
Clever Coasters
Rubba Ashwas, Mitchell Crozier, and Teodotas

Kursevicius
Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,
Florida, 32816-2450

Abstract —The goal of this project is to provide restaurants

servers with a more simple and efficient way to ensure higher
customer satisfaction through a portable and compact
electronic coaster system. The design uses the CC2650MODA
microcontroller with built-in Bluetooth antenna, a Velostat
pressure sensor, and its own self-charging circuit to keep the
system powered. With additions such as an intuitive user-
interface, LED indicators and the ability to calibrate different
cup sizes, the Clever Coaster system provides a friendly user
experience to both the servers and customers of a restaurant.

Index Terms — bluetooth, battery chargers, internet of
things, pressure sensors, microcontroller

I. INTRODUCTION

The Clever Coaster system was designed with cost and
ease in mind, while also tailoring to the fact that different
customers require different attention. Some want their
water refilled when its halfway, while some never even take
a sip of their drink until their meal arrives. Whichever the
case, the Clever Coaster System integrates weight sensors
and wireless communication to provide a tailor-made
experience for every restaurant goer.

The goal of this project is to create a system of low-
power, cost-efficient smart coasters that can wirelessly
connect to a device at the table, which then connects to a
main display where information about their current state is
provided. The coasters should be easily chargeable in large
numbers, ensuring that a minimal number of wires are
needed. The coasters should last through at least a full day
of service before needing to be re-charged. Also, they
should seamlessly connect to the device at any table they
are placed. The coasters should have the ability to detect if
a drink placed on them is empty or full.

II. SYSTEM HARDWARE

A. Microcontroller

Our microcontroller of choice was the CC2650MODA
chip. We picked this chip for several different reasons, the
biggest of which is that it has a built in antenna, meaning
we didn’t have to design our own antenna which need to be
incredibly precise in order to function as intended, and

could even violate FCC rules if we messed it up. Another
reason is the ability to upload code easily through the two
JTAG pins and our development board without needing to
add a USB interface to each PCB we make, saving space
and money. The final reason is the low power consumption
of the chip, allowing us to run the coasters for at least a day
before needing a recharge.

B. Weight Sensor

As shown in Fig.1 below, we decided on choosing
Velostat, as it provided more flexibility and worked as
needed during the component testing phase. In the
component testing phase, we looked only at how the
resistance changed as pressure/weight was applied to the
surface of the Velostat or FSR. However, we need to be able
to have the microcontroller detect this change through the
measurement of output voltage. To do this, we can set up a
simple voltage divider circuit as shown below. The voltage
measured between the resistor R1 and the Velostat will be
connected to an input port pin on the microcontroller, which
will then need to convert this voltage reading to a digital
value. This can be done through the microcontroller’s
internal Analog to Digital Converter. As more weight and
pressure is applied to the sensor, the voltage will drop
because the resistor will simultaneously drop.

Figure 1: Voltage Divider connected to analog input pin

Equation (1) below shows the relationship between the
change in resistance to the change in output voltage. The
analog input reads the voltage and can compare it to our
calibrated cutoff values.

(1)

III. DEVICE POWER

The Clever Coasters have several requirements to meet
regarding their power source. Primarily, they must be
wireless, which means that a battery is required in the

𝑉"#$ = 𝑉&&	
𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑜𝑓	𝑉𝑒𝑙𝑜𝑠𝑡𝑎𝑡

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑜𝑓	𝑉𝑒𝑙𝑜𝑠𝑡𝑎𝑡 + 𝑅4

design. The battery powers the microcontroller, wireless
communication chips, the PCB, sensors, and LEDs. The
battery must also have enough capacity to last the entire
business day before being charged to avoid being an
inconvenience to customers and employees. The coasters
must be easy to recharge to not be an annoyance to waiters
who must manage them.

