
UCF Senior Design I

Department of Electrical Engineering and Computer Science

University of Central Florida Dr. Lei Wei

120 Page Submission

Group 2

David Simoneau Computer Engineering

Chris Britt Electrical Engineering

Anthony Hunter Hinnant Computer Engineering

Francisco Tirado Perez Computer Engineering

II

Table of Contents

List of Figures ... VI

List of Equations ... IX

List of Tables .. IX

1: Executive Summary .. 1

2: Requirement Specifications .. 2

3: House of Quality ... 5

4: Block Diagrams .. 7

5: Milestones ... 10

6: Cost ... 12

7: Project Management ... 12

 Project Management Staff .. 12

 Why Projects Fail ... 13

 Project Management Goals .. 14

 Project Management – Team Building .. 14

8: Glove Design .. 14

 Glove Construction .. 15

 Power.. 15

 Heating and Cooling .. 15

 Peltier Selection ... 15

 Switching Direction Using N-FETs ... 17

 Switching Direction Using an H-Bridge .. 18

 Controlling Magnitude with a Digital to Analog Converter 19

 Controlling Magnitude with a Digital Potentiometer .. 20

 Digital Potentiometer Part Selection .. 22

 Operational Amplifier Part Selection ... 22

 Switching FET Circuit and Part Selection ... 23

 Controlling Temperature of the Peltier .. 24

 Thermistor Selection and Implementation ... 27

 Final Peltier Controller with Enable and Phase ... 28

 Battery Selection .. 29

8.15.1: Nickel-Metal Hydride .. 30

8.15.2: Nickel-Zinc .. 30

III

8.15.3: Lithium Ion .. 31

 Battery Choice .. 31

 Charger Selection ... 31

 Power Regulators ... 32

8.18.1: Regulator Selection ... 32

8.18.2: Timing Regulator... 34

 Housing .. 35

8.19.1: Light Emitting Diode ... 36

 Haptic Feedback ... 36

8.20.1: Linear Resonant Actuators .. 37

8.20.2: Eccentric Rotating Mass Vibrational Motors .. 37

8.20.3: Haptic Feedback Part Selection ... 38

 Motion Tracking... 38

8.21.1: Optical Tracking .. 39

8.21.2: Inertial Sensors .. 39

8.21.3: Accelerometer Considerations ... 40

8.21.4: Accelerometer Choice ... 40

8.21.5: I2C Multiplexer ... 41

9: Processing Board Overview.. 42

 Processor Comparisons .. 43

9.1.1: The STM32F030C8T6 .. 45

 Input and Output through Processor .. 45

 Wireless Communication ... 47

9.3.1: Pros and Cons of Wireless Communication .. 47

9.3.2: Bluetooth Module Choices .. 48

9.3.3: Bluetooth Specifications .. 51

 PCB Design .. 51

9.4.1: Schematic Design Tools .. 52

9.4.2: KiCAD ... 52

9.4.3: SOLIDWORKS PCB .. 52

9.4.4: DesignSpark PCB .. 52

 PCB Fabrication ... 53

9.5.1: PCBWay .. 53

9.5.2: 4pcb ... 53

IV

9.5.3: PCBgogo.. 54

9.5.4: JLCPCB ... 54

 PCB Design Constraints ... 54

9.6.1: Environmental Constraints .. 54

9.6.2: Economical Constraints ... 54

9.6.3: Sustainability Constraints .. 55

9.6.4: Social and Political Constraints ... 55

9.6.5: Ethical Constraints... 55

9.6.6: Health and Safety Constraints ... 55

 System Startup Procedure .. 55

10: Relevant Technologies .. 57

 Existing Technologies and Products .. 57

10.1.1: VRGluv.. 57

10.1.2: HAPTX .. 58

 Programming the Chip ... 59

10.2.1: C++ .. 59

10.2.2: C .. 59

10.2.3: Assembly Language .. 59

10.2.4: Coding Peltier Controller .. 60

 STM32 Attributes... 60

10.3.1: Stacks ... 60

10.3.2: Registers .. 61

10.3.3: Interrupts and Exception Handling .. 61

 Flashing the Hardware ... 61

10.4.1: Flashing the STM32 Breakout Board .. 61

10.4.2: JTAG ... 61

10.4.3: SWD In More Detail ... 62

10.4.4: Flashing the Final PCB Design ... 62

10.4.5: Making Use of STM32 Breakout Board ... 62

 Development Environment .. 63

10.5.1: STMStudio .. 63

10.5.2: Keil uVision5... 63

10.5.3: STM32CubeMX .. 63

10.5.4: Flasher-STM32 .. 63

V

 Calculating the Accelerometer Data .. 64

11: Blender & 3D Environment .. 64

 Modeling & Object Creation .. 66

 Physics Implementation ... 70

 Scripting & Logic ... 71

11.4: Sound Effects.. 73

11.5: Texturing .. 74

12: HTC Vive & Setup ... 77

13: Implementation of Virtual Reality .. 78

 Skeleton Rigging and Animation ... 79

14: Bringing it all together .. 83

15: Device Driver & Input .. 84

16: Python Scripting ... 85

17: Configuration Utility... 87

 Development Overview ... 87

 Use Case ... 87

 System Architecture ... 89

 Inter-Process Communication .. 91

17.4.1: File ... 91

17.4.2: Socket .. 91

17.4.3: Unix domain socket ... 91

17.4.4: Message queue... 92

17.4.5: Pipe .. 92

17.4.6: Named pipe .. 92

17.4.7: Shared Memory ... 92

17.4.8: Message Passing .. 92

17.4.9: Memory-mapped file ... 92

17.4.10: Selected Inter-Process Communication Scheme ... 92

 Bluetooth communication .. 95

17.5.1: Selected Windows Bluetooth Method ... 95

 Interpolation ... 96

17.6.1: Piecewise constant interpolation ... 96

17.6.2: Linear interpolation ... 96

17.6.3: Polynomial interpolation ... 96

VI

17.6.4: Spline interpolation ... 96

17.6.5: Selected Interpolation Method .. 97

 System Deployment ... 97

 Data Design .. 98

 User Interface Design ... 99

17.9.1: Splash Screen... 99

17.9.2: Home Screen ... 100

17.9.3: Configuration View ... 101

17.9.4: Debug Screen... 102

18: Testing .. 103

 Phase I .. 104

 Phase II ... 104

 Phase III ... 104

 Testing Management .. 105

 Testing Procedures ... 106

 Surface Mount Components ... 113

19: Final Production Schematics .. 115

20: Future Design Changes Based Upon Testing ... 120

 Peltier Controller .. 120

 Motor Controller .. 121

21: Conclusion .. 121

22: Photo of Acquired Parts .. 122

23: References ... 123

List of Figures
Figure 1: House of Quality ... 6
Figure 2: Diagram of Modules and Responsibilities .. 8
Figure 3: Diagram of Acceleromter Placements ... 9
Figure 4: Diagram of Placements of Peltier Devices and Vibrational Motors 9

Figure 5: Project Organizational Chart ... 13
Figure 6: CM23-1.9 Voltage and Current Loads at 27°C ... 16
Figure 7: Performance vs Current for Various Temperature Differentials in a Generalized

Peltier Device .. 17
Figure 8: Tentative Schematic of the Directionality Controller 18
Figure 9: Application Schematic of the DRV8836 ... 19
Figure 10: DAC Schematic ... 20

Figure 11: Potential Peltier Device Schematic ... 21

VII

Figure 12: Internal Block Diagram of the AD5248 .. 22
Figure 13: Implementation Diagram of the TSV324IDT ... 23

Figure 14: FET Switching Circuit Schematic ... 23
Figure 15: Drain Current vs Drain Source Voltage as a function of Gate Source Voltage

for the NFET ... 24
Figure 16: Drain Current vs Drain Source Voltage as a function of Gate Source Voltage

for the PFET .. 24

Figure 17: Impact of the Proportional Term on a Generic Device 25
Figure 18: Impact of the Integral Term on a Generic Device ... 25
Figure 19: Impact of the Derivative Term on a Generic Device 26

Figure 20: Schematic of the Thermistor Temperature Voltage Divider 27
Figure 21: Block Diagram of the Peltier Feedback and Control Mechanism 28
Figure 22: Final Peltier Controller Schematic .. 29
Figure 23: Li-ion Battery Voltage Curve .. 30
Figure 24: Ch-L373 Lithium-Ion Battery Charger ... 32

Figure 25: Efficiency vs. Output Current for the TPS62823 .. 33

Figure 26: Application Schematic for the TPS62823 ... 33
Figure 27: Schematic of the TPS62823 With battery ports and charging ports 34
Figure 28: Application Schematic of the MAX6897 .. 35

Figure 29: Implementation of the MAX6897 with respect to the STM32F030C8........... 35
Figure 30: Schematic of LED control circuitry Error! Bookmark not defined.

Figure 31: Motor Controller Schematic .. 38
Figure 32: Implementation Diagram of the MMA8451Q ... 41

Figure 33: Simplified Block Diagram of the TCA9548A .. 42
Figure 34: Application Schematic of the TCA9548A .. 42

Figure 35: STM32 Pinout ... 44
Figure 36: Data Flow Schematic of The Glove .. 46
Figure 37: Bluetooth Comparison Table... 48

Figure 38: Pinout of BL652 .. 50
Figure 39: Image from EL652-SC-01's data sheet about OEM Responsibility 50

Figure 40: Additional Information from BL652-SC-01's about OEM Responsibility 51

Figure 41: PCB Specification Comparison ... 53
Figure 42: Pseudocode for startup Procedure ... 56

Figure 43: Block Diagram for Startup Procedure ... 57
Figure 44: I2C Data Sequence for MMA8451 ... 62
Figure 45: Screenshot of Blender Interface .. 67
Figure 46: Table before legs were added .. 67
Figure 47: Table after legs were added ... 68

Figure 48: Cover image of imported hand .. 69
Figure 49: Completed table and plane with imported hand .. 69
Figure 50: Physics settings for the block .. 70

Figure 51: First logic brick for the hand ... 71
Figure 52: Full logic brick for the hand .. 72
Figure 53: Camera logic brick .. 72
Figure 54: Camera Viewpoint ... 73

Figure 55 Sound Effect Implementation ... 73

VIII

Figure 56: Grass texture .. 74
Figure 57: Wood and Skin Textures for the table and Hand .. 75

Figure 58: Skin Texture for the Hand ... 75
Figure 59: Texture editing in blender ... 76
Figure 60: Textured and colored prototype Environment ... 76
Figure 61 HTC Vive with two lighthouses and controllers .. 77
Figure 62 Room setup with HTC Vive ... 78

Figure 63: Blender displayed in Vive HMD ... 79
Figure 64: Incorporating a skeleton into the hand .. 80
Figure 65: wireframe and skeleton for index finger ... 80

Figure 66: Example of finder adjustability ... 81
Figure 67: Animation rig compelte for hand .. 81
Figure 68: Hand Flexibility Example ... 82
Figure 69: Scripting For Finger Rotation ... 82
Figure 70: More objects added to desk ... 83

Figure 71: Mass properties for sphere and cube ... 84

Figure 72 Python Haptic Feedback Code ... 85
Figure 73 Python Script for Peltier Device ... 86
Figure 74: Utility use case diagram .. 88

Figure 75: Utility Architecture Diagram... 89
Figure 76: Utility Class diagram ... 90

Figure 77: Util_to_Blender.txt .. 93
Figure 78: Blender_to_Util.txt .. 94

Figure 79: Linear interpolation example... 97
Figure 80: Utility Deployment .. 98

Figure 81: Splash Screen .. 100
Figure 82: Home Screen ... 100
Figure 83: Configuration Tab ... 101

Figure 84: Debut View.. 103
Figure 85: DIP 555 Timer and Surface Mount 555 Timer ... 114

Figure 86: Final Schematic of STM Processor, I2C Bus, Timing Regulator, and STM

Programming and Debugging Port ... 115
Figure 87: Final Schematic of H-Bridge Portion of Peltier Controllers with Replication

... 116
Figure 88: Final Schematic of the Operation Amplifier Portion of the Peltier Controller

with Replication .. 116
Figure 89: Final Schematic of the Operation Amplifier Portion of the Motor Controller

with Replication .. 117

Figure 90: Final Schematic of Digital Potentiometers for all Controllers 117
Figure 91: Final Schematic of the BL652 Bluetooth Module and Programming and

Debugging Port ... 118

Figure 92: Final Schematic Thermistor Ports for all Peltier Controllers 119
Figure 93: Final Schematic for the Accelerometers for all I2C busses 119
Figure 94: Purchased Parts with Quarter for Scale ... 122

IX

List of Equations
Equation 1: Digital to Analog Converter .. 19

Equation 2: PID Controller Equation .. 25
Equation 3: Liner Interpolation ... 97

List of Tables
Table 1: Integrated Specifications .. 3
Table 2: Glove Specifications ... 3

Table 3: Processor Moduel Specifications .. 4
Table 4: Processor Software Specifications .. 4
Table 5: Configuration Utility Specifications ... 4
Table 6: Project Milestones .. 10

Table 7: Project Milestones -continued- ... 11
Table 8: Expense Estimates .. 12

Table 9 .. 16
Table 10: Peltier Device DAC Voltage .. 20

Table 11: MCU comparison Data According to the Mouser Website 43
Table 12: Memory Comparison Data According to the Mouser Website 44

Table 13: Clock Speed Comparison According To The Mouser Website 44
Table 14: Bluetooth Module Comparison Taken from Mouser.com 49

Table 15: Product Comparisons .. 58
Table 16: Comparing C++, C, and Assembly ... 60
Table 17: Summary of Processor Mode and Stack Usage from STM32F0 Programming

Manual .. 60
Table 18: Essential Register Summary from STM32F0 Programming Manual 61

Table 19: Pin and Port Information for JTAG pins .. 62
Table 20: Menu Bar commands .. 101
Table 21: Testing Traceability Matrix .. 105

Table 23: Package and Dimensions of all Major Surface Mounted Components 114

1

1: Executive Summary
This product will be a glove controller that has the capabilities of interacting with a virtual

3D object. The design will be focused on taking position inputs from the glove, transmitting

data through a processor, and then sending that data through our interface to the computer

running the simulation. The project is designed in such a way to allow us to gain experience

in PCB design as well as data communication, ARM development, and 3D modeling

software API.

The glove will capture motion using multiple accelerometer PCBs located on the center

points of each finger bone and one on the back of the hand. Each accelerometer will

communicate with the processor board using I2C at a sufficiently high rate to ensure

smooth operation. The processor will calculate the relative position of the fingers and hands

relative to the ‘0’ accelerometer located on the back of the hand. This will require a reset

button to calibrate the system. Once calculated the processor will interpret these positions

as commands and then to a Bluetooth module which will send the commands via UART to

a receiver which will communicate those commands to the computer and to a 3D modeling

software such as Blender. The program will communicate back data that will allow the

glove to give sensational feedback to the user. To do this the glove will incorporate Peltier

devices for heating and cooling and small vibrational motors for touch feedback. Since the

glove will be wireless we will be creating a rechargeable battery board. The choice for a

rechargeable board was made because of the need for high quality low weight batteries to

supply the high current requirements of the Peltier devices. This provides our project with

two main facets. The construction of the glove and the computer Bluetooth interface is the

hardware facet, while the incorporation of the 3D modeling software is another facet.

Through this project, we will add to the open-sourced community. The open-sourced

community is filled with hobbyists that are always hungry for new challenges and fun

project ideas. We look to supply this community with a comprehensive design that people

can make use of for their own projects and applications. Specifically, we feel that the ability

for hobbyists to interact with their own virtual 3D environments may drive innovation in

the field of virtual and augmented reality.

Virtual and augment reality is and has been a hot new topic in technology development for

quite some time. With the advent of the HTC Vive, immersive virtual reality gaming

became an actual reality. However, a major drawback of current virtual reality is its lack

of haptic feedback. When the user touches something in the real world the user can feel its

heat and the pressure of my hand on it. This project seeks to bridge that gap in current

technology by allowing a control sensitive enough to accurately capture hand motions,

while allowing for immersive feedback from the virtual world.

The goals of this project are to work on a fun, technically challenging project that will

allow us to learn about real-world circuit design by implementing the knowledge gained

from our education thus far. The team will also seek eye-opening conversations with

professional industry workers, such as our professors, about industry standards, project

design, and engineering concepts. The team is hoping to advance our careers and industry

visibility by contributing to an open source community. From this design, the team will

2

have gained industry-level experience to add to our resumes and gain necessary skills

required by the field of computer/electrical engineering. The key feature we aim for with

our glove input design is for it to have a high frequency rate to get a quick and accurate

response rate of our input. The team will implement sensors on the glove that will be able

to track the motion of the hand and fingers with a high degree of accuracy and communicate

that to 3D modeling software. The software will communicate back to the glove which of

the feedback devices should activate and by what degree based on the current position of

the virtual hand. The team would also like to establish a base design that future hobbyist

might be able to expand from. Since many hobbyist struggle with the more technical

aspects of electronic and computer engineering, it is our hope that by designing the more

technically challenging aspects of this project we will establish a hardware and code base

that can be expanded from easily in the future.

2: Requirement Specifications
Requirement specifications are the technical description of a system to be developed. It is

interpreted as an agreement between a customer and developer. Goal of the requirement

specifications is the list and quantify the features that the completed system must have to

be deemed complete the customer. Requirements of a system adhere to the following

principles;

• Abstract: The requirement should detail outcome and not implementation
• Traceable: The requirement should consist of a single independent element.
• Verifiable: The requirement should be testable to determine that it has been met.
• Unambiguous: There should be only one way to interpret the requirement.
• Feasible: The requirement should be doable/achievable within the required time

frame and with the available resources.

Following the above guidelines, the requirement specifications in the following tables

outline the quantitative and qualitative goals will determine the success or failure of this

project. For example, a quantitative goal would be under Table 1 Spec ID 3: The total time

required for all steps in a frame must be less than 33-ms. Meanwhile an example of a

qualitative goal would be Table 1 Spec ID 4: The system contains motion capture features.

3

Spec

ID

Detail Related

Value

Unit

1 The integrated package must be able to support

designated frames of data per second.

30 fps

2 Each frame will consist of designated number of

individual I2C reads

16 reads

3 The total time required for all steps in a frame must

be less than given time.

33 ms

4 System contains motion capture features n/a n/a

5 System contains processor module n/a n/a

6 System contains interface between Blender and

processor

n/a n/a

7 System contains software package for the processor n/a n/a

8 System uses open-source 3D modeling software n/a n/a

9 System contains battery supply n/a n/a

10 System contains Bluetooth communication device n/a n/a

Table 1: Integrated Specifications

Spec

ID

Detail Related

Value

Unit

11 Must use minimum designated number of

accelerometer chips to measure acceleration and

track position of fingers and hand.

10 none

12 Glove design with components must not exceed

specified weight

2 kg

13 Accelerometers must function within +/- G range 2 G

14 Accelerometers must have specified resolution 10 bits

15 Accelerometers must be I2C compatible n\a n\a

16 Must contain minimum number of vibrational motors 6 n\a

17 Must contain minimum number of Peltier devices 6 n\a

18 Must be able to run on batteries n\a n\a

19 Must be wireless with respect to 3D environment

application

n\a n\a

20 Must contain limiter on current for Peltier devices n\a n\a

21 Accelerometer PCBs should be no bigger than

specified dimension

1.5 Cm2

Table 2: Glove Specifications

4

Spec

ID

Detail Related

Value

Unit

22 The processor must use an ARM architecture chip. n\a n\a

23 The any enclosures must not exceed given

temperature.

30 C

24 Processor chip must have at given minimum of

dedicated I2C lines

1 n\a

25 Processor chip must have sufficient clock rate to

support minimum frame rate requirement

n\a n\a

26 The processor module must have reset option that

allows recalibration of system

n\a n\a

27 System must utilize a power switch n\a n\a

Table 3: Processor Model Specifications

Spec

ID

Detail Related

Value

Unit

28 The software must be documented as per ANSI/ANS

10.3-1995

n\a n\a

29 The software must be written in C or C++ n\a n\a

30 The software must be able to run continuously for

given time period without any crashes.

30 minut

e

31 Software must be able to handle data packet loss. n\a n\a

Table 4: Processor Software Specifications

Spec

ID

Detail Related

Value

Unit

32 The Utility must operate on Windows 10 n\a n\a

33 The Utility must have a graphical user interface n\a n\a

34 The Utility must interface with Bluetooth device n\a n\a

35 The Utility must interface with 3D Software n\a n\a

36 The Utility must support one or more concurrently

operating gloves.

n\a n\a

Table 5: Configuration Utility Specifications

5

Spec

ID
Detail

Related

Value
Unit

37

The package must be operable for a minimum

specified number of time from a full charge standard

use.

30 min

38
The device must be able to send and receive data at a

minimum frame rate.
30

Fram

es per

secon

d

39 The device must be under a particular weight. 2
kilogr

ams

40
The device must send and receive below a certain

latency time.
100

Micro

secon

ds

Table 6: Device Specifications

3: House of Quality
The House of Quality allows us to present the goals and technical requirements in a manner

that can be easily examined for positive and negative relationships. For example, the Power

category and Power Consumption category have a strong positive relationship since

without a large power source there cannot be a large amount of power consumption.

For the left side of the house, it’s important to identify what aspects of the project are

important for the consumer. For example: User friendliness is important because we want

the project to be easy to pick up and start using for a consumer, and compatibility is

important because the consumer will want to use their device with whatever other

technology they already own.

The top side of the diagram shows the general product capabilities that we want the device

to have. For example: Frame rate is listed with a plus because we want the device to be

able to send a fast stream of data to be more “smooth,” while weight is listed with a minus

because we want the device to be low weight so that the user can use the device while

attached to their hand more easily.

The bottom section of the graph shows specific technical requirements that we need to have

for the project. For example: We want the device to be able to update at a rate of at least

30 frames per second, which is a common refresh rate, and we want the device to cost less

than 100 dollars to produce.

The arrows at the top and the middle of the graph show the relations between each aspect

of the product. For example: Accuracy heavily correlates with processor speed, as a fast

processor will help the device react more accurately to movements and is marked with two

up arrows. At the top of the graph, processor speed correlates with noticeable feedback, as

it will help the haptic feedback respond more accurately when prompted and is marked

with a single up arrow. Meanwhile, safety negatively correlates with weight, as the device

will generally be safer if it’s lighter while attached to the user’s hand and is marked with a

single down arrow.

Overall, the house of quality will help us recognize the needs of the project from both a

consumer perspective and an engineering perspective, as well as how they correlate with

6

each other. This will help us recognize the most important goals of our project, and the

bigger picture as to what needs to be prioritized and what actions can help many of our

goals at once.

Figure 1: House of Quality

7

4: Block Diagrams
A block diagram is a diagram of a system or part of a system in which the primary

components are represented by blocks and connected by lines in such a manner the

represents the relationship between system components, and the scope of a components

influence on the system as a whole. Block diagrams leverage the idea of a black box. The

black box shows the basic input and output relationships between the components. The

small detail of each component is left to be shown in follow-on more detailed diagrams

and schematics.

The figure below represents the high-level architecture, organization, and team

responsibilities of the project. There is a clear separation point between the hardware

portion of the design, and the software portion where the components are connected only

by a wireless interface. This interchange point allows the design to be split into two primary

areas of responsibility. The glove team is responsible for and will focus on the design and

implementation of the wearable glove device itself. Their responsibilities include selecting

of the individual accelerometers, vibrations motors, and thermal devices that drive the

feedback experience. The glove team must also handle processor selection and wireless

interface selection. The final responsibility of the glove team is to determine the power

needs of the hardware glove and design the mobile power component of the system.

The computer team is responsible for selecting the computer platform and operating system

that will run the 3D environment software. The blender will be used to create the virtual

environment and virtual components such as the controlled hand, and interactive objects

will need to be created. Objects in the environment will need logic governing collision as

well as properties of hardness and temperature to be feedback to the hardware to provide

the feedback experience. To drive and manage the interaction between the glove and the

blender software, a custom interface utility will be created. The interface utility will

provide a data exchange point inputting, formatting and outputting data from the glove to

blender, and inputting, formatting and outputting touch and temperature data from blender

to the glove. The computer team will leverage industry standard laptop computers and

operating systems to provide a platform that contains a variety of wireless communicating

hardware, an operating system for running the interface utility and blender software. And

support for major development languages and their associated integrated development

environments; such as C, C++, C#, Java, and NetBeans, Eclipse, Codeblocks, and

VisualStudio.

