
MITTS (Motion Interface

Thermal Touch Sensitive)
Cristopher Britt, David Simoneau, Anthony

Hinnant, Francisco Tirado Perez

Dept. of Electrical Engineering and

Computer

Science, University of Central Florida,

Orlando, Florida, 32816-2450

Abstract — The MITTS system is a virtual reality interface
glove that allows not only interaction with a virtual
environment, but also allows for haptic and thermal feedback
from that environment. It was designed and tested in four
discrete sections: The hardware, the embedded software, the
configuration utility, and the virtual environment. Each of
these systems work together to create a superior user
experience that can pave the way for a more seamless virtual
experience.

Index Terms — Virtual reality, haptic feedback, consumer
device, thermal response, Peltier device.

I. INTRODUCTION

This product is a glove controller that has the
capabilities of interacting with a virtual 3D object and
receiving both haptic and thermal feedback. The design
is focused on taking accelerometer inputs from the glove,
transforming

Fig. 1. System Block Diagram

them into positional data, transmitting data through a
processor, then sending that data through our interface to

the computer running the simulation, and finally
receiving haptic feedback from that simulation. The
project is designed in such a way to allow us to gain
experience in PCB design as well as data communication,
ARM development, and 3D modeling software API.

II. HARDWARE DESIGN AND IMPLEMENTATION

The driving philosophy behind the design of this
hardware was that complex problems should be broken
down into simple subsystems. As such this discussion
will be focused on each of those subsystems, the part
selection, and how that subsystem was designed to be as
simple as possible. The overall hardware was specified to
not exceed 2 kilograms and support a frame rate of at
least 30 frames of data per second.

A. Accelerometer

The MMA8451Q accelerometer was selected for
this application because of it is relatively inexpensive
($3.34), is I2C capable, has 14 bits of resolution, and a
QFN package size. Its max sampling rate of 800 Hz is also
sufficient for this application. Unfortunately, the
MMA8451 only has two I2C addresses, but to address
this an I2C multiplexer was also implemented. The
TCA9548A has 8 possible I2C lines that are controlled
via I2C. Not only does this allow for all 16 accelerometers
to be addressed, but it also minimized line capacitances.
Each accelerometer was implemented on its own
separate board which was designed with its overall
position in the glove in mind. The central board on the
back of the hand required all 8 I2C lines running through
it so it is larger by necessity. The boards on the first
knuckle require 2 I2C lines running through them, while
the boards on the second and third knuckles of each
finger will only ever require the same I2C line. This is as
well as the need for two selectable addresses is reflected
in the designs. The two selectable addresses are
implemented via a solder jumper so the team member
writing the code may select addresses as needed. The
design was successfully tested by both posting an I2C
address to a Raspberry Pi and by sending data to an STM
breakout board.

B. LED Signals

This design implements a 3-color common anode
RGB LED to demonstrate states and signals. The red led
activates as soon as the power goes on while the green
and blue LEDs are controlled by BSS138 NFETs linked to
GPIO pins. The common anode design allows for the

LED to be controlled by a single NFET since source is
linked directly to ground. This design was tested on a
breadboard before implementation.

C. Signal Switching

There are many instances where a GPIO pin needs
to toggle a FET where the gate-source voltage would not
be stable in an open configuration. To address this a
signal switch was designed using a dual N and P FET. For
this purpose, the NX3008CBKS was selected since it has
robust gate voltages, sufficient current specs, and the
hardware designer was familiar with its use. This switch
uses the PFET as the main switch with the gate held high
with a pullup resistor. The GPIO toggles an NFET which
pulls the gate of the PFET to ground. This opens the
PFET channel fully and acts as a reliable two state switch.