A. Charging Method

Three charging methods and one non-charging method
were considered for the Clever Coasters design. The non-
charging method is simply the use of disposable batteries
that waiters would have to replace when they run out. This
is not very realistic because it would require the restaurant
to stock and properly dispose of many batteries on a regular
basis. Furthermore, it would be time consuming for waiters
to be constantly switching batteries out of dead coasters and
annoying for customers if a battery died during their meal.
Waterproofing is another concern for a system that must be
opened a regular basis. Because of those reasons, the non-
charging version was dismissed early.

The next possibility considered was a plug-in charger.
This would require a place for coasters to be held and a
large number of wires to connect them to the charger. The
benefits of this system is that everyone knows how to use
something like a USB charger and it would be fairly easy
to implement in the design while maintaining the
waterproofing. Unfortunately, the system doesn’t scale well
and was also dismissed.

Another option was to create a charging dock where
multiple coasters are stacked and charge at the same time.
This is very easy for wait staff to use and ensures a highly
reliable charge every day. It does pose a small safety
concern for a potential of the dock to be short-circuited, but
this can be prevented by circuits that limit current.
Additionally, this design requires each individual coaster
have a charging circuit within it.

The last option was to use induction charging. This would
require an even more complex charging circuit within the
coasters because it would have to have a coil and be capable
of converting high frequency AC to DC. This system is also
extremely inefficient because of the large EM fields it must
generate regardless of how many coasters are placed on it.
Not only that, but depending on the implementation, it
might not be able to charge very quickly. [1] In the end, this
option is the most complex.

Ultimately, the charging dock solution was selected as
the one that will be used for the Clever Coasters system. It
provides a good balance of design complexity to ease of
use, safety, and efficiency.

B. Battery Type

The type of battery used in the Clever Coasters was
another consideration. The types of batteries considered
were disposable alkaline, reusable alkaline, lead-acid,
nickel-cadmium, nickel-metal-hydride, lithium-ion, and
lithium-ion polymer.

Since a system where the batteries are replaced by hand
when they run out was ruled out, disposable alkaline
batteries were ruled out as well.

Likewise, reusable alkaline batteries were dismissed as
an option because of several bothersome factors. First, their
energy density is not as high as that of other batteries, they
suffer from poor cycle life so the lose a lot of capacity over
time, and they have high internal resistance. Their positive
qualities are a fast recharge time and low self-discharge, but
those are not enough to overcome the drawbacks.

Lead-acid batteries are even worse in the energy density
department, but they do have very low internal resistance,
high overcharge tolerance, and a low self-discharge. The
real problems with them come in the form of a long charge
time and a potential maintenance requirement. Over all,
they’re not the best choice.

The two nickel-based batteries are very similar to each
other. NiCd batteries have better cycle life, extremely fast
recharge and a better overcharge tolerance. NiMH, on the
other hand, have a higher energy density and are somewhat
more environmentally friendly since they don’t contain
cadmium. Both, however, require very precise charging and
discharging as a form of frequent maintenance and are
therefore disqualified.

The last two battery types that were considered are
lithium-ion and lithium-ion polymer. These two are almost
identical except that the form factor of the LiPo batteries is
easier to work with and Li-ion have worse overcharge
tolerance. Aside from that, they have both have high energy
density, good cycle life, no maintenance requirement, a fast
recharge time, and a low tolerance to overcharge. Because
it was good in almost all of the important categories, the
LiPo was chosen for Clever Coasters with the
understanding that charging would have to be carefully
regulated. [2]

C. LiPo Charging Theory

Lithium-ion polymer batteries are charged in a two-stage
process. First, they undergo current limited charging in
which the current being pushed into the battery is limited
by a regulator to be less than the rated amount. Typically,
charging at 1C (or one-hour times the capacity of the
battery) is considered safe and conservative. During this

process, the battery increases in voltage until it reaches the
target voltage which would be 4.2V in the case of the LiPo.