8

Figure 2: Diagram of Modules and Responsibilities

Figures 3 and 4 show the placement of the accelerometers, Peltier devices, and haptic

feedback motors as well as their respective I2C group. The multiple I2C groups are

necessary because the selected accelerometers only have 2 possible I2C addresses. This

forces the need for an I2C multiplexer with at least 3 selectable bits to address all 16

accelerometers. Due to already having multiple I2C lines the decision was made to place

the peripherals (Peltier and vibration motors) on the I2C line that is most closely associated

9

with its position. This is intended to reduce the amount of cabling required to render the

glover operational.

Figure 3: Diagram of Acceleromter Placements

Figure 4: Diagram of Placements of Peltier Devices and Vibrational Motors

10

5: Milestones
The milestone table is a guide for the project to stay on schedule. Without a milestone table

to keep the project organized and on track to be completed on time, the possibility of falling

behind and becoming unorganized is greatly increased. For someone to know what they

need to do and by what date, then they’re more inclined and aware. The following tables

show the details on how the tasks are dated and tasked to, starting with Senior Design I

tasks and followed by Senior Design II tasks.

Senior Design I ~ Tasks Due By Admin Pages

Done

1 Have divide and conquer with rough outline of

what needs to be researched

June 8th Group 2 10

2 Have complete standards and have picked out all

components for glove

June 15th Chris 10

3 Have complete standards and components picked

out for processor interfacing with glove

June 22nd David 35

4 Have full understanding how data will be

entering/exiting processor and have pseudocode

for 5 necessary functions

June 29th Group 2 60

5 Have power figured out and full understanding of

how we will interface with 3D software

July 6th Francisc

o

78

6 Order components. Research more into how to

code ARM processor and interface with

components. Build a breadboard or

microcontroller interfacing with controller to

ensure data will transmit correctly from outside

input.

July 13th Group 2

Hunter

98

7 Have photo of all components. Start making 3D

components in Blender and have more

understanding of how interacting with them will

work. Then start constructing/designing glove for

rough component placement.

July 20th Group 2 115

8 Have report finished. Finalize any details.

Proofread. Add/Subtract necessary information.

Ensure citations present. Proofread again.

July 27th Group 2 120+

9 Full Report Due ~ if time, make prototype and

reorder and broken parts

July 30th Group 2 120+

Table 7: Project Milestones

11

Senior Design II ~ Tasks Due By Admin

10 Prototype glove

Aug 24th Group 2

11 Prototype processor, redesign glove, and start fully coding

Aug 31st Group 2

12 Prototype interface with 3D software and redesign

processor

Sept 7th Group 2

13 Get accurate input into Blender and some type of output

from Blender.

Sept 14th Group 2

14 More implementing of all three components (glove, 3D

software, haptic feedback)

Sept 21st Group 2

15 More implementing of all three components

Sept 28th Group 2

16 Troubleshooting / Redesign Oct 5th Group 2

17 Troubleshooting / Redesign

Oct 12th Group 2

18 Fix individual issues with any of the three main components

Oct 19th Group 2

19 Fixes to individual issues with any of the three main

components

Oct 26th Group 2

20 Put all together. Try to have all coding functionality

complete.

Nov 2nd Group 2

21 More testing. Nov 9th Group 2

22 Troubleshooting. Have design/prototype complete if

possible

Nov 16th Group 2

 Thanksgiving 21st-26th

23 Long weekend. Probably away for family. Ordered extra

necessary components in case of hot fixes or things break.

Test boundaries. Ensure standards and requirements are

met.

Nov 23rd Group 2

24 Hopefully an extra processor and glove made that both

work. Hours of more testing needs to be done. Test

boundaries more. Overheat, Cool, Drop, Vibration, Drastic

hand movements

Nov 30th Group 2

25 Present and get A.

Dec ? Group 2

Table 8: Project Milestones -continued-

12

6: Cost
This project is not trying to set a record for low-cost but would like to implement a design

that's cost-effective for potential hobbyists or enthusiasts to utilize or build our design. The

total price we are looking to spend for all used, wasted, or extra components and items is

$1000, but having a total build cost of under $100 for a "packaged" PCB design, enclosure,

power adapter(s), 3D software interface with transmitter/receiver PCB, and glove. The

purpose of having such a high price range for this design is to have the freedom to try out

different components, fail a couple of times, learn from our mistakes, and not worry about

trying to keep to a specific budget.

The project will most likely not have any funding due to lack of need in the market.

However, when we seek funding, we will request from companies in the fields of gaming,

for VR or AR needs, and of the movie industry for animation.

Item Quantity Price (rough estimate)

Glove 2 $20

PCB Design ~ Processor Board 4 $150

PCB Design ~ Glove 4 $150

Electrical Components on PCBs ? $200

Bluetooth modules 2 $40

Peltier Devices 10 $50

Power Supply 2 $20

Vibrational Motors 10 $50

Gyroscope Sensor 2 $50

Room for Error ? $270

Table 9: Expense Estimates

7: Project Management
Project management can be a big issue during a project. Whether it be an individual not

completing a task on time, people not knowing what they should be doing, and everyone

staying on the same page about what the project is supposed to look like. These topics are

all covered in the idea of project management. The CIO website [1] defined project

management as” the application of specific processes, knowledge and skills, techniques

and tools, as well as inputs and outputs that project managers and teams utilize to

successfully meet project goals and deliverables.” In the next few sections, we will talk

about different methods for project management that we will be using to aid us in a more

organized and efficient design project.

 Project Management Staff
Essentially what the project plans to do is we have project management for the project,

whom is Chris, and we have people responsible for different parts of the design. Then, we

have course staff, which are people designated for project development, or rather, helping

with project decisions since they have the most experience. Chris is the project lead because

he is the team member who has had the most experience with hardware design. With him

13

being project lead, informed decisions can be made. The diagram for this concept can be

seen below:

Figure 5: Project Organizational Chart

 Why Projects Fail
According to the CIO website on why projects fail, one of the top reasons for project failure

is misalignment between project goals and business strategy. There is evidence that shows

if a project has a specific group dedicated to project alignment, then they have a much

higher chance of success on a project. Just getting organized can make a world of

difference. The article goes on to list other reasons for project failure, which include:

● a lack of executive sponsorship and support
● vague business goals or requirements
● unrealistic project scope or scope that is not closely controlled
● insufficient time dedicated to planning
● an inability to bridge the gap between strategy formulation and implementation
● insufficient or misallocated resources, including talent
● unforeseen unmitigated risks
● misaligned project management methodologies
● a haphazard approach to project management
● talent that is spread too thin (not dedicated)
● project managers or team members that lack the necessary training and knowledge

Things we might be worried about from this list include vague requirements because there

isn’t a set requirement for this design, rather we are making it up as we go. Also, since we

are all working separately and only meet once a week, we might forget if we’ve set an

arbitrary requirement and forget also to inform the others. We could suffer from lack of

14

necessary training and knowledge due to the fact that we haven’t worked on a senior design

project or anything related to our design, so we are learning as we go. This may affect us

in time that we’ve dedicated to the project. Overall, the project is rather small, and we have

teachers to guide us, a whole two semesters to work on the project and we don’t have a

budget, so the odds are with us.

 Project Management Goals
Continuing with the CIO article, they go on to say that “project management professionals

first and foremost help drive, guide, and execute company-identified value-added goals.”

Since we are such a small team, we all are here to help with this methodology. We have

one clearly defined goal, and that’s to develop our senior design project in a manner that

gets us an ‘A’. From there, we have sub-goals of completing each delegated task in a timely

manner: the glove design, the processor design, the interface design, and the Blender

product design. With all of these goals completed, it should be rather easy to piece them

together to fulfill the one true goal.

 Project Management – Team Building
For a team to be successful, they must be comfortable in the environment that they are

working in. Aristotle is quoted to say, “Pleasure in the job puts perfection in the work.”

Essentially, the gist of what he means, is that the more you enjoy the job, the better the

outcome of the product will be. Enjoyment can be obtained from a job in a plethora of

ways. To name a few, clean air, friendly workspace, comfortability, inspirational work,

passion for the work required, travel time to work, and even more.

For our group to successfully go about our project, we found it to be important that we

have a time where we hangout outside of working on the project. In this sense, we will find

a camaraderie between us and enjoy meeting up, rather than relish the fact that we need to

do work that is rather tedious. Mentally, this can be draining. In order to remedy this, we

scheduled a hangout and spent a whole day playing board games, eating, and spending time

outside of work. This has improved the feeling of joy in our meetings and increased

productivity overall.

8: Glove Design
The glove portion of the project will house the input sensors and output devices.

Specifically, it will house 16 accelerometers which will provide the input sensor data. It

will also house 6 Peltier devices and 6 vibrational motors which will provide the output

sensory feedback to the user. Included in the overall glove design are the batteries, the main

processor board, the regulators, the digital to analog converters that will drive the Peltier

devices and the vibrational motors, and the housing of the electronics. The final item that

will need to be designed is a charger which can provide current limited power to the

rechargeable batteries. Though the charger may be a stretch goal since the batteries can be

recharged simply with a desktop power supply. An important item that will need to be

selected but will not need to be designed is the glove itself. We will discuss in length the

options and constraints for each design choice and part selection.

15

 Glove Construction
The glove will not be a glove in the traditional sense. Instead of being a full sheath of fabric

or some other material surrounding the hand, the ‘glove’ will consist of strips of Velcro

with the various electronic components attached to it. The PCB board will be attached to

the Velcro by a consumer grade bonding agent. While the Peltier devices will be attached

using a thermally conductive bonding agent to a flexible foil which will be wrapped around

the Velcro strip. This is to ensure that the Peltier device can reference the ambient

temperature while still being soundly mechanically attached.

 Power
The specification for power consumption of the glove is less than 35 W. This must be

balanced with the highest power consuming device. The thermoelectric cooler/heaters

otherwise known as Peltier devices. The assumption was made that power consumption

will be driven by the highest power consuming devices, in this case the Peltier devices. By

finding the power specification for running the Peltier devices for the specified amount of

time we can put an upward limit on our power consumption. Since we will never run the

Peltier devices at the maximum rating, for safety reason, there will be more than enough

power left to run the microprocessor and all peripherals.

 Heating and Cooling
To simulate the feel of temperature from a virtual environment an electronically controlled

heating and cooling element is required. For weight considerations this device should be

solid state as it would be impractical to have a radiator or a mechanical heat pump on each

finger. Fortunately, a solid-state thermoelectric heating and cooling device does exist. It is

called a Peltier device, after Jean Charles Athanase Peltier who discovered the effect in

1834. The Peltier effect is what occurs when a current is made to flow through a junction

of two disparate conductors. Heat can be generated or removed from that junction. In effect

this means that by varying the polarity and magnitude of the current though the Peltier

device we can control the temperature in each finger by creating a heating or cooling affect.

 Peltier Selection
Originally the TES1-03102 [2] was chosen as it is only 15mm by 15mm by 3.8mm and

was the cheapest Peltier device at its size at a price point of approximately $4 per unit. It

has a maximum current of 2 amps and a max voltage of 3.75 volts. It also has a max power

rating of 4.3 watts and can vary the temperature by about 69°C. The order was placed with

kedrgoods.top, but unfortunately after several weeks of waiting the order has not

materialized. It can only be assumed that either the order will eventually arrive or that it

will not. Either way a usable Peltier device was needed for testing and design refinement.

The decision was made to reorder the Peltier devices needed from a more reputable

supplier. In this case Digi-Key was chosen as the supplier. The device chosen was the

CM23-1.9 manufactured by Marlow Industries [3]. This device is superior for this project

to the TES1-03102, however the CM23-1.9 is over twice as expensive as the TES1-03102

at a price point of approximately $11 per device. It was chosen because like the TES1-

03102 it was the cheapest available at the size required to fit on the fingertip. This main

consideration of size and price is possible because the project does not require high or exact

changes in temperature. This means that the efficiency of the device is not as important as

16

its size and price point. Table 9 shows a comparison of the properties of the Peltier devices

at room temperature or 27 °C. Figure 6 shows the voltage and current load relationships

for the CM23-1.9. While Figure 7 shows the efficiency curves of several generalized Peltier

devices.

 TES1-03102 CM23-1.9

Dimensions (mm) 15x15x3.8 8.18x6.02x1.65

Price per Unit ($) $4 11.08

Δ Tmax (°C) 69 71

Qmax (watts) 4.3 3.4

Imax (amps) 2 1.9

Vmax (DC) 3.75 2.8

Table 10

Figure 6: CM23-1.9 Voltage and Current Loads at 27°C

17

Figure 7: Performance vs Current for Various Temperature Differentials in a

Generalized Peltier Device

What Figure 7 shows is that for temperature differences between the hot and cold sides of

the device below 40°C there is a steady drop in efficacy above 45% of Imax. While

temperature differences above 40°C are not very efficient at all. This means that since the

project will not have temperature differences exceeding approximately 20°C the Peltier

device will not need current more than 40% of its Imax value. This means that a high watt

resistor can be affixed in series with the Peltier device to make regulation of current quite

simple [4].

 Switching Direction Using N-FETs
Figure 8 shows the tentative schematic for controlling the direction of current in the Peltier

device since the direction of the current will control if it heats or cools. Figure 8 shows that

a possible plan to vary the directionality of the current by using power switching N-FETs

to open channels between however we may decide to use solid state relays depending on

the limitations of the N-FETs that we can easily and cheaply obtain. The use of so many

N-FETs carries the risk of too high heat dissipation, however most of the N-FETs will not

be active at the same time or if they are it will be briefly. Unfortunately, this design will

not be applied in the project since it has proved to be very difficult to find FETs that can

handle both low voltage and high current at a reasonable price point and small footprint. If

this circuit was not going to be duplicated then this design might be practical, but it must

be replicated 6 times on a limited amount of space. As a result, it was decided that an H-

bridge will have to serve this purpose.

18

Figure 8: Tentative Schematic of the Directionality Controller

 Switching Direction Using an H-Bridge
H-Bridges are essentially packaged N-FET switching schemes as previously described.

They allow for voltage to be applied across a load in opposite directions and can have many

unique properties.

The design considerations used in selecting an H-bridge are as follows. It must be able to

supply a relatively high current at relatively low voltage (approximately 1.5 amps at 3.7

volts). It must have a relatively small footprint since it will have to control 6 Peltier devices.

Finally, it must be relatively cheap, less than approximately $3 per unit. One of the main

issues with using the FET solution was that the FETs that could meet all the criteria were

so expansive as to be ruinous to this project.

Fortunately, a low voltage high current H-bridge was found that fit all of the required

specifications. The DRV8836 Dual Low-Voltage H-Bridge by Texas Instruments is able

to output a maximum current of 1.5 amps with an operating supply voltage of 2 to 7 volts.

It has a selectable phase/enable or in/out interface that allows for changes in the polarity of

the current by changing the phase or changing the high low pins respectively. Most

importantly it has a small package size at 2 x 3 mm. Finally, it is cheap at approximately

$1.5 per unit. The only drawback is that the Enable of the H-Bridge must be at least half

of the supply voltage. This is not a huge concern since it will just change how the in-series

resistor on the Peltier line is selected. It is more advantageous to have a lower temperature

range than a higher one in this application. The DRV8836 has a sleep mode that will be

continuously on to save power but will deactivate as soon as any of the GPIO pins that

control voltage to its two channels activate. Figure 9 shows the application schematic of

the DRV8836 when driving a device at up to 3 amps. Note the dual channels, which in this

application will be used to drive two separate Peltier devices [5].

19

Figure 9: Application Schematic of the DRV8836

 Controlling Magnitude with a Digital to Analog Converter
The magnitude of the current may be driven by the input voltage and the inherent resistance

of the Peltier device ~2 ohms including the resistance of each FET switch which would be

about 0.1 ohms each. To be able to control that voltage digitally we must implement a

digital to analog converter circuit. In this case we chose to implement a Summing Amplifier

type digital to analog converter. Using 4 GPIO pins to control 3 N-FETs allows us to pull

from a 2-volt rail it will allow us to control the magnitude of the Peltier device with enough

granularity to provide realistic feedback. Figure 3 shows the tentative schematic for the

digital to analog converter that will drive the Peltier device. Note that it takes advantage of

a summing circuit design allowing granular selection of exactly what voltage we would

like it to produce according to the Equation 1. Where voltages 0 through 3 are all equal to

2 volts. Table 1 shows the binary states and the voltages they will produce when each line

is attached to a 2-volt rail.

𝑉𝑜𝑢𝑡 = −
1

8
(8𝑉0+4𝑉1+2𝑉2+𝑉3)

Equation 1: Digital to Analog Converter

20

v0 v1 v2 v3 Total
V = 2

Volts

0 0 0 0 0 0

0 0 0 1 -0.125 -0.25

0 0 1 0 -0.25 -0.5

0 0 1 1 -0.375 -0.75

0 1 0 0 -0.5 -1

0 1 0 1 -0.625 -1.25

0 1 1 0 -0.75 -1.5

0 1 1 1 -0.875 -1.75

1 0 0 0 -1 -2

1 0 0 1 -1.125 -2.25

1 0 1 0 -1.25 -2.5

1 0 1 1 -1.375 -2.75

1 1 0 0 -1.5 -3

1 1 0 1 -1.625 -3.25

1 1 1 0 -1.75 -3.5

1 1 1 1 -1.875 -3.75

Table 11: Peltier Device DAC Voltage

Figure 10: DAC Schematic

 Controlling Magnitude with a Digital Potentiometer
A digital potentiometer could also control the Peltier device. Digital potentiometers work

similarly to an analog potentiometer except the digital versions we have examined use I2C

registers to control the resistance of the device. It should be noted that I2C is not the only

control method but is the one we will be using since we already plan on using I2C

21

extensively in the device. For example, a digital potentiometer may be sold with a

resistance of 2.5kΩ and 256 steps. This would mean that resistance can be controlled to a

resolution of approximately 10Ω. In this case resistance would be rounded to the nearest

integer resistance value in software. Figure 11 shows the tentative schematic for the

magnitude control scheme. The circuit in Figure 11 has 4 parts which are the switching

circuitry, the voltage divider, a unity gain buffer, and an inverting amplifier.

A GPIO controlled switched that takes advantage of the properties of both P-FETs and N-

FETs to avoid a third logic state. The third logic state in this case is if the main switching

FETs gate voltage is not sufficient to place it in the saturation region. In this case the FET

would not act wholly like a switch but have some other logic which is quite undesirable.

To avoid this a PFET is held high by tying it to the rail (PFETs are closed when the gate is

in the saturation region). Then when the GPIO pin is brought high it opens an NFET that

connects the PFET and ground. This ensures that even if the GPIO voltage isn’t enough to

fully open the NFET gate the voltage at the PFET gate will fall to ground or close enough

and ensure that the whole circuit acts like a switch.

The voltage divider is the heart of this circuit. It uses a digital potentiometer (shown as a

regular potentiometer in the tentative schematic) to vary voltage division and select what

voltage is fed to the unity gain buffer. If the digital potentiometer is a 100kΩ with 8 bits of

control, then it will have 256 steps or about 390Ω of resistance per step. At the lowest

setting and having 3.7 volts fed to it the unity gain buffer will receive approximately 14

millivolts while the highest setting will see the unity gain buffer receiving 1.85 volts. The

digital potentiometer will be controlled with I2C since we are already extensively using

that communication protocol to control accelerometers. As long as the devices we choose

don’t have address conflicts then they can be easily added to the same I2C lines as the

accelerometers.

The unity gain buffer is simply there to act as a high impedance buffer between the

fluctuating switch and rail circuitry and the amplifier and Peltier device. The amplifier is

simply an inverting amplifier with a gain of 2 to offset the division by the voltage divider.

This means that at the lowest setting the Peltier device will receive 28 millivolts and at the

highest setting it will receive 3.7 volts.

Figure 11: Potential Peltier Device Schematic

22

 Digital Potentiometer Part Selection
There are three main parts that must be selected for the digital potentiometer control

scheme to properly function. The digital potentiometer, the operational amplifiers, and the

switching FETs. The resistors are considered trivial since only their footprints will matter

and that will most likely be 0805s since they are small enough to maximize space but large

enough to easily place by hand if necessary.

The digital potentiometer was selected by the following criteria: resistance, footprint, I2C

control, and price. The part that was decided upon was the AD5248 by Analog Devices.

The AD5248 is a dual, 256 position, I2C compatible digital potentiometer. It has a small

footprint of 3mm x 4.9mm and can is I2C controlled. It has a resistance of 100kΩ and can

be powered by a 3.3-volt rail. At $2.81 per unit it is rather expensive for a component

however since it can support two separate, controllable 100kΩ wipers per unit it is more

realistically for this project calculated as $1.4 per unit since half as many are needed to

fulfill the project requirements. Figure 12 shows an internal block diagram of the AD5248.

The internal block diagram shows how this part can be used as two separate potentiometers

for this projects purpose [6].

Figure 12: Internal Block Diagram of the AD5248

 Operational Amplifier Part Selection
The need for the operational amplifier as shown in Figure 13 is twofold. It is needed as a

high impedance buffer and as an amplifier. The amplifier is to correct the voltage division

to its proper voltage while still allowing the divider to control the voltage while the high

impedance buffer is used to prevent any unexpected interplay between the amplifier and

the voltage divider. For this reason, the parts selection was not rigorous since the

application is not particularly rigorous. A general-purpose rail to rail low power operational

amplifier was selected. Specifically, the TSV321 was selected, though for implementation

the TSV324IDT will be used since it has 4 operational amplifiers in each package. The

driving qualities that led to this selection were low power and price. The TSV321 produces

23

an output current of approximately 80mA which will allow it to be used in both the Peltier

controller but the vibrational motor controller as well. At a price of $0.58 per unit in the 4-

unit package it is quite cheap. It can also be operated on a single rail 3.3-volt supply. Since

it will used for buffering and amplifying small discrete voltage changes over a relatively

long period of time the slew rate should not impact the design. Figure 13 shows the internal

structure of the 4-part package that will be implemented in the design [7].

Figure 13: Implementation Diagram of the TSV324IDT

 Switching FET Circuit and Part Selection
To properly act as a switch any FET solution must only have 2 states, on and off. To ensure

this the circuit shown in Figure 14 was developed. It uses both a PFET and an NFET to

ensure that the PFET which is the ‘switch’ opens fully and stays in the FET’s saturation

region. It does this be holding the PFET high until a the NFET’s gate is brought high. When

this happens the NFET opens and pulls the gate of the PFET to ground. This opens the

PFET and allows current to travel through the semiconductor.

Figure 14: FET Switching Circuit Schematic

The part selected for this task was a dual channel NPFET. Specifically, the NX3008CBKS

was selected. It was selected since the design team had worked with them in the past and

was confident that the switching circuitry would work reliably for almost all conditions

within the glove project. Figures 15 and 16 show the current characteristics for both the

24

NFET and PFET portions of the NX3008CBKS. Since almost all of the switched potions

of this design go to high impedance devices large amounts of current do not need to be

switched [8].

Figure 15: Drain Current vs Drain Source Voltage as a function of Gate Source

Voltage for the NFET

Figure 16: Drain Current vs Drain Source Voltage as a function of Gate Source

Voltage for the PFET

 Controlling Temperature of the Peltier
To properly control the temperature of the Peltier device a proportional integral derivative

controller should be implement (PID), but as can be seen from the following discussion a

full PID controller is not necessary.

A PID controller is a loop feedback controller that calculates the error value between the

current state of the device and the desired state. It does this by applying adjustments based

25

on proportional, integral, and derivative error terms. The overall function can be viewed in

Equation 2. Which shows the output change in the device u(t) is a function of the sum of

proportional, derivative and integral errors [9].

Equation 2: PID Controller Equation

This equation is not wildly useful in and of itself, graphs that show the impact of each term

are more useful. Figures 17 through 19 show the impact of the proportional, integral, and

derivative terms on the response of a generic device.

Figure 17: Impact of the Proportional Term on a Generic Device

Figure 18: Impact of the Integral Term on a Generic Device

26

Figure 19: Impact of the Derivative Term on a Generic Device

From examining these graphs, the proportional term is what generally drives the response

however it is either very vulnerable to overshoot or reacts very slowly. The integral term

impacts the oscillations by damping them down quickly. The derivative term greatly

decreases the response time of the system in reaching its desired value and greatly reduces

overshoot. Combined these terms result in a system with a low response time, low

overshoot, and heavily damped oscillations.

