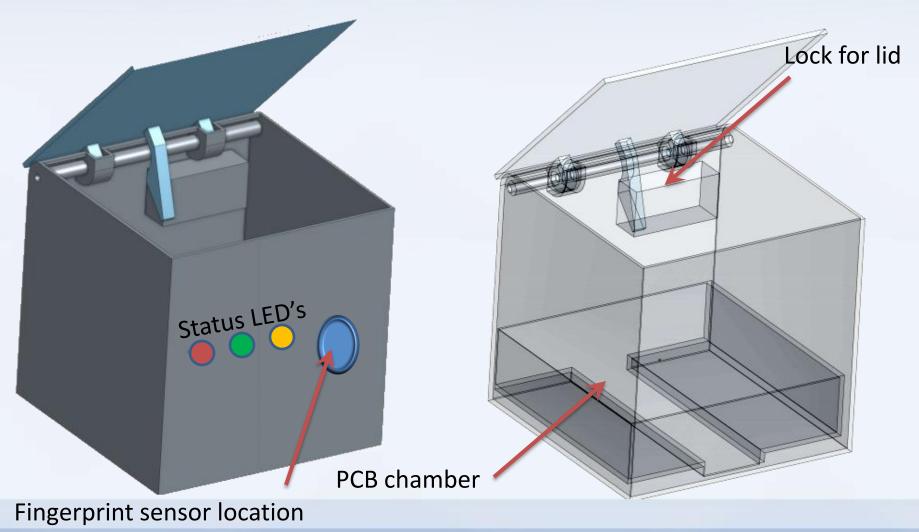

SECURE PHONE LOCKER WITH INTEGRATED NOTIFICATION TRACKING (SPLINT)

The Problem We Observed

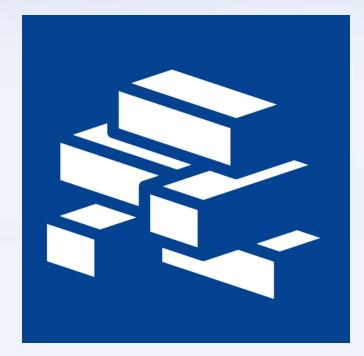
- Some Facilities Have Cell Phone Restrictions
 - RF Testing
 - Sensitive Information
 - Distractions & disruptions
- Current solutions are inefficient

 Phones left unsecured
 Has Potential to be stolen or damaged
 Lacks any means of relaying emergency notifications

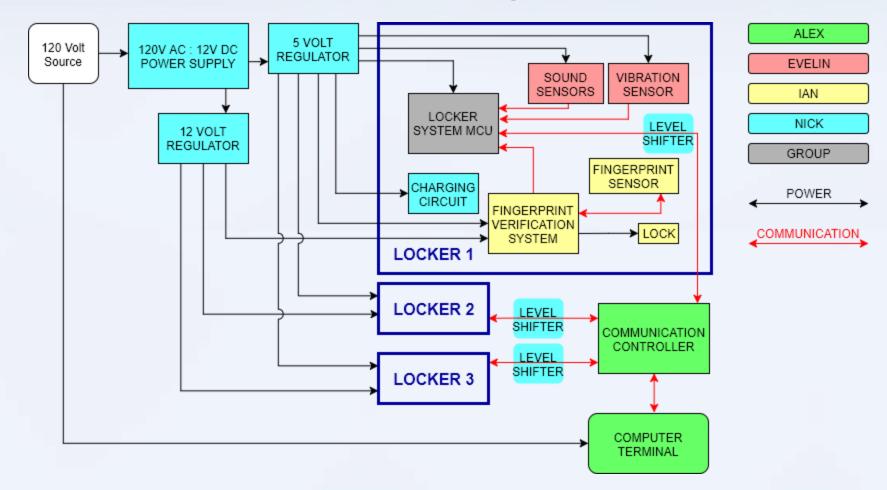

Our Solution to the Problem

- Keep your phone safe & secured
- Keep phone charged
- Detect Important Notifications
- Relay the detected notifications to a computer terminal.