At this point, the battery is at about two thirds of its full
charge. Now, in order to prevent over-charging the battery,
the constant voltage stage of charging begins. Here, the
voltage across the battery terminals is kept at 4.2V and the
current is slowly decreased. This behavior arises from the
internal resistance of the battery. Ideally, the battery cell
should reach 4.2V when measured without resistance, but
while charging, some of the 4.2V comes from the current
passing through the internal resistance. In this way, the
current decreases until it is just drip charging a negligible
amount of current into the battery. [3]

D. Charging Circuit

The purpose of the charging circuit is to control the rate
of charge of the battery when it is placed in the external
charging dock. The particular circuit used here is inspired
by a circuit found in TI literature and is a very simple design
for a single cell lithium battery. It uses a single linear
regulator to control the charge as described in the LiPo
Charging Theory section.

The rectifier on the left is used to deliver the right voltage
to the regulator regardless of the orientation that the coaster
is placed in the charging dock. The diode at the output of
the regulator is used to protect the regulator from a current
reversing when the coaster is taken out of the charging dock
and the input goes to zero. Finally, the voltage divider on
the right is used for the feedback pin to receive an input and
control the output voltage. The resistors are chosen based
on the desired Vout.

This design uses the LP2951 regulator and charges at a
constant current of 100mA when in the current limited stage
of charging. [4] There are also capacitors at the input,
output, and feedback pins to reduce noise, but these are not
shown in the Fig 2. below.

IV. SYSTEM BOARD DESIGN

Since the coasters need to be compact and small, our PCB
design had to be as simplified as possible to ensure it would
fit the dimensions of the 3D-printed coaster housing.
Therefore, only the microcontroller, charging circuit, and
voltage divider were included in the circuit design. Since
the CC2650MODA has a built-in antenna, more board
space was available to focus on the other aspects of the
design.

A. Schematic Design

As shown in Fig.3 below, the main sub-systems included
on the design were the voltage divider, charging circuit, and
microcontroller. Multiple pins are provided to connect
external components such as LEDs and ability to load code
onto the microcontroller with an external debugger.

Figure 3: Schematic of System Design

B. PCB Design

The PCB layout of the coaster design was challenging,
since the microcontroller and Velostat sensors needed to be
placed on the edges of the board. In Fig.4 below, the dotted
line represents where the copper plane would lie. The built-
in antenna (top of the microcontroller) needed to be clear of
copper according to TI’s datasheet for the component [6].
Aside from the microcontroller and linear regulator, all
other components are through-hole, to allow for more
simple hand soldering. There are also more through-hole
components available in the lab to utilize, which would help
avoid the issue of waiting for components to ship.

Figure 2: Charging Circuit

Figure 4: PCB Layout

V. SOFTWARE

The software for our system was split into several
components. We needed to program the actual
microcontroller to read the analog input from our weight
sensor, software that helps the coaster communicate
information to the servers, and also an interface for the
waiter to interact with.

A. Microcontroller Software

The microcontroller for the Clever Coasters must be able
to communicate over Bluetooth Low Energy, measure the
weight of a cup, and be calibrated. This functionality must
be programmed into the chip in such a way that these
functions can work together simultaneously and
seamlessly.

The main thing that allows for multiple, simultaneous
functionality in the microcontroller is the TI-RTOS, or
Real-Time Operating System. The TI-RTOS runs its
programs in a task context. Each task is given different
priorities and they can be preempted by another task of a
higher priority. Therefore, it is important to give long,
persistent tasks low priorities while giving the highest
priority to short, important tasks. [5]

There are also hardware and software interrupts which
preempt the task context and execute immediately. Ideally,
these are not used to do any processing because they block
other tasks from taking place. Instead, we use them to start
a high priority task which will get done in the normal task
context, but allow new interrupts to happen without
blocking.

When Clever Coasters first turns on, it initializes its
services and begins advertising on Bluetooth. When a BLE
enabled device connects to it, it allows that device to see
the state of the weight sensor, to subscribe to that state, and
to calibrate the coaster by sending the right signals. When
a signal is sent to the coaster over BLE, it is placed into a
buffer, interrupts the current task, and sends a message that
the buffer has new information. The coaster can then
process the information. In this case, the information is
usually a calibration signal that tells the coaster to store the
value it is detecting with the weight sensor as a specific
threshold that can later be used to identify whether a cup
placed on it is full, half full, empty, or not placed on it at
all.

