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1: Executive Summary 
This product will be a glove controller that has the capabilities of interacting with a virtual 

3D object. The design will be focused on taking position inputs from the glove, transmitting 

data through a processor, and then sending that data through our interface to the computer 

running the simulation. The project is designed in such a way to allow us to gain experience 

in PCB design as well as data communication, ARM development, and 3D modeling 

software API.  

 

The glove will capture motion using multiple accelerometer PCBs located on the center 

points of each finger bone and one on the back of the hand. Each accelerometer will 

communicate with the processor board using I2C at a sufficiently high rate to ensure 

smooth operation. The processor will calculate the relative position of the fingers and hands 

relative to the ‘0’ accelerometer located on the back of the hand. This will require a reset 

button to calibrate the system. Once calculated the processor will interpret these positions 

as commands and then to a Bluetooth module which will send the commands via UART to 

a receiver which will communicate those commands to the computer and to a 3D modeling 

software such as Blender. The program will communicate back data that will allow the 

glove to give sensational feedback to the user. To do this the glove will incorporate Peltier 

devices for heating and cooling and small vibrational motors for touch feedback. Since the 

glove will be wireless we will be creating a rechargeable battery board. The choice for a 

rechargeable board was made because of the need for high quality low weight batteries to 

supply the high current requirements of the Peltier devices. This provides our project with 

two main facets. The construction of the glove and the computer Bluetooth interface is the 

hardware facet, while the incorporation of the 3D modeling software is another facet. 

 

Through this project, we will add to the open-sourced community. The open-sourced 

community is filled with hobbyists that are always hungry for new challenges and fun 

project ideas. We look to supply this community with a comprehensive design that people 

can make use of for their own projects and applications. Specifically, we feel that the ability 

for hobbyists to interact with their own virtual 3D environments may drive innovation in 

the field of virtual and augmented reality. 

 

Virtual and augment reality is and has been a hot new topic in technology development for 

quite some time. With the advent of the HTC Vive, immersive virtual reality gaming 

became an actual reality. However, a major drawback of current virtual reality is its lack 

of haptic feedback. When the user touches something in the real world the user can feel its 

heat and the pressure of my hand on it. This project seeks to bridge that gap in current 

technology by allowing a control sensitive enough to accurately capture hand motions, 

while allowing for immersive feedback from the virtual world. 

 

The goals of this project are to work on a fun, technically challenging project that will 

allow us to learn about real-world circuit design by implementing the knowledge gained 

from our education thus far. The team will also seek eye-opening conversations with 

professional industry workers, such as our professors, about industry standards, project 

design, and engineering concepts. The team is hoping to advance our careers and industry 

visibility by contributing to an open source community. From this design, the team will 
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have gained industry-level experience to add to our resumes and gain necessary skills 

required by the field of computer/electrical engineering. The key feature we aim for with 

our glove input design is for it to have a high frequency rate to get a quick and accurate 

response rate of our input. The team will implement sensors on the glove that will be able 

to track the motion of the hand and fingers with a high degree of accuracy and communicate 

that to 3D modeling software. The software will communicate back to the glove which of 

the feedback devices should activate and by what degree based on the current position of 

the virtual hand. The team would also like to establish a base design that future hobbyist 

might be able to expand from. Since many hobbyist struggle with the more technical 

aspects of electronic and computer engineering, it is our hope that by designing the more 

technically challenging aspects of this project we will establish a hardware and code base 

that can be expanded from easily in the future. 

 

2: Requirement Specifications 
Requirement specifications are the technical description of a system to be developed. It is 

interpreted as an agreement between a customer and developer. Goal of the requirement 

specifications is the list and quantify the features that the completed system must have to 

be deemed complete the customer. Requirements of a system adhere to the following 

principles; 

 

• Abstract: The requirement should detail outcome and not implementation 
• Traceable: The requirement should consist of a single independent element. 
• Verifiable: The requirement should be testable to determine that it has been met.  
• Unambiguous: There should be only one way to interpret the requirement. 
• Feasible: The requirement should be doable/achievable within the required time 

frame and with the available resources.  
 

Following the above guidelines, the requirement specifications in the following tables 

outline the quantitative and qualitative goals will determine the success or failure of this 

project. For example, a quantitative goal would be under Table 1 Spec ID 3: The total time 

required for all steps in a frame must be less than 33-ms. Meanwhile an example of a 

qualitative goal would be Table 1 Spec ID 4: The system contains motion capture features. 
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Spec 

ID 

Detail Related 

Value 

Unit 

1 The integrated package must be able to support 

designated frames of data per second. 

30  fps 

2 Each frame will consist of designated number of 

individual I2C reads 

16 reads 

3 The total time required for all steps in a frame must 

be less than given time. 

 

33 ms 

4 System contains motion capture features n/a n/a 

5 System contains processor module n/a n/a 

6 System contains interface between Blender and 

processor 

n/a n/a 

7 System contains software package for the processor n/a n/a 

8 System uses open-source 3D modeling software n/a n/a 

9 System contains battery supply n/a n/a 

10 System contains Bluetooth communication device n/a n/a 

Table 1: Integrated Specifications 

 

 

 

Spec 

ID 

Detail Related 

Value 

Unit 

11 Must use minimum designated number of 

accelerometer chips to measure acceleration and 

track position of fingers and hand. 

10 none 

12 Glove design with components must not exceed 

specified weight 

2 kg 

13 Accelerometers must function within +/- G range 2 G 

14 Accelerometers must have specified resolution 10 bits 

15 Accelerometers must be I2C compatible n\a n\a 

16 Must contain minimum number of vibrational motors 6 n\a 

17 Must contain minimum number of Peltier devices 6 n\a 

18 Must be able to run on batteries n\a n\a 

19 Must be wireless with respect to 3D environment 

application 

n\a n\a 

20 Must contain limiter on current for Peltier devices n\a n\a 

21 Accelerometer PCBs should be no bigger than 

specified dimension 

1.5 Cm2 

 

Table 2: Glove Specifications 
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Spec 

ID 

Detail Related 

Value 

Unit 

22 The processor must use an ARM architecture chip. n\a n\a 

23 The any enclosures must not exceed given 

temperature. 

30 C 

24 Processor chip must have at given minimum of 

dedicated I2C lines 

1 n\a 

25 Processor chip must have sufficient clock rate to 

support minimum frame rate requirement 

n\a n\a 

26 The processor module must have reset option that 

allows recalibration of system 

n\a n\a 

27 System must utilize a power switch n\a n\a 

Table 3: Processor Model Specifications 

 

 

 

 

Spec 

ID 

Detail Related 

Value 

Unit 

28 The software must be documented as per ANSI/ANS 

10.3-1995 

n\a n\a 

29 The software must be written in C or C++ n\a n\a 

30 The software must be able to run continuously for 

given time period without any crashes. 

30 minut

e 

31 Software must be able to handle data packet loss. n\a n\a 

Table 4: Processor Software Specifications 

 

 

 

Spec 

ID 

Detail Related 

Value 

Unit 

32 The Utility must operate on Windows 10 n\a n\a 

33 The Utility must have a graphical user interface n\a n\a 

34 The Utility must interface with Bluetooth device n\a n\a 

35 The Utility must interface with 3D Software n\a n\a 

36 The Utility must support one or more concurrently 

operating gloves. 

n\a n\a 

Table 5: Configuration Utility Specifications 
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Spec 

ID 
Detail 

Related 

Value 
Unit 

37 

The package must be operable for a minimum 

specified number of time from a full charge standard 

use. 

30 min 

38 
The device must be able to send and receive data at a 

minimum frame rate. 
30 

Fram

es per 

secon

d 

39 The device must be under a particular weight. 2 
kilogr

ams 

40 
The device must send and receive below a certain 

latency time. 
100 

Micro

secon

ds 

Table 6: Device Specifications 

 

3: House of Quality 
The House of Quality allows us to present the goals and technical requirements in a manner 

that can be easily examined for positive and negative relationships. For example, the Power 

category and Power Consumption category have a strong positive relationship since 

without a large power source there cannot be a large amount of power consumption. 

For the left side of the house, it’s important to identify what aspects of the project are 

important for the consumer.  For example: User friendliness is important because we want 

the project to be easy to pick up and start using for a consumer, and compatibility is 

important because the consumer will want to use their device with whatever other 

technology they already own. 

The top side of the diagram shows the general product capabilities that we want the device 

to have.  For example: Frame rate is listed with a plus because we want the device to be 

able to send a fast stream of data to be more “smooth,” while weight is listed with a minus 

because we want the device to be low weight so that the user can use the device while 

attached to their hand more easily. 

The bottom section of the graph shows specific technical requirements that we need to have 

for the project. For example: We want the device to be able to update at a rate of at least 

30 frames per second, which is a common refresh rate, and we want the device to cost less 

than 100 dollars to produce. 

The arrows at the top and the middle of the graph show the relations between each aspect 

of the product.  For example: Accuracy heavily correlates with processor speed, as a fast 

processor will help the device react more accurately to movements and is marked with two 

up arrows.  At the top of the graph, processor speed correlates with noticeable feedback, as 

it will help the haptic feedback respond more accurately when prompted and is marked 

with a single up arrow.  Meanwhile, safety negatively correlates with weight, as the device 

will generally be safer if it’s lighter while attached to the user’s hand and is marked with a 

single down arrow. 

Overall, the house of quality will help us recognize the needs of the project from both a 

consumer perspective and an engineering perspective, as well as how they correlate with 
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each other.  This will help us recognize the most important goals of our project, and the 

bigger picture as to what needs to be prioritized and what actions can help many of our 

goals at once. 

 

 
Figure 1: House of Quality  
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4: Block Diagrams 
A block diagram is a diagram of a system or part of a system in which the primary 

components are represented by blocks and connected by lines in such a manner the 

represents the relationship between system components, and the scope of a components 

influence on the system as a whole. Block diagrams leverage the idea of a black box. The 

black box shows the basic input and output relationships between the components.  The 

small detail of each component is left to be shown in follow-on more detailed diagrams 

and schematics. 

The figure below represents the high-level architecture, organization, and team 

responsibilities of the project. There is a clear separation point between the hardware 

portion of the design, and the software portion where the components are connected only 

by a wireless interface. This interchange point allows the design to be split into two primary 

areas of responsibility. The glove team is responsible for and will focus on the design and 

implementation of the wearable glove device itself. Their responsibilities include selecting 

of the individual accelerometers, vibrations motors, and thermal devices that drive the 

feedback experience. The glove team must also handle processor selection and wireless 

interface selection. The final responsibility of the glove team is to determine the power 

needs of the hardware glove and design the mobile power component of the system. 

The computer team is responsible for selecting the computer platform and operating system 

that will run the 3D environment software. The blender will be used to create the virtual 

environment and virtual components such as the controlled hand, and interactive objects 

will need to be created. Objects in the environment will need logic governing collision as 

well as properties of hardness and temperature to be feedback to the hardware to provide 

the feedback experience. To drive and manage the interaction between the glove and the 

blender software, a custom interface utility will be created. The interface utility will 

provide a data exchange point inputting, formatting and outputting data from the glove to 

blender, and inputting, formatting and outputting touch and temperature data from blender 

to the glove. The computer team will leverage industry standard laptop computers and 

operating systems to provide a platform that contains a variety of wireless communicating 

hardware, an operating system for running the interface utility and blender software. And 

support for major development languages and their associated integrated development 

environments; such as C, C++, C#, Java, and NetBeans, Eclipse, Codeblocks, and 

VisualStudio. 
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Figure 2: Diagram of Modules and Responsibilities 

 

Figures 3 and 4 show the placement of the accelerometers, Peltier devices, and haptic 

feedback motors as well as their respective I2C group. The multiple I2C groups are 

necessary because the selected accelerometers only have 2 possible I2C addresses. This 

forces the need for an I2C multiplexer with at least 3 selectable bits to address all 16 

accelerometers. Due to already having multiple I2C lines the decision was made to place 

the peripherals (Peltier and vibration motors) on the I2C line that is most closely associated 
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with its position. This is intended to reduce the amount of cabling required to render the 

glover operational. 

 

 
Figure 3: Diagram of Acceleromter Placements 

 

 

 
Figure 4: Diagram of Placements of Peltier Devices and Vibrational Motors 
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5: Milestones 
The milestone table is a guide for the project to stay on schedule. Without a milestone table 

to keep the project organized and on track to be completed on time, the possibility of falling 

behind and becoming unorganized is greatly increased. For someone to know what they 

need to do and by what date, then they’re more inclined and aware. The following tables 

show the details on how the tasks are dated and tasked to, starting with Senior Design I 

tasks and followed by Senior Design II tasks. 

 

# Senior Design I ~ Tasks Due By Admin Pages 

Done 

1 Have divide and conquer with rough outline of 

what needs to be researched 

June 8th Group 2 10 

2 Have complete standards and have picked out all 

components for glove 

June 15th Chris 10 

3 Have complete standards and components picked 

out for processor interfacing with glove 

June 22nd David 35 

4 Have full understanding how data will be 

entering/exiting processor and have pseudocode 

for 5 necessary functions 

June 29th Group 2 60 

5 Have power figured out and full understanding of 

how we will interface with 3D software 

July 6th Francisc

o 

78 

6 Order components. Research more into how to 

code ARM processor and interface with 

components. Build a breadboard or 

microcontroller interfacing with controller to 

ensure data will transmit correctly from outside 

input. 

July 13th Group 2 

Hunter 

98 

7 Have photo of all components. Start making 3D 

components in Blender and have more 

understanding of how interacting with them will 

work. Then start constructing/designing glove for 

rough component placement. 

July 20th Group 2 115 

8 Have report finished. Finalize any details. 

Proofread. Add/Subtract necessary information. 

Ensure citations present. Proofread again. 

July 27th Group 2 120+ 

9 Full Report Due ~ if time, make prototype and 

reorder and broken parts 

 

July 30th Group 2 120+ 

Table 7: Project Milestones 
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# Senior Design II ~ Tasks Due By Admin 

10 Prototype glove 

 

Aug 24th Group 2 

11 Prototype processor, redesign glove, and start fully coding 

 

Aug 31st Group 2 

12 Prototype interface with 3D software and redesign 

processor 

 

Sept 7th Group 2 

13 Get accurate input into Blender and some type of output 

from Blender. 

 

Sept 14th Group 2 

14 More implementing of all three components (glove, 3D 

software, haptic feedback) 

 

Sept 21st Group 2 

15 More implementing of all three components 

 

Sept 28th Group 2 

16 Troubleshooting / Redesign Oct 5th Group 2 

17 Troubleshooting / Redesign 

 

Oct 12th Group 2 

18 Fix individual issues with any of the three main components 

 

Oct 19th Group 2 

19 Fixes to individual issues with any of the three main 

components 

 

Oct 26th Group 2 

20 Put all together. Try to have all coding functionality 

complete. 

 

Nov 2nd Group 2 

21 More testing. Nov 9th Group 2 

22 Troubleshooting. Have design/prototype complete if 

possible 

 

Nov 16th Group 2 

 Thanksgiving 21st-26th   

23 Long weekend. Probably away for family. Ordered extra 

necessary components in case of hot fixes or things break. 

Test boundaries. Ensure standards and requirements are 

met. 

Nov 23rd Group 2 

24 Hopefully an extra processor and glove made that both 

work. Hours of more testing needs to be done. Test 

boundaries more. Overheat, Cool, Drop, Vibration, Drastic 

hand movements 

Nov 30th Group 2 

25 Present and get A. 

 

Dec ? Group 2 

Table 8: Project Milestones -continued- 
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6: Cost 
This project is not trying to set a record for low-cost but would like to implement a design 

that's cost-effective for potential hobbyists or enthusiasts to utilize or build our design. The 

total price we are looking to spend for all used, wasted, or extra components and items is 

$1000, but having a total build cost of under $100 for a "packaged" PCB design, enclosure, 

power adapter(s), 3D software interface with transmitter/receiver PCB, and glove. The 

purpose of having such a high price range for this design is to have the freedom to try out 

different components, fail a couple of times, learn from our mistakes, and not worry about 

trying to keep to a specific budget.  

 

The project will most likely not have any funding due to lack of need in the market. 

However, when we seek funding, we will request from companies in the fields of gaming, 

for VR or AR needs, and of the movie industry for animation.  

 

Item Quantity Price (rough estimate) 

Glove 2 $20 

PCB Design ~ Processor Board 4 $150 

PCB Design ~ Glove 4 $150 

Electrical Components on PCBs ? $200 

Bluetooth modules 2 $40 

Peltier Devices 10 $50 

Power Supply 2 $20 

Vibrational Motors 10 $50 

Gyroscope Sensor 2 $50 

Room for Error ? $270 

Table 9: Expense Estimates 

 

7: Project Management 
Project management can be a big issue during a project. Whether it be an individual not 

completing a task on time, people not knowing what they should be doing, and everyone 

staying on the same page about what the project is supposed to look like. These topics are 

all covered in the idea of project management. The CIO website [1] defined project 

management as” the application of specific processes, knowledge and skills, techniques 

and tools, as well as inputs and outputs that project managers and teams utilize to 

successfully meet project goals and deliverables.” In the next few sections, we will talk 

about different methods for project management that we will be using to aid us in a more 

organized and efficient design project. 

 

 Project Management Staff 
Essentially what the project plans to do is we have project management for the project, 

whom is Chris, and we have people responsible for different parts of the design. Then, we 

have course staff, which are people designated for project development, or rather, helping 

with project decisions since they have the most experience. Chris is the project lead because 

he is the team member who has had the most experience with hardware design. With him 
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being project lead, informed decisions can be made. The diagram for this concept can be 

seen below: 

 

 
Figure 5: Project Organizational Chart 

 

 Why Projects Fail 
According to the CIO website on why projects fail, one of the top reasons for project failure 

is misalignment between project goals and business strategy. There is evidence that shows 

if a project has a specific group dedicated to project alignment, then they have a much 

higher chance of success on a project. Just getting organized can make a world of 

difference. The article goes on to list other reasons for project failure, which include: 

 

● a lack of executive sponsorship and support 
● vague business goals or requirements 
● unrealistic project scope or scope that is not closely controlled 
● insufficient time dedicated to planning 
● an inability to bridge the gap between strategy formulation and implementation 
● insufficient or misallocated resources, including talent 
● unforeseen unmitigated risks 
● misaligned project management methodologies 
● a haphazard approach to project management 
● talent that is spread too thin (not dedicated) 
● project managers or team members that lack the necessary training and knowledge 

 

Things we might be worried about from this list include vague requirements because there 

isn’t a set requirement for this design, rather we are making it up as we go. Also, since we 

are all working separately and only meet once a week, we might forget if we’ve set an 

arbitrary requirement and forget also to inform the others. We could suffer from lack of 
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necessary training and knowledge due to the fact that we haven’t worked on a senior design 

project or anything related to our design, so we are learning as we go. This may affect us 

in time that we’ve dedicated to the project. Overall, the project is rather small, and we have 

teachers to guide us, a whole two semesters to work on the project and we don’t have a 

budget, so the odds are with us. 

 

 Project Management Goals 
Continuing with the CIO article, they go on to say that “project management professionals 

first and foremost help drive, guide, and execute company-identified value-added goals.” 

Since we are such a small team, we all are here to help with this methodology. We have 

one clearly defined goal, and that’s to develop our senior design project in a manner that 

gets us an ‘A’. From there, we have sub-goals of completing each delegated task in a timely 

manner: the glove design, the processor design, the interface design, and the Blender 

product design. With all of these goals completed, it should be rather easy to piece them 

together to fulfill the one true goal. 

 

 Project Management – Team Building  
For a team to be successful, they must be comfortable in the environment that they are 

working in. Aristotle is quoted to say, “Pleasure in the job puts perfection in the work.” 

Essentially, the gist of what he means, is that the more you enjoy the job, the better the 

outcome of the product will be. Enjoyment can be obtained from a job in a plethora of 

ways. To name a few, clean air, friendly workspace, comfortability, inspirational work, 

passion for the work required, travel time to work, and even more.   

  

For our group to successfully go about our project, we found it to be important that we 

have a time where we hangout outside of working on the project. In this sense, we will find 

a camaraderie between us and enjoy meeting up, rather than relish the fact that we need to 

do work that is rather tedious. Mentally, this can be draining. In order to remedy this, we 

scheduled a hangout and spent a whole day playing board games, eating, and spending time 

outside of work. This has improved the feeling of joy in our meetings and increased 

productivity overall.  

 

8: Glove Design 
The glove portion of the project will house the input sensors and output devices. 

Specifically, it will house 16 accelerometers which will provide the input sensor data. It 

will also house 6 Peltier devices and 6 vibrational motors which will provide the output 

sensory feedback to the user. Included in the overall glove design are the batteries, the main 

processor board, the regulators, the digital to analog converters that will drive the Peltier 

devices and the vibrational motors, and the housing of the electronics. The final item that 

will need to be designed is a charger which can provide current limited power to the 

rechargeable batteries. Though the charger may be a stretch goal since the batteries can be 

recharged simply with a desktop power supply. An important item that will need to be 

selected but will not need to be designed is the glove itself. We will discuss in length the 

options and constraints for each design choice and part selection.  
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 Glove Construction 
The glove will not be a glove in the traditional sense. Instead of being a full sheath of fabric 

or some other material surrounding the hand, the ‘glove’ will consist of strips of Velcro 

with the various electronic components attached to it. The PCB board will be attached to 

the Velcro by a consumer grade bonding agent. While the Peltier devices will be attached 

using a thermally conductive bonding agent to a flexible foil which will be wrapped around 

the Velcro strip. This is to ensure that the Peltier device can reference the ambient 

temperature while still being soundly mechanically attached. 

 

 Power 
The specification for power consumption of the glove is less than 35 W. This must be 

balanced with the highest power consuming device. The thermoelectric cooler/heaters 

otherwise known as Peltier devices. The assumption was made that power consumption 

will be driven by the highest power consuming devices, in this case the Peltier devices. By 

finding the power specification for running the Peltier devices for the specified amount of 

time we can put an upward limit on our power consumption. Since we will never run the 

Peltier devices at the maximum rating, for safety reason, there will be more than enough 

power left to run the microprocessor and all peripherals. 

 

 Heating and Cooling 
To simulate the feel of temperature from a virtual environment an electronically controlled 

heating and cooling element is required. For weight considerations this device should be 

solid state as it would be impractical to have a radiator or a mechanical heat pump on each 

finger. Fortunately, a solid-state thermoelectric heating and cooling device does exist. It is 

called a Peltier device, after Jean Charles Athanase Peltier who discovered the effect in 

1834. The Peltier effect is what occurs when a current is made to flow through a junction 

of two disparate conductors. Heat can be generated or removed from that junction. In effect 

this means that by varying the polarity and magnitude of the current though the Peltier 

device we can control the temperature in each finger by creating a heating or cooling affect.  

 

 Peltier Selection 
Originally the TES1-03102 [2] was chosen as it is only 15mm by 15mm by 3.8mm and 

was the cheapest Peltier device at its size at a price point of approximately $4 per unit. It 

has a maximum current of 2 amps and a max voltage of 3.75 volts. It also has a max power 

rating of 4.3 watts and can vary the temperature by about 69°C. The order was placed with 

kedrgoods.top, but unfortunately after several weeks of waiting the order has not 

materialized. It can only be assumed that either the order will eventually arrive or that it 

will not. Either way a usable Peltier device was needed for testing and design refinement. 

The decision was made to reorder the Peltier devices needed from a more reputable 

supplier. In this case Digi-Key was chosen as the supplier. The device chosen was the 

CM23-1.9 manufactured by Marlow Industries [3]. This device is superior for this project 

to the TES1-03102, however the CM23-1.9 is over twice as expensive as the TES1-03102 

at a price point of approximately $11 per device. It was chosen because like the TES1-

03102 it was the cheapest available at the size required to fit on the fingertip. This main 

consideration of size and price is possible because the project does not require high or exact 

changes in temperature. This means that the efficiency of the device is not as important as 
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its size and price point. Table 9 shows a comparison of the properties of the Peltier devices 

at room temperature or 27 °C. Figure 6 shows the voltage and current load relationships 

for the CM23-1.9. While Figure 7 shows the efficiency curves of several generalized Peltier 

devices. 

