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Abstract  —  The MITTS system is a virtual reality interface 
glove that allows not only interaction with a virtual 
environment, but also allows for haptic and thermal feedback 
from that environment. It was designed and tested in four 
discrete sections: The hardware, the embedded software, the 
configuration utility, and the virtual environment. Each of 
these systems work together to create a superior user 
experience that can pave the way for a more seamless virtual 
experience. 

Index Terms  —  Virtual reality, haptic feedback, consumer 
device, thermal response, Peltier device.  

I. INTRODUCTION 

This product is a glove controller that has the 
capabilities of interacting with a virtual 3D object and 
receiving both haptic and thermal feedback. The design 
is focused on taking accelerometer inputs from the glove, 
transforming  

Fig. 1. System Block Diagram 

 

them into positional data, transmitting data through a 
processor, then sending that data through our interface to 

the computer running the simulation, and finally 
receiving haptic feedback from that simulation. The 
project is designed in such a way to allow us to gain 
experience in PCB design as well as data communication, 
ARM development, and 3D modeling software API. 

II. HARDWARE DESIGN AND IMPLEMENTATION 

The driving philosophy behind the design of this 
hardware was that complex problems should be broken 
down into simple subsystems. As such this discussion 
will be focused on each of those subsystems, the part 
selection, and how that subsystem was designed to be as 
simple as possible. The overall hardware was specified to 
not exceed 2 kilograms and support a frame rate of at 
least 30 frames of data per second. 

 

A. Accelerometer 

The MMA8451Q accelerometer was selected for 
this application because of it is relatively inexpensive 
($3.34), is I2C capable, has 14 bits of resolution, and a 
QFN package size. Its max sampling rate of 800 Hz is also 
sufficient for this application. Unfortunately, the 
MMA8451 only has two I2C addresses, but to address 
this an I2C multiplexer was also implemented. The 
TCA9548A has 8 possible I2C lines that are controlled 
via I2C. Not only does this allow for all 16 accelerometers 
to be addressed, but it also minimized line capacitances. 
Each accelerometer was implemented on its own 
separate board which was designed with its overall 
position in the glove in mind. The central board on the 
back of the hand required all 8 I2C lines running through 
it so it is larger by necessity. The boards on the first 
knuckle require 2 I2C lines running through them, while 
the boards on the second and third knuckles of each 
finger will only ever require the same I2C line. This is as 
well as the need for two selectable addresses is reflected 
in the designs. The two selectable addresses are 
implemented via a solder jumper so the team member 
writing the code may select addresses as needed. The 
design was successfully tested by both posting an I2C 
address to a Raspberry Pi and by sending data to an STM 
breakout board. 

B. LED Signals 

This design implements a 3-color common anode 
RGB LED to demonstrate states and signals. The red led 
activates as soon as the power goes on while the green 
and blue LEDs are controlled by BSS138 NFETs linked to 
GPIO pins. The common anode design allows for the 



LED to be controlled by a single NFET since source is 
linked directly to ground. This design was tested on a 
breadboard before implementation. 

C. Signal Switching 

There are many instances where a GPIO pin needs 
to toggle a FET where the gate-source voltage would not 
be stable in an open configuration. To address this a 
signal switch was designed using a dual N and P FET. For 
this purpose, the NX3008CBKS was selected since it has 
robust gate voltages, sufficient current specs, and the 
hardware designer was familiar with its use. This switch 
uses the PFET as the main switch with the gate held high 
with a pullup resistor. The GPIO toggles an NFET which 
pulls the gate of the PFET to ground. This opens the 
PFET channel fully and acts as a reliable two state switch. 