In most applications that use a Peltier device a low response time, low overshoot, and

heavily damped oscillations are ideal and often necessary. For example, precision is needed

in an application where Peltier devices are used as to cool computer processors.

Specifically, the microchip’s temperature will vary wildly depending on its computational

load. To respond to this and keep the chip cooled to its very exacting temperature

requirements means that the Peltier control system must respond quickly to perturbations,

the responses must be quick, the responses cannot overshoot, and the responses cannot

oscillate. Failure to meet any of these conditions could lead to permanent damage to the

processor, and in these applications a PID controller is needed.

Applying Peltier devices to temperature in a haptic feedback system is not a precise system

with large temperature perturbations. The human hand cannot tell the difference between

55°C and 59°C. Neither can the human hand tell the difference between a 10°C temperature

change over 10 ms or 100 ms. Imprecision of that magnitude would be ruinous in the

processor application but is not even noticed in the application of haptic feedback. This

means that the system can have a relatively low response speed and that oscillations of

several degrees are acceptable. From this information it seems that a full PID controller is

unnecessary and that a simple low gain proportion controller will suffice. The controller

must be low gain (k < 1) to prevent large overshoot. This will result in a very slow response

time but since the human body operates on a very slow time scale relative to electronic

components and mathematical feedback systems it will not be a concern.

27

 Thermistor Selection and Implementation
To implement this feedback system the team will take advantage of the built-in analog to

digital converter on the STM32F030C8. Figure 20 shows the schematic that will be used

to measure the temperature. This schematic shows a basic voltage divider with a 100 kΩ

resistor in series with a 10 kΩ thermistor. As the temperature increase the resistance of the

thermistor will decrease and less voltage will be read by the ADC. The thermistor will be

a NXRT15XH103FA1B040 [10] which is a thermistor with 10 kΩ of resistance at 25°C

and a max power of 7.5 mW. It has a B value tolerance of 1% and a B25/50 of 3380K. The

B value is the temperature change coefficient as shown in Equation 3. In Equation 3 the RR

value refers to the resistance at room temperature (25°C) which in this case is 10 kΩ. The

STM32F030C8 has a 12-bit ADC which will allow for high milli-degree accuracy in

reading the temperature from the thermistor. Figure 21 shows a block diagram of the

control scheme that will be implemented to control the Peltier Device. The actual

adjustments and gain of the system will be implemented in the software of the processor.

Figure 20: Schematic of the Thermistor Temperature Voltage Divider

Equation 3: Equation Relating Temperature Variation and Thermistor Resistance

28

Figure 21: Block Diagram of the Peltier Feedback and Control Mechanism

 Final Peltier Controller with Enable and Phase
The Peltier device will be controlled by the schematic in Figure 22 All previous schematics

were tentative and have contributed to the design of this final layout. Note that this

schematic can control two Peltier devices, but the second device has not been added in for

clarity’s sake. This schematic consists of five distinct parts. The P/N dual channel switch

is the first part that will be discussed. It is as described in the Switching FET Circuit and

Part Selection. Essentially as the NFET’s gate is brought high it opens a channel to ground

from the gate of the PFET and forces a full opening of the PFET. This in turn opens voltage

to the I2C controlled digital potentiometer which creates a voltage divider based on the set

resistance. This voltage feeds into a high impedance buffer to ensure that there is no

interplay with the next steps. Following the buffer is a non-inverting operational amplifier

with a gain of 2. Since the maximum voltage the voltage divider can produce will be half

of the 3.3 rail, this amplifier is there to rectify that since the Peltier device should be able

to take up to 3.3 volts. Finally, this voltage feeds into a high impedance H-bridge. The H-

bridge has a low power sleep mode from which it is awakened when either FET switch for

the two Peltier's it controls are activated. The phase shift that will change the polarity of

the current is controlled by another FET switch which is controlled by a separate GPIO

pin. This makes the assumption that Peltier's on two adjoining fingers will have the same

current polarity which though logical may not be the case.

29

Figure 22: Final Peltier Controller Schematic

 Battery Selection
The power supply of the wireless portion of the glove depends completely on the glove is

completely dependent on the battery stack. The power each battery can supply is in turn

dependent on the battery chemistry. There are several considerations to account for when

selecting a battery. Will it be rechargeable or non-rechargeable? A rechargeable battery

can be used multiple times and will allow for a more polished product while non-

rechargeable batteries are cheaper but require constant replacement. In this scenario the

constant expanse and hassle of replacing batteries in a high-power consumption device is

prohibitive and therefore rechargeable batteries are the reasonable choice. For the glove

application there are several varieties of rechargeable battery chemistries that we can

consider. Each will be discussed, but our initial plan of 6 Peltier devices will require

approximately 12-amp hours of battery capacity to operate at full power for 1 hour or 6-

amp hours to operate at full capacity for 30 minutes. While the Peltier device will never be

running at full capacity designing our power consumption around our highest draining

30

device will allow for us to easily build the rest of the device while remaining within power

constraints. Our initial specifications called for at least 30 minutes of run time so any

battery selected will have to provide at approximately 6-amp hours while still being small

enough to not exceed our weight requirements of approximately 2 kilograms total. We will

not even consider some battery chemistries that are inherently dangerous such as lead acid

and nickel cadmium. We will also not discuss alkaline chemistry batteries since they have

a linear voltage drop off which is not useful for our application of running a microprocessor

and peripherals as opposed to the voltage curve typical of the batteries we discuss in Figure

3. These come in standard packages (AAA, AA, etc.…) unless otherwise noted.

Figure 23: Li-ion Battery Voltage Curve [11]

8.15.1: Nickel-Metal Hydride

Nickel-Metal Hydride batteries are the first type of batteries we will consider. They are a

commonly used battery chemistry in rechargeable applications. They are excellent for high

drain applications and both common and cheap, so that finding a proper charger would be

quite easy. Unfortunately, they hold a lower charge per weight than several of the other

options. They of course need a specialized charger suited to their unique chemistry. They

have a high self-discharge rate which means that they will lose charge just by sitting

around. Low self-discharge rate versions are available but have lowered capacity. These

come in standard packages.

8.15.2: Nickel-Zinc

Nickel-Zinc batteries hold a higher voltage per weight than their Nickel-Metal Hydride

counterparts. However, they lose their capacity quickly as the batteries are cycled. They

are also prone to failure and semi-discontinued. While it would be trivial to still purchase

these and their charger, it is not good practice to choose parts that are on the verge of being

unavailable.

31

8.15.3: Lithium Ion

Lithium Ion batteries are excellent choices for custom made electronics. All previously

mentioned batteries can be purchased in standardized voltages. However, Lithium Ion

batteries usually come in 3.7-volt packages. While this can destroy devices that are not

designed for it we have the luxury of custom building our device. These batteries obviously

hold very high charge per weight and are quite common and therefore inexpensive. The

special chargers required for these batteries are also common and inexpensive.

 Battery Choice
Unsurprisingly we plan on using a Lithium Ion rechargeable battery to power our device.

In what amounts to a hand held or wearable device Lithium Ion batteries have some of the

best charge to weight characteristics for a very competitive cost. This will reduce strain on

the end users and is in line with our stated specification that the glove should not be more

than 2 kilograms in weight. The battery will need approximately 6-amp hours to meet the

specification of 30 minutes of use. Fortunately, a relatively lightweight, compact, powerful,

and inexpensive battery is on the market. The ICR18650 6600mAh 3.7V 1S3P made by

Shenzen PKCell Battery Co., LTD is perfect for our needs [12]. It has a mass of 155 grams

and dimensions of 69 mm by 54 mm by 18 mm. It has a capacity of 6.27-amp hours and a

working voltage of 3.7 volts. It can be charged to 4.2 volts which allows us to implement

a cheap and easily obtainable Lithium Ion charger such as the CH-L3705 that is sold on

batteryspace.com. Unfortunately, the maximum charging rate of the ICR18650 is 1650 mA

which is not easily available (the best choice is the CH-L3718 but that has a charging

current of 1800 mA). This means that either we use the CH-L3705 and accept that a fully

charge from depletion will take approximately 18 hours of charging or we make our own

charger. A different solution however would be to place two of these batteries in parallel

and purchase a much stronger charger since the maximum charging rate of the batteries

would now be double that of an individual battery. Since it will actually be about as

expensive to develop a charger as it will be to purchase one and buy a second battery the

choice is clear. We will stack two batteries in parallel and purchase a high-power charger.

 Charger Selection
After careful consideration the charger chosen was the CH-L373 [13] from

www.batterspace.com. It was chosen as previously mentioned because each battery had a

maximum charging rate of 1650 mA and by placing two in parallel this would double to

3300 mA. Since the goal of this charger choice was to minimize charge time the only

logical charger would take advantage of the 3-amp charging current limit. The CH-L373

does just this. It has a charging current of 3 amps meaning it will fully charge the battery

stack in approximately 4 hours which is a huge improvement on previous options listed in

the battery choice section. It is a lithium-ion specific charger, so it will fully charge

batteries to 4.2 volts. The only downside is that it uses a Tamiya Female connector whoever

this can be easily modified with wire strippers and a soldering iron to any connector type

that will be more convenient for final construction. This charger has two built in LEDs to

show charging status which will be convenient for charging the glove. Figure 24 shows the

charger with out the AC power cord.

http://www.batterspace.com/

32

Figure 24: Ch-L373 Lithium-Ion Battery Charger

 Power Regulators
All the devices specified for the glove control board can run off a 3.3-volt power rail.

Unfortunately, the batteries output 3.7 volts and that voltage is unstable in any case. The

solution to this is to implement a voltage regulator circuit. Within voltage regulators there

are several options of how to design the circuitry to receive the necessary result.

8.18.1: Regulator Selection

As Dr. Weeks once said “Don’t build your own oscillators. You can’t build one that’s better

than what you can buy for 40 cents.”, and the same is true of voltage regulators in the case

of this project. It would be trivial to design a voltage regulator circuit, however there a

perfectly good high efficiency regulator that can be purchased in tiny package sizes for

very small amounts of money. Specifically, Texas Instruments Test Bench utility was used

to select an ideal high efficiency regulator. The parameters for the search were that it must

include high current capabilities since, it must be 3.3 volt compatible on a 3.7 to 4.5-volt

input, and it must be high efficiency even at low output current. The resultant regulator was

the TPS62823 which has an input voltage of between 2.4 and 5.5 volts with a max operating

current of 3 amps. Figure 25 shows the Efficiency vs Output Current graph for the

TPS62823 while Figure 26 shows the application schematic. As can be seen on the

efficiency graph the TPS62823 will not fall below approximately 85% efficiency even at

low currents even though is expected that the current draw will be well above 100μA. The

application schematic shows that the implementation of the TPS62823 will be

straightforward despite the requirement for a 470nH inductor. Since the TPS62823 comes

in a 8-QFN package which is approximately 2x1.5 mm the inductor will be an order of

magnitude larger than the regulator, however this means that all of the regulator circuitry

will be able to fit snuggly into a very small area. The TPS62823 comes with a Power Good

function, but it will be unused in this application. Figure 25 shows the TPS62823 with the

charging and battery ports applied. Not the main power switch which connects the

TPS62823 with the battery stack [14].

33

Figure 25: Efficiency vs. Output Current for the TPS62823

Figure 26: Application Schematic for the TPS62823

34

Figure 27: Schematic of the TPS62823 with battery ports and charging ports

8.18.2: Timing Regulator

The STM32F030C8 requires that the analog voltage (VDDA) supply is available before the

VDD supply. Since this project will be supplying both voltages from the same rail a timing

regulator was needed to operate a FET switch that would open the 3.3 rail to the VDD supply

after VDDA received power. Essentially the timing circuit will be used as a delay before

powering VDD. The part selected was the MAX6897. This device was selected due to its

small size and convenient supply power requirements. It would be operable from the

battery rail and had a capacitor adjustable external delay. It is also relatively inexpensive

at $1.38 per unit and the design only requires 1. Figure 28 shows the application schematic

while Figure 29 shows the schematic of how the MAX6897 will be implemented with

respect the STM32F030C8 power supplies. The timing delay equation is shown in

Equation 4 and as seen in the schematic in Figure 29 will be set to approximately 60μs

from the 5pF value [15].

35

Figure 28: Application Schematic of the MAX6897

Figure 29: Implementation of the MAX6897 with respect to the STM32F030C8

Equation 4: Timing delay of the MAX6897

 Housing
The actual housing for the electronics will most likely be implemented as a forearm

mounted box. Inside the box will be the main board which will house the processor, the

regulators, the GPIO controlled switches, the digital to analog converters, etc... Essentially

all electronics except the haptic feedback motors and the Peltier devices will be included

in this board. The batteries will also be included in this housing so for safety the base of

the housing will include a small insulated steel plate. The rational for this is if the Lithium

Ion batteries go into catastrophic failure the steel plate will prevent the user from sustaining

a serious injury. In this case a catastrophic failure may be quite exciting, but it should not

leave the end user with a debilitating injury like sitting on a Galaxy Note 7 might. The

housing will also contain a power switch, a power LED which will display if the battery

needs to be charged or not, a reset button that will calibrate the accelerometers in the glove,

36

a Bluetooth status LED, and a safety shutoff button that will shut off power to all

peripherals.

8.19.1: Light Emitting Diode

As the battery enables power to the system a red LED will enable and remain on until the

power switch is placed back in the off position. This will indicate that the 3.3 Rail is active

and that the power regulator is functioning properly. When the processor finishes booting

it will activate a GPIO pin that will activate an N Channel FET, the BSS138, which will

allow current to the LED. Since both the red, green, and blue LEDs are contained in the

same housing the light emitted will change in purple or another color and this will let the

user know that the glove is now ready for use. The LED selected for this role was the

WP154A4SEJ3VBDZGW/CA manufactured by Kingbright. It is a 5mm tri color LED with

a relatively small package size. It is 9.6 mm in height and has a through hole mount. Each

LED must receive 20 mA to function properly. The following figure shows the tentative

schematic for the circuitry involved in activating this LED. It is a common anode LED

which means that the red, green, and blue LEDs encased in the housing all share the same

positive node. This means, as can be seen in the design that any switching must occur after

the LED as the current moves toward ground. This design will need to be thoroughly tested

in accordance with the test section later in the document. Design changes may be necessary

after testing has concluded [16].

Figure 30: Schematic of LED Control Circuitry

This LED was relatively expensive for an electronic component at $2.05 per unit. Though

since this part is only used once in the project that is acceptable.

 Haptic Feedback
There are two main options for haptic feedback for our application. Eccentric rotating mass

vibration motors and linear resonant actuators. Both have unique strengths and weaknesses

that will be discussed in the terms of our application. Specifically, we want a small

vibrational device that can fit on a gloved fingertip comfortably and vibrate at various

37

intensities. We are hoping to control this device with either a digital to analog converter or

more realistically the same magnitude control setup we are using to control the Peltier

device.

8.20.1: Linear Resonant Actuators

Linear resonant Actuators or LRAs are a type of vibrational device that operate similarly

to how a headphone or a speaker operates. Specifically, they use a coil to generate a

magnetic field and repulse a rare earth magnet. This repulsion force presses up against a

mass which in turn presses against a spring. By using an AC signal or a pulse width

modulated signal it is possible to drive the LRA to vibrate at some frequency. There are

several downsides to LRAs however. The two most concerning to our application is that

LRAs need pulse width modulated signals or AC signals to operate and that they are very

inefficient when not operated at their resonant frequencies. Creating pulse width modulated

signals or AC signals is trivial however it requires extra hardware and programming that

may not be necessary for what is in effect the simplest peripheral on an already complex

device. Despite this the efficiency issue is more concerning. The resonant frequency is a

frequency of operation at which the impedance of the internal capacitor and winding

inductance is balanced. This results in optimal force being applied to the vibrating mass.

However, when the device is operated at a different frequency then efficiency falls off

dramatically. Our device calls for a range of operational vibrational frequencies and as such

it does not appear that linear resonant actuators are the best fit for our application. They

are much better for haptic response where you want a small package that gives a consistent

vibrational response at a certain frequency, such as cellphone haptics.

8.20.2: Eccentric Rotating Mass Vibrational Motors

Eccentric rotating mass (ERM) vibrational motors are exactly what they sound like. A

small electric motor with an unbalanced weight at the end. The rotation of the weight

generates the vibrations that we perceive as haptic feedback. These devices work exactly

like traditional electric motors. By supplying more voltage, or current depending on the

specifications, we can control the magnitude of the rotation. For our purposes this is

precisely what we need. While it may be natural to imagine ERMs as electric motors with

oddly shaped weights on the end this is only partially true. It may be true that you can

purchase ERMs in that form factor, but that form factor is completely unusable for our

application. Fortunately, coin type form factors and encapsulated form factors are also

manufactured. While encapsulated form factors are not ideal for our applications since they

are essentially the electric motor with a weight but now with a plastic sheathing, the coin

type form factors are perfect for fitting to finger tips. Of course, these aren’t the perfect

component in every way and there are tradeoffs to be made between the coin form factor

and other form factors. Specifically coin form factor ERMs have a higher maximum start

voltage, which is the minimum voltage required to consistently start the motor. Fortunately,

this will not be a major issue since we can account for the higher initial voltage when

designing the control circuits for the haptic response.

38

8.20.3: Haptic Feedback Part Selection

From the previous sections the haptic feedback device best suited to this project is a small

coin package ERM. The main criteria for this part selection was size, cost, and operational

voltage. The part that was selected was the C0720B015F produced by Jinlong Machinery

& Electronics, Inc. Its package size is small enough to fit on the tip of a finger at 7mm in

diameter and it has an operational voltage of 2.7 to 3.3 volts. The price is a little high at

approximately $3.54 per unit however this is a part that only need to be purchased six times

so to total cost for the part remains around $20 which is acceptable for a part of this

importance. The motor will be controlled in a similar manner to the Peltier device with a

digital potentiometer controlling a voltage divider that feeds into two operation amplifiers.

This will result in the proper voltage but low current which is acceptable since the

C0720B015F has a maximum current rating of 80mA. This is possible since as previously

stated the TSV321 typically produces 80mA of output current. Figure 31 shows how the

planned schematic for the implementation of the motor controller. Note that since the

digital potentiometer (AD5248) and the operational amplifier (TSV321) have leads for

another use or come in packages with multiple parts respectively, that a second motor

controller could be implemented but was not for purposes of demonstration. Also note that

the motor controller goes to a generic port since the actual motor will be connected to the

board via wires as to better interface with the fingertips and to prevent the need to have

bulky multi part packages on PCBs that rest upon the hand or fingers [17].

Figure 31: Motor Controller Schematic

 Motion Tracking
There are several ways to track motion each of which have varying degrees of accuracy.

Hollywood for instance uses strategically placed white dots to capture motion for CGI

frameworks. This method would fall under the optical category of motion tracking. A

mechanical method of motion tracking uses force sensors and rigid mechanical frames to

track the force that the motion exerts on each piece of an articulated machine. We will not

39

discuss mechanical tracking in any detail since as its name implies it is a mechanical

structure and this is the Electrical and Computer Engineering Senior Design Course. A

mechanical solution could even be optimal but would fail to demonstrate our mastery of

electrical and computer engineering skills. Finally, inertial systems use a variety of

electronic sensors to capture motion data. This data is usually wirelessly transmitted to a

receiver where it is analyzed by a computer where it is processed into useable and

understandable structures.

8.21.1: Optical Tracking

Optical tracking methods use cameras and reflective or light emitting nodes at various

points to track motion. This is a high accuracy method since specialized high-speed

cameras can achieve extremely high frame rates that can then be easily filtered to isolate

the nodal motion from the reflective or light emitting nodes. This is the most commonly

used method of motion tracking for consumer devices. For example, Hollywood uses high

speed cameras, the Xbox Kinect uses an infrared camera and pulses of infrared light to

track motion, and even the Nintendo Power Glove used high frequency sound and audio

recovers to track its position using the Doppler Effect. While it would be possible to use

this type of tracking scheme to interact with a 3D object, in order to receive haptic and

temperature feedback almost all of the circuitry and I2C communication in the glove would

still be required. It would also be very much a “me too” project that emulated existing

commercial hardware and at that point why even bother developing our own motion

capture system?

8.21.2: Inertial Sensors

Inertial sensors are a wide array of different sensors that capture motion of one kind or

another. Common types of sensors include accelerometers, gyroscopes, and magnetometer.

The main selling point of inertial sensors are that they require no external cameras or bulky

equipment and are therefore popular with small self-contained devices and certain

scientific equipment. For instance, in several of the microgravity labs at UCF

accelerometers and gyroscopes are the only practical choice for data collection because it

is impossible to fit bulky cameras or large force sensing equipment onto a rocket. We will

be discussing accelerometers particularly in depth.

Accelerometers measure acceleration as the name would imply. They do this be measuring

the force of motion exerted on an object of known mass. Newton’s Second Law tells us

that force is a function of mass and acceleration while Newton’s First Law tells us that an

object at rest will remain at rest until an outside force act upon it. Finally, Newton’s Third

Law tells us that when one body acts upon another with a force, that second body will

excerpt an equal and opposite force upon the first. With this information it is possible to

calculate the acceleration of an object in a single plane from force by placing a small

passive force sensor in that plane and allowing the force of the motion acting upon some

small object of known mass. This allows us to back calculate wit very simple algebra the

acceleration of the motion that generated the force. Of course, there are several methods

for measuring the magnitude of the force.

40

There are two main methods for measuring the magnitude of a force in an accelerometer.

The first uses capacitance to accurately characterize the magnitude of force applied. It is

possible to do this because as the force upon the mass increases the capacitive plates are

forced more closely together. This changes the total capacitance in the system which has

an easily measurable response in any electronic system.

The second method for measuring the magnitude of a force in an accelerometer is to use a

piezoelectric sensor. This type of accelerometer takes advantage of the piezoelectric effect.

The piezoelectric effect is that when certain materials have mechanical stresses applied to

them they generate an electrical charge or when those same materials have an electrical

field applied to them they generate a mechanical change. Quartz in quartz watches are the

most famous and commonly known example, but other examples may include crystal

oscillators or inkjet printer heads. Essentially piezoelectric devices can be found anywhere

that electrical systems need to control small mechanical motions.

8.21.3: Accelerometer Considerations

In our search for exactly the right accelerometer we needed to consider several aspects of

the device. Our first consideration was the size of the device. It must be small enough to

easily fit onto the tip of a finger along with several other components. The next aspect we

had to consider was the price. It is quite possible to get some amazing high-quality

accelerometers for precision scientific work, but those are expensive and we are not doing

high quality precision work. We are developing what is essentially a consumer product.

So, to stay within budget a cheaper model must be found since it will most likely not impact

the end results of the project. The next aspect of the accelerometer we had to consider was

it operable range. Many accelerometers have certain operable range settings where it is

most accurate. Exceeding these range settings may mean you will not get useful or meaning

full readings. For our application this was easy since hand motions will tend to stay in the

±2 G range. Any more than that will mean that the user is wildly and forcefully flailing

their hands around which should be discouraged. The next aspect we must consider is the

precision of data the device can record. These devices send out digital signals from an

analog data source so they must have internal analog to digital converters. The number of

bits they can record determines their level of sensitivity. We would like at least 8 bits of

precision since that its 1 ASCII character and if we must read data from the device it will

have to be in packets of 8 bits anyway. An often-unconsidered aspect we need to discuss

is the data capture rate. We need to be able to sample at hard minimum of a 30 Hz sampling

rate. Though it would be better to have a much higher rate than that. Another aspect to

consider is the communication protocol the device uses. There are usually several different

communication protocols to choose from depending on what you want to achieve We wish

to use I2C since we want to communicate with several devices on the same data line and

so the accelerometer we choose must be I2C enabled. Finally, we need the accelerometer

to have a purchasable testing board so that we can test and implement our driver code

without having to integrate the entire device beforehand.

8.21.4: Accelerometer Choice

In the end after carefully considering all the aspects listed in the previous section we have

decided to implement the MMA8451Q, 3-axis, 14-bit/8-bit digital accelerometer from

41

NXP Semiconductors. Table 6 has a list of features that make this board desirable for our

needs [18].

Feature MMA8451

Max Sampling Rate 800 Hz

Communication Interface I2C

Multiple Addresses Yes, 2

Data Resolution 14 Bit

Package Size 3mm x 3mm x 1 mm

Price $3.34

Breakout Board Yes, from Adafruit

Table 6: Features of the MMA8451

As can be clearly seen from Table 6 the MMA8451 is very good for our application. Figure

32 shows how the chip must be applied in our circuit to function properly.