 

 

 

 TES1-03102 CM23-1.9 

Dimensions (mm) 15x15x3.8 8.18x6.02x1.65 

Price per Unit ($) $4 11.08 

Δ Tmax (°C) 69 71 

Qmax (watts) 4.3 3.4 

Imax (amps) 2 1.9 

Vmax (DC) 3.75 2.8 

Table 10 

 
Figure 6: CM23-1.9 Voltage and Current Loads at 27°C 
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Figure 7: Performance vs Current for Various Temperature Differentials in a 

Generalized Peltier Device 
 

 

What Figure 7 shows is that for temperature differences between the hot and cold sides of 

the device below 40°C there is a steady drop in efficacy above 45% of Imax. While 

temperature differences above 40°C are not very efficient at all. This means that since the 

project will not have temperature differences exceeding approximately 20°C the Peltier 

device will not need current more than 40% of its Imax value. This means that a high watt 

resistor can be affixed in series with the Peltier device to make regulation of current quite 

simple [4]. 

 

 Switching Direction Using N-FETs 
Figure 8 shows the tentative schematic for controlling the direction of current in the Peltier 

device since the direction of the current will control if it heats or cools. Figure 8 shows that 

a possible plan to vary the directionality of the current by using power switching N-FETs 

to open channels between however we may decide to use solid state relays depending on 

the limitations of the N-FETs that we can easily and cheaply obtain. The use of so many 

N-FETs carries the risk of too high heat dissipation, however most of the N-FETs will not 

be active at the same time or if they are it will be briefly. Unfortunately, this design will 

not be applied in the project since it has proved to be very difficult to find FETs that can 

handle both low voltage and high current at a reasonable price point and small footprint. If 

this circuit was not going to be duplicated then this design might be practical, but it must 

be replicated 6 times on a limited amount of space. As a result, it was decided that an H-

bridge will have to serve this purpose. 
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Figure 8: Tentative Schematic of the Directionality Controller 

 

 

 Switching Direction Using an H-Bridge 
H-Bridges are essentially packaged N-FET switching schemes as previously described. 

They allow for voltage to be applied across a load in opposite directions and can have many 

unique properties.  

 

The design considerations used in selecting an H-bridge are as follows. It must be able to 

supply a relatively high current at relatively low voltage (approximately 1.5 amps at 3.7 

volts). It must have a relatively small footprint since it will have to control 6 Peltier devices. 

Finally, it must be relatively cheap, less than approximately $3 per unit. One of the main 

issues with using the FET solution was that the FETs that could meet all the criteria were 

so expansive as to be ruinous to this project.  

 

Fortunately, a low voltage high current H-bridge was found that fit all of the required 

specifications. The DRV8836 Dual Low-Voltage H-Bridge by Texas Instruments is able 

to output a maximum current of 1.5 amps with an operating supply voltage of 2 to 7 volts. 

It has a selectable phase/enable or in/out interface that allows for changes in the polarity of 

the current by changing the phase or changing the high low pins respectively. Most 

importantly it has a small package size at 2 x 3 mm. Finally, it is cheap at approximately 

$1.5 per unit. The only drawback is that the Enable of the H-Bridge must be at least half 

of the supply voltage. This is not a huge concern since it will just change how the in-series 

resistor on the Peltier line is selected. It is more advantageous to have a lower temperature 

range than a higher one in this application. The DRV8836 has a sleep mode that will be 

continuously on to save power but will deactivate as soon as any of the GPIO pins that 

control voltage to its two channels activate. Figure 9 shows the application schematic of 

the DRV8836 when driving a device at up to 3 amps. Note the dual channels, which in this 

application will be used to drive two separate Peltier devices [5]. 
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Figure 9: Application Schematic of the DRV8836 

 

 

 Controlling Magnitude with a Digital to Analog Converter 
The magnitude of the current may be driven by the input voltage and the inherent resistance 

of the Peltier device ~2 ohms including the resistance of each FET switch which would be 

about 0.1 ohms each. To be able to control that voltage digitally we must implement a 

digital to analog converter circuit. In this case we chose to implement a Summing Amplifier 

type digital to analog converter. Using 4 GPIO pins to control 3 N-FETs allows us to pull 

from a 2-volt rail it will allow us to control the magnitude of the Peltier device with enough 

granularity to provide realistic feedback. Figure 3 shows the tentative schematic for the 

digital to analog converter that will drive the Peltier device. Note that it takes advantage of 

a summing circuit design allowing granular selection of exactly what voltage we would 

like it to produce according to the Equation 1. Where voltages 0 through 3 are all equal to 

2 volts. Table 1 shows the binary states and the voltages they will produce when each line 

is attached to a 2-volt rail. 

 

 

𝑉𝑜𝑢𝑡 = −
1

8
(8𝑉0+4𝑉1+2𝑉2+𝑉3) 

Equation 1: Digital to Analog Converter 
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v0 v1 v2 v3 Total 
V = 2 

Volts 

0 0 0 0 0 0 

0 0 0 1 -0.125 -0.25 

0 0 1 0 -0.25 -0.5 

0 0 1 1 -0.375 -0.75 

0 1 0 0 -0.5 -1 

0 1 0 1 -0.625 -1.25 

0 1 1 0 -0.75 -1.5 

0 1 1 1 -0.875 -1.75 

1 0 0 0 -1 -2 

1 0 0 1 -1.125 -2.25 

1 0 1 0 -1.25 -2.5 

1 0 1 1 -1.375 -2.75 

1 1 0 0 -1.5 -3 

1 1 0 1 -1.625 -3.25 

1 1 1 0 -1.75 -3.5 

1 1 1 1 -1.875 -3.75 

Table 11: Peltier Device DAC Voltage 

 

 
Figure 10: DAC Schematic 

 

 Controlling Magnitude with a Digital Potentiometer 
A digital potentiometer could also control the Peltier device. Digital potentiometers work 

similarly to an analog potentiometer except the digital versions we have examined use I2C 

registers to control the resistance of the device. It should be noted that I2C is not the only 

control method but is the one we will be using since we already plan on using I2C 
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extensively in the device. For example, a digital potentiometer may be sold with a 

resistance of 2.5kΩ and 256 steps. This would mean that resistance can be controlled to a 

resolution of approximately 10Ω. In this case resistance would be rounded to the nearest 

integer resistance value in software. Figure 11 shows the tentative schematic for the 

magnitude control scheme. The circuit in Figure 11 has 4 parts which are the switching 

circuitry, the voltage divider, a unity gain buffer, and an inverting amplifier. 

 

A GPIO controlled switched that takes advantage of the properties of both P-FETs and N-

FETs to avoid a third logic state. The third logic state in this case is if the main switching 

FETs gate voltage is not sufficient to place it in the saturation region. In this case the FET 

would not act wholly like a switch but have some other logic which is quite undesirable. 

To avoid this a PFET is held high by tying it to the rail (PFETs are closed when the gate is 

in the saturation region). Then when the GPIO pin is brought high it opens an NFET that 

connects the PFET and ground. This ensures that even if the GPIO voltage isn’t enough to 

fully open the NFET gate the voltage at the PFET gate will fall to ground or close enough 

and ensure that the whole circuit acts like a switch. 

 

The voltage divider is the heart of this circuit. It uses a digital potentiometer (shown as a 

regular potentiometer in the tentative schematic) to vary voltage division and select what 

voltage is fed to the unity gain buffer. If the digital potentiometer is a 100kΩ with 8 bits of 

control, then it will have 256 steps or about 390Ω of resistance per step. At the lowest 

setting and having 3.7 volts fed to it the unity gain buffer will receive approximately 14 

millivolts while the highest setting will see the unity gain buffer receiving 1.85 volts. The 

digital potentiometer will be controlled with I2C since we are already extensively using 

that communication protocol to control accelerometers. As long as the devices we choose 

don’t have address conflicts then they can be easily added to the same I2C lines as the 

accelerometers.  

 

The unity gain buffer is simply there to act as a high impedance buffer between the 

fluctuating switch and rail circuitry and the amplifier and Peltier device. The amplifier is 

simply an inverting amplifier with a gain of 2 to offset the division by the voltage divider. 

This means that at the lowest setting the Peltier device will receive 28 millivolts and at the 

highest setting it will receive 3.7 volts. 

 

 
Figure 11: Potential Peltier Device Schematic 



 
 

22 

 

 

 Digital Potentiometer Part Selection 
There are three main parts that must be selected for the digital potentiometer control 

scheme to properly function. The digital potentiometer, the operational amplifiers, and the 

switching FETs. The resistors are considered trivial since only their footprints will matter 

and that will most likely be 0805s since they are small enough to maximize space but large 

enough to easily place by hand if necessary. 

 

The digital potentiometer was selected by the following criteria: resistance, footprint, I2C 

control, and price. The part that was decided upon was the AD5248 by Analog Devices. 

The AD5248 is a dual, 256 position, I2C compatible digital potentiometer. It has a small 

footprint of 3mm x 4.9mm and can is I2C controlled. It has a resistance of 100kΩ and can 

be powered by a 3.3-volt rail. At $2.81 per unit it is rather expensive for a component 

however since it can support two separate, controllable 100kΩ wipers per unit it is more 

realistically for this project calculated as $1.4 per unit since half as many are needed to 

fulfill the project requirements. Figure 12 shows an internal block diagram of the AD5248. 

The internal block diagram shows how this part can be used as two separate potentiometers 

for this projects purpose [6].  

 

 
Figure 12: Internal Block Diagram of the AD5248 

 

 Operational Amplifier Part Selection 
The need for the operational amplifier as shown in Figure 13 is twofold. It is needed as a 

high impedance buffer and as an amplifier. The amplifier is to correct the voltage division 

to its proper voltage while still allowing the divider to control the voltage while the high 

impedance buffer is used to prevent any unexpected interplay between the amplifier and 

the voltage divider. For this reason, the parts selection was not rigorous since the 

application is not particularly rigorous. A general-purpose rail to rail low power operational 

amplifier was selected. Specifically, the TSV321 was selected, though for implementation 

the TSV324IDT will be used since it has 4 operational amplifiers in each package. The 

driving qualities that led to this selection were low power and price. The TSV321 produces 
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an output current of approximately 80mA which will allow it to be used in both the Peltier 

controller but the vibrational motor controller as well. At a price of $0.58 per unit in the 4-

unit package it is quite cheap. It can also be operated on a single rail 3.3-volt supply. Since 

it will used for buffering and amplifying small discrete voltage changes over a relatively 

long period of time the slew rate should not impact the design. Figure 13 shows the internal 

structure of the 4-part package that will be implemented in the design [7]. 

 

 
Figure 13: Implementation Diagram of the TSV324IDT 

 

 Switching FET Circuit and Part Selection 
To properly act as a switch any FET solution must only have 2 states, on and off. To ensure 

this the circuit shown in Figure 14 was developed. It uses both a PFET and an NFET to 

ensure that the PFET which is the ‘switch’ opens fully and stays in the FET’s saturation 

region. It does this be holding the PFET high until a the NFET’s gate is brought high. When 

this happens the NFET opens and pulls the gate of the PFET to ground. This opens the 

PFET and allows current to travel through the semiconductor. 

 

 
Figure 14: FET Switching Circuit Schematic 

 

The part selected for this task was a dual channel NPFET. Specifically, the NX3008CBKS 

was selected. It was selected since the design team had worked with them in the past and 

was confident that the switching circuitry would work reliably for almost all conditions 

within the glove project. Figures 15 and 16 show the current characteristics for both the 
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NFET and PFET portions of the NX3008CBKS. Since almost all of the switched potions 

of this design go to high impedance devices large amounts of current do not need to be 

switched [8]. 

 

 
Figure 15: Drain Current vs Drain Source Voltage as a function of Gate Source 

Voltage for the NFET 

 

 
Figure 16: Drain Current vs Drain Source Voltage as a function of Gate Source 

Voltage for the PFET 

 

 Controlling Temperature of the Peltier 
To properly control the temperature of the Peltier device a proportional integral derivative 

controller should be implement (PID), but as can be seen from the following discussion a 

full PID controller is not necessary.  

 

A PID controller is a loop feedback controller that calculates the error value between the 

current state of the device and the desired state. It does this by applying adjustments based 
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on proportional, integral, and derivative error terms. The overall function can be viewed in 

Equation 2. Which shows the output change in the device u(t) is a function of the sum of 

proportional, derivative and integral errors [9]. 

 

 

 
Equation 2: PID Controller Equation 

 

 

This equation is not wildly useful in and of itself, graphs that show the impact of each term 

are more useful. Figures 17 through 19 show the impact of the proportional, integral, and 

derivative terms on the response of a generic device. 

 

 
Figure 17: Impact of the Proportional Term on a Generic Device 

 

 
Figure 18: Impact of the Integral Term on a Generic Device 
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Figure 19: Impact of the Derivative Term on a Generic Device 

 

From examining these graphs, the proportional term is what generally drives the response 

however it is either very vulnerable to overshoot or reacts very slowly. The integral term 

impacts the oscillations by damping them down quickly. The derivative term greatly 

decreases the response time of the system in reaching its desired value and greatly reduces 

overshoot. Combined these terms result in a system with a low response time, low 

overshoot, and heavily damped oscillations.  

 

In most applications that use a Peltier device a low response time, low overshoot, and 

heavily damped oscillations are ideal and often necessary. For example, precision is needed 

in an application where Peltier devices are used as to cool computer processors. 

Specifically, the microchip’s temperature will vary wildly depending on its computational 

load. To respond to this and keep the chip cooled to its very exacting temperature 

requirements means that the Peltier control system must respond quickly to perturbations, 

the responses must be quick, the responses cannot overshoot, and the responses cannot 

oscillate. Failure to meet any of these conditions could lead to permanent damage to the 

processor, and in these applications a PID controller is needed. 

 

Applying Peltier devices to temperature in a haptic feedback system is not a precise system 

with large temperature perturbations. The human hand cannot tell the difference between 

55°C and 59°C. Neither can the human hand tell the difference between a 10°C temperature 

change over 10 ms or 100 ms. Imprecision of that magnitude would be ruinous in the 

processor application but is not even noticed in the application of haptic feedback. This 

means that the system can have a relatively low response speed and that oscillations of 

several degrees are acceptable. From this information it seems that a full PID controller is 

unnecessary and that a simple low gain proportion controller will suffice. The controller 

must be low gain (k < 1) to prevent large overshoot. This will result in a very slow response 

time but since the human body operates on a very slow time scale relative to electronic 

components and mathematical feedback systems it will not be a concern.  

 



 
 

27 

 

 

 

 Thermistor Selection and Implementation 
To implement this feedback system the team will take advantage of the built-in analog to 

digital converter on the STM32F030C8. Figure 20 shows the schematic that will be used 

to measure the temperature. This schematic shows a basic voltage divider with a 100 kΩ 

resistor in series with a 10 kΩ thermistor. As the temperature increase the resistance of the 

thermistor will decrease and less voltage will be read by the ADC. The thermistor will be 

a NXRT15XH103FA1B040 [10] which is a thermistor with 10 kΩ of resistance at 25°C 

and a max power of 7.5 mW. It has a B value tolerance of 1% and a B25/50 of 3380K. The 

B value is the temperature change coefficient as shown in Equation 3. In Equation 3 the RR 

value refers to the resistance at room temperature (25°C) which in this case is 10 kΩ. The 

STM32F030C8 has a 12-bit ADC which will allow for high milli-degree accuracy in 

reading the temperature from the thermistor. Figure 21 shows a block diagram of the 

control scheme that will be implemented to control the Peltier Device. The actual 

adjustments and gain of the system will be implemented in the software of the processor. 

 

 
Figure 20: Schematic of the Thermistor Temperature Voltage Divider 

 

 

 
Equation 3: Equation Relating Temperature Variation and Thermistor Resistance 
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Figure 21: Block Diagram of the Peltier Feedback and Control Mechanism 

 

 

 Final Peltier Controller with Enable and Phase 
The Peltier device will be controlled by the schematic in Figure 22 All previous schematics 

were tentative and have contributed to the design of this final layout. Note that this 

schematic can control two Peltier devices, but the second device has not been added in for 

clarity’s sake. This schematic consists of five distinct parts. The P/N dual channel switch 

is the first part that will be discussed. It is as described in the Switching FET Circuit and 

Part Selection. Essentially as the NFET’s gate is brought high it opens a channel to ground 

from the gate of the PFET and forces a full opening of the PFET. This in turn opens voltage 

to the I2C controlled digital potentiometer which creates a voltage divider based on the set 

resistance. This voltage feeds into a high impedance buffer to ensure that there is no 

interplay with the next steps. Following the buffer is a non-inverting operational amplifier 

with a gain of 2. Since the maximum voltage the voltage divider can produce will be half 

of the 3.3 rail, this amplifier is there to rectify that since the Peltier device should be able 

to take up to 3.3 volts. Finally, this voltage feeds into a high impedance H-bridge. The H-

bridge has a low power sleep mode from which it is awakened when either FET switch for 

the two Peltier's it controls are activated. The phase shift that will change the polarity of 

the current is controlled by another FET switch which is controlled by a separate GPIO 

pin. This makes the assumption that Peltier's on two adjoining fingers will have the same 

current polarity which though logical may not be the case.  
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Figure 22: Final Peltier Controller Schematic 

 

 

 Battery Selection 
The power supply of the wireless portion of the glove depends completely on the glove is 

completely dependent on the battery stack. The power each battery can supply is in turn 

dependent on the battery chemistry. There are several considerations to account for when 

selecting a battery. Will it be rechargeable or non-rechargeable? A rechargeable battery 

can be used multiple times and will allow for a more polished product while non-

rechargeable batteries are cheaper but require constant replacement. In this scenario the 

constant expanse and hassle of replacing batteries in a high-power consumption device is 

prohibitive and therefore rechargeable batteries are the reasonable choice. For the glove 

application there are several varieties of rechargeable battery chemistries that we can 

consider. Each will be discussed, but our initial plan of 6 Peltier devices will require 

approximately 12-amp hours of battery capacity to operate at full power for 1 hour or 6-

amp hours to operate at full capacity for 30 minutes. While the Peltier device will never be 

running at full capacity designing our power consumption around our highest draining 
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device will allow for us to easily build the rest of the device while remaining within power 

constraints. Our initial specifications called for at least 30 minutes of run time so any 

battery selected will have to provide at approximately 6-amp hours while still being small 

enough to not exceed our weight requirements of approximately 2 kilograms total. We will 

not even consider some battery chemistries that are inherently dangerous such as lead acid 

and nickel cadmium. We will also not discuss alkaline chemistry batteries since they have 

a linear voltage drop off which is not useful for our application of running a microprocessor 

and peripherals as opposed to the voltage curve typical of the batteries we discuss in Figure 

3. These come in standard packages (AAA, AA, etc.…) unless otherwise noted. 

 

 

 
Figure 23: Li-ion Battery Voltage Curve [11] 

 

8.15.1: Nickel-Metal Hydride 

Nickel-Metal Hydride batteries are the first type of batteries we will consider. They are a 

commonly used battery chemistry in rechargeable applications. They are excellent for high 

drain applications and both common and cheap, so that finding a proper charger would be 

quite easy. Unfortunately, they hold a lower charge per weight than several of the other 

options. They of course need a specialized charger suited to their unique chemistry. They 

have a high self-discharge rate which means that they will lose charge just by sitting 

around. Low self-discharge rate versions are available but have lowered capacity. These 

come in standard packages. 

 

8.15.2: Nickel-Zinc 

Nickel-Zinc batteries hold a higher voltage per weight than their Nickel-Metal Hydride 

counterparts. However, they lose their capacity quickly as the batteries are cycled. They 

are also prone to failure and semi-discontinued. While it would be trivial to still purchase 

these and their charger, it is not good practice to choose parts that are on the verge of being 

unavailable.  
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8.15.3: Lithium Ion 

Lithium Ion batteries are excellent choices for custom made electronics. All previously 

mentioned batteries can be purchased in standardized voltages. However, Lithium Ion 

batteries usually come in 3.7-volt packages. While this can destroy devices that are not 

designed for it we have the luxury of custom building our device. These batteries obviously 

hold very high charge per weight and are quite common and therefore inexpensive. The 

special chargers required for these batteries are also common and inexpensive. 

 

 Battery Choice 
Unsurprisingly we plan on using a Lithium Ion rechargeable battery to power our device. 

In what amounts to a hand held or wearable device Lithium Ion batteries have some of the 

best charge to weight characteristics for a very competitive cost. This will reduce strain on 

the end users and is in line with our stated specification that the glove should not be more 

than 2 kilograms in weight. The battery will need approximately 6-amp hours to meet the 

specification of 30 minutes of use. Fortunately, a relatively lightweight, compact, powerful, 

and inexpensive battery is on the market. The ICR18650 6600mAh 3.7V 1S3P made by 

Shenzen PKCell Battery Co., LTD is perfect for our needs [12]. It has a mass of 155 grams 

and dimensions of 69 mm by 54 mm by 18 mm. It has a capacity of 6.27-amp hours and a 

working voltage of 3.7 volts. It can be charged to 4.2 volts which allows us to implement 

a cheap and easily obtainable Lithium Ion charger such as the CH-L3705 that is sold on 

batteryspace.com. Unfortunately, the maximum charging rate of the ICR18650 is 1650 mA 

which is not easily available (the best choice is the CH-L3718 but that has a charging 

current of 1800 mA). This means that either we use the CH-L3705 and accept that a fully 

charge from depletion will take approximately 18 hours of charging or we make our own 

charger. A different solution however would be to place two of these batteries in parallel 

and purchase a much stronger charger since the maximum charging rate of the batteries 

would now be double that of an individual battery. Since it will actually be about as 

expensive to develop a charger as it will be to purchase one and buy a second battery the 

choice is clear. We will stack two batteries in parallel and purchase a high-power charger. 

 

 Charger Selection 
After careful consideration the charger chosen was the CH-L373 [13] from 

www.batterspace.com. It was chosen as previously mentioned because each battery had a 

maximum charging rate of 1650 mA and by placing two in parallel this would double to 

3300 mA. Since the goal of this charger choice was to minimize charge time the only 

logical charger would take advantage of the 3-amp charging current limit. The CH-L373 

does just this. It has a charging current of 3 amps meaning it will fully charge the battery 

stack in approximately 4 hours which is a huge improvement on previous options listed in 

the battery choice section. It is a lithium-ion specific charger, so it will fully charge 

batteries to 4.2 volts. The only downside is that it uses a Tamiya Female connector whoever 

this can be easily modified with wire strippers and a soldering iron to any connector type 

that will be more convenient for final construction. This charger has two built in LEDs to 

show charging status which will be convenient for charging the glove. Figure 24 shows the 

charger with out the AC power cord. 

 

http://www.batterspace.com/
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Figure 24: Ch-L373 Lithium-Ion Battery Charger 

 

 Power Regulators 
All the devices specified for the glove control board can run off a 3.3-volt power rail. 

Unfortunately, the batteries output 3.7 volts and that voltage is unstable in any case. The 

solution to this is to implement a voltage regulator circuit. Within voltage regulators there 

are several options of how to design the circuitry to receive the necessary result. 

