Clever Coasters

Group C

Rubba Ashwas CpE

rubba@knights.ucf.edu

Mitchell Crozier CpE

mitchell.crozier@knights.ucf.edu

Teodotas Kursevicius CpE

kurseviciust@knights.ucf.edu

Motivation

- Busy restaurant
- Your drink is empty
- You haven't seen the waiter in a long time
- Waiters are too busy
- Customer experience is

•

Computer Vision System

- Expensive
- Static
- Lots of Interference

Sensor in Cup

- Difficult to Maintain
- Hard to Use and Charge

Full Table System for Detection

- Hard to Separate Signals
- Very Costly

Full Table System for Charging

- Lots of EM leakage
- Very Inefficient
- Inconvenient to Power

Goals and Objectives

- Wirelessly Communicating Smart Drink Coasters
- Automatic Drink Monitoring System
- Make Restaurant Staff More Efficient
- Improve Customer and Employee Experience

Marketing Requirements

CC

- Smart
- Low Cost
- Easy to Use and Recharge
- Durable and Water Resistant
- Works All Day on a Single Charge

Responsibilities

	Rubba	Mitchell	Ted
PCB Design	Primary	Secondary	
Microcontroller		Primary	Secondary
Wireless		Primary	Secondary
Power	Secondary		Primary
Programming	Secondary	Primary	Primary
Weight Sensor	Primary		Secondary
Housing	Secondary	Secondary	Primary
Interface	Primary	Secondary	

Cost	<\$500 for Prototype System
Power:	<5w Total Usage
Wireless Range	>2 Meters
Weight Accuracy	+/- 50g
Water Resistance	At least IP44
Response Delay	<10 seconds

House of Quality

Cheap Components are Important

Good Battery Helps with Charging

- Accurate Sensors Important, but High Cost
- Waterproofing Important for Longevity
- Must Balance Power, Responsiveness, Cost

Hardware Block Diagram

- Had to consider several design factors
 - Size of network: Table or Restaurant wide
 - Ease of moving coasters between areas
 - Usability
- Advantages and disadvantages to all options
 - Bluetooth LE: low power, but not enough range

	Bluetooth LE	ZigBee	Wi-Fi	RFID (passive)
Cost per tag or module	~\$10	~\$18	~ \$7- 20	~\$2
Range (meters)	50	up to 100	50 - 250	< 3
Power Usage	Very low	Very low	High	None
Network Latency	< 1 sec	< 30 ms	< 100 ms	< 100 ms

In the end, we decided to combine multiple wireless technologies, utilizing the best aspects of each

- The coasters communicate with the table hub via bluetooth
- They sync to the correct table hub via NFC
- The table hub communicates to the central hub via WiFi

Microcontroller Comparison

	MSP430	M24LR Discovery	Arduino Uno	ATtiny85	TI CC2540
Power consumption	0.851 mW	0.722 mW	0.740 mW	0.370 mW	0.851 mW
Max Clock	16 MHz	16 MHz	20 MHz	20 MHz	32 MHz
GPIO pin count	16	41	23	8	21
Current output per pin	48 mA	80 mA	100 mA	40 mA	20 mA
Flash memory size	16 KB	8 KB	32 KB	8 KB	256 KB
RAM size	512 B	2 KB	2 KB	512 B	8 KB
Cost	\$2.32	\$21.25	\$24.95	\$1.20	\$4.73

	RN42	TI CC2540	nRF51822
Cost	\$18.95	\$4.73	\$4.62
Compatibility	UART	SPI/UART	SPI/UART
Bluetooth LE	No	Yes	Yes
Idle power consumption	26 μΑ	0.9 μΑ	2.6 μΑ
Active power consumption	45 mA	23.8 mA	8 mA

^{*}TI CC2540 is an MCU with a built in Bluetooth module

	PN532	TRF7970A	MFRC522
Cost	\$4.80	\$5.82	\$4.14
Maximum read distance	50 mm	N/A *	50 mm
Supports SPI	Yes	Yes	Yes
Supports UART	Yes	No	Yes
Supports I ² C	Yes	No	Yes
Idle power consumption	2 μΑ	0.5 μΑ	5 μΑ
Alert power consumption	45 μΑ	120 μΑ	10 μΑ
Active power consumption	50 mA	70 mA	60 mA

	ISO/IEC 14443A	ISO/IEC 14443B	ISO/IEC 15693 & ISO/IEC 18000-3	ISO/IEC 18092 & ECMA 340 P2P	FeliCa	NTAG
PN532	Yes	Yes (Read only)	No	Yes	Yes	No
TRF7970A	Yes	Yes	Yes	No	Yes	No
MFRC522	Yes	No	No	No	No	Yes

ISO/IEC 14443A has a security issue where it can be hacked

Final choices

Microcontroller: CC2540

- Built in bluetooth
- Low cost
- Moderate GPIO pins

NFC: PN532

- Supports all serial interfaces
- Relatively low power usage

- Wireless Mobility
- Long Lasting Full Day of Service
- Easy Charging Convenience and Time Saver
- Safe Around Food and Drinks

Device Power - Battery Type - Comparison

(Wh/kg)

80

30-50

45-80

60-120

110-160

100-130

Alkaline

Lead

NiCd

NiMH

Li-lon

LiPo

 $(m\Omega)$

<100

100-200

200-300

150-250

200-300

200-2000

50

200-300

300-500

500-1000

300-500

1500

None

3-6 Months

30-60 Days

60-90 Days

None

None

(Optimal)

