the speaker and let out an auditory alert that the patient is
in distress. This would not be a very loud alert due to the size and cost constraints of the
design, but it could allow for any hospital staff in the area to approximate the location of
the patient through sound.

Another alert system that will be included will be the vibration motor. This would allow
deaf and hard of hearing patients to be able to tell that the emergency mode is on. It also
helps to notify patients that might have accidentally pressed the combination, by showing
them that the sounds are coming from their wrist.

The most important part of the emergency response would be the ability to locate the
patient as soon as possible using the localization techniques used above. When the system
goes into emergency alert mode, the watch will tell the server that the patient is in need of
help. The server would immediately send the information to the nurses in the area so that
they might find the patient quickly. Another similar response to the emergency response
would be an automatic MIA response. If the watch misses too many scheduled
communications with the server, then the patient can be assumed missing an a nurse can
be sent to check where the patient was last seen.

tart

(Server) /
Both buttons pressed Turn on alarm and : . +« | Send current locaiton
- SOS signal Received >
at same time rumble motor to nurse

| ! |

Attempt to update

Y

Wait 2 seconds Connect to server

and send SOS patient location Track patient until
Alarm disabled
r
Yes
Yes /_l\
Both still . Can location be \
pressed? Wait for Turn off code updated? | - |
No l No l \T_/
Return to previous state Yes if button
) . Send previous o] Alarm disable by
(Low power mode, pressed 3 times in 1 locai >
ocaiton to nurse nurse
search mode, etc) second

END

Figure 53. Software flowchart of panic mode

86

5.15.4 Watch (Real Time Clock)

Arguably the most important part of the smart watch is the ability to display the time.
Every single of the discussed MCUs has a low power mode with a 32KHz clock, which
allows for a real time clock. This allows for an overflow flag of a 16 bit register every
second, which can be used to update the clock from low power mode.

5.15.5 Patient Info on Display

An important point to the watch is the ability to display crucial information easily and
clearly. Some of the most important information that must be displayed is the identity of
the patient, their allergens, and their heart rate. The character display would provide a
simple environment for design, allowing for writing of words to be very simple. The
limitations occur due to the very simplistic design of the display not allowing for clear
visuals without some creative programming. The black and white OLED screens will
allow for more control of what can be drawn on the screen but it will be more complex to
program, even using a visual frontend. The bottom images show the design of the menus
using the character display with a character resolution of 16 characters over 2 lines, with
each character having a resolution of 5 by 8 dots.

LAS TNAME B P

F I RIST 1

o
o

Figure 54. Main Screen of Watch

112 :145 :12P| BP

-
o

NOV 14,17 |1

Figure 55. Time Screen of Watch

87

5.15.6 Power Saving Modes

Every mAh used by the design is crucial when designing a mobile system. A great way to
minimize the battery usage of the device will be to use the low power modes of the
design. The current drawn from the microcontroller when the low power mode os on can
reduced to the level of nano amps, while still allowing for interrupts and timers to wake
up the device. Similarly, the wireless module can be put into low power modes where the
power drawn more than halves, and an ultra power save mode that saves even more. The
downside of these power modes is that they often require some deleay to ramp up the
system back to operating speeds.

These will be some of the software designs in order to reduce the power consumption of
the device. The variables will need to be played with in order to find the happy moddle
ground between power efficient and usable.

5 5 ’ Confugure MCUs . :
o
clocks
| ! |
Put wireless module Finish any Turn on CPU but Timer Interrupt
into LPM computations keep slow clocks
\ 4 Y Y \ 4
Enable Gyroscope if Turn off screen if Turn on display if ’
not enabled needed watch held up Wake up, resat timer
A v
Communicate with Ebable low power Wake up and change
gyro to allow P display if button F——>»} END |
4 mode 7
interrupts pressed, reset timer v

Figure 56. Software flowchart of power consumption strategy

88

5.16 Summary of Design

All in all, the complete project consists of four major subsystems which deal with the
major goals of this project: Medical Sensors, WIFI/BT connectivity, Low power
consumption, and MCU technology (enabling it to be portable). The components for
these subsystems were chosen such that they could fit in a small compact design, be
excellent quality, while being as budget friendly as possible. The main core of the design
revolves around the internal main MCU (EXP-MSP430FR4133): similar to a typical
computer. This MCU will be the connecting point between the different information
peripherals of the system; it will be the main interface for all the inputs and outputs
associated with the system; and will drive the internal clock to synchronize the device
itself.

The WIFI and potential Bluetooth connectivity will be handled by the ESP32 chip. This
chip will be responsible for the communication via to other hospital devices and servers:
it is the communication gateway of this device to the outside world. This chip will also
be used to expand the applications in which this device be used. Such a chip is key in the
design of this product as this chip will allow the device to evolve with new emerging
technology and potential newer systems that will possibly be incorporated in a hospital.
This is because the current trend in technology is leaning toward the 10T (internet of
things) applications which is used to create a more integrated and wireless environment
(similar to Home Kit for Apple Technology).

The foundation for all of these chips will be the power distribution systems set in place.
This system which is composed mostly of voltage regulators were designed and placed in
the vital areas (between the power supply and each corresponding chip) such that
maximum power efficiency can be reached. This is a critical part of the design since the
energy efficiency will provide the overall device with longer battery life which
equivocates to expansion of the potential usage of this technology and of the type and
kind of hospital patients it can be used to monitor.

Powering all these hardware chips will of course be the software. The software was
designed in such a way that the more energy consuming operations (calculations) where
primarily placed on the server side of this project. The software will be working just as
hard if not harder than the actual hardware. The software was designed to be able to
locate a patient (which uses complex algorithms), place the system in low power modes
(which is essential to battery life and efficiency), and monitor the information from the
different peripherals and chips.

Overall, this design was very well thought through and geared specifically for
applications within a hospital. This is not to say that this design would not work
anywhere else. Other applications could be a day care, an elderly nursing home, or even
applications that do not deal with the health of someone but simply indoor localization.
An interesting thing to pursue would be outdoor localization through LTE and GPS.

89

6 Project Prototype Construction and Coding

These mark the final steps in the process of the project. Not much can be written but the
document will be expanded much in senior design 2.

6.1 Integrated Schematics

An integrated schematic is the design of a circuit to be assembled with electronic
components and then fabricated as a single unit. It consists of many components such as
microchips, resistors, capacitors, etched in paths, and much more coming together to
form an overall device. Our section of the integrated schematics will first be broken down
into each subsystem providing a schematic for each portion of the device piece by piece.
Then once each individual subsystem is made we will bring all of the schematics together
to create the overall schematic in the end, which we will eventually build in senior design
two and go into testing each schematic design as well. The integrated schematics is the
blue prints to our design.

6.1.1 NFC Schematic

The NFC schematic is quite simple and easy to follow using this diagram. It shows the
antenna design of the inductor and capacitor together, where the SPI/12C may connect to
the chip and also where the power input is. There are also some coupling capacitors to
reduce noise.

90

ReEREEs’|
ik
$ Lo) 1
v
8. ==z@==2¢
R g
s8.025 |2
08R8%7 |2
CuxXr->mn
gt Outpat =
< FEEEE
H - W H
Scx_ 2
.
(SO
s
. - .
Y
<)
E
g
™ r
ggl=z3
LY AR F-
m om
4 Q
MN<inv 2 1
U‘SU
Zle
wilo
<
o
(-]
oy -
Q
3
£
5
He H
0
g\l\
&7
&'.P.
HEHE:
2=
.
o
(- T 2 I) I >

Figure 57. NFC Schematic

6.1.2 Voltage Regulator Schematic

This next schematic shows the layout of voltage regulator LDO REG104FA-3.3 we used
that will output a voltage of 3.3 volts. We followed the data sheet exactly when designing
this circuit.

91

VBATT

5
Vbat
4

DNC

C17
0.1u

0
U1
REG104FA-33500 133V
VIN VO L
EN NRI2—— —=—c3
CABGND 0.1 UF
o ™ ——c4
0.01UF

Figure 58. Regulator Schematic

92

vee vee

LART DOWNLOAD

93

Figure 59. WIFI Schematic

v
GIT
&
100 1 2 T
»n
BOOT OPIION
w R2
MTMS i 2R L A il
A 5 ARV E —m SERRE
MTDI e
MICK 2 AR\ TITLE:
MIDO L AR i .
RS ESP-WROOOM-02 Schem REV: 1.0
Al 100R
e Date: 2018-07-30 [sheet: 111
EasyEDA V5.6.15 | orawn By: Josue Ortiz
T 3 T 7} T 3 T

6.1.3 WIFI Schematic

6.1.4 Analog Front End Schematic

T I I 3 T ' T |
A
c6 ¥1 c7
o8 Yo e RX_ANA_SUP
Wow
e He._:m
VCM_SHIELD 0 -
u1
AFE4400 i 2
D1 = RX_ANA GND(H0 14 1k XINMGP
BAVagw-7-F —B2T IMEAAN,Q P RX_ANA_SUP|-224 —WA\—]
RX_ANA_GND Xin 281
VCM_AFE Vem XOUT| 22
-BIAAA 1200 \C RX_ANA GND 26—
B2AANA30Q NC |22 HAAAA 300
s 2OV BS NC[32 522 NAASL300
VBG =3
xx‘>z>, SUP| hulmu
==caz) o gl |
JP1 e p— u_um o— 2.2uF & FE_RESETZ]
g ¢ . -7-1 5 ROY
DS1034-01-03MENO44{iron) SHuF e gaLs < 142 o
s [26 SO
-5 - - |25 SOM1
4 lm SCLK
M O AL
8] o M2 (ED ALY
¥ g 21 DIkG £NDIC|
4
ob] LED DRV.SUPP
1
- Rag
AR ==cio R4
TX_CTRL_SUP 0.1uF 10 | |
4 -_—
Da =
BAVOSW-7-F RX_DIG_SUP

D
TITLE:
AFE4400 REV: 1.0
Date: 2018-07-26 [sheet: 1/1

EasyEDA V5.6.15
|

_ Drawn By: John Alcala
|

Figure 60. AFE schematic

94

6.1.5 Microcontroller Schematic

Below is the schematic for the microcontroller. The modules will be connected to the

MCU via the interrupt pins and the communication ports, 12C and SPI.

2}

T 2 I 3 T a T 5 I
+5V
3.3v/5V EXT1
Logic Level LCO
Shifter

_E.H| (LLC) an
3271 5V Logic

oy

3.3v Logic

u1
MSP430FR41331PMR

Pa.7/R13
P4.6/R23
P4.SR33

P4.4/LCDCAP1

nlekobol

93| P1.2/UCAOCLK/A2

3] P1.1/A1/UCAORXD/UCAOSOMI/Veref+

WIFlInt o

1P1.0 /UCAOTXD/UCAOSIMO

NFC Int O—— :
Motion Int 2 5. 3/UCBOSOMI/UCBOSCL/L3S
P3.2/UCBOSIMO/UCBOSDA/L34
L p5 1/UCBOCLK/L33
PS.0/UCBOSTE/L32

=
B
o

YV [aumenonoasznzag]

% ‘_.l_ 45V

e .
R15

:

3
ww
2w
e
==
(i

ok

SW1

—_—
o
sw2
e
=
LED1
NS LoW Power

BUZZER1

N700 MSP430FR4133 Brains REV: 1.0
s
_mmww Date: 2018-07-26 [sheet: 11
EasyEDA V5.6.15 | brawnBy: William Toledo
1 2 I 3 I a | 5 |

Figure 61. MCU schematic

95

6.2 PCB Vendor and Assembly

The PCB will mainly be designed and bought in senior design two, but we are going to
get a head start on the process and watch tutorial videos on how to create them in Eagle
and easyeda. Easyeda offers great schematic and PCB creation, which is great for us
beginners. Easyeda also offers great prices on purchasing there PCB boards. It is best to
get a head start on this process, so we do not waste too much time in senior design two
and can focus on building the prototype. As for assembly there is a local PCB assembly
company that can do the difficult placement of the components that we will not be able to
do such as baking the parts onto the board. Many of our components are going to be
required to be baked onto the board due to their connection being on the underside of
them and very fragile to heat based on their size. In the end we should be able to deisgn
and assemble a PCB board with not too many problems using these references we have
just listed.

6.3 Final Coding Plan

The coding for this project is quite complex and mutli-facet. The whole coding plan for
this project can be divided by the separate goals or subsystems that will have anything to
do with information gathering, monitoring, transmitting or storing. Overall, the coding
plan can be divided into the following general goals or facets: localization, sensor
monitoring, and common MCU processes.

6.3.1 Localization

Once the code is completely finished being developed we will go to the next stage of the
process and test our code on our device to make sure it is fully functional and there are no
glitches or crashes. We will begin by first developing the software needed to scan, record,
and transmit the WIFI signals using the watch. This will then be tested to make sure it is
functioning properly before moving on to the next step. After the validity of this code is
proven, the algorithms for fingerprinting and trilateration will be developed now that the
information can be retrieved. These two algorithms will run on a server or separate
computer.

Included in developing these two algorithms is also the developing of the code that
enables the wearable device to communicate with server and the server to receive the
information for processing. Once the algorithms are done, an official test will be made
using the device. These are the major coding steps that will be taken in this project. It is
important to note that at each minor step along the way, testing will be made to ensure
that the minor pieces of code (which will eventually compose the major pieces of code)
are all working such that the debugging process at then end can be shorter. The
following outline lists the final coding plan steps in chronological order:

1) Developing the Localization program code
a) WIFI Scan
i) Scan WIFI signals

96

i) Retrieve APs MAC addresses

b) Write to memory

c) Transmit Data

d) Incorporate Low Power Mode Coding
i) Test Current Consumption
ii) Adjust until optimum is found

2) Developing the server program code
a) Information Reception
b) Trilateration Code
i) Test for accuracy
ii) Adjust as needed
3) Implement Whole system
a) Compile and test the whole code together
b) Verify Result and adjust

6.3.2 Sensor Monitoring

The sensor monitoring code will first begin with a code that is able to detect when the
sensor pulse oximeter probe is on a patient and when it is not. This is key for running our
system in low power mode. After our code is successfully able to detect the signals of a
patient, a code will be developed which will take the measurement information coming
from the AFE at a specified interval and record this information; because the MCU has
limited battery, it will then need to be transmitted over WIFI to a server where the logs
can be kept. As with the localization code, at each minor step, testing will occur to help
more easily compile and implement the final code. The following outline details the
steps that will be taken to code the sensor monitoring code:

1) Patient detection
a) Detection function
i) Differentiate between false and valid readings
i) Set a signal threshold
b) Test and verify that the code works
i) Test for different hand sizes
i) Different temperatures
iii) Adjust code as needed until acceptable
2) Interval Measurement
a) Measurement Recording
i) Select an arbitrary starting interval time
ii) Test for good mean representation
b) Compare measurement recording with power consumption
i) Increase or decrease interval time as needed

97

i) Find a good compromise between both
3) Transmit over WIFI

a) Memory management code
i) Develop a routine that monitors MCU memory
ii) Test to see if routine works

b) Transmission code
i) Use similar code from localization in order to transmit data to server
i) Find the ideal transmitting interval in order to save power

6.3.3 Programming the MCU on PCB

The included JTAG port on the PCB will be used in order to program the
MSP430FR4133 on the finished device. The MSP-EXP431FR4133 Development board
already includes a USB-to-JTAG programming interface specifically designed for
MSP430 devices, called the eZ-FET. Fortunately the dev board has jumpers that can be
tapped in order to program the mounted MCU on the medical device, via the
MCU_JTAG port.

6.3.4 Common MCU Processes

Left in this category are all the other basic but essentials processes that must be done by
the MCU. Such processes are the panic mode code, interfacing with the NFC chip, and
interfacing with the LCD screen These processes will be coded and developed based on
order of importanct. The first process to be coded for is the panic mode code. The most
power saving way of implementing this code is by using simple interrupts. Of course,
other fail-safe algorithms will need to be developed so that the triggering of false alarms
is kept to a minimum. This code will be coded according to the following plan:

1) Panic mode code

a) Interface panic buttons with MCU and piezo speaker and vibrator
1) Use interrupts for power saving considerations
ii) Verify connection is made

b) Create a false alarm rejection code
i) Find ways to minimize false alarms
i) Verify that no spontaneous alarms are produced by a glith in the code or other

internal means

After the panic mode coding is in place, the next vital process would be the interface with
the NFC chip. As stated before, the NFC chip will not hold the patient’s actual
information but simply an encrypted signal that will be used by the device to “download”
the patient’s information from hospitals servers. The first step of the doing plan would be
to detect when an actual signal is being induced onto the NFC antenna, and be able to
reject other kinds of false signals that may arise due to other sources. After this code is
tested to be successful, then the following piece of code will need to be able to

98

communicate to the WIFI chip in order to download the relevant information via WIFI.
Once the information is received, another function will need to be used to then send it to
the NFC chip which will transmit it to the reader.

1) NFC communication

a) Signal detection function

b) Noise signal rejection
i) Find an ideal threshold for this
ii) Testand verify

¢) Communicate with WIFI chip
i) Use similar code used in localization to communicate with WIFI chip
ii) Test to see if download speed is satisfactory
iii) Adjust if needed

d) Send information back to NFC chip
i) Test for information accuracy
ii) Test for reader efficiency.

Finally, the code for interfacing with the LCD screen can be written. As in most systems,
a display, if left on for too long, can consume relatively large amounts of current and
therefore power. There will be two basic functions for the LCD: 1) to display the
information that we desire on the LCD screen and 2) to turn off when not being used.
The second one is the more trickier of the two so it will be the one we focus on since the
first goal is pretty standard. In order to code for the second function, the accelerometer
will need to be used. A function will need to be coded so that if the sensor detects that
the wrist has moved in a certain direction than the screen will turn on similar to the
iPhone function that is “rise to wake.” Below is a short plan for this coding

1. LCD display interfacing
a. Create and tune a function to relate accelerometer data to wrist movement
i. Tune so that it can detect when the LCD is raised to be read
ii. Testand adjust accordingly
b. Create functions to turn off LCD display when not being read
c. Create function to refresh LCD display with new information

Of course, in addition to all these functions and processes to be coded, there are also
other standard or trivial code that will also be included in the final code which were not
fully explained or even mentioned here because they are standard or trivial. Mentioned
here are the main goals and also the toughest assignments that will need to be coded.

99

7 Project Prototype Testing Plan

The prototype watch testing plan has three stages: Modular, Interconnect, and Final. The
first stage is the testing of the components individually in a modular fashion. This stage
will focus on the individual performances of each major subsystem, building them
individually on breadboards. There will be thorough testing on the power consumption of
each system and how efficiently the subsystem performs. This stage will be critical for
deciding on whether new components will be needed or if the schematic will need to be
updated, affecting the cost of the device.

The Interconnect stage of the prototype testing will focus on how each of the modules
behaves together. Because this stage will involve connecting together the different
modules, a focus on code will result in this section, especially concerning the
communication standards like NFC and WIFI with regards to the MCU. This will begin
to finalize the component selection and determine the size of the first PCB.

The Final prototype stage will involve field testing a PCB design for battery
consumption, location accuracy, response time, and sensor accuracy. The initial tests will
determine how efficient our layout was and whether a major revision in design will be
necessary. Extensive field testing will also be necessary in order to verify durability and
possibly water and dust resistance.

7.1 Hardware Test Environment

For the Modular stage of the testing, most of the testing will be taking place in the Senior
Design lab. These allow us to test our modular devices using the power supplies and use
the multimeters and oscilloscope to test different things. However, some tests will take
many hours to execute, and might require testing at home. One specific testing
requirement will be the ability to modify the settings of a wireless router. Because of the
controlled nature of the wireless network on the main UCF campus, any customized
wireless network testing will require a different location with accessible settings.

The Interconnect stage of the prototype testing will majority take place on the Texas
Instruments lab in the Engineering Atrium on UCF. The benefits of the testing here is that
there are many soldering stations inside the lab and with facilitate any hardware
modifications to the protoboard, including passive component changes and even some
surface mounted help. The focus here will be on the communication between each
module and their combined efficiency. There will be some software focus in this stage of
testing, but the software testing will be covered in sections 7.3 and 7.4.

Most importantly about the testing environment in this stage particularly s the power
consumption of the design as a whole. In this stage, the initial PCB layout can be roughly
shaped using homemade PCBs, using etching compounds. This requires a good amount
of highly corrosive chemicals which could result in serious injuries. If possible, these
etchings will take place inside the chemistry department. If not possible, the alternative
would be to do it at home, of course taking the proper safety measures, including skin and
eye protect.

100

The Final prototype testing will begin at the Senior Design labs once again. This will
allow us to use the lab equipment’s to verify that the design is functional when moving
from protoboards to PCB. The Texas Instruments might also be another testing
environment that will allow reflowing of components if necessary, especially considering
the miniature nature of a watch-sized schematic.

The next environment will be the UCF campus, which will allow us to test the
localization capabilities of the watch when connected to a wireless network. At this point,
the major concerns will fall on precision of the localization while also being able to take
proper measurements. The UCF campus is also a place with a substantial student
population, which would allow anonymous testing of the heart rate sensors. We would
take extra care to follow HIPPA standards of collecting anonymous data.