 

8.18.1: Regulator Selection 

As Dr. Weeks once said “Don’t build your own oscillators. You can’t build one that’s better 

than what you can buy for 40 cents.”, and the same is true of voltage regulators in the case 

of this project. It would be trivial to design a voltage regulator circuit, however there a 

perfectly good high efficiency regulator that can be purchased in tiny package sizes for 

very small amounts of money. Specifically, Texas Instruments Test Bench utility was used 

to select an ideal high efficiency regulator. The parameters for the search were that it must 

include high current capabilities since, it must be 3.3 volt compatible on a 3.7 to 4.5-volt 

input, and it must be high efficiency even at low output current. The resultant regulator was 

the TPS62823 which has an input voltage of between 2.4 and 5.5 volts with a max operating 

current of 3 amps. Figure 25 shows the Efficiency vs Output Current graph for the 

TPS62823 while Figure 26 shows the application schematic. As can be seen on the 

efficiency graph the TPS62823 will not fall below approximately 85% efficiency even at 

low currents even though is expected that the current draw will be well above 100μA. The 

application schematic shows that the implementation of the TPS62823 will be 

straightforward despite the requirement for a 470nH inductor. Since the TPS62823 comes 

in a 8-QFN package which is approximately 2x1.5 mm the inductor will be an order of 

magnitude larger than the regulator, however this means that all of the regulator circuitry 

will be able to fit snuggly into a very small area. The TPS62823 comes with a Power Good 

function, but it will be unused in this application. Figure 25 shows the TPS62823 with the 

charging and battery ports applied. Not the main power switch which connects the 

TPS62823 with the battery stack [14]. 
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Figure 25: Efficiency vs. Output Current for the TPS62823 

 

 

 

 
Figure 26: Application Schematic for the TPS62823 
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Figure 27: Schematic of the TPS62823 with battery ports and charging ports 

 

8.18.2: Timing Regulator 

The STM32F030C8 requires that the analog voltage (VDDA) supply is available before the 

VDD supply. Since this project will be supplying both voltages from the same rail a timing 

regulator was needed to operate a FET switch that would open the 3.3 rail to the VDD supply 

after VDDA received power. Essentially the timing circuit will be used as a delay before 

powering VDD. The part selected was the MAX6897. This device was selected due to its 

small size and convenient supply power requirements. It would be operable from the 

battery rail and had a capacitor adjustable external delay. It is also relatively inexpensive 

at $1.38 per unit and the design only requires 1. Figure 28 shows the application schematic 

while Figure 29 shows the schematic of how the MAX6897 will be implemented with 

respect the STM32F030C8 power supplies.  The timing delay equation is shown in 

Equation 4 and as seen in the schematic in Figure 29 will be set to approximately 60μs 

from the 5pF value [15]. 
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Figure 28: Application Schematic of the MAX6897 

 

 

 
Figure 29: Implementation of the MAX6897 with respect to the STM32F030C8 

 

 

 
Equation 4: Timing delay of the MAX6897 

 

 Housing 
The actual housing for the electronics will most likely be implemented as a forearm 

mounted box. Inside the box will be the main board which will house the processor, the 

regulators, the GPIO controlled switches, the digital to analog converters, etc... Essentially 

all electronics except the haptic feedback motors and the Peltier devices will be included 

in this board. The batteries will also be included in this housing so for safety the base of 

the housing will include a small insulated steel plate. The rational for this is if the Lithium 

Ion batteries go into catastrophic failure the steel plate will prevent the user from sustaining 

a serious injury. In this case a catastrophic failure may be quite exciting, but it should not 

leave the end user with a debilitating injury like sitting on a Galaxy Note 7 might. The 

housing will also contain a power switch, a power LED which will display if the battery 

needs to be charged or not, a reset button that will calibrate the accelerometers in the glove, 
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a Bluetooth status LED, and a safety shutoff button that will shut off power to all 

peripherals.  

 

8.19.1: Light Emitting Diode  

As the battery enables power to the system a red LED will enable and remain on until the 

power switch is placed back in the off position. This will indicate that the 3.3 Rail is active 

and that the power regulator is functioning properly. When the processor finishes booting 

it will activate a GPIO pin that will activate an N Channel FET, the BSS138, which will 

allow current to the LED. Since both the red, green, and blue LEDs are contained in the 

same housing the light emitted will change in purple or another color and this will let the 

user know that the glove is now ready for use. The LED selected for this role was the 

WP154A4SEJ3VBDZGW/CA manufactured by Kingbright. It is a 5mm tri color LED with 

a relatively small package size. It is 9.6 mm in height and has a through hole mount. Each 

LED must receive 20 mA to function properly. The following figure shows the tentative 

schematic for the circuitry involved in activating this LED. It is a common anode LED 

which means that the red, green, and blue LEDs encased in the housing all share the same 

positive node. This means, as can be seen in the design that any switching must occur after 

the LED as the current moves toward ground. This design will need to be thoroughly tested 

in accordance with the test section later in the document. Design changes may be necessary 

after testing has concluded [16]. 

 

 
Figure 30: Schematic of LED Control Circuitry 

This LED was relatively expensive for an electronic component at $2.05 per unit. Though 

since this part is only used once in the project that is acceptable. 

 

 Haptic Feedback 
There are two main options for haptic feedback for our application. Eccentric rotating mass 

vibration motors and linear resonant actuators. Both have unique strengths and weaknesses 

that will be discussed in the terms of our application. Specifically, we want a small 

vibrational device that can fit on a gloved fingertip comfortably and vibrate at various 
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intensities. We are hoping to control this device with either a digital to analog converter or 

more realistically the same magnitude control setup we are using to control the Peltier 

device. 

 

8.20.1: Linear Resonant Actuators 

Linear resonant Actuators or LRAs are a type of vibrational device that operate similarly 

to how a headphone or a speaker operates. Specifically, they use a coil to generate a 

magnetic field and repulse a rare earth magnet. This repulsion force presses up against a 

mass which in turn presses against a spring. By using an AC signal or a pulse width 

modulated signal it is possible to drive the LRA to vibrate at some frequency. There are 

several downsides to LRAs however. The two most concerning to our application is that 

LRAs need pulse width modulated signals or AC signals to operate and that they are very 

inefficient when not operated at their resonant frequencies. Creating pulse width modulated 

signals or AC signals is trivial however it requires extra hardware and programming that 

may not be necessary for what is in effect the simplest peripheral on an already complex 

device. Despite this the efficiency issue is more concerning. The resonant frequency is a 

frequency of operation at which the impedance of the internal capacitor and winding 

inductance is balanced. This results in optimal force being applied to the vibrating mass. 

However, when the device is operated at a different frequency then efficiency falls off 

dramatically. Our device calls for a range of operational vibrational frequencies and as such 

it does not appear that linear resonant actuators are the best fit for our application. They 

are much better for haptic response where you want a small package that gives a consistent 

vibrational response at a certain frequency, such as cellphone haptics. 

 

8.20.2: Eccentric Rotating Mass Vibrational Motors 

Eccentric rotating mass (ERM) vibrational motors are exactly what they sound like. A 

small electric motor with an unbalanced weight at the end. The rotation of the weight 

generates the vibrations that we perceive as haptic feedback. These devices work exactly 

like traditional electric motors. By supplying more voltage, or current depending on the 

specifications, we can control the magnitude of the rotation. For our purposes this is 

precisely what we need. While it may be natural to imagine ERMs as electric motors with 

oddly shaped weights on the end this is only partially true. It may be true that you can 

purchase ERMs in that form factor, but that form factor is completely unusable for our 

application. Fortunately, coin type form factors and encapsulated form factors are also 

manufactured. While encapsulated form factors are not ideal for our applications since they 

are essentially the electric motor with a weight but now with a plastic sheathing, the coin 

type form factors are perfect for fitting to finger tips. Of course, these aren’t the perfect 

component in every way and there are tradeoffs to be made between the coin form factor 

and other form factors. Specifically coin form factor ERMs have a higher maximum start 

voltage, which is the minimum voltage required to consistently start the motor. Fortunately, 

this will not be a major issue since we can account for the higher initial voltage when 

designing the control circuits for the haptic response. 
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8.20.3: Haptic Feedback Part Selection 

From the previous sections the haptic feedback device best suited to this project is a small 

coin package ERM. The main criteria for this part selection was size, cost, and operational 

voltage. The part that was selected was the C0720B015F produced by Jinlong Machinery 

& Electronics, Inc. Its package size is small enough to fit on the tip of a finger at 7mm in 

diameter and it has an operational voltage of 2.7 to 3.3 volts. The price is a little high at 

approximately $3.54 per unit however this is a part that only need to be purchased six times 

so to total cost for the part remains around $20 which is acceptable for a part of this 

importance. The motor will be controlled in a similar manner to the Peltier device with a 

digital potentiometer controlling a voltage divider that feeds into two operation amplifiers. 

This will result in the proper voltage but low current which is acceptable since the 

C0720B015F has a maximum current rating of 80mA. This is possible since as previously 

stated the TSV321 typically produces 80mA of output current. Figure 31 shows how the 

planned schematic for the implementation of the motor controller. Note that since the 

digital potentiometer (AD5248) and the operational amplifier (TSV321) have leads for 

another use or come in packages with multiple parts respectively, that a second motor 

controller could be implemented but was not for purposes of demonstration. Also note that 

the motor controller goes to a generic port since the actual motor will be connected to the 

board via wires as to better interface with the fingertips and to prevent the need to have 

bulky multi part packages on PCBs that rest upon the hand or fingers [17]. 

 

 
Figure 31: Motor Controller Schematic 

 

 Motion Tracking 
There are several ways to track motion each of which have varying degrees of accuracy. 

Hollywood for instance uses strategically placed white dots to capture motion for CGI 

frameworks. This method would fall under the optical category of motion tracking. A 

mechanical method of motion tracking uses force sensors and rigid mechanical frames to 

track the force that the motion exerts on each piece of an articulated machine. We will not 
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discuss mechanical tracking in any detail since as its name implies it is a mechanical 

structure and this is the Electrical and Computer Engineering Senior Design Course. A 

mechanical solution could even be optimal but would fail to demonstrate our mastery of 

electrical and computer engineering skills. Finally, inertial systems use a variety of 

electronic sensors to capture motion data. This data is usually wirelessly transmitted to a 

receiver where it is analyzed by a computer where it is processed into useable and 

understandable structures. 

 

8.21.1: Optical Tracking 

Optical tracking methods use cameras and reflective or light emitting nodes at various 

points to track motion. This is a high accuracy method since specialized high-speed 

cameras can achieve extremely high frame rates that can then be easily filtered to isolate 

the nodal motion from the reflective or light emitting nodes. This is the most commonly 

used method of motion tracking for consumer devices. For example, Hollywood uses high 

speed cameras, the Xbox Kinect uses an infrared camera and pulses of infrared light to 

track motion, and even the Nintendo Power Glove used high frequency sound and audio 

recovers to track its position using the Doppler Effect. While it would be possible to use 

this type of tracking scheme to interact with a 3D object, in order to receive haptic and 

temperature feedback almost all of the circuitry and I2C communication in the glove would 

still be required. It would also be very much a “me too” project that emulated existing 

commercial hardware and at that point why even bother developing our own motion 

capture system? 

 

8.21.2: Inertial Sensors 

Inertial sensors are a wide array of different sensors that capture motion of one kind or 

another. Common types of sensors include accelerometers, gyroscopes, and magnetometer. 

The main selling point of inertial sensors are that they require no external cameras or bulky 

equipment and are therefore popular with small self-contained devices and certain 

scientific equipment. For instance, in several of the microgravity labs at UCF 

accelerometers and gyroscopes are the only practical choice for data collection because it 

is impossible to fit bulky cameras or large force sensing equipment onto a rocket. We will 

be discussing accelerometers particularly in depth.  

 

Accelerometers measure acceleration as the name would imply. They do this be measuring 

the force of motion exerted on an object of known mass. Newton’s Second Law tells us 

that force is a function of mass and acceleration while Newton’s First Law tells us that an 

object at rest will remain at rest until an outside force act upon it. Finally, Newton’s Third 

Law tells us that when one body acts upon another with a force, that second body will 

excerpt an equal and opposite force upon the first. With this information it is possible to 

calculate the acceleration of an object in a single plane from force by placing a small 

passive force sensor in that plane and allowing the force of the motion acting upon some 

small object of known mass. This allows us to back calculate wit very simple algebra the 

acceleration of the motion that generated the force. Of course, there are several methods 

for measuring the magnitude of the force. 
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There are two main methods for measuring the magnitude of a force in an accelerometer. 

The first uses capacitance to accurately characterize the magnitude of force applied. It is 

possible to do this because as the force upon the mass increases the capacitive plates are 

forced more closely together. This changes the total capacitance in the system which has 

an easily measurable response in any electronic system. 

 

The second method for measuring the magnitude of a force in an accelerometer is to use a 

piezoelectric sensor. This type of accelerometer takes advantage of the piezoelectric effect. 

The piezoelectric effect is that when certain materials have mechanical stresses applied to 

them they generate an electrical charge or when those same materials have an electrical 

field applied to them they generate a mechanical change. Quartz in quartz watches are the 

most famous and commonly known example, but other examples may include crystal 

oscillators or inkjet printer heads. Essentially piezoelectric devices can be found anywhere 

that electrical systems need to control small mechanical motions. 

 

8.21.3: Accelerometer Considerations 

In our search for exactly the right accelerometer we needed to consider several aspects of 

the device. Our first consideration was the size of the device. It must be small enough to 

easily fit onto the tip of a finger along with several other components. The next aspect we 

had to consider was the price. It is quite possible to get some amazing high-quality 

accelerometers for precision scientific work, but those are expensive and we are not doing 

high quality precision work. We are developing what is essentially a consumer product. 

So, to stay within budget a cheaper model must be found since it will most likely not impact 

the end results of the project. The next aspect of the accelerometer we had to consider was 

it operable range. Many accelerometers have certain operable range settings where it is 

most accurate. Exceeding these range settings may mean you will not get useful or meaning 

full readings. For our application this was easy since hand motions will tend to stay in the 

±2 G range. Any more than that will mean that the user is wildly and forcefully flailing 

their hands around which should be discouraged. The next aspect we must consider is the 

precision of data the device can record. These devices send out digital signals from an 

analog data source so they must have internal analog to digital converters. The number of 

bits they can record determines their level of sensitivity. We would like at least 8 bits of 

precision since that its 1 ASCII character and if we must read data from the device it will 

have to be in packets of 8 bits anyway. An often-unconsidered aspect we need to discuss 

is the data capture rate. We need to be able to sample at hard minimum of a 30 Hz sampling 

rate. Though it would be better to have a much higher rate than that. Another aspect to 

consider is the communication protocol the device uses. There are usually several different 

communication protocols to choose from depending on what you want to achieve We wish 

to use I2C since we want to communicate with several devices on the same data line and 

so the accelerometer we choose must be I2C enabled. Finally, we need the accelerometer 

to have a purchasable testing board so that we can test and implement our driver code 

without having to integrate the entire device beforehand. 

 

8.21.4: Accelerometer Choice 

In the end after carefully considering all the aspects listed in the previous section we have 

decided to implement the MMA8451Q, 3-axis, 14-bit/8-bit digital accelerometer from 
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NXP Semiconductors. Table 6 has a list of features that make this board desirable for our 

needs [18]. 

 

 

 

 

Feature MMA8451 

Max Sampling Rate 800 Hz 

Communication Interface I2C 

Multiple Addresses Yes, 2 

Data Resolution 14 Bit 

Package Size 3mm x 3mm x 1 mm 

Price $3.34 

Breakout Board Yes, from Adafruit 

Table 6: Features of the MMA8451 

 

As can be clearly seen from Table 6 the MMA8451 is very good for our application. Figure 

32 shows how the chip must be applied in our circuit to function properly. 

 

 
Figure 32: Implementation Diagram of the MMA8451Q 

 

8.21.5: I2C Multiplexer 

Since the MMA8451Q has only two possible addresses and the project requires 16 

accelerometers an I2C multiplexer must be implemented. As referenced in Figures 3 and 4 

the accelerometers and peripherals will be placed on 1 of 8 possible I2C lines. The part 

selected was the TCA9548A from Texas Instruments. The TCA9548A has 8 pairs of 

multiplexed I2C lines as shown in Figure 33. The TCA9548A can run on a 3.3-volt power 

supply and has a small package size at 7.8 x 4.4 mm. It can handle up to a 400 kHz clock 

frequency and all I/O pins are tolerant to 5 volts. Figure 34 shows the application schematic 



 
 

42 

 

for the TCA9548A. Note that external pullup resistors are required, which is standard in 

I2C. Pullup resistors will be 1 kΩ which is near the minimum resistance specified by the 

data sheet [19]. 

 

 
Figure 33: Simplified Block Diagram of the TCA9548A 

 

 
Figure 34: Application Schematic of the TCA9548A 

 

 

9: Processing Board Overview 
Our MITTS (Motion Interface Thermal Touch Sensitive) device will have a central 

processing board that will handle data gathering and delivery. This board will handle data 
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needed from the sensors on the glove such as the accelerometers. It will also control the 

haptic response to the vibrational motors and Peltier devices for both resistive sensation 

and temperature changes. This board will also contain a Bluetooth device to send data 

through the UART standard to a computer for further data manipulation and processing. 

 

 Processor Comparisons 
According to Umesh Lokhande’s article on the BinaryUpdates website [20], he writes that 

some good parameters to look for and take into consideration for a microcontroller are: 

whether there are good resources available, whether it’s economical, and whether it’s easy 

to program.  

 

Having good resources to understand our project more is a huge plus, especially for this 

design since we are working with things we haven’t worked with before and trying to 

assemble a whole project with them. Hobbyist communities have step-by-step tutorials 

using the ATmega series and TI’s MSPxx series, which makes them exceptional choices. 

However, these are not widely used in big manufacturing and/or MCUs designed for 

specific applications. For this reason, we wanted to go with an ARM device due to their 

wide use in the industry. 

 

The ATmega series [21] and TI’s MSPxx series [22] has a wide variety of cheap options 

in comparison to an ARM MCU but are slightly more expensive. While looking at the 

Mouser Electronics website for comparisons, the ATMEGA32U4-AU is more expensive 

with a comparison of $4.80 for a single unit whereas the STM32F030C8T6 ARM chip [23] 

is $2.02 for a single unit. The ATmega also has less I/O pin count than the ARM chip; the 

ATmega being at 26 I/O pins and the STM being at 39 I/O pins. The ARM chip also 

operates at a lower voltage with a 2.4-3.6 V compared to 2.7-5.5 V. As far as the TI MSPxx 

series goes, looking at a similar pattern, the MSP430G2553IPW28 is $2.59 for a single 

unit, has only 24 I/O pins, and fortunately operates at 1.8 – 3.6 V. The difference 

economically makes sense here since the STM32F030C8T6 is cheaper, has more I/O pins, 

and is decently low in voltage operation.  

 

MCU Cost I/O Pins Operating Voltage (V) 

ATMEGA32U4-AU $4.80 26 2.7-5.5 

MSP430G2553IPW28 $2.59 24 1.8-3.6 

STM32F030C8T6 $2.02 39 2.4-3.6 

Table 12: MCU comparison Data According to the Mouser Website 

 

I/O Pins - The number of I/O pins on the STM is greatly higher than that of the ATmega 

and MSP chip. This choice of picking the STM will allow us to add more input and/or 

output devices if further development were to occur. This concept is great for scalability 

and allows us not to have to change to a brand-new chip if we did need more I/O.  

 

Memory Size - All three MCUs have FLASH memory, which as we know, is a non-volatile 

memory. Since the coding will be relatively simple, we should only need a little bit of 

memory to handle getting input and then sending that input off to something else. In our 
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case, we are sending to a computer through a Bluetooth module, so we don’t have to worry 

about memory there.  

 

 

 

Chip Memory Size (kB) Data RAM Size (kB) 

ATMEGA32U4-AU 32 2.5 

MSP430G2553IPW28 16 .512 

STM32F030C8T6 64 8 

Table 13: Memory Comparison Data According to the Mouser Website 

 

As we can see from the table above, even though the STM is the least expensive, it has the 

most memory in both regards. Clearly, this is an economical and logical choice. 

 

Clock Frequency - As we are only looking to keep a frame rate of 30 frames per second, 

the speed that we need our clock to be isn’t too significant, especially in today’s standards.  

 

Chip Max Clock Frequency (MHz) 

ATMEGA32U4-AU 16 

MSP430G2553IPW28 16 

STM32F030C8T6 48 

Table 14: Clock Speed Comparison According To The Mouser Website 

 

Again, we can see that, even though it’s the cheaper option, this chip has a much higher (3 

times higher) clock frequency than the other ones have. In the next figure, there is the 

details of the pinout of the chip itself. This will come in handy when integrated the circuit 

into the design. Knowing the pinouts on the board itself is essential in connecting 

components and assisting in the overall schematic design. 

 

 
Figure 35: STM32 Pinout 
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9.1.1: The STM32F030C8T6 

As a brief overview, the STM implements ARM, which is widely used in commercially 

manufactured products today, thus will provide us with real-world applicable experience. 

This experience will give us an edge on the job market and put us ahead for a potential 

career choice. Not only is the chip applicable, but it’s a smart economical choice and will 

be very useful and efficient in our project. With high frequency rates and low cost, this 

chip is our first choice. 

 

Multiplexers - There is one caveat to our choice and that is that there are not enough I/O 

pins on the board for us to read from or output to the devices on the glove. For this reason, 

rather than upgrading to a higher priced and bigger chip, we are going to make use of 

multiplexers. This will drastically decrease the number of I/O pins necessary. Since we can 

use a 3-8 or 4-16 multiplexer, we are only using 4 or 5 pins for input into the chip and also 

selection pins into the multiplexer. We can make use of the polling strategy in our case 

because of the high frequency of the chip and the easy 30 frames per second that we are 

trying to achieve.  

 

STM32 Breakout Board - The design heavily relies on the STM processing board for 

further development. The 3D interface relies on the processor to give it the details of the 

accelerometers. The interface between the 3D interface also relies on this data. All of the 

glove components rely on the processor, not only to read data from them, but also to send 

data to them. For this reason, it’s going to be very beneficial to get a breakout board, which 

essentially will act as our processing board since it uses the same chip. The exclusion of 

course will be that the board itself will not be the exact design, so things will change from 

the development to the physically made device. The coding, however, should stay the same 

since the pinout is the exact same on the development board as to the chip that we’ve 

selected. The trick will be to map those to our components when designing the schematic.  

 

Requirements and Specifications Fulfillments  

1. The processor is an ARM chip. 

2. The processor has low-power capabilities, thus can fulfill the low-power 

consumption. 

3. The processor has at least 1 dedicated I2C line 

4. The clock frequency is 48 MHz so 30 frames per second specification is achievable.  

5. We can add hardware options to fulfill the power switch and reset option 

capabilities. 

 

 Input and Output through Processor 
The processor must deal with a lot of input and output. There are 6 vibrational motors, 6 

Peltier devices, 16 accelerometers, and a computer communicating with or through the 

processor board. With this, the chip needs to be fast enough to poll and control each motor 

and sensor as well as communicate through the Bluetooth module to communicate with the 

computer for further processing of data. 
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Figure 36: Data Flow Schematic of The Glove 

 

As we can see from the design above, we don’t even see the Blender module. Also, we 

don’t even see the components of the interface or of the glove design. In this way, the 

processor only needs to know what input it will get from the accelerometer, what feedback 

it needs to give back to the glove design, and what input and output to expect from the 

interface. Something that needs to be communicated is the format of the data that’s 

expected for the interface. As far as the accelerometers, they are rather set due to the design 

given to them, but the interface is completely arbitrary for us.  

 

I2C - Communication on a wire can be tricky. If everything is trying to communicate at 

once to the processing board, then the board will not understand what is communicating 

with it. For this reason, there are protocols that can be used to that communication goes 

smoothly. According to i2c.info [24], “The system must be designed in such a way that 

slower devices can communicate with the system without slowing down faster ones.” For 

our sensors and modules, we will be connecting them on a bus, so we don’t have hundreds 

of individual wires wasting a single line, when we can easily communicate on a single bus. 

This is essentially what the I2C is, an Inter-Integrated Circuit bus.  The i2C website 

clarifies, “A bus means specification for the connections, protocol, formats, addresses and 

procedures that define the rules on the bus. This is exactly what I2C bus specifications 

define.” The site continues to define what I2C is by listing things such as terminology, bus 

signals, serial data transfer, start and stop condition, I2C data transfer and even more 

terminology.  

 

UART - This method of communication, which stands for Universal Asynchronous 

Receiver/Transmitter, is a means to simplify and aid in data communication. According to 

the website All About Circuits [25], UART uses only three signals: Tx (transmitted serial 

data), Rx (received serial data), and ground. It continues to say that there is no need for a 

clock signal because the internal clocks of the receiver and transmitter will ensure that the 

proper timing is done internally. Some requirements for UART say that the clock signals, 

“… must be sufficiently accurate relative to the expected frequency and sufficiently stable 
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over time and temperature.” We will be using this protocol for communication with our 

Bluetooth module. Here are some key terms, like I2C, that are used by UART, which are 

taken from the All About Circuits website: 

 

1. Start bit: The first bit of a one-byte UART transmission. It indicates that the 

data line is leaving its idle state. The idle state is typically logic high, so the 

start bit is logic low. 

