

Plan Bee

Tariq Ausaf-E.E. Yannick Roberts-E.E. Giovanny Reyes-E.E. Katelyn Winters-E.E. Group 3

MOTIVATION

Bees are struggling to survive with each passing day

The world needs environmental support of bees

Apiarists are facing extreme colony loss

The apiary industry is not technologically up to date

Streamlining an industry such as this benefits everyone

GOALS AND OBJECTIVES

- Creating a data gathering system that is capable of transmitting data over a long-range communication network.
- Create a board that mainly monitors temperature, humidity, pressure, and light sensitivity.
- A low power System is important for this project.
- The board needs to be small so that it can be streamlined into the Apiary Industry.

ENGINEERING SPECIFICATIONS

Specification	Description
Range of Communications	Reach of 10 mi. at Sub-1 GHz bands. Inversely correlated to response time and cost.
Product Dimension	Able to fit the space between hives.
Power Consumption	Supply only the minimal amount of power through solar panels for efficiency and cost.
Weather Resistance	Exposed to the elements. The product should last and hold its own.
Easy to Assemble/Install	Easy to set by anyone with zero experience.

MEMBERSHIP RESPONSIBILITIES

	PCB Design	Software	Construction	Research
Primary	Tariq Ausaf	Yannick Roberts	Katelyn Winters	Giovanny Reyes
Secondary	Katelyn Winters	Tariq Ausaf	Giovanny Reyes	Yannick Roberts

PROGRESS

Progress

HARDWARE ORGANIZATION

Sensor Transponder

- Long-range communication (10m+) RF Communication Capability (968 MHz)
- Bluetooth 4.0 Capability (2.4 GHz) latches via Zigbee onto Gateway
- GPS Real-time tracking
- Onboard Sensors for General Spatial Monitoring
- Attachable Sensors Interface

GATEWAY ILLUSTRATION

- Maximum of 112 per Sensors Transponder (SPI / 12C Limitations) – artificially limited at 30
- Maximum of 60 Sensors Transponders attached to each Gateway

THIS ISN'T A MIPS PROCESSOR? DIDN'T TEACH US THIS!

THIS ISN'T UCF ANYMORE...

TI CC1352R WMCU – WHY?

Three Processors embedded at different levels:	 ARM Cortex M4F Processor RF Core Processor ARM Cortex M0 Embedded Processor
Supports several interfacing protocols and sensors:	 2X UART I2C and SPI 28 additional GPIO (Analog Or Digital)
High-Power WMCU supporting both Long-Range and Short-Range Communications:	 BLE 4.0 low-energy Zigbee Thread LPVVAN 10+ miles possible at 14 dBi (antenna gain)

SENSOR TRANSPONDER

SCHEMATIC OVERVIEW

Power Interface supplies power – PWR and GND planes on PCB – connected using vias

WMCU RF Components acts like the "brain"

Headers & Peripherals connect everything together like the "heart"

XDS is like the "parent"

UX, GPS and Onboard Sensors like the "eyes and ears"

WIRELESS MCU + RF COMPONENTS

- BLM18HE GHz Noise Suppression Chip Ferrite Bead + Filtering Capacitors for power
- CC1352R1 is the workhorse AMR-based MCU + High-Power Wireless Transmission
- 32 kHz (aux timing) and 48 MHz XTALs (MCU CLK)
- PE4259 solid-state RF Switch
- 2.4 GHz Duck Antenna
- Balun "merges" and "splits" differential signal
- Impedance matching for maximum power transfer, minimizing data loss / noise
 - 50 Ohm everywhere...