D. Motor Controller 

The haptic feedback of the glove is implemented 
with several coin type eccentric rotating mass motors. It 
was determined that the feeling of vibration when 
tightly bound to the finger tips simulates the feeling of 
pressure. Increasing the intensity and frequency of this 
vibration can simulate increasing pressure. The motor 
selected was the C0720B015F, which was selected for its 
small size, its max current consumption of 80 mA, and its 
maximum voltage of 3.3 volts. The motor is controlled by 
a previously discussed signal switch, a digital 
potentiometer-controlled voltage divider, and a non-
inverting operation amplifier. The signal switch opens 
the 3.3 rail to the voltage divider. The voltage divider 
consists of a 100 kΩ resistor and a 100 kΩ digital 
potentiometer (AD524). The digital potentiometer was 
selected for its small size and I2C capability. The 
resistance of the digital potentiometer is set via I2C. At 
maximum resistance the 3.3 rail voltage is divided by a 
factor of 2 so this signal is fed into a non-inverting 
amplifier with a gain of 2 based on a general-purpose 
operation amplified, the TSV321. This amplifier was 
selected because of its inexpensive nature and its current 
output of 80 mA. This ampler ensures that the voltage 
across the motor is within operational bounds and 
provides enough current to operate the motor. 

E. Power Systems 

The glove design utilizes a single 3.3 rail to power all 
devices and subsystems. As a result, the regulator was 
selected to be able to output a large amount current. 
Specifically, the calculated current requirements called 
for a maximum current of approximately 3 amps. 
Originally a high efficiency switching power regulator 

was selected, the TPS62823. It was selected based on low 
cost, high efficiency, and small footprint. Unfortunately, 
the design did not work in testing and was immediately 
scrapped for a simpler design to meet a team internal 
deadline on hardware delivery. The simplified design 
implemented a large linear regulator that, while less 
efficient, could still meet the required current demands. 
Specifically, the TPS75701KTTT was selected. It has a 
150-mV dropout at 3 amps, but this level of dropout will 
not significantly impact the design. Two ICR18650 
lithium ion batteries were selected to power the glove. 
These batteries both hold 6.6-amp hours at full charge 
which is sufficient to power the glove for longer than the 
required 30 minutes of use. Unfortunately, the maximum 
discharge rate of both batteries is only 1.25 amps. This 
means that the max current the batteries can provide is 
only 2.5 amps, which limits the number of Peltier 
devices that can be implemented on battery power. The 
maximum charging rate on each batter is 1.65 amps. The 
CH-L373 lithium ion charger was selected and purchased 
since it has a charging limit of 3 amps. This allows 
relatively quick charging. The power design also 
incorporated an auxiliary 3.3 port and a main rail jumper. 
When the jumper is removed the glove can be powered 
from an external power supply without damaging the 
regulator or the batteries. 

F. Peltier Device 

The glove design originally called for full thermal 
feedback using Peltier devices. This meant the user 
would be able to experience both heat and cold 
variations based on the current polarity and intensity. To 
this end the CM23-1.9 was selected. It is a small Peltier 
device that could fit on the second knuckle of the hand 
with sufficient temperature characteristics. 
Unfortunately, based on how the human hand 
experience heat and cold this design would not deliver 
the required experience. It was found during testing that 
it was not possible to create a cooling effect that was 
noticeable without using extreme amounts of current. 
This created unsafe temperatures on the potion of the 
Peltier facing away from the hand and it was decided 
that having a glove that created the equivalent of hot 
coals on the hand while the user was immersed in virtual 
reality was unsafe. The Peltier also did not perform as 
expected when it came to heating. The range that the 
Peltier device could heat the hand where it was 
noticeable and not painful to the user was exceedingly 
small and changes in it were not readily noticeable. It 
was decided that trying to control temperature variations 
would not enhance the experience and in certain cases 



be a burn risk for the user. The Peltier’s were then 
implemented with an on/off architecture where when 
they are activated by GPIO the Peltiers generate a preset 
temperature. Due to the legacy hardware from the 
pretesting the DRV8836 H-Bridge is used as a current 
source for the Peltiers. It was originally implemented to 
allow for temperature control of the Peltier but was 
rendered redundant and now serves as switched current 
supply. 