D. Motor Controller

The haptic feedback of the glove is implemented
with several coin type eccentric rotating mass motors. It
was determined that the feeling of vibration when
tightly bound to the finger tips simulates the feeling of
pressure. Increasing the intensity and frequency of this
vibration can simulate increasing pressure. The motor
selected was the C0720B015F, which was selected for its
small size, its max current consumption of 80 mA, and its
maximum voltage of 3.3 volts. The motor is controlled by
a previously discussed signal switch, a digital
potentiometer-controlled voltage divider, and a non-
inverting operation amplifier. The signal switch opens
the 3.3 rail to the voltage divider. The voltage divider
consists of a 100 kΩ resistor and a 100 kΩ digital
potentiometer (AD524). The digital potentiometer was
selected for its small size and I2C capability. The
resistance of the digital potentiometer is set via I2C. At
maximum resistance the 3.3 rail voltage is divided by a
factor of 2 so this signal is fed into a non-inverting
amplifier with a gain of 2 based on a general-purpose
operation amplified, the TSV321. This amplifier was
selected because of its inexpensive nature and its current
output of 80 mA. This ampler ensures that the voltage
across the motor is within operational bounds and
provides enough current to operate the motor.

E. Power Systems

The glove design utilizes a single 3.3 rail to power all
devices and subsystems. As a result, the regulator was
selected to be able to output a large amount current.
Specifically, the calculated current requirements called
for a maximum current of approximately 3 amps.
Originally a high efficiency switching power regulator

was selected, the TPS62823. It was selected based on low
cost, high efficiency, and small footprint. Unfortunately,
the design did not work in testing and was immediately
scrapped for a simpler design to meet a team internal
deadline on hardware delivery. The simplified design
implemented a large linear regulator that, while less
efficient, could still meet the required current demands.
Specifically, the TPS75701KTTT was selected. It has a
150-mV dropout at 3 amps, but this level of dropout will
not significantly impact the design. Two ICR18650
lithium ion batteries were selected to power the glove.
These batteries both hold 6.6-amp hours at full charge
which is sufficient to power the glove for longer than the
required 30 minutes of use. Unfortunately, the maximum
discharge rate of both batteries is only 1.25 amps. This
means that the max current the batteries can provide is
only 2.5 amps, which limits the number of Peltier
devices that can be implemented on battery power. The
maximum charging rate on each batter is 1.65 amps. The
CH-L373 lithium ion charger was selected and purchased
since it has a charging limit of 3 amps. This allows
relatively quick charging. The power design also
incorporated an auxiliary 3.3 port and a main rail jumper.
When the jumper is removed the glove can be powered
from an external power supply without damaging the
regulator or the batteries.

F. Peltier Device

The glove design originally called for full thermal
feedback using Peltier devices. This meant the user
would be able to experience both heat and cold
variations based on the current polarity and intensity. To
this end the CM23-1.9 was selected. It is a small Peltier
device that could fit on the second knuckle of the hand
with sufficient temperature characteristics.
Unfortunately, based on how the human hand
experience heat and cold this design would not deliver
the required experience. It was found during testing that
it was not possible to create a cooling effect that was
noticeable without using extreme amounts of current.
This created unsafe temperatures on the potion of the
Peltier facing away from the hand and it was decided
that having a glove that created the equivalent of hot
coals on the hand while the user was immersed in virtual
reality was unsafe. The Peltier also did not perform as
expected when it came to heating. The range that the
Peltier device could heat the hand where it was
noticeable and not painful to the user was exceedingly
small and changes in it were not readily noticeable. It
was decided that trying to control temperature variations
would not enhance the experience and in certain cases

be a burn risk for the user. The Peltier’s were then
implemented with an on/off architecture where when
they are activated by GPIO the Peltiers generate a preset
temperature. Due to the legacy hardware from the
pretesting the DRV8836 H-Bridge is used as a current
source for the Peltiers. It was originally implemented to
allow for temperature control of the Peltier but was
rendered redundant and now serves as switched current
supply.

III. EMBEDDED PROGRAMMING

 The MITTS system depends on a system of inputs
and outputs. Each accelerometer needs to be
communicating with the STM32 as inputs and each
Peltier device as well as the vibrational motors needs to
be communicating with the STM32 as outputs. The
system depends on the I2C and UART protocols for the
means of communication. While programming the
MITTS board, it’s important to keep in mind the
sequence of events that needs to occur and how each
event influences the other. The the next couple of
section informs the reader of how the board is
programmed, how to debug the system, and how
challenges affected the whole process.