2. Stop bit: The last bit of a one-byte UART transmission. Its logic level is the 

same as the signal’s idle state, i.e., logic high. This is another overhead bit. 

3. Baud rate: The approximate rate (in bits per second, or bps) at which data can 

be transferred. A more precise definition is the frequency (in bps) 

corresponding to the time (in seconds) required to transmit one bit of digital 

data.  

4. Parity bit: An error-detection bit added to the end of the byte. There are two 

types: “odd parity” means that the parity bit will be logic high if the data byte 

contains an even number of logic-high bits, and “even parity” means that the 

parity bit will be logic high if the data byte contains an odd number of logic-

high bits.  

 

With this protocol in place, we will have to keep everyone informed about which start bit 

and stop bit we will be using. The baud rate is typically 9600 baud, at least in typical 

Arduino tutorials. With this information, we should have a seamless transmission of data 

between the processing board and the Bluetooth module.  

 

Input from Accelerometers - The input from the accelerometers has 3 different types: the 

x-axis, the y-axis, and the z-axis. All three of these components have 14-bits that need to 

be read for an accurate reading. That’s a total of 42-bits that need to be read for each 

accelerometer. If there are 16 accelerometers, then we need to read a total of 672 bits. Since 

we need to store them in 8-bit increments, that means we will store each 14-bit in a 16-bit 

frame. If we do this, we have a total of 48-bits (6 bytes) per accelerometer. Again, with 16 

accelerometers, then we have 768-bits to store all of our inputs from accelerometers, which 

is a total of 96 Bytes. 

 

 Wireless Communication 
For our setup, we are going with Bluetooth communication. However, there are a plethora 

of ways to send data wirelessly, ways that include: infrared, satellite, radio waves, 

Bluetooth, Wi-fi, and many other methods as well.  

 

9.3.1: Pros and Cons of Wireless Communication 

According to the website elprocus.com [26], some advantages of wireless communication 

include fast speeds, fewer materials and overall less cost. For us, the biggest pro of having 

wireless is since our system is convenient if the user is not connected to a bunch of wires. 

Being wireless allows the user to free up degrees of movement.  

 

The disadvantage mentioned by the elprocus.com website is that data transmission is not 

as secure. However, for us, we are not transmitting anything that would be of value since 
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the data is only going to be pertaining to accelerometer values. On the other hand, we are 

getting input data, so if a hacker were trying to send in values to would cause the Peltier 

devices to heat up drastically, that could pose a problem. We have already thought of this. 

In this case, we will be hard-coding into the processor limiting values. With these limiting 

values, no matter what data is sent in, the Peltier device wouldn’t get hotter than whatever 

temperature we’ve set the limiter at.  

 

9.3.2: Bluetooth Module Choices  

Bluetooth has been growing in popularity ever since headsets started to make use of the 

technology, in my own opinion. Bluetooth is convenient; it has a very simple setup and 

compatible. The setup only requires that one scans for other devices and one is set to be 

discoverable. As far as compatibility is concerned, if both modules have a Bluetooth 

module, then they will work together, as long as they are within the correct version of 

course. For example, most Bluetooth x.x are compatible with each other, but the Bluetooth 

5 is not backwards compatible with 4.0, or 3.0, but the 4.0 is compatible with the 3.0. Here 

is a brief overview of the different versions of Bluetooth: 

 

 Basic Rate 

(BR) 

Enhanced 

Data Rate 

(EDR) 

High Speed 

(HS) 

Low 

Energy 

(LE) 

Slot 

Availability 

Masking 

(SAM) 

Bluetooth 

1.x 

Yes No No No No 

Bluetooth 

2.x 

Yes Yes No No No 

Bluetooth 

3.x 

Yes Yes Yes No No 

Bluetooth 

4.x 

Yes Yes Yes Yes No 

Bluetooth 

5.x 

Yes Yes Yes Yes Yes 

 

 

Figure 37: Bluetooth Comparison Table 

 

Of course, we would most likely want to choose a Bluetooth with a version of at least 4.x 

or higher since most devices now-a-days has this technology and for its speed and low 

energy.  

 

RN4871-V/RM118 [27] - This Bluetooth module is 9x11.5 mm and is Bluetooth 4.2. It is 

shielded which will aid in short-prevention and overall integrity and strength of the design. 

It’s small enough to help in fitting all the components onto a single PCB design and still 

fitting onto a wrist. This module also supports UART, which is the type of protocol we are 

designing the PCB to use to transmit data. This module also has an antenna on the chip. 
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BL652-SC-01 [28] - This Bluetooth module is 120x93 mm and is also Bluetooth 4.2. The 

data sheet does not specify any shielding, but from the looks of the image, the components 

on the board look enclosed. It’s a bit bigger than the other module, which may become a 

problem if we don’t have enough space, but still rather small. This has a larger selection of 

interfacing protocols, which still includes UART. The antenna is external rather than on-

chip. 

 

BM62SPKS1MC2-0001AA [29] - This Bluetooth module is 29 mm x 15 mm x 2.5 mm 

and is also Bluetooth 4.2. The module is shielded, which again will help with the space on 

our PCB. This module also supports data transmission over the UART interface. The 

antenna is stated to be on-board.  

 

Traits RN4871 BL652 BM62SPK 

Cost $8.44 $7.45 $12.50 

Shielding Yes Yes Optional 

Antenna Chip On-board On-board 

Size (LxW mm) 9x11.5 120x93 29x15 

Operating Voltage (V) 1.9 – 3.6 1.8 – 3.6 3.2 – 4.2 

Supply Current Receiving (mW) 10 5.4 unknown 

Supply Current Transmitting (mW) 10 5.3 unknown 

 

Table 15: Bluetooth Module Comparison Taken from Mouser.com 

 

As we can see from the table above. The BL652-SC-01 seems to be the best option. Not 

only does it cost the least amount of money, at least on this website it does, but it also 

seems to use the least amount of power. Of course, with that we are probably losing some 

distance in which we can transmit data, but the use-case for our device is strictly within a 

room next to the computer that will be taking in the data transmission so that will not be a 

problem.  

 

The next image is that of the schematic for the BL652 Bluetooth module. This gives a 

visual representation of the pinout of the design and will assist in the design process when 

integrating the circuit into the design. 
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Figure 38: Pinout of BL652 

 

 

 
Figure 39: Image from EL652-SC-01's data sheet about OEM Responsibility 

 

From the image above, they give specific outputs and antenna to comply the regulatory 

guidelines. Included in the data sheet is also more OEM responsibilities, which OEM 

stands for Original Equipment Manufacturer. The image below shows these 

responsibilities: 
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Figure 40: Additional Information from BL652-SC-01's about OEM Responsibility 

 

From this image, we can see that we need a clearly visible label on the outside. Our product 

will most likely exceed 8 cm x 10 cm, so we will have to include the statement if we were 

to ever produce this as a product:  

 

“The enclosed device complies with Part 15 of the FCC Rules. Operation is subject to the 

following two conditions: (1) This device may not cause harmful interference, and (2) his 

device must accept any interference received, including interference that may cause 

undesired operation.” 

 

9.3.3: Bluetooth Specifications 

BL652 – With I2C interface selected, in the datasheet, it states that pull-up resistors on I2C 

SDA and I2C SCL must be connected externally as per I2C standard.  

 

 PCB Design 
The overall PCB design needs to be small enough to fit on a wrist, but powerful enough to 

handle the IO of many modules. In first talking about this design, we thought about 

developing a flexible PCB design, but with the high cost of fabrication, we quickly said no 

to the idea. Rather than have it flexible, we can just make the PCB small enough and secure 

it in some type of curved enclosure to fit comfortably on a user’s wrist. In the next sections, 

we will be looking at different software and fabrication companies and how they compare 

to each other as well as defining what a PCB actually is. 

 

Flexible PCB – Flexible PCB is as its name implies; it's a PCB that is flexible. For the 

glove design, it might be considered useful for the electronics to have flexibility due to the 

constant movement that the normal use will influence the design. Essentially, instead of 

the components of the board being placed on a rigid board, they are placed on a plastic 

substrate, thus the components can bend as the board bends. The glove design may also 

benefit from this due to the components along the fingers could make use of the flexibility. 

However, flexible PCBs are drastically more expensive because it's a more recent 

technology. Due to this expense, having wires along the fingers will give us the same effect 
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at a much cheaper price. Furthermore, the PCB design will be mounted on the wrist, thus 

we can use bands or other stretchy connectors to mount the device to the wrist of the user. 

 

Flexible PCB over Rigid PCB – Continuing further, we will be choosing a rigid PCB due 

to the high cost of the flexible PCB. The wires connecting the components on the glove 

design will be much cheaper but will bring a bigger design overall since wires on flexible 

PCB are smaller than individual wires connected to each component. Moreover, flexible 

PCBs is an over-design for the design we are trying to make. Simpler is sometimes easier.  

 

9.4.1: Schematic Design Tools 

In order to fulfill the design requirements, there needs to be a PCB design. For this to take 

place, the PCB needs to be designed. There is an extensive list of design tools that are for 

freelancers all the way to big industry. Some come with a heavy price tag, which includes 

engineers ready to help in the design process, and some are free with tutorials and 

documentation to guide users along. Since the design only consists of a single PCB and its 

details are rather simple, a free version of a schematic design tool, will do the job. In the 

next few paragraphs, there will be schematic design tool options. 

 

9.4.2: KiCAD 

For designing the PCB, we will be using KiCAD, which is a free software suite for 

electronic design automation. The reason we will be using KiCAD is that it’s open-sourced, 

which means it’s free, and it being open-sourced means we are staying true to our design 

goal of making our own project open-sourced. When traversing through the site, there is a 

“Help” menu, which provides a plethora of documentation at our disposal as well as 

tutorials. We will benefit most from this software mainly because we have had experience 

using it, and throughout this design, experience will get us a lot further than education.  

 

9.4.3: SOLIDWORKS PCB 

According to the Trimech website [30] , SOLIDWORKS PCB boasts being powered by 

Altium’s best-in-class PCB technology. Altium seems to be a technology all on its own. 

This leads me to believe that SOLIDWORKS PCB is more of a framework to allow 

integration between the PCB design and the mechanical design of using SOLIDWORKS. 

It continues to say that it integrates seamlessly with SOLIDWORKS, which enables a 

completely collaborative electro-mechanical workflow, so my assumption of if it’s more 

of a framework seems to be correct. This sounds enticing; however, we are not going to 

have a mechanical design complex enough to be using software to create it, so this choice.  

 

9.4.4: DesignSpark PCB 

The rs-online website [31] which hosts the DesignSpark software states that the software 

doesn’t have limitation on design schematic size as well as integration into their other free 

software that “take your brightest ideas all the way through to final production.” You can 

also use as many layers, pads, nodes, and connections in your design as you’d like. A cool 

part of this software is if you can’t find a part to put into the PCB design, then their software 

has a functionality that allows you to create them from PCB Part Library. This functionality 

seems very useful.  
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 PCB Fabrication 
Eventually, when the design is finished, the design needs to be created. To do this, one can 

develop their board and buy a bunch of industry equipment and essentially 3-D print the 

board oneself, or like most people, going to a PCB fabrication company will save lots of 

money. In the next couple of paragraphs, researched options will be listed, and their details 

will be explained. 

 

9.5.1: PCBWay 

PCBWay [32] is a full feature custom PCB prototype service. They boast a low-cost 

fabrication and a quick delivery time. A basic design that’s within 100 mm x 100 mm and 

10 pcs is estimated at $5.00, which is an incredible price. It also states that the design would 

only take 2-3 days, which is rather typical for small-batch PCB fabrication.  

 

9.5.2: 4pcb 

4pcb [33] does their production in the United States. This can be seen as a benefit, but most 

likely their design will be more expensive, but with less shipping costs. Their website 

doesn’t give an estimated price for anything, but they do provide this chart: 

 

 
Figure 41: PCB Specification Comparison [33] 

 

From this chart, we can see that their layer count and turn-time is around the same as 

PCBWay, but they don’t include an estimated price as PCBWay does. From this we can 

speculate again that PCBWay will have higher shipping cost because they are shipping 

from China, but with a lower design cost and 4pcb will have a lower shipping cost because 

they produce in the United States, but typically cost of manufacturing in the United States 

is higher.  
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9.5.3: PCBgogo 

The PCBgogo [34] website boasts a 12-24-hour quick turn PCB prototype service, which 

is very quick. They also have a low minimum from 1 pcs PCB Assembly is accepted, which 

I don’t believe we will actually benefit from or need. They boast 24-hour customer service 

availability, which could come in handy if we have any questions. A big plus in my book 

is the fact that they have 99% on-time DHL Delivery so if we are not very unlucky, we can 

typically trust in the delivery time that they set, which could come in handy in a time 

crunch. A professional PCB engineer one-to-one service is offered. This fabrication 

company seems to be very trustworthy and helpful and would be a good alternative to 

PCBWay. 

 

9.5.4: JLCPCB 

The JLCPCB [35] website advertises the lowest prices for PCB design researched. They 

boast over 200,000+ customers worldwide and 8000+ online orders per day. They claim to 

be the largest PCB prototype enterprise in China. They specialize in quick PCB prototyping 

and small-batch production, which is exactly what the design entails. The only downside 

to this choice would be, like most others, is that it ships from China, which can take a long 

time. However, they state only up to 2-3 days of build time and shipment tracking, which 

can ease tension in a build when waiting on parts.  

 

 PCB Design Constraints 
There is a plethora of constraints to consider in the PCB design, some are already included 

when we consider the Bluetooth module from earlier. Constraints can come in a variety of 

broad topics such as: environment, economical, sustainability, social, political, ethical, 

manufacturability, and most importantly, health and safety. In further reading, we will 

cover constraints within each category and explain each constraint that is arbitrarily placed 

on our project, or a constraint due to reasons out of our hands. 

 

9.6.1: Environmental Constraints 

Environmental constraints can be constraints given to us by the environment around us, 

such as, we cannot create a design that is bigger than a room, because a user is intended to 

us it within a room. That’s, however, a broad example that doesn’t need to be addressed 

due to the nature of our project. Environmental constraints can also be given to us by literal 

protocols or regulations required due to the environment, such as waste produced by a 

product and how it’s disposed of or even the amount of carbon dioxide that a product can 

produce.  

 

We don’t have any environmental constraints on our project, but we will be including 

Lithium-powered batteries, which can pose a hazard to the environment if disposed of 

properly. This isn’t necessarily our responsibility due to the batteries including labels on 

them that inform the user to dispose of the batteries properly. 

 

9.6.2: Economical Constraints 

Economical constraints are constraints that talk about costs, efficiency, and can even 

include longevity because the longer the product can less, the more economical it is. For 

the PCB design, our economical constraints are only to make the design cheap to make an 
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impact for future hobbyists to tinker with our design. For that to happen, we will be trying 

to make the board, low-powered, use low-cost modules, and be cheap to manufacture.  

 

9.6.3: Sustainability Constraints 

Sustainability constraints are essentially constraints to allow further development of our 

design over a long period of time. For example, if the chip that we chose decides to be 

discontinued and no longer manufactured for whatever reason, then our design will no 

longer be sustainable. For this reason, we have an obligation to keep the design sustainable, 

so hobbyists can use the design in the future. In this way, we will be trying to use up-to-

date technology, like choosing a 4.x Bluetooth module rather than 1.x or 2.x and making 

our design rather simple to change. If our design is simple, a part can be changed without 

affecting too many other parts, essentially making everything loosely coupled. 

 

9.6.4: Social and Political Constraints 

Social and political constraints are closely related. Social constraints are constraints 

enforced by society and political constraints are constraints enforced by policy. In the PCB 

design, there are no constraints based on these topics. 

 

9.6.5: Ethical Constraints 

Ethical constraints are constraints that are imposed by ethical dilemmas or forced due to 

ethics of society. The only ethical constraint that we have on our design is to make it cheap 

for the open-sourced community so that they can learn and tinker with our design without 

breaking their bank. 

 

9.6.6: Health and Safety Constraints 

Health and Safety constraints are imposed by either regulation and requirements. These are 

regulated because a lot of technology today can be dangerous and if standards aren’t met, 

then people can become injured. The first thought we had about our PCB design was 

concerned about shock risks, sharp-object risks, and temperature risks. The shock risks can 

come from the PBC design coming into contact with the user. For this, we will be enclosing 

the PCB design in a plastic enclosure to ensure to contact with the skin can be made. For 

the sharp-object risks, it’s solved by the enclosure. The risk was that usually sharp wires 

from soldering or from the design can stick out and are rather sharp. With the enclosure, 

no contact can be made with the wires. The heat risk can be reduced by implementing a 

heat sink on the chip as well as using an enclosure to keep the design further away from 

the user. The battery will most likely be the highest temperature and, since it’s lithium, has 

a higher risk of catching of fire or even exploding. For this reason, we will also include a 

metal enclosure for the battery that will act as a fire/explosive defense measure. 

 

 System Startup Procedure 
When the processor design initially gets power, there needs to be a couple of events that 

occur. These events will include visual cues of the device turning on, data being read, pins 

being set, and then a loop of reading and sending data with the Blender interface and the 

glove components. The next figure will show a coding block diagram of how this procedure 

will work. Initially, the device will get power. To indicate this, we will program a red LED 

to light up to signify that the device is booting up. During the chip boot, a few events will 
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occur to ensure proper functionality. First, the pins will be set; essentially, the code is 

giving the pins their respective components that they are responsible for. Next, we will 

initialize the I2C, which is explained in the I2C section of wireless communication. Once 

that is initialized, we can start the UART handshake process for the Bluetooth device. This 

will make the device detectable by the interface that will connect to the processor. In order 

to keep the Blender model and the glove design synced, the instruction will be to place the 

hand utilizing the glove on a flat surface. This will "normalize" the reads and allow for the 

Blender interface to be synced with what is actually happening with the hand. To indicate 

normalization has occurred, a green LED will then be turned on briefly to show the glove 

is ready. From here, the code will loop between reading from the components on the glove 

to get their positions, sending through Bluetooth interface, reading from Bluetooth 

interface, and then sending this response to the HAPTIC devices on the glove. Again, the 

block diagram is as shown: 

 

 

 

 
Figure 42: Pseudocode for startup Procedure 
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Figure 43: Block Diagram for Startup Procedure 

 

10: Relevant Technologies 
Some may argue that every new idea is simply a combination of other ideas. With the 

advent of virtual reality and augmented reality, an industry of haptic feedback popped up 

into the world. While there are certainly technologies out there that have accomplished 

haptic feedback, our design is unique because of the way we are incorporating the sense of 

touch and temperature.  

 

 Existing Technologies and Products 
In the next couple of sections, there are some technologies that are alike to the design being 

created. These designs offer either higher quality, a more specific feedback system or even 

a lower quality or a higher price. 

 

10.1.1: VRGluv  

The VRGluv [36] is a force-feedback system that uses pulley like technology to pull the 

fingers back to make the user feel like they are grabbing an object and can't close their hand 

anymore. They have 10-zones of feedback on each hand, which can provide 5 pounds of 

force to simulate rigid objects. They express 10-ms of latency over wireless 

communication. They also claim 360-degree thumb tracking. Some obvious similarities 

are that both designs have a force feedback and wireless communication. Our haptic glove 

design is different in the manner that the design gives force feedback; rather than have 
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something pull at the user's fingers, we are giving a rumble affect to show that you are 

touching something. Also, we are incorporating a temperature-feedback design which isn't 

present in the VRGluv.  

 

10.1.2: HAPTX 

HAPTX [37] is a more complex design on the market today. They have a patented 

microfluidic technology that lets you feel the shape, movement, texture, and temperature 

of digital objects. This technology also claims 5 pounds of force feedback with what seems 

to be the same design choice of the VRGluv. It also has industrial grade motion-tracking. 

To compare, our glove won't give a sense of shape or movement of an object. With our 

design, it's much simpler. We are giving temperature feedback as they do, but their design 

is much more complex. We also will have "industrial" grade motion-tracking due to each 

finger have 3 accelerometers. Judging from the images, our design seems like it will be 

less cumbersome and most likely, considerably cheaper to produce. However, with the 

cheaper product, the quality of the feedback doesn't seem like it will compare to the 

technology that they are incorporating into their design. 

 

In the following table, we will consolidate the functions and features of the aforementioned 

products on the market today compared to our design. 

 

Features MITTS VRGluv HAPTX 

Force Feedback No Yes Yes 

Temperature Feedback Yes No Yes 

Motion Tracking Yes Yes Yes 

SDK Provided No No Yes 

Low Latency Yes Yes Yes 

Pressure Sensing Yes Yes Yes 

Texture Feedback No No Yes 

Table 16: Product Comparisons 

 

As we can see from the table above, the HATPX is by far the most functional. The MITTS 

design is sacrificing quality for a lower cost and cheap production. 
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 Programming the Chip 
For the components to work properly, the chip needs to know what to do and for it to know 

what to do, we need to program the chip. The chip the design will use doesn’t have an 

unlimited amount of memory, so it’s going to be best to program it with a low-cost to 

memory. In general, the lower-level the language, the lower amount of memory will be 

consumed. The highest level typically used by ARM devices is C++, then C, then if truly 

bold, assembly language. 

 

10.2.1: C++ 

This language is a high-level language built off C to enhance ease and verbosity. It is highly 

portable, which means that if we wanted to change chips, most likely the code would work 

on the other chip due to being so portable or universal. It includes features such as classes, 

inheritance, polymorphism, data abstraction, and encapsulation because it is an object-

oriented language. Due to it being an older language and used by a world-wide community, 

the libraries available are endless. Some features it has over C, is that it allows for function 

overloading and exception handling. C++ can do almost anything, from 3D graphics for 

games to real-time mathematical solutions. 

 

10.2.2: C 

This language is a combination of being high-level and low-level. It being close to low-

level makes it easier to make critical mistakes that are usually caught by higher level 

languages. However, due to this reason, it uses less memory and has more precise control. 

It can control drivers and kernel modules, which are not generally done in higher level 

languages, or if the higher-level languages do, then they simply interface the code written 

and change it into lower level code. This is the same technique used by C; change the code 

to assembly, then to 1s and 0s. C is used in Windows, Unix, and UNIX systems. As with 

C++, C also has an extensive function library due to the huge community of people that 

work with it. 

 

10.2.3: Assembly Language 

Using assembly would be only beneficial if we were only trying to maximize speed in our 

design. Assembly is the lowest-level you can get to the hardware without using 0s and 1s 

to code things. For the design to use assembly would take a lot of time learning the specifics 

of such a tedious language. It’s fast and uses as little memory as you need it to. Generally, 

if you write a function that does the same exact thing in C, C++, and assembly, assembly 

will be the most efficient, performant, and least memory intensive.  

 

The next table will hold comparisons between the three options and will gather better 

evidence for which one should be chosen over the others. 
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Traits C++ C Assembly 

Extensive function library Yes Yes No 

Object-Oriented Yes No No 

Portable Yes Yes No 

Exception Handling Yes No No 

Function Overloading Yes No No 

Table 17: Comparing C++, C, and Assembly 

 

For the design, C will be the most beneficial. The code needs to be closer to the hardware 

because we will be interfacing with many components and essentially writing drivers. 

Assembly would be beneficial too, but for our case, learning the specifics will be much too 

time consuming. C is balanced in the sense that it is fast, performant, less memory-

intensive, portable, and has a wide range of documentation and tutorials if we ever get 

stuck on coding. 

 

10.2.4: Coding Peltier Controller 

The Peltier controller needs to be coded with complex algorithms to give us more control 

over the fluctuations we put on our Peltier devices. Rather than constant up and downs to 

maintain a temperature, we are essentially calculating the error value as the difference 

between a measured process variable and a desired setpoint. To code this, it’s complex 

because we need proportional integrals and derivatives. Luckily for us, there is already 

code out there that has solved these complex calculations. For example, the Arduino 

Library contains a library called “Arduino-PID-Library." The downside to this is that it’s 

written for a different chipset, so the design will have to reprogram the different pin 

numbers for the library to work on the ARM device.  