As the microcontroller spends most of its processing
power on the BLE and message passing tasks, the sensor
controller monitors the weight sensor independently. It is a
very low power controller that periodically checks the
sensor and does some basic calculations to determine if
there is a need to notify the main application of a change.
Since we have thresholds set for the different levels of
liquid in the cup, the sensor controller doesn’t send any
messages until a threshold is passed. This means noise is
not being processed by the relatively more power-hungry
main processor.

Overall, the processor does not use much energy and can
remain idle on very low power. With the proper use of
interrupts, the sensor controller, and even a separate core
for the RF communication which further decreases the
amount of time the processor spends outside of idle. [6]

B. Android App

The Android app is designed to be the middleman
between the microcontroller and the employee webpage. It
uses three main communication protocols to achieve this,
NFC, WiFi and Bluetooth. NFC or Near Field
Communication is an extremely short range protocol that
an NFC enabled device can use to read and write data on
NFC tags through electromagnetic signals. The tags
themselves don’t use any power, which means we can write
the tags inside each coaster and whenever they come in
range of the android device, it will automatically read all
the information stored in the device from the coaster
without additional power needing to be supplied by the
coaster itself. One of the pieces of information stored on the
NFC tag will be the coaster’s bluetooth address, and the id
of the characteristic to be read to get the status of the
coaster. Using these pieces of data, the app will
automatically connect to the coaster through bluetooth and
perform actions based on what value it reads from the
characteristic data. The actions that it performs will all
involve updating the database, which is hosted on a server

in a different location so we need to use WiFi to access it.
Below is a high level overview of how the app uses NFC,
WiFi and Bluetooth to accomplish these tasks. The NFC tag
containing all the information the app needs to connect
means that the app can begin polling as soon as the tag is
scanned.

The app makes use of a number of different third party
libraries to make developing the application easier, such as
Retrofit[7] to easily connect to and send request to the REST
API running on a server the group set up, Gson[8] to both
marshal and unmarshal the JSON data our server sends and
receives, RxJava[9] to eliminate blocking behavior for tasks
that could take time to complete such as waiting for a
response from the server. We also heavily made use of the
built-in default android libraries for NFC and Bluetooth low
energy.

Figure 5: NFC flowchart

C. Website

Our webpage was designed to be a simple display that
listed available coasters, what table they were at, and the
status of the cup for employees to be able to tell at a glance
which tables need service. Since the webpage is relatively
simple, instead of renting server space with a service like
AWS, we went with a server hosted on one of our desktops,
with the port opened and a free dns host to give us our
domain name. This lets us send and receive data to any
internet connected device, instead of requiring them to be
on the same local network.

The webpage uses several different technologies to run,
in what is commonly called the MERN stack, which stands
for MongoDB[10], Express[11], React[12], NodeJS[13].
MongoDB is our database of choice because it requires less
setup than a traditional relational database such as MySQL,
and the document style database of Mongo leads to easier
integration into other parts of our project like the Android
app, which as mentioned earlier uses Gson to convert the
data sent from our database into Java objects. Express is a
tool that simplifies how to handle incoming traffic to our
server, for example if we receive a put request, we update
our database with the information contained in the body of
the request and send the updated record back as a response
to let the requestor know the update occurred. React is a
component based front end framework that allows us to
easily create user interfaces without needing to write a huge
amount of html and css code. Node is the backbone of the
webpage, built around handling events asynchronously so
it is able to handle a large number of requests without
getting behind. The webpage also uses a third party library
called Mongoose[14] to create a schema for database that the
data being sent to our server must follow, such as the table
number for this coaster and its status, etc.

VI. CONCLUSION

We believe that our project will benefit the end users by
providing an intuitive and cost-efficient system available
for continuous usage. Separating our project into multiple
subsystems, Software, Power, Microcontroller, Sensors,
allowed testing to happen in isolated chunks. This made
debugging and errors easier to detect and fix. Choosing the
right microcontroller was critical in allowing our design to
be simplified, which is why we ended up changing the
microcontroller to one with a built-in antenna. The biggest
challenge faced was how we would get the coasters to
seamlessly communicate information between devices, so
not having to design our own antenna from scratch really
helped ease the process of this design requirement.