Engineering Requirements


Specification	Requirement
Power Consumption	< 400 Watts
Microphone detection	80+ dB
Vibration Detection	10Hz-400Hz
Damping Between Compartments	10dB
Fingerprint Detection Accuracy	>90%
Single locker footprint (maximum)	12" L x 12" W x 12" H
Sensor Actuation-Transmission Delay	<5 seconds

Our Current Locker Model



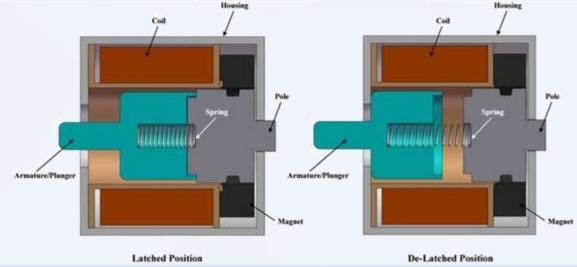
Our Design Approach

- Widely Applicable
 - Low Cost
 - Minimize Overhead
 - Modular and Expandable
 - Nothing Device Specific

Block Diagram

Security Design Decisions

Goals


- Electrically Controlled Locking Mechanism
- Strong and Secure Authentication Method
- Low Cost Design

Locking Mechanism Selection

Туре	Pros	Cons
Electromagnetic	Tamper ResistantStrength increases with current	Requires Constant PowerExpensive & Large
Linear Solenoid Bolt	Low power requirementInexpensiveSmall in Size	Not very heavy dutyLocked out if power is lost
Motorized Electric Latch	Only requires power during state changeAllows manual key override	Large in sizeMoving parts
Linear Solenoid Latch	Power effectiveCost effectiveSmall yet Strong	•Can be locked out if power is lost

Lock Selection

Product	Voltage DC (Volts)	Current (Amps)	Dimensions (cm)	Price
Uxcell Open Frame Type Solenoid for Electric Door Lock	12	1.3	6.6 x 4.2 x 3	\$16.14
Uxcell 10mm Stroke Force Open Frame Type Solenoid for Electric Door Lock	12	1.0	6.4 x 2.6 x 2	\$9.92
Amico 0837L Open Frame Type Solenoid for Electric Door Lock	12	0.6	6.6 x 4.0 x 2.7	\$6.21
ATOPS Ultra-Compact New Cabinet Door Solenoid Electric Lock Assembly	12	.35	2.7 x 2.9 x 1.8	\$4.75
UHPPOTE File Display Cabinet Drawer Latch Assembly Solenoid Electric Lock	12	.6	5.45 x 4.1 x 2.8	\$12.50

Authentication Method Selection

Goals

- Difficult to Falsify or Cheat
- Easy to Setup
- User Friendly
- Cost effective

Authentication Method Selection

Туре	Pros	Cons
Integrated Circuit Card	 Low power requirement Can incorporate Some Existing Company ID's Inexpensive 	 Card can be misplaced, lost or stolen. Work Wears out and needs replacement
Numeric Keypad	 Low power requirement Inexpensive to implement 	 Requires memorization Vulnerable to eavesdropping Takes up a lot of space
Near Field Communication (NFC Chip)	Very compactMore secure than keypadLow power requirement	 Can be misplaced, lost or stolen Might not be allowed in some buildings
Fingerprint Scanner	 Highly Secure Cant be misplaced No memorization required Difficult to replicate or fool 	 Can't be shared Costs more than other methods

Fingerprint Module Selection

Fingerprint Scanner	GT-511C1R	R303	R306	EM406
Manufacturer	ADH-Tech	Grow	Grow	HF Security
Туре	Optical	Capacitance	Capacitance	Optical
Communication	UART	UART	UART	UART
resolution(dpi)	450	508	363	508
Price	\$31.95	\$28.00	\$38.00	\$42.99
Operating Current(mA)	<100	<55	<60	<100
Fingerprint Storage #	20	1000	1000	1000
Voltage (V)	5	5	5	5

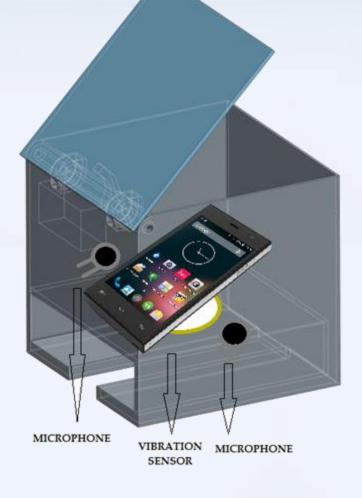
R303 Sensor Module

21

Security Microcontroller Selection

Controller Requirements

- UART for Fingerprint Module
- Enough GPIO pins for: -Buttons
 -Status LED's
 - -Lock Trigger
 - -LOCK Higger
 - -Lock State Output