 

 STM32 Attributes 
There are many attributes we may or may not need to be aware of that can contribute to a 

project. Anywhere from how much memory to what kind of stack it uses. In the next couple 

of paragraphs, we will look at attributes that will ultimately affect the design.  

 

10.3.1: Stacks 

The chip makes use of a full descending stack. This essentially means that the processor 

pushes a new item on the stack after it decrements the stack pointer. It’s stated in the 

programming manual of the STM32 that there are two modes available: The Handler mode 

and the Thread mode. There are two stacks that are used on the chipset and the mode 

influences which one is being used. The manual supplied a handy table as seen below that 

shows how the Thread Mode and the Handler Mode differ: 

 

Processor Mode Used to Execute Stack Used 

Thread Applications Main stack or processor 

stack 

Handler Execution Handlers Main stack 

 

Table 18: Summary of Processor Mode and Stack Usage from STM32F0 

Programming Manual 
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10.3.2: Registers 

We mainly will not have to deal with registers so specifically due to the design making use 

of C rather than assembly code. However, it is important to make note of key registers that 

will come into play if we need to work closer to the hardware with assembly. Here is a 

short list supplied from the STM32 Programming Manual that shows key registers: 

 

Name Type Description 

R0 – R12 Read-write General Purpose Register 

MSP Read-write Stack Pointer (SP) 

PSP Read-write Stack Pointer (SP) 

LR Read-write Link Register (LR) 

PC Read-write Program Counter (PC) 

PSR Read-write Program Status Register 

ASPR Read-write Application Program Status Register 

IPSR Read-only Interrupt Program Status Register 

EPSR Read-only Execution Program Status Register 

PRIMASK Read-write Priority Mask Register 

CONTROL Read-write Control Register 

Table 19: Essential Register Summary from STM32F0 Programming Manual 

 

10.3.3: Interrupts and Exception Handling 

The Cortex-M0, which is what the design will implement, does support interrupts and 

exception handling as stated by the Programming Manual. More in-depth explanation of 

how this is handle can be found in the manual. 

 

 Flashing the Hardware 
There is a difference between programming the chip and flashing the hardware. 

Programming the chip involves the physical code that is put onto the chip whereas flashing 

the hardware is the method in which the code gets onto the chip. Using the STM32 breakout 

board makes this process very easy and is one of the main reasons for the existence of 

breakout boards, so individuals can use a chipset without making their final hardware 

design. When the design is finished, the project will not have a dedicated board; there will 

be a board designed for our purposes. Unfortunately, that doesn’t mean that flashing the 

chip will be so easy. 

 

10.4.1: Flashing the STM32 Breakout Board  

This is by far the easiest. As said in the previous paragraph, the breakout board is designed 

specifically for easy coding and ease-of-use. It simply needs a USB type cable as well as 

the driver information, so the computer can recognize the device to program it. From here, 

using the IDE supplied by the STM website, flashing the chip is as easy as compiling the 

code and uploading, or flashing, it to the chip. 

 

10.4.2: JTAG 

Before getting into the specifics of how to flash the final PCB design, JTAG must be 

explained. According to XJTAG website [38] , JTAG makes use of one underlying 
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technology, which is, the four-wire JTAG communications protocol. It makes use of four 

signals according to the website. Two of these pins is the SWDIO and the SWCLK. The 

table below shows the ports and pin numbering: 

 

Pin Port Name 

46 PA13 SWDIO 

49 PA14 SWCLK 

 

Table 20: Pin and Port Information for JTAG pins 

 

10.4.3: SWD In More Detail 

SWD stands for serial wire debug allows for programming, step-through debugging, and 

many more UART style I/O. JTAG and SWD have almost become synonymous when 

talked about in forums, but SWD is more ARM specific and uses less pins than JTAG, but 

for non-ARM specific devices, JTAG would be the way to go. 

 

10.4.4: Flashing the Final PCB Design 

This is a little trickier than flashing the STM32 breakout board because the design doesn’t 

have the dedicated hardware created for it. The design will make use of SWD due to the 

reasons stated above in previous paragraphs. A lot of documentation leads to the ST-Link 

V2 to program the chip and debug when on the PCB design. This device makes it easier to 

program the chip, but a design can be made without this device for more hardware 

adaptations. The device essentially brings boot0, or pin 60, low to set the desired boot 

mode. This boot mode can be boot from flash, boot from system memory, or boot from 

embedded SRAM. Obviously, the design needs to be set to boot from flash to program it 

and when in normal operating mode, the design needs to set the boot mode to boot from 

system memory to run the code that the system gets flashed with.  

 

10.4.5: Making Use of STM32 Breakout Board 

The STM32 Breakout Board is intended to make the development process easier. For initial 

testing, the design incorporates I2C communication. For I2C communication to occur, the 

data sheet for the MMA8451, which is the accelerometer, specifies the start and stop bits 

as well as how the communication occurs and is successful. Since the design only needs to 

write to the accelerometer, we look at the data sheet and find the I2C data sequence 

diagram, which looks like this for a single-byte read: 

 

 

 
Figure 44: I2C Data Sequence for MMA8451 

 

As we can see, we send a start bit as well as the device’s address, which for the MMA8451 

is 0x1D unless we pulled the address pin down, then the address is 0x1C. The 

communication appends to the end a write bit, which specifies whether the STM32 is 
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writing or reading from the device. The device then sends an acknowledgement. Next, a 

register address is sent that is to be read from the device as well as an acknowledgement. 

It then follows up with a repeated start condition (SR), the device’s address we want to 

read to, and then the read bit to specify whether to read. An acknowledgement is sent as 

well as the data correlating with all the details thus far. The I2C protocol then sends a stop 

bit (SP) to signify the end of the data read or write. 

 

 Development Environment 
The STM32 has a lot of support by the ST company. Resources our project will utilize 

includes a data reader, an IDE and a configuration program. All these aid in the 

development process and make the configuration and debugging exponentially easier for 

testing. 

 

10.5.1: STMStudio 

This program makes it easier to debug our program that we load onto the STM32. It makes 

it easier by reading and allowing variables to be displayed in real-time after code has been 

uploaded. In the future, it has ST-Link support for SWD debugging, which the project most 

likely will make use of. This kind of tool is specific to the STM, thus has a lot of support 

for our chip as well as good documentation. 

 

10.5.2: Keil uVision5 

The uVision software is a project manager and a run-time environment. It’s essentially an 

IDE for embedded programming. This IDE was chosen based on the fact that there are 

many videos correlating with programming the STM32 that utilize this software. It is 

optimized for C/C++, which is essential in our project.  

 

10.5.3: STM32CubeMX 

This software is an initialization code generator. It essentially helps you build initialization 

code and provides a nice UI to change things such as clock frequency, dedicated addresses, 

GPIO pin setup and much more. This part is usually tedious to program, but this program 

handles all of this and gives a good template to start programming from. It even has support 

for initializing I2C communication on the board, which is the essential part of the design. 

The process is simple. It first allows you to choose your chipset or board. One then goes 

through the process of setting the configuration with a pinout-conflict solver, a clock-tree 

setting helper, a power-consumption calculator, and a utility performing MCU peripheral 

configuration (GPIO, USART, ...) and middleware stacks (USB, TCP/IP, ...). This makes 

the whole configuration very easy.  

 

10.5.4: Flasher-STM32 

This is optional software that leads me to believe the design might have to incorporate in 

when it comes time to flash the chip on the PCB design. This software helps in flash loading 

the memory. It comes with features such as UART system memory bootloader and 

documentation to get one started.  
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 Calculating the Accelerometer Data 
Calculating the accelerometer data will be tricky. What we need to do with the data is 

essentially integrate the data points twice to get the position. However, when doing this, 

any noise or inaccurate data get amplified each time we integrate. This process will 

certainly make the design difficult because it is the bottleneck of the system. Without 

having proper conversion of the accelerometer data, then the Blender module cannot work, 

and neither can the interface between the board nor the Blender module. As mentioned on 

StackOverflow we need to keep a few things in mind. We need to use Newton – D’Lambert 

physics for non-relativistic speeds. Since our accelerometers can rotate, the direction must 

be applied. The measured timings are critical, and the compass is not always correct. With 

these things in mind, the design for the algorithm to turn accelerometer data will be 

difficult. 

 

 

11: Blender & 3D Environment 
A fundamental part of our project is creating an interactive 3D Environment to show the 

capabilities of our glove.  Blender is a professional, open-source 3D graphics toolset.  It’s 

capable of animation, effects, printing 3D models, and most importantly for us, interactive 

3D applications.  We’ll be using Blender to demonstrate the following abilities of our 

glove: 

 

• Motion tracking 

• Hand formation tracking 

• Vibrations at different frequencies 

• Peltier device at different temperatures 

 

Our reasons for choosing Blender are numerous.  For one, its flexibility allows us to do 

anything we need in one program.  From modeling to animating, adding effects, and 

scripting, we can create our project while keeping any other programs’ usage to a 

minimum.  This is good because it saves time on learning to use many programs and 

prevents potential compatibility issues in the future, and at the same time blender can be 

easily used in conjunction with many other programs.   If the need to incorporate more 

software into our project arises, or if we need to switch to different software outright, using 

blender will make sure most of our work is still usable, and any losses in progress will be 

kept at a minimum. 

 

Another reason to use blender is that it’s free and open source.  This keeps our project’s 

budget at a minimum, because we won’t have to pay for professional, proprietary software 

that could potentially be very expensive, all while still allowing us to keep rights to 

whatever we create.  It also means that the skills accumulated in creating this project will 

be useful in future endeavors, as familiarity with blender and the skills and concepts 

associated with it are very useful in today’s job market. 

 

Blender also has a wide user-base, and is described as “a public project, made by hundreds 

of people from around the world” on their website.  Consequently, it has a ton of resources 
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and assets publicly available.  This means we can save a lot of time by using public assets 

that are at our disposal.  If done from scratch, we would have to model every piece of 

environment, the hand, and any interactive objects, then texture and animate them all on 

our own.  Using public assets allows us to skip many of these steps, which will save us 

days and possibly even months of work. 

 

Most of the work will be modifying public assets and scripting them to interact with the 

rest of the 3D environment and consequently the glove itself.  The end goal is to have a 

demo that shows all the aforementioned capabilities of our glove and getting our glove to 

interact with the demo on-screen. 

 

The idea for the final product for our demo will be as follows:  In blender we will have a 

modeled hand that can change itself to match the user’s hand that is wearing the glove.  It 

will move around the environment as the user moves his hand.  This is how the motion 

tracking of the glove will be demonstrated.  If the user moves their hand left, the hand in 

the engine will also move left, and vice versa.  Our aim is to match the distance that the 

hand in the 3D engine moves to the user’s hand as closely possible, in order to give an 

immersive experience that “feels real.”  This will likely have many applications in VR 

technology. 

 

The in-game hand will also be able to form into the shape that the user is making with his 

hand.  This makes use of the accelerometers implemented into the glove design.  This is 

how we will demo this part of the glove.  Like with the hand tracking, this will try to be 

done as accurately as possible for an experience that “feels real.” 

 

Another feature of the glove to demo is the vibrations integrated into the glove.  The idea 

is to use this so that the user feels feedback from the vibration whenever they control the 

hand to touch something in the 3D world.  The glove will vibrate the points of the hand 

that are “touching” a 3D object and resonate at a frequency that will be higher depending 

on the “toughness” of the object, which will be a variable associated with 3D objects that 

differentiates between objects made of “soft” materials and those made of “hard” materials, 

and the speed at which the 3D hand collides with the 3D object.  This will simulate 

“feeling” this with your hand in the 3D environment and could have very useful application 

in making an immersive experience in VR or other technologies. 

 

The last feature of the glove to demo is the Peltier device, which are chips integrated into 

the glove that can heat or cool.  The objects that the hand can interact with in the 3D world 

will have a “temperature” variable associated with it.  When the hand is in contact with an 

object, the temperature on the Peltier chips will adjust to be warmer or cooler based on the 

object.  This will simulate temperature in the 3D world, if the user has the hand pick up an 

object that’s hot, the Peltier chips will make it “feel hot,” and vice versa for cold objects. 

 

To demonstrate all of this at the same time, the demo will have a table with multiple objects 

that the glove can interact with.  This will make demonstrating the features of our glove 

much easier as we’ll be able to do it all at once in one sitting.  There are multiple ways to 

use these objects to demonstrate these features: A blue ball with a lower “temperature 
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value” and a red ball with a higher “temperature value” to show the Peltier devices, a “soft” 

and “hard” ball that can demonstrate vibrations, or a “stove top” on the table with a field 

that will warm the Peltier chips when the hand is in the field.  This environment will have 

to be created, modeled, textured, and scripted using blender. 

 

We’ll start by creating a demo without the glove, so we can make sure physics and 

interactivity works before we implement our device.  We can start the making the demo by 

creating the table, followed by making the ground, a block to place on top of the table to 

test the physics, and a placeholder hand.   Once these assets are implemented, we can script 

the objects to react to gravity and collisions, make the hand controllable with the keyboard, 

and position the camera and allow it to be controlled with the mouse.  We will also need to 

texture everything, so it looks more presentable, and possibly add a skybox as well to make 

it more immersive. 

 

 Modeling & Object Creation 
Blender gives us many tools to help create the demo for our project.  The first thing we do 

is change the unit type in the scene tab to “Imperial.”  This means the units will represent 

feet and inches, which will be helpful for us because it helps correlate between lengths in 

real life and lengths in the demo environment, and imperial units make the most sense for 

this because they’re more common in United States.  We want to do everything we can to 

make the demo feel like a real application and keeping scaling consistent will help with 

that. 

The create tool allows us to make many basic shapes and objects, and we will use it to 

make several basic objects for the demo.  Now we’re going to make a table, which will 

have many demo objects placed on top to help with our demonstration.  This is done using 

a series of cubes that we modify.  The desktop is a cube transformed to be thin and wide, 

while the legs are all cubes made to be tall and skinny.  Then we position them together 

and combine it with Ctrl-J to turn into one object and rename it to “table.” 
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Figure 45: Screenshot of Blender Interface 

 

 
Figure 46: Table before legs were added 
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Figure 47: Table after legs were added 

 

 

Now we need to add a ground.  This is very simple, I just create a mesh with the same tool 

I used to make the blocks and use the properties window to change its location to (0,0,0), 

at the center of the 3D space, and increase the scaling on the x and y plane to make it large 

enough to fit everything on. 

 

Once we have that, we need to import a hand model.  Modeling out a brand-new model is 

time consuming, so importing a free one is ideal.  free3d.com is a website that specializes 

in royalty free assets, from which we can get a royalty free model to use for our project. 

 

[20] The model we’ve imported is “Realistic Hand 3d model” from user 

“mohammadalizadeh” on free3d.com. 
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Figure 48: Cover image of imported hand 

 

Once downloaded, we simply use File -> Import -> 3d Studio (.3ds) and select the 

downloaded file and the hand model is now in our program.  The hand is a little too large, 

so I use the properties window to scale it down to 0.1 on all axes and change the rotation 

to have the fingers forward facing towards the table at start. 

 

 
Figure 49: Completed table and plane with imported hand 

 

We’ve also added a block above the table to test the physics and positioned the camera to 

where it’ll need to be for the in-game vision. 
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 Physics Implementation 
Adding the physics is actually very easy to do in blender.  We change the “gravity” value 

under the scene tab in the properties window to 32.2 ft/s2 to emulate real life.  Now we use 

the “physics” tab in the properties window, where we can change the physics type of each 

of the objects.  For the table and the block, we change the physics type from “static” to 

“rigid body.”  This causes these objects to be affected by gravity, so they’ll fall until they 

collide with something else or the plane we’ve used as the ground.  For the plane, we leave 

the physics type as “static,” as we don’t want that to fall.  The camera will also be left as 

static so that it doesn’t move. 

 

The hand will be controlled with the keyboard for now and later changed to be controlled 

with the glove.  We change the physics type for the hand to “dynamic” for this reason.  

This leaves us with a problem, as the hand will now be affected by gravity, but we want to 

be able to control it.  There’s many ways around this issue, this will be addressed when we 

script it. 

 

With all this implemented, we can press “P” to start the engine and see that the block falls 

and rests on the table, while the table rests on the ground.  To make the collision box for 

the block more accurate, we check the “collision bounds” box at the bottom of the physics 

tab and change the bounds to “box.”  This makes the collision bound of the object more 

block-like. 

 
Figure 50: Physics settings for the block 
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 Scripting & Logic 
Now we will script the hand and camera.  We create another window and use the button in 

its corner to select “logic editor.”  Here we can put together “logic bricks” that form simple 

code.  The logic editor also supports python code which we might implement later but for 

now we’ll implement a few simple logic bricks. 

 

We want the hand to move when we press a key.  In this case, we’ll use “W” because we 

want to be able to use the mouse to move the camera around at the same time.  The logic 

editor has three types of bricks: sensors, controllers, and actuators.  To make the hand move 

forward with W, we create hit the “Add Sensor” dropdown box and select “Keyboard.”  

Then we name the sensor “W” and set “W” as the key for the sensor.  Now we add an 

actuator and select “Motion.”  We use “Simple Motion” for the motion type and enter -0.1 

for the x value under “Loc.”  This will cause the hand to move forward 0.1 on its relative 

x axis when it senses that “W” is pressed.  Now we click on the black dot next to the sensor 

and drag it to the actuator.  This creates a controller brick automatically, which we will 

leave set to “and.” 

 

 
Figure 51: First logic brick for the hand 

 

We can repeat the same process with the “S” key to make the hand able to go backward.  

The only difference is we set the loc value “0.1” so that it will move the opposite way. 

 

Now we need the hand to be able to turn with A and D, which can be implemented similarly 

to forward and backward.  We make another keyboard sensor for “A” and “D,” and then 

two more motion actuators.  This time we change the “Rot” values instead of “Loc,” and 

input 5 for the Z value.  This causes the hand to rotate 5 degrees on its relative Z axis 

whenever it detects that “A” is pressed.  We then use -5 for our other actuator and draw 

lines in-between our sensors and actuators to create the controllers.  The hand will now 

turn with “A” and “D” inputs.  We also implement a few more logic bricks to script the 

hand to raise and lower when the “Q” and “E” keys are pressed. 
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There’s one more thing that needs to be scripted for the hand (at least for now).  The hand 

is set as a dynamic object and is thus affected by gravity, but we want to be able to control 

the hand freely so it doesn’t drop to the ground as soon as the program starts.  We make an 

“always” sensor and another motion actuator.  For this actuator we choose motion and give 

it a force value in the Z direction.  This force will always cancel out with the gravitational 

force, so it produces the effect of the hand not being affected by gravity. 

 

 
Figure 52: Full logic brick for the hand 

 

Now the logic programming for our beta hand is complete.  When we start the game engine 

the hand can be moved with the keyboard and will collide with the block on the table and 

knock it over.  The only thing left for scripting is the camera. 

 

Setting up the camera control is actually very simple; we select the camera and open up the 

logic editor.  We make a “Mouse” sensor and a “Mouse” actuator and connect them.  Then 

we set the Mouse actuator mode to “Look,” and it’s complete. 

 

 
Figure 53: Camera logic brick 

 

Now we can select “view” in the 3D viewport and select “camera.”  When we start the 

game engine, we’ll be looking through the camera, and can control it with the mouse. 
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Figure 54: Camera Viewpoint 

 

11.4: Sound Effects 

 

Another way to add immersion to the virtual reality experience is through sound effects.  

The sound effects come from freesoundeffects.com, a royalty and license free website that 

provides numerous sound clips for us to use. [21] 

 

The following is an example: We give the cube a collision sensor to play the sound effect 

of a can dropping.  Now whenever the cube comes into collision with another object, the 

“can_drop” sound will play.  This gives the sphere a “hollow” feel to it, since it has an airy 

tin sound upon impact. 

 

Blender also has a built in “3D Sound” feature, which will make the direction of the sound 

come from the direction of the object in the user’s headphones, which can be adjusted in 

volume, gain, and distance limit however we want.  This is especially important for a virtual 

reality project, as being able to tell where the direction from which sound effects are 

coming from is an important aspect of the immersive experience. 

 

 
Figure 55 Sound Effect Implementation 
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Using this same scripting, we can implement sound effects on any objects, and script them 

to be ongoing or one time, or add ambient music that always plays, giving our 

demonstration one more layer of immersion. 

 

 

11.5: Texturing 
Now we’ll add a few textures to our objects.  This will help make our demo look much 

more presentable.  Our textures we'll come from the 3dtotal.  This will give us royalty free 

textures to use for our project. [22] 

 

We can do this by opening up another window and changing it to the UV/Editor.  Here we 

can upload the textures we want to use.  For now, we’ll apply three textures, one for the 

table, one for the hand, and one for the plane. 

 

Now we select an object and go to the “materials” tab in the properties window to create a 

new material for the texture.  From here we change the 3D viewport to “edit mode” and 

start selecting objects that we need to texture.  The edit mode allows us to be very specific 

with how we want to apply textures, by letting us choose individual faces of each polygon 

and choosing the texture and editing it individually for each segment, but for now we can 

simply apply the texture to the entire object. 

 

Here are the textures that we’ll be using for this prototype:  The table has a wood texture 

to make it look like a wood table, the plain has a grass texture to make it look like a grassy 

terrain, and the hand has a skin texture to make it look like a human hand.  

 

 
Figure 56: Grass texture 
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Figure 57: Wood and Skin Textures for the table and Hand 

 

 
Figure 58: Skin Texture for the Hand 

 

 

Once the selection is made we simply use the “unwrap” option to have the texture is fully 

visible.  We repeat this process for each texture we want to apply. 
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Figure 59: Texture editing in blender 

 

One last thing we can do to make the prototype demo look more presentable is to change 

the horizon color to more resemble a sky in the middle of the day.  Once we put it all 

together here’s what our prototype demo looks like: 

 

 
Figure 60: Textured and colored prototype Environment 
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12: HTC Vive & Setup 
 

Our product will be demonstrated with the HTC Vive.  The glove doesn’t necessitate use 

of any virtual reality headset, nor does it require use of virtual reality to function.  That 

being said, the idea for this project was made to be implemented with virtual reality, as it 

can greatly enhance the current virtual reality experience.  Because of this, we want to 

demonstrate our device’s functionality in conjunction with virtual reality. 

 

We chose the HTC Vive for our demonstration because it’s a high-quality headset that is 

compatible with a lot of software due to SteamVR.  It has a resolution of 1080 by 1200 

pixels per eye, a 90Hz refresh rate, and a 110-degree wide field of view.  It comes with two 

base stations, also known as lighthouses, which make tracking possible in a room setup.  It 

also comes with two controllers, but this won’t be used for our demonstration. 

 

 
Figure 61 HTC Vive with two lighthouses and controllers 

 

The Vive also has a front camera and an audio jack installed.   The audio jack will allow 

sound effects incorporated into the demo to be heard. 

 

SteamVR is compatible with most virtual reality hardware, from Google Cardboard to 

Oculus Rift.  It’s also royalty free with no licensing fees and no requirement for approval. 

[23] This means that whatever we create will be compatible with almost any virtual reality 
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system and it won’t cost us anything to develop with.  SteamVR is also one of the most 

widely used virtual tracking systems today, so any virtual reality consumer will already be 

familiar with it. 

 

The Vive itself requires a little bit of setup to use.  Its biggest feature is its room tracking 

technology, which lets you walk around a room in virtual reality.  This requires two 

lighthouses on each corner of the room, which should be station 6 feet 6 inches off the 

floor, in a 6 feet 6 inch by 5 feet clear area.  It also requires a wired connection to the PC 

because it needs a direct connection to the video card, as well as a USB connection and a 

power connection.  The PC will run the software, and the glove will be connected via 

Bluetooth.  The lighthouses require a power connection through the wall and communicate 

wirelessly with the headset. 

 

Once the setup is complete, our glove will be ready to perform with our demonstration 

loaded up.  The user can explore a 3D space in a 5 feet by 6.5 feet area and interact with 

the environment using the glove. 