The final testing place of the prototype would ideally take place within a hospital setting.
More research is necessary before determining which hospital would allow this.
However, this testing environment would be ideal as this would be the intended
environment of the product when finalized. The tests here will focus on the usability of
the device in real-life settings while also getting opinions from the people whom would
be the intended audience.

7.2 Hardware Specific Testing

The prototype will have at least five different subsystems that must be specifically tested
individually and eventually as a unit product. Some of these subsystems are the wireless
transmission of data and location via WIFI, the wireless reading and writing of patient
information via NFC, the clarity and power use of the LCD display, the accuracy of the
heartrate and oxygen level readings, and the power delivery system of the battery. The
specific plan for each of these systems will be discussed in each section bellow.

7.2.1 Testing Wi-Fi Location

Accurate localization using Wi-Fi is critical to our design, properly testing the
functionality of this feature will be very important. Ideally that testing will be done in a
building with multiple rooms at several meters apart. The Harris Engineering or
Engineering | building at UCF will be more than sufficient for these purposes. For our
system and device, it is also important to test the fingerprinting and the trilateration
positioning algorithm separately so that they can be more effectively combined in the
final system. In this way, a good median can be used between the two in order to more
closely approximate a patients location than if only one algorithm were being used.

The Wi-Fi Positioning System (WPS) using trilateration is only useful for 2D position
and not altitude according to previous studies and documented trials have indicated.
Therefore, in order to test the trilateration algorithm, the testing will be done on a
singular floor at a time. The PCB board or breadboard with battery attached will be
moved throughout the hardware test environment and communicate to a nearby computer

101

that has permission to communicate data with the device. This data as well as the
physical positions of the APs relative to the building will have to be imported to an
indoor map where it can then be used to place a physical location of a person. For our
testing purposes we will have to create an indoor map of a building at UCF to display the
location to a nearby computer or android device on the LAN. This can be done using an
open source software called indoor location (www.indoorlocation.io). It is important to
note on this testing that direct communication from the device to the computer is not
required since we are not testing this. The only two things being tested here are the
devices capability of receiving and scanning the WIFI signals and the team’s ability to
properly create an indoor map.

The testing of a WIFI positioning system using fingerprinting is a bit more rigorous. To
set up the finger printing testing, the first step is to pre-record RSSI values at different
locations inside a building and build what researches have names as a “radio” map. This
radio map is nothing more than a collection of APs’ RSSI data points for locations inside
a building: in a sense, this method, “finger prints” or acquires the characteristic of the
building at these locations. Since this method uses pre-recorded values, enough values
can be included in the data set for each point such that there can be a differentiation
between different floors. To test this software, the same procedure will be used as with
the trilateration except the testing for fingerprinting will also include a change of
different levels. To keep things simple at first, finger printing will only occur on the
physical levels since this mostly simulates how a hospital will be fingerprinted. An
interesting stretch goal would be to be able to map even positions that are in between
floors (such as stairs wells) in order to have a more complete map.

After testing both algorithms separately and figuring out the benefits and the downsides
of each, the next test will involve combining both algorithms and testing the new
combination of both such that the localization can be more accurate. The testing of this
will also be very similar to that of the fingerprinting and of the trilateration. Several tests
will have to be run to tune and effectively combine both of these two algorithms into one.

7.2.2 Testing Wi-Fi Transmission of Data

Sending frames of data from the sensors heart-rate monitor will be vital to achieve the
goal of a wireless continuous monitoring system. Ideally the data will be sent to an
android device on a LAN. Testing this will be very simple, gathered data from the
sensors will be sent via an algorithm. The small difficulty in this testing is having a
simple operating system on our board so we can easily synchronize the data. A final
choice as to which open source operating system will work best with our MSP430 Family
MCU will be made during testing, as it could be subject to change and is not a critical
design factor in our project and can be easily flashed on the memory.

7.2.3 WIFI Coexistence

Besides testing the accuracy of location and the data transmission over WIFI, we will
also use the standards mentioned in section 4. One of these standards is the test for WIFI

102

http://www.indoorlocation.io/

coexistence. Even though our WIFI chip module is already pre-tuned and tested by the
manufacturer, according to the ANSI C63.27 standard, this cannot be relied upon since
this can usually lead to erroneous conclusions about our design. To perform this
evaluation or test, our device will be placed inside the testing environment (HEC
building) and near an access point that is functional and transmitting various WIFI
signals (different SSIDs). Once the device is placed as close as possible to the access
point, the device will be turned on and commanded to transmit data over WIFI and
perform localization. In this way, the coexistence of this device with other WIFI signals
will be tested.

7.2.4 RF Emission Interference On-Site Testing

Besides testing WIFI coexistence of the device, this device will also need to be evaluated
to determine whether it can operate correctly even while receiving powerful emissions
from other RF working devices. This kind of testing is usually done in a lab where other
parameters can be easily controlled and neutralized, and where other kinds of RF
equipment can be used. Since we do not have a lab available to us where we can test this,
the ANSI C63.18 standard provides a way to evaluate this in a crude but effective
manner. For this testing, due to the equipment limitations, various cellphones will be
used to emit RF unto the device. The standard details how exactly to set this up and at
what distance the cellphones will need to be placed in order for this kind of testing to be
effective. Once we make the cellphones transmit the RF signals, the various operations
and peripherals of the device will be tested to see if they still operate correctly. For
example, the LCD will be checked to make sure it is not display weird characters and the
WIFI data transmission and localization will be tested to ensure that these critical
operations still maintain accuracy even when being bombarded with RF emissions from
other devices. As stated in the actual standard, this kind of testing should not replace lab
testing, but it does provide a way to crudely test this kind of operations.

7.2.5 Testing NFC Reading and Writing

Testing the ability of the reading and writing of data on the NFC chip will be essential for
storing the patient's information. In order to be able to test this chip we must use a
breakout board since the chip leads are too small to test on a breadboard alone. We will
verify and validate that our component does in fact meet our desired needs and operates
to the standards. In order to test this component of our device we will test for its range of
being picked up by an NFC receiver, which would be our mobile device (Refer to Range
testing section for more information). We will also test for the amount of data we can
store onto the chip that will be transferred to our microcontroller, and possibly the NFC
chips Bluetooth capabilities as well. There is a possible app we could use to monitor our
sensors and other components from Texas Instruments that we are looking into using and
it could be paired using Bluetooth. If that is not the case, then we will have to develop our
own simple app to enter necessary patient information. Another aspect to test on the NFC
chip will be encrypting the data so it cannot be stolen. We will do this by sending the data
encrypted and then downloading it to the device. Also we must make sure the device

103

sending out the data when it needs to be read is also encrypted. We must test to verify
that the data is in fact encrypted when being both sent and received because patient's
information is very sensitive. Overall for the NFC chip we will be testing to write
encrypted data onto the chip and then using it again to scan and receive the encrypted
information to verify it operated correctly. Repeating these steps over and over to make
sure it works consistently as well.

7.2.6 Testing NFC Range

As for testing the range of the NFC chip this really comes down to the antenna design
which involves our inductor and one or more capacitors to adjust the resonance frequency
to 13.56 MHz so it can operate at its full potential. The suggested inductor value is about
2.66 microhenry’s and the NFC has an internal capacitance of 35 picofarands. For our
inductor we will be using a 0.32mm wire and coil it 6 times with a loop diameter to get
around our desired value of 2.66 microhenry’s, but it will probably not be exact so we
will adjust the capacitance to get us to our frequency. To test the actually frequency we
will use a spectrum analyzer if we can obtain one, other wise we will use an oscilloscope
to see where the frequency peaks and then calculate our actual inductance and adjust our
capacity from there. The close to 13.56 MHz we get the more range we have for
scanning, which should be to a max of about 10 centimeters.

Figure 62. Custom made inductor for Antenna design

104

7.2.7 Testing Pulse Oximeter

The pulse oximeter is another essential function of our design which measures a subject’s
heart rate. We will require another good means of measurement to confirm our results are
correct. For initial calibrating of the sensor we can use an android based smartphone’s
pulse oximetry functions and for final calibration we will investigate a way to obtain an
ECG based result, perhaps by the UCF Health Clinic. The physical analog probe for
obtaining measurements is a DB9 (Serial) based pulse oximeter placed at the subject’s
fingertip. The output waveforms of the SP02 measurement must be observed and
calibrated. If the signal is weak it must be tweaked to the provide the proper output. This
could be due to needing higher resistance on the probe or simply by providing more
voltage to the LED drivers. The Texas Instruments reference design for the AFE is made
in mind with the DB9 sensor connected so that resistance values should be properly set.
The adjustment to the LED voltage will most likely be the parameter that needs to be
calibrated. Since the soldering of the AFE to the MSP430 is complex, this particular test
will not be able to be performed until Senior Design II.

7.2.8 Testing LCD

The LCD screen in our project does not require any complex graphics just a simple frame
that would display simple information (e.g. time, heart rate, battery life). Testing will
involve connecting the LCD to the MSP430 MCU on a breadboard with their respective
pins. Sending a sample frame will involve using Code Composer Studio to send this
frame. Our LCD uses serial communication with the MCU to send and receive data, use
of the ready-made SPI library on the MSP430 will be implemented.

We want to send a small frame for testing purposes, the frame size on our LCD is only 8
bits so we can simply send a few words on to the frame.

An unfortunate oversight when choosing the LCD was the operating voltage. Many
CMOS devices have a standard of 5V, and this standard is used very often with certain
electronics hobbyists. The Arduino Uno (ATmega328) operates at 5V, and so does the
LCD that we chose. However, the final microcontroller that we used operates on the TTL
standard, which is 3.3V. This meant that the MSP430s could not directly interface with
the LCD.

A logic level shifter allows for the TTL voltage to be boosted to CMOS standards by the
use of a MOSFET and resistor. The benefit here is that the logic can work with both
reading and writing, but unfortunately it also inverses the logic. This is addressed by the
code of the MCU. This is could be temporary measure if a Logic Level Shifter IC is not
found. This increases the footprint of the LCD, requiring eleven resistors and MOSFETSs.
The schematic bellow demonstrates the design of the LLS.

105

+5V
3.3V/5V
Logic Level
Shifter
(LLO) -
5V Logic
E
3.3v Logic

Figure 63. Logic Level Shifter, TTL to CMOS

7.2.9 Testing Battery Life

For testing the power supply we want to verify that it performs how it says it does by
actually supplying 3000 mAh and measuring how long it can last under certain test loads.
We can measure the battery's capability by using a multimeter or oscilloscope to measure
its voltage and current and seeing how long it can sustain before dying and needing to be
recharged. We will also need to calculate the total power consumption of our device and
test how long the battery lasts under that specific load to get a good general idea of how
long it can power the device for. We can also look into testing the recharge capability of
the battery to see what the most efficient and quickest way for recharging it is. Another
option to test as well is to measure the battery's performance for a low power battery
saving system and then comparing it to normal power of the device.

An important point of discharging the batteries is that the battery voltage will drop as the
battery becomes less charged. To get the right values, we need to have a constant current
drawn from the device. Using an operational amplifier and an N channel power MOSFET
allows for such a test. Here we would need to measure the voltage of the battery and
construct a voltage curve. The way this circuit operates is that as the battery depletes so
will its current and voltage. In order to maintain a constant current draw we set a voltage
reference right before the resistor that draws the current. We then use the op amp as a
comparator to notify when to boost or cut off the current through the MOSFET to keep
the voltage reference constant.

106

+Battery- 4|||'

13V 13V
R
TLOB4CDR 1
U1.1
< 2 >
1ng§.‘ ; > it F}m
—T IRFP250PBF
e
5V T

Figure 64. Constant Current Source

A critical part of the testing is getting the op amp to stabilize at the value of the voltage
divider. The design is meant to draw 600mA of current from the battery. The voltage
divider is set to 600mA

The voltage divider is set to 600 mV, and the op amp would allow for a voltage
difference of 600mV across the 1 Ohm resistor, drawing 600mA. The op amp works by
switching the MOSFET on and off to average 600mV at the terminal. The initial testing
used an LM393 but the switching speed was too slow and would result in the lowest
voltage average of 2.6 V. The diagram bellow displays the output voltage oscillation at
the bottom of the resistor.

107

Figure 65. Testing Constant Current Circuit

Figure 66. Op Amp Output Driving MOSFET

The voltage across the battery was measured automatically using an Arduino Uno. The
test lasted for ninety minutes until the battery voltage dropped below 2.8V for seconds
consecutively. Unfortunately the ADC of the Arduino made the measurements of the
battery very imprecise and resulted in a very coarse load line. The test will be run again
later, but the 90 minutes at 600mA, results in a capacity of at least 900mAh. However the
voltage dropped from 3.77 to 3.49V, when measured with a multimeter. Assuming a near
linear drop in voltage until 2.8V, the capacity can be approximated to be about 2600
mANh, which is near the expected capacity.

108

7.2.10 Testing Voltage Regulators

The voltage regulators do not need to be tested, but instead verified. Most of our sensors,
chips, microcontroller, and more, operate at either 3.3 volts or 5 volts. So we will adjust
our input supply of 3.7V to those desired outputs with our regulators just to make sure
they operate correctly.

7.3 Software Test Environment

Most of the software testing will take advantage of the code composer studio’s very rich
development environment. Because it allows controlling the MCU one step at a time, the
programming from the MCU and other peripherals can be debugged easily.

Another software environment that will be taken advantage of are the online data servers
like Google Drive and One Drive. Using Googles development environment, some levels
of data processing using Google sheets can be automized. This would in theory allow for
data acquisition if the API is compatible.

Failing at using these systems, some help can be requested from computer and software
engineers at the university of Central Florida. This will be very helpful since all four team
members are Electrical Engineering majors.

7.4 Software Specific Testing

Each of the software systems has to be tested individually and in combination to provide
thorough data and ideal software. The three most important points of the project are the
ability to test the localization of the patient within a building, testing if the server can
communicate the information of the patient between the readers and the watches, and
making sure to test the power saving modes.

7.4.1 Testing Mapping

The best way to test the mapping function would be to try creating our own map in one of
our homes. The use of multiple routers at a home would allow for customized router
settings which could prove critical when trying to connect to multiple router in quick
succession. This would be for small scale testing primarily because of the small area that
most homes are, at least in comparison to large hospital buildings.

The secondary step to testing our mapping would be to move to a larger building that
could provide a more realistic goal. The ideal testing location would be within a hospital
since that would be end goal. However, there could be issues with having tests done at a
hospital while the patients are also there. The best middle ground solution would be to
test on the UCF campus, particularly the Harris Engineering Center.

109

7.4.2 Testing Server Transfer of Patient Data

Making a server is not very difficult when using a home network and will allow us to
decide how everything will be transferred. However this too might need some external
help from a software engineer. The key point that we will be focusing on will be the
download of data to the watch, and the upload of the raw location data.

The next thing that we will have to test is what data will be beneficial to have on the
server, available for the watch to download. It will definitely include the patients’ names,
IDs, allergens, and possibly the upcoming procedures. The watch must also be able to
download the time from the internet in order to synchronize all communications.

7.4.3 Testing Power Saving Options

Because of the evolution of the technology in microcontrollers and processors, almost all
major chips that can possibly be used in a design have low power mode options: many of
them have similar low power modes. In this case, both the main MCU and the two
MCUs in the WIFI chip have low power modes. The main testing here will cover the
different options for low power modes in conjunction with determining how often to use
wireless chip: this is because according to the datasheet, the WIFI chip is the biggest user
of current therefore power. Testing will need to be done to find the optimal power
savings while keeping the system reliably tracking and responsive.

When it comes the low power modes for MCUs, the primary specs that the group will be
comparing and considering is clock speed of the MCU. For the WIFI chip, the low
power modes will be compared by response time and current usage.

Some other parameters that are relevant to this project but that do not consume as much
current as the ones explained above are the following: the precision of analog to digital
conversion, the samples per second, the time sampling, and the time between sampling.
Also, something important to notes is that the time in which the wireless card is on will
play a crucial difference in power and location accuracy. The final major power save will
be determining the screen off time of the display.

8 Device Implementation

After coming up with the whole plan, research, and design, we went ahead and actually
implemented the design. During the process of implementation, we encountered some
obstacles and had to shift the focus of our device somewhat. The following sections will
describe in detail the implementation of our work.

8.10 Subsystems

As explained through this paper, there were four main subsystems to our design; power,
wireless communication, main MCU, and peripherals. The following sections will speak

110

about the acutal implementation of each individual subsystem: what worked, and what
did not work.

8.10.1 Power

The main power supply in LifeWatch is a single TI REG104 Low-Drop Out Regulator
which is connected to a rechargeable 3.7 V Lithium-lon rated at 2.5 Ah. The type of
battery used in LifeWatch was carefully chosen to reduce overall physical size of the
device and retain the same size of the PCB. The system needed a battery which would be
re-chargeable therefore, disposable battery types were not considered. Several factors for
a battery were desired. Firstly, a high energy density was required to prevent the need for
constant charging. Secondly, the need to prime some types of batteries on their first
charge was not ideal. This led to various lithium-ion batteries being explored, a
disadvantage to the lithium-ion selection was the requirement of a protection circuit.
Initially on the prototype a cylindrical Lithium-lon battery EBL 18650 was used. Due to
the cylindrical shape of the battery, a new one was chosen to fit flush with the PCB and
case enclosure. The regulators were changed from two Tl TPS63036 operating at 3.3V
and 5V to a single TI REG104 operating at 3.3V discussed in detail within the PCB
section. We also used a TP4056 battery charger to resupply our lithium ion battery with
ease of using a micro USB.

8.10.2 MCU

8.10.3 Wireless Communication

As discussed previously, the subsystem for wireless communication consists of both an
NFC/RFID component and a WIFI component. Both systems will be spoken about next.

8.10.3.1 WIFI

In senior design 1, we discussed about 2 main goals we wanted to accomplish with the
WIFI system: localization and patient data communication to server. The first was a
stretch goal we set out for ourselves while the second was one of the primary goals. In
the end, we did not achieve our goal of loacalization although we were able to harvest the
raw data to do it. Due to time constraints and the complexity of the process, we decided
to leave it out of the project.

8.10.3.1.1 Data Communication to Server

Despite this, we were able to successfully implement data communication from the WIFI
chip to the server. We did indeed stick with the WIFI chip we chose in Senior Design 1:
the ESP32. In our final implementation, this chip communicated via SPI with the MCU
to obtain a patient ID. After connecting successfully to a WIFI network (more on this

111

later), it would send an HTTP GET request which included the ID number to our server.
Our server would then service this request (more on this later), and transmit the patient
information to our WIFI chip. Our WIFI chip would then transfer this information to the
MCU via SPI. After finishing all transactions, the WIFI chip would return to Light Sleep
mode where it retains all the pin configurations and memory but pauses the main
processor. It would only wake up when interrupted by the MCU when it would then read
a command and execute the appropriate action. It is important to note when using SPI
mode, specifically with this chip and in full duplex form, that in order to receive n
number of bytes, the chip must also send n number of bytes. This must be kept in mind
to avoid any sort of confusion with the block diagram for the software that involve SPI.
The code developed for this chip is provided in the appendix. The following is a software
flowchart that summarizes the functionality of the WIFI chip.

Start

A
Initialize SPi port,
variables, Send patient info
subfunctions to MCU
A
A
The WIFI chip HTTP GET
remains in this . request to server Send date and
state until HEitSEEp R to get that patients time to MCU o
interrupted info
A A
Y
Setup and HTTP GET
Connect to WIFI Execute SPI request to world
Network transaction to clock url to receive
receive |D time
Yes Yes

Y

Transfer/Recive 1
Byte via SPI ———< RxBuf = 0x01? No--< RxBuf = 0x02
to/fram MCU

Figure 67. ESP WROOM 32 software flowchart

As can be seen in the flowchart, the main part of the code is the light sleep. This light
sleep enabled us to design a device that turned out to be low powered. The following
table summarizes the tested current consumption of the chip:

Table 16. WIFI Chip current consumption

112

Operation Current Consumption

Light Sleep (MCU paused) 19 mA

Connected to WIFI 100 mA

In our implementation, we attempted to get the time every second but this did not work.
So because we were only getting patient information, the average current consumed was
a lot closer to 19 mA since ideally, the patient information download via WIFI would
only happen when the device is being initialized for a specific patient.