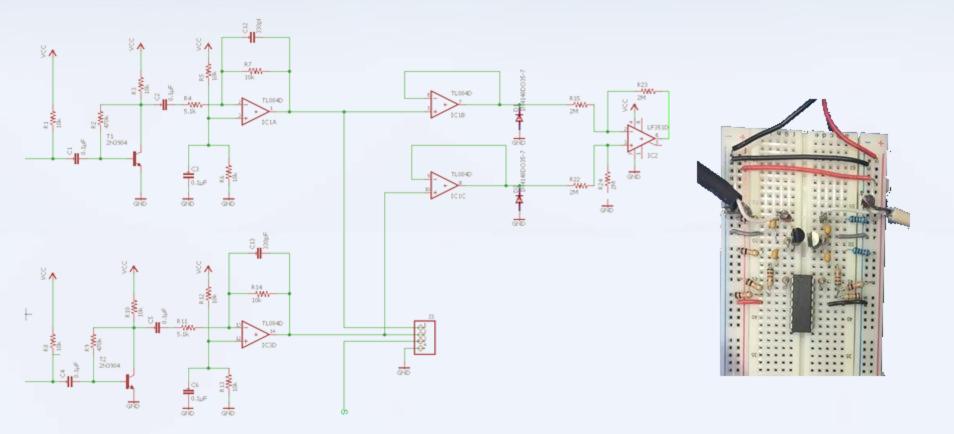

Security Microcontroller Selection

	MSP430G2553	MSP430FG4618	ATMEGA328	ATtiny417
CPU	MSP430	MSP430	AVR	AVR
Non-volatile Memory (KB)	16	116	32	4
GPIO Pins (#)	25	80	23	6
UART	1	1	1	1
ADC Channels	8	12	8	4
Active Power (uA/MHz)	330	400	200	200
Wakeup Time (us)	1.5	13	60	60
Price	\$1.50	\$7.54	\$2.88	\$0.80

Sensors Selection

Sound Sensor:
 Detecting a ringtone

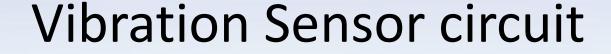
Vibration Sensor:
 Detecting vibrations

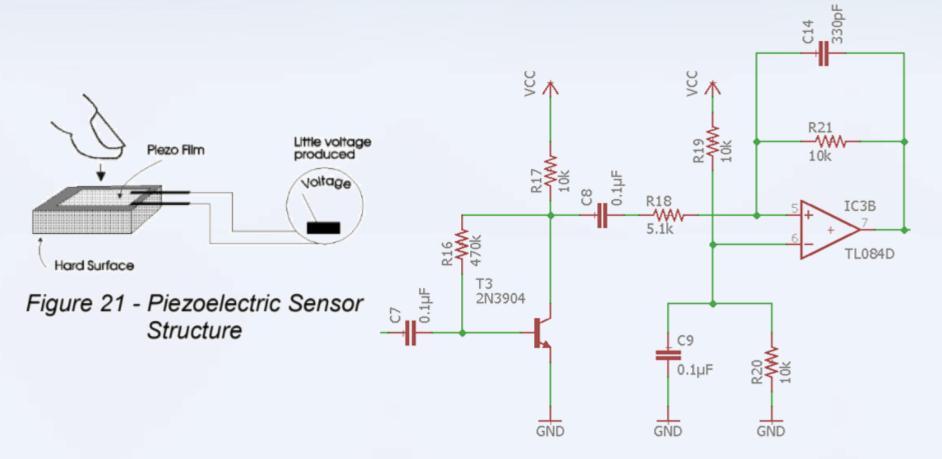


Sound Sensor Options

Chosen: Electret Microphone

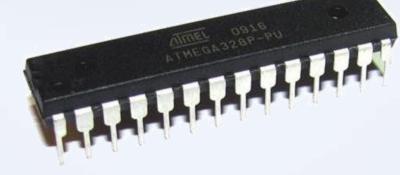
Electret Microphone	Piezoelectric Microphone	MEMS Microphone
Analog Output	Analog Output	Analog or Digital output
Low Cost	High Impedance	Comes with preamp
High Performance	High electrical output	High electrical output
Frequency range 10Hz-20khz	Frequency range 20kHz-10Mhz	Frequency Range: 100Hz-6Khz
More sensitive	Less sensitive	Less sensitive than electret by 12dB