 

 
Figure 62 Room setup with HTC Vive 

 

13: Implementation of Virtual Reality 
One of the most important parts of our project demo is to incorporate a virtual reality 

headset to show the strength our device can have when used in conjunction of a virtual 

reality setting.  The first step to doing this is, is to incorporate the use of a virtual reality 

headset, in our case an HTC Vive, into blender. 

 

There are many ways to do this, that work for many different sets of virtual reality 

hardware.  One of the simplest ways is to use a slightly modified version of the free open-

source blender addon “virtual reality viewport,” by dfelinto. [24] 
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This addon allows for virtual reality in the viewport of Blender, helpful for building things 

in reference to the headset.  More importantly, it allows us to attach cameras to the headset 

position and display them on the HMD. 

 
Figure 63: Blender displayed in Vive HMD 

 

The head is tracked by the lighthouses, and the camera attaches to the location provided by 

the SteamVR tracking.  The “center” of the headset’s standing space will be set to be right 

in front of the desk.  From there, the user will be able to look around the desk and walk a 

short distance around the desk.   

 

The headset itself will be programmed as a reference point for the hand.  The hand will be 

calibrated to the headset, and then the position of the hand will be calculated as a distance 

from the hand based on the head as an origin point.  This makes the most sense because 

the headset will represent where the user’s “viewpoint” is in real life. 

 

The screenshot shows the display on the Vive HMD, being reproduced as a flat image.  

With this set up we can include all the functionality of a VR headset, including tracking, 

motion-sensing, and 3D image generation. 

  

 
 Skeleton Rigging and Animation 

Since finger tracking is one of the most important features of the glove, arguably even the 

most important, we’re going to need the hand in our demo to be able to represent that, and 

to do that we’re going to need the fingers on the model itself to move in conjunction to the 

glove’s finger movements.  This is where rigging comes into play, where we create an 

animation rig for the hand and script it to move according to inputs it receives. 

The first step is to create an armature in blender.  Then we can scale it down and start 

incorporating it into our hand model. 
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Figure 64: Incorporating a skeleton into the hand 

 

Wireframes are very helpful for this, because they allow us to see through the models and 

see what we’re doing. 

Once we have the first bone placed, we can use the extend tool in edit to create a network 

of bones to animate the hand with. 

  

 
Figure 65: wireframe and skeleton for index finger 

 

Three bones are used for each finger to match the number in the human body as well as 

make it match more consistently with our device.  Each finger will be able to rotate on 

three axes. 
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With a skeleton placed for one finger, we can now pair it with the mesh to make the finger 

fully adjustable.  Once the pairing is done, the mesh (and our hand) will move freely with 

the animation rig. 

 

 
Figure 66: Example of finder adjustability 

 

Now that this is done with one finger, the process can be easily repeated and done for every 

other finger.  The thumb will be done a little differently because it only has two thumbs, 

so it will have slightly different scaling and only two bones. 

 

 
Figure 67: Animation rig compelte for hand 
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The result: A fully functional hand that can bend to a shape the same way that a normal 

hand can for use with our device. 

 
Figure 68: Hand Flexibility Example 

 

Now that we have a complete hand, we can test it with scripting to make it move with a 

keyboard input.  As long as this works, it will be easily implemented when it comes time 

to use our device with this demo. 

 

 
Figure 69: Scripting For Finger Rotation 

 

With this script we can command the index finger to rotate with an ‘L’ press. Now we’ll 

be able to incorporate the glove and change the script to change the angle by whichever 

means we feel necessary using the glove’s input. 
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14: Bringing it all together 
Now that we have the key features, let’s add a few things in that will make our demo ready 

for our device. Keep in mind that the main things we need to demonstrate are: Motion, 

haptic feedback (vibrations), and temperature change (Peltier devices).  For this, we added 

a few more objects to the desk. 

 

 
Figure 70: More objects added to desk 

 

The first of which is a sphere, which is added for two reasons.  The first one is to be able 

to demonstrate the haptic feedback of the glove more thoroughly.  The glove is designed 

to give haptic feedback at multiple “intensities,” so the sphere can simulate a “soft” 

material while the block can simulate a “hard” material.  The glove’s haptic feedback will 

vibrate more intensely when coming in contact with the block than coming in contact with 

the sphere. 

 

The second reason is to demonstrate the positional aspect of the haptic feedback.  A sphere 

will be in contact at different points in your hand than a block when holding it.  These 

different points will vibrate to more simulate the “feeling” part of the project in a more 

immersive way. 

 

This will be done by adding an attribute to the objects that will be named “Mass” to each 

object in the demo.  This value will be used as a coefficient for the frequency of the haptic 

feedback in the glove, which will also consider the velocity at which the glove collides 

with the object.  In physics, momentum transfer is based off of mass and velocity, so we’ll 

have a function that takes the velocity of the hand coming into contact with the object and 

multiplies it with the mass value of the object it comes into contact with.  This can be 

attributed to the object with the game properties tool as so. 
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Figure 71: Mass properties for sphere and cube 

 

The other two objects added are thin cylinders on either side of the desk, one colored blue 

and one colored red.  This is a simple way to make “stove tops” that can be used to test the 

Peltier portion of the glove’s functionality.  The cylinders will be given a field of range, 

extending upward but not out to the side.  When the hand enters these fields, the Peltier 

will heat or cool according to the color cylinder the hand is hovering above. 

This can be accomplished by adding invisible, transparent, and taller cylinders on top of 

the ones we have.  This will be the “field” of the stovetops, and we can script a function to 

begin when the hand comes into the space of these taller cylinders.  This function will 

instruct the glove to start heating up or cooling down the Peltier sensors, depending on 

which cylinder the hand has entered. 

Since we don’t want the Peltier devices to reach over certain temperatures, we’ll also script 

it to check the current temperature of the glove on top of detection collision with the 

invisible cylinders.  This way the Peltier devices won’t overheat or get too cold. 

 

15: Device Driver & Input 
In order for the device to communicate with the PC, a driver will be used.  This driver is 

what will interpret the signals that comes from the glove via the Bluetooth signal that will 

be implemented.  Blender will communicate with the driver to interact with the glove. 

 

The device itself works in a differential system.  Once the device is calibrated, the device 

will send data on how it’s position changes over time.  Because of this, the easiest way to 

implement the device into Blender is to have it detect the driver as a game controller and 

send inputs as the glove changes.  Blender will take these inputs and adjust the in-game 

hand accordingly. 

 

For the finger movement, Blender will take ‘Axis’ inputs, where each segment of each 

finger will have an ‘Axis’ event that the logic editor can keep track of.  The axis will update 

based on the inputs from the driver, and the finger poses will adjust accordingly, allowing 

them to match the glove’s hand formation. 
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For the hand tracking, two ‘Axis’ inputs can be used.  Each input from the driver will be a 

different direction on the axis and based on that input the position of the hand will change 

accordingly.  The two axes will be used to separately control the hand on the XY plane and 

the XZ plane, for full 3D movement. 

 

Two more axes will be used for wrist tracking.  The first axis will work similarly to the 

finger, where it will change the angle the hand is at based on the user’s wrist angle.  The 

second axis will be used for wrist rotation, which will allow the user to turn their entire 

hand on its side or upside down. 

 

The Blender demo will also have to send data back to the driver for the haptic feedback 

and Peltier device.  Blender will send an ID for which vibrator or Peltier device on the 

glove is being affected, and another value for the severity level.  For the Peltier device the 

severity value will tell the device if it needs to cool or heat up and how quickly it should 

heat up.  For the vibration, it’ll give a frequency for each device to resonate at. 

 

For the axis sensors, Blender already has built in axis sensors and controller detectors, 

making implementation for the hand movement easy to do.  For the Peltier and haptic 

feedback devices, the actuator in the logic section will invoke a python script to invoke 

their effects. 

 

Altogether the driver will be able to command the hand to move and adjust in the same 

fashion that the glove does, and Blender will be able to command the driver to have the 

glove Peltier devices change temperature and the haptic feedback devices vibrate at the 

rate as scripted. 

 

16: Python Scripting 
Blender allows for python scripting for more control on how the program works.  This is 

done through its python API which contains a large library of functions capable of math, 

geometry, game logic, GPU functions, Audio Systems and more. [25]  This is necessary 

for how we want to implement the Peltier and haptic feedback devices on the glove. 

 

The following code is attached as a controller to a Collision sensor on the object.  When 

the hand comes into collision with the object, it will use the getLinearVelocity() function 

from the logic API and multiply it with the ‘Mass’ property applied to the object. 

 

 

 
Figure 72 Python Haptic Feedback Code 
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This script will activate when the hand comes into collision with the object, then it will 

calculate the difference between the hand’s velocity and the object velocity, multiply it by 

the ‘Mass’ property, and pass it through the “glove.haptic” function. 

 

The “glove.haptic” function is a function that will take a number and have the hand vibrate 

by a frequency based on the number that passes through it.  This function will be made to 

interact with the driver to perform this functionality. 

 

The Peltier function can be implemented in a very similar way using a collision detection 

in the invisible cylinders on the table that serve as the “field” in which the glove will heat 

up.  Instead, it’ll use a function to calculate distance from the object and a base value for 

the heat. 

 

 
Figure 73 Python Script for Peltier Device 

 

The distance is calculated by subtracting the hand position from the object position.  This 

distance is multiplied by the ‘Temp’ property associated with the cylinder and passed 

through the function.  The ‘Temp’ property on the red cylinder will be positive, and on the 

blue cylinder will be negative, which the driver will interpret into instructions to warm or 

cool the peltier device. 
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17: Configuration Utility 
The Configuration Utility provides a configurable interface between the hardware glove 

and the 3D environment rendering software. The utility consists of two primary functions, 

data passing and configuration management. Data passing handles data transmission 

between the glove and the 3D environment. The glove passes the user’s hand motion to the 

utility which forwards the data, so the 3D environment can update the position of the 

corresponding virtual hand. The 3D environment passes touch and temperature data 

through the utility which forwards the data to the glove to update the haptic and thermal 

feedback experienced by the user. Configuration management allows for multiple 

connected gloves to be mapped to their corresponding virtual counterparts. Each connected 

glove is individually configurable to allow for customizing both the haptic and thermal 

feedback intensity, along with pairing to identify which gloves represent the hands of 

which user. 

 

 Development Overview 
The configuration utility will be developed utilizing Microsoft’s Visual Studio Community 

2015 [26]. Visual Studio is Microsoft’s primary integrated development environment 

which provides platforms such as the Windows API and Windows Forms. Team and code 

management is supported along with full featured debugging. Visual Studio supports a 

variety of programming languages including, but not limited to, C, C++, Visual Basic, C#, 

Python, and JavaScript. The Community edition is a free version of Visual Studio with a 

license that restricts use to individual or team development of open source projects. The 

configuration utility was developed using the C# programming language and following 

Microsoft’s C# and .NET coding standards. 

 

 Use Case 
Use case diagrams also known as behavior diagrams are used to describe a set of actions 

or use cases that some system or systems should or can perform in collaboration with one 

or more external users. Each use case provides an observable and valuable result that is 

product of the action or actions taken by the user. When used to describe software, use case 

diagrams can specify, external requirements of a system, functionally of a system that is 

offered to a user, and the effect the system has on the environment. 
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Figure 74: Utility use case diagram 

 

The use case diagram for the configuration utility is shown in the figure above. There are 

three actors that interact with the utility. They are the user, the blender 3d software, and 

the hardware glove. The diagram shows that from the glove and blender’s perspective, the 

utility exits only as a gateway for transmitting and receiving data between them. This has 

the effect of isolating the hardware glove and 3d software from each other allowing for 

independent development and maintenance of each component. The primacy actor that 

interacts with eh configuration utility is the user. From the use case diagram, the user uses 

the utility to perform three major tasks each of which is supported by minor tasks. The 

major tasks for the utility are managing profile, setting the mode of the utility, and 

configuring connected glove devices. 

Managing Profile is supported by the actions of creating, modifying, loading, and deleting 

profiles. These actions are how the user manages the memory of the utility. Configurations 

and profiles are stored in the utility directory using an xml scheme. When loaded, the 

profiles preserve settings, so the user does not have to go through the process of configuring 

the same glove every time the utility is started. 

 

Setting the utility mode is how the user toggles a selected glove profile between regular 

and debug modes. While in debug mode, this action is supported by three additional actions 

that are only available while in debug mode. Real-Time view of feedback allows the user 
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to real-time updating charts of the outputs and inputs to all of the major electrical sensors 

and actuations in the hardware system. The commanded and actual value of the vibration 

motors and Peltier devices will be displayed. The real-time positional displacements of the 

accelerometers will be displayed. Injecting of temperature and touch data allows the user 

to send and observe signals to the vibration and Peltier devices. The debug mode aids the 

user in assessing the functionality of the hardware and isolating potential faulty devices. 

When the utility is in normal mode, the user can undertake profile management and 

individual glove configuration. Synced gloves can have their parity set, be paired together, 

and have the hardware limits for touch and temperature set. While in normal mode, the 

utility will act as the data relay and transformer between the glove and the 3d software. 

 

 System Architecture 
The structure of the configuration utility consists of a graphical user interface layered on 

top of data packager that converts a serial connection interface from a Bluetooth device 

into a windows process interface connected to a 3D rendering software. In between the 

user interface and the connection logic sits the profile manager, linear interpolator, 

debugger, and the configuration storage. The Layout of the utility is shown in the figure 

below. 

 

 
Figure 75: Utility Architecture Diagram 

 

The profile manager is the main component of the utility. It handles the creating and storage 

of profiles, routing of data through the utility, responds to the user interface, and provides 

the linear interpolator with the user specified limits for generating feedback signals in the 

glove device. 

  

The debugger is the primary means for accessing operational issues with a connected glove 

device. The debugger sits directly between the user interface and the serial connection. 

This configuration allows for isolating a glove device from the remain system. Through 

the debugger, the user can monitor real-time feedback of glove motion, and the current 

commanded vibration and temperature feedback. The debugger also provides the user with 

an interface for injected feedback signals directly to individual feedback devices on the 

glove, so the response can be monitored. 
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The role of the linear interpolator is to transform the touch and temperature values from 

the virtual environment, into the corresponding feedback values using the limits set by the 

configuration utility. Linear interpolation is the method of curve fitting using linear 

polynomials to construct new data points within the range of a set of known data points. 

Setting the high and low range for the touch and temperature feedback, allows the user to 

scale the intensity of the feedback response as well as to ensure that the glove operates 

within the limits imposed by the hardware. 

  

 
Figure 76: Utility Class diagram 

 

The class diagram above shows the preliminary design of the configuration utility software. 

The configuration utility is broken down into several class. Each class provides a specific 

service to the software. The use of the object-oriented design methodology allows for 

software development that is streamlined, highly modular, and easy to update and maintain 

such that additional future features can be readily implemented. 

 

The heart of the software is the Util Core. The core provides the logical brain of the 

software and is composed of other classes. The brain is responsible for updating the 

graphical user interface, handling of software state, controlling inbound and outbound 

communication, managing connected glove components, and controlling the interpolation 
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routines. The Utili Core is composed of four direct classes; process Comm, Interpolator, 

Serial Comm, and Glove. 

 

The glove class organizes and provides and interface for the configuration utility to 

manipulate and interact with a connect glove. Each connected glove is represented 

internally by an instance of the glove class. The glove class provides the methods needed 

to manipulate the debug mode, pairing between gloves, as well as creating and removing 

the glove. Each glove is composed of multiple electronic devices. Each of these devices is 

represented by the Electric device class. Each class provides an interface for reading and 

writing to the device. The physical location the electric device on the glove is also set so 

that the virtual hand can be mapped one-to-one with the hardware glove. 

 

 Inter-Process Communication 
The Process Comm handles the data communication between the configuration utility 

software, and the 3D environment software. The process comm establishes manages and 

maintains the communication connection. To facilitate this, the process comm will use an 

inter-process communication available on a windows system.  

 

Inter-process communication refers specifically to the mechanisms an operating system 

provides to allow the process to manage shard data. Typically, applications can use IPC in 

a client-server scheme where the client request data and the server responds to clients. IPC 

is divided into categories which vary based on software requirements, such as performance 

and modularity requirements, and system circumstances, such as network bandwidth and 

latency. There are several inter process communication schemes available on a windows 

system. [27] 

 

17.4.1: File 

A file is a storage structure on a digital medium. A major portion of an operating system is 

the file server which allows process to create, delete, modify, read, and write files. Process 

can leverage this mechanism to provide rudimentary communication by reading and 

writing to the same file. File communication is available on most operating systems. 

 

17.4.2: Socket 

Data sent over a network interface, either to a different process on the same computer or to 

another computer on the network. Leverages the power of TCP and UDP protocols to 

provide inter process communication and is available on most operating systems. 

 

17.4.3: Unix domain socket 

Similar to an internet socket but all communication occurs within the kernel. Domain 

sockets use the file system as their address space. Processes reference a domain socket and 

multiple processes can communicate with one socket. Available on windows with windows 

10. 
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17.4.4: Message queue 

Data stream similar to a socket but all communication occurs within the kernel. Domain 

sockets use the file system as their address pace. Processes reference a domain socket and 

multiple processes communicate with one socket. Available on windows. 

 

17.4.5: Pipe 

A unidirectional data channel. Data written to the write end of pipe is buffered by the 

operating system until it is read from the red end of the pipe. Two-way data streams 

between process can be achieved by creating two pipes utilizing standard input and output. 

Available on windows. 

 

17.4.6: Named pipe 

Combination of File and Pipes, allows multiple process to communicate. Available on 

windows. 

 

17.4.7: Shared Memory 

Multiple processes are given access to the same block of memory which creates a shared 

buffer for the processes to communicate with eat other. Available on windows. 

 

17.4.8: Message Passing 

Allows multiple programs to communicate using message queues and/or non-OS managed 

channels. Not OS dependent. 

 

17.4.9: Memory-mapped file 

A file mapped to RAM and can be modified by changing memory addresses directly 

instead of outputting to a stream. Similar to the File method. Available on windows. 

 

17.4.10: Selected Inter-Process Communication Scheme 

The Process Comm will use the file communication method due to its simplicity of 

implementation. The basic operations that can be performed on a file are; create, change 

permissions, open, read, write, and close. In addition, files can be moved, modified, grown, 

and shrunk. Process comm and the 3D environment software will communicate using two 

predetermined files on the windows operating system. The files will be created at the 

startup of the configuration utility and deleted when the utility is determined.  

 

The first file is designated as the communication point for passing positional data that 

utility received from the hardware glove to the 3D environment software in order to update 

the position of the virtual hand. Blender will continuously monitor the file to determine if 

new positional data is available. When available data is detected, Blender will retrieve the 

next complete set of input data from the file. The configuration utility will receive updated 

positional data from the hardware glove. After receiving the data, the utility maps, formats, 

and writes the data to the file for Blender to retrieve. The file will be designated as a plain 

text file and be named. “Util_to_Blender.txt”. The following figure shows the delineation 

of the data written to and read from the file. 
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Figure 77: Util_to_Blender.txt 

 

Each data set is framed by a start and end indicator. Next the glove id is given so that the 

updated positional data can be applied to the correct virtual hand when multiple hardware 

gloves are in use. The majority of the data set consists of the accelerometer data itself. This 

data is calculated by the processor on the glove itself. Each line begins by identify the 

accelerometer so that the data can be applied to the correct joint on the virtual hand. The 

data on each line consists of the changes in all 6 degrees of freedom present in a three-

dimensional system. These are the changes in the three translational directions x, y, and z, 

along with the changes in the three rotational directions, x-axis, y-axis, and z-axis. As each 

data set is read by Blender, the data block is removed. As new data is received from the 

glove, a new data block is added. This effect results in the transfer file continuously 

growing and shrinking as both Blender and the configuration utility communicate. 

 

The second file is designated as the communication point for passing touch and temperature 

data from Blender to the configuration utility where it is processed and sent to the hardware 

glove to drive the vibration and Peltier devices to produce the feedback response. The 

configuration utility will continuously monitor the file to determine if new feedback data 

is available. When available data is detected, the utility will retrieve the next complete set 

of input data from the file. Blender will generate updated feedback data as a result of 

updated positional data. After generating the data, Blender maps, formats, and writes the 

data to the file for the utility to retrieve. The file will be designated as a plain text fiel and 

be named “Blender_to_Util.txt”. The following figure shows the delineation of the data 

written to and read from the file. 
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Figure 78: Blender_to_Util.txt 

 

Each data set is framed by a start and end indicator. Next the glove id is given so that the 

updated feedback data can be applied to the correct virtual hand when multiple hardware 

gloves are in use. The majority of the data set consists of the feedback data itself. This data 

is produced by Blender as a result of the updated position of the virtual hand within the 3D 

environment. The data section of each frame is split into two parts. The first part consists 

of a line of data for each of the Peltier devices on the hardware glove and corresponds to a 

temperature measurement point on the virtual hand. Each line begins by identifying the 

temperature measurement point so that the data can be applied to the correct Peltier device 

on the hardware glove. The data on each line consists of the currently measured 

temperature of that point in the 3D environment. The second part of the data section 

consists of a line of data for each of the vibrational motors on the hardware glove and 

corresponds to touch force measurement point on the virtual hand. Each line begins by 

identifying the touch force measurement point so that the data can be applied to the correct 

vibrational motor on the hardware glove. The data on each line consist of the currently 

measured force applied to that point in the 3D environment. As each data set is read by the 

configuration utility, the data block is removed. As new data is generated by Blender, a 

new data block is added. This effect results in the transfer file continuously growing and 

shrinking as both Blender and the configuration utility communicate. 
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 Bluetooth communication 
The serial comm class, handles the communication between the utility software and the 

glove itself. The communication protocol that will be used is Bluetooth. Bluetooth is an 

industry-standard protocol that enables wireless connectivity for a multitude of devices. 

The key features that make Bluetooth the go to protocol from a software perspective, are 

its presence in virtually all modern PCs, its support in modern operating systems, it is a 

standardized technology with a multitude of resources, and it is a well-defined and familiar 

programming interface that allows for quick development.  

 

Bluetooth on windows provides functionality with similarity to TCP. [28] Using Bluetooth 

in a standard networking implementation, results in Bluetooth connectivity and data 

transfers being programmed through windows sockets function calls. This approach 

combines common windows sockets programming techniques and principles with specific 

Bluetooth extensions. In addition, Bluetooth provides features such as discovery and 

notifications which a necessary for any communication scheme operating in a wireless 

environment. Support for Bluetooth on Windows Operating Systems began with Windows 

XP Service Pack 1 and includes all subsequent releases of the Windows Operating System. 

Microsoft provides two approaches for programming and using Bluetooth on Windows 

devices; Using the Windows Sockets interface [29] or Managing devices directly by using 

non-socket Bluetooth interfaces. 

 

17.5.1: Selected Windows Bluetooth Method  

[30]The serial comm will leverage windows provide Bluetooth APIs to establish a serial 

UART connection. The serial comm provides methods to access the serial connection and 

read the input message from the hardware glove and provide an output message to the 

hardware glove. The selected Bluetooth programming approach is the Windows Sockets 

interface. As stated, this method extends the windows sockets API with Bluetooth standard 

features. Windows Sockets enables programmers to create applications that transmit data 

across the wire in a manner that is independent of the network protocol being used. The 

Winsock API provides access to advanced networking features such as multicast and 

Quality of Service. 

 

Bluetooth is a serial communication protocol that operates using packets that consist of 

headers and administrative fields surrounding a payload of data. The nature of the 

configuration utility will leverage the structure of the connection to utilize the headers and 

administrative information to identify both the source and recipient of transmitted data. 

The payload can then be reserved for the actual data being transmitted. The configuration 

utility uses Bluetooth for communication in two directions. 

 

The first direction is receiving data from the hardware glove. When communicating in this 

direction, the utility will receive updated positional data from the hardware glove. This 

data consists of the changes in all 6 degrees of freedom present in a three-dimensional 

system. These are the changes in the three translational directions x, y, and z, along with 

the changes in the three rotational directions, x-axis, y-axis, and z-axis. Each set of 6 degree 

of freedom changes also contains the identity of the generating accelerometer When 

receiving the data. The utility identifies the source glove and then maps and formats the 
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data so that the updated positional information can be transmitted to Blender using the file 

inter-process communication scheme. 