8.10.3.1.2 Localization

As mentioned before, our stretch goal of localization was not met, but we were able to
harvest raw data which is the first step in the attempt to localize. Part of the reason we
did not achieve this goal was simply due to underestimating the complexity of this
localization and our inexperience in writing algorithms. With much more time and
experience, this can be developed and successfully included in the features of Life Watch
in a future revision. The following is an example of the raw data we were able to harvest
using an Arduino ESP32 example called “WiFi Scan.”

scan done

11 networks found

1: MySpectrumWiFiO8-2G (-55)3C:17:10:93:C2:0E*

2: MySpectrumWiFiag-2G (-72)A0:39:EE:4€:D9:AE*

3: NETGEARTE (-8€)80:37:73:FC:73:B6*

4: BHNTG1682Ge043 (—-B6)BC:64:4B:37:1A:EA¥*

5: ATTJIJweEfEa (—-89)18:8C:27:21:3C:C0*

©: LUNA (—-91)E0:22:04:4F:9D:A5%*

7: DIRECT-76-HP DeskJdet 2600 series (-91)18:60:24:58:F7:77*
8: ATTO9PURS5%U (-91)E0:22:04:4A:Bl:BD*

9: MySpectrumWiFi38-2G (-92)38:35:FB:9B:5E:3E*

1 Al fredo Room (—92)00:19:%D:FF:31:A2

1

0:
1: BHNTGl&823C347 (—-94)5C:E3:0E:DZ2:0A:1F*

Figure 68. Localization Raw Data

The raw data includes, the network name, signal strength, and MAC address. In theory,
the network name is not needed but can be helpful with testing. For more information on
how localization is performed, please refer to section 3.2.1.1.

8.10.3.2 NFC

A TI RF430CL330 IC was implemented to provide the Near-Field Communication
capability. An external antenna was created to provide a way to communicate with our

113

android smart device. The antenna had to be finely tuned to meet a frequency of 13.56
MHz for good range of pick up. It consisted of an inductor in parallel with a capacitor to
meet the datasheet requirements as close as possible. It was crucial to finely tune the
antenna in order to pick up the signal through the thick casing and we made many
antennas to finally make one that could fit in our case and provide good enough range.
This was one of our mistakes that spent more time than necessary, just buy an antenna.
The NFC was a major subsystem of our design, tied together several functions. Firstly,
the NFC provided patient information from the server when scanned through an android
mobile phone running our application that is written to the device and displayed on the
LCD. Secondly, the NFC can read current written information on the device and show all
the respective patient data held within the server on the mobile phone application.

The read and write ability on the NFC was a key component to providing
LifeWatch with the patient data. Below is the LCD screen displaying a patient 1D after
being written by NFC through the android application.

Figure 69. NFC Communication

8.10.4 Peripherals

The final design contained a major peripheral, the LCD Screen. The initial design
implemented a 5V LCD Character Display, due to changes in regulator design it was
decided that a 3.3V LCD Character Display could be used instead and was chosen as in
the final design. The character display contained important patient info that was provided
through NFC read and write. The peripherals system includes: a heart rate monitor, LCD
screen, and emergency response components.

114

The LCD screen is responsible for displaying patient information and room number. It
also is able to display the date, time, and can be expanded to include allergens,
medications, and any other important notes. An important note is that the backlight of the
display consumes about 20mA when turned on, which is more that the MCU GPIO pins
can supply. A P Channel MOSFET allowed the LCD to be toggled by the MCU in order
to save power.

The emergency response system is composed of buttons, vibration motor, and piezo
speaker which can provide a method for patients to activate to alert surrounding staff.
The chosen buzzer has an IC that provides the PWM wave used to drive the piezo
components. This device simplified the emergency response so that the MCU only needs
to provide a state to the buzzer as on or off. The important point of the emergency
response is that it can be easily accessed when needed, but difficult to do by accident.
Pressing both buttons consecutively for a full second, toggles emergency response.

On the other hand, pressing either of the buttons individually will wake the device from
low power mode and then update the display. Each button press will scroll the display
between the GUIS. An important note is that the button will oscillate when pressed until
response settles, and this is due to the mechanical nature of switches. A software
debounce is used to disable the button from waking the device for 15ms, which will allow
the state to settle.

8.11 PCBs

Overall the PCB remained the same in dimensions from revision 1 to revision 2. There
were two major changes in revision 2 of the PCB: The NFC and the regulators. These
will be discussed in detail. The initial power regulator used were the TI TPS63036, two
of them operated at 3.3V and 5V. During initial testing of the prototype after the first
revision had it’s soldering all completed we found the 3.3V regulator to not be turning on
despite following the recommended design by TI. Furthermore, the 5V regulators only
purpose was for an LCD screen which could be replaced by another screen with the same
functionality that runs at 3.3V. Therefore, these regulators were eliminated from the
design and a much simpler and reliable regulator was implemented on revision 2; the TI
REG104 Low Dropout Regulator. The initial test of this regulator once revision 2 was
soldered caused no issues and therefore it was the final power regulator.

The NFC in the first revision contained an area for the antenna, this was removed to
create more space for traces and to reduce noise that could be caused by the Wi-Fi or
cause noise to the Wi-Fi by the NFC induction itself. The antenna was externally located
in the case enclosure with the two ends soldered to the board. The NFC IC itself was also
slightly moved to also create more space. Overall, those two major changes were the only
ones made besides slightly different trace routes but nothing significant. Below are
LifeWatch Rev. 1 and 2 with the changes to the NFC area removal and new larger LDO
regulator clearly visible on the lower left hand side of the board.

115

Figure 70. LifeWatch V1.0

Figure 71. LifeWatch V2.0

8.12 Server

In order to set up our mock server, we used the open source program XAMPP on one of
our laptops. We used this server to mimic a hospital setting in which all the patients
information and logs are stored in a database within the server. XAMPP, among the
things it includes, has the option of running an Apache mock server and a MySQL
database.

Once the server was setup, we needed to make an API (Application Programming
Interface) in order to store and retrieve data to/from our database in the server using
HTTP requests. Doing a quick google search, the most popular API to make for this
application was called a REST API which stands for REpresntational State Transfer. We
used a step-by-step tutorial found in [39] to create this API. This API basically allowed
us to use our WIFI chip to access information stored on our database within our server

116

using HTTP requests, specifically GET requests. This API was written in PHP. For
more in depth information, about setting up the API, please refer to the reference given in
[39].

The following is a screen shot of the database along with the kind of information that we
placed in it:

BN [T Server: 127.0.0.1 » g Database: patientid_db » i Table: patients

| Browse 3 Structure [SQL , Search ¥t Insert =} Export [Import =- Privileges 4~ Operations % Tracking 2= Trig

[Profiling [Edit inling]

[] Show all Number of rows: |25 -~ Filter rows | Search this table Sort by key MNone ~

+ Options

T+ ¥ name id room medication allergies created modified

[] . Edit 3z Copy (O Delele Kenny Morales 1849 3162 Raptiva, Tasigna, Hepsera, Urex Shellfish 2014-06-01 01:12:26 2014-05-31 17:12:26
[] o7 Edit % Copy @ Delete Rebecca Strong 4721 1174 N/AI Peanuts 2014-06-01 01:12:26 2014-05-31 17:12:26
[&7 Edit 3 Copy @ Delete Wiliam Rivas 4956 4501 Tylenol, Pain Killers N/A 2014-06-01 01:12:26 2014-05-31 17:12:26
[&7 Edit %c Copy @ Delete John Acala 12346 1567 N/A Peanuts, Eggs, Soy 2018-11-27 14:50:21 2014-05-31 17:12:26
[] 47 Edit 3 Copy @ Delete Karen Mayfield 22854 4501 Calcium Chioride, Acebutolol Wheat, Gluten 2018-11-27 14:52:09 2014-05-31 17:12:26
[1 &7 Edit ::f:' Copy (@ Delete Jane Livingston 26597 3451 Amoscillin, Tylenol NIA 2014-06-01 01:12:26 2014-05-31 17:12:26
[0 &7 Edit 3¢ Copy @ Delete Daniel Smith 36485 4523 Advil, Abacavir Sulfate, Aceon Tree Nuts 2014-06-01 01:12:26 2014-05-31 17:12:26
[0 o7 Edit 3z Copy @ Delete Walter Rojas 38694 4501 Morphine, Antibiotics Gluten 2014-06-01 01:12:26 2014-05-31 17:12:26
[1 &7 Edit 3c Copy @ Delete David Oscar 48673 2376 N/A Dairy, Fish 2014-06-01 01:12:26 2014-05-31 17:12:26
[0 &7 Edit 3¢ Copy @ Delete Carter Lankes 53472 1847 N/A N/A 2018-11-27 14:53:29 2018-11-27 14:53:29
[0 &7 Edit 3¢ Copy @ Delete Elizabeth Banks 86394 4231 Jalyri, Rabavert, Pacitaxel Milk 2014-06-01 01:12:26 2014-05-31 17:12:26
[] 7 Edit 3¢ Copy @ Delete James Smith 92748 2893 M-M-R, Rabavert,Fabrazyme N/A 2014-06-01 01:12:26 2014-05-31 17:12:26
[0 4" Edit 3 Copy @ Delete Mark Thames 92852 4501 Penicillin, N/A 2014-06-01 01:12:26 2014-05-31 17:12:26
[0 o7 Edit 3¢ Copy @ Delete Alberto Robles 93678 3897 Warfarin Sodium, Lacrisert, Ifex Peanuts 2014-06-01 01:12:26 2014-05-31 17:12:26
[0 7 Edit 3c Copy @ Delete Pamela Senda 94037 4501 MN/A Fish, Wheat 2014-06-01 01:12:26 2014-05-31 17:12:26

t [Checkall With selected” 7 Edit 3e Copy @ Delete 5 Export

[] Show all \ Number of rows: | 25 Filter rows: | Search this table Sort by key MNone ~

Figure 72. Database, patient ID table created in our server

The following is an example of the kind of URL we used to send GET requests to the
server:

http://192.168.0.1/patient_id/prodcut/read_one.php?id=12346

This url ending in “.php” accesses a specific PHP file in our REST API which takes an
ID number, connects the database table, and retrieves the table row information linked
with that ID. An important side note is that this php file “echo’s” or prints the data which
is how it returns it to the device which requested it. Without any format specifiers, the
returned data will simply be in text format. In our application, we included HTML
format such that it would be displayed in a more friendly viewer way on our Life Watch
App which we will discuss in the next section.

To easily help in the development of our APl and database, we used a free program
called POSTMAN which is program targeted as an API development software. This

117

allowed us to easily send requests, see the error codes and messages, and smoothly test
our API.

8.13 Life Watch App

To develop our Life Watch app, we decided first that it would be developed as an android
app. The following table summarizes why we chose Android over I0S:

Table 17. Android vs 10S for App Development

Parameter Android I0S
Cost Free $99/year
MIT App Inventor Supported? | Yes No

Ease of developing (n of 10) | 9 6

The three reasons stated above is the reason why we chose to develop an app using
android. After selecting the operating system, we then had to chose through what
development tool we would develop the app. A quick google search boiled down our
options to two main development programs: Android Studio and MIT App Inventor 2.
Android Studio is a more complete and professional way to develop applications, but the
learning curve is more steep. MIT App Inventor is only good when developing simple
applications, but the learning curve is a lot more generous.

In the interest of time and because of no prior experience in app development, we decided
to use MIT App Inventor 2 to develop our app. Although its capabilities fall short in light
of the possibilities in Android Studio, it had all the possible features we wanted to use:
these features were mainly NFC read/write capabilities and Web connectivity. Its way of
developing apps is also very intuitive; it uses code blocks to build the “actions” of the
different interfaces within the app such as buttons, test boxes, etc. Using two example
apps provided by MIT App Inventor 2, we successfully developed our app. The
following is a screen shot of the “design view” of our application:

Non-visible components
[]
vt

Figure 73. App interface view

118

As far as the functionality of the app is concerned, this app was made to be an integral
part of the actual Life Watch. This app has three main functionalities: Setup, Scan,
Search.

The “Setup” mode was developed to be used to initialize or “set-up” the Life Watch.
Initially, the Life Watch only displays a dummy patient information. Using setup mode,
the user enters an ID number, which after hitting “submit,” can be written via NFC to the
NFC tag inside the Life Watch; from there, the MCU takes it and gives it to the WIFI
which does what is explained the “WIFI” section of the “Wireless Communication”
heading.

The “Scan” mode is what can be thought as the “regular use” mode. After the Life
Watch is initialized with an actual patient ID and information, the “Scan” mode can be
used to scan the ID stored in the NFC tag. The app will done annex this ID to the end of
a specific URL (See previous Server Section for more detail) which will then be used to
execute a GET request to the patients database in the server. After successful
completion, this information would then displayed in the app for the user or staff to read.
The benefit of using the app is that a lot more information can be displayed in the app
window than can be displayed on the LCD display of the Life Watch. Finally, the
“Search” mode is an added feature to this device. Besides being able to GET patient
information by reading an ID via NFC, we also wanted to include a way which di not
involve NFC: a direct way to access information on the database by simply typing an ID
number into the app.. This functionality was included to give more flexibility to the user
since in some circumstances, it could be inconvenient to try to the scan the ID. Such
cases would include a hectic scenario or an emergency in which the user or staff, for one
reason or another, cannot NFC read the ID from the Life Watch. Essentially, this mode
performs the same function as the “Scan” mode except the ID is entered manually by the
user and not scanned from the Life Watch. The following flowchart explains the

software functionality of the app:
V;s : Vis

N
App
Wai
App waits PromptUser 1o until Prompt User o rh s
until user enter ID and hit detects enter ID and hit hits
hits “submit" "submit’ button NFC submit button - .
"submit’
writien

l

Take ID scanned
and place at the.

pl
end of URL 0
GET Palient info

Figure 74. Flowchart of how device works with application

119

8.14 Printed Housing Case

In order to protect the LifeWatch’s valuable circuit board and components a
housing case was designed, and 3D printed. Our thick casing makes the LifeWatch more
durable, water resistant, and presentable. It is made from PLA and has a thickness of
about 1 centimeter. It also has four loop holes attached at the bottom to secure it safely to
the patient’s arm using durable, recyclable, secure waterproof wristbands. The program
Solidworks was used to create the overall design. Then due to small error of sizes we
used a file, drill, and solder iron to finely tune it to fit our buttons, LCD screen, and other
necessary external features.

Figure 75. Case components Top, Bottom, Loop holes (left, right, bottom)

120

9 Administrative Content

This section is about the management of planning and building the device and what our
expected milestones and dates to complete them were. In this portion we will also
compare our estimated cost with our actual cost and talk about what was used in the end
and what was not. Lastly, we will talk about who was assigned to what portion of the
project.

9.1 Miilestone Discussion

Our Milestones were all met fairly well. Coming up with a project idea was probably one
of the most difficult challenges since what we chose was going to be our project we were
to work on for the next two semesters. Not only was it difficult because of that
commitment of two semesters, but also because the team was trying to find a balance
between having fun and learning. We chose it carefully to make sure it was challenging,
but still feasible. The group was interested in participating in a project in which the team
members would all learn; also, the team members also expressed their desire to make
something that would be presentable in a interview for a future job. Our process
consisted of writing out many ideas the two weeks we had and over time condensing
them down to the best one and figuring out what each idea would take to make it. Also
we had more of a push for the smart hospital watch idea due to the fact that members of
our group had personal accounts of mistakes they had encountered in hospitals
themselves, and this came about as being a way to help solve those issues. Once the team
had a clear idea, things began to “flow” better into place: with a clear idea, also comes a
clear goal, and with a clear goal comes a sense of purpose. Now that there was a clear
sense of purpose, the team could now move forward with the actual paper deadlines.

Then from there, for the divide and conquer, we all decided what we were interested in
and chose each aspect of the project that we could work on in depth. The team used this
divide and conguer activity to set general goals for the project. This divide and conquer
paper was to be used as the foundation for the rest of the paper writing. Once we decided
who was working on what we split the research up between each other.

The research that the team began to do right after the divide and conquer fit in perfectly
with the next paper objective which was to be the 60 page draft. We focused on our
specific portions of the device and explored the possible components to use and also
learned how the technology worked, which consisted of the major bulk of our 60 page
draft. In these first 60 pages, the group experienced the biggest knowledge growth up to
date. The team had to learn things not taught inside the classroom.

Next came the 100 page draft, building off the 60 page draft, and we focused on the
standards and constraints of our device in the hospital setting, explaining why we chose
our components, how to test them, and also explaining our budget and milestones. The
writing about standards and constraints gave us a “real world” view of engineering
projects. Once we knew what components we were going to choose, we also began to
focus on the software aspect of the project. For each major function, we began to explore
online and think of the “how” we were going to implement that function on the hardware.

121

During the 100 page draft we had to order our components very quickly in order to test
them within the weeks after to include in our final document. Testing our components
was a big learning experience of realizing we needed to order more things than we
realized such as breakout boards, heat sink, inductor at specific value, and more which
put us in a bit of a crunch for testing. Also when testing we encountered many problems
along the way by overlooking small details or improperly setting up the hardware. We
learned when performing an experiment always plan it, simulate it, then run it to save
time and effort instead of just doing it. Although that may work sometimes the amount of
small details for components that can be overlooked is incredible and often happens when
you take the “just do it” approach. This portion of the project was definitely a huge
challenge and learning experience for us, but in the long run will help us in senior design
two.

We worked from the 100 page to the 120 page paper. Although this seemed to be the
smallest amount of writing since the 10 page Divide and Conquer paper, this was one of
the hardest 20 pages to write. The difficulties mainly grew from the format requirements.
Our document for some reason kept accumulating “white space” while we worked on it
and no matter how hard we tried to rid the document of whitespace, more and more just
kept appearing as we went on. It spread through out our paper like a deadly virus.
Another very challenging aspect to getting to the 120 paper marker was the program we
used to work together. Our collaboration website we used to make our document and
other project related materials was “OneDrive”. At first it ran very smoothly, but as time
went on and more and more pages were added it began to lag very badly. On top of the
lagging that was occurring OneDrive also had a tendency to crash, erase, or add in lots of
white space. It almost had a mind of its own at times which made it very frustrating to
polish the document and make sure it was good to go for submission. Luckily we were
able to press through all those interface challenges and give the finished document. For
these last 20 pages, we mainly focused on fixing the mistakes pointed out by our Senior
Design advisor. We also focused on being more specific on our details; we included all
of the component schematic drawings and possible PCB vendors and assemblers
information that we may use in senior design two. These last 20 pages were just the
finishing touch of the document, and the first feel of what Senior Design 2 was going to
feel like since we began to develop a crude prototype for our system.

We then used the very crude prototype that we developed as the basis for our building
block in Senior Design 2, which helped us in the long run. We had an understanding of
how the basics of our device worked, operated, and interacted with it’s other components
giving us more time in senior design two to focus on fine tuning our device instead of
making it from scratch. We also learned which goals would become stretch and which
goals were achievable in our given time.

Our first major milestone in senior design two was getting the NFC to successfully work
and interact with our smart device. We had troubles connecting it to our MSP430 at first
due to figuring out which pins were used for 12C. We also had difficulties due to one of
the NFC chips being burnt and not working, causing us to figure out if these was a major
issue until using another NFC chip to test with. Frustrating it was, but very rewarding in
the end.

122

The next milestone was to send for our PCB, which we created in easyeda. We had never
created a PCB board through out our education at UCF so this was another challenge
especially since there are so many minor details to the PCB that can be overwhelming.
Luckily we kept it simple with 2 layers and just focused on the general purpose of the
PCB: to make our circuits physical. We didn’t get caught up too much in the infinite PCB
errors that could occur, but we did make sure to separate our AFE from the WIFI chip so
the frequencies did not interfere. It was highly suggested. We then ordered the specific
parts and took it to QMS to become soldered.

Now we have our board back and are doing initial testing and to no surprise we had
errors, but luckily only a few. The main errors were the voltage regulators as stated
before. Everything else we were able to verify with tests and they all worked properly.
This led us to changing our voltage regulators to the LDO REG104.

As the semester went on we gave our CDR to our peers and also had a midterm meeting
with our professor where he was able to allow us to drop two of our goals, heart beat
sensor and WIFI location, that would be too difficult to implement in the amount of time
we had left. With time closing in on us we decided to focus on perfecting the NFC
interacting with the WIFI module and printing to the LCD screen. We also began
working on our second PCB design and possibly an Application to use with our device.

The next achievement was sending out our second version of the PCB and this time
ordering 2 components of everything so we could make 2 boards to test with. At the same
time we focused on printing to the LCD screen, getting the WIFI module and a server to
communicate via WIFI, the NFC to interact with the LCD. The WIFI communication led
us to using a hot spot on one of member’s phone because they both must be on the same
network. We also began to work on the design of the casing that would hold the PCB,
battery, etc. Also one of our members began developing the application that was a stretch
goal.

Our second PCB comes back and we take it to QMS once again to get 2 boards soldered.
They came back and we tested the regulator first to make sure it works properly. It does
and then we test the rest of the board piece by piece and there are a few differences, but
nothing major. Our PCB is good to go and we now work to finish the code and WIFI
communication.

Finally, we are able to get everything to work. The WIFI to communicate with the server
and MCU, the NFC to send text to the LCD and interact with the smart device with good
range, our application to interface between everything, and do it continuously. We were
also able to make a panic mode to send out a noise and securely put it into its casing.

123

Then we presented it to our panel of faculty, and unfortunately during transport
something became corrupted within and our demonstration did not fully work due to the
LCD not working. They then gave us till the end of the day to fix it, which we did. Thus
completing our senior design project.

