
Automatic Guitar Tuner
Adam Harmon, Bryan Casey, Jason Lupo,

John Geiger

Department of Electrical Engineering and

Computer Science, University of Central

Florida, Orlando, FL

Abstract - This document describes the design of the

handheld, and rechargeable, Automatic Guitar tuner,

which includes the subsystem designs and specifications.

The aim of the project is to create a device to allow

beginner guitarists the ability to easily and quickly tune

their guitar. The project involves the utilization of

signal processing, signal amplification, Bluetooth

integration, integrated circuits, and an Android user

interface. All of these processes are used together to

tune an individual guitar string to a user selected note,

which is done on the Android mobile application. The

result of this project is an accurate handheld guitar

tuner, along with an easy to use mobile application for

Android phones.

I. INTRODUCTION

Tuning a guitar has been a difficult process for

beginner guitarists since the creation of the

instrument. Only recently, the technology required to

implement a more nuanced solution to this problem

has become common. The continuity of Moore’s Law

and increasing access to powerful, yet cheap

integrated circuits and microprocessors has made the

dream of an automatic guitar tuner a possibility

instead of just a dream. An automatic guitar tuner

allows new musicians to tune their guitars with

computer numeric control (CNC) precision, while an

application allows them to learn what each note

should sound like. The device also has applications

for professionals like teachers who would like a

faster way to tune multiple guitars for their students.

This project allows the user to use all the main

operating modes without an external application

while also providing more functionality through an

application if desired. The system will have a display

to provide menus and basic feedback, while

providing multiple buttons with intuitive control

directions given on screen.

One of the most difficult aspects of this project is

the integration of frequency sensing and physical

tuning. There are many ways to extract the core

frequency of a musical instrument which range in

cost of application. The control system behind the

tuning servo also needs to be as fast as possible,

while still retaining accuracy to ensure ease of use. A

microcontroller will be used in conjunction with

sensors, ADC converters, motor drivers, and the

OLED display to provide end results to the user. The

device will also feature a rechargeable battery system

which will cut costs in batteries when the device is

used heavily. The device will charge off a simple 5V

power supply and handle all battery management

internally.

 The resulting system that has been designed is

accurate, and easy to use. It will provide features to

be used by beginners and professionals alike. Along

with its utility in quickly tuning guitars, the device

will also be useful as a learning aid to people who

want to improve their understanding of each note and

how to manually hear the small differences in the

sound.

II. SYSTEM COMPONENTS

The design is best presented in terms of system

components, which are the physical individual

modules that are interfaced to create the final project.

This section provides a overview of each component.

A. Bluetooth

The Adafruit Bluefruit LE UART Friend Bluetooth

module was chosen to use for the wireless

communication between the microcontroller and an

android cell phone. The selected Bluetooth module

was an ideal choice as it’s low cost and uses low

energy.

B. Microcontroller

The brains of this project is the Teensy 3.2

development board. The Teensy board was chosen

for its high clock rate, large memory, and its

community support, as it can use the Arduino

libraries.

C. Microphone

The selected microphone, the PMO-6027P-

40KDQ, is a microphone manufactured by Mallory

Sonalert Products Inc. This microphone is a

condenser microphone that fulfills the pass band

requirement necessary to pick up the most common

string instruments. This microphone is an ideal

choice as it’s low cost and has good signal to noise

ratio, diameter, and depth.

D. Motor

Motor selection for physical tuning of the peg

needed to be done carefully to provide adequate

speed as well as torque. The motor that ultimately

satisfied the requirements for this project was

brushed DC motor with 1:100 planetary gearbox

capable of rotating at 60 RPM at 6V input.

E. Operation Amplifier

Before the microcontroller on the automatic guitar

tuner receives an analog signal, it needs to be

amplified. The design for this project is going to need

a couple of Op-Amps in order to design filters,

amplifiers, and other electrical equipment. The

TL084CN Op-Amp, manufactured by Texas

Instruments, was selected as it’s able to run off a

single power supply, and it has enough channels

needed for this project, which will save space on the

printed circuit board(PCB).