 

The second direction of communication is sending data from the utility to the hardware 

glove. First the utility processes the feedback data received from Blender. Interpolation is 

used to both scale and determine the driving signals necessary for the feedback devices. 

These signals are then sent using Bluetooth to the hardware glove. The Bluetooth module 

on the glove itself, identifies the data meant for it form the header and administrative 

information in the Bluetooth packet. The payload of the packet contains the device driving 

signal, along with Identifies for which Peltier or vibrational device that signal is for. 

 

 

 Interpolation 
The interpolator class contains the mathematical logic for converting the blender 

environment response into the signal values needed to drive the electrical devices on the 

hardware glove. The first action the interpolator does is scale the signal value so that it falls 

in-between the associated limits for the glove. Each Peltier and vibrational device contain 

documented values that correlate input signal value to output value. If an output signal 

value that is not provide is need, then interpolation must be used to construct the necessary 

output signal value. Interpolation is a method of constructing new data points within the 

range of a discrete set of known data points. There are a variety of interpolation methods. 

[31] 

 

17.6.1: Piecewise constant interpolation 

This is the simplest method of interpolation. If a need data point falls between two known 

points, the value of the of the closest known point is chosen and assigned to the data point. 

This method is fast and simple to implement. 

 

17.6.2: Linear interpolation 

This method treats the space between known data points as lines. If a need data point falls 

in-between two known points, the value is determined by a liner equation and governed by 

the two known points on either side if the needed point. Like piecewise interpolation, linear 

interpolation is fast and simple to implement while providing increased accuracy. 

 

17.6.3: Polynomial interpolation 

This method is an extension of liner interpolation. While linear interpolation is of degree 

one, polynomial interpolation can take the form of any degree greater than one. It is 

guaranteed that a polynomial can be found that contains the known data points however, 

the region between that data points may not be an accurate representation of the needed 

behavior characteristic of the device. This method is slower than the previous two and 

much more difficult to implement as the degree of the polynomial increases. 

 

17.6.4: Spline interpolation 

This method is a variation of linear interpolation. Instead of connecting the known data 

points with straight lines, individual low degree polynomials are used such that a smooth 
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curve that passes through the known data points is produced. Spline interpolation can 

produce more accurate results than other methods but is much more difficult to implement. 

 

17.6.5: Selected Interpolation Method 

Linear interpolation is the method that will be used by the interpolator class. The electric 

devices operate on small signal ranges. It is the noticeability of an output difference rather 

than the precise accurate value of the output that is most important to the design. The figure 

below shows how linear interpolation will be used to drive the output signal for the 

electrical feedback devices. 

 

 
Figure 79: Linear interpolation example [32] 

 

In the figure, the x axis represents the commanded feedback value, touch or temperature, 

from the 3D environment. The y axis represents the output signal needed to drive the 

corresponding feedback device to the required value. The points (x1, y1) and (x0, y0) 

represent the set configuration limit for the feedback signal. The value x is the current value 

commanded by the 3D environment. First the value is scaled to fall in-between the 

configuration limits. Next the equation below is used to linearly interpolate and find the 

output signal value y. This is the signal that is passed to the hardware to drive the 

corresponding electrical device to produce the desired feedback experience. 

 

 
Equation 3: Liner Interpolation [33] 

 

 System Deployment 
The configuration utility will be developed for and deployed on a Windows 10 machine. 

The Windows Operation system was chosen because it is the most common and most 

utilized computer operating system in use today. It is also designed to be user friendly and 

the visual studio development environment is specifically designed to work on and interact 

with the Windows operation system. The configuration tool system foot-print and 

deployment plan are shown in the figure below. 
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Figure 80: Utility Deployment 

 

The root directory will contain the compiled utility executable along with a configuration 

xml file and subdirectories for profiles and system resources. The resources directory will 

contain subdirectors for images and sounds. These images and sounds are those utilized by 

the utility itself i.e. the splash screen, button sounds etc.  

  

The profiles directory contains the stored profiles in xml form. Each profile contains the 

configuration settings for one or more glove devices. These settings consist of Bluetooth 

I.D. for the glove, parity of the glove (left or right hand), pairing of gloves to represent a 

single user, and the interpolation limits for temperature and touch feedback. 

 

 Data Design 
The data design of the System consists of three parts. The input/output design details how 

data enters and leaves the configuration utility. The internal design details how data is 

manipulated and routed within the utility. The storage design details how persistent data is 

stored and accessed by the utility. 

 

The input/output data design is centered around serial-based message passing. Serial 

messaging is characterized by individual 8bit characters transmitted 1-bit at a time between 

two components. Serial messaging is simple, relatively easy to implement and is the 

standard scheme use by many commercial devices such as USB and Bluetooth. 

 

The internal data design consists of how data is manipulated inside the utility. The utility 

will be develop using the object-oriented programming paradigm. In object-oriented 
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programming, data is associated with objects. Objects contain the data and provide 

methods so that other objects can manipulated the data. The utility, data is associated with 

a particular glove object. Input signals from the glove is mapped to the corresponding glove 

instance in the utility. The utility the packages the data so that blender can associate a set 

of data with the corresponding virtual representation of the manipulated hand. 

 

The storage data design determines how persistent data is maintained between uses of the 

utility. To accomplish this, the XML data structure will be used. XML, Extensible Markup 

Language, is a markup language that defines a set of rules for encoding documents in a 

format that is both human-readable and machine-readable. The design goals of XML 

emphasize simplicity, generality, and usability. XML is defined through the use of a 

Schema. The schema detals what a valid entry into the XML must contain, along with what 

a valid entry can contain. Using XML, system configuration settings and glove profile can 

make use of individual defined schema to create, modify, and store their states in XML 

format in the utility directory. XML is stored the form of a file, and as a file, it is subject 

to all the standard operations available to file manipulation. 

 

 User Interface Design 
The user Interface utilizes the Windows Forms API to present a simple user-friendly 

environment for accessing all the features of the configuration utility. The UI layout is 

broken down into several distinct components detailed in the following sections. 

 

• Splash Screen 
• Initial utility loading graphic 

• Home Screen 
• Load, Create, Modify profiles 
• Add, Remove, Modify glove devices 

• Configuration View 
• Modify feedback parameters for selected glove 
• Select left or right parity 
• Pair Gloves together 

• Debug Screen 
• Display data received from the selected glove 
• Pass data to selected glove 

  

17.9.1: Splash Screen 

The Splash Screen is the initial entry point of the configuration utility. It serves to display 

the Project Logo along with addition relevant information. The splash screen is shown in 

the figure below. 
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Figure 81: Splash Screen 

 

Some of the information displayed are for example; the project members, configuration 

utility version, and copyrights. The functional use of the Splash Screen is to show that 

configuration utility has successfully loaded and is starting up. A successful startup 

transitions the configuration utility to the Home Screen.  

  

17.9.2: Home Screen 

The Home Screen is the primary user view for the utility and consists of three sections; 

Menu Bar, Main Display, and Selection Tabs. 

  

 
Figure 82: Home Screen 
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The menu bar is the primary administrative interface for the user and is where the high-

level functions of the utility are accessed. The actions provided by the menu bar are; 

minimize, maximize, exit, create profile, load profile, close profile, and delete profile. Each 

of the actions are detailed in the table below. 

  

Action Description 

Create Profile Creates a new profile for storing a set of glove configurations 

Close Profile Closes the currently loaded configuration profile 

Delete Profile Permanently deletes a configuration profile 

Load Profile Loads a saved configuration profile 

Minimize Standard windows action, collapses configuration utility to the 

taskbar. 

Maximize Standard windows action, fills display with the configuration utility 

Exit Standard windows action, safely terminates the configuration 

utility 

Table 21: Menu Bar commands 

 

The selection tabs are populated whenever a selected profile has saved configuration data 

for a glove device. Each tab represents the data for a single glove that is associated with 

that profile. Selecting a tab, updates the main display to show the configuration interface 

for that glove. Closing a tab removes that glove from the display and erases the 

corresponding configuration data from the saved profile. 

 

17.9.3: Configuration View 

Selecting a configuration tab from the home screen, loads the configuration view for that 

glove device. The figure below shows the layout of the configuration view. 

  

 
Figure 83: Configuration Tab 
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The configuration view is where glove devices are modified. The parameters available are; 

hand parity, glove pairing, and the touch and temperature high low limits. Hand parity 

designates whether the glove is left or right handed. This is used for interfacing with the 

3D environment software, and for pairing of gloves. Selecting a parity is accomplished by 

selecting the corresponding radio button. Glove pairing is the action of assigning two 

gloves to represent both hands of a single user. Like parity, this is used for interfacing with 

the 3D environment. It also allows for configuration settings to be mirrored across both 

gloves. To pair two gloves, open the dropdown list in the entry field. The list will be 

automatically populated with gloves that are part of the currently loaded profile, are of 

opposite parity, and that are not currently paired. 

 

The touch and temperature high and low limits are used to set the values used by the linear 

interpolator when converting 3D environment values into glove signals. Setting these 

values allows the user to tune the intensity of the feedback responses, as well as ensure that 

hardware limits are not exceeded. 

 

The displayed hand graphic will reflect the selected parity of the glove, the connection I.D. 

of the glove, as well as display the number and location of sensors and feedback devices 

the glove provides. 

 

The debug option places the utility and glove into debug mode and loads the debug screen 

for the selected glove. Debug mode allows for direct monitoring of glove state and 

interaction with glove feedback devices. 

 

17.9.4: Debug Screen 

Debug mode is the primary method for assessing issues with the glove connection and/or 

the glove itself. It is also used to test feedback response to aid in determining the best touch 

and temperature limit settings for the user. Selecting yes on the debug menu on the 

configuration view transitions the main display into the debug view shown in the figure 

below. 
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Figure 84: Debut View 

 

While in debug mode, the glove is disconnected from the 3D environment software. A 

direct connection is established between the configuration utility and the glove hardware 

providing access to the individual devices of the glove itself. The debug view provides two 

features to the user, real-time display, and signal injection. 

  

The primary feature of the debug view is the real-time display. Three charts that monitor 

the accelerometer, touch, and temperature signals are displayed and updated in real-time. 

Each of the charts displays data for every device of the corresponding type that the glove 

provides. 

  

The second feature of the debug view is the ability to inject touch and temperature feedback 

signals directly to the glove. This is done one device at a time, and when used in 

conjunction with the real-time display, provides a rapid interface for assessing technical 

problems with the glove and identify potentially flawed or failed devices. 

  

To exit the debug view, select the corresponding radio button on the debug menu. This 

returns the user to the configuration view for that glove and resumes normal operation of 

the glove. 

 

18: Testing 
Testing of the system will be conducted in three phases. Phase I consists of unit testing. 

Each component will be tested in a standalone capacity. Phase II consists of integration 

testing. Each components interface will be tested with the components it interacts with. 

Phase III consists of a system testing. A fully integrated system consisting of all the 

components will be tested to verify the completed system. 
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To facilitate early testing; stubs and drivers will be developed to simulate critical software 

components, while breadboards and Arduino micro controllers will be used to test 

individual hardware components. Stubs and drivers are pieces of code used to stand in for 

some other functionality and act to simulate the behavior of an existing component or a 

yet-to-be developed component. A driver will be developed to simulate the interaction 

between the configuration utility and the 3D environment software. The driver will be 

capable of receiving positional data from the utility and transmitting touch and temperature 

data back to the utility. A stub will be developed and used to simulate the interaction 

between the configuration utility and the hardware glove. The stub will transmit positional 

data to the utility and receive touch and temperature data back from the utility. An Arduino 

micro controller allows for testing of the individual glove components while the processor 

circuity is still under development. Breadboards allow for connecting and testing hardware 

components while the final PCB design is being refined, manufactured and delivered. 

 

 Phase I 
Phase I consists of unit testing [34]. Each individual component and device will be tested 

in a standalone environment. A full test of the individual component functionality will be 

executed. A stub and driver will be used to simulate the interaction between the 

configuration utility and the hardware glove and 3D environment software. An Arduino 

micro controller and breadboard circuit will allow for the testing of the individual touch 

and thermal sensors, vibration motors, and accelerometers. Testing will cover all aspects 

of the system and is broken down into two categories; software testing and hardware 

testing. Software testing evaluates the software components functionality. A Stub will be 

used to simulate the presence of a glove, and a driver will be used to simulate the 3D 

environment software. Hardware testing evaluates the hardware components functionality. 

An Arduino microcontroller and breadboard will be used to test individual hardware 

components.  

 

 Phase II 
Phase II consists of integration testing [35]. The interface between sub components of the 

system will be tested in a bottom up approach. Bottom-up testing is an approach where the 

lowest level components are tested first. As components are test, they are used to facilitate 

the testing of higher components. This is repeated until the upper most component in the 

system hierarchy is tested. At each stage of the testing, software stubs and drivers, and 

Arduino microcontrollers will be used to provide functionality for missing components. 

Testing focused on the interface and data transmission between the components.   

 

 Phase III 
Phase III consists of system testing [36]. The completed system will be tested both software 

and hardware components. Testing focused on full function the complete interface and data 

transmission chain proceeding from glove to utility to 3D software, and the reverse. The 

tests demonstrated continuity between all components of the completed system. Testing 

will be performed and verified against the documented requirements specifications in order 

to determine the final pass or fail status of the system. 
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 Testing Management 
[37]Testing management outline and document the tests that are needed to demonstrate 

compliance with the requirements specifications. The tests represent testing conducted 

during all three phases of the testing process. Test management consists of two parts. The 

First is test tracking. Testing is tracked through a Testing Traceability Matrix show in the 

table below. A traceability matrix is a data structure used to assist in determining the 

completeness of a relationship by correlating any two baselined documents using a many-

to-many relationship comparison. The testing matrix Identifies what test was performed, 

when it was performed, who is responsible for performing the test, and the outcome of the 

test. 
 

Test ID Test Name Tester 
Test Result 

(Pass/Fail) 
Test Date 

1 Peltier  Chris  Fail  7/24/18 

2 Vibration Motor Chris  Pass  7/24/18 

3 IC Sequencer Chris     

4 Accelerometer Chris     

5 Power Regulator Chris     

6 Thermistor Chris     

7 Digital Potentiometer Chris     

8 Battery Charger Chris     

9 H-Bridge Chris     

10 Peltier Controller Chris     

11 Motor Controller Chris     

12 Configuration Utility Francisco     

13 Windows Function Francisco     

14 Profile Manipulation Francisco     

15 
Configuration 

Manipulation 
Francisco     

16 Data receive Francisco     

17 Data Transmit Francisco     

18 Debugger Francisco     

19 SWD David   

20 LED Function David   

21 Data Format David   

22 I2C Read David   

23 Boot-Up Process David   

24 
Blender Collision & 

Physics 
Hunter   

25 
Blender-Driver 

Communication 
Hunter   

26 Hand Tracking Script Hunter   

Table 22: Testing Traceability Matrix 
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 Testing Procedures 
The second part of test management are the testing procedures. Each test outlined in the 

traceability matrix has an associated testing procedure. Testing procedures detail how a test 

is to be performed. Elements of a testing procedure indicate the test to be performed, who 

is to perform the test, the procedure for performing and the equipment needed to perform 

the test, and the pass/fail conditions for the test. 

 

1: Peltier Test 

• Description: Peltier devices must change temperature with respect to an applied current.  

• Procedure: The Peltier devices will be individually connected to a current supply. The 

current will be manually varied, and the produced temperature measured with a digital 

thermometer. The current and the temperature shall be recorded along with any insights 

into how the operation of the Peltier will interact with human skin and perception. Note 

must be taken of the range of currents that the human hand, in the location designated for 

the Peltier, is capable of sensing before the temperature becomes uncomfortable for the 

user. 

• Pass/Fail: To pass this test each, Peltier deice must demonstrate a heating and cooling 

range of 40 degrees Celsius to 10 degrees Celsius.  

• Who: Test will be performed by Chris. 

 

2: Vibration Motor Test 

• Description: Vibration motor devices must vary vibration frequency with respect to an 

applied voltage.  

• Procedure: The vibration motors will be individually connected to a voltage source. The 

voltage will be manually varied, and the produced vibrational frequency will be measured. 

The voltage and relative vibrational intensity shall be recorded along with any insights into 

how the operation of the motor will interact with human fingertips and perception. Note 

must be taken of the range of voltages where the human hand can perceive the vibration 

magnitude and frequency of the motor. 

• Pass/Fail: To pass this test, each vibration motor must demonstrate a vibration range that 

can be perceived by the human hand as having a distinct difference from in vibrational 

magnitude from the lowest setting to the highest setting. 

• Who: Test will be performed by Chris. 

 

3: IC Sequencer Test 

• Description: IC sequencer devices must deliver a voltage after a specified time delay.  

• Procedure: The IC sequencers will be connected to a digital multi meter. A timer will 

be used, and the voltage output observed while varying the controlling capacitor. The 

capacitor will be chosen such that the timer will give a multi second delay. This long delay 

will only be used for testing purposes since the test technician is incapable of perceiving 

micro second time differences. 

• Pass/Fail: To pass this test, each IC sequencer device must demonstrate a delay in 

voltage delivery with respect to controlling capacitor. 

• Who: Test will be performed by Chris. 
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4: Accelerometer Test 

• Description: Accelerometer devices must respond to changes in orientation and position 

with respect to a normalized start point.  

• Procedure: The accelerometers will be tested by connecting them to an Arduino board 

through an I2C connection. The accelerometer will then be oriented, and the output data 

passed to the Arduino which must be able to calculate the distance traveled by the device 

from the acceleration data. 

• Pass/Fail: To pass this test, each accelerometer must demonstrate and discriminate 

between three degrees of freedom at a resolution of 14 bits.  

• Who: Test will be performed by Chris. 

 

5: Power Regulator 

• Description: The power regulator must produce 3.3 volts using the schematic referenced 

in the Power Regulator section.  

Procedure: The power regulator must be prototyped on a breadboard, prototype board, a 

custom PCB, or a combination of the three. After prototyping the input of the circuit will 

be hooked to a bench top voltage source set to between 4.2 and 3.7 volts. The load of the 

power regulator will initially be a 1 MΩ resistor to simulate a low current environment. 

The voltage across this resistor will be checked with a digital multimeter. The load will 

then be lowered to 1.1 Ω to simulate a high current environment. The voltage will be 

checked with a digital multimeter. 

• Pass/Fail: To pass this test the circuit must be able to maintain voltage on a load ranging 

1 MΩ to 1.1 Ω. The 1.1 Ω resistor must be a high watt model.  

• Who: Test will be performed by Chris. 

 

6: Thermistor 

• Description: The thermistor must vary its resistance in accordance to the equation and 

design referenced in the Thermistor section. 

• Procedure: The voltage divider will be implemented and the voltage at various 

thermistor temperatures will be read with a multimeter. 

• Pass/Fail: To pass this test the circuit must be able to vary its voltage with the 

temperature on the thermistor. 

• Who: Test will be performed by Chris. 

 

7: Digital Potentiometer 

• Description: The digital potentiometer must respond to I2C commands to change its 

resistance.  

• Procedure: The digital potentiometer will be connected to a voltage divider. The voltage 

divider will be powered by a benchtop voltage supply. The circuit will be prototyped on 

breadboard, prototype board, or a custom PCB. The digital potentiometer’s resistance will 

be varied using the I2C controls on the I2C line. The output of the voltage divider will be 

measured with a digital multimeter. 

• Pass/Fail: To pass this test the circuit must be able to vary the voltage measured by the 

digital multimeter in a fashion that can be controlled via I2C. 

• Who: Test will be performed by Chris. 
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8: Battery Charger 

• Description: The battery charger will be purchased from a supplier and must be verified 

for quality before being used on the main PCB board. This is to ensure that the battery 

charger does not over charge the lithium ion batteries or damage them from over current. 

• Procedure: The charger will be plugged in and a digital multimeter will be used to check 

the voltage across the leads. This must be less than 4.2 volts. The maximum current of the 

charger must be checked using a digital multimeter. This current cannot exceed the stated 

maximum current listed in the data sheet. 

• Pass/Fail: To pass this test the battery charger must be able to charge the batteries to 4 

volts and not exceed its posted current limit. 

• Who: Test will be performed by Chris. 

 

9: H-Bridge 

• Description: The H-bridge must respond to the Enable/Phase design referenced in the 

H-bridge section. It must be able to produce variable voltage based on the analog voltage 

applied to the input terminals and change the polarity of the output voltage based on the 

phase activation.  

• Procedure: The circuit must be build using breadboard, prototype board, a custom PCB, 

or a combination of the three. Power will be supplied with a benchtop voltage supply. The 

input voltage and phase activation will be supplied by a voltage source while the output 

will be measured by a multimeter. 

• Pass/Fail: To pass this test the circuit must be able to generate varied voltages based 

upon the input voltage and the phase of the voltage must be able to be changed upon 

activation of the phase control circuitry. 

• Who: Test will be performed by Chris. 

 

10: Peltier Controller 

• Description: The Peltier controller circuitry must be able to apply properly controlled 

voltage across the Peltier device to generate the proper current that will drive the Peltier 

device to the proper temperature. Since this is an integration test the circuit must contain 

the H-bridge circuitry as well as the circuitry for the I2C controlled digital potentiometer 

circuitry.  

• Procedure: The Peltier controller test will implement the Peltier controller schematic 

referenced in the Peltier Controller section. It will include the H-bridge circuity. The circuit 

must be build using breadboard, prototype board, a custom PCB, or a combination of the 

three. Power will be supplied with a benchtop voltage supply. This circuit must implement 

a digital potentiometer which should be controlled via I2C. Temperature must be measured 

using a digital thermometer such as the built in one on many digital multimeters. 

• Pass/Fail: To pass this test the Peltier controller must be able to vary temperature in both 

the positive and negative direction. It must be I2C and GPIO controlled with the I2C 

controlling the magnitude of the temperature change and the GPIO pin controlling the 

direction. 

• Who: Test will be performed by Chris. 
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11: Motor Controller 

• Description: The motor controller circuitry must be able to apply properly controlled 

voltage across the motor to generate the proper vibrational frequency and magnitude. Since 

this is an integration test the circuitry must incorporate an I2C controlled digital 

potentiometer circuitry. 

• Procedure: The motor controller test will implement the Motor Controller schematic 

referenced in the Motor Controller section. The circuit must be build using breadboard, 

prototype board, a custom PCB, or a combination of the three. Power will be supplied with 

a benchtop voltage supply. Vibrations of the motor should be varied by application of I2C 

controls. 

• Pass/Fail: To pass this test the circuit must be able to vary the frequency of vibration in 

the vibrational motors. It must be controlled by I2C with the I2C potentiometer controlling 

the frequency of vibration. 

• Who: Test will be performed by Chris. 

 

12: Configuration Utility 

• Description: The Configuration Utility must be able to be installed and initiated on the 

operating machine.  

• Procedure: The configuration utility is placed onto the operating machine as detailed in 

the system deployment section of this document. The machine must be using the Windows 

10 operating system. The configuration Utility is initiated by double clicking the 

“MITTSutility.exe” executable in the root directory. 

• Pass/Fail: The splash screen should appear followed by the Home screen. The utility 

must not freeze or crash. 

• Who: Test will be performed by Francisco. 

 

13: Windows Function: 

• Description: The standard windows application functions of minimize, maximize, and 

close are tested. 

• Procedure: The configuration Utility is first initiated by double clicking the 

“MITTSutility.exe” executable in the root directory. The minimize windows button is 

selected from the top right corner of the utility home screen. The utility is collapsed to the 

task bar. The minimized utility is selected on the taskbar and restored to its original state. 

The maximize button is selected from the top right corner of the utility home screen. The 

utility fills the display. The maximize button is selected from the top right corner of the 

utility home screen. The Utility returns to its original state. The close button is selected 

from the top right corner of the utility home screen. The utility process is terminated, and 

the utility is closed. 