As a team, we feel that we have successfully completed all the goals we set to meet after
the teacher demonstration. We also feel that we have successfully completed the main
mission of Senior Design by stretching ourselves to learn new things, work in a group
setting effectively to complete a task, and do it in a realistic and professional way. We
started with a lot of goals that we later realized could not be done effectively in the time
we were given due to our novice skills for real life circuitry production, lack of coding
skills, and other academics we had to also focus on. It seems we accomplished a lot with
the Lifewatch, but at the same time only scratched the surface of what it could really be
when we started planning in senior design 1. There is still a lot of potential with the
Lifewatch.

Senior Design I:

Table 18. Administrative

Task Duration Date
Project Ideas 2 weeks May 14-21
Project Selection 1 week May 21-28
Divide and Conquer 1.5weeks June 8

Research and Documentation 7 weeks June 8-July 30

60 Page Draft 4 weeks June 8-July 6
100 Page Draft 7 weeks June 8-July 20
Final Document 7 weeks June 8-July 31

124

Table 19. Technical

Task Duration Date
Component Research 4 Weeks June 8 —July 6
Order Components 2 Weeks July 6 — July 20
Test Components 1 %2> Weeks July 20 — July 29
Design Schematics 1 %2 Weeks July 20 — July 29

Senior Design |1

Table 20. Administrative SD2

Task Duration Date
Construct prototype design 4-5 weeks Aug 20 — Sept 17
Test and redesign 2 weeks Sept 17- Oct 1
Finalize Prototype 2 weeks Oct 1- Oct 15
Peer Presentation Sept. 14

125

Final Presentation Nov. 27

Final Report Dec. 3

Table 21. Technical SD2

Task Duration Date
Breadboard 2 Weeks Aug 20 — Aug 31
Design PCB Board 2 Weeks Aug 20 — Aug 31
Software 4 Weeks Aug 20 — Sept 17
Attach components to Board 1 Week Sept 17 — Sept 24
Test and modify 1 Week Sept 24 — Oct 1
Verify prototype 2 Weeks Oct 1- Oct 15

9.2 Budget and Finance

One of the most important constraints in any project whether in school or in the real
world is budget. It is one of the first constraints that we took into consideration when
aiming for goals as far as technology that we wanted to implement. For example, a
technology that we were considering in implementing on the hospital watch was wireless
charging. In reality, this way of charging is a lot more convenient for a setting such as a
hospital, but it is also much more expensive. So not only did budget and economic
factors put a physical constraint on the parts we could and could not order, but through
that, it also put a constraint on our imagination and what we would have wanted to
implement.

126

Despite this, our team did not perceive the budget as an enemy or as a hindrance to our
imagination but rather as a challenge that we wanted to overcome. Our team believed
that working with a budget and being able to design a quality product with a limited
budget was a skill and challenge were doing. As with every project, it is always best to be
safe than sorry We applied this approach to our estimated budget, we wanted to make
sure we did not pass our budget during this project: for this reason, we overestimated our
budget and our expenses. Our budget was expected to be around $200 total for our
components and other necessities to build our device and so far we have spent around
$75.00, which is not buying a majority of the components already.

Throughout Senior Design 1, we sought many ways to save money especially in the
ordering of our parts. Although the team felt like we overestimated our budget, we still
looked for ways to be financially wise. We looked for vendors or websites that included
benefits such as free shipping; we also tried to combine our parts into one order. In many
cases, shipping takes up a significant amount of what we paid when we ordered parts.

As we went through Senior Design 2 we had to account our PCB boards, the enclosure
for our device, and the actual wrist straps that meets the hospital standards of comfort as
well. For the strap we looked into a disposable wrist strap or reusable washable ones:
something that is inexpensive yet of very good quality. We went with the disposable
wrist straps that you would get when entering a club because they are very durable, water
proof, and cheap. For PCB boards, we are looked to vendors that were involved in simple
design since our design is not very complex: this saved us even more money. We did
order additional components along the way and and parts that we messed up during the
testing, we had to re order again.

The following is a break down of our estimated cost. This was the very first initial
budget our team came up with in one of the earliest team meetings in this course.
Looking at some of these numbers now (for example the PCB board cost, and wireless
chip), we feel that we overestimated, but the team is alright with it because it works to
our benefit anyways. This overestimation was partly due to our inexperience and lack of
knowledge. Below the table of cost is our final cost we came to at the end of our senior
design two semester.

Table 22. Estimated Cost

Item Quantity Price per Unit
PCB 1 ~$80
1 ~$10

127

Microcontroller

Sensors

LCD Screen

NFC Tags

Enclosure

Wireless chip

LI-ION Battery

Disposal Strap

~$40

~$10

$0.10

~$20

~$20

~$10

128

Total Cost $195

Table 23. Actual Cost

Item Quantity Price per Unit

3.7V 2.5Ah Adafruit Battery Lithium- 1 $14.95
ion
RF430CL330H (RFID/NFC Chip) 3 $1.29
PA0033 (NFC Breakout Board) 1 $3.69
REG104FA-3.3500 4 $6.52
(Voltage Regulator)

ESP-WROOM-32 1 $3.80
ESP -WROOM-02 1 $2.70
NHD-0216HZ-FSW-FBW-33V3C 1 $11.60

129

(Character LCD)

MSP430FR4133IPMR (MCU) 1 $2.82

MSP-EXP430FR4133 1 $14.49
Nellcor-DS100 Pulse Oximeter Probe 1 $20
T1 AFE4400 1 $2.50

TP4056 Li-ion battery charger 1 $1.25
Wrist Strap 100 $0.08

PCB 10 $0.50

TOTAL $85.61

At the end of our senior design project we still kept our under our budget by a good
amount. Only made a few changes for components, which only increased us by a few
dollars. Lifewatch is an affordable product overall.

9.3 Assigned Roles

The role assignation on this project was done on a voluntary basis. As explained in a
previous section, the different aspects of the project were discussed and the individual
team members committed to doing a specific part they were interested in doing. The
following is a table of the primary and secondary roles for all of our team members:

130

Primary Roles

Secondary Roles

Carter Lankes

e RFID/NFC

o Deciding which type of
wireless communication to use
for sending and receiving the
patient's personal information

e Power Supply

o Choosing a rechargeable
power supply that is able to
power the device for a long
period of time with its
components, sensors, and etc.

e Voltage Regulators

o Choosing an efficient DC to
DC converter that is able to
meet all the voltage
requirements of the sensors,
micro controller, and other
necessary components

e localization
research

Josue Ortiz

e Indoor Localization

o Research how indoor
localization has been
implemented in other systems

o Research the optimal
technology to do localization

e WIFI
o Research and compare various
WIFI modules and chose the
best one for our design
e Bluetooth
o Research and compare various

BLE modules and chose the
best one for our design

e Program Coding

131

William Toledo

Microcontroller

o Researching a power efficient
microcontroller that would be
usable on a wrist worn device

Display

o Research different LCD
displays to find a practical
display for a medically
enabled smart watch

Communication protocols

o SPland I2C communications
research and implementation

e Power Supply, NFC,

server, general circuit
analysis and research,
serial
communications,
localization

John Alcala

Pulse Oximetry

o Research how pulse oximetry
works and best way to
implement

e Microcontroller

132

Appendix A — Citations

[1] Y. Akao, The Customer Driven Approach to Quality Planning and
Deployment. Minato, Tokyo: Asian Productivity Organization, 1994

[2] John R. Hauser and Don Clausing, “House of Quality” Harvard Business Review,
1988 https://hbr.org/1988/05/the-house-of-quality

[3] “Patient Identification”, World Health
Organization http://www.who.int/patientsafety/solutions/patientsafety/PS-Solution2.pdf

[4] Bradley Mitchell “What Is a Wireless Access Point?” Lifewire, 2018.
https://www.lifewire.com/wireless-access-point-816545

[5] Understanding the Network Terms SSID, BSSID, and ESSID., Juniper.
https://www.juniper.net/documentation/en_US/junos-space-apps/network-
director2.0/topics/concept/wireless-ssid-bssid-essid.html

[6] Texas Instruments, “CC3220MODx and CC3220MODAx SimpleLink™ Wi-Fi®
CERTIFIED™ Wireless MCU Modules”, March 2017.
http://www.ti.com/lit/ds/symlink/cc3220moda.pdf

[7] Sparkfun, WiFi Module — ESP8266, https://www.sparkfun.com/products/13678

[8] “What is the difference between Bluetooth and Wi-Fi?” Techopedia, April 2017
https://www.techopedia.com/2/27881/networks/wireless/what-is-the-difference-between-
bluetooth-and-wi-fi

[9] “Bluetooth Beacons: A Beginners Guide”, BlueMaestro
“https://www.bluemaestro.com/ultimate-guide-bluetooth-beacons/”

[10] Microchip, “RN4020 Bluetooth Low Energy Module”,
http://www.mouser.com/ds/2/268/50002279A-515512. pdf

133

[11] Murata “UHF MAGICSTRAP® Preliminary Data Sheet LXMSJZNCMF-198”,
https://www.mouser.com/datasheet/2/281/Murata_07102017_LXMSJZNCMF_198(rev0
%202)-1186223.pdf.

[12] ST “Dynamic NFC/RFID tag IC with 64-Kbit EEPROM NFC Forum Type 4 Tag
and 12C interface” https://www.mouser.com/datasheet/2/389/m24sr64-y-1156150.pdf

[13] Texas Instruments “RF430CL330H Dynamic NFC Interface Transponder”,
November 2012. http://www.ti.com/lit/ds/symlink/rf430cI330h.pdf

[14] James Thrasher “RFID vs. NFC: What’s the Difference?” RFID Insider,
https://blog.atlasrfidstore.com/rfid-vs-nfc

[15] Near Field Communication. http://chittagongit.com/icon/near-field-communication-
icon-2.html

[16] SparkFun Electronics PRT-13851, Digi-Key Electronics.
https://www.digikey.com/product-detail/en/sparkfun-electronics/PRT-13851/1568-1493-
ND/6605199

[17] PKCELL “Li-Polymer Battery Technology Specification”, https://cdn-
shop.adafruit.com/product-files/2750/LP552035 350MAH_3.7V_20150906.pdf

[18] Illinois Capacitor RJID3555HPPV30M, Digi-Key Electronics.
https://lwww.digikey.com/product-detail/en/illinois-capacitor/RJID3555HPPV30M/1572-
1627-ND/6159145

[19] Texas Instruments LM1084IT-ADJ/NOPB, Mouser Electronics.
https://www.mouser.com/ProductDetail/Texas-Instruments/LM1084IT-ADJ-
NOPB?qs=X1J7HmMVL2ZFnaHQkkplutQ%3D%3D&gclid=CjwKCAjwg_fZBRAOEIWA
ppvp-fQync2Lrv4UjeP7b-

njsk8oaKalCY 0SilnOliLV5M3JCFI58TFz8hoCIOWQAVD_ BwE

[20] Texas Instruments LM2576,LM3420,LP2951,LP2952 Battery Charging.
http://www.ti.com/lit/an/snva557/snva557.pdf

134

http://www.ti.com/lit/an/snva557/snva557.pdf

[21] Hooseok Lee, Et al. “Reflectance pulse oximetry: Practical issues and limitations”
ICT Express, 2016, pp. 195-198
https://www.sciencedirect.com/science/article/pii/S2405959516301205#br000005

[22] Measuring heart rate and blood oxygen levels for portable medical and wearable
devices, Embedded Computing Design. http://www.embedded-
computing.com/embedded-computing-design/measuring-heart-rate-and-blood-oxygen-
levels-for-portable-medical-and-wearable-devices

[23] PQRST Complexes in the ECG waveform, ResearchGate.
https://www.researchgate.net/figure/PQRST-complexes-in-the-ECG-
waveform_figl 262384778

[24] A. Arcelus, M. Sardar and A. Mihailidis, "Design of a capacitive ECG sensor for
unobtrusive heart rate measurements,” 2013 IEEE International Instrumentation and
Measurement Technology Conference (I2ZMTC), Minneapolis, MN, 2013, pp. 407-410.

[25] Maxim Integrated, MAX20112.
https://www.maximintegrated.com/en/products/sensors/MAX30112.html

[26] Oliver J. Woodman, “An introduction to inertial navigation” University of
Cambridge Computer Laboratory. August 2007.
http://www.cl.cam.ac.uk//techreports/UCAM-CL-TR-696.pdf

[27]_Yang, C.-C., & Hsu, Y.-L. (2010). A Review of Accelerometry-Based Wearable
Motion Detectors for Physical Activity Monitoring. Sensors (Basel, Switzerland).
https://www.ncbi.nIm.nih.gov/pmc/articles/PMC3231187/

[28] Texas Instruments, “Understanding the 1°C Bus”, June 2015.
http://www.ti.com/lit/an/slva704/slva704.pdf

[29] Sparkfun “Serial Peripheral Interface” https://learn.sparkfun.com/tutorials/serial-
peripheral-interface-spi

135

[30] Adafruit, Vibrating Mini Motor Disc
https://www.adafruit.com/product/1201?gclid=CjwKCAjwg_fZBRAOEIwAppVvp-
aGabSejlOhC3UTugKxrruCKieMzKHxnghnE7Yr9aK71LsZelU3e_hoCe30QAvD BwE

[31] Sensible Micro Corporation, “MCU Microcontrollers — Costs Climb”
https://sensiblemicro.com/mcu/

[32] Retro Nintendo, “NES Motherboard Identification”
“http://www.retronintendoreviews.com/identifying-your-nes-cpu-revision/

[33] Practical Components, Thin Quad Flat Pack Dummy Component.
http://www.practicalcomponents.com/Dummy-Components/product.cfm?Thin-Quad-
Flat-Pack-%28TQFP%29-Dummy-Component-9A06B8579E20A566

[34] White, Flye “Successive Approximation ADC Block Diagram”.
https://commons.wikimedia.org/wiki/File:SA_ADC_block_diagram.png

[35] All About Circuits, Logic Signal Voltage Levels.
https://www.allaboutcircuits.com/textbook/digital/chpt-3/logic-signal-voltage-levels/

[36] NetSec.news “What is the Definition of a HIPAA Covered Entity?”
https://www.netsec.news/definition-hipaa-covered-entity/

[37] U.S Department of Health & Human Services ‘“Protected information”,
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-
identification/index.html#protected

[38] NFC “Security Concerns with NFC Technology”
http://nearfieldcommunication.org/nfc-security.html

[39] Mike Dalisay. “Simple REST API in PHP? Step By Step Guide.” Code of a Ninja.
2017. Accessible at: https://www.codeofaninja.com/2017/02/create-simple-rest-api-in-
php.html

136

https://www.allaboutcircuits.com/textbook/digital/chpt-3/logic-signal-voltage-levels/
https://www.netsec.news/definition-hipaa-covered-entity/

Appendix B — Code for MSP MCU
Code for the main MCU, MSP4304133, programmed using Code Composer Studio 8.1.0.

Each section is a separate file, either a c or h file.

10 Master.c

#include <master.h>
#include <msp430.h>

typedef enum SPI_ModeEnum{
IDLE_MODE,
TX_CMD_MODE ,
RX_REG_ADDRESS_MODE ,
TX_DATA_MODE,
RX_DATA_MODE,
TIMEOUT_MODE

} SPI_Mode;

SPI_Mode MasterModeWIFI = IDLE MODE; //Start in idle mode

SPI_Mode SPI_WIFI_WRITE(uint8 t* id, uint8_t count);
SPI Mode SPI_WIFI_CMD(uint8 t wifi_cmd, uint8 t count);
SPI Mode SPI_WIFI_READ(uint8 t count);

void read_patient_info WIFI(void);

//software flags

int LCD_Screen = 3;

int mcu_to_wifi = 0;

int SW_flag debounce = 0;
int both_sw _on = 0;

int emergency_mode = 0;
int SPI_CMD_Receive=0;

int wifi instruction = 0;
int nfc_int = 0;

int wifi_int = 0;

int wifi_cmd = ©;

int wifi cmd read = 9;

unsigned char read_data[200];
unsigned char nfc_read[200];

int HighestLCDScreen = 3;

volatile unsigned int test = 0;

137

unsigned int flags = 0;

unsigned int temp = 9;

uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t

//unsigned char NDEF_Application_Datal]

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

TransmitCmd = 0;
ReceiveBuffer[200] = {0};
RXByteCtr = 0;
ReceiveIndex = 0;

TransmitBuffer[MAX_BUFFER_SIZE]

{e};

TXByteCtr = 0;
TransmitIndex = 0;

char
char
char
char
char
char

RF430_DEFAULT_DATA;

test_data[] = {0x01, 0x23, 0x45, Ox67, 0x89, OXAB, OxCD, OXEF};
patient_name[16] = "Smith, John";

patient_id[8] = "12345";

patient_room[4] = "101A";

patient_allergies[28] = "No known Allergies";

patient_more[20];

unsigned char watch_time[8] = "12:05am";
int time updated =0;

int seconds=50;

int minutes=5;

int hour

s=12;

int isPM=0;
unsigned char watch_date[11];

unsigned

unsigned

char

char

CRC_Data[] = {1,2,3,4,5,6,7,8,9};

Cmd = 9; //Command byte for SPI mode

unsigned

char

read complete 9;

unsigned

char

rx byte count 9;

unsigned

char

tx byte count = 0;

unsigned

int Results[11] = {eo,0,0,0,0,0,0,0,0,0,0};

[k Kk s kK K K K KR K K K K K KR KR K K K K K R K K KR KR KR KR KR KR KR KR Kok ok

/* Code-binary that opens on ETW and re-trims LF oscillator to below 280kHz */
[k sk sk sk sk ok sk sk ok sk sk sk sk ok sk sk ok skl sk skl skl ok skl ok skl ksl ok sk ok skl sk sk sk sk ok skl ok skok ok sk sk /

unsigned

s

int main(void)

{

char
OxB2,
OxB2,
0x30,

WDTCTL

func_retrim_osc[] = {

0x40, o0x11, 0x96, 0x10, Ox01,
Ox40, Ox60, Ox03, 0x18, 0x01,
ox41

= WDTPW | WDTHOLD; // stop watchdog timer

138

~

X X K X X X X X X X X X X X X X X ¥ X X X ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥

*

O X X K X X K X X X X X X ¥ ¥

* %X ¥ x ¥

initalize clock
initialize gpio
switches (possibly for error mode)
all unused pins to power save mode
initialize com (i2c and spi)
init peripheral
lcd welcome screen
nfc
control register
setup interupt
wifi
get time?
afe
setup
start reading?
beep speaker
update display
interrupts
portl_vector
wifi_int
receive data from wifi
spi
led?
nfc_int
nfc was written or read
-written

update screen

update patient info via wifi
-read

turn on screen if off

beep

led?

port2_vector
Switches
debounce code
if pass
move to next screen
check if second button pressed
timer to check 10 times in 2 seconds
if pass emergency mode!

afe_int
adc ready
spi read data from register
increment counter
when counter reaches certain amount

139

* K X X X X X X X ¥ ¥

* %

*/

update heart rate with formula
adc else
update screen to error
beep?

timers
main timer to check wifi location every XX minutes

secondary timer for pwm if needed
also for emergency response

32khz for clock update
every XX min, wifi time get

initClocks(); //initialize to 16Mhz
static const int ms = _1ms_16MHz;
initGPIO(); //init gpio

LCDinit(); //initialize LCD to 4bit mode
LCDsetCursor(0,0);
LCDprint("LifeWatch v2.0");
LCDsetCursor(1,1);
LCDprint("Initializing");

delay cycles(40000000) ;

initComm(); //init i2c and spi
initNFC();

LCDclear();
LCDsetCursor(9,0);
LCDprint("Connect to WIFI");
LCDsetCursor(0,1);
LCDprint("Get Time & Date");

wifi_cmd = 0x01; //get time
wakeup_wifi();

TAOR = 0;

TAOCCTLO &= ~CCIFG; //Clear Flag
TAQCCTLO |= CCIE; //Enable interrupts
while (1){

__bis_SR_register(LPM3_bits+GIE); //LMP with int
__no_operation();

140

//1if both switches were held down for a while
if(both_sw _on){

LCDclear();

LCDsetCursor(1,0);

LCDprint("Emergency Mode");

if (emergency_mode){

LCDsetCursor(4,1);
LCDprint("ENABLED"); // go into emergency mode
BUZZ OUT |= BUZZ; // turn on buzzer
//VIB_OUT |= VIB; // turn on motor, needs pwm?
}else{
LCDsetCursor(3,1);
LCDprint ("DISABLED"); // Exit emergency mode
BUZZ_OUT &= ~BUZZ; // turn off buzzer
//VIB_OUT &= ~VIB; // turn off motor, turn off
pwm/timer?
}
both_sw_on = 0;
}

//WIFI woke up device
if(wifi_int){

if(wifi_cmd == 0x01){ //get time

LCDclear();
LCDprint("Wait for wifi to wake"); // Exit emergency mode

SPI_WIFI _CMD(©x01, ©); //send command

P1IE |= WIFI_INT; //Enable interrupt from wifi
__bis_SR_register(LPM3_bits+GIE); //LMP3 w int
__no_operation();