A. Programming the chip

Before the PCB was developed, coding the STM32
needed to be started, thus the chip was programmed by
using the development board for a similar STM32. In this
way, the team pipelined the process of developing the
system and each individual could asynchronously work
on different, major parts. With the development board,
STM32 supplies a wide variety of tools to aid with
programming the chip. One such tool is the
STM32CubeMX. This tool essentially generates the code
for the configurations of the chip. These configurations
can include anything from clock configurations,
peripheral configurations, and even power
configurations. Through the user interface provided, the
peripherals were set for each pin as seen in Figure 2:

Fig. 2. Pinout of STM32 for MITTS Board

 Now that the peripherals have been generated
and the configuration has been set up, the STM32 ST-
LINK Utility can be employed. This tool is the method
used to program the chip. Essentially, the tool takes a hex
file, loads up memory information from the chipset
chosen, and then allows for the hex file to be uploaded
into the chip’s memory. After the memory has been
flashed, the tool can be used to verify the bytes are
correct and the tool has been correctly programmed. It is
also possible to use physical debugging, where the on-
board LED is flashed to see if the program was loaded;
however, even simple code such as this functionality
takes debugging and the problems that arise from a self-
created PCB can be many.

 Once the chip has been flashed the code can be
verified. Figure 3 shows that the device memory, which
can only be seen if the device is recognized, and the hex
file alongside for a visual check that the bytes are the
same as well as a console log of the checksum being
produced, and that the verification of the code was “OK.”

Fig. 3. Program verification as seen by the STM32 ST-

LINK software.

B. Debugging the System (software)

 Debugging the software is an important step to
verifying that the code is working. Through the STM32
tools, the project employed a tool called STM Studio.
With the STM studio, monitoring variables and their
respective values as they change in real-time becomes
easier. This is essential at least for getting accelerometer
data and transforming it to positional data. We will talk
about this further in detail in a later section.

 As we can see in Fig. 4, STM provides a graph
interface to see the variables change as time elapses. The
points are collected about every 100 ms and change in
value from -16,384 to 16,384.

Fig. 4. Readout of STM Studio of x, y, and z calibrated

values with calculated x and y angles.

This is a good way to debug the I2C and any variables
being changed, but the other side of the equation is the
Bluetooth UART communication. Now, STM Studio
does verify that the program runs on the MITTS board,
but other issues need debugging. For Bluetooth
communication, it’s a lot of trial and error. Bluetooth
adapters certainly help, but what really helps is going
through logical thinking when trying to debug the

reasons why data may not be sending via Bluetooth. First
and foremost, it was important to make use of a
Bluetooth terminal to scan for devices being used. In this
first step, through the terminal, the “Laird BL652,”
which is the Bluetooth module used by this project, will
become visible. Before connecting, it’s imperative to set
the correct service, read, and write characteristic UUIDs
to ensure the correct read and write properties are
configured. Without these, reading and/or writing from
the Bluetooth module is impossible. Once the settings are
correct, connect and verify the results are correct. The
results are driven by the STM32 code, which have been
programmed before-hand. If everything works out, it
starts to look like Figure 5.

Fig. 5 Serial Bluetooth Terminal showing the X, Y, and Z

values being sent via USART from the development board.

C. Challenges (software)

The challenges faced during the software part of the
project include getting the I2C to work, getting the
Bluetooth to send data and receive data, and verifying
the code is being programmed onto the MITTS board.

The first challenge of getting the I2C to work was to
scour through the data sheets to get the addresses for the
accelerometers and to figure out the standard to coding
these using the HAL library, which is used by the STM32
to program the I2C and UART protocols, for example.
This was conquered by a lot of verification from
datasheets to the datasheets created for the project of
how the PCB was created. The pins need to first be
verified that they were configured to the right
functionality and that the pins themselves were soldered
correctly.