F. Power

The Automatic Guitar tuner is powered by two

lithium ion batteries. To be rechargeable a battery

charging IC is needed to charge the batteries. The

BQ2057CSN chip was selected for this task, as it is

capable of adequate charge current, cell conditioning,

and temperature monitoring.

G. Android Application

The user interface for this project is an Android

Application.

The app uses the mobile phone’s built-in Bluetooth

capabilities to connect to the Bluefruit LE UART

Friend on the automatic guitar tuner. The application

allows the user to select what note they want a guitar

string to be tuned to. The application can also save

tunings, giving the user a faster way to tune each

guitar string if they’re going to tune a string to a note

they have tuned to previously.

Fig. 1: Android Application Menu

H. OLED Display

The OLED display provides the user with with

concise and informative data regardless of whether

the device is operating in manual or automatic

modes. The display also provides the current state the

device is in (Idle, Ready, Tuning, etc.). The Adafruit

Monochrome 0.96” 128x64 OLED module was

chosen for this task.

III. SYSTEM CONCEPT

To better understand how the system works as a

whole, a flowchart of how the automatic tuner works

is shown below.

Fig. 2: Complete Flowchart of the system showing

how the systems are linked together.

As seen in the flowchart above there are seven

main components to the system. The user will be

utilizing only two parts of it, creating the Bluetooth

connection between the android phone and the tuner,

and the button input.

The mobile application will allow the user to select

the desired note that is wanted. Once this is done, the

user will pluck the desired guitar string and the

microphone will receive the sound. This information

is then sent to the MCU, which will gather the

frequency of the plucked string and communicate

with the motor. which will either receive a clockwise

or counterclockwise signal from the MCU’s

frequency algorithm to tune the guitar string.

A. Microcontroller Concept

The microcontroller is the core of the tuner system.

The MCU is responsible for outputting and receiving

data from the various subsystems. When applicable,

received data is recognized as meant for control via

the Button Input subsystem or Bluetooth

Communication subsystem, output to another

subsystem such as the Bluetooth Communication or

Backlit Display subsystems, or input data from the

Rechargeable Battery and Power Regulation,

Bluetooth Communication, or Sound Feedback

subsystems.

The MCU contains the code used for tuning the

guitar. In the tuning code there’s a frequency

detection part used to detect the frequency of the

plucked guitar string, and comparison part to

compare this fread in frequency with the desired

frequency the user wants. The MCU also contains the

code for Bluetooth receive and transmit data.

B. Power Concept

After charging, the battery is tasked with providing

power to the entire system, including the motor and

all of the logic. Originally, this project intended to

use a single lithium ion cell to power the full system.

This was changed to use two lithium ion cells in

series to provide a 7.2V nominal voltage. The

following linear regulators were also selected for

their ease of implementation in the system and low

common mode noise.

Function Manufacturer Part Number

Linear

Regulator 5V

STMicroelectronics LM7805CV

Linear

Regulator 3.3V

STMicroelectronics LD33V

Table 1: Power Regulation ICs

C. Tuning Concept

To tune a guitar string, the user first needs to select

a note to tune to on the Android Application. Once

this is done, the desired string can be plucked, and

the MCU will determine whether the string needs to

be tuned or not. If it does the MCU will tell the motor

to either turn clockwise or counterclockwise. When

the motor has turned the appropriate amount, the

MCU will tell the motor to stop. The string can then

be plucked again, if it still needs to be tuned the

process will be repeated, if not then the motor won’t

turn and the string is in tune to the selected note.

IV. HARDWARE DETAILS

A. Bluetooth Module

Along with the built-in capabilities of Bluetooth on

an Android cell phone, the Adafruit Bluefruit LE

UART Friend is used by the Teensy 3.2 to allow

serial communication from the Android Application.