• Pass/Fail: The minimize, maximize, and close buttons should correctly function with 

respect to a standard windows application. The windows functions must not crash the 

utility or alter any of its parameters. 

• Who: Test will be performed by Francisco. 
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14: Profile manipulation 

• Description: The profile manipulation operations of the configuration utility are tested. 

• Procedure: The configuration Utility is first initiated by double clicking the 

“MITTSutility.exe”. The create profile option is selected from the menu on the home 

screen. A name is given to the new profile, the profile is saved, the home screen displays 

the active profile. The profiles directory will now contain a new xml file with the specified 

name. Close profile is selected from the home screen menu. The current profile is unloaded, 

the home screen displays its default view. Load profile is selected from the menu on the 

home screen. A profile xml file is chosen from the standard windows open/save dialog box. 

The home screen updates to reflect the chosen profile as being active. 

• Pass/Fail: Creating, Loading, Closing, and Removing of profiles should correctly 

display in the utility, and update the corresponding storage file. 

• Who: Test will be performed by Francisco. 

 

15: Configuration Manipulation 

• Description: The ability of the utility to set and modify the configuration of a single 

connected glove is tested. 

• Procedure: The configuration Utility is first initiated by double clicking the 

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile 

xml file is chosen from the standard windows open/save dialog box. The home screen 

updates to reflect the chosen profile as being active. From the active profile, the 

configuration tab for the glove that is to be manipulated is selected. The configuration view 

for that glove is displayed as the active view. Paring, Parity, and the touch and temperature 

limits are set for the glove. The configuration entry in the profile xml file is updated. 

• Pass/Fail: Parity, Paring, and modification of touch and temperature limits for a selected 

glove should function correctly, display in the utility, and update the corresponding storage 

file. The parameters must be accurate and translate accurately to the glove. 

• Who: Test will be performed by Francisco. 

 

16: Data receive 

• Description: The ability of the configuration utility to receive data is tested 

• Procedure: The configuration Utility is first initiated by double clicking the 

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile 

xml file is chosen from the standard windows open/save dialog box. The home screen 

updates to reflect the chosen profile as being active. Blender is initiated, and the test virtual 

environment loaded. 

• Pass/Fail: Utility should correctly receive positional data from the glove, and touch and 

temperature data from the 3D environment. The utility must be able to access the Blender 

API. 

• Who: Test will be performed by Francisco. 
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17: Data transmit 

• Description: The ability of the configuration utility to transmit data is tested 

• Procedure: The configuration Utility is first initiated by double clicking the 

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile 

xml file is chosen from the standard windows open/save dialog box. The home screen 

updates to reflect the chosen profile as being active. Blender is initiated, and the test virtual 

environment loaded. 

• Pass/Fail: Utility should correctly transmit touch and temperature data to the Glove, and 

positional data to the 3D environment software. The utility must be able to access the 

blender API. 

• Who: Test will be performed by Francisco. 

 

18: Debugger 

• Description: The ability of the configuration utility to utilize the debugging mode is 

tested. 

• Procedure: The configuration Utility is first initiated by double clicking the 

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile 

xml file is chosen from the standard windows open/save dialog box. The home screen 

updates to reflect the chosen profile as being active. From the active profile, the 

configuration tab for the glove that is to be set to debug mode is selected. The configuration 

view for that glove is displayed as the active view. On the configuration view, the debug 

radio button is selected. The view changes to the debug view for that glove. Electrical 

device charts begin displaying data in real-time. Manual signals for touch and temperature 

are injected and the device charts reflect the changes in real-time. 

• Pass/Fail: Utility debug functionality should be able to interact directly with the Glove. 

The debug function must be able to display raw data reads from the glove. 

Who: Test will be performed by Francisco. 

 

19: SWD  

• Description: With the SWD (single-wire debug), the STM32 will be flashed. For this to 

occur, we need to utilize some type of connection from the computer to the chip, which as 

described in the research, the ST-Link V2 may come in handy. Flashing the chip is essential 

in the hardware working. 

• Procedure: Using the STM32 Flasher program as well as the ST-Link V2, we will flash 

the chip and verify that the chip is working by changing which colored LED turns on when 

the chip is flash. If one flash is red and the other time we flash, it’s green, then we know 

the procedure worked. 

• Pass/Fail:  The test passes if the PCB design starts flashing red when flashed with the 

red LED program and also flashes green when flashed with the green LED program. It fails 

if either LEDs do not flash during their correlating program.  

• Who: Test will be performed by David.  

 

 

 

 

 



 
 

112 

 

20: LED Function 

• Description: As mentioned in the boot-up procedure section, we need a couple of LEDs 

to signify different states of the board. One state is powered, another is that everything has 

been initialized and the accelerometers have zeroed out. These LEDs will signify at which 

step our board is processing. 

• Procedure: When powering the board, we will perform a visual test of the red LED 

coming on first and followed by the green LED. We will have dummy functions in place 

of what procedures will be there and will test those individually. 

• Pass/Fail: The test passes if the red LED is powered followed by the green LED being 

powered and both stay on during start-up procedure. The test fails if either of the LEDs do 

not turn on or come on in an incorrect order. 

• Who: Test will be performed by David.  

 

21: Data Format 

• Description: Having the data formatted will be imperative to the project. As mentioned 

before, the data needs to be positional data and then needs to be formatted the correct way. 

There will be two parts of this test, one for ensuring that the data is reasonable and the other 

making sure the data coming in and out of the board is formatted correctly. 

• Procedure: While debugging, initialization should zero out data. From here, we can 

verify that, by lifting the device, one of the axes should increase in value. From here, we 

can verify output format by checking the interface and whether our format follows the 

guidelines that we’ve set. 

• Pass/Fail:  This test passes if data output starts with x, y, and z data are zeroed out and 

can be verified through the interface or a debugger. The test also must also verify 

movement of PCB board causes changes in x, y, and z coordinates. The test fails if either 

x, y, or z coordinates do not start zeroed out or they do not change when movement occurs.  

• Who: Test will be performed by David.  

 

22: I2C Read 

• Description: The data will need to be retrieved and sent to almost everything that the 

design incorporates. Every device has a set address.  

• Procedure: This will be tested by monitoring the debugging software and ensuring that 

proper data is being read. We can further test by looking at the interface and ensuring that 

the data is both changing and accurate and that there is data coming into the interface in 

the first place.  

• Pass/Fail:  The test passes if each unique I2C device can send and receive data and will 

be verified through the debugger module. The test fails if any I2C device shows that it is 

neither sending nor receiving data. 

• Who: Test will be performed by David.  

 

23: Boot-up Process 

• Description: In the system startup procedure, the design is specified as having a few 

steps that need to occur. This includes setting pins, I2C initialization, Bluetooth handshake, 

LEDs being turned on, and then reading and writing data.  

• Procedure: To test this, we will monitor the debugging log and ensure by the visual cues 

of the LEDs as well as the output and input data of the interface has corrected values.  
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• Pass/Fail: The test passes if all the start-up steps are verified to have occurred, which 

includes pin setup, I2C initialization, Bluetooth communication, LEDs turning on in order, 

and reading and writing of data occurs. The test fails if any parameter fails. 

• Who: Test will be performed by David.  

 

24: Blender Collision & Physics 

• Description:  The Blender scenario must have working physics for the hand to be able to 

interact properly with the environment. 

• Procedure: To test this, the physics settings will be configured, and the collision logic 

will be implemented.  Once the game engine starts, gravity and collision should be working 

as intended. 

• Pass/Fail:  To pass the test, the objects in the engine should fall and collide with each 

other.  If objects don’t fall our pass through each other the test will fail 

• Who: Test will be performed by Hunter.  

 

25: Blender-Driver Communication 

• Description: Blender must be able to communicate consistently with the driver in order 

to be able to demonstrate the device  

• Procedure: To test this, a test script will be written into Blender’s logic editor that 

displays the driver inputs in the Blender console window.  When the game starts, the correct 

inputs should appear in console. 

• Pass/Fail:  To pass the test, the console must display the correct inputs that are being sent 

by the driver.  If the console display is not correct, the test will fail. 

• Who: Test will be performed by Hunter.  

 

26: Hand Tracking Script 

• Description: Blender must be able to move the in-game hand in accordance to the input 

from the driver.  This includes both the position of the hand and formation of the fingers. 

• Procedure: To test this, a test script will be written into Blender’s logic editor that will 

change the hands position based off of the driver inputs.  To make sure that the script is 

accurate, it’ll also print the position of the hand and the inputs from the driver in the python 

console window so that data can be collected, and discrepancies will be noticed. 

• Pass/Fail:  If the hand moves correctly in the relative direction of the glove’s motion, 

and there are no discrepancies in the console, the test will pass.  If the hand doesn’t move 

or moves incorrectly, the test will fail. 

• Who: Test will be performed by Hunter.  

 

 

 Surface Mount Components 
A surface mount component varies from the more traditional DIP style of packaging in that 

rather than having extended pins that fit through small holes in the PCB, surface mount 

components have small metal pads that rest on small metal pads on the PCB. The advantage 

of surface mount components over the through hole variety is that of size. Surface mount 

components are generally smaller in every dimension and weight quite a bit less than their 

bulkier cousins. It is not unusual to have an 8-pin chip by only a few millimeters in height, 
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length, and width. The following figures show a 555 time in both DIP and SO-8 packages, 

courtesy of Texas Instruments and the 555 Timer Wikipedia page. 

 

 
Figure 85: DIP 555 Timer and Surface Mount 555 Timer [38] 

 

Note that the SO-8 package takes up less than half the volume for the same functionality 

as the DIP package. Since this project relies heavily on complex circuitry that must fit onto 

the back of a hand and even fingers in some cases then only surface mounted components 

will be used with very rare exceptions. This will save both mass and volume and more 

easily allow the project to meet its stated goal of remaining under 2 kilograms. 

The following table shows the package and dimensions for each major surface mounted 

component used in this project. 

  

Type Name Package Dimensions 

IC Sequencer MAX6897 
6 Thin 

SOT23 

2.9 mm x 

2.75 mm 

Op Amp TSV324 SO (14) 
8.75 mm x 

6.2 mm 

Dual FET 
NX3008C

BKS 
TSSOP (6) 

2.2 mm x 2.2 

mm 

Dig Pot AD5248 10 MSOP 
3 mm x 5 

mm 

Power Reg TPS62823 QFN (8) 
2 mm x 1.5 

mm 

Accelerometer MMA8451 QFN (16) 
3 mm x 3 

mm 

I2C Mux TCA954A TSSOP (24) 
7.8 mm x 4.4 

mm 

H-bridge DRV8836 WSON (12) 
2 mm x 3 

mm 

Table 23: Package and Dimensions of all Major Surface Mounted Components 
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As can be seen from this table all the major components used in this project are specified 

to be very small. As previously stated this is to minimize the size and mass of the final 

glove. Unfortunately, since many of these components do not come in DIP packages that 

are appropriate for bread boarding, adapters must be purchased or made. A large variety of 

adapters were purchased that should be able to account for all the parts. However, it these 

adapters do not then specific surface mount to dip adapters will be made by designing small 

custom PCBs and ordering them for the express purpose of breadboarding the various 

circuits described earlier in this paper. 

 

19: Final Production Schematics 
This section contains the final production schematics with all replication for this project. 

The only schematic not contained in this section is the battery and voltage regulator section 

since no changes to that design have been made. Note that some of the wiring discussion 

for the STM processor, the I2C bus, and the BL652 Bluetooth module are contained in this 

section. 

 

 
Figure 86: Final Schematic of STM Processor, I2C Bus, Timing Regulator, and STM 

Programming and Debugging Port 

 

As seen in the figure above the STM32F030C8 has its final pin assignments. Note that the 

STM uses the SWDIO and SWCLK pins to program and debug in a 20-pin configuration 

as required from the STM datasheet. The I2C bus was established as per the TCA954A 

datasheet. Specifically, the 1 kΩ resistors were chosen to allow approximately 3 mA of 

current through as specified by the datasheet. This will minimize the bus capacitance which 
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cannot exceed 400 pF. Any bus that exceeds 400 pF will not be able to switch voltage 

levels quickly enough to communicated with any degree of accuracy. Also note the Boot0 

pin has been pulled to ground. This is to ensure that the STM boots from user flashed 

memory as opposed to the other options such as its onboard nonvolatile RAM. That can be 

accessed by setting the Boot0 pin high but is not desired for this specific project. The nRST 

is the STM's reset pin. It performs what is essentially a power down reset without actually 

having to power down the device. This pin has been linked to the programming/debug 

connector so that during programming the debug device can reset the STM in case of an 

error or to begin an operation from the beginning.  

 
Figure 87: Final Schematic of H-Bridge Portion of Peltier Controllers with 

Replication 

 

The figure above shows the final schematics of the H-Bridge portion of the Peltier 

controller. This schematic will be what will be used to establish traces for the final PCB 

layout. 

  

 
Figure 88: Final Schematic of the Operation Amplifier Portion of the Peltier 

Controller with Replication 
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This figure above shows the final schematics of the Operation Amplifier portion of the 

Peltier controller. This schematic will be what will be used to establish traces for the final 

PCB layout. 

  

 
Figure 89: Final Schematic of the Operation Amplifier Portion of the Motor 

Controller with Replication 

This figure above shows the final schematics of the Operation Amplifier portion of the 

motor controller. This schematic will be what will be used to establish traces for the final 

PCB layout. 

 

 
Figure 90: Final Schematic of Digital Potentiometers for all Controllers 

  

The figure above shows the final schematic for the digital potentiometers for all controllers. 

This schematic will be what will be used to establish traces for the final PCB layout. 
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Figure 91: Final Schematic of the BL652 Bluetooth Module and Programming and 

Debugging Port 

 

The figure above shows the final schematic for the BL652 Bluetooth module and 

accompanying programming and Debug port. This schematic will be what will be used to 

establish traces for the final PCB layout. Note that the USART TX and RX crosses have 

been accounted for in this schematic. Jumpers have been added to allow for the autoboot 

option to be implemented as can be seen on pin 28. Pin 22 has a jumper that will allow 

over the air programming if desired. These two features allow for an embedded code to run 

on the Bluetooth module's power up cycle or to program it though its RF functionality 

respectively. The BL652 has a built-in coding software that is similar to BASIC. However, 

this Bluetooth module is specified to simply send and receive UART packets, so the built-

in programming language is more than likely not necessary. The same is true for the over 

the air programming capabilities. The design is not specified to have this capability, but 

having the option is nice. Therefore, jumpers were added for on the fly hardware 

modifications. 
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Figure 92: Final Schematic Thermistor Ports for all Peltier Controllers  

 

The figure above shows the final schematic for the thermistor ports for all Peltier 

controllers. This schematic will be what will be used to establish traces for the final PCB 

layout. Note that each thermistor attaches to a unique ADC line that feeds directly into the 

STM processor while the actual thermistor attaches to the wire port. The thermistor will 

rest against the Peltier device. 

 

 
Figure 93: Final Schematic for the Accelerometers for all I2C busses 
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The figure above shows the final schematic for the thermistor ports for all Peltier 

controllers. This schematic will be what will be used to establish traces for the final PCB 

layout. Note that each of these accelerometers will be on its own separate PCB with 

attached ribbon cables. A jumper was added to allow for selectable addresses between the 

two possible addresses. This will allow for mass production of the accelerometer chips. 

Also note that each chip will be attached to each other along the fingers via ribbon cables 

which will also attach back to the main processor board. 

 

20: Future Design Changes Based Upon Testing 
 Peltier Controller 

The major design constraint of the Peltier device and its associated controllers, thermistors, 

PID feedback loops, and other associated circuitry was always what the human hand could 

sense and tolerate. For instance, if the device could accurately control temperatures from 

100°C to 150°C it would be useless for the purposes of this project since it would scald 

any users. The degree of accuracy that it could be controlled with would be meaningless. 

To this end the Peltier device was tested in accordance with the testing procedure laid out 

in Section 18. Specifically, the Peltier was attached to a benchtop current supply and 

current was applied to the device and the temperature changes were measured. More 

importantly the impact of the temperature changes on human flesh was also examined. The 

great concern that was associated with the Peltier was that since an external heat sink was 

too bulk that device would not be able to efficiently vent or absorb. This proved to be true. 

The results of the test show that below 300 mA the heating of the Peltier device in ambient 

conditions was too small for the human hand to register while the temperatures that 

occurred at and above 350 mA were hot enough to be painful to flesh of the testing 

technician. The cooling of the device, being less efficient than the heating, were barely 

perceptible to the flesh of the testing technician. At 350 mA the cool side was analogous 

to a cool plastic surface that is slightly below ambient. Any more current would risk having 

the users walking around in virtual reality with what amounts to hot coals facing outwards 

on their hands. This obviously is a grave safety concern and cannot be tolerated. Since the 

cooling is barely perceptible at current ranges that make the offside of the device unsafe it 

was decide that cooling functionality would be removed. 

 

These results mean that certain redesigns of the Peltier system must be done to adjust to 

the new information. Specifically, the Peltier will no longer have a variable temperature 

control. It will no longer have cooling functionality. It will simply be an on/off hot pad. 

This will also mean that the thermistors, and the feedback circuitry to control Peltier 

temperature are not necessary. The digital potentiometers are not necessary either. The 

Peltier controller circuitry will be simplified to two operational amplifies interaction with 

an H-Bridge. The H-Bridge will still be used since it is ideal for driving high current 

applications. This result also means that the need for high power batteries will be reduced, 

however it was decided that the current battery design will remain to extend the operating 

time of the device. 
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 Motor Controller 
The vibrational motor test results were much more successful than the Peltier device test 

results. They showed the ability to clearly control vibrational frequency and magnitude 

with applied voltage. Noticeable vibrations occurred at 1 volt and increased in intensity 

until 3 volts at which the test was deemed a success. It is to be determined if hardware 

should be changed so that GPIO activation of the motor controller results in an immediate 

application of 1 volt to the vibrational motors or if the design as it currently stands should 

simply set the voltage with the digital potentiometer. 

 

21: Conclusion 
Interacting with a virtual environment is both an academically interesting and technically 

challenging task that could produce dividends for the gaming and hobbyist communities. 

The addition of both haptic and temperature feedback could greatly expand the immersions 

of virtual worlds. By adding this design to the open source community, we expect to 

advance our careers and highlight our technical skills to prospective employers. 

 

From PCB design to programming interfaces to working with Blender, this design has 

brought a unique experience to the group. PCB design is complicated and comes with a lot 

of trial and error. Creating an interface is a very valid real-world experience that will benefit 

us when alike tasks are assigned to us. The STM32 main PCB design has posed a risk of 

bottle-necking the project because of it being the main source for data retrieval and data 

transmission.  

 

Overall, gathering this information has been very beneficial because of the knowledge of 

the potential risks and the comparisons between the parts that were a potential for the 

design.  
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22: Photo of Acquired Parts 
Here is a detailed image of all the parts that the research suggests will satisfy the design. 

All surface mounts are small as the picture suggests; a quarter was placed in the image as 

a size comparison. All major components have been ordered, but there is a potential that 

the design may need package adapters to make the very small parts easier to work with. 

 

 
Figure 94: Purchased Parts with Quarter for Scale 



 
 

123 

 

 

 

 

 

23: References 
 

[1]  "Project management guide: Tips, strategies, best practices," cio.com, 2017. [Online]. 

Available: https://www.cio.com/article/3243005/project-management/project-

management-tips-strategies-best-practices.htm. [Accessed July 2018]. 

[2]  [Online]. Available: http://merittechnology.sell.everychina.com/p-95148045-tes1-

03102-thermoelectric-cooling-modules.html. 

[3]  [Online]. Available: https://cdn2.hubspot.net/hubfs/547732/Data_Sheets/CM23-

1.9.pdf. 

[4]  [Online]. Available: https://www.meerstetter.ch/compendium/tec-peltier-element-

design-guide. 

[5]  [Online]. Available: http://www.ti.com/lit/ds/symlink/drv8836.pdf. 

[6]  [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-

sheets/AD5243_5248.pdf. 

[7]  [Online]. Available: https://www.st.com/resource/en/datasheet/tsv321.pdf. 

[8]  [Online]. Available: https://assets.nexperia.com/documents/data-

sheet/NX3008CBKS.pdf. 

[9]  [Online]. Available: https://en.wikipedia.org/wiki/PID_controller. 

[10

]  

[Online]. Available: 

https://www.murata.com/~/media/webrenewal/support/library/catalog/products/ther

mistor/ntc/r44e.ashx. 

[11

]  

[Online]. Available: https://siliconlightworks.com/li-ion-voltage. 

[12

]  

[Online]. Available: https://www.mouser.com/ds/2/737/C450_-

_ICR18650_6600mAh_3.7V_20140729-932760.pdf. 

[13

]  

[Online]. Available: https://www.batteryspace.com/smartcharger30afor37vli-

ionpolymerrechargeablebatterypackstandardfemaletamiyaplug.aspx. 

[14

]  

[Online]. Available: http://www.ti.com/lit/ds/slvsdv6b/slvsdv6b.pdf. 

[15

]  

[Online]. Available: https://datasheets.maximintegrated.com/en/ds/MAX6895-

MAX6899.pdf. 

[16

]  

[Online]. Available: 

https://media.digikey.com/pdf/Data%20Sheets/Kingbright%20PDFs/WP154A4SEJ3

VBDZGW-CA_Ver.1A_Jul-24-13.pdf. 

[17

]  

[Online]. Available: http://www.vibration-

motor.com/products/download/C0720B015F.pdf. 

[18

]  

[Online]. Available: https://www.nxp.com/docs/en/data-sheet/MMA8451Q.pdf. 



 
 

124 

 

[19

]  

[Online]. Available: http://www.ti.com/lit/ds/symlink/tca9548a.pdf. 

[20

]  

mohammadalizadeh, "Realistic 3D Hand Model," 2018. [Online]. Available: 

https://free3d.com/3d-model/freerealsichand-85561.htm. [Accessed July 2018]. 

[21

]  

"Free Sound Effects," 2018. [Online]. Available: https://www.freesoundeffects.com/. 

[Accessed July 2018]. 

[22

]  

"Texture & Reference Image Library," 2018. [Online]. Available: 

https://freetextures.3dtotal.com/index.php?la=1. [Accessed July 2018]. 

[23

]  

J. Ludwig, "Frequently Asked Questions," Valve, 2 August 2016. [Online]. Available: 

https://steamcommunity.com/app/507090/discussions/0/360671247404603033/. 

[Accessed July 2018]. 

[24

]  

dfelinto, "Virtual Reality Viewport," 25 July 2016. [Online]. Available: 

https://github.com/dfelinto/virtual_reality_viewport).. [Accessed July 2018]. 

[25

]  

Blender, "Blender Python API Release 2.78," Blender, 2018. [Online]. Available: 

https://docs.blender.org/api/blender_python_api_2_78_release/contents.html. 

[Accessed July 2018]. 

[26

]  

[Online]. Available: https://visualstudio.microsoft.com/vs/older-downloads/. 

[27

]  

[Online]. Available: https://en.wikipedia.org/wiki/Inter-process_communication. 

[28

]  

[Online]. Available: https://docs.microsoft.com/en-

us/windows/desktop/bluetooth/about-bluetooth. 

[29

]  

[Online]. Available: https://docs.microsoft.com/en-

us/windows/desktop/bluetooth/windows-sockets-support-for-bluetooth. 

[30

]  

[Online]. Available: 

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173. 

[31

]  

[Online]. Available: https://en.wikipedia.org/wiki/Interpolation. 

[32

]  

[Online]. Available: https://en.wikipedia.org/wiki/Linear_interpolation. 

[33

]  

[Online]. Available: https://en.wikipedia.org/wiki/Linear_interpolation. 

[34

]  

[Online]. Available: https://en.wikipedia.org/wiki/Unit_testing. 

[35

]  

[Online]. Available: https://en.wikipedia.org/wiki/Integration_testing. 

[36

]  

[Online]. Available: https://en.wikipedia.org/wiki/System_testing. 

[37

]  

[Online]. Available: https://en.wikipedia.org/wiki/Test_management. 

[38

]  

[Online]. Available: https://en.wikipedia.org/wiki/555_timer_IC. 



 
 

125 

 

 

 