The final challenge is getting the data from the
accelerometers to positional data. The challenge faced
was that with each differentiation of the accelerometer
data, the results get less and less accurate, since the

accelerometers have a plus/minus 5% accuracy. With
this problem, it seemed to be too much of a challenge so
another way of getting position data, which was easy to
do with the current design, is to calculate the angles by
the values received from the accelerometers.

IV. CONFIGURATION UTILITY

The Configuration Utility was designed to satisfy three
primary goals of the completed system; isolation,
scalability, and maintenance.

The utility provides isolation by operating between the
two endpoint subsystems; the virtual environment
software, and the hardware glove. This allowed for all
three subsystems to be developed in parallel. Only the
interface specifications between the utility and each
endpoint subsystem was coordinated during development
and testing. The isolation occurs at the two natural
interface boundaries of the system; the Bluetooth
connection from the hardware glove to the host operating
system, and the data transmission between the utility and
the virtual environment.

The utility provides scalability by supporting and
coordinating the connection of multiple hardware gloves.
Each glove is assigned a profile that tracks the parameters
necessary to establish a Bluetooth connection to the
glove, and a connection to its virtual counterpart in the
virtual environment. Profiles can be created, edited, and
stored for later use.

Maintenance is realized in the form of a debugging
interface. The interface allows for a direct connection to
a hardware glove. This connection is then used to inject
feedback values directly to the gloves electronic feedback
devices and receive positional data from the glove’s
motion tracking system. The debugging interface
provides a real-time display for visualizing the data and is
utilized to identify failures in specific electronic devices
on the glove itself.

The Configuration Utility was developed for the
Microsoft Windows 10 Operating System. Windows 10
was chosen due to its widespread use, the availability of
development tools, and because the utility is deployed on
the same machine that virtual environment is on which
utilizes Windows 10.

The utility was developed in Microsoft Visual Studio
Community Edition 2015 using the Visual C# programing
language. Visual Studio was chosen for its debugging
capabilities, and the stability and documentation of the
2015 release. C# was chosen for being object-oriented,
fully supported by Visual Studio, direct compatibility
with the Windows Bluetooth APIs, and the ability to

utilize WinForms and Windows Presentation Foundation
for future Graphical User Interface development.

A. Use Case Diagram

The use case diagram for the configuration utility is
shown in the figure below. It describes the functionality
that the utility exposes to the external system
components and users. There are three actors that
interact with the utility. They are the user, the virtual
environment, and the hardware glove.

The diagram shows that from the glove and the
environment’s perspective, the utility exists only as a
gateway for transmitting and receiving data between
them. This provides the isolation effect of the system. In
addition, all interaction between the user and the
hardware glove and virtual environment, always passes
through the utility.

Fig. 6. Use Case Diagram.

The primacy actor that interacts with the configuration
utility is the user whom uses the utility to perform three
major tasks, each of which are supported by minor tasks.
The major tasks for the utility are managing profiles,
running gloves, and closing the utility.

The Managing Profile use case, is supported by the
actions of creating, editing, loading, and closing deleting
profiles. These actions are how the user manages the
hardware glove profiles of the system. Profiles are
maintained in a profiles directory within the utility
directory; and are stored in plaintext. When loaded, the
profiles preserve settings, so the user does not have to go
through the process of configuring the Bluetooth
connection for the same glove every time the utility is
started.

The action of running a glove, is how gloves that have
been loaded are subsequently started, stopped, and
debugged. Starting a glove is the action of initiating
normal operation. A started glove provides updated
positional data to the virtual environment and receives
updated feedback values from the virtual environment.
Stopping a glove simply terminates normal operation and
returns the glove and virtual environment to a waiting
state. The debugging action immediately initiates a
debugging interface for a selected glove. Any other
currently connect and loaded gloves continue in their
current operating state. Only single glove can be
debugged at one time.

Exiting the utility terminates the operation of all
connected gloves. For normal operation to occur, the
utility must be active, the glove connected, a profile for
the glove loaded, and the glove started in the normal
operation mode.

B. Class Diagram

The class diagram for the configuration utility describes
the logical organization and structure of the software as
developed following the object-oriented programing
paradigm.