III. EMBEDDED PROGRAMMING  

        The MITTS system depends on a system of inputs 
and outputs. Each accelerometer needs to be 
communicating with the STM32 as inputs and each 
Peltier device as well as the vibrational motors needs to 
be communicating with the STM32 as outputs. The 
system depends on the I2C and UART protocols for the 
means of communication. While programming the 
MITTS board, it’s important to keep in mind the 
sequence of events that needs to occur and how each 
event influences the other. The the next couple of 
section informs the reader of how the board is 
programmed, how to debug the system, and how 
challenges affected the whole process.  

A. Programming the chip 

Before the PCB was developed, coding the STM32 
needed to be started, thus the chip was programmed by 
using the development board for a similar STM32. In this 
way, the team pipelined the process of developing the 
system and each individual could asynchronously work 
on different, major parts. With the development board, 
STM32 supplies a wide variety of tools to aid with 
programming the chip. One such tool is the 
STM32CubeMX. This tool essentially generates the code 
for the configurations of the chip. These configurations 
can include anything from clock configurations, 
peripheral configurations, and even power 
configurations. Through the user interface provided, the 
peripherals were set for each pin as seen in Figure 2: 

  

 
Fig. 2. Pinout of STM32 for MITTS Board 

  

        Now that the peripherals have been generated 
and the configuration has been set up, the STM32 ST-
LINK Utility can be employed. This tool is the method 
used to program the chip. Essentially, the tool takes a hex 
file, loads up memory information from the chipset 
chosen, and then allows for the hex file to be uploaded 
into the chip’s memory. After the memory has been 
flashed, the tool can be used to verify the bytes are 
correct and the tool has been correctly programmed. It is 
also possible to use physical debugging, where the on-
board LED is flashed to see if the program was loaded; 
however, even simple code such as this functionality 
takes debugging and the problems that arise from a self-
created PCB can be many. 

        Once the chip has been flashed the code can be 
verified. Figure 3 shows that the device memory, which 
can only be seen if the device is recognized, and the hex 
file alongside for a visual check that the bytes are the 
same as well as a console log of the checksum being 
produced, and that the verification of the code was “OK.” 

  



 
  
Fig. 3. Program verification as seen by the STM32 ST-

LINK software. 

B. Debugging the System (software) 

        Debugging the software is an important step to 
verifying that the code is working. Through the STM32 
tools, the project employed a tool called STM Studio. 
With the STM studio, monitoring variables and their 
respective values as they change in real-time becomes 
easier. This is essential at least for getting accelerometer 
data and transforming it to positional data. We will talk 
about this further in detail in a later section.  

  

        As we can see in Fig. 4, STM provides a graph 
interface to see the variables change as time elapses. The 
points are collected about every 100 ms and change in 
value from -16,384 to 16,384.  

  

 
Fig. 4. Readout of STM Studio of x, y, and z calibrated 

values with calculated x and y angles. 

  

This is a good way to debug the I2C and any variables 
being changed, but the other side of the equation is the 
Bluetooth UART communication. Now, STM Studio 
does verify that the program runs on the MITTS board, 
but other issues need debugging. For Bluetooth 
communication, it’s a lot of trial and error. Bluetooth 
adapters certainly help, but what really helps is going 
through logical thinking when trying to debug the 

reasons why data may not be sending via Bluetooth. First 
and foremost, it was important to make use of a 
Bluetooth terminal to scan for devices being used. In this 
first step, through the terminal, the “Laird BL652,” 
which is the Bluetooth module used by this project, will 
become visible. Before connecting, it’s imperative to set 
the correct service, read, and write characteristic UUIDs 
to ensure the correct read and write properties are 
configured. Without these, reading and/or writing from 
the Bluetooth module is impossible. Once the settings are 
correct, connect and verify the results are correct. The 
results are driven by the STM32 code, which have been 
programmed before-hand. If everything works out, it 
starts to look like Figure 5. 

 

 
Fig. 5 Serial Bluetooth Terminal showing the X, Y, and Z 

values being sent via USART from the development board. 