The module operates at 3.3V, and consists of VIN,

GND, TX, and RX pins. The TX pin transmits data to

the Android application, and the RX pin receives data

from the Android application. The module blinks red

when it’s looking to pair with a device, and it blinks

blue once a connection is formed between the

Bluetooth module and a device, in this case a cell

phone.

 Fig. 3: Bluetooth Module Schematic

B. Microcontroller

Originally, the MSP430G2553 was chosen as the

primary MCU for this project. After doing proper

research on frequency extraction techniques, it was

noted that an MCU with more RAM was needed. The

Teensy 3.2 32-bit, 72 MHz microcontroller with 64

kBytes RAM. It is a complete USB-based

microcontroller development system which allows us

to quickly make changes to code and upload it to the

device. The onboard ADCs are capable of 12-bit

conversion which eliminated the need of the previous

external ADC from the V1 design. The development

board also contains an onboard 3.3V regulator which

is capable of powering the button and I2C inputs. The

Teensy 3.2 is perfect for the rapid prototyping and

improvement of this device.

C. Motor

Motor selection for physical turning of the peg

needs to be done carefully in order to provide

adequate speed as well as torque. One of the desired

features of this device is to allow for easy de-

stringing and restringing of the guitar so a minimum

rotational speed of 30 RPM was chosen to keep this

functionality practical. The minimum torque was

determined by physical testing on a guitar.

Torque is a measure of rotational force,

measured in units of force*length. In order to

measure the needed torque to tune a knob on the

guitar, the peg was attached to a lever arm and a

calibrated scale was used to measure the force needed

to rotate the lever. The following equation was used

to calculate the torque being applied.

𝞽 (Torque) = F * D (Force * Distance)

String Distance (in) Force (oz) Torque

(oz-in)

1 6 2.1 12.6

2 6 2.5 15

3 6 3.8 22.8

4 6 2.7 16.2

5 6 3.1 18.6

6 6 4.5 27

 Table 2: Torque Requirements

Since testing shows that a value of 27 oz-in is

required to rotate the thickest string on a 6 string

guitar, a minimum output torque of 35 oz-in was

chosen to guarantee adequate tuning across all

guitars. The motor that ultimately satisfied the

requirements for this project was a generic 1:100

brushed planetary gearbox motor.

D. Audio Signal Processing

The microphone selection needs to be carefully

considered to ensure that the device can accurately

determine the frequency at which the guitar string is

tuned to. This is base in which the rest of the design

will be built off of. It needed to have a pass band that

would be able to detect all possible frequencies a

guitar could be tuned to as well as having the ability

to continue development and tune other instruments

as well.

The PMO-6027P-40KDQ microphone is a

condenser microphone with a pass band from 20Hz

to 16KHz. The chosen microphone also has a

sensitivity rating of -40dB and a signal to noise ratio

of 56dB. This will ensure the signal is strong and

clear.

The signal produced by the microphone will then

be amplified and filtered before being sent to the

microcontroller’s analog to digital converter.

Fig. Audio Signal Processing Schematic

E. Power

After testing and troubleshooting, it was deemed

necessary to move to a 2s1p configuration to

eliminate noise from a boost regulator in the previous

circuit. The nominal 7.2V from the 2s configuration

is adequate to power the motor and two linear

regulators listed below. After hardware changes from

V1 to V2, the 3.3V regulator is not strictly necessary,

as the Teensy 3.2 is capable of creating its own 3.3V

line, thus the LD33V socked is left unpopulated. The

5V regulator powers all logic components of this

project.

Fig. 4: Power Regulation Schematic

F. OLED Display

 The OLED display shows the user information

data about the tuning. It provides the currently

received frequency is displayed, along with the target

frequency. The time taken to complete a full string

tuning is displayed once automatic tuning completes.

If operating in manual mode, the current direction,

clockwise or counterclockwise, the motor is turning

is shown.