Figure 32: Implementation Diagram of the MMA8451Q

8.21.5: I2C Multiplexer

Since the MMA8451Q has only two possible addresses and the project requires 16

accelerometers an I2C multiplexer must be implemented. As referenced in Figures 3 and 4

the accelerometers and peripherals will be placed on 1 of 8 possible I2C lines. The part

selected was the TCA9548A from Texas Instruments. The TCA9548A has 8 pairs of

multiplexed I2C lines as shown in Figure 33. The TCA9548A can run on a 3.3-volt power

supply and has a small package size at 7.8 x 4.4 mm. It can handle up to a 400 kHz clock

frequency and all I/O pins are tolerant to 5 volts. Figure 34 shows the application schematic

42

for the TCA9548A. Note that external pullup resistors are required, which is standard in

I2C. Pullup resistors will be 1 kΩ which is near the minimum resistance specified by the

data sheet [19].

Figure 33: Simplified Block Diagram of the TCA9548A

Figure 34: Application Schematic of the TCA9548A

9: Processing Board Overview
Our MITTS (Motion Interface Thermal Touch Sensitive) device will have a central

processing board that will handle data gathering and delivery. This board will handle data

43

needed from the sensors on the glove such as the accelerometers. It will also control the

haptic response to the vibrational motors and Peltier devices for both resistive sensation

and temperature changes. This board will also contain a Bluetooth device to send data

through the UART standard to a computer for further data manipulation and processing.

 Processor Comparisons
According to Umesh Lokhande’s article on the BinaryUpdates website [20], he writes that

some good parameters to look for and take into consideration for a microcontroller are:

whether there are good resources available, whether it’s economical, and whether it’s easy

to program.

Having good resources to understand our project more is a huge plus, especially for this

design since we are working with things we haven’t worked with before and trying to

assemble a whole project with them. Hobbyist communities have step-by-step tutorials

using the ATmega series and TI’s MSPxx series, which makes them exceptional choices.

However, these are not widely used in big manufacturing and/or MCUs designed for

specific applications. For this reason, we wanted to go with an ARM device due to their

wide use in the industry.

The ATmega series [21] and TI’s MSPxx series [22] has a wide variety of cheap options

in comparison to an ARM MCU but are slightly more expensive. While looking at the

Mouser Electronics website for comparisons, the ATMEGA32U4-AU is more expensive

with a comparison of $4.80 for a single unit whereas the STM32F030C8T6 ARM chip [23]

is $2.02 for a single unit. The ATmega also has less I/O pin count than the ARM chip; the

ATmega being at 26 I/O pins and the STM being at 39 I/O pins. The ARM chip also

operates at a lower voltage with a 2.4-3.6 V compared to 2.7-5.5 V. As far as the TI MSPxx

series goes, looking at a similar pattern, the MSP430G2553IPW28 is $2.59 for a single

unit, has only 24 I/O pins, and fortunately operates at 1.8 – 3.6 V. The difference

economically makes sense here since the STM32F030C8T6 is cheaper, has more I/O pins,

and is decently low in voltage operation.

MCU Cost I/O Pins Operating Voltage (V)

ATMEGA32U4-AU $4.80 26 2.7-5.5

MSP430G2553IPW28 $2.59 24 1.8-3.6

STM32F030C8T6 $2.02 39 2.4-3.6

Table 12: MCU comparison Data According to the Mouser Website

I/O Pins - The number of I/O pins on the STM is greatly higher than that of the ATmega

and MSP chip. This choice of picking the STM will allow us to add more input and/or

output devices if further development were to occur. This concept is great for scalability

and allows us not to have to change to a brand-new chip if we did need more I/O.

Memory Size - All three MCUs have FLASH memory, which as we know, is a non-volatile

memory. Since the coding will be relatively simple, we should only need a little bit of

memory to handle getting input and then sending that input off to something else. In our

44

case, we are sending to a computer through a Bluetooth module, so we don’t have to worry

about memory there.

Chip Memory Size (kB) Data RAM Size (kB)

ATMEGA32U4-AU 32 2.5

MSP430G2553IPW28 16 .512

STM32F030C8T6 64 8

Table 13: Memory Comparison Data According to the Mouser Website

As we can see from the table above, even though the STM is the least expensive, it has the

most memory in both regards. Clearly, this is an economical and logical choice.

Clock Frequency - As we are only looking to keep a frame rate of 30 frames per second,

the speed that we need our clock to be isn’t too significant, especially in today’s standards.

Chip Max Clock Frequency (MHz)

ATMEGA32U4-AU 16

MSP430G2553IPW28 16

STM32F030C8T6 48

Table 14: Clock Speed Comparison According To The Mouser Website

Again, we can see that, even though it’s the cheaper option, this chip has a much higher (3

times higher) clock frequency than the other ones have. In the next figure, there is the

details of the pinout of the chip itself. This will come in handy when integrated the circuit

into the design. Knowing the pinouts on the board itself is essential in connecting

components and assisting in the overall schematic design.

Figure 35: STM32 Pinout

45

9.1.1: The STM32F030C8T6

As a brief overview, the STM implements ARM, which is widely used in commercially

manufactured products today, thus will provide us with real-world applicable experience.

This experience will give us an edge on the job market and put us ahead for a potential

career choice. Not only is the chip applicable, but it’s a smart economical choice and will

be very useful and efficient in our project. With high frequency rates and low cost, this

chip is our first choice.

Multiplexers - There is one caveat to our choice and that is that there are not enough I/O

pins on the board for us to read from or output to the devices on the glove. For this reason,

rather than upgrading to a higher priced and bigger chip, we are going to make use of

multiplexers. This will drastically decrease the number of I/O pins necessary. Since we can

use a 3-8 or 4-16 multiplexer, we are only using 4 or 5 pins for input into the chip and also

selection pins into the multiplexer. We can make use of the polling strategy in our case

because of the high frequency of the chip and the easy 30 frames per second that we are

trying to achieve.

STM32 Breakout Board - The design heavily relies on the STM processing board for

further development. The 3D interface relies on the processor to give it the details of the

accelerometers. The interface between the 3D interface also relies on this data. All of the

glove components rely on the processor, not only to read data from them, but also to send

data to them. For this reason, it’s going to be very beneficial to get a breakout board, which

essentially will act as our processing board since it uses the same chip. The exclusion of

course will be that the board itself will not be the exact design, so things will change from

the development to the physically made device. The coding, however, should stay the same

since the pinout is the exact same on the development board as to the chip that we’ve

selected. The trick will be to map those to our components when designing the schematic.

Requirements and Specifications Fulfillments

1. The processor is an ARM chip.

2. The processor has low-power capabilities, thus can fulfill the low-power

consumption.

3. The processor has at least 1 dedicated I2C line

4. The clock frequency is 48 MHz so 30 frames per second specification is achievable.

5. We can add hardware options to fulfill the power switch and reset option

capabilities.

 Input and Output through Processor
The processor must deal with a lot of input and output. There are 6 vibrational motors, 6

Peltier devices, 16 accelerometers, and a computer communicating with or through the

processor board. With this, the chip needs to be fast enough to poll and control each motor

and sensor as well as communicate through the Bluetooth module to communicate with the

computer for further processing of data.

46

Figure 36: Data Flow Schematic of The Glove

As we can see from the design above, we don’t even see the Blender module. Also, we

don’t even see the components of the interface or of the glove design. In this way, the

processor only needs to know what input it will get from the accelerometer, what feedback

it needs to give back to the glove design, and what input and output to expect from the

interface. Something that needs to be communicated is the format of the data that’s

expected for the interface. As far as the accelerometers, they are rather set due to the design

given to them, but the interface is completely arbitrary for us.

I2C - Communication on a wire can be tricky. If everything is trying to communicate at

once to the processing board, then the board will not understand what is communicating

with it. For this reason, there are protocols that can be used to that communication goes

smoothly. According to i2c.info [24], “The system must be designed in such a way that

slower devices can communicate with the system without slowing down faster ones.” For

our sensors and modules, we will be connecting them on a bus, so we don’t have hundreds

of individual wires wasting a single line, when we can easily communicate on a single bus.

This is essentially what the I2C is, an Inter-Integrated Circuit bus. The i2C website

clarifies, “A bus means specification for the connections, protocol, formats, addresses and

procedures that define the rules on the bus. This is exactly what I2C bus specifications

define.” The site continues to define what I2C is by listing things such as terminology, bus

signals, serial data transfer, start and stop condition, I2C data transfer and even more

terminology.

UART - This method of communication, which stands for Universal Asynchronous

Receiver/Transmitter, is a means to simplify and aid in data communication. According to

the website All About Circuits [25], UART uses only three signals: Tx (transmitted serial

data), Rx (received serial data), and ground. It continues to say that there is no need for a

clock signal because the internal clocks of the receiver and transmitter will ensure that the

proper timing is done internally. Some requirements for UART say that the clock signals,

“… must be sufficiently accurate relative to the expected frequency and sufficiently stable

47

over time and temperature.” We will be using this protocol for communication with our

Bluetooth module. Here are some key terms, like I2C, that are used by UART, which are

taken from the All About Circuits website:

1. Start bit: The first bit of a one-byte UART transmission. It indicates that the

data line is leaving its idle state. The idle state is typically logic high, so the

start bit is logic low.

2. Stop bit: The last bit of a one-byte UART transmission. Its logic level is the

same as the signal’s idle state, i.e., logic high. This is another overhead bit.

3. Baud rate: The approximate rate (in bits per second, or bps) at which data can

be transferred. A more precise definition is the frequency (in bps)

corresponding to the time (in seconds) required to transmit one bit of digital

data.

4. Parity bit: An error-detection bit added to the end of the byte. There are two

types: “odd parity” means that the parity bit will be logic high if the data byte

contains an even number of logic-high bits, and “even parity” means that the

parity bit will be logic high if the data byte contains an odd number of logic-

high bits.

With this protocol in place, we will have to keep everyone informed about which start bit

and stop bit we will be using. The baud rate is typically 9600 baud, at least in typical

Arduino tutorials. With this information, we should have a seamless transmission of data

between the processing board and the Bluetooth module.

Input from Accelerometers - The input from the accelerometers has 3 different types: the

x-axis, the y-axis, and the z-axis. All three of these components have 14-bits that need to

be read for an accurate reading. That’s a total of 42-bits that need to be read for each

accelerometer. If there are 16 accelerometers, then we need to read a total of 672 bits. Since

we need to store them in 8-bit increments, that means we will store each 14-bit in a 16-bit

frame. If we do this, we have a total of 48-bits (6 bytes) per accelerometer. Again, with 16

accelerometers, then we have 768-bits to store all of our inputs from accelerometers, which

is a total of 96 Bytes.

 Wireless Communication
For our setup, we are going with Bluetooth communication. However, there are a plethora

of ways to send data wirelessly, ways that include: infrared, satellite, radio waves,

Bluetooth, Wi-fi, and many other methods as well.

9.3.1: Pros and Cons of Wireless Communication

According to the website elprocus.com [26], some advantages of wireless communication

include fast speeds, fewer materials and overall less cost. For us, the biggest pro of having

wireless is since our system is convenient if the user is not connected to a bunch of wires.

Being wireless allows the user to free up degrees of movement.

The disadvantage mentioned by the elprocus.com website is that data transmission is not

as secure. However, for us, we are not transmitting anything that would be of value since

48

the data is only going to be pertaining to accelerometer values. On the other hand, we are

getting input data, so if a hacker were trying to send in values to would cause the Peltier

devices to heat up drastically, that could pose a problem. We have already thought of this.

In this case, we will be hard-coding into the processor limiting values. With these limiting

values, no matter what data is sent in, the Peltier device wouldn’t get hotter than whatever

temperature we’ve set the limiter at.

9.3.2: Bluetooth Module Choices

Bluetooth has been growing in popularity ever since headsets started to make use of the

technology, in my own opinion. Bluetooth is convenient; it has a very simple setup and

compatible. The setup only requires that one scans for other devices and one is set to be

discoverable. As far as compatibility is concerned, if both modules have a Bluetooth

module, then they will work together, as long as they are within the correct version of

course. For example, most Bluetooth x.x are compatible with each other, but the Bluetooth

5 is not backwards compatible with 4.0, or 3.0, but the 4.0 is compatible with the 3.0. Here

is a brief overview of the different versions of Bluetooth:

 Basic Rate

(BR)

Enhanced

Data Rate

(EDR)

High Speed

(HS)

Low

Energy

(LE)

Slot

Availability

Masking

(SAM)

Bluetooth

1.x

Yes No No No No

Bluetooth

2.x

Yes Yes No No No

Bluetooth

3.x

Yes Yes Yes No No

Bluetooth

4.x

Yes Yes Yes Yes No

Bluetooth

5.x

Yes Yes Yes Yes Yes

Figure 37: Bluetooth Comparison Table

Of course, we would most likely want to choose a Bluetooth with a version of at least 4.x

or higher since most devices now-a-days has this technology and for its speed and low

energy.

RN4871-V/RM118 [27] - This Bluetooth module is 9x11.5 mm and is Bluetooth 4.2. It is

shielded which will aid in short-prevention and overall integrity and strength of the design.

It’s small enough to help in fitting all the components onto a single PCB design and still

fitting onto a wrist. This module also supports UART, which is the type of protocol we are

designing the PCB to use to transmit data. This module also has an antenna on the chip.

49

BL652-SC-01 [28] - This Bluetooth module is 120x93 mm and is also Bluetooth 4.2. The

data sheet does not specify any shielding, but from the looks of the image, the components

on the board look enclosed. It’s a bit bigger than the other module, which may become a

problem if we don’t have enough space, but still rather small. This has a larger selection of

interfacing protocols, which still includes UART. The antenna is external rather than on-

chip.

BM62SPKS1MC2-0001AA [29] - This Bluetooth module is 29 mm x 15 mm x 2.5 mm

and is also Bluetooth 4.2. The module is shielded, which again will help with the space on

our PCB. This module also supports data transmission over the UART interface. The

antenna is stated to be on-board.

Traits RN4871 BL652 BM62SPK

Cost $8.44 $7.45 $12.50

Shielding Yes Yes Optional

Antenna Chip On-board On-board

Size (LxW mm) 9x11.5 120x93 29x15

Operating Voltage (V) 1.9 – 3.6 1.8 – 3.6 3.2 – 4.2

Supply Current Receiving (mW) 10 5.4 unknown

Supply Current Transmitting (mW) 10 5.3 unknown

Table 15: Bluetooth Module Comparison Taken from Mouser.com

As we can see from the table above. The BL652-SC-01 seems to be the best option. Not

only does it cost the least amount of money, at least on this website it does, but it also

seems to use the least amount of power. Of course, with that we are probably losing some

distance in which we can transmit data, but the use-case for our device is strictly within a

room next to the computer that will be taking in the data transmission so that will not be a

problem.

The next image is that of the schematic for the BL652 Bluetooth module. This gives a

visual representation of the pinout of the design and will assist in the design process when

integrating the circuit into the design.

50

Figure 38: Pinout of BL652

Figure 39: Image from EL652-SC-01's data sheet about OEM Responsibility

From the image above, they give specific outputs and antenna to comply the regulatory

guidelines. Included in the data sheet is also more OEM responsibilities, which OEM

stands for Original Equipment Manufacturer. The image below shows these

responsibilities:

51

Figure 40: Additional Information from BL652-SC-01's about OEM Responsibility

From this image, we can see that we need a clearly visible label on the outside. Our product

will most likely exceed 8 cm x 10 cm, so we will have to include the statement if we were

to ever produce this as a product:

“The enclosed device complies with Part 15 of the FCC Rules. Operation is subject to the

following two conditions: (1) This device may not cause harmful interference, and (2) his

device must accept any interference received, including interference that may cause

undesired operation.”

9.3.3: Bluetooth Specifications

BL652 – With I2C interface selected, in the datasheet, it states that pull-up resistors on I2C

SDA and I2C SCL must be connected externally as per I2C standard.

 PCB Design
The overall PCB design needs to be small enough to fit on a wrist, but powerful enough to

handle the IO of many modules. In first talking about this design, we thought about

developing a flexible PCB design, but with the high cost of fabrication, we quickly said no

to the idea. Rather than have it flexible, we can just make the PCB small enough and secure

it in some type of curved enclosure to fit comfortably on a user’s wrist. In the next sections,

we will be looking at different software and fabrication companies and how they compare

to each other as well as defining what a PCB actually is.

Flexible PCB – Flexible PCB is as its name implies; it's a PCB that is flexible. For the

glove design, it might be considered useful for the electronics to have flexibility due to the

constant movement that the normal use will influence the design. Essentially, instead of

the components of the board being placed on a rigid board, they are placed on a plastic

substrate, thus the components can bend as the board bends. The glove design may also

benefit from this due to the components along the fingers could make use of the flexibility.

However, flexible PCBs are drastically more expensive because it's a more recent

technology. Due to this expense, having wires along the fingers will give us the same effect

52

at a much cheaper price. Furthermore, the PCB design will be mounted on the wrist, thus

we can use bands or other stretchy connectors to mount the device to the wrist of the user.

Flexible PCB over Rigid PCB – Continuing further, we will be choosing a rigid PCB due

to the high cost of the flexible PCB. The wires connecting the components on the glove

design will be much cheaper but will bring a bigger design overall since wires on flexible

PCB are smaller than individual wires connected to each component. Moreover, flexible

PCBs is an over-design for the design we are trying to make. Simpler is sometimes easier.

9.4.1: Schematic Design Tools

In order to fulfill the design requirements, there needs to be a PCB design. For this to take

place, the PCB needs to be designed. There is an extensive list of design tools that are for

freelancers all the way to big industry. Some come with a heavy price tag, which includes

engineers ready to help in the design process, and some are free with tutorials and

documentation to guide users along. Since the design only consists of a single PCB and its

details are rather simple, a free version of a schematic design tool, will do the job. In the

next few paragraphs, there will be schematic design tool options.

9.4.2: KiCAD

For designing the PCB, we will be using KiCAD, which is a free software suite for

electronic design automation. The reason we will be using KiCAD is that it’s open-sourced,

which means it’s free, and it being open-sourced means we are staying true to our design

goal of making our own project open-sourced. When traversing through the site, there is a

“Help” menu, which provides a plethora of documentation at our disposal as well as

tutorials. We will benefit most from this software mainly because we have had experience

using it, and throughout this design, experience will get us a lot further than education.

9.4.3: SOLIDWORKS PCB

According to the Trimech website [30] , SOLIDWORKS PCB boasts being powered by

Altium’s best-in-class PCB technology. Altium seems to be a technology all on its own.

This leads me to believe that SOLIDWORKS PCB is more of a framework to allow

integration between the PCB design and the mechanical design of using SOLIDWORKS.

It continues to say that it integrates seamlessly with SOLIDWORKS, which enables a

completely collaborative electro-mechanical workflow, so my assumption of if it’s more

of a framework seems to be correct. This sounds enticing; however, we are not going to

have a mechanical design complex enough to be using software to create it, so this choice.

9.4.4: DesignSpark PCB

The rs-online website [31] which hosts the DesignSpark software states that the software

doesn’t have limitation on design schematic size as well as integration into their other free

software that “take your brightest ideas all the way through to final production.” You can

also use as many layers, pads, nodes, and connections in your design as you’d like. A cool

part of this software is if you can’t find a part to put into the PCB design, then their software

has a functionality that allows you to create them from PCB Part Library. This functionality

seems very useful.

53

 PCB Fabrication
Eventually, when the design is finished, the design needs to be created. To do this, one can

develop their board and buy a bunch of industry equipment and essentially 3-D print the

board oneself, or like most people, going to a PCB fabrication company will save lots of

money. In the next couple of paragraphs, researched options will be listed, and their details

will be explained.

9.5.1: PCBWay

PCBWay [32] is a full feature custom PCB prototype service. They boast a low-cost

fabrication and a quick delivery time. A basic design that’s within 100 mm x 100 mm and

10 pcs is estimated at $5.00, which is an incredible price. It also states that the design would

only take 2-3 days, which is rather typical for small-batch PCB fabrication.

9.5.2: 4pcb

4pcb [33] does their production in the United States. This can be seen as a benefit, but most

likely their design will be more expensive, but with less shipping costs. Their website

doesn’t give an estimated price for anything, but they do provide this chart:

Figure 41: PCB Specification Comparison [33]

From this chart, we can see that their layer count and turn-time is around the same as

PCBWay, but they don’t include an estimated price as PCBWay does. From this we can

speculate again that PCBWay will have higher shipping cost because they are shipping

from China, but with a lower design cost and 4pcb will have a lower shipping cost because

they produce in the United States, but typically cost of manufacturing in the United States

is higher.

54

9.5.3: PCBgogo

The PCBgogo [34] website boasts a 12-24-hour quick turn PCB prototype service, which

is very quick. They also have a low minimum from 1 pcs PCB Assembly is accepted, which

I don’t believe we will actually benefit from or need. They boast 24-hour customer service

availability, which could come in handy if we have any questions. A big plus in my book

is the fact that they have 99% on-time DHL Delivery so if we are not very unlucky, we can

typically trust in the delivery time that they set, which could come in handy in a time

crunch. A professional PCB engineer one-to-one service is offered. This fabrication

company seems to be very trustworthy and helpful and would be a good alternative to

PCBWay.

9.5.4: JLCPCB

The JLCPCB [35] website advertises the lowest prices for PCB design researched. They

boast over 200,000+ customers worldwide and 8000+ online orders per day. They claim to

be the largest PCB prototype enterprise in China. They specialize in quick PCB prototyping

and small-batch production, which is exactly what the design entails. The only downside

to this choice would be, like most others, is that it ships from China, which can take a long

time. However, they state only up to 2-3 days of build time and shipment tracking, which

can ease tension in a build when waiting on parts.

 PCB Design Constraints
There is a plethora of constraints to consider in the PCB design, some are already included

when we consider the Bluetooth module from earlier. Constraints can come in a variety of

broad topics such as: environment, economical, sustainability, social, political, ethical,

manufacturability, and most importantly, health and safety. In further reading, we will

cover constraints within each category and explain each constraint that is arbitrarily placed

on our project, or a constraint due to reasons out of our hands.

9.6.1: Environmental Constraints

Environmental constraints can be constraints given to us by the environment around us,

such as, we cannot create a design that is bigger than a room, because a user is intended to

us it within a room. That’s, however, a broad example that doesn’t need to be addressed

due to the nature of our project. Environmental constraints can also be given to us by literal

protocols or regulations required due to the environment, such as waste produced by a

product and how it’s disposed of or even the amount of carbon dioxide that a product can

produce.

We don’t have any environmental constraints on our project, but we will be including

Lithium-powered batteries, which can pose a hazard to the environment if disposed of

properly. This isn’t necessarily our responsibility due to the batteries including labels on

them that inform the user to dispose of the batteries properly.

9.6.2: Economical Constraints

Economical constraints are constraints that talk about costs, efficiency, and can even

include longevity because the longer the product can less, the more economical it is. For

the PCB design, our economical constraints are only to make the design cheap to make an

55

impact for future hobbyists to tinker with our design. For that to happen, we will be trying

to make the board, low-powered, use low-cost modules, and be cheap to manufacture.

9.6.3: Sustainability Constraints

Sustainability constraints are essentially constraints to allow further development of our

design over a long period of time. For example, if the chip that we chose decides to be

discontinued and no longer manufactured for whatever reason, then our design will no

longer be sustainable. For this reason, we have an obligation to keep the design sustainable,

so hobbyists can use the design in the future. In this way, we will be trying to use up-to-

date technology, like choosing a 4.x Bluetooth module rather than 1.x or 2.x and making

our design rather simple to change. If our design is simple, a part can be changed without

affecting too many other parts, essentially making everything loosely coupled.

9.6.4: Social and Political Constraints

Social and political constraints are closely related. Social constraints are constraints

enforced by society and political constraints are constraints enforced by policy. In the PCB

design, there are no constraints based on these topics.

9.6.5: Ethical Constraints

Ethical constraints are constraints that are imposed by ethical dilemmas or forced due to

ethics of society. The only ethical constraint that we have on our design is to make it cheap

for the open-sourced community so that they can learn and tinker with our design without

breaking their bank.