The UtilCore is entry point of the software. The role of
the UtilCore is to instantiate a Storage, Menu, and
GloveRack object. The software is then initiated and
controlled passed to the menu object for interaction with
the user. Finally, the UtilCore waits for the exit command
to be given, so that the software can be successfully
terminated.

The Storage class process all manipulation of the file
system for the loading and saving of profiles. The software
uses profiles stored in plain text with a file extension of
the form ”.mitts” to facilitate ease of identify profiles in
the working directory. The storage object provides
methods for listing all profiles in the working directory,
reading for and returning the contents of a profile, and
creation and overwriting of files when saving new
profiles or edits to existing ones.

Fig. 7. Class Diagram.

The Menu class provides the user interface for the

software. The interface consist of ASCII painted menu
screens navigated by numerical indexes. The menu class
is responsible for both painting the display, and reading
in and processing the user’s input. In total, there are
fourteen menu screens containing both static and
dynamic progression choices.

The GloveRack is the storage device for loaded gloves.
A list of currently load gloves is maintained with methods
provided for their manipulation. Methods include finding
of gloves by name or list index, adding or removing gloves
from the List, and activation of an individual glove in
order to change its operating state.

The Glove class is the unit that represents a single
connect glove. Within this class are methods for
retrieving a glove’s parameters, along with starting,
stopping, and debugging the glove. This class is composed
of two more classes; VirtConn handles the gloves
connection to the virtual environment, while BTConn
handles the glove’s connection to the hardware glove
itself.

VirConn coordinates the connection between the
logical representation of the glove in the utility, and its
virtual counterpart in the virtual environment. The
connection is accomplished using low level filesystem
commands. When the logical glove passes data tot eh
virtual environment, a file containing the data is created
in the working directory. When the virtual environment

response with data, it also creates a file that the logical
glove can open and read the data from. This approach was
used do to its simplicity and ease of implementation.

The BTConn handles the Bluetooth connection
between the logical glove and its physical representation.
BTConn utilizes the Bluetooth low energy methods
provided by the windows runtime library to facilitate the
transfer of data. Connections are established using
parameters loaded from a profile. Communication is
performed synchronously in a receive then respond
communication scheme. This ensures that when updated
positional data is received from the physical glove and
passed to the virtual environment, the feedback data that
is returned from the virtual environment to the physical
glove is synced and represents the effect of the previous
user action.

V. BLENDER AND VIRTUAL ENVIRONMENT

A fundamental part of our project was creating an
interactive 3D Environment to show the capabilities of
our glove. Blender is a professional, open-source 3D
graphics toolset. It’s capable of animation, effects,
printing 3D models, and most importantly for us,
interactive 3D applications. Blender is used to
demonstrate the abilities of our glove.

Blender serves its purpose in multiple steps, to model
out assets we need to make, import other free assets that
we need, rig the models to be animated, implement the
physics system, and interface it to interact with the
configuration utility.

Fig. 8. Hand Model

A demonstration table with different objects was used
to show the capabilities of our device, including motion
tracking, the haptic feedback, and the Peltier devices
heating up. The first of which is a sphere, which is added
for two reasons. The first one is to be able to demonstrate
the haptic feedback of the glove more thoroughly. The

glove is designed to give haptic feedback at multiple
“intensities,” so the sphere can simulate a “soft” material
while the block can simulate a “hard” material. The
glove’s haptic feedback will vibrate more intensely when
meeting the block than coming in contact with the
sphere. The second reason is to demonstrate the
positional aspect of the haptic feedback. A sphere will
be in contact at different points in your hand than a
block when holding it. These different points will
vibrate to more simulate the “feeling” part of the project
in a more immersive way.

The other two objects added are thin cylinders on
either side of the desk, one colored blue and one
colored red. This is a simple way to make “stove tops”
that can be used to test the Peltier portion of the glove’s
functionality. The cylinders are given a field of range,
extending upward but not out to the side. When the
hand enters these fields, the Peltier will heat or cool
according to the color cylinder the hand is hovering
above.