The figure below shows how the OLED display

connects to the MCU via I2C. The display is powered

from the 5V bus, same as the MCU. The two

components share a common ground which is needed

to allow for low noise communication over the I2C

bus. The display is tested by running an example

Arduino script to send text and figure to the display.

Fig. 5: OLED Display Schematic

V. SOFTWARE DETAILS

A. Android Application

The Tuner Application is available to download

for free via the Google Play Store for all Android

devices running Lollipop OS or any more recent

Android OS release. The app will communicate via

Bluetooth tether with the physical tuning device.

Intended use of the app is as both a wireless control

and additional information display for the tuning

device. The app will consist of five screens, the Main

Menu, Tuning, Tuning Library, and Options screens.

The Main Menu screen displays the currently

selected tuning and the status of the Bluetooth

connection between the application and the device.

This screen is displayed by default when the

application is first opened and may be returned to via

a button on each of the four other screens. In

addition, the main menu provides navigation points

to the other four application screens. Finally, an exit

button immediately shuts down the application and

break the Bluetooth tether.

The Tuning screen is where all active

communication between the application and the

physical tuning device takes place. The active tuning

is displayed to the user, this includes all strings

involved in the tuning along with the specific

frequency each string is to be tuned to. The user may

then select an individual string, and lock it in for

tuning. After locked in, the string’s tuning frequency

is sent from the application to the physical tuner.

Once the frequency is received by the tuner, the

device waits for the user to activate tuning via

physical button input. On activation, the device sends

a signal to the application which then prompts the

user to strum the string. The user may be prompted to

strum multiple times until the intended tuning

frequency is achieved. On tuning completion,

statistics from the tuning session are displayed to the

user including starting frequency and the time it took

to tune the string. The user may now choose a new

string to tune and the tuning process begins again.

The Tuning Library screen consists of a local

database of standard and user defined tunings. From

this screen, the user may select a pre-existing tuning

to become the active tuning, edit a pre-existing

tuning, delete a preexisting tuning, and/or create new

custom tunings.

Creation of a custom tuning begins by selecting

the “New Custom Tuning” button. On selection, a UI

form is displayed consisting of a user input box for

the name of the new tuning, a button to add a new

string to the tuning, and a “Save” button. When a

new string is added, the existing form is expanded to

contain a user input box for the string’s name and

that string’s frequency. Once the user has completed

the form in total, the “Save” button may be pressed to

save the custom tuning to the local database and the

user is returned to the Tuning Library screen.

Editing or activating a pre-existing tuning begins

with selecting a tuning by tapping on the title of a

displayed tuning. Once selected, the tuning’s string

titles and frequencies are displayed, along with an

“Edit” button, a “Delete” button, and a “Set Active”

button. The “Set Active” button will set that specific

tuning as the active tuning which is used during the

tuning process. The “Delete” button prompts the user

with a dialogue asking if the user is sure he/she

wishes to delete the selected tuning. The user may

choose to accept the deletion, which will permanently

delete the tuning from the database, or to cancel the

deletion in which case the tuning is preserved. The

“Edit” button works similarly to the creation of a

custom tuning, the same UI form is displayed as in

the custom tuning process with the difference that

some input boxes will already be filled out with

information that the tuning already possessed.

B. Code

The code for the Android application is

developed primarily in the Java programming

language. This is a design constraint enforced by all

Android operating systems. The application is

developed using Android’s official IDE, Android

Studio. The Extensible Markup Language (XML) is

also employed.

The coded flow chart seen in the figure below

shows the brainstormed plan for menu navigation on

the physical device. This menu will be viewed

through the OLED display and navigated using

buttons on the device. The menu will flow with a

vertical scroll interface, using buttons for up and

down movements, respectively. There is a center

select button which will move further down the

branch of menu selections. The flow chart starts with

the initial opening of the interface by turning the

device on. The main menu contains options for

choosing Tuning Type, Adding Custom Tuning

Type, Manual Tuning Mode, and Exiting. Each of

these menus has further selections which can be

made and offer a great range of functionality to the

user.