9.6.6: Health and Safety Constraints

Health and Safety constraints are imposed by either regulation and requirements. These are

regulated because a lot of technology today can be dangerous and if standards aren’t met,

then people can become injured. The first thought we had about our PCB design was

concerned about shock risks, sharp-object risks, and temperature risks. The shock risks can

come from the PBC design coming into contact with the user. For this, we will be enclosing

the PCB design in a plastic enclosure to ensure to contact with the skin can be made. For

the sharp-object risks, it’s solved by the enclosure. The risk was that usually sharp wires

from soldering or from the design can stick out and are rather sharp. With the enclosure,

no contact can be made with the wires. The heat risk can be reduced by implementing a

heat sink on the chip as well as using an enclosure to keep the design further away from

the user. The battery will most likely be the highest temperature and, since it’s lithium, has

a higher risk of catching of fire or even exploding. For this reason, we will also include a

metal enclosure for the battery that will act as a fire/explosive defense measure.

 System Startup Procedure
When the processor design initially gets power, there needs to be a couple of events that

occur. These events will include visual cues of the device turning on, data being read, pins

being set, and then a loop of reading and sending data with the Blender interface and the

glove components. The next figure will show a coding block diagram of how this procedure

will work. Initially, the device will get power. To indicate this, we will program a red LED

to light up to signify that the device is booting up. During the chip boot, a few events will

56

occur to ensure proper functionality. First, the pins will be set; essentially, the code is

giving the pins their respective components that they are responsible for. Next, we will

initialize the I2C, which is explained in the I2C section of wireless communication. Once

that is initialized, we can start the UART handshake process for the Bluetooth device. This

will make the device detectable by the interface that will connect to the processor. In order

to keep the Blender model and the glove design synced, the instruction will be to place the

hand utilizing the glove on a flat surface. This will "normalize" the reads and allow for the

Blender interface to be synced with what is actually happening with the hand. To indicate

normalization has occurred, a green LED will then be turned on briefly to show the glove

is ready. From here, the code will loop between reading from the components on the glove

to get their positions, sending through Bluetooth interface, reading from Bluetooth

interface, and then sending this response to the HAPTIC devices on the glove. Again, the

block diagram is as shown:

Figure 42: Pseudocode for startup Procedure

57

Figure 43: Block Diagram for Startup Procedure

10: Relevant Technologies
Some may argue that every new idea is simply a combination of other ideas. With the

advent of virtual reality and augmented reality, an industry of haptic feedback popped up

into the world. While there are certainly technologies out there that have accomplished

haptic feedback, our design is unique because of the way we are incorporating the sense of

touch and temperature.

 Existing Technologies and Products
In the next couple of sections, there are some technologies that are alike to the design being

created. These designs offer either higher quality, a more specific feedback system or even

a lower quality or a higher price.

10.1.1: VRGluv

The VRGluv [36] is a force-feedback system that uses pulley like technology to pull the

fingers back to make the user feel like they are grabbing an object and can't close their hand

anymore. They have 10-zones of feedback on each hand, which can provide 5 pounds of

force to simulate rigid objects. They express 10-ms of latency over wireless

communication. They also claim 360-degree thumb tracking. Some obvious similarities

are that both designs have a force feedback and wireless communication. Our haptic glove

design is different in the manner that the design gives force feedback; rather than have

58

something pull at the user's fingers, we are giving a rumble affect to show that you are

touching something. Also, we are incorporating a temperature-feedback design which isn't

present in the VRGluv.

10.1.2: HAPTX

HAPTX [37] is a more complex design on the market today. They have a patented

microfluidic technology that lets you feel the shape, movement, texture, and temperature

of digital objects. This technology also claims 5 pounds of force feedback with what seems

to be the same design choice of the VRGluv. It also has industrial grade motion-tracking.

To compare, our glove won't give a sense of shape or movement of an object. With our

design, it's much simpler. We are giving temperature feedback as they do, but their design

is much more complex. We also will have "industrial" grade motion-tracking due to each

finger have 3 accelerometers. Judging from the images, our design seems like it will be

less cumbersome and most likely, considerably cheaper to produce. However, with the

cheaper product, the quality of the feedback doesn't seem like it will compare to the

technology that they are incorporating into their design.

In the following table, we will consolidate the functions and features of the aforementioned

products on the market today compared to our design.

Features MITTS VRGluv HAPTX

Force Feedback No Yes Yes

Temperature Feedback Yes No Yes

Motion Tracking Yes Yes Yes

SDK Provided No No Yes

Low Latency Yes Yes Yes

Pressure Sensing Yes Yes Yes

Texture Feedback No No Yes

Table 16: Product Comparisons

As we can see from the table above, the HATPX is by far the most functional. The MITTS

design is sacrificing quality for a lower cost and cheap production.

59

 Programming the Chip
For the components to work properly, the chip needs to know what to do and for it to know

what to do, we need to program the chip. The chip the design will use doesn’t have an

unlimited amount of memory, so it’s going to be best to program it with a low-cost to

memory. In general, the lower-level the language, the lower amount of memory will be

consumed. The highest level typically used by ARM devices is C++, then C, then if truly

bold, assembly language.

10.2.1: C++

This language is a high-level language built off C to enhance ease and verbosity. It is highly

portable, which means that if we wanted to change chips, most likely the code would work

on the other chip due to being so portable or universal. It includes features such as classes,

inheritance, polymorphism, data abstraction, and encapsulation because it is an object-

oriented language. Due to it being an older language and used by a world-wide community,

the libraries available are endless. Some features it has over C, is that it allows for function

overloading and exception handling. C++ can do almost anything, from 3D graphics for

games to real-time mathematical solutions.

10.2.2: C

This language is a combination of being high-level and low-level. It being close to low-

level makes it easier to make critical mistakes that are usually caught by higher level

languages. However, due to this reason, it uses less memory and has more precise control.

It can control drivers and kernel modules, which are not generally done in higher level

languages, or if the higher-level languages do, then they simply interface the code written

and change it into lower level code. This is the same technique used by C; change the code

to assembly, then to 1s and 0s. C is used in Windows, Unix, and UNIX systems. As with

C++, C also has an extensive function library due to the huge community of people that

work with it.

10.2.3: Assembly Language

Using assembly would be only beneficial if we were only trying to maximize speed in our

design. Assembly is the lowest-level you can get to the hardware without using 0s and 1s

to code things. For the design to use assembly would take a lot of time learning the specifics

of such a tedious language. It’s fast and uses as little memory as you need it to. Generally,

if you write a function that does the same exact thing in C, C++, and assembly, assembly

will be the most efficient, performant, and least memory intensive.

The next table will hold comparisons between the three options and will gather better

evidence for which one should be chosen over the others.

60

Traits C++ C Assembly

Extensive function library Yes Yes No

Object-Oriented Yes No No

Portable Yes Yes No

Exception Handling Yes No No

Function Overloading Yes No No

Table 17: Comparing C++, C, and Assembly

For the design, C will be the most beneficial. The code needs to be closer to the hardware

because we will be interfacing with many components and essentially writing drivers.

Assembly would be beneficial too, but for our case, learning the specifics will be much too

time consuming. C is balanced in the sense that it is fast, performant, less memory-

intensive, portable, and has a wide range of documentation and tutorials if we ever get

stuck on coding.

10.2.4: Coding Peltier Controller

The Peltier controller needs to be coded with complex algorithms to give us more control

over the fluctuations we put on our Peltier devices. Rather than constant up and downs to

maintain a temperature, we are essentially calculating the error value as the difference

between a measured process variable and a desired setpoint. To code this, it’s complex

because we need proportional integrals and derivatives. Luckily for us, there is already

code out there that has solved these complex calculations. For example, the Arduino

Library contains a library called “Arduino-PID-Library." The downside to this is that it’s

written for a different chipset, so the design will have to reprogram the different pin

numbers for the library to work on the ARM device.

 STM32 Attributes
There are many attributes we may or may not need to be aware of that can contribute to a

project. Anywhere from how much memory to what kind of stack it uses. In the next couple

of paragraphs, we will look at attributes that will ultimately affect the design.

10.3.1: Stacks

The chip makes use of a full descending stack. This essentially means that the processor

pushes a new item on the stack after it decrements the stack pointer. It’s stated in the

programming manual of the STM32 that there are two modes available: The Handler mode

and the Thread mode. There are two stacks that are used on the chipset and the mode

influences which one is being used. The manual supplied a handy table as seen below that

shows how the Thread Mode and the Handler Mode differ:

Processor Mode Used to Execute Stack Used

Thread Applications Main stack or processor

stack

Handler Execution Handlers Main stack

Table 18: Summary of Processor Mode and Stack Usage from STM32F0

Programming Manual

61

10.3.2: Registers

We mainly will not have to deal with registers so specifically due to the design making use

of C rather than assembly code. However, it is important to make note of key registers that

will come into play if we need to work closer to the hardware with assembly. Here is a

short list supplied from the STM32 Programming Manual that shows key registers:

Name Type Description

R0 – R12 Read-write General Purpose Register

MSP Read-write Stack Pointer (SP)

PSP Read-write Stack Pointer (SP)

LR Read-write Link Register (LR)

PC Read-write Program Counter (PC)

PSR Read-write Program Status Register

ASPR Read-write Application Program Status Register

IPSR Read-only Interrupt Program Status Register

EPSR Read-only Execution Program Status Register

PRIMASK Read-write Priority Mask Register

CONTROL Read-write Control Register

Table 19: Essential Register Summary from STM32F0 Programming Manual

10.3.3: Interrupts and Exception Handling

The Cortex-M0, which is what the design will implement, does support interrupts and

exception handling as stated by the Programming Manual. More in-depth explanation of

how this is handle can be found in the manual.

 Flashing the Hardware
There is a difference between programming the chip and flashing the hardware.

Programming the chip involves the physical code that is put onto the chip whereas flashing

the hardware is the method in which the code gets onto the chip. Using the STM32 breakout

board makes this process very easy and is one of the main reasons for the existence of

breakout boards, so individuals can use a chipset without making their final hardware

design. When the design is finished, the project will not have a dedicated board; there will

be a board designed for our purposes. Unfortunately, that doesn’t mean that flashing the

chip will be so easy.

10.4.1: Flashing the STM32 Breakout Board

This is by far the easiest. As said in the previous paragraph, the breakout board is designed

specifically for easy coding and ease-of-use. It simply needs a USB type cable as well as

the driver information, so the computer can recognize the device to program it. From here,

using the IDE supplied by the STM website, flashing the chip is as easy as compiling the

code and uploading, or flashing, it to the chip.

10.4.2: JTAG

Before getting into the specifics of how to flash the final PCB design, JTAG must be

explained. According to XJTAG website [38] , JTAG makes use of one underlying

62

technology, which is, the four-wire JTAG communications protocol. It makes use of four

signals according to the website. Two of these pins is the SWDIO and the SWCLK. The

table below shows the ports and pin numbering:

Pin Port Name

46 PA13 SWDIO

49 PA14 SWCLK

Table 20: Pin and Port Information for JTAG pins

10.4.3: SWD In More Detail

SWD stands for serial wire debug allows for programming, step-through debugging, and

many more UART style I/O. JTAG and SWD have almost become synonymous when

talked about in forums, but SWD is more ARM specific and uses less pins than JTAG, but

for non-ARM specific devices, JTAG would be the way to go.

10.4.4: Flashing the Final PCB Design

This is a little trickier than flashing the STM32 breakout board because the design doesn’t

have the dedicated hardware created for it. The design will make use of SWD due to the

reasons stated above in previous paragraphs. A lot of documentation leads to the ST-Link

V2 to program the chip and debug when on the PCB design. This device makes it easier to

program the chip, but a design can be made without this device for more hardware

adaptations. The device essentially brings boot0, or pin 60, low to set the desired boot

mode. This boot mode can be boot from flash, boot from system memory, or boot from

embedded SRAM. Obviously, the design needs to be set to boot from flash to program it

and when in normal operating mode, the design needs to set the boot mode to boot from

system memory to run the code that the system gets flashed with.

10.4.5: Making Use of STM32 Breakout Board

The STM32 Breakout Board is intended to make the development process easier. For initial

testing, the design incorporates I2C communication. For I2C communication to occur, the

data sheet for the MMA8451, which is the accelerometer, specifies the start and stop bits

as well as how the communication occurs and is successful. Since the design only needs to

write to the accelerometer, we look at the data sheet and find the I2C data sequence

diagram, which looks like this for a single-byte read:

Figure 44: I2C Data Sequence for MMA8451

As we can see, we send a start bit as well as the device’s address, which for the MMA8451

is 0x1D unless we pulled the address pin down, then the address is 0x1C. The

communication appends to the end a write bit, which specifies whether the STM32 is

63

writing or reading from the device. The device then sends an acknowledgement. Next, a

register address is sent that is to be read from the device as well as an acknowledgement.

It then follows up with a repeated start condition (SR), the device’s address we want to

read to, and then the read bit to specify whether to read. An acknowledgement is sent as

well as the data correlating with all the details thus far. The I2C protocol then sends a stop

bit (SP) to signify the end of the data read or write.

 Development Environment
The STM32 has a lot of support by the ST company. Resources our project will utilize

includes a data reader, an IDE and a configuration program. All these aid in the

development process and make the configuration and debugging exponentially easier for

testing.

10.5.1: STMStudio

This program makes it easier to debug our program that we load onto the STM32. It makes

it easier by reading and allowing variables to be displayed in real-time after code has been

uploaded. In the future, it has ST-Link support for SWD debugging, which the project most

likely will make use of. This kind of tool is specific to the STM, thus has a lot of support

for our chip as well as good documentation.

10.5.2: Keil uVision5

The uVision software is a project manager and a run-time environment. It’s essentially an

IDE for embedded programming. This IDE was chosen based on the fact that there are

many videos correlating with programming the STM32 that utilize this software. It is

optimized for C/C++, which is essential in our project.

10.5.3: STM32CubeMX

This software is an initialization code generator. It essentially helps you build initialization

code and provides a nice UI to change things such as clock frequency, dedicated addresses,

GPIO pin setup and much more. This part is usually tedious to program, but this program

handles all of this and gives a good template to start programming from. It even has support

for initializing I2C communication on the board, which is the essential part of the design.

The process is simple. It first allows you to choose your chipset or board. One then goes

through the process of setting the configuration with a pinout-conflict solver, a clock-tree

setting helper, a power-consumption calculator, and a utility performing MCU peripheral

configuration (GPIO, USART, ...) and middleware stacks (USB, TCP/IP, ...). This makes

the whole configuration very easy.

10.5.4: Flasher-STM32

This is optional software that leads me to believe the design might have to incorporate in

when it comes time to flash the chip on the PCB design. This software helps in flash loading

the memory. It comes with features such as UART system memory bootloader and

documentation to get one started.

64

 Calculating the Accelerometer Data
Calculating the accelerometer data will be tricky. What we need to do with the data is

essentially integrate the data points twice to get the position. However, when doing this,

any noise or inaccurate data get amplified each time we integrate. This process will

certainly make the design difficult because it is the bottleneck of the system. Without

having proper conversion of the accelerometer data, then the Blender module cannot work,

and neither can the interface between the board nor the Blender module. As mentioned on

StackOverflow we need to keep a few things in mind. We need to use Newton – D’Lambert

physics for non-relativistic speeds. Since our accelerometers can rotate, the direction must

be applied. The measured timings are critical, and the compass is not always correct. With

these things in mind, the design for the algorithm to turn accelerometer data will be

difficult.

11: Blender & 3D Environment
A fundamental part of our project is creating an interactive 3D Environment to show the

capabilities of our glove. Blender is a professional, open-source 3D graphics toolset. It’s

capable of animation, effects, printing 3D models, and most importantly for us, interactive

3D applications. We’ll be using Blender to demonstrate the following abilities of our

glove:

• Motion tracking

• Hand formation tracking

• Vibrations at different frequencies

• Peltier device at different temperatures

Our reasons for choosing Blender are numerous. For one, its flexibility allows us to do

anything we need in one program. From modeling to animating, adding effects, and

scripting, we can create our project while keeping any other programs’ usage to a

minimum. This is good because it saves time on learning to use many programs and

prevents potential compatibility issues in the future, and at the same time blender can be

easily used in conjunction with many other programs. If the need to incorporate more

software into our project arises, or if we need to switch to different software outright, using

blender will make sure most of our work is still usable, and any losses in progress will be

kept at a minimum.

Another reason to use blender is that it’s free and open source. This keeps our project’s

budget at a minimum, because we won’t have to pay for professional, proprietary software

that could potentially be very expensive, all while still allowing us to keep rights to

whatever we create. It also means that the skills accumulated in creating this project will

be useful in future endeavors, as familiarity with blender and the skills and concepts

associated with it are very useful in today’s job market.

Blender also has a wide user-base, and is described as “a public project, made by hundreds

of people from around the world” on their website. Consequently, it has a ton of resources

65

and assets publicly available. This means we can save a lot of time by using public assets

that are at our disposal. If done from scratch, we would have to model every piece of

environment, the hand, and any interactive objects, then texture and animate them all on

our own. Using public assets allows us to skip many of these steps, which will save us

days and possibly even months of work.

Most of the work will be modifying public assets and scripting them to interact with the

rest of the 3D environment and consequently the glove itself. The end goal is to have a

demo that shows all the aforementioned capabilities of our glove and getting our glove to

interact with the demo on-screen.

The idea for the final product for our demo will be as follows: In blender we will have a

modeled hand that can change itself to match the user’s hand that is wearing the glove. It

will move around the environment as the user moves his hand. This is how the motion

tracking of the glove will be demonstrated. If the user moves their hand left, the hand in

the engine will also move left, and vice versa. Our aim is to match the distance that the

hand in the 3D engine moves to the user’s hand as closely possible, in order to give an

immersive experience that “feels real.” This will likely have many applications in VR

technology.

The in-game hand will also be able to form into the shape that the user is making with his

hand. This makes use of the accelerometers implemented into the glove design. This is

how we will demo this part of the glove. Like with the hand tracking, this will try to be

done as accurately as possible for an experience that “feels real.”

Another feature of the glove to demo is the vibrations integrated into the glove. The idea

is to use this so that the user feels feedback from the vibration whenever they control the

hand to touch something in the 3D world. The glove will vibrate the points of the hand

that are “touching” a 3D object and resonate at a frequency that will be higher depending

on the “toughness” of the object, which will be a variable associated with 3D objects that

differentiates between objects made of “soft” materials and those made of “hard” materials,

and the speed at which the 3D hand collides with the 3D object. This will simulate

“feeling” this with your hand in the 3D environment and could have very useful application

in making an immersive experience in VR or other technologies.

The last feature of the glove to demo is the Peltier device, which are chips integrated into

the glove that can heat or cool. The objects that the hand can interact with in the 3D world

will have a “temperature” variable associated with it. When the hand is in contact with an

object, the temperature on the Peltier chips will adjust to be warmer or cooler based on the

object. This will simulate temperature in the 3D world, if the user has the hand pick up an

object that’s hot, the Peltier chips will make it “feel hot,” and vice versa for cold objects.

To demonstrate all of this at the same time, the demo will have a table with multiple objects

that the glove can interact with. This will make demonstrating the features of our glove

much easier as we’ll be able to do it all at once in one sitting. There are multiple ways to

use these objects to demonstrate these features: A blue ball with a lower “temperature

66

value” and a red ball with a higher “temperature value” to show the Peltier devices, a “soft”

and “hard” ball that can demonstrate vibrations, or a “stove top” on the table with a field

that will warm the Peltier chips when the hand is in the field. This environment will have

to be created, modeled, textured, and scripted using blender.

We’ll start by creating a demo without the glove, so we can make sure physics and

interactivity works before we implement our device. We can start the making the demo by

creating the table, followed by making the ground, a block to place on top of the table to

test the physics, and a placeholder hand. Once these assets are implemented, we can script

the objects to react to gravity and collisions, make the hand controllable with the keyboard,

and position the camera and allow it to be controlled with the mouse. We will also need to

texture everything, so it looks more presentable, and possibly add a skybox as well to make

it more immersive.

 Modeling & Object Creation
Blender gives us many tools to help create the demo for our project. The first thing we do

is change the unit type in the scene tab to “Imperial.” This means the units will represent

feet and inches, which will be helpful for us because it helps correlate between lengths in

real life and lengths in the demo environment, and imperial units make the most sense for

this because they’re more common in United States. We want to do everything we can to

make the demo feel like a real application and keeping scaling consistent will help with

that.

The create tool allows us to make many basic shapes and objects, and we will use it to

make several basic objects for the demo. Now we’re going to make a table, which will

have many demo objects placed on top to help with our demonstration. This is done using

a series of cubes that we modify. The desktop is a cube transformed to be thin and wide,

while the legs are all cubes made to be tall and skinny. Then we position them together

and combine it with Ctrl-J to turn into one object and rename it to “table.”

67

Figure 45: Screenshot of Blender Interface

Figure 46: Table before legs were added

68

Figure 47: Table after legs were added

Now we need to add a ground. This is very simple, I just create a mesh with the same tool

I used to make the blocks and use the properties window to change its location to (0,0,0),

at the center of the 3D space, and increase the scaling on the x and y plane to make it large

enough to fit everything on.

Once we have that, we need to import a hand model. Modeling out a brand-new model is

time consuming, so importing a free one is ideal. free3d.com is a website that specializes

in royalty free assets, from which we can get a royalty free model to use for our project.

[20] The model we’ve imported is “Realistic Hand 3d model” from user

“mohammadalizadeh” on free3d.com.

69

Figure 48: Cover image of imported hand

Once downloaded, we simply use File -> Import -> 3d Studio (.3ds) and select the

downloaded file and the hand model is now in our program. The hand is a little too large,

so I use the properties window to scale it down to 0.1 on all axes and change the rotation

to have the fingers forward facing towards the table at start.

Figure 49: Completed table and plane with imported hand

We’ve also added a block above the table to test the physics and positioned the camera to

where it’ll need to be for the in-game vision.

70

 Physics Implementation
Adding the physics is actually very easy to do in blender. We change the “gravity” value

under the scene tab in the properties window to 32.2 ft/s2 to emulate real life. Now we use

the “physics” tab in the properties window, where we can change the physics type of each

of the objects. For the table and the block, we change the physics type from “static” to

“rigid body.” This causes these objects to be affected by gravity, so they’ll fall until they

collide with something else or the plane we’ve used as the ground. For the plane, we leave

the physics type as “static,” as we don’t want that to fall. The camera will also be left as

static so that it doesn’t move.

The hand will be controlled with the keyboard for now and later changed to be controlled

with the glove. We change the physics type for the hand to “dynamic” for this reason.

This leaves us with a problem, as the hand will now be affected by gravity, but we want to

be able to control it. There’s many ways around this issue, this will be addressed when we

script it.

With all this implemented, we can press “P” to start the engine and see that the block falls

and rests on the table, while the table rests on the ground. To make the collision box for

the block more accurate, we check the “collision bounds” box at the bottom of the physics

tab and change the bounds to “box.” This makes the collision bound of the object more

block-like.

Figure 50: Physics settings for the block

71

 Scripting & Logic
Now we will script the hand and camera. We create another window and use the button in

its corner to select “logic editor.” Here we can put together “logic bricks” that form simple

code. The logic editor also supports python code which we might implement later but for

now we’ll implement a few simple logic bricks.

We want the hand to move when we press a key. In this case, we’ll use “W” because we

want to be able to use the mouse to move the camera around at the same time. The logic

editor has three types of bricks: sensors, controllers, and actuators. To make the hand move

forward with W, we create hit the “Add Sensor” dropdown box and select “Keyboard.”

Then we name the sensor “W” and set “W” as the key for the sensor. Now we add an

actuator and select “Motion.” We use “Simple Motion” for the motion type and enter -0.1

for the x value under “Loc.” This will cause the hand to move forward 0.1 on its relative

x axis when it senses that “W” is pressed. Now we click on the black dot next to the sensor

and drag it to the actuator. This creates a controller brick automatically, which we will

leave set to “and.”

Figure 51: First logic brick for the hand

We can repeat the same process with the “S” key to make the hand able to go backward.

The only difference is we set the loc value “0.1” so that it will move the opposite way.

Now we need the hand to be able to turn with A and D, which can be implemented similarly

to forward and backward. We make another keyboard sensor for “A” and “D,” and then

two more motion actuators. This time we change the “Rot” values instead of “Loc,” and

input 5 for the Z value. This causes the hand to rotate 5 degrees on its relative Z axis

whenever it detects that “A” is pressed. We then use -5 for our other actuator and draw

lines in-between our sensors and actuators to create the controllers. The hand will now

turn with “A” and “D” inputs. We also implement a few more logic bricks to script the

hand to raise and lower when the “Q” and “E” keys are pressed.