LCDclear();

LCDprint("wifi woke, get time"); // Exit emergency mode
PIIFG &= ~WIFI_INT; //clear wifi int

P1IE &= ~WIFI_INT; //Disable interrupt from wifi
SPI_WIFI_READ(19); //get time

int i;

for(i=0;i<10;i++){
watch date[i]=ReceiveBuffer[i+l];

watch_date[10] = O;

for(i=11;i<18;i++){

141

format "HH:MMpm"

watch time[i-11]=ReceiveBuffer[i+l1l]; //put into string

}
watch_time[7] = 0;

hours = (watch_time[0]-0x30)*10 + (watch_time[1]-0x30);
minutes = (watch_time[3]-0x30)*10 + (watch_time[4]-0x30);
if(watch_time[5]=="p"'){

isPM=1;
}
else{

isPM =0;
}

seconds = 0;

LCD_Screen = 1;
updateLCD();

delay cycles(400000);

LCD_Screen = 3;

updatelLCD();
SW IE |= (SW1|SW2); // pin interrupt enabled
TAGR = 0;
TAOCCTLO &= ~CCIFG; //Clear Flag
TAOCCTL® |= CCIE; //Enable interrupts
}
if(wifi_cmd == 0x02){ //get patient id
LCDclear();

LCDprint("CMD 2");

SPI_WIFI_CMD(0x02, 0);

P1IE |= WIFI_INT; //Enable interrupt from wifi
__bis_SR_register(LPM3_bits+GIE); //LMP3 w int
__no_operation();

P1IFG &= ~WIFI_INT; //clear wifi int

P1IE &= ~WIFI_INT; //Disable interrupt from wifi

//Update display

LCDclear();

LCDprint("Connect to WIFI");

LCDsetCursor(0,1);

LCDOprint("ID: ");

LCDsetCursor(4,1);

LCDprint(patient_id);

SPI_WIFI_WRITE(patient_id, 5); //write the patient ID to the

P1IE |= WIFI_INT; //Enable interrupt from wifi
__bis_SR_register(LPM3_bits+GIE); //LMP3 w int

142

info

!/
!/
!/
!/
!/

__no_operation();
P1IFG &= ~WIFI_INT; //clear wifi int
P1IE &= ~WIFI_INT; //Disable interrupt from wifi

LCDclear();
LCDprint("Get Chunks");

//SPI_WIFI_READ(1); //know how many chunks

LCDclear();

LCDprint ("READ INFO");
LCDsetCursor(0,1);
LCDprint("Chunk ");
LCDsetCursor(6,1);

int chunk=0;
while(chunk<2){

LCDsetCursor(6,1);
//LCDprint(chunk+0x30);
delay cycles(1009);
SPI_WIFI READ(39); //wait for wifi to send patient

int i;
for(i=0;i<30;i++){

read data[chunk*30+i] = ReceiveBuffer[i];

¥
chunk++;
}
int i;

for(i=0;i<200;i++){
ReceiveBuffer[i] = read datal[i];

}
read_patient _info WIFI();

LCDclear();
LCDprint ("SUCCESS!");

LCD_Screen = 0;
updateLCD();

LCDclear();
LCDsetCursor(0,0);
LCDprint(ReceiveBuffer);
LCDsetCursor(0,0);
LCDprint(" ");
//SPI_WIFI_CMD(0x01, 8);

143

wifi_cmd = 9;

wifi_int = 0;

P1IFG &= ~WIFI_INT; //Clear pending flag from wifi
P1IE |= WIFI_INT; //Enable interrupt from wifi
__no_operation();

}

//NFC woke up device
if(nfc_int){
//Disable RF for safety
Write_Register(CONTROL_REG, INT_ENABLE + INTO DRIVE); //clear
control reg to disable RF
delay cycles(75.0*ms);
int flags = Read_Register(INT_FLAG_REG); //read the flag
register to check if a read or write occurred
int temp = 0;
Write Register(INT_FLAG_REG, EOW_INT_FLAG + EOR_INT_FLAG);
//ACK the flags to clear

Write_Register(INT_ENABLE_REG, 0);

LED_OUT &= ~RED_LED; //Turn off red led

if(flags & EOW_INT_FLAG) //check if the tag was written
{
//tag was updated, so we should read out the new data
//read out the data
//Read_Continuous(@, read_data, 200);
__no_operation(); //breakpoint here to examine the data

//show that tag was written by blinking LED 3 times
for(temp = 9; temp < 3; temp++){
LED OUT |= RED_LED;
delay cycles(30.0*ms);
LED_OUT &= RED_LED;//clear LED
delay cycles(30.0*ms);

}
LCDclear();

LCDsetCursor(0,0);
LCDprint ("NFC Written: Get");
LCDsetCursor(0,1);
LCDprint("info from RF430");

read_patient_info NFC(); //move info from RF
memory to variables

144

}
else if(flags & EOR_INT_FLAG) //check if the tag was read

{

__no_operation();

//show that tag was read with LED by holding it on for 1
second

LED OUT |= RED_LED;

delay cycles(80.0*ms);
LED_OUT &= ~RED_LED;//clear LED
LCDclear();
LCDsetCursor(0,0);
LCDprint ("NFC Read");
LCDsetCursor(11,0);
LCDprint(patient_id);
LCDsetCursor(1,0);
LCDprint(patient_name);

}

flags = 0;
nfc_int = ©; //we have serviced INTO

//Enable interrupts for End of Read and End of Write

Write Register(INT_ENABLE_REG, EOW_INT_ENABLE +
EOR_INT_ENABLE);

int test = Read_Register(INT_ENABLE_REG);

//Configure INTO pin for active low and re-enable RF
Write_Register(CONTROL_REG, INT_ENABLE + INTO_DRIVE +
RF_ENABLE);

//re-enable INTO
P1IFG &= NFC_INT;
P1IE |= NFC_INT;
if(wifi_cmd==0x02){
wakeup wifi();

}

__no_operation();

}

void initClocks(void){

// Configure one FRAM waitstate as required by the device datasheet for
MCLK

// operation beyond 8MHz _before_ configuring the clock system.

FRCTLO = FRCTLPW | NWAITS 1;

__bis_SR_register(SCGo); // disable FLL
CSCTL3 |= SELREF__REFOCLK; // Set REFO as FLL reference source
CSCTLO = o; // clear DCO and MOD registers

145

CSCTL1 &= ~(DCORSEL_7); // Clear DCO frequency select bits first

CSCTL1 |= DCORSEL_5; // Set DCO = 16MHz

CSCTL2 = FLLD_@ + 487; // set to fDCOCLKDIV = (FLLN +
1)*(fFLLREFCLK/n)

// = (487 + 1)*(32.768
kHz/1)
// = 16 MHz

CSCTL4 |= SELA; // set ACLK = 32kHz internal REFO

TAOCTL |= TASSEL__ACLK | MC__CONTINOUS; // ACLK, continuous mode, div
by 4

TALICTL |= TASSEL__ACLK | MC__CONTINOUS; // ACLK, continuous mode

//RTCCTL |= (RTCSS@|RTCSS1); // VLOCLK

__delay_cycles(3);

__bic_SR_register(SCGo); // enable FLL

while(CSCTL7 & (FLLUNLOCK® | FLLUNLOCK1)); // FLL locked
}
void initGPIO(void){

//Setup pins

//WIFI

WIFI_CS_DIR |= WIFI_CS; //pin output direction

WIFI_CS OUT |= WIFI_CS; //output high

WIFI_INT_DIR &= ~WIFI_INT; // pin input

WIFI_INT_OUT |= WIFI_INT; // pin pull up

WIFI_INT _REN |= WIFI_INT; // pin pull up/down resistor
enable

WIFI_INT_IES |= WIFI_INT; // pin falling edge

WIFI_INT_IFG &= ~WIFI_INT; // pin IFG cleared

WIFI_INT IE |= WIFI_INT; // pin interrupt enabled

//NFC

P1SEL® &= ~NFC_INT;

NFC_INT_DIR &= ~NFC_INT; // pin input

NFC_INT_OUT |= NFC_INT; // pin pull up

NFC_INT_REN |= NFC_INT; // pin pull up/down resistor enable

NFC_INT_IES |= NFC_INT; // pin falling edge

NFC_INT_IFG &= ~NFC_INT; // pin IFG cleared

//NFC_INT_IE |= NFC_INT; // pin interrupt enabled

P1SEL® &= ~NFC_R;

NFC_R_DIR |= NFC_R; //pin output direction
NFC_R_OUT &= ~NFC_R; //output low

delay cycles(1600000);
NFC_R_OUT |= NFC_R; //output high

delay cycles(1600000);

146

// PORT_RST_SEL® &= ~RST;
functionality

// Setting as GPIO pin

// // ~ PORT_RST_SEL1 &= ~RST;
// PORT_RST_OUT &= ~RST;
// PORT_RST_DIR |= RST; // RF430CL330H device in Reset
// __delay _cycles(100000);
// PORT_RST_OUT |= RST; // Release the RF430CL330H from
Reset
// __delay _cycles(100000);
//
//AFE
AFE_DIR |= (AFE_RESETZ + AFE_PDNZ); // pin as output
AFE_OUT |= (AFE_RESETZ + AFE_PDNZ); // output high
AFE_DIR &= ~(AFE_ADC_READY + AFE_PD_ALM + AFE_LED_ALM + AFE_DIAG_END);
// pin input for all flags
//SPI
SPI_SEL = (SPI_SIMO + SPI_SOMI + SPI_SCLK);
// secondary pin function, SPI
AFE_CS_DIR |= AFE_CS; //Set the CS of the AFE to high
AFE_CS_OUT |= AFE_CS;
WIFI_CS DIR |= WIFI_CS; //Set the CS of the WIFI to high
WIFI_CS_OUT |= WIFI_CS;
//12C
I2C_SEL |= (I2C_SDA|I2C_SCL); // secondary pin function, I2C
//Switches
SW_DIR &= ~(SW1|SW2); // pin input
SW_OUT |= (SW1|SW2); // pin pull up
SW_REN |= (SW1|SW2); // pin pull up/down resistor enable
SW_IES |= (SW1|SW2); // pin falling edge
SW_IFG &= ~(SW1|SW2); // pin IFG cleared
SW_IE |= (SW1|SW2); // pin interrupt enabled until later!
// LCD

LCD_OUT = LCD_BL;
LCD_DIR |= OxFF;

//All bits
//All bits

//Peripherals

as low except backlight, pchannel
as output

LED_OUT |= (RED_LED|GREEN_LED); // output high
LED DIR |= (RED_LED|GREEN_LED); // pin output direction

BUZZ_OUT &= ~BUZZ; // output LOW
BUZZ_DIR |= BUZZ;

VIB_OUT &= ~VIB; // output LOW
VIB_DIR |= VIB;

// output DIRECTION

// output DIRECTION

//Unused pins should be set to output per documentation

147

//"Px
= 1)"
P8DIR
P7DIR
P6DIR
PS5DIR
P4DIR
P3DIR
P2DIR
P1DIR

.0 to Px.7 Open Switched to port function, output direction (PxDIR.n

|= ~(P8_USED_PINS);
|= ~(P7_USED_PINS);
|= ~(P6_USED_PINS);
|= ~(P5_USED_PINS);
|= ~(P4_USED_PINS);
|= ~(P3_USED_PINS);
|= ~(P2_USED_PINS);
|= ~(P1_USED_PINS);

//Unused pins output low

P8OUT
P70UT
P60OUT
P50UT
P40UT
P30UT
P20UT
P10OUT

&= (P8_USED_PINS);
&= (P7_USED_PINS);
&= (P6_USED_PINS);
&= (P5_USED_PINS);
&= (P4_USED_PINS);
&= (P3_USED_PINS);
&= (P2_USED_PINS);
&= (P1_USED_PINS);

// Disable the GPIO power-on default high-impedance mode to activate
// previously configured port settings
PM5CTLO &= ~LOCKLPM5;

}

void initComm(void){
//initialize the serial communication registers and settings

//USCI_A® - SPI
//Clock Polarity: The inactive state is high

//MSB First, 8-bit, Master, 3-pin mode, Synchronous
UCAOCTLWO = UCSWRST; // **Put state machine in
reset**
UCAGCTLWO |= UCCKPL | UCCKPH | UCMSB | UCSYNC
| UCMST | UCSSEL__ SMCLK; // 3-pin, 8-bit SPI Slave, mode3
UCAOBRW = 0x20; //clock divided by ©x20 = 32
//UCAGMCTLW = ©;
UCAOCTLWO &= ~UCSWRST; // **Initialize USCI state
machine**
UCAQIE |= UCRXIE; // Enable USCI@ RX interrupt
//USCI_BO - I2C
UCBOCTLWO |= UCSWRST; // Software reset enabled
UCBOCTLWO |= UCMODE_3 | UCMST | UCSYNC; // I2C mode, Master mode, sync
UCBOCTLW1 |= UCASTP_2; // Automatic stop generated
// after UCBOTBCNT is reached
UCBOBRW = ©x00A5; // baudrate = SMCLK / 165
UCBOI2CSA = 0x0028; // Slave address, RF430 NFC

UCBOCTL1 &= ~UCSWRST;

148

UCBOIE |= UCRXIE | UCNACKIE | UCBCNTIE;

void read_patient_info WIFI(void){
unsigned int i,
int reached_semi=0; //flag of semicolon reached

int index = 1; //starting position in the
1st item in array

//Get name, up to 16 letter
for(i = @; i<16; i++){

if(ReceiveBuffer[index]==59){ //if reach semicolon,
reached_semi = 1;
while(i<16){
patient_name[i] = 0x00; //fill rest of string with null
i++;
}
}
else{
patient name[i] = ReceiveBuffer[index]; // else move character
over
index++; // update index
}
}

if(!reached_semi){
while(ReceiveBuffer[index]!=59){

index++; //increment index unil semicolon
}
}
index++; //skip semicolon
reached_semi = 0; //reset flag for semi

//Get id, up to 8 letter
for(i = 0; i<8; i++){

if(ReceiveBuffer[index]==59){ //if reach semicolon,
while(i<8){
patient_id[i]= 0x@0; //fill rest of string with null
i++;
}
}
else{
patient id[i] = ReceiveBuffer[index]; //else move character over
index++;
}

}

index++;//skip semicolon

149

//Get room, up to 4 letter
for(i = 0; i<4; i++){

if(ReceiveBuffer[index]==59){ //if reach semicolon,
while(i<4){
patient_room[i] = 0x00; //fill rest of string with null
i++;
}
¥
else{
patient room[i] = ReceiveBuffer[index]; //move character over
index++;
}

}

index++;//skip semicolon

//Get allergies, up to 28 letter
for(i = @; i<28; i++){

if(ReceiveBuffer[index]==59){ //if reach semicolon,
while(i<28){
patient_allergies[i] = 0x00; //fill rest of string with null
i++;
}
}
else{
patient allergies[i] = ReceiveBuffer[index]; //move character over
index++;
}

}

index++;//skip semicolon

//Get more, up to 20 letter
for(i = @; i<20; i++){

if(ReceiveBuffer[index]==59){ //if reach semicolon,
while(i<20){
patient_more[i] = @x00; //fill rest of string with null
i++;
}
index++;
¥
else{
patient more[i] = ReceiveBuffer[index]; //move character over
index++;
¥
}
LCD_Screen = 0; //display patient info
updatelLCD();

150

}

void read_patient_info_NFC(void){

int i;

int reached_semi=0; //flag of semicolon reached

Read_Continuous(@, nfc_read, 200); //get contents of RF430
//int nfc_str_len = nfc_read[30] +30 -4; //length of data written
int index = 35; //starting position in the

35th item in array

if((nfc read[index]1>0x39)|((nfc read[index])<0x30)){ // if wrote Name,
//Get name, up to 16 letter
for(i = @; i<16; i++){

if(nfc read[index]==59){ //if reach semicolon,
reached_semi = 1;
while(i<16){
patient name[i] = ©x00; //fill rest of string with
null
i++;
}
}
else{
patient name[i] = nfc read[index]; // else move character
over
index++; // update index
}
}
if(!reached_semi){
while(nfc read[index]!=59){
index++; //increment index unil semicolon
}
}
index++; //skip semicolon
reached_semi = 0; //reset flag for semi
//Get id, up to 8 letter
for(i = @; i<8; i++){
if(nfc read[index]==59){ //if reach semicolon,
while(i<8){
patient id[i]= ©x00; //fill rest of string with
null
i++;
}
}
else{
patient id[i] = nfc read[index]; //else move character over
index++;
}

}

index++;//skip semicolon

151

//Get room, up to 4 letter
for(i = @; i<4; i++){

if(nfc read[index]==59){ //if reach semicolon,
while(i<4){
patient room[i] = 0x00; //fill rest of string with
null
i++;
}
}
else{
patient room[i] = nfc read[index]; //move character over
index++;
}
}
index++;//skip semicolon
//Get allergies, up to 28 letter
for(i = 0; i<28; i++){
if(nfc read[index]==59){ //if reach semicolon,
while(i<28){
patient allergies[i] = 9x00; //fill rest of string with
null
i++;
}
}
else{
patient allergies[i] = nfc read[index]; //move character over
index++;
}

}

index++;//skip semicolon

//Get more, up to 20 letter
for(i = @; i<20; i++){

if(nfc read[index]==59){ //if reach semicolon,
while(i<20){
patient more[i] = @x00; //fill rest of string with null
i++;
¥
index++;
}
else{
patient more[i] = nfc read[index]; //move character over
index++;
}
}
LCD_Screen = 0; //display patient info
updatelLCD();
}

152

else{ //If ID written;
//Get id, up to 8 letter
for(i = 9; i<8; i++){
if((nfc read[index]==59) |
(nfc read[index]<0x39) |
(nfc read[index]>0x39))
{//if reach semicolon, or non number

while(i<8){
patient id[i]= 0x00; //fill rest of string with
null
i++;
}
}
else{
patient id[i] = nfc read[index]; //else move character over
index++;
}
}
}
wifi_cmd=0x02; //get ready to read patient info from wifi
}

void wakeup_wifi(void){
mcu_to_wifi = 1; //Flag that shows MCU is sending cmd first

WIFI_INT_IE &= ~WIFI_INT; // disable interrupts
//pulse wifi_int to wake up WIFI chip
WIFI_INT_OUT &= ~WIFI_INT; // button output low
delay cycles(10090);
WIFI_INT OUT |= WIFI_INT; // button output high
WIFI_INT_IFG &= ~WIFI_INT; // button IFG cleared
WIFI_INT _IE |= WIFI_INT; // enable interrupts
}
//SPI_Mode SPI _Master_WriteReg(uint8_t reg_addr, uint8_t *reg data, uint8_t
count);
//
//SPI_Mode SPI_Master_WriteReg(uint8_t reg_addr, uint8_t *reg_data, uint8_t
count)
/74

// MasterModeWIFI = TX _CMD_MODE;
// TransmitCmd = reg_addr;

//
// //Copy register data to TransmitBuffer
// CopyArray(reg_data, TransmitBuffer, count);

//

153

// RXByteCtr = 0;

// ReceivelIndex = 0;

// TransmitIndex = 0;

//

// WIFI_CS_OUT &= ~(WIFI_CS);
// SendUCA@Data(TransmitCmd);
//

// __bis_SR_register(CPUOFF + GIE);
interrupts

//

// WIFI_CS_OUT |= WIFI_CS;

// return MasterModeWIFI;

/1}

TXByteCtr = count;

// Enter LPMO w/

SPI_Mode SPI_WIFI_CMD(uint8_t wifi_cmd, uint8_t count)

{

MasterModeWIFI = RX_DATA MODE;
TransmitCmd = wifi_cmd;
RXByteCtr = count;

TXByteCtr = 0;

ReceivelIndex = 0;
TransmitIndex = 0;

WIFI_CS_OUT &= ~(WIFI_CS);

transmit

SPI_|

SendUCA@Data(TransmitCmd);
__bis_SR_register(CPUOFF + GIE);

WIFI_CS OUT |= WIFI_CS;
return MasterModeWIFI;

// let wifi know we are ready to

// send command
// Enter LPMO w/ interrupts

// pull wifi_CS back up

Mode SPI_WIFI_WRITE(uint8_t* id, uint8_t count)

CopyArray(id, TransmitBuffer, count);

MasterModeWIFI = TX _DATA MODE;
TXByteCtr = count;

RXByteCtr = 0O;

ReceivelIndex = 0;
TransmitIndex = 9;

WIFI_CS_OUT &= ~(WIFI_CS);

transmit

SendUCA@Data (DUMMY) ;
__bis_SR_register(CPUOFF + GIE);

WIFI_CS OUT |= WIFI_CS;
return MasterModeWIFI;

// let wifi know we are ready to
// send command
// Enter LPM@ w/ interrupts

// pull wifi_CS back up

154

SPI_Mode SPI_WIFI_READ(uint8_ t count)

{
MasterModeWIFI = RX_DATA MODE;

RXByteCtr = count;
TXByteCtr = 0;

ReceivelIndex = 0;
TransmitIndex = 9;

WIFI_CS OUT &= ~(WIFI_CS);

transmit
//SendUCA@Data(TransmitCmd);
UCARIFG |= UCRXIFG;

__bis_SR_register(CPUOFF + GIE);

WIFI_CS_OUT |= WIFI_CS;

return MasterModeWIFI;
}

void SendUCA@Data(uint8 t val)

{
while (!(UCAQIFG & UCTXIFG));

// let wifi know we are ready to

// send command

// Enter LPMO w/ interrupts

// pull wifi_CS back up

// USCI BO TX buffer ready?