The Choose Tuning Type branch allows the user

to select the particular note which is desired for the

string in question. This menu option can also store

multiple tuning profiles, where all the strings can be

tuned in sequence without needing to select the notes

individually. Pressing the select button on the chosen

Tuning Type will prompt the user to place the device

on the guitar knob and strum the string. The device

will automatically extract the carrier frequency in the

sound of the string and tune the string to the desired

note.

The Add Custom Tuning branch allows more

flexibility in this device over the default profiles

included in the memory. The user selects this menu

and can create a new profile. The user selects the

number of strings to be stored in the profile, then

inputs the desired note for each string. The note can

be input as a classical letter, or if the corresponding

frequency is known, the numerical frequency. After

the parameters are set to the user’s preferences, the

profile is saved and stored on the device memory for

later use.

The Manual Tuning Mode branch can be used

for a few functions which give greater control to the

user. The user can input a desired note to be tuned to

and press the select button. The device will then

listen to the sound output of the string and display the

corresponding note/frequency of the string. The user

can then manually turn the knob and observe the

frequency as it changes. In a way, this mode allows

the user to train their ‘ear’ and learn the difference in

notes and how to manually tune the guitar on their

own. This menu also offers a Hold to String or De-

string option which will spin continuously while the

user holds the up and down buttons respectively. This

function saves the user from having to repetitively

turn the knob when changing strings on the

instrument and prevents over tightening when

restringing.

 Fig. 6: Coding Flowchart

VI. BOARD DESIGN

 The PCB for this project was designed entirely using

Diptrace. This program is an electrical CAD program

which allows engineers to design everything from

individual components, to schematics, to full PCB

layouts. The entire design was brainstormed and then

the schematic created in Diptrace.

All schematics were breadboarded and tested

separately, then the full schematic exported to the

layout editor. The physical board was designed to

separate the high power components from low

powered components as much as possible. The

charging port, battery input, and motor controller

were all placed near the top, the microcontroller

placed near the middle, and the audio preamplifier

placed at the bottom. The large separation between

power and audio should provide for the cleanest

signal for frequency extraction.

The digital PCB layout was exported to gerber and

drill files and a physical copy was ordered from

OSHPark. The boards are manually populated, using

mainly surface mount passive components and

through hole active components. This combination

allows an easily tested board while still retaining a

small physical size necessary for a handheld device.

Fig. 7 PCB Layout

VII. CONCLUSION

The Automatic Guitar Tuner was a complex but

enjoyable project. It allowed us to implement all the

knowledge we have learned through our time here in

the College of Engineering at UCF into one final

project.

All of these subsystems are integrated in such a

way to ensure the best possible automatic guitar tuner

was constructed. This included redesigns of

subsystems as efficiencies were found. This ensures a

final and completed projected.

While most of the group are not musicians, we

have all come to appreciate the effort and complexity

of audio systems. This inexperience with musical

elements allowed us to approach this project through

the eyes of a beginner and ensure simple to learn and

help develop the user as musicians.

THE ENGINEERS

Adam Harmon is a 23-year graduating with his

Bachelor’s degree in Electrical Engineering. He is

looking for positions within the renewable power

industry, specifically solar power.

Bryan Casey is a 24-year old graduating with his

Bachelor’s degree in Computer Engineering. He is

looking for positions within the artificial intelligence

field or the CPU architectural design field.

Jason Lupo is a 22-year old Graduating Electrical

Engineering Student. He is looking to get into the

automation industry, including integration of PLC

systems. This interest stems from his internships with

Walt Disney World Parks and Resorts.

John Geiger is a 24-year old graduating with his

Bachelor’s degree in Electrical Engineering. He has

accepted a position with Texas Instruments as an

Applications engineer, and is looking forward to

moving to Dallas, TX to begin his career.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance

and support of Dr. Lei Wei, Dr. Samuel Richie and

the University of Central Florida.