72

There’s one more thing that needs to be scripted for the hand (at least for now). The hand

is set as a dynamic object and is thus affected by gravity, but we want to be able to control

the hand freely so it doesn’t drop to the ground as soon as the program starts. We make an

“always” sensor and another motion actuator. For this actuator we choose motion and give

it a force value in the Z direction. This force will always cancel out with the gravitational

force, so it produces the effect of the hand not being affected by gravity.

Figure 52: Full logic brick for the hand

Now the logic programming for our beta hand is complete. When we start the game engine

the hand can be moved with the keyboard and will collide with the block on the table and

knock it over. The only thing left for scripting is the camera.

Setting up the camera control is actually very simple; we select the camera and open up the

logic editor. We make a “Mouse” sensor and a “Mouse” actuator and connect them. Then

we set the Mouse actuator mode to “Look,” and it’s complete.

Figure 53: Camera logic brick

Now we can select “view” in the 3D viewport and select “camera.” When we start the

game engine, we’ll be looking through the camera, and can control it with the mouse.

73

Figure 54: Camera Viewpoint

11.4: Sound Effects

Another way to add immersion to the virtual reality experience is through sound effects.

The sound effects come from freesoundeffects.com, a royalty and license free website that

provides numerous sound clips for us to use. [21]

The following is an example: We give the cube a collision sensor to play the sound effect

of a can dropping. Now whenever the cube comes into collision with another object, the

“can_drop” sound will play. This gives the sphere a “hollow” feel to it, since it has an airy

tin sound upon impact.

Blender also has a built in “3D Sound” feature, which will make the direction of the sound

come from the direction of the object in the user’s headphones, which can be adjusted in

volume, gain, and distance limit however we want. This is especially important for a virtual

reality project, as being able to tell where the direction from which sound effects are

coming from is an important aspect of the immersive experience.

Figure 55 Sound Effect Implementation

74

Using this same scripting, we can implement sound effects on any objects, and script them

to be ongoing or one time, or add ambient music that always plays, giving our

demonstration one more layer of immersion.

11.5: Texturing
Now we’ll add a few textures to our objects. This will help make our demo look much

more presentable. Our textures we'll come from the 3dtotal. This will give us royalty free

textures to use for our project. [22]

We can do this by opening up another window and changing it to the UV/Editor. Here we

can upload the textures we want to use. For now, we’ll apply three textures, one for the

table, one for the hand, and one for the plane.

Now we select an object and go to the “materials” tab in the properties window to create a

new material for the texture. From here we change the 3D viewport to “edit mode” and

start selecting objects that we need to texture. The edit mode allows us to be very specific

with how we want to apply textures, by letting us choose individual faces of each polygon

and choosing the texture and editing it individually for each segment, but for now we can

simply apply the texture to the entire object.

Here are the textures that we’ll be using for this prototype: The table has a wood texture

to make it look like a wood table, the plain has a grass texture to make it look like a grassy

terrain, and the hand has a skin texture to make it look like a human hand.

Figure 56: Grass texture

75

Figure 57: Wood and Skin Textures for the table and Hand

Figure 58: Skin Texture for the Hand

Once the selection is made we simply use the “unwrap” option to have the texture is fully

visible. We repeat this process for each texture we want to apply.

76

Figure 59: Texture editing in blender

One last thing we can do to make the prototype demo look more presentable is to change

the horizon color to more resemble a sky in the middle of the day. Once we put it all

together here’s what our prototype demo looks like:

Figure 60: Textured and colored prototype Environment

77

12: HTC Vive & Setup

Our product will be demonstrated with the HTC Vive. The glove doesn’t necessitate use

of any virtual reality headset, nor does it require use of virtual reality to function. That

being said, the idea for this project was made to be implemented with virtual reality, as it

can greatly enhance the current virtual reality experience. Because of this, we want to

demonstrate our device’s functionality in conjunction with virtual reality.

We chose the HTC Vive for our demonstration because it’s a high-quality headset that is

compatible with a lot of software due to SteamVR. It has a resolution of 1080 by 1200

pixels per eye, a 90Hz refresh rate, and a 110-degree wide field of view. It comes with two

base stations, also known as lighthouses, which make tracking possible in a room setup. It

also comes with two controllers, but this won’t be used for our demonstration.

Figure 61 HTC Vive with two lighthouses and controllers

The Vive also has a front camera and an audio jack installed. The audio jack will allow

sound effects incorporated into the demo to be heard.

SteamVR is compatible with most virtual reality hardware, from Google Cardboard to

Oculus Rift. It’s also royalty free with no licensing fees and no requirement for approval.

[23] This means that whatever we create will be compatible with almost any virtual reality

78

system and it won’t cost us anything to develop with. SteamVR is also one of the most

widely used virtual tracking systems today, so any virtual reality consumer will already be

familiar with it.

The Vive itself requires a little bit of setup to use. Its biggest feature is its room tracking

technology, which lets you walk around a room in virtual reality. This requires two

lighthouses on each corner of the room, which should be station 6 feet 6 inches off the

floor, in a 6 feet 6 inch by 5 feet clear area. It also requires a wired connection to the PC

because it needs a direct connection to the video card, as well as a USB connection and a

power connection. The PC will run the software, and the glove will be connected via

Bluetooth. The lighthouses require a power connection through the wall and communicate

wirelessly with the headset.

Once the setup is complete, our glove will be ready to perform with our demonstration

loaded up. The user can explore a 3D space in a 5 feet by 6.5 feet area and interact with

the environment using the glove.

Figure 62 Room setup with HTC Vive

13: Implementation of Virtual Reality
One of the most important parts of our project demo is to incorporate a virtual reality

headset to show the strength our device can have when used in conjunction of a virtual

reality setting. The first step to doing this is, is to incorporate the use of a virtual reality

headset, in our case an HTC Vive, into blender.

There are many ways to do this, that work for many different sets of virtual reality

hardware. One of the simplest ways is to use a slightly modified version of the free open-

source blender addon “virtual reality viewport,” by dfelinto. [24]

79

This addon allows for virtual reality in the viewport of Blender, helpful for building things

in reference to the headset. More importantly, it allows us to attach cameras to the headset

position and display them on the HMD.

Figure 63: Blender displayed in Vive HMD

The head is tracked by the lighthouses, and the camera attaches to the location provided by

the SteamVR tracking. The “center” of the headset’s standing space will be set to be right

in front of the desk. From there, the user will be able to look around the desk and walk a

short distance around the desk.

The headset itself will be programmed as a reference point for the hand. The hand will be

calibrated to the headset, and then the position of the hand will be calculated as a distance

from the hand based on the head as an origin point. This makes the most sense because

the headset will represent where the user’s “viewpoint” is in real life.

The screenshot shows the display on the Vive HMD, being reproduced as a flat image.

With this set up we can include all the functionality of a VR headset, including tracking,

motion-sensing, and 3D image generation.

 Skeleton Rigging and Animation

Since finger tracking is one of the most important features of the glove, arguably even the

most important, we’re going to need the hand in our demo to be able to represent that, and

to do that we’re going to need the fingers on the model itself to move in conjunction to the

glove’s finger movements. This is where rigging comes into play, where we create an

animation rig for the hand and script it to move according to inputs it receives.

The first step is to create an armature in blender. Then we can scale it down and start

incorporating it into our hand model.

80

Figure 64: Incorporating a skeleton into the hand

Wireframes are very helpful for this, because they allow us to see through the models and

see what we’re doing.

Once we have the first bone placed, we can use the extend tool in edit to create a network

of bones to animate the hand with.

Figure 65: wireframe and skeleton for index finger

Three bones are used for each finger to match the number in the human body as well as

make it match more consistently with our device. Each finger will be able to rotate on

three axes.

81

With a skeleton placed for one finger, we can now pair it with the mesh to make the finger

fully adjustable. Once the pairing is done, the mesh (and our hand) will move freely with

the animation rig.

Figure 66: Example of finder adjustability

Now that this is done with one finger, the process can be easily repeated and done for every

other finger. The thumb will be done a little differently because it only has two thumbs,

so it will have slightly different scaling and only two bones.

Figure 67: Animation rig compelte for hand

82

The result: A fully functional hand that can bend to a shape the same way that a normal

hand can for use with our device.

Figure 68: Hand Flexibility Example

Now that we have a complete hand, we can test it with scripting to make it move with a

keyboard input. As long as this works, it will be easily implemented when it comes time

to use our device with this demo.

Figure 69: Scripting For Finger Rotation

With this script we can command the index finger to rotate with an ‘L’ press. Now we’ll

be able to incorporate the glove and change the script to change the angle by whichever

means we feel necessary using the glove’s input.

83

14: Bringing it all together
Now that we have the key features, let’s add a few things in that will make our demo ready

for our device. Keep in mind that the main things we need to demonstrate are: Motion,

haptic feedback (vibrations), and temperature change (Peltier devices). For this, we added

a few more objects to the desk.

Figure 70: More objects added to desk

The first of which is a sphere, which is added for two reasons. The first one is to be able

to demonstrate the haptic feedback of the glove more thoroughly. The glove is designed

to give haptic feedback at multiple “intensities,” so the sphere can simulate a “soft”

material while the block can simulate a “hard” material. The glove’s haptic feedback will

vibrate more intensely when coming in contact with the block than coming in contact with

the sphere.

The second reason is to demonstrate the positional aspect of the haptic feedback. A sphere

will be in contact at different points in your hand than a block when holding it. These

different points will vibrate to more simulate the “feeling” part of the project in a more

immersive way.

This will be done by adding an attribute to the objects that will be named “Mass” to each

object in the demo. This value will be used as a coefficient for the frequency of the haptic

feedback in the glove, which will also consider the velocity at which the glove collides

with the object. In physics, momentum transfer is based off of mass and velocity, so we’ll

have a function that takes the velocity of the hand coming into contact with the object and

multiplies it with the mass value of the object it comes into contact with. This can be

attributed to the object with the game properties tool as so.

84

Figure 71: Mass properties for sphere and cube

The other two objects added are thin cylinders on either side of the desk, one colored blue

and one colored red. This is a simple way to make “stove tops” that can be used to test the

Peltier portion of the glove’s functionality. The cylinders will be given a field of range,

extending upward but not out to the side. When the hand enters these fields, the Peltier

will heat or cool according to the color cylinder the hand is hovering above.

This can be accomplished by adding invisible, transparent, and taller cylinders on top of

the ones we have. This will be the “field” of the stovetops, and we can script a function to

begin when the hand comes into the space of these taller cylinders. This function will

instruct the glove to start heating up or cooling down the Peltier sensors, depending on

which cylinder the hand has entered.

Since we don’t want the Peltier devices to reach over certain temperatures, we’ll also script

it to check the current temperature of the glove on top of detection collision with the

invisible cylinders. This way the Peltier devices won’t overheat or get too cold.

15: Device Driver & Input
In order for the device to communicate with the PC, a driver will be used. This driver is

what will interpret the signals that comes from the glove via the Bluetooth signal that will

be implemented. Blender will communicate with the driver to interact with the glove.

The device itself works in a differential system. Once the device is calibrated, the device

will send data on how it’s position changes over time. Because of this, the easiest way to

implement the device into Blender is to have it detect the driver as a game controller and

send inputs as the glove changes. Blender will take these inputs and adjust the in-game

hand accordingly.

For the finger movement, Blender will take ‘Axis’ inputs, where each segment of each

finger will have an ‘Axis’ event that the logic editor can keep track of. The axis will update

based on the inputs from the driver, and the finger poses will adjust accordingly, allowing

them to match the glove’s hand formation.

85

For the hand tracking, two ‘Axis’ inputs can be used. Each input from the driver will be a

different direction on the axis and based on that input the position of the hand will change

accordingly. The two axes will be used to separately control the hand on the XY plane and

the XZ plane, for full 3D movement.

Two more axes will be used for wrist tracking. The first axis will work similarly to the

finger, where it will change the angle the hand is at based on the user’s wrist angle. The

second axis will be used for wrist rotation, which will allow the user to turn their entire

hand on its side or upside down.

The Blender demo will also have to send data back to the driver for the haptic feedback

and Peltier device. Blender will send an ID for which vibrator or Peltier device on the

glove is being affected, and another value for the severity level. For the Peltier device the

severity value will tell the device if it needs to cool or heat up and how quickly it should

heat up. For the vibration, it’ll give a frequency for each device to resonate at.

For the axis sensors, Blender already has built in axis sensors and controller detectors,

making implementation for the hand movement easy to do. For the Peltier and haptic

feedback devices, the actuator in the logic section will invoke a python script to invoke

their effects.

Altogether the driver will be able to command the hand to move and adjust in the same

fashion that the glove does, and Blender will be able to command the driver to have the

glove Peltier devices change temperature and the haptic feedback devices vibrate at the

rate as scripted.

16: Python Scripting
Blender allows for python scripting for more control on how the program works. This is

done through its python API which contains a large library of functions capable of math,

geometry, game logic, GPU functions, Audio Systems and more. [25] This is necessary

for how we want to implement the Peltier and haptic feedback devices on the glove.

The following code is attached as a controller to a Collision sensor on the object. When

the hand comes into collision with the object, it will use the getLinearVelocity() function

from the logic API and multiply it with the ‘Mass’ property applied to the object.

Figure 72 Python Haptic Feedback Code

86

This script will activate when the hand comes into collision with the object, then it will

calculate the difference between the hand’s velocity and the object velocity, multiply it by

the ‘Mass’ property, and pass it through the “glove.haptic” function.

The “glove.haptic” function is a function that will take a number and have the hand vibrate

by a frequency based on the number that passes through it. This function will be made to

interact with the driver to perform this functionality.

The Peltier function can be implemented in a very similar way using a collision detection

in the invisible cylinders on the table that serve as the “field” in which the glove will heat

up. Instead, it’ll use a function to calculate distance from the object and a base value for

the heat.

Figure 73 Python Script for Peltier Device

The distance is calculated by subtracting the hand position from the object position. This

distance is multiplied by the ‘Temp’ property associated with the cylinder and passed

through the function. The ‘Temp’ property on the red cylinder will be positive, and on the

blue cylinder will be negative, which the driver will interpret into instructions to warm or

cool the peltier device.

87

17: Configuration Utility
The Configuration Utility provides a configurable interface between the hardware glove

and the 3D environment rendering software. The utility consists of two primary functions,

data passing and configuration management. Data passing handles data transmission

between the glove and the 3D environment. The glove passes the user’s hand motion to the

utility which forwards the data, so the 3D environment can update the position of the

corresponding virtual hand. The 3D environment passes touch and temperature data

through the utility which forwards the data to the glove to update the haptic and thermal

feedback experienced by the user. Configuration management allows for multiple

connected gloves to be mapped to their corresponding virtual counterparts. Each connected

glove is individually configurable to allow for customizing both the haptic and thermal

feedback intensity, along with pairing to identify which gloves represent the hands of

which user.

 Development Overview
The configuration utility will be developed utilizing Microsoft’s Visual Studio Community

2015 [26]. Visual Studio is Microsoft’s primary integrated development environment

which provides platforms such as the Windows API and Windows Forms. Team and code

management is supported along with full featured debugging. Visual Studio supports a

variety of programming languages including, but not limited to, C, C++, Visual Basic, C#,

Python, and JavaScript. The Community edition is a free version of Visual Studio with a

license that restricts use to individual or team development of open source projects. The

configuration utility was developed using the C# programming language and following

Microsoft’s C# and .NET coding standards.

 Use Case
Use case diagrams also known as behavior diagrams are used to describe a set of actions

or use cases that some system or systems should or can perform in collaboration with one

or more external users. Each use case provides an observable and valuable result that is

product of the action or actions taken by the user. When used to describe software, use case

diagrams can specify, external requirements of a system, functionally of a system that is

offered to a user, and the effect the system has on the environment.

88

Figure 74: Utility use case diagram

The use case diagram for the configuration utility is shown in the figure above. There are

three actors that interact with the utility. They are the user, the blender 3d software, and

the hardware glove. The diagram shows that from the glove and blender’s perspective, the

utility exits only as a gateway for transmitting and receiving data between them. This has

the effect of isolating the hardware glove and 3d software from each other allowing for

independent development and maintenance of each component. The primacy actor that

interacts with eh configuration utility is the user. From the use case diagram, the user uses

the utility to perform three major tasks each of which is supported by minor tasks. The

major tasks for the utility are managing profile, setting the mode of the utility, and

configuring connected glove devices.

Managing Profile is supported by the actions of creating, modifying, loading, and deleting

profiles. These actions are how the user manages the memory of the utility. Configurations

and profiles are stored in the utility directory using an xml scheme. When loaded, the

profiles preserve settings, so the user does not have to go through the process of configuring

the same glove every time the utility is started.

Setting the utility mode is how the user toggles a selected glove profile between regular

and debug modes. While in debug mode, this action is supported by three additional actions

that are only available while in debug mode. Real-Time view of feedback allows the user

89

to real-time updating charts of the outputs and inputs to all of the major electrical sensors

and actuations in the hardware system. The commanded and actual value of the vibration

motors and Peltier devices will be displayed. The real-time positional displacements of the

accelerometers will be displayed. Injecting of temperature and touch data allows the user

to send and observe signals to the vibration and Peltier devices. The debug mode aids the

user in assessing the functionality of the hardware and isolating potential faulty devices.

When the utility is in normal mode, the user can undertake profile management and

individual glove configuration. Synced gloves can have their parity set, be paired together,

and have the hardware limits for touch and temperature set. While in normal mode, the

utility will act as the data relay and transformer between the glove and the 3d software.

 System Architecture
The structure of the configuration utility consists of a graphical user interface layered on

top of data packager that converts a serial connection interface from a Bluetooth device

into a windows process interface connected to a 3D rendering software. In between the

user interface and the connection logic sits the profile manager, linear interpolator,

debugger, and the configuration storage. The Layout of the utility is shown in the figure

below.

Figure 75: Utility Architecture Diagram

The profile manager is the main component of the utility. It handles the creating and storage

of profiles, routing of data through the utility, responds to the user interface, and provides

the linear interpolator with the user specified limits for generating feedback signals in the

glove device.

The debugger is the primary means for accessing operational issues with a connected glove

device. The debugger sits directly between the user interface and the serial connection.

This configuration allows for isolating a glove device from the remain system. Through

the debugger, the user can monitor real-time feedback of glove motion, and the current

commanded vibration and temperature feedback. The debugger also provides the user with

an interface for injected feedback signals directly to individual feedback devices on the

glove, so the response can be monitored.

90

The role of the linear interpolator is to transform the touch and temperature values from

the virtual environment, into the corresponding feedback values using the limits set by the

configuration utility. Linear interpolation is the method of curve fitting using linear

polynomials to construct new data points within the range of a set of known data points.

Setting the high and low range for the touch and temperature feedback, allows the user to

scale the intensity of the feedback response as well as to ensure that the glove operates

within the limits imposed by the hardware.

Figure 76: Utility Class diagram

The class diagram above shows the preliminary design of the configuration utility software.

The configuration utility is broken down into several class. Each class provides a specific

service to the software. The use of the object-oriented design methodology allows for

software development that is streamlined, highly modular, and easy to update and maintain

such that additional future features can be readily implemented.

The heart of the software is the Util Core. The core provides the logical brain of the

software and is composed of other classes. The brain is responsible for updating the

graphical user interface, handling of software state, controlling inbound and outbound

communication, managing connected glove components, and controlling the interpolation

91

routines. The Utili Core is composed of four direct classes; process Comm, Interpolator,

Serial Comm, and Glove.

The glove class organizes and provides and interface for the configuration utility to

manipulate and interact with a connect glove. Each connected glove is represented

internally by an instance of the glove class. The glove class provides the methods needed

to manipulate the debug mode, pairing between gloves, as well as creating and removing

the glove. Each glove is composed of multiple electronic devices. Each of these devices is

represented by the Electric device class. Each class provides an interface for reading and

writing to the device. The physical location the electric device on the glove is also set so

that the virtual hand can be mapped one-to-one with the hardware glove.

 Inter-Process Communication
The Process Comm handles the data communication between the configuration utility

software, and the 3D environment software. The process comm establishes manages and

maintains the communication connection. To facilitate this, the process comm will use an

inter-process communication available on a windows system.

Inter-process communication refers specifically to the mechanisms an operating system

provides to allow the process to manage shard data. Typically, applications can use IPC in

a client-server scheme where the client request data and the server responds to clients. IPC

is divided into categories which vary based on software requirements, such as performance

and modularity requirements, and system circumstances, such as network bandwidth and

latency. There are several inter process communication schemes available on a windows

system. [27]

17.4.1: File

A file is a storage structure on a digital medium. A major portion of an operating system is

the file server which allows process to create, delete, modify, read, and write files. Process

can leverage this mechanism to provide rudimentary communication by reading and

writing to the same file. File communication is available on most operating systems.

17.4.2: Socket

Data sent over a network interface, either to a different process on the same computer or to

another computer on the network. Leverages the power of TCP and UDP protocols to

provide inter process communication and is available on most operating systems.

17.4.3: Unix domain socket

Similar to an internet socket but all communication occurs within the kernel. Domain

sockets use the file system as their address space. Processes reference a domain socket and

multiple processes can communicate with one socket. Available on windows with windows

10.

92

17.4.4: Message queue

Data stream similar to a socket but all communication occurs within the kernel. Domain

sockets use the file system as their address pace. Processes reference a domain socket and

multiple processes communicate with one socket. Available on windows.

17.4.5: Pipe

A unidirectional data channel. Data written to the write end of pipe is buffered by the

operating system until it is read from the red end of the pipe. Two-way data streams

between process can be achieved by creating two pipes utilizing standard input and output.

Available on windows.

17.4.6: Named pipe

Combination of File and Pipes, allows multiple process to communicate. Available on

windows.

17.4.7: Shared Memory

Multiple processes are given access to the same block of memory which creates a shared

buffer for the processes to communicate with eat other. Available on windows.

17.4.8: Message Passing

Allows multiple programs to communicate using message queues and/or non-OS managed

channels. Not OS dependent.

17.4.9: Memory-mapped file

A file mapped to RAM and can be modified by changing memory addresses directly

instead of outputting to a stream. Similar to the File method. Available on windows.

17.4.10: Selected Inter-Process Communication Scheme

The Process Comm will use the file communication method due to its simplicity of

implementation. The basic operations that can be performed on a file are; create, change

permissions, open, read, write, and close. In addition, files can be moved, modified, grown,

and shrunk. Process comm and the 3D environment software will communicate using two

predetermined files on the windows operating system. The files will be created at the

startup of the configuration utility and deleted when the utility is determined.

The first file is designated as the communication point for passing positional data that

utility received from the hardware glove to the 3D environment software in order to update

the position of the virtual hand. Blender will continuously monitor the file to determine if

new positional data is available. When available data is detected, Blender will retrieve the

next complete set of input data from the file. The configuration utility will receive updated

positional data from the hardware glove. After receiving the data, the utility maps, formats,

and writes the data to the file for Blender to retrieve. The file will be designated as a plain

text file and be named. “Util_to_Blender.txt”. The following figure shows the delineation

of the data written to and read from the file.

93

Figure 77: Util_to_Blender.txt

Each data set is framed by a start and end indicator. Next the glove id is given so that the

updated positional data can be applied to the correct virtual hand when multiple hardware

gloves are in use. The majority of the data set consists of the accelerometer data itself. This

data is calculated by the processor on the glove itself. Each line begins by identify the

accelerometer so that the data can be applied to the correct joint on the virtual hand. The

data on each line consists of the changes in all 6 degrees of freedom present in a three-

dimensional system. These are the changes in the three translational directions x, y, and z,

along with the changes in the three rotational directions, x-axis, y-axis, and z-axis. As each

data set is read by Blender, the data block is removed. As new data is received from the

glove, a new data block is added. This effect results in the transfer file continuously

growing and shrinking as both Blender and the configuration utility communicate.

The second file is designated as the communication point for passing touch and temperature

data from Blender to the configuration utility where it is processed and sent to the hardware

glove to drive the vibration and Peltier devices to produce the feedback response. The

configuration utility will continuously monitor the file to determine if new feedback data

is available. When available data is detected, the utility will retrieve the next complete set

of input data from the file. Blender will generate updated feedback data as a result of

updated positional data. After generating the data, Blender maps, formats, and writes the

data to the file for the utility to retrieve. The file will be designated as a plain text fiel and

be named “Blender_to_Util.txt”. The following figure shows the delineation of the data

written to and read from the file.