UCAOTXBUF = val;
SPI_CMD_Receive=UCA@GRXBUF;
// while(! (UCAOIFG & UCRXIFG));
// wifi_cmd_read = UCAORXBUF;

}

void CopyArray(uint8_ t *source, uint8_t *dest, uint8_t count)

{
uint8_t copyIndex = ©;
for (copylIndex = @; copylIndex < count; copyIndex++)
{
dest[copyIndex] = source[copyIndex];
}
}

void updateLCD(void){
switch(LCD_Screen){
case 0:
LCDclear();
LCDsetCursor(0,0);

LCDprint(patient_name);

LCDsetCursor(0,1);
LCDprint("i:");
LCDsetCursor(2,1);
LCDprint(patient _id);
LCDsetCursor(10,1);

//Display Patient name, id, and room

155

LCDprint("R:");
LCDsetCursor(12,1);
LCDprint(patient_room);
break;

case 1: //Display Patient and

LCDclear();
LCDsetCursor(4,0);
LCDprint(watch_time);
LCDsetCursor(3,1);
LCDprint(watch_date);
break;

case 2:
LCDclear();
LCDsetCursor(0,0);
LCDprint("Hold buttons for");
LCDsetCursor(0,1);
LCDprint (" [EMERGENCY MODE]");
break;

case 3:
LCDclear();
LCDsetCursor(0,0);
LCDprint("Please input ID");
LCDsetCursor(2,1);
LCDprint("info via app");
break;

case -1:
LCDclear();
LCDsetCursor(0,0);
LCDprint("![EMERGENCY MODE]!");
LCDsetCursor(0,1);
LCDprint("disable-hold buttons");
break;

default:
LCDclear();
LCDsetCursor(0,0);
LCDprint("Please input patient");
LCDsetCursor(0,1);
LCDprint("info via NFC");
break;

Priority of used interrupts:
System Interrupts: Reset, watchdog, POR

Clock

156

*/

Timero_A0
Timero_Al
Timerl_A0
Timerl Al
RTC

eUSCI_A@ SPI (ucae1v)
eUSCI_BO 1I2c (ucBe1v)
P1 P1IFG.0 to .7 (P1IV)
P2 P2IFG.0 to .7 (P21IV)

(TAOCCR®)
else (TAQIV)
(TA1CCR®)
else (TA1lIV)

#pragma vector=TIMERO_A@_VECTOR
__interrupt void TIMER@_A®_ISR(void){

TAGCCTLO &= ~CCIFG;
TAOCCTLO &= ~CCIE;
int time_updated = 0;

//Clear Flag

seconds += 1;
LED_OUT ~= GREEN_LED;

if(seconds >= 60){
time_updated = 1;
seconds = 0;
minutes++;

¥

if (minutes==60){

minutes=0;
hours++;

¥

if (hours==13){
if(isPM){

isPM=0;
¥
else{

isPM = 1;
}

hours = 1;

}
if(time_updated){
//put into string format "HH:MMpm"

watch time[09] 0x30 + (hours/10);

//increase seconds
// toggle green led

//Disable interrupts

//get int division 10, value in

tens digit

watch time[1] 0x30 + (hours%19);

//get int modulo 10, value in

ones digit

//colon
watch time[3]

0x30 + (minutes/10);

//get int division 10, value

in tens digit

watch time[4] 0x30 + (minutes%10);

//get int modulo 10, value in

ones digit

if(isPM){

157

watch_time[5] 'p'; //am or pm

}else{
watch_time[5] = 'a';
}
time_updated = 0; //clear flag for next run
if(LCD_Screen == 1){ //if showing time, update
updatelLCD();
}
}
TAOCCTLO &= ~CCIFG; //Clear Flag
TAQCCTLO |= CCIE; //Enable interrupts

}

#pragma vector=TIMERO_Al1_VECTOR
__interrupt void TIMER@_A1_ISR(void){

//available for PWM

}

#pragma vector=TIMER1_A@_VECTOR
__interrupt void TIMER1_A@_ISR(void){

if(both_sw_on){ //if at least both switches pressed once
//LCDclear();
//LCDprint("Both SW");
if((SW_IN & (SW1|SW2)) == @){//and still pressed

both_sw_on++; //increment counter
if(both_sw_on > 25){ //if both switches pressed for 1s
constantly
both_sw_on =1 ; // flag for both switches
emergency_mode "= 1; // toggle emergency mode flag
TA1CCTLO &= ~CCIFG; //Clear Flag
TA1CCTLO &= ~CCIE; //Disable interrupts
__bic_SR_register_on_exit(LPM3_bits); //wake up to handle
interrupt
}
else{ //if both switches pressed
consecutively
TA1CCRO += 100*_1ms_32kHz;//time to check next time for
both switches
TA1CCTLO &= ~CCIFG; //Clear Flag
TA1CCTL® |= CCIE; //Enable interrupts
}
}
else{ //if not both pressed,
both_sw_on = 0; //reset counter

158

TA1CCTLO &= ~CCIFG; //Clear Flag
TA1CCTLO &= ~CCIE; //Disable interrupts

}

#pragma vector=TIMER1_Al1_VECTOR
__interrupt void TIMER1_A1_ISR(void){

if ((TA1CCTL1 & (CCIFG|CCIE)) == (CCIFG|CCIE)){ //if flag enabled and set
//received 15ms delay for swl
if(SW_flag_debounce & SW1){

//switch 1 action, only do if button is still pressed after 15ms
if((SW_IN & SW1) == 0){

}

else{ //SW1 Action to do if released

}

//Switch Debounced, reenable interupts
SW_flag_debounce &= ~SW1; //turn off flag for debounce

P2IFG &= ~SW1; //clear pending interrupt
P2IE |= SW1; //enable interrupt after 15ms
}
if((SW_IN & (SW1|SW2)) == @){//and still pressed
both_sw_on++; //increment counter
TA1CCRO += 100*_1ms_32kHz;//time to check next time for both
switches
TA1CCTLO &= ~CCIFG; //Clear Flag
TAL1CCTL® |= CCIE; //Enable interrupts
}
else{ //if not both pressed,
both_sw_on = 0; //reset counter
TA1CCTLO &= ~CCIFG; //Clear Flag
TA1CCTLO &= ~CCIE; //Disable interrupts
}
TA1CCTL1 &= ~CCIFG; //Clear Flag
TA1CCTL1 &= ~CCIE; //Disable interrupts
}

if ((TA1CCTL2 & (CCIFG|CCIE)) == (CCIFG|CCIE)){ //if flag enabled and
set
//received 15ms delay for sw2

if(SW_flag_debounce & SW2){

159

//switch 2 action, only do if button is still pressed after 25ms
if((SW_IN & SW2) == 0){

}
else{ //SW2 Action to do if released

}

//Switch Debounced, reenable interupts
SW_flag_debounce &= ~SW2; //turn off flag for debounce

P2IFG &= ~SW2; //clear pending interrupt
P2IE |= SW2; //enable interrupt after 15ms
}
if ((SW_IN & (SW1|SW2)) == @){//and still pressed
both_sw_on++; //increment counter
TA1CCRO += 100*_1ms_32kHz;//time to check next time for both
switches
TA1CCTLO &= ~CCIFG; //Clear Flag
TA1CCTLO |= CCIE; //Enable interrupts
}
else{ //if not both pressed,
both_sw _on = 0; //reset counter
TA1CCTLO &= ~CCIFG; //Clear Flag
TA1CCTLO &= ~CCIE; //Disable interrupts
}
TA1CCTL2 &= ~CCIFG; //Clear Flag
TA1CCTL2 &= ~CCIE; //Disable interrupts
}
}
//rtc
//SPI

#pragma vector = USCI_AO_VECTOR
__interrupt void USCI_A@_ISR(void)
{
uint8_t UCA@_rx_val = 0;
switch(__even_in_range(UCAQIV, USCI_SPI_UCTXIFG))
{
case USCI_NONE: break;
case USCI_SPI_UCRXIFG:
UCA@_rx_val = UCAORXBUF;
UCAQIFG &= ~UCRXIFG;
switch (MasterModeWIFTI)
{
case TX_CMD_MODE:
if (RXByteCtr)

160

MasterModeWIFI = RX DATA MODE; // Need to start
receiving now
//Send Dummy To Start
delay cycles(2000000);

SendUCA@Data (DUMMY) ;
}
else
{
MasterModeWIFI = TX _DATA_MODE; // Continue to

transmision with the data in Transmit Buffer
//Send First
SendUCA@Data(TransmitBuffer[TransmitIndex++]);
TXByteCtr--;

}

break;

case TX_DATA MODE:
if (TXByteCtr)
{
SendUCA@Data(TransmitBuffer[TransmitIndex++]);
TXByteCtr--;

}

else
{
//Done with transmission
MasterModeWIFI = IDLE MODE;
__bic_SR_register_on_exit(CPUOFF); // Exit LPM@
}

break;

case RX_DATA_MODE:
if (RXByteCtr)

{
ReceiveBuffer[ReceiveIndex++] = UCA®_rx_val;
//Transmit a dummy
RXByteCtr--;
// if(ReceiveBuffer[ReceiveIndex]==0x00){
// RXByteCtr=0;
// }
}
if (RXByteCtr == 0)
{
MasterModeWIFI = IDLE MODE;
__bic_SR_register_on_exit(CPUOFF); // Exit LPMe@
}
else
{
SendUCA@Data (DUMMY) ;
}
break;
default:

161

__no_operation();
break;
}
delay cycles(1009);
break;
case USCI_SPI_UCTXIFG:
break;
default: break;

}

#pragma vector=PORT1_VECTOR
__interrupt void PORT1_ISR(void){

if(P1IFG & WIFI_INT){ //interrupt from wifi
P1IE &= ~WIFI_INT; //disable interrupt from wifi
P1IFG &= ~WIFI_INT; //Clear flag from wifi
if(mcu_to_wifi){ // if mcu sent command
}
else{ //if wifi sent command
}

wifi_int = 1;

__bic_SR_register_on_exit(LPM3_bits); //wake up to handle interrupt

llse if(P1IFG & NFC_INT){ //interrupt from nfc
P1IE &= ~NFC_INT; //disable intetrrupt from NFC
P1IFG &= ~NFC_INT; //Clear flag from NFC
LED _OUT ~= RED_LED; //toggle red led
nfc_int = 1; //set NFC flag

__bic_SR_register_on_exit(LPM3_bits); //wake up to handle interrupt

}

#pragma vector=PORT2_VECTOR
__interrupt void PORT2_ISR(void){

//switches
if(P2IFG & SW1){ //switch 1

//software debounce with timer, turn on IE after

162

SW_flag debounce |= SW1; //flag for switch interrupt, enabled later
P2IFG &= ~SW1; //clear interrupt until later
P2IE &= ~SW1; //disable swl interrupt for 15 ms

//SW1 Action
//next LCD Screen
if(LCD_Screen != 0){
LCD_Screen--; //move to prev lcd screen display

}
else{LCD_Screen = HighestLCDScreen;} //Start at last screen

updatelCD();

TA1CCR1 = TA@R + 15* 1ms_32kHz; //delay 15ms
TA1CCTL1 &= ~CCIFG; //Clear pending flag
TALCCTL1 |= CCIE; //enable flag interrupt

}
if(P2IFG & SW2){ //Ready to read HR
//software debounce with timer, turn on IE after
SW_flag_debounce |= SW2; //flag for switch interrupt, enabled
later
P2IFG &= ~SW2; //clear interrupt until later
P2IE &= ~SW2; //disable SW2 interrupt for 15 ms
//next LCD Screen
if(LCD_Screen != HighestLCDScreen){
LCD_Screen++; //move to next lcd screen display
}
else{LCD _Screen = 0;} //Start at first screen
updatelCD();
TAICCR2 = TA@R + 15* 1ms_32kHz; //delay 15ms
TA1CCTL2 &= ~CCIFG; //Clear pending flag
TAICCTL2 |= CCIE; //enable flag interrupt
}
//AFE INTERRUPTS
if(P2IFG & AFE_ADC_READY){ //Ready to read HR
P2IFG &= ~AFE_ADC_READY;
}
if(P2IFG & AFE_DIAG_END){ //Diagnostic completion
P2IFG &= ~AFE_DIAG_END;
}
if(P2IFG & AFE_DIAG_END){ //interrupt from nfc
P2IFG &= ~AFE_ADC_READY;
}
if(P2IFG & AFE_DIAG_END){ //interrupt from nfc

163

P2IFG &= ~AFE_ADC_READY;

}
if(P2IFG & AFE_DIAG_END){ //interrupt from nfc
P2IFG &= ~AFE_ADC_READY;
}
if(P2IFG & AFE_DIAG_END){ //interrupt from nfc
P2IFG &= ~AFE_ADC_READY;
}
if(P2IFG & AFE_DIAG_END){ //interrupt from nfc
P2IFG &= ~AFE_ADC_READY;
}
¥
11 master.h
/*
* main.h

*

* Defines values for pins, ports, registers and commands used in LifeWatch
v2.0

*

* Created on: Nov 19, 2018

* Author: William Toledo

*/

#ifndef MASTER_H_
#define MASTER_H_

//Headers

#include <msp430.h>
#tinclude <RF430.h>
//#include <AFE4400.h>
#tinclude <LCDMSP.h>
#tinclude <stdint.h>

//function declarations
void initClocks();

164

void
void
void
void
void
void
void

//SPI_Mode SPI_Master_WriteReg(uint8_t reg_addr, uint8_t *reg_data, uint8_t

initGPIO();

initComm();

read_patient_info_NFC();

updateLCD(void);

wakeup_wifi(void);

CopyArray(uint8_t *source, uint8_t *dest, uint8 t count);
SendUCA@Data(uint8 t val);

count);
//SPI_Mode SPI_WIFI_CMD(uint8_t wifi_cmd, uint8_t count);
//SPI_Mode SPI_WIFI_READ(uint8_t count);

// Pin Definitions by sections

//WIFI

#tdefine WIFI_CS BITO

#tdefine WIFI_CS_OUT P8OUT
#define WIFI_CS_DIR P8DIR
#define WIFI_INT BIT7

#define WIFI_INT_IN P1IN

#define WIFI_INT_DIR P1DIR
#define WIFI_INT_OUT P10UT
#define WIFI_INT_REN P1REN
#define WIFI_INT_IES P1IES
#define WIFI_INT_IFG P1IFG

#define WIFI_INT_IE P1IE
//NFC

#define NFC_R BITS
#define NFC_R_OUT P10UT
#define NFC_R_DIR P1DIR
#define NFC_R_SEL P1SEL®@
#define NFC_INT BIT6
#define NFC_INT_OUT P10UT
#define NFC_INT_DIR P1DIR
#define NFC_INT_IN P1IN
#define NFC_INT_REN P1REN
#define NFC_INT_IES P1IES
#define NFC_INT_IFG P1IFG
#define NFC_INT_IE P1IE
#define NFC_INT_SEL P1SEL®@
//AFE

#define AFE_OUT P20UT
#define AFE_DIR P2DIR
#define AFE_IN P2IN
#define AFE_REN P2REN
#define AFE_IES P2IES
#define AFE_IFG P2IFG
#define AFE_IE P2IE

165

ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
#tdefine

#tdefine
#tdefine
#tdefine

//LCD
t#tdefine
t#tdefine

t#tdefine
t#tdefine
t#tdefine
t#tdefine
t#tdefine
#tdefine
ttdefine
#tdefine

AFE_PDNZ
AFE_DIAG_EN
AFE_LED_ALM
AFE_PD_ALM
AFE_ADC_REA
AFE_RESETZ

AFE_CS
AFE_CS_OUT
AFE_CS_DIR

LCD_OUT
LCD_DIR

LCD_DB®
LCD_DB1
LCD_DB2
LCD_DB3
LCD_E
LCD_RS
LCD_BL
LCD_VM

//Peripherals

ttdefine
ttdefine
ttdefine
ttdefine

t#tdefine
#tdefine
t#tdefine

#tdefine
#tdefine
#tdefine

LED_OUT
LED_DIR
RED_LED
GREEN_LED

BUZZ_OUT
BUZZ_DIR
BUZZ BIT

VIB_OUT
VIB_DIR
VIB BIT3

//Switches

t#tdefine
t#tdefine
t#tdefine
t#tdefine
t#tdefine
ttdefine
t#tdefine

t#tdefine
t#tdefine

SW_ouT
SW_DIR
SW_IN

SW_REN
SW_IES
SW_IFG
SW_IE

SW1
SW2

BIT2
D BIT3
BIT4
BITS
DY BITé
BIT7

BIT3
P10UT
P1DIR

P70UT
P7DIR

BITO
BIT1
BIT2
BIT3
BIT4
BITS
BIT6 //P CHANNEL MOSFET
BIT7

P30UT
P3DIR
BITo
BIT1

P30UT
P3DIR
2

P30UT
P3DIR

//P CHANNEL MOSFET

P20UT
P2DIR
P2IN

P2REN
P2IES
P2IFG
P2IE

BITo
BIT1

166

//Communication

//SPI

#define SPI_SEL P1SEL®
#define SPI_SIMO BITO
#define SPI_SOMI BIT1
#define SPI_SCLK BIT2

//12C

#define I2C_SEL P5SEL®@
#define I2C_OUT P50UT
#define I2C_DIR P5DIR
#define I2C_SDA BIT2
#define I2C_SCL BIT3

//Used pins

#define P8_USED_PINS WIFI_CS

#define P7_USED_PINS LCD_DB®@|LCD_DB1 |LCD_DB2|LCD_DB3|LCD_E|LCD_RS|LCD_BL
|LCD_WM

#define P6_USED_PINS)

#define P5_USED_PINS I2C_SDA|I2C_SCL

#define P4_USED_PINS)

#define P3_USED_PINS GREEN_LED|RED_LED|VIB|BUZZ

#define P2_USED_PINS
SW1|SW2|AFE_PDNZ|AFE_DIAG_END|AFE_LED_ALM|AFE_PD_ALM|AFE_ADC_READY|AFE_RESETZ
#define P1_USED_PINS
WIFI_INT|NFC_R|NFC_INT|AFE_CS|SPI_SIMO|SPI_SOMI|SPI_SCLK

//LCD Screen

//typedef enum LCD_ScreenEnum{

// NAME_ROOM,

// TIME_DATE,

// ID_NAME

//} LCD_Screen_Mode;

//

//LCD_Screen_Mode LCD_Screen = NAME_ROOM;

// variables used in functions
#tdefine _1ms_16MHz 16000 //cycles to have 1lms at 16MHz

#tdefine _1ms_8MHz 8000 //cycles to have 1ms at 8MHz
#define _1ms_1MHz 1000 //cycles to have 1ms at 1MHz
#define _1ms_32kHz 32 //cycles to have 1lms at 32kHz
#define _1ms_1kHz 1 //cycles to have 1ms at 1kHz

////wifi commands

//#define WIFI_TIME 1
//#define WIFI_PATIENT 2
!/

#define DUMMY 0x41

167

#define MAX_BUFFER_SIZE 100

#tendif /* MASTER_H_ */

12 RF430.c

/*
*
*
*
*
*

*

~

X X K XN X X X K X X K X K X X X K X K X X X X X X X X X X X ¥ ¥ ¥ %

{RF430_example.c}
{Functions}

Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

Neither the name of Texas Instruments Incorporated nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RF430_example.c

Created on: Feb 6, 2013
Author: JD Crutchfield

168

*/
#include <master.h>
#include <RF430.h>
#include "msp430.h"

unsigned char RxData[2] = {0,0};
unsigned char TxData[2] {0,0};
unsigned char TxAddr[2] {0,0};

unsigned char NDEF_Application_Data[] = RF430_DEFAULT_DATA;

void initNFC(void){
__delay_cycles(4000000) ; // Leave time for the RF430CL33H
to get itself initialized; should be 2@ms or greater

while(!(Read_Register(STATUS_REG) & READY)); // Wait until READY bit has
been set

//write NDEF memory with Capability Container + NDEF message
Write_Continuous(@, NDEF_Application_Data, 48);

//Enable interrupts for End of Read and End of Write
Write_Register(INT_ENABLE_REG, EOW_INT_ENABLE + EOR_INT_ENABLE);

//Configure INTO pin for active low and enable RF
Write_Register(CONTROL_REG, INT_ENABLE + INTO_DRIVE + RF_ENABLE);

__delay_cycles(4000000); // Leave time for the RF430CL33H
to get itself initialized; should be 20ms or greater
NFC_INT_IFG &= ~NFC_INT; // pin IFG cleared
NFC_INT_IE |= NFC_INT; // pin interrupt enabled
}
unsigned int Read_Register(unsigned int reg_addr)
{
TxAddr[@] = reg_addr >> 8; //MSB of address