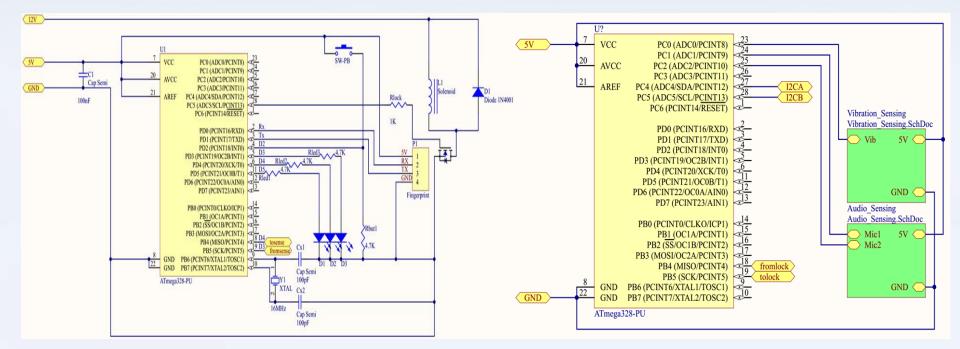

Sound Sensors Circuit



Vibration Sensor Options

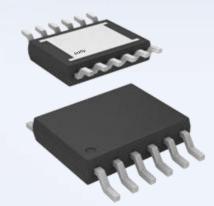
- Chosen: Piezoelectric sensor disc
- MEMs Accelerometer: Lower Range, High Sensitivity. Good for structural monitoring & acceleration measurements.
- **Piezoelectric disc:** Low Sensitivity, Wider Range. Best for converting sound pressure into voltage.


Quarter For Scale)



Sensing Controller Selection

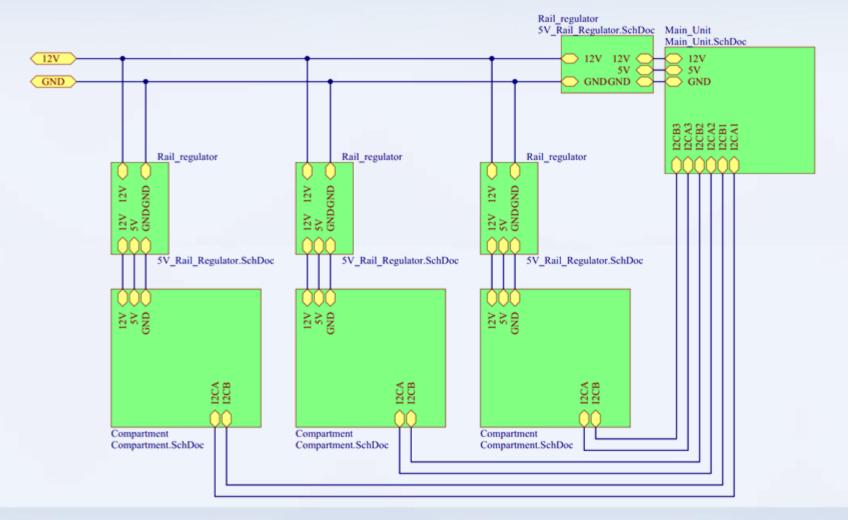
- ATMega328P-PU
- Well Documented
- Previous Familiarity

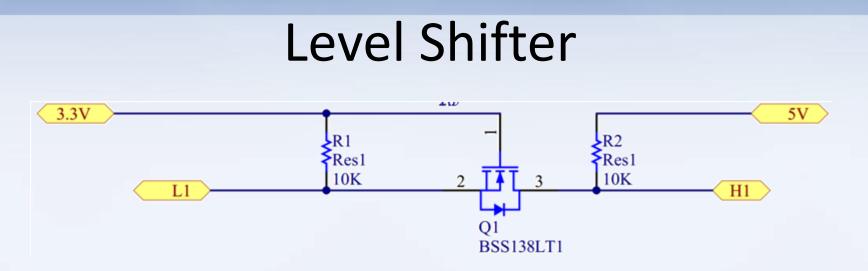

- Readily available libraries for I2C
- Plenty of built in ADCs and Digital pins
- Low cost