94

Figure 78: Blender_to_Util.txt

Each data set is framed by a start and end indicator. Next the glove id is given so that the

updated feedback data can be applied to the correct virtual hand when multiple hardware

gloves are in use. The majority of the data set consists of the feedback data itself. This data

is produced by Blender as a result of the updated position of the virtual hand within the 3D

environment. The data section of each frame is split into two parts. The first part consists

of a line of data for each of the Peltier devices on the hardware glove and corresponds to a

temperature measurement point on the virtual hand. Each line begins by identifying the

temperature measurement point so that the data can be applied to the correct Peltier device

on the hardware glove. The data on each line consists of the currently measured

temperature of that point in the 3D environment. The second part of the data section

consists of a line of data for each of the vibrational motors on the hardware glove and

corresponds to touch force measurement point on the virtual hand. Each line begins by

identifying the touch force measurement point so that the data can be applied to the correct

vibrational motor on the hardware glove. The data on each line consist of the currently

measured force applied to that point in the 3D environment. As each data set is read by the

configuration utility, the data block is removed. As new data is generated by Blender, a

new data block is added. This effect results in the transfer file continuously growing and

shrinking as both Blender and the configuration utility communicate.

95

 Bluetooth communication
The serial comm class, handles the communication between the utility software and the

glove itself. The communication protocol that will be used is Bluetooth. Bluetooth is an

industry-standard protocol that enables wireless connectivity for a multitude of devices.

The key features that make Bluetooth the go to protocol from a software perspective, are

its presence in virtually all modern PCs, its support in modern operating systems, it is a

standardized technology with a multitude of resources, and it is a well-defined and familiar

programming interface that allows for quick development.

Bluetooth on windows provides functionality with similarity to TCP. [28] Using Bluetooth

in a standard networking implementation, results in Bluetooth connectivity and data

transfers being programmed through windows sockets function calls. This approach

combines common windows sockets programming techniques and principles with specific

Bluetooth extensions. In addition, Bluetooth provides features such as discovery and

notifications which a necessary for any communication scheme operating in a wireless

environment. Support for Bluetooth on Windows Operating Systems began with Windows

XP Service Pack 1 and includes all subsequent releases of the Windows Operating System.

Microsoft provides two approaches for programming and using Bluetooth on Windows

devices; Using the Windows Sockets interface [29] or Managing devices directly by using

non-socket Bluetooth interfaces.

17.5.1: Selected Windows Bluetooth Method

[30]The serial comm will leverage windows provide Bluetooth APIs to establish a serial

UART connection. The serial comm provides methods to access the serial connection and

read the input message from the hardware glove and provide an output message to the

hardware glove. The selected Bluetooth programming approach is the Windows Sockets

interface. As stated, this method extends the windows sockets API with Bluetooth standard

features. Windows Sockets enables programmers to create applications that transmit data

across the wire in a manner that is independent of the network protocol being used. The

Winsock API provides access to advanced networking features such as multicast and

Quality of Service.

Bluetooth is a serial communication protocol that operates using packets that consist of

headers and administrative fields surrounding a payload of data. The nature of the

configuration utility will leverage the structure of the connection to utilize the headers and

administrative information to identify both the source and recipient of transmitted data.

The payload can then be reserved for the actual data being transmitted. The configuration

utility uses Bluetooth for communication in two directions.

The first direction is receiving data from the hardware glove. When communicating in this

direction, the utility will receive updated positional data from the hardware glove. This

data consists of the changes in all 6 degrees of freedom present in a three-dimensional

system. These are the changes in the three translational directions x, y, and z, along with

the changes in the three rotational directions, x-axis, y-axis, and z-axis. Each set of 6 degree

of freedom changes also contains the identity of the generating accelerometer When

receiving the data. The utility identifies the source glove and then maps and formats the

96

data so that the updated positional information can be transmitted to Blender using the file

inter-process communication scheme.

The second direction of communication is sending data from the utility to the hardware

glove. First the utility processes the feedback data received from Blender. Interpolation is

used to both scale and determine the driving signals necessary for the feedback devices.

These signals are then sent using Bluetooth to the hardware glove. The Bluetooth module

on the glove itself, identifies the data meant for it form the header and administrative

information in the Bluetooth packet. The payload of the packet contains the device driving

signal, along with Identifies for which Peltier or vibrational device that signal is for.

 Interpolation
The interpolator class contains the mathematical logic for converting the blender

environment response into the signal values needed to drive the electrical devices on the

hardware glove. The first action the interpolator does is scale the signal value so that it falls

in-between the associated limits for the glove. Each Peltier and vibrational device contain

documented values that correlate input signal value to output value. If an output signal

value that is not provide is need, then interpolation must be used to construct the necessary

output signal value. Interpolation is a method of constructing new data points within the

range of a discrete set of known data points. There are a variety of interpolation methods.

[31]

17.6.1: Piecewise constant interpolation

This is the simplest method of interpolation. If a need data point falls between two known

points, the value of the of the closest known point is chosen and assigned to the data point.

This method is fast and simple to implement.

17.6.2: Linear interpolation

This method treats the space between known data points as lines. If a need data point falls

in-between two known points, the value is determined by a liner equation and governed by

the two known points on either side if the needed point. Like piecewise interpolation, linear

interpolation is fast and simple to implement while providing increased accuracy.

17.6.3: Polynomial interpolation

This method is an extension of liner interpolation. While linear interpolation is of degree

one, polynomial interpolation can take the form of any degree greater than one. It is

guaranteed that a polynomial can be found that contains the known data points however,

the region between that data points may not be an accurate representation of the needed

behavior characteristic of the device. This method is slower than the previous two and

much more difficult to implement as the degree of the polynomial increases.

17.6.4: Spline interpolation

This method is a variation of linear interpolation. Instead of connecting the known data

points with straight lines, individual low degree polynomials are used such that a smooth

97

curve that passes through the known data points is produced. Spline interpolation can

produce more accurate results than other methods but is much more difficult to implement.

17.6.5: Selected Interpolation Method

Linear interpolation is the method that will be used by the interpolator class. The electric

devices operate on small signal ranges. It is the noticeability of an output difference rather

than the precise accurate value of the output that is most important to the design. The figure

below shows how linear interpolation will be used to drive the output signal for the

electrical feedback devices.

Figure 79: Linear interpolation example [32]

In the figure, the x axis represents the commanded feedback value, touch or temperature,

from the 3D environment. The y axis represents the output signal needed to drive the

corresponding feedback device to the required value. The points (x1, y1) and (x0, y0)

represent the set configuration limit for the feedback signal. The value x is the current value

commanded by the 3D environment. First the value is scaled to fall in-between the

configuration limits. Next the equation below is used to linearly interpolate and find the

output signal value y. This is the signal that is passed to the hardware to drive the

corresponding electrical device to produce the desired feedback experience.

Equation 3: Liner Interpolation [33]

 System Deployment
The configuration utility will be developed for and deployed on a Windows 10 machine.

The Windows Operation system was chosen because it is the most common and most

utilized computer operating system in use today. It is also designed to be user friendly and

the visual studio development environment is specifically designed to work on and interact

with the Windows operation system. The configuration tool system foot-print and

deployment plan are shown in the figure below.

98

Figure 80: Utility Deployment

The root directory will contain the compiled utility executable along with a configuration

xml file and subdirectories for profiles and system resources. The resources directory will

contain subdirectors for images and sounds. These images and sounds are those utilized by

the utility itself i.e. the splash screen, button sounds etc.

The profiles directory contains the stored profiles in xml form. Each profile contains the

configuration settings for one or more glove devices. These settings consist of Bluetooth

I.D. for the glove, parity of the glove (left or right hand), pairing of gloves to represent a

single user, and the interpolation limits for temperature and touch feedback.

 Data Design
The data design of the System consists of three parts. The input/output design details how

data enters and leaves the configuration utility. The internal design details how data is

manipulated and routed within the utility. The storage design details how persistent data is

stored and accessed by the utility.

The input/output data design is centered around serial-based message passing. Serial

messaging is characterized by individual 8bit characters transmitted 1-bit at a time between

two components. Serial messaging is simple, relatively easy to implement and is the

standard scheme use by many commercial devices such as USB and Bluetooth.

The internal data design consists of how data is manipulated inside the utility. The utility

will be develop using the object-oriented programming paradigm. In object-oriented

99

programming, data is associated with objects. Objects contain the data and provide

methods so that other objects can manipulated the data. The utility, data is associated with

a particular glove object. Input signals from the glove is mapped to the corresponding glove

instance in the utility. The utility the packages the data so that blender can associate a set

of data with the corresponding virtual representation of the manipulated hand.

The storage data design determines how persistent data is maintained between uses of the

utility. To accomplish this, the XML data structure will be used. XML, Extensible Markup

Language, is a markup language that defines a set of rules for encoding documents in a

format that is both human-readable and machine-readable. The design goals of XML

emphasize simplicity, generality, and usability. XML is defined through the use of a

Schema. The schema detals what a valid entry into the XML must contain, along with what

a valid entry can contain. Using XML, system configuration settings and glove profile can

make use of individual defined schema to create, modify, and store their states in XML

format in the utility directory. XML is stored the form of a file, and as a file, it is subject

to all the standard operations available to file manipulation.

 User Interface Design
The user Interface utilizes the Windows Forms API to present a simple user-friendly

environment for accessing all the features of the configuration utility. The UI layout is

broken down into several distinct components detailed in the following sections.

• Splash Screen
• Initial utility loading graphic

• Home Screen
• Load, Create, Modify profiles
• Add, Remove, Modify glove devices

• Configuration View
• Modify feedback parameters for selected glove
• Select left or right parity
• Pair Gloves together

• Debug Screen
• Display data received from the selected glove
• Pass data to selected glove

17.9.1: Splash Screen

The Splash Screen is the initial entry point of the configuration utility. It serves to display

the Project Logo along with addition relevant information. The splash screen is shown in

the figure below.

100

Figure 81: Splash Screen

Some of the information displayed are for example; the project members, configuration

utility version, and copyrights. The functional use of the Splash Screen is to show that

configuration utility has successfully loaded and is starting up. A successful startup

transitions the configuration utility to the Home Screen.

17.9.2: Home Screen

The Home Screen is the primary user view for the utility and consists of three sections;

Menu Bar, Main Display, and Selection Tabs.

Figure 82: Home Screen

101

The menu bar is the primary administrative interface for the user and is where the high-

level functions of the utility are accessed. The actions provided by the menu bar are;

minimize, maximize, exit, create profile, load profile, close profile, and delete profile. Each

of the actions are detailed in the table below.

Action Description

Create Profile Creates a new profile for storing a set of glove configurations

Close Profile Closes the currently loaded configuration profile

Delete Profile Permanently deletes a configuration profile

Load Profile Loads a saved configuration profile

Minimize Standard windows action, collapses configuration utility to the

taskbar.

Maximize Standard windows action, fills display with the configuration utility

Exit Standard windows action, safely terminates the configuration

utility

Table 21: Menu Bar commands

The selection tabs are populated whenever a selected profile has saved configuration data

for a glove device. Each tab represents the data for a single glove that is associated with

that profile. Selecting a tab, updates the main display to show the configuration interface

for that glove. Closing a tab removes that glove from the display and erases the

corresponding configuration data from the saved profile.

17.9.3: Configuration View

Selecting a configuration tab from the home screen, loads the configuration view for that

glove device. The figure below shows the layout of the configuration view.

Figure 83: Configuration Tab

102

The configuration view is where glove devices are modified. The parameters available are;

hand parity, glove pairing, and the touch and temperature high low limits. Hand parity

designates whether the glove is left or right handed. This is used for interfacing with the

3D environment software, and for pairing of gloves. Selecting a parity is accomplished by

selecting the corresponding radio button. Glove pairing is the action of assigning two

gloves to represent both hands of a single user. Like parity, this is used for interfacing with

the 3D environment. It also allows for configuration settings to be mirrored across both

gloves. To pair two gloves, open the dropdown list in the entry field. The list will be

automatically populated with gloves that are part of the currently loaded profile, are of

opposite parity, and that are not currently paired.

The touch and temperature high and low limits are used to set the values used by the linear

interpolator when converting 3D environment values into glove signals. Setting these

values allows the user to tune the intensity of the feedback responses, as well as ensure that

hardware limits are not exceeded.

The displayed hand graphic will reflect the selected parity of the glove, the connection I.D.

of the glove, as well as display the number and location of sensors and feedback devices

the glove provides.

The debug option places the utility and glove into debug mode and loads the debug screen

for the selected glove. Debug mode allows for direct monitoring of glove state and

interaction with glove feedback devices.

17.9.4: Debug Screen

Debug mode is the primary method for assessing issues with the glove connection and/or

the glove itself. It is also used to test feedback response to aid in determining the best touch

and temperature limit settings for the user. Selecting yes on the debug menu on the

configuration view transitions the main display into the debug view shown in the figure

below.

103

Figure 84: Debut View

While in debug mode, the glove is disconnected from the 3D environment software. A

direct connection is established between the configuration utility and the glove hardware

providing access to the individual devices of the glove itself. The debug view provides two

features to the user, real-time display, and signal injection.

The primary feature of the debug view is the real-time display. Three charts that monitor

the accelerometer, touch, and temperature signals are displayed and updated in real-time.

Each of the charts displays data for every device of the corresponding type that the glove

provides.

The second feature of the debug view is the ability to inject touch and temperature feedback

signals directly to the glove. This is done one device at a time, and when used in

conjunction with the real-time display, provides a rapid interface for assessing technical

problems with the glove and identify potentially flawed or failed devices.

To exit the debug view, select the corresponding radio button on the debug menu. This

returns the user to the configuration view for that glove and resumes normal operation of

the glove.

18: Testing
Testing of the system will be conducted in three phases. Phase I consists of unit testing.

Each component will be tested in a standalone capacity. Phase II consists of integration

testing. Each components interface will be tested with the components it interacts with.

Phase III consists of a system testing. A fully integrated system consisting of all the

components will be tested to verify the completed system.

104

To facilitate early testing; stubs and drivers will be developed to simulate critical software

components, while breadboards and Arduino micro controllers will be used to test

individual hardware components. Stubs and drivers are pieces of code used to stand in for

some other functionality and act to simulate the behavior of an existing component or a

yet-to-be developed component. A driver will be developed to simulate the interaction

between the configuration utility and the 3D environment software. The driver will be

capable of receiving positional data from the utility and transmitting touch and temperature

data back to the utility. A stub will be developed and used to simulate the interaction

between the configuration utility and the hardware glove. The stub will transmit positional

data to the utility and receive touch and temperature data back from the utility. An Arduino

micro controller allows for testing of the individual glove components while the processor

circuity is still under development. Breadboards allow for connecting and testing hardware

components while the final PCB design is being refined, manufactured and delivered.

 Phase I
Phase I consists of unit testing [34]. Each individual component and device will be tested

in a standalone environment. A full test of the individual component functionality will be

executed. A stub and driver will be used to simulate the interaction between the

configuration utility and the hardware glove and 3D environment software. An Arduino

micro controller and breadboard circuit will allow for the testing of the individual touch

and thermal sensors, vibration motors, and accelerometers. Testing will cover all aspects

of the system and is broken down into two categories; software testing and hardware

testing. Software testing evaluates the software components functionality. A Stub will be

used to simulate the presence of a glove, and a driver will be used to simulate the 3D

environment software. Hardware testing evaluates the hardware components functionality.

An Arduino microcontroller and breadboard will be used to test individual hardware

components.

 Phase II
Phase II consists of integration testing [35]. The interface between sub components of the

system will be tested in a bottom up approach. Bottom-up testing is an approach where the

lowest level components are tested first. As components are test, they are used to facilitate

the testing of higher components. This is repeated until the upper most component in the

system hierarchy is tested. At each stage of the testing, software stubs and drivers, and

Arduino microcontrollers will be used to provide functionality for missing components.

Testing focused on the interface and data transmission between the components.

 Phase III
Phase III consists of system testing [36]. The completed system will be tested both software

and hardware components. Testing focused on full function the complete interface and data

transmission chain proceeding from glove to utility to 3D software, and the reverse. The

tests demonstrated continuity between all components of the completed system. Testing

will be performed and verified against the documented requirements specifications in order

to determine the final pass or fail status of the system.

105

 Testing Management
[37]Testing management outline and document the tests that are needed to demonstrate

compliance with the requirements specifications. The tests represent testing conducted

during all three phases of the testing process. Test management consists of two parts. The

First is test tracking. Testing is tracked through a Testing Traceability Matrix show in the

table below. A traceability matrix is a data structure used to assist in determining the

completeness of a relationship by correlating any two baselined documents using a many-

to-many relationship comparison. The testing matrix Identifies what test was performed,

when it was performed, who is responsible for performing the test, and the outcome of the

test.

Test ID Test Name Tester
Test Result

(Pass/Fail)
Test Date

1 Peltier Chris Fail 7/24/18

2 Vibration Motor Chris Pass 7/24/18

3 IC Sequencer Chris

4 Accelerometer Chris

5 Power Regulator Chris

6 Thermistor Chris

7 Digital Potentiometer Chris

8 Battery Charger Chris

9 H-Bridge Chris

10 Peltier Controller Chris

11 Motor Controller Chris

12 Configuration Utility Francisco

13 Windows Function Francisco

14 Profile Manipulation Francisco

15
Configuration

Manipulation
Francisco

16 Data receive Francisco

17 Data Transmit Francisco

18 Debugger Francisco

19 SWD David

20 LED Function David

21 Data Format David

22 I2C Read David

23 Boot-Up Process David

24
Blender Collision &

Physics
Hunter

25
Blender-Driver

Communication
Hunter

26 Hand Tracking Script Hunter

Table 22: Testing Traceability Matrix

106

 Testing Procedures
The second part of test management are the testing procedures. Each test outlined in the

traceability matrix has an associated testing procedure. Testing procedures detail how a test

is to be performed. Elements of a testing procedure indicate the test to be performed, who

is to perform the test, the procedure for performing and the equipment needed to perform

the test, and the pass/fail conditions for the test.

1: Peltier Test

• Description: Peltier devices must change temperature with respect to an applied current.

• Procedure: The Peltier devices will be individually connected to a current supply. The

current will be manually varied, and the produced temperature measured with a digital

thermometer. The current and the temperature shall be recorded along with any insights

into how the operation of the Peltier will interact with human skin and perception. Note

must be taken of the range of currents that the human hand, in the location designated for

the Peltier, is capable of sensing before the temperature becomes uncomfortable for the

user.

• Pass/Fail: To pass this test each, Peltier deice must demonstrate a heating and cooling

range of 40 degrees Celsius to 10 degrees Celsius.

• Who: Test will be performed by Chris.

2: Vibration Motor Test

• Description: Vibration motor devices must vary vibration frequency with respect to an

applied voltage.

• Procedure: The vibration motors will be individually connected to a voltage source. The

voltage will be manually varied, and the produced vibrational frequency will be measured.

The voltage and relative vibrational intensity shall be recorded along with any insights into

how the operation of the motor will interact with human fingertips and perception. Note

must be taken of the range of voltages where the human hand can perceive the vibration

magnitude and frequency of the motor.

• Pass/Fail: To pass this test, each vibration motor must demonstrate a vibration range that

can be perceived by the human hand as having a distinct difference from in vibrational

magnitude from the lowest setting to the highest setting.

• Who: Test will be performed by Chris.

3: IC Sequencer Test

• Description: IC sequencer devices must deliver a voltage after a specified time delay.

• Procedure: The IC sequencers will be connected to a digital multi meter. A timer will

be used, and the voltage output observed while varying the controlling capacitor. The

capacitor will be chosen such that the timer will give a multi second delay. This long delay

will only be used for testing purposes since the test technician is incapable of perceiving

micro second time differences.

• Pass/Fail: To pass this test, each IC sequencer device must demonstrate a delay in

voltage delivery with respect to controlling capacitor.

• Who: Test will be performed by Chris.

107

4: Accelerometer Test

• Description: Accelerometer devices must respond to changes in orientation and position

with respect to a normalized start point.

• Procedure: The accelerometers will be tested by connecting them to an Arduino board

through an I2C connection. The accelerometer will then be oriented, and the output data

passed to the Arduino which must be able to calculate the distance traveled by the device

from the acceleration data.

• Pass/Fail: To pass this test, each accelerometer must demonstrate and discriminate

between three degrees of freedom at a resolution of 14 bits.

• Who: Test will be performed by Chris.

5: Power Regulator

• Description: The power regulator must produce 3.3 volts using the schematic referenced

in the Power Regulator section.

Procedure: The power regulator must be prototyped on a breadboard, prototype board, a

custom PCB, or a combination of the three. After prototyping the input of the circuit will

be hooked to a bench top voltage source set to between 4.2 and 3.7 volts. The load of the

power regulator will initially be a 1 MΩ resistor to simulate a low current environment.

The voltage across this resistor will be checked with a digital multimeter. The load will

then be lowered to 1.1 Ω to simulate a high current environment. The voltage will be

checked with a digital multimeter.

• Pass/Fail: To pass this test the circuit must be able to maintain voltage on a load ranging

1 MΩ to 1.1 Ω. The 1.1 Ω resistor must be a high watt model.

• Who: Test will be performed by Chris.

6: Thermistor

• Description: The thermistor must vary its resistance in accordance to the equation and

design referenced in the Thermistor section.

• Procedure: The voltage divider will be implemented and the voltage at various

thermistor temperatures will be read with a multimeter.

• Pass/Fail: To pass this test the circuit must be able to vary its voltage with the

temperature on the thermistor.

• Who: Test will be performed by Chris.

7: Digital Potentiometer

• Description: The digital potentiometer must respond to I2C commands to change its

resistance.

• Procedure: The digital potentiometer will be connected to a voltage divider. The voltage

divider will be powered by a benchtop voltage supply. The circuit will be prototyped on

breadboard, prototype board, or a custom PCB. The digital potentiometer’s resistance will

be varied using the I2C controls on the I2C line. The output of the voltage divider will be

measured with a digital multimeter.

• Pass/Fail: To pass this test the circuit must be able to vary the voltage measured by the

digital multimeter in a fashion that can be controlled via I2C.

• Who: Test will be performed by Chris.

108

8: Battery Charger

• Description: The battery charger will be purchased from a supplier and must be verified

for quality before being used on the main PCB board. This is to ensure that the battery

charger does not over charge the lithium ion batteries or damage them from over current.

• Procedure: The charger will be plugged in and a digital multimeter will be used to check

the voltage across the leads. This must be less than 4.2 volts. The maximum current of the

charger must be checked using a digital multimeter. This current cannot exceed the stated

maximum current listed in the data sheet.

• Pass/Fail: To pass this test the battery charger must be able to charge the batteries to 4

volts and not exceed its posted current limit.

• Who: Test will be performed by Chris.

9: H-Bridge

• Description: The H-bridge must respond to the Enable/Phase design referenced in the

H-bridge section. It must be able to produce variable voltage based on the analog voltage

applied to the input terminals and change the polarity of the output voltage based on the

phase activation.

• Procedure: The circuit must be build using breadboard, prototype board, a custom PCB,

or a combination of the three. Power will be supplied with a benchtop voltage supply. The

input voltage and phase activation will be supplied by a voltage source while the output

will be measured by a multimeter.

• Pass/Fail: To pass this test the circuit must be able to generate varied voltages based

upon the input voltage and the phase of the voltage must be able to be changed upon

activation of the phase control circuitry.

• Who: Test will be performed by Chris.

10: Peltier Controller

• Description: The Peltier controller circuitry must be able to apply properly controlled

voltage across the Peltier device to generate the proper current that will drive the Peltier

device to the proper temperature. Since this is an integration test the circuit must contain

the H-bridge circuitry as well as the circuitry for the I2C controlled digital potentiometer

circuitry.

• Procedure: The Peltier controller test will implement the Peltier controller schematic

referenced in the Peltier Controller section. It will include the H-bridge circuity. The circuit

must be build using breadboard, prototype board, a custom PCB, or a combination of the

three. Power will be supplied with a benchtop voltage supply. This circuit must implement

a digital potentiometer which should be controlled via I2C. Temperature must be measured

using a digital thermometer such as the built in one on many digital multimeters.

• Pass/Fail: To pass this test the Peltier controller must be able to vary temperature in both

the positive and negative direction. It must be I2C and GPIO controlled with the I2C

controlling the magnitude of the temperature change and the GPIO pin controlling the

direction.

• Who: Test will be performed by Chris.

109

11: Motor Controller

• Description: The motor controller circuitry must be able to apply properly controlled

voltage across the motor to generate the proper vibrational frequency and magnitude. Since

this is an integration test the circuitry must incorporate an I2C controlled digital

potentiometer circuitry.