TxAddr[1] = reg_addr & OxFF; //LSB of address

UCBOCTL1 &= ~UCSWRST;

UCBOCTL1 |= UCTXSTT + UCTR; //start i2c write operation
while(!(UCBOIFG & UCTXIFG®O));

UCBOTXBUF = TxAddr[e];

while(!(UCBOIFG & UCTXIFG®O));

UCBOTXBUF = TxAddr[1];

while(! (UCBOIFG & UCTXIFGO));

UCBOCTL1 &= ~UCTR; //1i2c read operation
UCBOCTL1 |= UCTXSTT; //repeated start
while(!(UCBOIFG & UCRXIFGO));

RxData[@] = UCBORXBUF;

169

}

UCBOCTL1 |= UCTXSTP;
while(!(UCBOIFG & UCRXIFGO));
RxData[1] = UCB@RXBUF;

while((UCBOSTAT & UCBBUSY));
UCBOCTL1 |= UCSWRST;

//send stop after next RX

// Ensure stop condition got sent

return RxData[1] << 8 | RxData[o];

//reads the register at reg_addr, returns the result
unsigned int Read_Register_ BIP8(unsigned int reg_addr)

{

}

unsigned char BIP8 = 0;
TxAddr[@] = reg_addr >> 8;
TxAddr[1] = reg_addr & OxFF;

UCBOCTL1 &= ~UCSWRST;
UCBOCTL1 |= UCTXSTT + UCTR;

while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[e];

BIPS ~= TxAddr[e];

while(! (UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[1];

BIPS ~= TxAddr[1];

while(!(UCBOIFG & UCTXIFGO));
UCBOCTL1 &= ~UCTR;
UCBOCTL1 |= UCTXSTT;

while(!(UCBOIFG & UCRXIFGO));
RxData[@] = UCBORXBUF;

BIP8 ~= RxData[®@];
while(!(UCBOIFG & UCRXIFGO));
RxData[1] = UCBORXBUF;

BIP8 ~= RxData[l];

UCBOCTL1 |= UCTXSTP;

while(!(UCBOIFG & UCRXIFGO));

if(BIP8 != UCBORXBUF){
__no_operation();

¥
while((UCBOSTAT & UCBBUSY));
UCBOCTL1 |= UCSWRST;

//MSB of address
//LSB of address

//start i2c write operation

// Waiting for TX to finish on bus
//i2c read operation
//repeated start

//send stop after next RX

// Ensure stop condition got sent

return RxData[@] << 8 | RxData[1];

void Read_Continuous(unsigned int reg_addr, unsigned char* read_data, unsigned
int data_length)

{

unsigned int i,

170

TxAddr[0]
TxAddr[1]

reg_addr >> 8;
reg_addr & OXxFF;

UCBOCTL1 &= ~UCSWRST;
UCBOCTL1 |= UCTXSTT + UCTR;
Slave address

while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[@];
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[1];
while(!(UCBOIFG & UCTXIFGO));
UCBOCTL1 &= ~UCTR;

UCBOCTL1 |= UCTXSTT;
while(!(UCBOIFG & UCRXIFGO));

for(i = @; i < data_length-1;
{

//MSB of address
//LSB of address

//start i2c write operation. Sending

// Waiting for TX to finish on bus
//i2c read operation
//repeated start

i++)

while(!(UCBOIFG & UCRXIFGO));

read_data[i] = UCBORXBUF;
}

UCBOCTL1 |= UCTXSTP;
while(!(UCBOIFG & UCRXIFGO));
read_data[i] = UCBORXBUF;
while((UCBOSTAT & UCBBUSY));
UCBOCTL1 |= UCSWRST;

}

//send stop after next RX

// Ensure stop condition got sent

//writes the register at reg_addr with value
void Write_Register(unsigned int reg_addr, unsigned int value)

{
TxAddr[@] = reg_addr >> 8;
TxAddr[1] = reg_addr & OxFF;
TxData[@] = value >> 8;
TxData[1l] = value & OxFF;
UCBOCTL1 &= ~UCSWRST;

UCBOCTL1 |= UCTXSTT + UCTR;
//write the address
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[@];
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[1];
//write the data
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxData[1];
while(! (UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxData[@];
while(!(UCBOIFG & UCTXIFGO));
UCBOCTL1 |= UCTXSTP;

while((UCBOSTAT & UCBBUSY));
UCBOCTL1 |= UCSWRST;

//MSB of address
//LSB of address

//start i2c write operation

// Ensure stop condition got sent

171

}

//writes the register at reg_addr with value
void Write_Register_BIP8(unsigned int reg_addr, unsigned int value)

{

}

unsigned char BIP8 = 0;

TxAddr[@] = reg_addr >> 8;
TxAddr[1] = reg_addr & OxFF;
TxData[@] = value >> 8;
TxData[1l] = value & OxFF;

UCBOCTL1 &= ~UCSWRST;
UCBOCTL1 |= UCTXSTT + UCTR;

//write the address
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[@];

BIP8 ~= TxAddr[0];
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxAddr[1];

BIP8 ~= TxAddr[1];

//write the data
while (! (UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxData[0];

BIP8 ~= TxData[®@];
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = TxData[1];

BIP8 ~= TxData[l];

//send BIP8 byte
while(! (UCBOIFG & UCTXIFGO));
UCBOTXBUF = BIPS;

while(!(UCBOIFG & UCTXIFG®));
UCBOCTL1 |= UCTXSTP;

while((UCBOSTAT & UCBBUSY));;
UCBOCTL1 |= UCSWRST;

//0, NDEF_Application_Data, 48

//MSB of address
//LSB of address

//start 1i2c write operation

// Ensure stop condition got sent

//writes the register at reg_addr and incrementing addresses with the data at

"write_data" of length data_length
void Write_Continuous(unsigned int reg_addr, unsigned char* write_data,

unsigned int data_length)

{

unsigned int i;

TxAddr[0]
TxAddr[1]

reg_addr >> 8;
reg_addr & OxFF;

//MSB of address
//LSB of address

172

UCBOCTL1 &= ~UCSWRST;

UCBOCTL1 |= UCTXSTT + UCTR; //start i2c write operation
//write the address

while(! (UCBOIFG & UCTXIFG®));

UCBOTXBUF = TxAddr[@];

while(!(UCBOIFG & UCTXIFGO));

UCBOTXBUF = TxAddr[1];

for(i = 0; i < data_length; i++)
{
while(!(UCBOIFG & UCTXIFGO));
UCBOTXBUF = write_data[i];

}

while(!(UCBOIFG & UCTXIFGO));

UCBOCTL1 |= UCTXSTP;

while((UCBOSTAT & UCBBUSY)); // Ensure stop condition got
UCBOCTL1 |= UCSWRST;

13 RF430.h

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

{RF430_example.h}

{RF430 header}

sent

Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com/

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the
distribution.

Neither the name of Texas Instruments Incorporated nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

173

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

~

RF430_example.h

Created on: Feb 6, 2013
Author: ID Crutchfield

#ifndef RF430_H_
#tdefine RF430_H_

//#include "RF430 example.c"

void initNFC(void);

unsigned int Read_Register(unsigned int reg_addr);

unsigned int Read_Register_BIP8(unsigned int reg_addr);

void Read_Continuous(unsigned int reg_addr, unsigned char* read_data, unsigned
int data_length);

void Write_Register(unsigned int reg_addr, unsigned int value);

void Write_Continuous(unsigned int reg_addr, unsigned char* write data,
unsigned int data_length);

void Write_Register_ BIP8(unsigned int reg_addr, unsigned int value);

//define the values for Granite's registers we want to access

#define CONTROL_REG OXFFFE
#define STATUS_REG OXFFFC
#define INT_ENABLE_REG OXFFFA
#define INT_FLAG_REG OXFFF8
#define CRC_RESULT_REG OXFFF6
#define CRC_LENGTH_REG OXFFF4

#define CRC_START_ADDR_REG OXFFF2
#define COMM_WD_CTRL_REG OxFFFO

#define VERSION_REG OXFFEE //contains the software version of the ROM
#define TEST_FUNCTION_REG OXFFE2
#define TEST_MODE_REG OXFFEQ

//define the different virtual register bits
//CONTROL_REG bits

#define SW_RESET BITO
#define RF_ENABLE BIT1
#define INT_ENABLE BIT2
#define INTO_HIGH BIT3

174

#define INTO_DRIVE BIT4
#define BIP8_ENABLE BITS

#define STANDBY_ENABLE BIT6
#define TEST430_ENABLE BIT7
//STATUS_REG bits

#define READY BITO
#define CRC_ACTIVE BIT1

#define RF_BUSY BIT2
//INT_ENABLE_REG bits

#define EOR_INT_ENABLE BIT1
#define EOW_INT_ENABLE BIT2
#define CRC_INT_ENABLE BIT3
#define BIP8_ERROR_INT_ENABLE BIT4
#define NDEF_ERROR_INT_ENABLE BITS
#define GENERIC_ERROR_INT_ENABLE BIT7
//INT_FLAG_REG bits

#define EOR_INT_FLAG BIT1

#define EOW_INT_FLAG BIT2

#define CRC_INT_FLAG BIT3

#define BIP8_ERROR_INT_FLAG BIT4
#define NDEF_ERROR_INT FLAG BIT5
#define GENERIC_ERROR_INT_FLAG BIT7
//COMM_WD_CTRL_REG bits

#define WD_ENABLE BIT®

#define TIMEOUT_PERIOD 2 _SEC ©
#define TIMEOUT_PERIOD_32_SEC BIT1
#define TIMEOUT_PERIOD_8 5 MIN BIT2

#define TIMEOUT_PERIOD_MASK BIT1 + BIT2 + BIT3

#define TEST_MODE_KEY ©x©04E

#define RF430_DEFAULT_DATA {

\

/*NDEF Tag Application Name*/

\

oxD2, Ox76, 0x00, 0Ox00, 0x85, 0x01, 0x01,
\

\

/*Capability Container ID*/
\

OxE1l, 0x03,

\

0x00, OxOF, /* CCLEN */

\

0x20, /* Mapping version 2.0 */
\

0x00, OxF9, /* MLe (49 bytes); Maximum R-APDU data size */

\

0x00, OxF6, /* MLc (52 bytes); Maximum C-APDU data size */
\

oxe4, /* Tag, File Control TLV (4 =

\

NDEF file) */

175

0x06, /* Length, File Control TLV (6 = 6 bytes of data for this tag) */

\
OxE1l, 0x04, /* File Identifier */

\
0x0B, OxDF, /* Max NDEF size (3037 bytes of useable memory) */

\

0x00, /* NDEF file read access condition, read access without any
security */ \
0x00, /* NDEF file write access condition; write access without any

security */ \

\

/* NDEF File ID */
\

OxE1l, Oxe4,

\

\

/* NDEF File for Hello World */

\

0x00, 0x14, /* NLEN: NDEF length (20 byte long message, max. length for
RF430CL) */ \

\

/* NDEF Record (refer to NFC Data Exchange Format specifications)*/

\

oxD1, /*MB(Message Begin), SR(Short Record) flags set, ME(Message End),
IL(ID length field present) flags cleared; TNF(3bits) = 1; */ \

ox01, 0x10, /*Type Length = 0x01; Payload Length = ox10 */

\

ox54, /* Type = T (text) */

\

ox02, /* 1st payload byte: "Start of Text", as specified in ASCII Tables
*/ \

Ox65, Ox6E, /* 'e', 'n', (2nd, 3rd payload bytes*/

\

\

/* 'Hello, world!"' NDEF data*/

\

ox48, Ox65, Ox6C, Ox6C, Ox6f, Ox2c, Ox20, Ox77, Ox6f, Ox72, Ox6¢C, OXx64, Ox21

\
} /* End of data */

#endif /* RF430 H_ */

14 LCDMSP.c

//#include "LCDMSP.h"
//#include "msp430.h"
#include <stdio.h>
#include <string.h>

176

#include <inttypes.h>
#include <master.h>
//#include "WProgram.h"

#tdefine cyc_per _millisec 16000

int m =0;

void LCDinit()

{

_displayfunction = LCD_4BITMODE | LCD_2LINE | LCD_5x8DOTS;
_numlines = 2;
_currline = 0;

//initialize LCD Pins
LCD_OUT &= ~(LCD_BL|LCD_E|LCD_RS|LCD_DB2|LCD_DB3|LCD_DB@|LCD _DB1);

//delay after power up
LCD_OUT |= (LCD_RS|LCD_E);
for(m=0; m<50;m++){
__delay_cycles(cyc_per _millisec); // wait 50 ms

}

LCD_OUT &= ~(LCD_RS|LCD_E);

//LCD takes times to initialize
LCDwritedbits(0x03);
for(m=0; m<5;m++){
__delay_cycles(cyc_per_millisec); // wait 5 ms

}

LCDwritedbits(0x03);
for(m=0; m<7;m++){
__delay_cycles(cyc_per_millisec); // wait 7 ms

}

//enter 4bit mode
LCDwrite4bits(0x02);

//LCD setup
LCDcmd (LCD_FUNCTIONSET |_displayfunction);

// turn the display on with no cursor or blinking default
_displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF;
LCDdisplay();

//LCD Clear
LCDclear();

// Initialize to default text direction (for romance languages)
_displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT;

// set the entry mode

LCDcmd (LCD_ENTRYMODESET | _displaymode);

//if 1mHz clk, 1 cyc = 1lus, 1ms=1000cyc

177

//void LCDupdate(uint8_t value)

/79 //update the screen to given value in screen
// LCDclear();

// LCDhome();

// switch(value){

// case 0: //Patient Info

// LCDprint(patient_Name);
// }

//

//

/1%

[¥FFFFRxxx%x high level commands, for the user! */

void LCDclear()

{
LCDcmd (LCD_CLEARDISPLAY); // clear display, set cursor position to zero
__delay_cycles(2*cyc_per_millisec);

}

void LCDhome()

{
LCDcmd (LCD_RETURNHOME); // set cursor position to zero
__delay_cycles(2*cyc_per_millisec);

}

void LCDsetCursor(uint8_t col, uint8_ t row){
int row_offsets[] = { ox00, 0x40, 0x14, Ox54 };
if (row > _numlines) {
row = _numlines-1; // we count rows starting w/@

}

LCDcmd (LCD_SETDDRAMADDR | (col + row_offsets[row]));
}

// Turn the display on/off (quickly)
void LCDnoDisplay() {

_displaycontrol &= ~LCD_DISPLAYON;

LCDcmd (LCD_DISPLAYCONTROL | _displaycontrol);
}
void LCDdisplay() {

_displaycontrol |= LCD_DISPLAYON;

LCDcmd (LCD_DISPLAYCONTROL | _displaycontrol);

}

// Turns the underline cursor on/off
void LCDnoCursor() {
_displaycontrol &= ~LCD_CURSORON;
LCDcmd (LCD_DISPLAYCONTROL | _displaycontrol);
}
void LCDcursor() {
_displaycontrol |= LCD_CURSORON;

178

LCDcmd (LCD_DISPLAYCONTROL | _displaycontrol);
}

// Turn on and off the blinking cursor
void LCDnoBlink() {
_displaycontrol &= ~LCD_BLINKON;
LCDcmd (LCD_DISPLAYCONTROL | _displaycontrol);
}
void LCDblink() {
_displaycontrol |= LCD_BLINKON;
LCDcmd (LCD_DISPLAYCONTROL | _displaycontrol);

}

// These commands scroll the display without changing the RAM
void LCDscrollDisplayLeft(void) {
LCDcmd (LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT);
}
void LCDscrollDisplayRight(void) {
LCDcmd (LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT);

}

// This is for text that flows Left to Right
void LCDleftToRight(void) {

_displaymode |= LCD_ENTRYLEFT;

LCDcmd (LCD_ENTRYMODESET | _displaymode);
}

// This is for text that flows Right to Left
void LCDrightToLeft(void) {

_displaymode &= ~LCD_ENTRYLEFT;

LCDcmd (LCD_ENTRYMODESET | _displaymode);

}

// This will 'right justify' text from the cursor
void LCDautoscroll(void) {

_displaymode |= LCD_ENTRYSHIFTINCREMENT;

LCDcmd (LCD_ENTRYMODESET | _displaymode);

}

// This will 'left justify' text from the cursor
void LCDnoAutoscroll(void) {
_displaymode &= ~LCD_ENTRYSHIFTINCREMENT;
LCDcmd (LCD_ENTRYMODESET | _displaymode);

}

// Allows us to fill the first 8 CGRAM locations
// with custom characters
void LCDcreateChar(uint8_t location, uint8 t charmap[]) {
location &= ©x7; // we only have 8 locations 0-7
LCDcmd (LCD_SETCGRAMADDR | (location << 3));
int i;
for (i=0; i<8; i++) {
LCDwrite(charmap[i]);
}

179

}

[ERFFFEREAAEEX nid level commands, for sending data/cmds */

void LCDprint(uint8_t string[]){
int i =0;
char letter;
int length = 16;

//for(i=0; i<length; i++) {
letter = string[i];
while(letter != '\0'){

LCDwrite(letter);

i++;

letter = string[i];

if(i>length){
break;

}
}

inline void LCDcmd(uint8 t value) {
LCDsend(value, 9);

}

inline void LCDwrite(uint8_t value) {
LCDsend(value, 1);

}

[ERFFFERRAAAAKX T o level data pushing commands *****xxxxx/

// write either command or data, with automatic 4/8-bit selection
void LCDsend(uint8_t value, uint8_t mode) {

if(mode){//writing
LCD_OUT |= LCD_RS;

} else

{

LCD_OUT &= ~LCD_RS;
}

LCDwritedbits(value>>4);
//__delay cycles(31*cyc_per_millisec);
LCDwritedbits(value);

}

void LCDpulseEnable(void) {

LCD_OUT &= ~LCD_E;
__delay_cycles(100);
LCD_OUT |= LCD_E;
__delay_cycles(100);
LCD_OUT &= ~LCD_E;
__delay_cycles(10000);
}

180

void LCDwrite4bits(uint8_t value) {

value = (OxOF & value); //take lower nibble

LCD_OUT &= ~OxOF; //XxXxx 0000
LCD_OUT |= value; //xxxx 1234
LCDpulseEnable();

}

15 LCDMSP.h

#ifndef LCDMSP_H_
#define LCDMSP_H_

#tinclude <inttypes.h>
//#include "Print.h"

// commands

#tdefine LCD_CLEARDISPLAY 0x01
#tdefine LCD_RETURNHOME ©x02
#define LCD_ENTRYMODESET ©x04
#tdefine LCD_DISPLAYCONTROL ©x08
#define LCD_CURSORSHIFT 0x10
#define LCD_FUNCTIONSET ©x20
#define LCD_SETCGRAMADDR ©x40
#define LCD_SETDDRAMADDR ©x89@

// flags for display entry mode
#define LCD_ENTRYRIGHT ©0x00
#define LCD_ENTRYLEFT ©x02

#define LCD_ENTRYSHIFTINCREMENT ©x01
#define LCD_ENTRYSHIFTDECREMENT ©x00

// flags for display on/off control

#define LCD_DISPLAYON 0x04
#tdefine LCD_DISPLAYOFF ©x00
#define LCD_CURSORON ©x02
#tdefine LCD_CURSOROFF ©x00
#define LCD_BLINKON ©x01
#define LCD_BLINKOFF 0©x00

// flags for display/cursor shift

#define LCD_DISPLAYMOVE 0x08
#define LCD_CURSORMOVE 0x00
#define LCD_MOVERIGHT 0x04
#define LCD_MOVELEFT 0x00

// flags for function set
#define LCD_8BITMODE ©x10
#define LCD_4BITMODE ©x00
#define LCD_2LINE ©x08
#define LCD_1LINE 0©x00

181

#define LCD_5x10DOTS 0x04
#define LCD_5x8DOTS 0x00

void
void
void
void

void
void
void
void
void
void
void
void
void
void
void
void

void
void
void
void

void
void
void
void

LCDinit();
LCDclear();
LCDhome() ;
LCDupdate(uint8_t value);

LCDnoDisplay();
LCDdisplay();
LCDnoBlink();
LCDblink();
LCDnoCursor();
LCDcursor();
LCDscrollDisplayLeft();
LCDscrollDisplayRight();
LCDleftToRight();
LCDrightToLeft();
LCDautoscroll();
LCDnoAutoscroll();

LCDcreateChar(uint8_t, uint8_t[]);
LCDsetCursor(uint8_t, uint8_t);

LCDwrite(uint8 t);
LCDcmd (uint8_t);

LCDsend(uint8 t, uint8_t);
LCDwrited4bits(uint8_t);
LCDpulseEnable();

LCDprint(uint8_t string[]);

uint8_t _displayfunction;
uint8_t _displaycontrol;
uint8_t _displaymode;

uint8_t _initialized;

uint8_t _numlines,_currline;

t#tendif

182

Appendix C — Code for WIFI MCU

The following is the code for the WIFI chip; it includes SPI,
HTTP requests.