Locking Subsystem

Sensing Subsystem

USB Charging

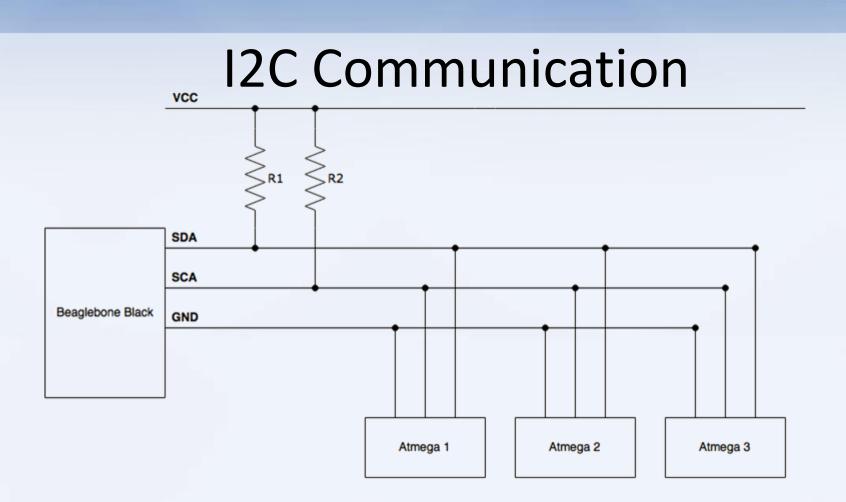

- LT8608EMSE
- Limits current
- Specially designed for USB power
- Keeps load off of the 5V regulators
- Small footprint
- High Efficiency


But What About Power

Component	Voltage Required	Power Consumption
Atmega328	5V	Low
Beaglebone	5V	Low
Level Shifter	5V & 3.3V	Low
Sensing circuit	5V	Low
Fingerprint sensor module	5V	Low
Latch	12V	High
USB port	5V	High

Rail Connections 12V 5V Latch Atmega328 Beaglebone **USB** power module Sensing circuit **Fingerprint sensor** module Level Shifter

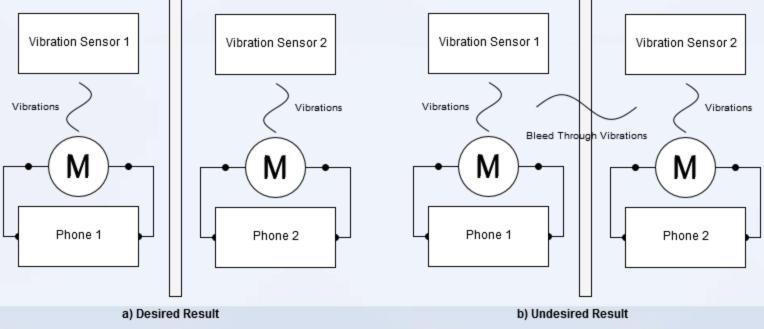
Overall Top Level Power Circuit


- Minimize necessary components
- Allow for mixed logic levels
- Bi-directional

Communication Controller

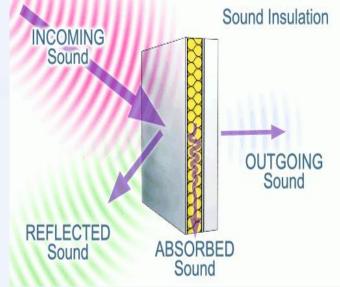
Controller	Advantages	Disadvantages
Arduino ATMega	Cheap Easy to Use Power Efficient Multiple Analog/Digital Pins	Slow Low Level Low Memory
Beaglebone Black	Fast Processor Multiple Analog/Digital Pins Ethernet Linux & Android compatible	Poor Documentation High Cost
Rhasberry Pi	Fast Processor Large RAM USB	No analog GPIO pins
MSP430	Power Efficient Scalable Small Size Many GPIO Pins	Slow Low Level Low Memory

I2C Communication


- BBB and ATMega both support I2C communication.
- Only requires two bus lines.
- We have two topologies for setting up I2C:
 - -Single Master Multiple Slave
 - -Multi Master Single Slave

Multi Master Single Slave Topology

Damping Problem & Solution


- Noisy Neighbor Problem
 - Proposed Solution:
 - -Damping Pads
 - -Sound Comparing System

Sound Damping

- There are multiple mechanical methods for damping sound.
 - -Sound blocking material
 - Structural damping
- Problems arise.