• Procedure: The motor controller test will implement the Motor Controller schematic

referenced in the Motor Controller section. The circuit must be build using breadboard,

prototype board, a custom PCB, or a combination of the three. Power will be supplied with

a benchtop voltage supply. Vibrations of the motor should be varied by application of I2C

controls.

• Pass/Fail: To pass this test the circuit must be able to vary the frequency of vibration in

the vibrational motors. It must be controlled by I2C with the I2C potentiometer controlling

the frequency of vibration.

• Who: Test will be performed by Chris.

12: Configuration Utility

• Description: The Configuration Utility must be able to be installed and initiated on the

operating machine.

• Procedure: The configuration utility is placed onto the operating machine as detailed in

the system deployment section of this document. The machine must be using the Windows

10 operating system. The configuration Utility is initiated by double clicking the

“MITTSutility.exe” executable in the root directory.

• Pass/Fail: The splash screen should appear followed by the Home screen. The utility

must not freeze or crash.

• Who: Test will be performed by Francisco.

13: Windows Function:

• Description: The standard windows application functions of minimize, maximize, and

close are tested.

• Procedure: The configuration Utility is first initiated by double clicking the

“MITTSutility.exe” executable in the root directory. The minimize windows button is

selected from the top right corner of the utility home screen. The utility is collapsed to the

task bar. The minimized utility is selected on the taskbar and restored to its original state.

The maximize button is selected from the top right corner of the utility home screen. The

utility fills the display. The maximize button is selected from the top right corner of the

utility home screen. The Utility returns to its original state. The close button is selected

from the top right corner of the utility home screen. The utility process is terminated, and

the utility is closed.

• Pass/Fail: The minimize, maximize, and close buttons should correctly function with

respect to a standard windows application. The windows functions must not crash the

utility or alter any of its parameters.

• Who: Test will be performed by Francisco.

110

14: Profile manipulation

• Description: The profile manipulation operations of the configuration utility are tested.

• Procedure: The configuration Utility is first initiated by double clicking the

“MITTSutility.exe”. The create profile option is selected from the menu on the home

screen. A name is given to the new profile, the profile is saved, the home screen displays

the active profile. The profiles directory will now contain a new xml file with the specified

name. Close profile is selected from the home screen menu. The current profile is unloaded,

the home screen displays its default view. Load profile is selected from the menu on the

home screen. A profile xml file is chosen from the standard windows open/save dialog box.

The home screen updates to reflect the chosen profile as being active.

• Pass/Fail: Creating, Loading, Closing, and Removing of profiles should correctly

display in the utility, and update the corresponding storage file.

• Who: Test will be performed by Francisco.

15: Configuration Manipulation

• Description: The ability of the utility to set and modify the configuration of a single

connected glove is tested.

• Procedure: The configuration Utility is first initiated by double clicking the

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile

xml file is chosen from the standard windows open/save dialog box. The home screen

updates to reflect the chosen profile as being active. From the active profile, the

configuration tab for the glove that is to be manipulated is selected. The configuration view

for that glove is displayed as the active view. Paring, Parity, and the touch and temperature

limits are set for the glove. The configuration entry in the profile xml file is updated.

• Pass/Fail: Parity, Paring, and modification of touch and temperature limits for a selected

glove should function correctly, display in the utility, and update the corresponding storage

file. The parameters must be accurate and translate accurately to the glove.

• Who: Test will be performed by Francisco.

16: Data receive

• Description: The ability of the configuration utility to receive data is tested

• Procedure: The configuration Utility is first initiated by double clicking the

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile

xml file is chosen from the standard windows open/save dialog box. The home screen

updates to reflect the chosen profile as being active. Blender is initiated, and the test virtual

environment loaded.

• Pass/Fail: Utility should correctly receive positional data from the glove, and touch and

temperature data from the 3D environment. The utility must be able to access the Blender

API.

• Who: Test will be performed by Francisco.

111

17: Data transmit

• Description: The ability of the configuration utility to transmit data is tested

• Procedure: The configuration Utility is first initiated by double clicking the

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile

xml file is chosen from the standard windows open/save dialog box. The home screen

updates to reflect the chosen profile as being active. Blender is initiated, and the test virtual

environment loaded.

• Pass/Fail: Utility should correctly transmit touch and temperature data to the Glove, and

positional data to the 3D environment software. The utility must be able to access the

blender API.

• Who: Test will be performed by Francisco.

18: Debugger

• Description: The ability of the configuration utility to utilize the debugging mode is

tested.

• Procedure: The configuration Utility is first initiated by double clicking the

“MITTSutility.exe”. Load profile is selected from the menu on the home screen. A profile

xml file is chosen from the standard windows open/save dialog box. The home screen

updates to reflect the chosen profile as being active. From the active profile, the

configuration tab for the glove that is to be set to debug mode is selected. The configuration

view for that glove is displayed as the active view. On the configuration view, the debug

radio button is selected. The view changes to the debug view for that glove. Electrical

device charts begin displaying data in real-time. Manual signals for touch and temperature

are injected and the device charts reflect the changes in real-time.

• Pass/Fail: Utility debug functionality should be able to interact directly with the Glove.

The debug function must be able to display raw data reads from the glove.

Who: Test will be performed by Francisco.

19: SWD

• Description: With the SWD (single-wire debug), the STM32 will be flashed. For this to

occur, we need to utilize some type of connection from the computer to the chip, which as

described in the research, the ST-Link V2 may come in handy. Flashing the chip is essential

in the hardware working.

• Procedure: Using the STM32 Flasher program as well as the ST-Link V2, we will flash

the chip and verify that the chip is working by changing which colored LED turns on when

the chip is flash. If one flash is red and the other time we flash, it’s green, then we know

the procedure worked.

• Pass/Fail: The test passes if the PCB design starts flashing red when flashed with the

red LED program and also flashes green when flashed with the green LED program. It fails

if either LEDs do not flash during their correlating program.

• Who: Test will be performed by David.

112

20: LED Function

• Description: As mentioned in the boot-up procedure section, we need a couple of LEDs

to signify different states of the board. One state is powered, another is that everything has

been initialized and the accelerometers have zeroed out. These LEDs will signify at which

step our board is processing.

• Procedure: When powering the board, we will perform a visual test of the red LED

coming on first and followed by the green LED. We will have dummy functions in place

of what procedures will be there and will test those individually.

• Pass/Fail: The test passes if the red LED is powered followed by the green LED being

powered and both stay on during start-up procedure. The test fails if either of the LEDs do

not turn on or come on in an incorrect order.

• Who: Test will be performed by David.

21: Data Format

• Description: Having the data formatted will be imperative to the project. As mentioned

before, the data needs to be positional data and then needs to be formatted the correct way.

There will be two parts of this test, one for ensuring that the data is reasonable and the other

making sure the data coming in and out of the board is formatted correctly.

• Procedure: While debugging, initialization should zero out data. From here, we can

verify that, by lifting the device, one of the axes should increase in value. From here, we

can verify output format by checking the interface and whether our format follows the

guidelines that we’ve set.

• Pass/Fail: This test passes if data output starts with x, y, and z data are zeroed out and

can be verified through the interface or a debugger. The test also must also verify

movement of PCB board causes changes in x, y, and z coordinates. The test fails if either

x, y, or z coordinates do not start zeroed out or they do not change when movement occurs.

• Who: Test will be performed by David.

22: I2C Read

• Description: The data will need to be retrieved and sent to almost everything that the

design incorporates. Every device has a set address.

• Procedure: This will be tested by monitoring the debugging software and ensuring that

proper data is being read. We can further test by looking at the interface and ensuring that

the data is both changing and accurate and that there is data coming into the interface in

the first place.

• Pass/Fail: The test passes if each unique I2C device can send and receive data and will

be verified through the debugger module. The test fails if any I2C device shows that it is

neither sending nor receiving data.

• Who: Test will be performed by David.

23: Boot-up Process

• Description: In the system startup procedure, the design is specified as having a few

steps that need to occur. This includes setting pins, I2C initialization, Bluetooth handshake,

LEDs being turned on, and then reading and writing data.

• Procedure: To test this, we will monitor the debugging log and ensure by the visual cues

of the LEDs as well as the output and input data of the interface has corrected values.

113

• Pass/Fail: The test passes if all the start-up steps are verified to have occurred, which

includes pin setup, I2C initialization, Bluetooth communication, LEDs turning on in order,

and reading and writing of data occurs. The test fails if any parameter fails.

• Who: Test will be performed by David.

24: Blender Collision & Physics

• Description: The Blender scenario must have working physics for the hand to be able to

interact properly with the environment.

• Procedure: To test this, the physics settings will be configured, and the collision logic

will be implemented. Once the game engine starts, gravity and collision should be working

as intended.

• Pass/Fail: To pass the test, the objects in the engine should fall and collide with each

other. If objects don’t fall our pass through each other the test will fail

• Who: Test will be performed by Hunter.

25: Blender-Driver Communication

• Description: Blender must be able to communicate consistently with the driver in order

to be able to demonstrate the device

• Procedure: To test this, a test script will be written into Blender’s logic editor that

displays the driver inputs in the Blender console window. When the game starts, the correct

inputs should appear in console.

• Pass/Fail: To pass the test, the console must display the correct inputs that are being sent

by the driver. If the console display is not correct, the test will fail.

• Who: Test will be performed by Hunter.

26: Hand Tracking Script

• Description: Blender must be able to move the in-game hand in accordance to the input

from the driver. This includes both the position of the hand and formation of the fingers.

• Procedure: To test this, a test script will be written into Blender’s logic editor that will

change the hands position based off of the driver inputs. To make sure that the script is

accurate, it’ll also print the position of the hand and the inputs from the driver in the python

console window so that data can be collected, and discrepancies will be noticed.

• Pass/Fail: If the hand moves correctly in the relative direction of the glove’s motion,

and there are no discrepancies in the console, the test will pass. If the hand doesn’t move

or moves incorrectly, the test will fail.

• Who: Test will be performed by Hunter.

 Surface Mount Components
A surface mount component varies from the more traditional DIP style of packaging in that

rather than having extended pins that fit through small holes in the PCB, surface mount

components have small metal pads that rest on small metal pads on the PCB. The advantage

of surface mount components over the through hole variety is that of size. Surface mount

components are generally smaller in every dimension and weight quite a bit less than their

bulkier cousins. It is not unusual to have an 8-pin chip by only a few millimeters in height,

114

length, and width. The following figures show a 555 time in both DIP and SO-8 packages,

courtesy of Texas Instruments and the 555 Timer Wikipedia page.

Figure 85: DIP 555 Timer and Surface Mount 555 Timer [38]

Note that the SO-8 package takes up less than half the volume for the same functionality

as the DIP package. Since this project relies heavily on complex circuitry that must fit onto

the back of a hand and even fingers in some cases then only surface mounted components

will be used with very rare exceptions. This will save both mass and volume and more

easily allow the project to meet its stated goal of remaining under 2 kilograms.

The following table shows the package and dimensions for each major surface mounted

component used in this project.

Type Name Package Dimensions

IC Sequencer MAX6897
6 Thin

SOT23

2.9 mm x

2.75 mm

Op Amp TSV324 SO (14)
8.75 mm x

6.2 mm

Dual FET
NX3008C

BKS
TSSOP (6)

2.2 mm x 2.2

mm

Dig Pot AD5248 10 MSOP
3 mm x 5

mm

Power Reg TPS62823 QFN (8)
2 mm x 1.5

mm

Accelerometer MMA8451 QFN (16)
3 mm x 3

mm

I2C Mux TCA954A TSSOP (24)
7.8 mm x 4.4

mm

H-bridge DRV8836 WSON (12)
2 mm x 3

mm

Table 23: Package and Dimensions of all Major Surface Mounted Components

115

As can be seen from this table all the major components used in this project are specified

to be very small. As previously stated this is to minimize the size and mass of the final

glove. Unfortunately, since many of these components do not come in DIP packages that

are appropriate for bread boarding, adapters must be purchased or made. A large variety of

adapters were purchased that should be able to account for all the parts. However, it these

adapters do not then specific surface mount to dip adapters will be made by designing small

custom PCBs and ordering them for the express purpose of breadboarding the various

circuits described earlier in this paper.

19: Final Production Schematics
This section contains the final production schematics with all replication for this project.

The only schematic not contained in this section is the battery and voltage regulator section

since no changes to that design have been made. Note that some of the wiring discussion

for the STM processor, the I2C bus, and the BL652 Bluetooth module are contained in this

section.

Figure 86: Final Schematic of STM Processor, I2C Bus, Timing Regulator, and STM

Programming and Debugging Port

As seen in the figure above the STM32F030C8 has its final pin assignments. Note that the

STM uses the SWDIO and SWCLK pins to program and debug in a 20-pin configuration

as required from the STM datasheet. The I2C bus was established as per the TCA954A

datasheet. Specifically, the 1 kΩ resistors were chosen to allow approximately 3 mA of

current through as specified by the datasheet. This will minimize the bus capacitance which

116

cannot exceed 400 pF. Any bus that exceeds 400 pF will not be able to switch voltage

levels quickly enough to communicated with any degree of accuracy. Also note the Boot0

pin has been pulled to ground. This is to ensure that the STM boots from user flashed

memory as opposed to the other options such as its onboard nonvolatile RAM. That can be

accessed by setting the Boot0 pin high but is not desired for this specific project. The nRST

is the STM's reset pin. It performs what is essentially a power down reset without actually

having to power down the device. This pin has been linked to the programming/debug

connector so that during programming the debug device can reset the STM in case of an

error or to begin an operation from the beginning.

Figure 87: Final Schematic of H-Bridge Portion of Peltier Controllers with

Replication

The figure above shows the final schematics of the H-Bridge portion of the Peltier

controller. This schematic will be what will be used to establish traces for the final PCB

layout.

Figure 88: Final Schematic of the Operation Amplifier Portion of the Peltier

Controller with Replication

117

This figure above shows the final schematics of the Operation Amplifier portion of the

Peltier controller. This schematic will be what will be used to establish traces for the final

PCB layout.

Figure 89: Final Schematic of the Operation Amplifier Portion of the Motor

Controller with Replication

This figure above shows the final schematics of the Operation Amplifier portion of the

motor controller. This schematic will be what will be used to establish traces for the final

PCB layout.

Figure 90: Final Schematic of Digital Potentiometers for all Controllers

The figure above shows the final schematic for the digital potentiometers for all controllers.

This schematic will be what will be used to establish traces for the final PCB layout.

118

Figure 91: Final Schematic of the BL652 Bluetooth Module and Programming and

Debugging Port

The figure above shows the final schematic for the BL652 Bluetooth module and

accompanying programming and Debug port. This schematic will be what will be used to

establish traces for the final PCB layout. Note that the USART TX and RX crosses have

been accounted for in this schematic. Jumpers have been added to allow for the autoboot

option to be implemented as can be seen on pin 28. Pin 22 has a jumper that will allow

over the air programming if desired. These two features allow for an embedded code to run

on the Bluetooth module's power up cycle or to program it though its RF functionality

respectively. The BL652 has a built-in coding software that is similar to BASIC. However,

this Bluetooth module is specified to simply send and receive UART packets, so the built-

in programming language is more than likely not necessary. The same is true for the over

the air programming capabilities. The design is not specified to have this capability, but

having the option is nice. Therefore, jumpers were added for on the fly hardware

modifications.

119

Figure 92: Final Schematic Thermistor Ports for all Peltier Controllers

The figure above shows the final schematic for the thermistor ports for all Peltier

controllers. This schematic will be what will be used to establish traces for the final PCB

layout. Note that each thermistor attaches to a unique ADC line that feeds directly into the

STM processor while the actual thermistor attaches to the wire port. The thermistor will

rest against the Peltier device.

Figure 93: Final Schematic for the Accelerometers for all I2C busses

120

The figure above shows the final schematic for the thermistor ports for all Peltier

controllers. This schematic will be what will be used to establish traces for the final PCB

layout. Note that each of these accelerometers will be on its own separate PCB with

attached ribbon cables. A jumper was added to allow for selectable addresses between the

two possible addresses. This will allow for mass production of the accelerometer chips.

Also note that each chip will be attached to each other along the fingers via ribbon cables

which will also attach back to the main processor board.

20: Future Design Changes Based Upon Testing
 Peltier Controller

The major design constraint of the Peltier device and its associated controllers, thermistors,

PID feedback loops, and other associated circuitry was always what the human hand could

sense and tolerate. For instance, if the device could accurately control temperatures from

100°C to 150°C it would be useless for the purposes of this project since it would scald

any users. The degree of accuracy that it could be controlled with would be meaningless.

To this end the Peltier device was tested in accordance with the testing procedure laid out

in Section 18. Specifically, the Peltier was attached to a benchtop current supply and

current was applied to the device and the temperature changes were measured. More

importantly the impact of the temperature changes on human flesh was also examined. The

great concern that was associated with the Peltier was that since an external heat sink was

too bulk that device would not be able to efficiently vent or absorb. This proved to be true.

The results of the test show that below 300 mA the heating of the Peltier device in ambient

conditions was too small for the human hand to register while the temperatures that

occurred at and above 350 mA were hot enough to be painful to flesh of the testing

technician. The cooling of the device, being less efficient than the heating, were barely

perceptible to the flesh of the testing technician. At 350 mA the cool side was analogous

to a cool plastic surface that is slightly below ambient. Any more current would risk having

the users walking around in virtual reality with what amounts to hot coals facing outwards

on their hands. This obviously is a grave safety concern and cannot be tolerated. Since the

cooling is barely perceptible at current ranges that make the offside of the device unsafe it

was decide that cooling functionality would be removed.

These results mean that certain redesigns of the Peltier system must be done to adjust to

the new information. Specifically, the Peltier will no longer have a variable temperature

control. It will no longer have cooling functionality. It will simply be an on/off hot pad.

This will also mean that the thermistors, and the feedback circuitry to control Peltier

temperature are not necessary. The digital potentiometers are not necessary either. The

Peltier controller circuitry will be simplified to two operational amplifies interaction with

an H-Bridge. The H-Bridge will still be used since it is ideal for driving high current

applications. This result also means that the need for high power batteries will be reduced,

however it was decided that the current battery design will remain to extend the operating

time of the device.

121

 Motor Controller
The vibrational motor test results were much more successful than the Peltier device test

results. They showed the ability to clearly control vibrational frequency and magnitude

with applied voltage. Noticeable vibrations occurred at 1 volt and increased in intensity

until 3 volts at which the test was deemed a success. It is to be determined if hardware

should be changed so that GPIO activation of the motor controller results in an immediate

application of 1 volt to the vibrational motors or if the design as it currently stands should

simply set the voltage with the digital potentiometer.

21: Conclusion
Interacting with a virtual environment is both an academically interesting and technically

challenging task that could produce dividends for the gaming and hobbyist communities.

The addition of both haptic and temperature feedback could greatly expand the immersions

of virtual worlds. By adding this design to the open source community, we expect to

advance our careers and highlight our technical skills to prospective employers.

From PCB design to programming interfaces to working with Blender, this design has

brought a unique experience to the group. PCB design is complicated and comes with a lot

of trial and error. Creating an interface is a very valid real-world experience that will benefit

us when alike tasks are assigned to us. The STM32 main PCB design has posed a risk of

bottle-necking the project because of it being the main source for data retrieval and data

transmission.

Overall, gathering this information has been very beneficial because of the knowledge of

the potential risks and the comparisons between the parts that were a potential for the

design.

122

22: Photo of Acquired Parts
Here is a detailed image of all the parts that the research suggests will satisfy the design.

All surface mounts are small as the picture suggests; a quarter was placed in the image as

a size comparison. All major components have been ordered, but there is a potential that

the design may need package adapters to make the very small parts easier to work with.

Figure 94: Purchased Parts with Quarter for Scale

123

23: References

[1] "Project management guide: Tips, strategies, best practices," cio.com, 2017. [Online].

Available: https://www.cio.com/article/3243005/project-management/project-

management-tips-strategies-best-practices.htm. [Accessed July 2018].

[2] [Online]. Available: http://merittechnology.sell.everychina.com/p-95148045-tes1-

03102-thermoelectric-cooling-modules.html.

[3] [Online]. Available: https://cdn2.hubspot.net/hubfs/547732/Data_Sheets/CM23-

1.9.pdf.

[4] [Online]. Available: https://www.meerstetter.ch/compendium/tec-peltier-element-

design-guide.

[5] [Online]. Available: http://www.ti.com/lit/ds/symlink/drv8836.pdf.

[6] [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-

sheets/AD5243_5248.pdf.

[7] [Online]. Available: https://www.st.com/resource/en/datasheet/tsv321.pdf.

[8] [Online]. Available: https://assets.nexperia.com/documents/data-

sheet/NX3008CBKS.pdf.

[9] [Online]. Available: https://en.wikipedia.org/wiki/PID_controller.

[10

]

[Online]. Available:

https://www.murata.com/~/media/webrenewal/support/library/catalog/products/ther

mistor/ntc/r44e.ashx.

[11

]

[Online]. Available: https://siliconlightworks.com/li-ion-voltage.

[12

]

[Online]. Available: https://www.mouser.com/ds/2/737/C450_-

_ICR18650_6600mAh_3.7V_20140729-932760.pdf.

[13

]

[Online]. Available: https://www.batteryspace.com/smartcharger30afor37vli-

ionpolymerrechargeablebatterypackstandardfemaletamiyaplug.aspx.

[14

]

[Online]. Available: http://www.ti.com/lit/ds/slvsdv6b/slvsdv6b.pdf.

[15

]

[Online]. Available: https://datasheets.maximintegrated.com/en/ds/MAX6895-

MAX6899.pdf.

[16

]

[Online]. Available:

https://media.digikey.com/pdf/Data%20Sheets/Kingbright%20PDFs/WP154A4SEJ3

VBDZGW-CA_Ver.1A_Jul-24-13.pdf.

[17

]

[Online]. Available: http://www.vibration-

motor.com/products/download/C0720B015F.pdf.

[18

]

[Online]. Available: https://www.nxp.com/docs/en/data-sheet/MMA8451Q.pdf.

124

[19

]

[Online]. Available: http://www.ti.com/lit/ds/symlink/tca9548a.pdf.

[20

]

mohammadalizadeh, "Realistic 3D Hand Model," 2018. [Online]. Available:

https://free3d.com/3d-model/freerealsichand-85561.htm. [Accessed July 2018].

[21

]

"Free Sound Effects," 2018. [Online]. Available: https://www.freesoundeffects.com/.

[Accessed July 2018].

[22

]

"Texture & Reference Image Library," 2018. [Online]. Available:

https://freetextures.3dtotal.com/index.php?la=1. [Accessed July 2018].

[23

]

J. Ludwig, "Frequently Asked Questions," Valve, 2 August 2016. [Online]. Available:

https://steamcommunity.com/app/507090/discussions/0/360671247404603033/.

[Accessed July 2018].

[24

]

dfelinto, "Virtual Reality Viewport," 25 July 2016. [Online]. Available:

https://github.com/dfelinto/virtual_reality_viewport).. [Accessed July 2018].

[25

]

Blender, "Blender Python API Release 2.78," Blender, 2018. [Online]. Available:

https://docs.blender.org/api/blender_python_api_2_78_release/contents.html.

[Accessed July 2018].

[26

]

[Online]. Available: https://visualstudio.microsoft.com/vs/older-downloads/.

[27

]

[Online]. Available: https://en.wikipedia.org/wiki/Inter-process_communication.

[28

]

[Online]. Available: https://docs.microsoft.com/en-

us/windows/desktop/bluetooth/about-bluetooth.

[29

]

[Online]. Available: https://docs.microsoft.com/en-

us/windows/desktop/bluetooth/windows-sockets-support-for-bluetooth.

[30

]

[Online]. Available:

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173.

[31

]

[Online]. Available: https://en.wikipedia.org/wiki/Interpolation.

[32

]

[Online]. Available: https://en.wikipedia.org/wiki/Linear_interpolation.

[33

]

[Online]. Available: https://en.wikipedia.org/wiki/Linear_interpolation.

[34

]

[Online]. Available: https://en.wikipedia.org/wiki/Unit_testing.

[35

]

[Online]. Available: https://en.wikipedia.org/wiki/Integration_testing.

[36

]

[Online]. Available: https://en.wikipedia.org/wiki/System_testing.

[37

]

[Online]. Available: https://en.wikipedia.org/wiki/Test_management.

[38

]

[Online]. Available: https://en.wikipedia.org/wiki/555_timer_IC.

125