C. Challenges (software) 

The challenges faced during the software part of the 
project include getting the I2C to work, getting the 
Bluetooth to send data and receive data, and verifying 
the code is being programmed onto the MITTS board.  

The first challenge of getting the I2C to work was to 
scour through the data sheets to get the addresses for the 
accelerometers and to figure out the standard to coding 
these using the HAL library, which is used by the STM32 
to program the I2C and UART protocols, for example. 
This was conquered by a lot of verification from 
datasheets to the datasheets created for the project of 
how the PCB was created. The pins need to first be 
verified that they were configured to the right 
functionality and that the pins themselves were soldered 
correctly. 

The final challenge is getting the data from the 
accelerometers to positional data. The challenge faced 
was that with each differentiation of the accelerometer 
data, the results get less and less accurate, since the 



accelerometers have a plus/minus 5% accuracy. With 
this problem, it seemed to be too much of a challenge so 
another way of getting position data, which was easy to 
do with the current design, is to calculate the angles by 
the values received from the accelerometers. 

IV. CONFIGURATION UTILITY 

The Configuration Utility was designed to satisfy three 
primary goals of the completed system; isolation, 
scalability, and maintenance.  

The utility provides isolation by operating between the 
two endpoint subsystems; the virtual environment 
software, and the hardware glove. This allowed for all 
three subsystems to be developed in parallel. Only the 
interface specifications between the utility and each 
endpoint subsystem was coordinated during development 
and testing. The isolation occurs at the two natural 
interface boundaries of the system; the Bluetooth 
connection from the hardware glove to the host operating 
system, and the data transmission between the utility and 
the virtual environment.  

The utility provides scalability by supporting and 
coordinating the connection of multiple hardware gloves. 
Each glove is assigned a profile that tracks the parameters 
necessary to establish a Bluetooth connection to the 
glove, and a connection to its virtual counterpart in the 
virtual environment. Profiles can be created, edited, and 
stored for later use. 

Maintenance is realized in the form of a debugging 
interface. The interface allows for a direct connection to 
a hardware glove. This connection is then used to inject 
feedback values directly to the gloves electronic feedback 
devices and receive positional data from the glove’s 
motion tracking system. The debugging interface 
provides a real-time display for visualizing the data and is 
utilized to identify failures in specific electronic devices 
on the glove itself. 

The Configuration Utility was developed for the 
Microsoft Windows 10 Operating System. Windows 10 
was chosen due to its widespread use, the availability of 
development tools, and because the utility is deployed on 
the same machine that virtual environment is on which 
utilizes Windows 10.  

The utility was developed in Microsoft Visual Studio 
Community Edition 2015 using the Visual C# programing 
language. Visual Studio was chosen for its debugging 
capabilities, and the stability and documentation of the 
2015 release. C# was chosen for being object-oriented, 
fully supported by Visual Studio, direct compatibility 
with the Windows Bluetooth APIs, and the ability to 

utilize WinForms and Windows Presentation Foundation 
for future Graphical User Interface development.  

A. Use Case Diagram  

The use case diagram for the configuration utility is 
shown in the figure below. It describes the functionality 
that the utility exposes to the external system 
components and users. There are three actors that 
interact with the utility. They are the user, the virtual 
environment, and the hardware glove. 

The diagram shows that from the glove and the 
environment’s perspective, the utility exists only as a 
gateway for transmitting and receiving data between 
them. This provides the isolation effect of the system. In 
addition, all interaction between the user and the 
hardware glove and virtual environment, always passes 
through the utility. 

 

 
 

Fig. 6. Use Case Diagram. 

 

The primacy actor that interacts with the configuration 
utility is the user whom uses the utility to perform three 
major tasks, each of which are supported by minor tasks. 
The major tasks for the utility are managing profiles, 
running gloves, and closing the utility.  