-Sound comparing circuit

Damping Pads

Rubber	Advantage	Disadvantage
Urethane	Resilient Flexible in Form Anti-ESD Low-High Load Bearing	Very Expensive Temperature Sensitive
Neoprene	Temperature Resistant Corrosion Resistant	Very High Load Bearing
Sorbothane	Temperature Resistant High Damping Low-High Load Bearing Cheap	Load Bearing Not Low Enough

System Software Overview

- Five major components to class diagram.
 - –Unit Governor
 - -Box Governor
 - –Lock Controller
 - –Locker Indicators
 - -Fingerprint Scanner
 - -Terminal (varies)

Unit Governor

Unit_Governor	
Box_Address : boolean Box_State : boolean buffer_count : int	
Send_Message(address : boolean, state : boolean, count : int) : package Receive_Alert () : bool	

Box Governor

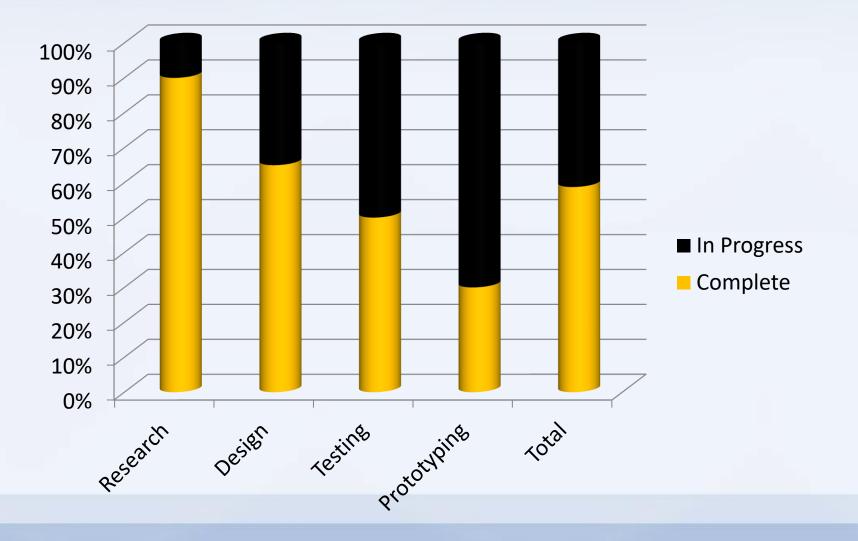
Box_Governor	
s1_sensor : analog s2_sensor : analog p_sensor : analog message_flag : boolean	
Send_Alert (flag : boolean) : boolean Pass_Status (address: boolean, I_state : boolean) : null S_Compare (sound1 : analog , sound2 : analog) : boolean P_Compare (ref : analog , disturbance : analog) : boolean	

Lock Controller

Lock_Controls
f_state : boolean I_state : boolean f_print : Object : Print f_stored : Object : Print button : boolean
Lock () : boolean Unlock () : boolean F_Scan () : null F_Retrieve (print : object) : boolean Button_Watch () : boolean

Locker Indicator

Lock_Indicate
power_flag : boolean lock_flag : boolean occupancy_flag : boolean scan_flag : boolean
indicate_lock (flag : boolean): null indicate_scan (flag : boolean): null indicate_power (flag : boolean): null indicate_occupancy (flag : boolean): null


Fingerprint Scanner

F_Scanner
return_code : boolean image : object
ImageBuffer : package
Buffer1 : package
Buffer2 : package
GenImg (): boolean Img2Tz (BufferID : boolean) :boolean Store (BufferID : boolean , PageID : boolean) : boolean Match () : boolean Empty () : boolean

Alternative Implementations

- Multiple Observer Methods
 - -Lobby Desk Worker
 - -Company Monitor System
 - -Network Messaging

Progress

Work Distribution Priority

Name	Power System	Security System	Sensors	Programming
lan	Secondary	Primary		
Nick	Primary	Secondary		Secondary
Evelin			Primary	Secondary
Alex				Primary

Plan for Completion

Complete By	Task
09/28/2017	Verify Circuits Work Together
09/29/2017	Send out for first PCB
10/06/2017	Print Locker for Testing
10/13/2017	Test PCB/Make any necessary design modifications
10/14/2017	Order Final PCB's
10/21/2017	Finalize Locker Design and Print
10/30/2017	Mid Term Demonstration
11/17/2017	Submit Conference Paper
11/27/2017	Final Presentation to Committee
12/04/2017	Website and Finalized Updated Paper

Issues

- What issues are we having with the project?
 - Finding good documentation.
 - Lack of MCU experience.