16 WIFl.c

#tinclude
#tinclude
#include
#tinclude
#include
#tinclude
#tinclude
#tinclude
#tinclude
#tinclude
#tinclude
#tinclude
#include
#tinclude
#include
#include
#tinclude
#tinclude
#tinclude
#tinclude

<Arduino.h>
"freertos/FreeRT0OS.h"
"freertos/task.h"
"freertos/semphr.h"
"freertos/queue.h”
"lwip/sockets.h"
"lwip/dns.h"
"lwip/netdb.h"
"lwip/igmp.h"
"esp_wifi.h"
"esp_system.h"
"esp_event.h"
"esp_event_loop.h"
"nvs_flash.h"
"soc/rtc_cntl_reg.h"
"rom/cache.h"
"driver/spi_slave.h"
"esp_log.h"
"esp_spi_flash.h"
"String.h"

ttdefine
t#tdefine
t#tdefine
t#tdefine
t#tdefine

GPIO_HANDSHAKE 4
GPIO_MOSI 23
GPIO_MISO 19
GPIO_SCLK 18
GPIO CS 5

<Arduino.h>
<WiFi.h>
<WiFiMulti.h>
<HTTPClient.h>

#include
#tinclude
#tinclude
#tinclude

const char* ssid = "Life watch";

const char* password = 5

//Declare Subfunctions

void WIFI_conn();

char* http_get(char* url, int lengthl);

void spi_transaction(int t_length, char* tx_data);
void spi_init();

char* get_time();

char* get_info();

WIFI connectivity, and

183

//Called after a transaction is queued and ready for pickup by master. We use
this to set the handshake line high.
void my_post_setup_cb(spi_slave_transaction_t *trans) {

// WRITE_PERI_REG(GPIO_OUT_W1TS_REG, (©<<GPIO_HANDSHAKE));
Serial.println("This is right before pulling WIFI interrupt low");

pinMode (GPIO_NUM_4,0UTPUT);

digitalWrite(GPIO_NUM 4, 0); //Fire WIFI int
// digitalWrite(GPIO_NUM 4, 1);
// pinMode(GPIO_NUM_4,INPUT);

}

//Called after transaction is sent/received. We use this to set the handshake
line low.
void my_post_trans_cb(spi_slave_transaction_t *trans) {

// WRITE_PERI_REG(GPIO_OUT_W1TC_REG, (1<<GPIO_HANDSHAKE));

Serial.println("This is right after transaction is done");
digitalWrite(GPIO_NUM 4, 1);

delay(190);
pinMode (GPIO_NUM_4,INPUT);
}
spi_slave_transaction_t t; //Declare a transaction instant
esp_err_t ret; //Initialize return
char* sendbuf; //Initialize transmit buffer

char recvbuf[10]={0,0,0,0,0,0,0,0,0,0};
//Initialize receive buffer

int test; //Test variable for interrupt
pin

char* time_result;

char* dummy = "J";

char* id_fake="Hello";

void setup() {
// put your setup code here, to run once:
Serial.begin(115200);
delay(10);
pinMode(GPIO_NUM 4,INPUT);
//digitalWrite(GPIO_NUM_4, 1);
delay(500);
spi_init();

/*//Configuration for the SPI slave interface
spi_slave_interface_config_ t slvcfg;

slvcfg.mode=3; //SPI Mode (©-3)
slvcfg.spics_io_num=GPIO_CS; //Chip Select Pin assigned
slvcfg.queue_size=10; //Size of Queue
slvcfg.flags=0; //Bitwise or of SPI_SLAVE *

flags

slvcfg.post_setup_cb=my post_setup cb; //Function executed after new
data is loaded

slvcfg.post_trans_cb=my_post_trans_cb;//Routine executed after
transaction is done

184

//Configuration for the SPI bus
spi_bus_config_t buscfg;

buscfg.mosi_io_num=GPIO_MOSI; //MOSI pin selected
buscfg.miso_io_num=GPIO_MISO; //MISO pin selected
buscfg.sclk_io_num=GPIO_SCLK; //SCLK pin selected

//SPI slave interface initialization
ret=spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, 0); //Initialize SPI
interface

//Interface, pins,

configuration,
//DMA channel: used
for large
//number of bytes
assert(ret==ESP_0K); //Is initialization
okay?*/
Serial.println("This is the return code");
Serial.println(ret); //Print error code
//memset(recvbuf, 0, 33); //Initiazlie receive
buffer to ©
memset (&t, 0, sizeof(t)); //Initialize all

traits of the
//Transaction to ©
t.rx_buffer=recvbuf; //Set address for
receive buffer
//We would like to
never change this address

}

void loop() {
int test;
//Disable WIFI in order to enter low power mode

//Enable interrupts and go to sleep

esp_sleep_enable_ext@ wakeup(GPIO NUM 4,0); //Set GPIO wake up
test = digitalRead(GPIO _NUM 4);

Serial.println("This is the value of the interrupt");
Serial.println(test);

esp_light sleep_start(); //Go to sleep
Serial.println("This is the first thing after waking up");

//Enable WIFI & then connect
WIFI_conn();

Serial.println("Wakeup reason was external GPIO");
//First get instruction code

spi_transaction(1, dummy);
//Now check instruction code whether @ or 1: @ = get time; 1 = get patient
info

if(recvbuf[0]==0x01){
Serial.println("The receive buffer value was equal to 0x01");
delay(500);
//Declare a char array to get result

185

char* time_result;
//Try time result array vs pointer to character

time_result = get_time();

Serial.println("This is the time result after jumping back to the main
loop™);

Serial.println(time_result);

Serial.println(*time_result);

//Set up spi transaction to send time
spi_transaction(strlen(time_result)+1l, time_result);
}
else if (recvbuf[0]==0x02){
Serial.println("The receive buffer value was equal to 0x02");

//Now I need to receive ID from MCU
spi_transaction(6, id_fake);

//Now ID is in the recvbuf: add it to the end of the request
//Declare a char array to get result

char* full_result;

char chunk_resultl[31];

char chunk_result2[31];

full result = get_info();

int lengthl = strlen(full_result);

for(int i =0; i<30;i++){

chunk_resultl[i] = full result[i];

}

//Then set up SPI to transmit info

spi_transaction(strlen(chunk_resultl), chunk_resultl);

//Send remaining bytes
for(int i=30; i<60; i++){
chunk_result2[i-30] = full _result[i];
}
Serial.println("This is chunk_result2");
Serial.println(chunk_result2);
//spi_transaction(strlen(chunk_result2), chunk_result2);
¥
else{
Serial.println("None of the codes were met");
Serial.println(recvbuf[0]);
¥
Serial.println("Disable WIFI");
esp_wifi_stop();
delay(500);
Serial.println("Repeat code and go back to sleep");

}
[/mmmmmm e Sub Functions--------cccccmcmmc e e e e
[/====mmmmmmmeeeeaa WIFI Connect-----------==-------

void WIFI_conn() {
WiFi.mode(WIFI_STA);

186

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to WiFi..");

}

Serial.println("Connected to the WiFi network");

[[====mmm e SPI Transaction--------------------~—~—~—~—~—~—~—~—~—~—~—~———--
void spi_transaction(int t_length, char* tx_data){

t.length=t_length*8 ; //Length of
transmission

t.tx_buffer=tx_data; //Write to the
actual buffer

Serial.println("This is before gueing");

Serial.println("This is the send buffer value");

Serial.println(tx_data);

Serial.println("This is the receive buffer value");
Serial.println(recvbuf);

spi_slave_transmit(VSPI_HOST, &t, portMAX_DELAY);

Serial.println("This is the return code");

Serial.println(ret);

Serial.println("This is the value of the receive buffer after executing");

Serial.println(*recvbuf, HEX);

for(int i=0; i<strlen(recvbuf)+1;i++){

recvbuf[i]=recvbuf[i]>>1;
}
Serial.println(*recvbuf, HEX);

void spi_init(){
//Configuration for the SPI slave interface
spi_slave_interface_config_t slvcfg;

slvcfg.mode=3; //SPI Mode (©-3)
slvcfg.spics_io_num=GPIO_CS; //Chip Select Pin assigned
slvcfg.queue_size=12; //Size of Queue
slvcfg.flags=0; //Bitwise or of SPI_SLAVE_*

flags

slvcfg.post_setup_cb=my post_setup cb; //Function executed after new
data is loaded

slvcfg.post_trans_cb=my post_trans_cb;//Routine executed after
transaction is done

//Configuration for the SPI bus
spi_bus_config_t buscfg;

buscfg.mosi_io_num=GPIO_MOSI; //MOSI pin selected
buscfg.miso_io_num=GPIO_MISO; //MISO pin selected
buscfg.sclk_io_num=GPIO_SCLK; //SCLK pin selected

//SPI slave interface initialization
ret=spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, 0); //Initialize SPI
interface

187

//Interface, pins,

configuration,
assert(ret==ESP_0K); //Is initialization
okay?
}
[/==mmmm - HTTP Request for time & time conversion----------------

char* get_time(){
String payload;
static char result[258];
static char edited_result[20]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
int lengthil;
if ((WiFi.status() == WL_CONNECTED)) { //Check the current connection status
HTTPClient http;
http.begin("http://worldclockapi.com/api/json/est/now"); //Specify the URL
int httpCode = http.GET();
if (httpCode > ©) { //Check for the returning code
payload = http.getString();
Serial.println(httpCode);
Serial.println(payload);
lengthl = payload.length() +1;
payload.toCharArray(result,lengthl);
Serial.println("This is the original string");
Serial.println(result);
Serial.println("This is what we will return");
for(int i =0; i<16;i++){
edited result[i] = result[30+i];
}
Serial.println(edited_result);
Serial.println("This is converting from 24 to 12");
//Add pm or am to the end of the string
if((edited _result[11]==0x31 && edited_result[12]>0x31) ||
edited_result[11]==2){
edited_result[16] 'p';
edited_result[17] = 'm' ;

}

else{

edited_result[16] = 'a’;
edited_result[17] = 'm’;
}

//Convert numbers from 13-19

if(edited_result[11]==0x31 && edited_result[12]>0x32){
edited_result[11] = '@°';
edited_result[12] = edited_result[12]-0x02;
Serial.println(edited_result);

}

//Convert numbers from 20-21

else if(edited_result[11]==0x32 && edited_result[12]<0x32){
edited_result[11l] = '@°';
edited_result[12] = edited_result[1]+0x08;
Serial.println(edited_result);

}

//Convert numbers from 22-24

188

else if(edited _result[11]==0x32 && edited_result[12]>0x31){
edited _result[11] = '1';
edited_result[12] = edited_result[1]-0x02;
Serial.println(edited_result);

}
else{
Serial.println("Time is already in standard 12 hour mode");
}
}
else {
Serial.println("Error on HTTP request");

}
http.end(); //Free the resources

Serial.println(edited_result);
return edited_result;

char* get_info(){

String payload;

static char result[15];

char url[]="http://192.168.43.52/patient_id/product/read _one.php?id=";
char* temp;

int j,k,i;

int lengthl;

//First add ID to the end of the url
//char* temp = recvbuf;

lengthl = strlen(url)+1;
Serial.println(lengthl);
char edited_url[lengthl+5];

for(i=0;i<strlen(url);i++){
edited _url[i] = url[i];
Serial.println(edited _url[i]);

}
j =strlen(url);

for(i=0; i<5;i++){
edited_url[j+i] = recvbuf[1+i];
Serial.println(edited_url[j+i]);
}
edited_url[j+5] = 0x00;
Serial.println(edited_url);
Serial.println(strlen(edited_url));

if ((WiFi.status() == WL_CONNECTED)) { //Check the current connection status

HTTPClient http;
http.begin(edited_url); //Specify the URL

189

int

httpCode = http.GET();

the request
if (httpCode > 0) { //Check for the returning code

}

payload = http.getString();
Serial.println(httpCode);
Serial.println(payload);

lengthl = payload.length() +1;
payload.toCharArray(result,lengthl);
Serial.println("This is what we will return");
Serial.println(result);

delay(500);

else {
Serial.println("Error on HTTP request");

}

delay(500);
http.end(); //Free the resources

}

return result;

}

//Make

190

	2 Executive Summary
	2.1 Project Description
	2.2 Motivation
	2.3 Goals and Objectives
	2.4 Function
	2.4.1 Related Work

	2.5 Specifications
	2.6 House of Quality
	2.7 System Overall Block Diagram

	3 Project Research
	3.1 Existing and Similar Technologies
	3.2 Relevant Technologies
	3.2.1 Wireless Communication
	3.2.1.1 WIFI
	3.2.1.2 WIFI Chip Options
	3.2.1.2.1 CC32xx Wireless MCUs
	3.2.1.2.2 ESP 8266 WIFI Modules
	3.2.1.2.3 ESP WROOOM 2

	3.2.1.3 Bluetooth
	3.2.1.4 Bluetooth Beacons
	3.2.1.4.1 Shenzhen Sato Intelligent Technology
	3.2.1.4.2 DSD Tech HM-10 BLE Module

	3.2.1.5 Bluetooth Modules
	3.2.1.5.1 ESP-WROOM-32
	3.2.1.5.2 RN4020

	3.2.1.6 Radio Frequency Identification (RFID)
	3.2.1.7 RFID chip options
	3.2.1.7.1 Passive RFID
	3.2.1.7.2 Passive RFID Options
	3.2.1.7.2.1 Passive RFID Model AT88RF04C-MX1GA
	3.2.1.7.2.2 RFID Model LXMSJZNCMF-198
	3.2.1.7.2.3 Passive HF MIFARE Classic EV1 1K RFID Tags
	3.2.1.7.2.4 3M Glue Waterproof NFC Tag RFID Sticker
	3.2.1.7.2.5 RFID transponder model: M24SR64-YDW6T/2

	3.2.1.7.3 Active RFID
	3.2.1.7.4 Active RFID Options
	3.2.1.7.4.1 Active RFID Model: Model: RF430CL330H
	3.2.1.7.4.2 RFID Comparison
	3.2.1.7.4.3 Picking an RFID
	3.2.1.7.4.4 Breakout Board

	3.2.1.8 RFID Scanner

	3.2.2 Near Field Communication (NFC)
	3.2.2.1 Using NFC with mobile device

	3.2.3 Power Supply, Regulation, and Recharging
	3.2.3.1 Power Supply Tech
	3.2.3.1.1 Power Supply Options
	3.2.3.1.1.1 Polymer Li-ion Model: DTP502535, 3.7V/400mAh
	3.2.3.1.1.2 Li-Polymer Battery Model:552035 3.7V/350mAh
	3.2.3.1.1.3 Model: RJD3555HPPV30M 3.7V/500mAh
	3.2.3.1.1.4 Lithium Ion RJD3048HPPV30M 3.7V/300mAh
	3.2.3.1.1.5 18650 Battery Lithium-ion
	3.2.3.1.1.6 Power Supply Comparison
	3.2.3.1.1.7 Picking a Power Supply

	3.2.3.2 Power Distribution (Regulation)
	3.2.3.2.1 Voltage Regulators
	3.2.3.2.2 LM1084IT-ADJ/NOPB
	3.2.3.2.3 TPS63036
	3.2.3.2.4 Comparing Voltage Regulators
	3.2.3.2.5 Choosing a Voltage Regulator

	3.2.3.3 Power Supply Charging
	3.2.3.4 Medical Sensors
	3.2.3.5 MAX30112
	3.2.3.6 MAX30101
	3.2.3.7 MAX30003
	3.2.3.8 AD8233
	3.2.3.9 AFE4400

	3.2.4 Temperature Sensor
	3.2.5 Accelerometer
	3.2.5.1 ADXL345
	3.2.5.2 MPU-6050
	3.2.5.3 Accelerometer Selection

	3.2.6 Microcontroller
	3.2.7 Serial Communications
	3.2.7.1 I2C
	3.2.7.1.1 Addresses of Parts
	3.2.7.1.1 Choosing Pullup Resistor

	3.2.7.2 Serial Peripheral Interface (SPI)
	3.2.7.3 Interface

	3.2.8 UART Communications
	3.2.9 Buttons
	3.2.9.1 Panic Button
	3.2.9.2 Reset Button

	3.2.10 Vibration
	3.2.11 Alarm/Speaker

	3.3 Strategic Component and Parts Selection
	3.3.1 WIFI Chips
	3.3.2 Bluetooth Chips
	3.3.3 Microcontroller Chips
	3.3.3.1 Cost Analysis
	3.3.3.2 Power Consumption
	3.3.3.3 Memory Storage
	3.3.3.4 Packages and GPIO Pins
	3.3.3.4.1 Package Definition and Visuals
	3.3.3.4.2 Available Packages with GPIO Count
	3.3.3.4.3 Specialized use of GPIO Pins
	3.3.3.4.3.1 Analog to Digital Converter
	3.3.3.4.3.2 LCD Compatibility
	3.3.3.4.3.3 Serial Communications

	3.3.3.5 Ease of Use
	3.3.3.6 Summary of MCU

	3.3.4 LCD Display

	3.4 Parts Selection Summary
	3.4.1 RFID
	3.4.2 Analog Front End / Pulse Oximeter
	3.4.3 Voltage Regulators
	3.4.4 Power Supply
	3.4.5 Display

	4 Related Standards and Realistic Design Constraints
	4.1 Standards
	4.1.1 Search for standards
	4.1.2 Wireless Communication Standards
	4.1.2.1 ANSI C63.27 Evaluation of Wireless Coexistence
	4.1.2.2 ANSI C63.18 RF Emission On-Site Evaluation
	4.1.2.3 IEEE 802.11n-2009
	4.1.2.4 BLE v4.2 Specifications

	4.1.3 Logic Standards
	4.1.3.1 TTL Logic
	4.1.3.2 CMOS Logic

	4.1.4 Design impact of relevant standards
	4.1.4.1 Impact of ANSI C63.27
	4.1.4.2 Impact of ANSI C63.18
	4.1.4.3 Impact of IEEE 802.11n & BLE v4.2 Specifications
	4.1.4.4 Impact of Logic Levels

	4.2 Realistic Design Constraints
	4.2.1 Economic and Time constraints
	4.2.2 Environmental, Social, and Political constraints
	4.2.3 Ethical, Health, and Safety constraints
	4.2.3.1 HIPAA
	4.2.3.1.1 Hospital Information on Patients

	5 Project Hardware and Software Design Details
	5.10 Initial Design Architectures and Related Diagrams
	5.11 First Subsystem, Breadboard Test, and Schematics
	5.12 Second Subsystem
	5.13 Third Subsystem
	5.14 Fourth Subsystem
	5.15 Software Design
	5.15.1 Patient info Read/Written via NFC
	5.15.2 Mapping
	5.15.2.1 Initial Mapping and Server Setup
	5.15.2.2 Watch-side localization
	5.15.2.3 Geo-fencing

	5.15.3 Panic Mode
	5.15.4 Watch (Real Time Clock)
	5.15.5 Patient Info on Display
	5.15.6 Power Saving Modes

	5.16 Summary of Design

	6 Project Prototype Construction and Coding
	6.1 Integrated Schematics
	6.1.1 NFC Schematic
	6.1.2 Voltage Regulator Schematic
	6.1.3 WIFI Schematic
	6.1.4 Analog Front End Schematic
	6.1.5 Microcontroller Schematic

	6.2 PCB Vendor and Assembly
	6.3 Final Coding Plan
	6.3.1 Localization
	6.3.2 Sensor Monitoring
	6.3.3 Programming the MCU on PCB
	6.3.4 Common MCU Processes

	7 Project Prototype Testing Plan
	7.1 Hardware Test Environment
	7.2 Hardware Specific Testing
	7.2.1 Testing Wi-Fi Location
	7.2.2 Testing Wi-Fi Transmission of Data
	7.2.3 WIFI Coexistence
	7.2.4 RF Emission Interference On-Site Testing
	7.2.5 Testing NFC Reading and Writing
	7.2.6 Testing NFC Range
	7.2.7 Testing Pulse Oximeter
	7.2.8 Testing LCD
	7.2.9 Testing Battery Life
	7.2.10 Testing Voltage Regulators

	7.3 Software Test Environment
	7.4 Software Specific Testing
	7.4.1 Testing Mapping
	7.4.2 Testing Server Transfer of Patient Data
	7.4.3 Testing Power Saving Options

	8 Device Implementation
	8.10 Subsystems
	8.10.1 Power
	8.10.2 MCU
	8.10.3 Wireless Communication
	8.10.3.1 WIFI
	8.10.3.1.1 Data Communication to Server
	8.10.3.1.2 Localization

	8.10.3.2 NFC

	8.10.4 Peripherals

	8.11 PCBs
	8.12 Server
	8.13 Life Watch App
	8.14 Printed Housing Case

	9 Administrative Content
	9.1 Milestone Discussion
	9.2 Budget and Finance
	9.3 Assigned Roles

	10 Master.c
	11 master.h
	12 RF430.c
	13 RF430.h
	14 LCDMSP.c
	15 LCDMSP.h
	16 WIFI.c