ACKNOWLEDGEMENT

The authors would like to thank Lei Wei with his
continued assistance throughout this project.
The Team

Rubba Ashwas will be graduating
with a Bachelor’s of Science in
Computer Engineering with Cum
Laude Honors distinction. She has
been an active member on campus as
an electrical networks tutor and
former president of the Tau Beta Pi
engineering honor society. In the
past, she has completed a computer

vision REU, and interned at both Harris and Microsoft.
Upon graduation, she will be taking 6 months off to travel
and then starting a full-time position at Microsoft as a
Program Manager.

Mitchell Crozier will be
graduating this semester with a
Bachelor’s of Science in Computer
Engineering. He likes to take on a
lot of personal software projects,
and loves to attend hackathons to
build android applications. This
past summer, he interned as a

Software Engineer at Vencore, and will be looking for a
full-time position upon graduation.

Teodotas Kursevicius will

graduate with Honors and receive a
Bachelor’s of Science in Computer
Engineering and Minors in
Mathematics and Engineering
Leadership in May of 2018. He is
currently the Vice President of the
Society of Sales Engineers and is
proud of his 1st and 3rd place wins

in the National Sales Engineering Competition. He has had
two internships with Microsoft as a Software Engineer and
plans to work there full-time in after graduation on the
Word for Mac team.

REFERENCES

[1] F. Mishriki, "Design Considerations in Modern
Wireless Power Transfer Systems: Coil Geometry.,"
PowerbyProxi, 27 Nov 2016. [Online]. Available:
https://powerbyproxi.com/2014/09/design-
considerations-modern-wireless-power-transfer-
systems-coil-geometry/>. [Accessed 27 Apr 2017].

[2] "What's the Best Battery," Battery University, 21
Mar 2017. [Online]. Available:

http://batteryuniversity.com/learn/archive/whats_th
e_best_battery. [Accessed 27 Apr 2017].

[3] Chester Simpson, "Battery Charging," Texas
Instruments Incorporated, 2011. [Online].
Available:
http://www.ti.com/lit/an/snva557/snva557.pdf.
[Accessed 27 Apr 2017].

[4] "LP295x Adjustable Micropower Voltage
Regulator with Shutdown," Texas Instruments,
[Online]. Available:
http://www.ti.com/lit/ds/symlink/lp2951.pdf.
[Accessed 27 Apr 2017].

[5] "CC2640 and CC2650 SimpleLink Bluetooth low
energy Software Stack 2.2.1 Developer's Guide,"
Texas Instruments Incorporated, Oct 2016.
[Online]. Available:
http://www.ti.com/lit/ug/swru393d/swru393d.pdf.
[Accessed 17 Nov 2017].

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

"CC2650MODA SimpleLink Bluetooth low energy
Wireless MCU Module," Texas Instruments
Incorporated, July 2017. [Online]. Available:
http://www.ti.com/lit/ds/symlink/cc2650moda.pdf.
[Accessed 17 Nov 2017].
Retrofit by Square Inc [Computer software]. (2013).
Retrieved from http://square.github.io/retrofit/
Gson by Google [Computer software]. (2008).
Retrieved from https://github.com/google/gson
RxJava by Netflix [Computer software]. (2013).
Retrieved from
https://github.com/ReactiveX/RxJava/tree/1.x
MongoDB by Mongo [Computer software]. (2008).
Retrieved from https://www.mongodb.com/
Express by StrongLoop[Computer software].
(2008). Retrieved from https://expressjs.com/
React by Facebook [Computer software]. (2017).
Retrieved from https://reactjs.org/
Node by NodeJS Foundation [Computer software].
(2017). Retrieved from https://nodejs.org/en/
Mongoose by Learnboost [Computer software].
(2013). Retrieved from http://mongoosejs.com/