<0.2C

0.2C

1C

<0.5C

<1C

<1C

1.5V

2V

1.25V

1.25V

3.6V

3.6V

Moderate

Moderate

Very Low

High

Low

Low

Cycle Load **Energy** Internal Charge Overcharge Cell Maintenance Resistance Life Voltage Density Time **Tolerance** Current Requirement

(Hours)

2-3

8-16

2-4

2-4

2-4

Li-Ion VS LiPo

Li-Ion has more Cycles

LiPo has better Overcharge Tolerance

LiPo has better Form Factor

LiPo is the Winner

Device Power - Specific Battery Choice

800 mAh Capacity

\$3.33 per Battery

25C Discharge Rate

240 mAh/Dollar

44mm X 24mm X 9mm Dimensions

Device Power - Charging Solution - Comparison

DCVIC		onar,	ging oo	idtion (oompar	13011
	Work for Employees	Reliability of Charge	Safety	Added Complexity	Long Term Cost	Scalability
Replaceable	Check and	Low (could	Liquid	Accessibility	Frequent	Poor

and Water-

Water-proof,

Current Limit

Circuit, Coil,

HFAC->DC.

Detection

proof

Cables, Circuit

Circuit,

Replacement

and Disposal

Electricity and

Wires

Electricity

Lots of

Electricity

Poor-Medium

Medium-High

High

Batteries

Charging

Charging

Induction

Charging

Dock

Wired

Replace

Plug in

Stack

Stack

Collect and

Collect and

Collect and

run out)

High

High

Medium (slow

charge)

Exposure

Exposure

Dock Short

Interference

Liquid

EM

Device Power - Charging Method - Choice

Charging Dock

Cost Effective

Reliable

Easy to Use

Scalable

Device Power - Charging Method - Dock Design

AC-DC Switching PSU

Short Circuit Prevention

Over-(Voltage, Current, Temperature) Protection

Two Rails

9V DC

Device Power - Charging Theory

Two Stages

Current Limited

- Safe Charging Current
- Up to ~66% Charge

Constant Voltage

- Voltage at 4.2V
- Current Decays Exponentially

Device Power - Linear Regulator - Comparison

	Max Out Current (A)	Dropout Voltage (V)	Quiescent Current (mA)	Accuracy (%)	Pin Layout	Feedback Resistance	Cost per Unit
LP38798	0.8	0.200	1.4	2	12WSON	<250	\$3.25
TLV1117	0.8	1.200	1.7	1.6	4SOT-233	1000+	\$0.72
TPS7A19	0.45	0.240	0.015	2	8SON	<100	\$1.61
TPS7A49	0.15	0.260	0.06	2.5	8SON	<780	\$2.75
LP2951	0.1	0.380	0.075	2	8SOIC	1000+	\$0.68

⟨C_C⟩

LP2951

Lowest Cost

High Feedback Loop Resistance

Good Accuracy

Low Current Output - Results in Longer Charging Time

Device Power - Charging Circuit

⟨C_C⟩

Two Linear Regulators

TLV1117 VS LP2951

Reference Voltage Issue

LP2951 - Stable Output Voltage

Resistors must be adjusted for each Coaster

Circuit Works, Batteries Nominal, Diodes Functioning

Weight Sensors

FSR

Force-Sensitive Resistors (FSRs) are sensors that allow you to detect physical pressure, squeezing and weight.

- More expensive
- More accurate when pressed
- Did not detect weight of cup (Produced Resistance of 1)

Velostat

Velostat is a pressure-sensitive packaging material made of a polymeric foil with carbon black to make it electrically conductive.

- Very cheap (1 sheet ~ \$5)
 - Not as accurate
- Can cover a wider surface area

The better choice!

Testing the FSR

Test 1 - Pressing

Light Pressing (Higher Resistance

Hard Pressing (Lower Resistance)

Test 2 – Mouse Weights

Weight (grams)	0	1.7	3.4	4.5	9	13.5
Resistance 2000k	infinite	infinite	infinite	infinite	infinite	infinite

Testing the Velostat

Test 1 - Pressing

Empty Cup (Higher Resistance

Full Cup (Lower Resistance)

Test 2 – Mouse Weights

Weight (grams)	0	1.7	3.4	4.5	9	13.5
Resistance (2000k)	15	12	9	9	9	8

Weight Sensor Interface Design

Testing the Voltage Divider

Since an increase in weight/pressure causes a decrease in resistance across the Velostat, there is a decrease in the voltage seen by the multimeter

Testing the RGB LED

Green will indicate waiter request

Blue will indicate a cup that is at most 30% full

Red will indicate a Do Not Disturb mode

Calibration Mode

Sensor Monitoring

Wireless Communication - Bluetooth

Wireless Communication - NFC

Software Block Diagram

Coaster Housing

- 3D-Printed
- ABS
- Water Resistant
- Depressed Center
- Buttons
- Metal Corners

Description	Quantity	Estimated Cost (each)	Total Cost
Table/Display Device	3	\$100 (already have)	-
PN532	6	\$4.80	\$28.80
TI CC2540	6	\$4.73	\$28.38
PCB	8	\$12.50	\$100
Battery pack	6	\$6	\$36
Coaster outer shell	6	\$10	\$60
LEDs (pack of 100)	1	\$5	\$5
Weight sensor	6	\$7	\$42
Button	6	\$1	\$6
Charging Station	1	\$25	\$25
Miscellaneous components	-	-	\$25
TOTAL			\$422.18

Questions?