The Managing Profile use case, is supported by the 
actions of creating, editing, loading, and closing deleting 
profiles. These actions are how the user manages the 
hardware glove profiles of the system. Profiles are 
maintained in a profiles directory within the utility 
directory; and are stored in plaintext. When loaded, the 
profiles preserve settings, so the user does not have to go 
through the process of configuring the Bluetooth 
connection for the same glove every time the utility is 
started. 

The action of running a glove, is how gloves that have 
been loaded are subsequently started, stopped, and 
debugged. Starting a glove is the action of initiating 
normal operation. A started glove provides updated 
positional data to the virtual environment and receives 
updated feedback values from the virtual environment. 
Stopping a glove simply terminates normal operation and 
returns the glove and virtual environment to a waiting 
state. The debugging action immediately initiates a 
debugging interface for a selected glove. Any other 
currently connect and loaded gloves continue in their 
current operating state. Only single glove can be 
debugged at one time. 

Exiting the utility terminates the operation of all 
connected gloves. For normal operation to occur, the 
utility must be active, the glove connected, a profile for 
the glove loaded, and the glove started in the normal 
operation mode. 

 
B. Class Diagram  

The class diagram for the configuration utility describes 
the logical organization and structure of the software as 
developed following the object-oriented programing 
paradigm. 

The UtilCore is entry point of the software. The role of 
the UtilCore is to instantiate a Storage, Menu, and 
GloveRack object. The software is then initiated and 
controlled passed to the menu object for interaction with 
the user. Finally, the UtilCore waits for the exit command 
to be given, so that the software can be successfully 
terminated. 

The Storage class process all manipulation of the file 
system for the loading and saving of profiles. The software 
uses profiles stored in plain text with a file extension of 
the form ”.mitts” to facilitate ease of identify profiles in 
the working directory. The storage object provides 
methods for listing all profiles in the working directory, 
reading for and returning the contents of a profile, and  
creation and overwriting of files when saving new 
profiles or edits to existing ones. 

 

 

Fig. 7. Class Diagram. 

 
The Menu class provides the user interface for the 

software. The interface consist of ASCII painted menu 
screens navigated by numerical indexes. The menu class 
is responsible for both painting the display, and reading 
in and processing the user’s input. In total, there are 
fourteen menu screens containing both static and 
dynamic progression choices. 

The GloveRack is the storage device for loaded gloves. 
A list of currently load gloves is maintained with methods 
provided for their manipulation. Methods include finding 
of gloves by name or list index, adding or removing gloves 
from the List, and activation of an individual glove in 
order to change its operating state. 

The Glove class is the unit that represents a single 
connect glove. Within this class are methods for 
retrieving a glove’s parameters, along with starting, 
stopping, and debugging the glove. This class is composed 
of two more classes; VirtConn handles the gloves 
connection to the virtual environment, while BTConn 
handles the glove’s connection to the hardware glove 
itself. 

VirConn coordinates the connection between the 
logical representation of the glove in the utility, and its 
virtual counterpart in the virtual environment. The 
connection is accomplished using low level filesystem 
commands. When the logical glove passes data tot eh 
virtual environment, a file containing the data is created 
in the working directory. When the virtual environment 



response with data, it also creates a file that the logical 
glove can open and read the data from. This approach was 
used do to its simplicity and ease of implementation. 

The BTConn handles the Bluetooth connection 
between the logical glove and its physical representation. 
BTConn utilizes the Bluetooth low energy methods 
provided by the windows runtime library to facilitate the 
transfer of data. Connections are established using 
parameters loaded from a profile. Communication is 
performed synchronously in a receive then respond 
communication scheme. This ensures that when updated 
positional data is received from the physical glove and 
passed to the virtual environment, the feedback data that 
is returned from the virtual environment to the physical 
glove is synced and represents the effect of the previous 
user action. 

V. BLENDER AND VIRTUAL ENVIRONMENT 

A fundamental part of our project was creating an 
interactive 3D Environment to show the capabilities of 
our glove.  Blender is a professional, open-source 3D 
graphics toolset.  It’s capable of animation, effects, 
printing 3D models, and most importantly for us, 
interactive 3D applications.  Blender is used to 
demonstrate the abilities of our glove. 