Fig. 9. Demonstration Table

The hand is capable of changing position, angle, and
finger positions independently of one another. It
implements file i/o with the configuration utility to get
information on how it should change. This is all
implemented with python scripts that are programmed
through blender. When the glove change position in real
life, the configuration utility writes to the file that
blender reads, and when the hand comes in contact with
something, it writes to a file that the configuration utility
reads to activate the haptic feedback. The Peltier devices
work in a very similarly.

VI. VIRTUAL REALITY

The device is used in conjunction with the HTC Vive.
The glove doesn’t necessitate use of any virtual reality
headset, nor does it require use of virtual reality to
function. That being said, the idea for this project was

made to be implemented with virtual reality, as it can
greatly enhance the current virtual reality experience.
Because of this, we want to demonstrate our device’s
functionality in conjunction with virtual reality.

The Vive itself requires a little bit of setup to use. Its
biggest feature is its room tracking technology, which
lets you walk around a room in virtual reality. This
requires two lighthouses on each corner of the room,
which should be station 6 feet 6 inches off the floor, in a
6 feet 6 inch by 5 feet clear area. It also requires a wired
connection to the PC because it needs a direct
connection to the video card, as well as a USB connection
and a power connection. The PC will run the software,
and the glove will be connected via Bluetooth. The
lighthouses require a power connection through the wall
and communicate wirelessly with the headset. The user
can explore a 3D space in a 5 feet by 6.5 feet area and
interact with the environment using the glove.

VII. CONCLUSION

Interacting with a virtual environment was both an
academically interesting and technically challenging
task that could produce dividends for the gaming and
hobbyist communities. The addition of both haptic and
temperature feedback could greatly expand the
immersions of virtual worlds. By adding this design to
the open source community, we expect to advance our
careers and highlight our technical skills to prospective
employers.

From PCB design to programming interfaces to
working with Blender, this design has brought a unique
experience to the group. PCB design is complicated and
comes with a lot of trial and error. Creating an interface
is a very valid real-world experience that will benefit us
when alike tasks are assigned to us. The STM32 main
PCB design has posed a risk of bottle-necking the project
because of it being the main source for data retrieval and
data transmission.

Overall, gathering this information has been very
beneficial because of the knowledge of the potential risks
and the comparisons between the parts that were a
potential for the design.

ACKNOWLEDGEMENTS

We would like to acknowledge a both Dr. Samuel
Richie and Dr. Lei Wei as the Senior Design I & II
coordinators.

REFERENCES

[1] I2C Info – I2C Bus, Interface and Protocol. (2018). I2C Bus
Specification. [online] Available at: http://i2c.info/i2c-bus-
specification [Accessed 29 Jun. 2018].
[2] Neamen, “Microelectronics: Circuit Analysis and Design”,
McGraw Hill, 4th Edition
[3] Sharp, John. Microsoft Visual C♯ Step by Step. 8th ed.,

Microsoft Press, 2015.
[4] Johnson, Bruce. Professional Visual Studio 2017. Wrox,

2018.
[5] Townsend, Kevin, et al. Getting Started with Bluetooth

Low Energy:1st ed., OReilly, 2014.

BIOGRAPHIES

Chrisopher B.T. Britt, is a second degree seeking senior
electrical engineering major at the University of Central
Florida. He works in a cube sat development lab as an
integration and test engineer. He hopes to find
employment with a major aerospace firm after
graduation.

David J. Simoneau is a computer engineering major at
the University of Central Florida. He is currently
employed by the Disney company as a professional
software engineering intern.

Anthony Hunter Hinnant is a computer engineering
major at the University of Central Florida. He is
currently employed by AVT Simulation as a
Maintenance Software Engineer Intern.

Francisco Tirado Perez is a second degree seeking
senior computer engineering major at the University of
Central Florida. His career includes work, experience
program participation with Lockheed Martin Rotary and
Mission Systems, employment as an engineer with
Constant Velocity of Ocala Inc., and service as an
Infantryman in the United States Army. Francisco has
also received a Bachelor of Science in aerospace
engineering from UCF.