HEADERS & PERIPHERALS + PROGRAMMING INTERFACE

- "Heart" of our Sensors Transponder
- XDS X-Window Direct Save Protocol

 the programming interface we're using
 to flash the WMCU
- Headers & Peripherals interfaces all onboard and external devices
 - I2C to communicate with onboard sensors
 - UART to communicate with GPS chip
 - SPI to communicate with external sensors interface (MSP432-G)
 - Management of the User Interface (UX)

USER INTERFACE

To Load Cell Interfacing Board

OLED I2C Interface

LED1

C22 22pF

GPS MODULE + ONBOARD SENSORS

• GPS Similar to WMCU

DIO 14

- Communicates at 1.582 GHz
- 50 Ohm everywhere in communication routing lines
- Frontend + Backend (entire ARM 3 processor)
- IPPS more precise than CCI352 used to calibrate
- NMEA GPS data output through UART precise clock local time, location data...
- Humidity and Temperature
- Light Sensor (light level)
- Pressure Sensor
- 9-Axis Motion Sensor (IMU)

OFFBOARD SENSORS

ONBOARD SENSORS

Sensor	Sensor Type	Price	Protocol	Operating Voltage	Temperature Range
MPU 9250	3-Axis Gyroscope, Acelerometer	\$9.32/chip	I^2C and SPI	2.4V to 3.6V	-40°C to 85°C
LPS22HBTR	Pressure Sensor	\$3.28/chip	I^2C and SPI	1.7V to 3.6V	-40°C to 85°C
OPT3001	Ambient Light Sensor	\$3.35/chip	I^2C	1.6 v to 3.6 V	-40°C to 85°C
HDC2010	Humidity and Moisture Sensor	\$3.35/chip	I^2C	1.62 V to 3.6 V	-40°C to 85°C

POWER

- Header P3 for 6V Solar Panel Input
- Solar LiPo Charger
 - Routes power from best power source available – always going to pull from solar before the battery
- Header P5 for external LiPo Battery
- Jumper Header to turn power on/off

- Switching Voltage Regulator
 - Only Step-down needed

TPS6580 VOLTAGE REGULATOR

- 30% or more efficient than comparable linear regulator w/ lower heat generation.
- 3V3 for most everything
- IV8 and 5V0 are also available
- No expensive DC/DC
- Increased noise

BATTERY

- Lithium polymer battery (LiPo).
- Four times the energy of density of nickel batteries.
- Higher current first for charge.
- More malleable and higher specific energy than regular Li Ion.
- Can be more expensive per volume.

PCB LAYOUT

- GPS on the top-right, about 20 mm away from CCI352RI below it – Balun and Imped. Match embedded
 - Routing to-and-from RF components is 12 mils thick Copper (50 Ohm trace Impedance, Max Power)
- Normal routing is 7 mils thick throughout the board
- User Interface Top-Center
- Onboard Sensors Bottom-Center
- Headers and Peripherals + XDS Debugging + Power all on far left (bottom-to-top)
 - Minimum 50 mm away from RF components
- 4 layer board
 - RF Component Routing (GPS and CC1352)
 - 15 mil thick dielectric
 - GND Plane
 - 50 mil thick dielectric between ground and power plane
 - Power Plane (vias from power components)
 - 15 mil thick dielectric
 - Routing for everything else
- Board is ready to manufacture!

PCB MANUFACTURING EXECUTION

- PCB Manufactured:
 - Advanced PCB * ☺
 - I.8V not connected on power plane
 - JLCPCB Shenzhen, China
- We have purchased a Solder Dispenser and PCB Oven (Infrared IC Heater) for soldering
 - We have a PCB oven at UCF, but unusable
 - Soldering Gun + Solder Flux for any touchups
- Placement we have done ourselves
 - 138 components in total on the PCB
 - Diode array short
 - Pads were spaced only 20 microns apart

Transponder Firmware

Samples Sensor Data

Stores Sensor Data

Transmits Data to Gateway

Manage Device Parameters

SOFTWARE ORGANIZATION

Additional Resources Utilizes:

Texas Instruments RTOS

Language :

Assembly, C, C++

Gateway Firmware

- Stores Data to local Database
- Transmits Data to an online server
 - Manages Transponder Devices
 - Transmits Data to local user.