Blender serves its purpose in multiple steps, to model 
out assets we need to make, import other free assets that 
we need, rig the models to be animated, implement the 
physics system, and interface it to interact with the 
configuration utility. 

 

 
Fig. 8. Hand Model 

 

A demonstration table with different objects was used 
to show the capabilities of our device, including motion 
tracking, the haptic feedback, and the Peltier devices 
heating up. The first of which is a sphere, which is added 
for two reasons.  The first one is to be able to demonstrate 
the haptic feedback of the glove more thoroughly.  The 

glove is designed to give haptic feedback at multiple 
“intensities,” so the sphere can simulate a “soft” material 
while the block can simulate a “hard” material.  The 
glove’s haptic feedback will vibrate more intensely when 
meeting the block than coming in contact with the 
sphere.  The second reason is to demonstrate the 
positional aspect of the haptic feedback.  A sphere will 
be in contact at different points in your hand than a 
block when holding it.  These different points will 
vibrate to more simulate the “feeling” part of the project 
in a more immersive way. 

The other two objects added are thin cylinders on 
either side of the desk, one colored blue and one 
colored red.  This is a simple way to make “stove tops” 
that can be used to test the Peltier portion of the glove’s 
functionality.  The cylinders are given a field of range, 
extending upward but not out to the side.  When the 
hand enters these fields, the Peltier will heat or cool 
according to the color cylinder the hand is hovering 
above. 

 

 
Fig. 9. Demonstration Table 

 

The hand is capable of changing position, angle, and 
finger positions independently of one another.  It 
implements file i/o with the configuration utility to get 
information on how it should change.  This is all 
implemented with python scripts that are programmed 
through blender.  When the glove change position in real 
life, the configuration utility writes to the file that 
blender reads, and when the hand comes in contact with 
something, it writes to a file that the configuration utility 
reads to activate the haptic feedback.  The Peltier devices 
work in a very similarly. 

VI. VIRTUAL REALITY 

The device is used in conjunction with the HTC Vive.  
The glove doesn’t necessitate use of any virtual reality 
headset, nor does it require use of virtual reality to 
function.  That being said, the idea for this project was 



made to be implemented with virtual reality, as it can 
greatly enhance the current virtual reality experience.  
Because of this, we want to demonstrate our device’s 
functionality in conjunction with virtual reality. 

The Vive itself requires a little bit of setup to use.  Its 
biggest feature is its room tracking technology, which 
lets you walk around a room in virtual reality.  This 
requires two lighthouses on each corner of the room, 
which should be station 6 feet 6 inches off the floor, in a 
6 feet 6 inch by 5 feet clear area.  It also requires a wired 
connection to the PC because it needs a direct 
connection to the video card, as well as a USB connection 
and a power connection.  The PC will run the software, 
and the glove will be connected via Bluetooth.  The 
lighthouses require a power connection through the wall 
and communicate wirelessly with the headset. The user 
can explore a 3D space in a 5 feet by 6.5 feet area and 
interact with the environment using the glove. 

VII. CONCLUSION 

Interacting with a virtual environment was both an 
academically interesting and technically challenging 
task that could produce dividends for the gaming and 
hobbyist communities. The addition of both haptic and 
temperature feedback could greatly expand the 
immersions of virtual worlds. By adding this design to 
the open source community, we expect to advance our 
careers and highlight our technical skills to prospective 
employers. 

From PCB design to programming interfaces to 
working with Blender, this design has brought a unique 
experience to the group. PCB design is complicated and 
comes with a lot of trial and error. Creating an interface 
is a very valid real-world experience that will benefit us 
when alike tasks are assigned to us. The STM32 main 
PCB design has posed a risk of bottle-necking the project 
because of it being the main source for data retrieval and 
data transmission.  

Overall, gathering this information has been very 
beneficial because of the knowledge of the potential risks 
and the comparisons between the parts that were a 
potential for the design. 
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