SOFTWARE ORGANIZATION

Additional Resources Utilizes:

Linux SQLite TI's 15-4 network Stack XMPP, HTTPS Language :

C, C++, Python(Automate)

Web Service

- Authenticates and Communicate with Gateway Device
- Stores Data on Online Database
- Provides is RESTful api for accessing Data

SOFTWARE ORGANIZATION

Additional Resources Utilizes:

Amazon AWS

MySQL

Bootstrap

XMPP/HTTPs

Language :

Golang, Json, JavaScript,

User Application

- Present Data to End User
- Alert User of Events
- Synchronizes Data with Gateway and Cloud Service

SOFTWARE ORGANIZATION

Additional Resources Utilizes:

Android

SQLite

Language :

Java

TRANSPONDER FIRMWARE

TI-RTOS Multi-Tasks OS Task Preemption Hardware Interrupts Software Interrupts Task Preemption **Concurrency Control**

FIRMWARE ORGANIZATION

The 3 D's

DATA SAMPLER SEQUENCING DIAGRAM

- Executed using the on-bard lowpowered ARM thumb processor, SCU.
- Triggered periodically using the onboard Real-Time-Clock.
- Utilizes standard I2C messaging protocol.
- Pushes data to a shared buffer and triggers a hardware interrupt for main processing unit.

Data Aggregation Sequence Diagram

- Executed on main processor.
- Triggered from hardware interrupt.
- Stores Data to Non-Volatile memory.
- Thread Safe (Semaphores).
- Blocking.

NVSCONTROLLER Structure

- Data is stored in of chip Non-volatile storage
- Each Sensor Data Type is assigned a 32 KB Block
- Pages Elements are written and read to local memory using 256 byte buffers (page).
- Entire Datastore utilizes round buffers for storage.

Block (64KB)	Block (32KB)	Sector (4KB)	Address Range				
	31	255	0FF000h	OFFFFFh			
15		:	:	:			
	30	240	0F0000h	0F0FFFh			
	29	239	0EF000h	0EFFFFh			
14		:	:	:			
	28	224	0E0000h	0E0FFFh			

	9	79	04F000h	04FFFFh
4		:	:	:
	8	64	040000h	040FFFh
	7	63	03F000h	03FFFFh
3		:	:	:
	6	48	030000h	030FFFh
	5	47	02F000h	02FFFFh
2		:	:	:
	4	32	020000h	020FFFh
	3	31	01F000h	01FFFFh
1		:	:	:
	2	16	010000h	010FFFh
		15	00F000h	00FFFFh
	1	:	:	:
0		2	002000h	002FFFh
	0	1	001000h	001FFFh
		0	000000h	000FFFh

Data Dispatcher Sequence Diagram

- Periodically Executed on main processor using RTC.
- Transmits data to gateway.
- Thread Safe (Semaphores).

GATEWAY FIRMWARE

Gateway Receiver Sequence Diagram

- Authenticates transponder device using 256-bit AES encryption key.
- Private key stored on encrypted portion of device.
- Provides primitive network addressing for transponder devices.
- Stores data to local SQLite database.

Gateway Forwarding Sequence Diagram

- Authenticates with web service or a nearby mobile device.
- Pushes data using GCM/XMPP protocol.

WEB SERVICE

USER APPLICATION

- Read data from gateway and synchronizes with cloud.
- Presents data in an intuitive fashion.

ılı stats		S) EAR	сн		Yard	★ s Ove	erviev	N
	YG	SN	139	02	45	6			
Weight Tempeature Pressure									
Hive Index	68	69	70	71	72	73	74	75	76
TFN1390022572									
EAC1390022572									

SENSOR TESTING

START POINT: 2nd Floor of Yannick's House; END: 823 m away

WIRELESS

TESTING

FURTHER TESTING

- Driver for display has been developed and working. It is able to output texts and binary images.
- Busses are debugged for accuracy using an oscilloscope and logic analyzer.

SOFTWARE UNIT TESTING

- The firmware code is currently being unit tested using Google Testing suite.
- Attempting a test driven development routine where unit tests are written prior to application code.

INITIALLY PROJECTED BUDGET

We knew we would run into unexpected costs, and we have. Luckily, we planned for all of this:

- Power Components
- Hardware Prototyping
- Hardware Manufacturing / Fabrication Processes inhouse
- Software Setup and Application Hosting
- Miscellaneous Costs...

Туре	Item/Description	Supplier	Part No.	Unit(s)	Projected	Projected			
					EPU (\$) *	Exp. (\$) *			
	Solar Cells (6.2 W)	Adafruit	1525	3	75.00	225.00			
	High Efficiency Synchronous Switch Mode Charger	TI	BQ24650	3	20.00	60.00			
ver	LiFePO₄ Batteries (1000 mAh)	Westingho use	N/A	3	25.00	75.00			
6	Solar Panel Mount	Renology	N/A	2	15.00	30.00			
B	** Miscellaneous Solar Costs								
otyping	Microcontroller including RF Comms Chip	ті	MCU: MSP- EXP430G2 Comm Chip:	2	120.00	240.00			
, Č	Sensors Kit for MSP430 MCUs	TI	Multiple	2	35.00	70.00			
2	Single-Strand 22 Ga. Copper Wire for ICs	N/A	N/A	100	0.55	55.00			
are				feet	0.00				
lardw	Varied Basic Electronic Components Kit (Rs, Caps, MOS, Diodes, Op Amps, etc.)	N/A	N/A	4	15.00	60.00			
Ŧ			**Miscellaneous Ha	rdware Pr	ototyping Costs	200.00			
	PCB Fabrication Stage I	Altium	N/A	2	30.00	60.00			
	PCB Fabrication Stage 2	Altium	N/A	2	30.00	60.00			
are	RF Comm. Chips	TI	CC1352R	4	25.00	100.00			
rdw:	MCU Chips	TI	MSP432	4	12.00	48.00			
Fat	ada Ada	Sensors Cost	ts & Miscellaneous Ha	ardware F	abrication Costs	200.00			
	Amazon AWS Server	N/A	N/A	1	0.00	0.00			
e	IBM Watson AI Usage	N/A	N/A	1	0.00	0.00			
ftwa	Application (Dashboard) Development	N/A	N/A	1	0.00	0.00			
		** Softwa	are Hosting & Miscella	neous Dev	velopment Costs	375.00			
Miscellaneo us	Final PCB Packaging	N/A	N/A	2	20.00	40.00			
	Weatherproofing Enclosure	N/A	N/A	2	30.00	60.00			
				Total	Projected Cost	2158.00			

FURTHER NOTES

- We have spent about \$1500 (of our original \$2200 budget)
- We had a few unaccounted items that we had forgotten to include in the original budget:
 - PCB oven
 - Soldering paste dispenser
 - GPS Modules
 - Several thousand SMD components...

STRETCH GOALS

- Camera (on Gateway)
- External sensors Interface
 - Placement inside the hive is important
 - Weight sensors (load cells)
 - Vibration sensors density to replace load cells + machine learning
 - Additional Sensors
 - Temperature sensor inside hive
 - Humidity
 - Rainfall data
 - Medication + Food sensors + Control System (dispenser)
- Meshing Devices
- GSM Radio
- GPS replaced with GPS-frontend-reciever + Software Defined Radio (\$3 frontend + software versus \$30 module) – make the device as inexpensive as possible

STRETCH GOALS

DRONES? BECAUSE WHY NOT!!!

- Autonomous drones for land surveying.
- Camera sensors

No one at the party wanted to hear that big and powerful bee *drone* on and on about himself.

THANKS TO OUR SPONSORS

Steven Eisele: Owner

QUESTIONS

IS THIS WHAT ALL THE BUZZ IS ABOUT ?!