<u>Smart Harness</u>

Group #15 Members MATTHEW HORTON - EE HAI NGUYEN - CPE DOMINIC VU - CPE

Project Description

- Harness that is designed for dogs
- The harness will be mounted with an electronic device
- Device will measure health information from the dog
- Harness will be connected with a mobile device using a bluetooth connection
- The mobile application will store information about the dog's health as well as show real time vital information

Project Motivation

- To enable owners to have real-time health information about their dog
- To tackle the lack of available smart technologies for dogs
- To enable owners to store pet information and access it easily
- Because dogs are awesome!!

You can tell when it's just not there.

You can tell when it's just not there.

Project Goals

To obtain the heart rate and temperature of a dog and display that information on a mobile device

- Assist the owner in maintaining the health of their pet by incorporating an activity tracker (Pedometer)
- To allow the owner to store any information relevant to their pet such as weight, immunizations, etc.
- Alert the owner of possible health issues (such as dangerously high heart rate or a fever)
- The harness needs to be comfortable, lightweight, durable, and safe for all dogs

GOALS You gotta start somewhere

GOALS rou gotta start somewhe

Why a harness and not a collar?

- Comfort it does not choke or injure the dog's throat
- Surface Area more space to place the PCB and any peripherals
- Durability harness fabric will help protect some components
- Safety wiring will be easier to protect from damage and also deter the dog from damaging any of the components
- Aesthetics circuit/sensor placement and wiring will be easier to conceal for a more attractive look

Veterinarian Consultation

- Ideal location for external sensors
- Canine temperature can vary wildly
- Typical fever for a dog begins at 103.5 °F
- Normal resting heart rate range for dogs: Puppies - 160 to 220 bpm Large Adult - 60 to 100 bpm Small Adult - 100 to 140+ bpm
- Could be used in veterinarian offices
- Healthy dogs should be walked a minimum of 30 min. a day

Project Specifications

- ♦ Low Cost: Under \$300.00
- ♦ Small Size: PCB dimensions 3" x 3" or less
- User Friendly: Application displays info with minimal input
- Quick Response: Information displayed in 25s (heart rate)
- ✤ Water resistant
- Durable: Design can last for 3+ years

Harness Examples

Circuit Enclosure Examples

- ✤ Waterproof by design
- ✤ Durable
- Low Cost \$2 \$10 at Mouser Electronics website
- ♦ Small in size
- Very light weight (weight is in ounces)
- Waiting on PCB board for exact sizing

Overall Design Flowchart

Hardware Components

- Microcontroller Atmel ATMega328P
- Accelerometer Adafruit 3-Axis MMA8451
- ✤ Bluetooth SH-HC-08 (CC2541)
- Heart Rate Sensor SEN 11574 (APDS 9008)
- Temperature Sensor DS18B20
- ✤ Battery 9V Alkaline

Microcontroller – Atmel ATMega328P

	<u>Arduino Uno</u>	MSP430 Launchpad	Adafruit Trinket	PICAXE 08M2
Chip	ATmega328P	MSP430G2553	430G2553 Atmel ATiny85	
Cost	\$24.95	\$9.99	\$9.99 \$6.95	
Removable Chip	Yes	Yes	No	N/A
Testing Board Included	Yes	Yes	Yes	No
Onboard Clock	Yes	Yes	Yes	Yes
Clock Speed	16 MHz	16 MHz	8MHz - 16 MHz	32 MHz
Memory	32 KB	16 KB	8 KB	2 KB
Voltage	1.8V - 5.5V	1.8V - 3.6V	3V or 5V	4.5V - 5V
Number of Pins	23	24	5	6

- Voltage 2.5 V, 3.3 V, 5 V
- Memory 32 KB Flash
- Arduino compatible
- UART communication capable
- Cost Development board \$24.95 / MCU \$1.95
- Acquisition Arduino website/Arrow electronics

<u>Bluetooth Module – SH-HC-08</u>

	nRF8001	BGM 113	nRF51822	SH-HC-08
Voltage input	3V - 5V	1.85V - 3.8V	1.8V - 3.6V	3.3V - 5V
Current TX+RX	100mA	16.9mA	17.7mA	9mA
Temp. operation	unknown	-40°C to +85°C	-25°C to +75°C	$40^{\circ}C$ to $+85^{\circ}C$
Dimension	29mm x 28mm	15.73mm x 9.15mm	21mm x 18.5mm	26.7mm x 13mm x 2mm
Distance	10m	10m	10m	10m
Flash memory	Unknown	256kB	128kB	Unknown

- UART wireless communication module
- Bluetooth Version 4.0
- ✤ Range 10 meters
- ♦ Voltage 3.3 V to 5.5 V
- Low current draw, only 9 mA
- Arduino compatible
- ♦ Cost \$ 7.99
- Acquisition Amazon

Accelerometer – Adafruit 3-Axis MMA8451

	<u>Adafruit</u> <u>MMA8451</u>	<u>GY-27</u>	FLORA LSM303	ADXL345-BB	
Size	3mm x 3mm (small)	3.2 cm x 1.5 cm (large)	14 mm diameter (small)	25mm x 25mm (moderate)	
Cost	\$7.95	\$7.95 \$5.82	\$14.95	\$5.01	
Precision	14-bit (High)	Unknown (datasheet unavailable)	16-bit (Very High)	13-bit (Moderate)	
Supply Voltage	1.95 V - 3.6V	3 V - 5 V	2.16 V - 3.6 V	2.0 V - 3.6 V	

- Detects motion, tilt, and basic orientation
- Voltage 3V
- Current Consumption 6 μA to 165 μA
- Arduino compatible
- ♦ Cost \$ 7.95
- Acquisition Adafruit website

Heartbeat Sensor - SEN 11574

	MAX 30102	SI 1143	SEN 11574
Voltage input	1.8V - 5.0V	1.8V – 3.6V	3V-5V
Current input	0.7 μΑ	9 µA	4mA
Dimension	5.6mm x 3.3mm	32mm x 22mm	16mm x 3mm
Cable	No	No	yes
Temp. operation	-40°C to +85°C	-40°C to +85°C	-40°C to +85°C
Price	\$10	\$20	\$5

- ✤ Heart Rate Sensor SEN 11574 (APDS 9008)
- ♦ long cable.
- ✤ Cost \$5
- Acquisition Amazon
- Current Consumption 4mA

Temperature Sensor - DS18B20

	DS18B20	MCP9700	MCP9808
Price	Price \$ 9.95		\$ 4.95
Usable temperature -55°C to 12:		-40°C to 125°C	-40°C to 125°C
Accuracy	±5°C	±2°C	±0.25°C
Cable	Yes	No	No
Voltage	3.3 – 5.5 V	2.3 – 5.5 V	2.7 – 5.5 V
Current	9 μΑ	6 μΑ	200 μΑ
Water Proof	yes	No	No
Size	Long cable	20mm x 0.8mm	21mm x 13mm

- Temperature Sensor
 Current Consumption 9uA
- Water resistantLong Cable.
- Acquisition Amazon

Power System (Theory)

- Supply Power with 9V Alkaline (550mAh)
 - ➤ ATmeage328p
 - DS18B20 (Temperature sensor)
 - ➤ SEN11574 (Heartbeat sensor)
 - ➤ SH-HC-08 (Bluetooth)
 - > MMA8451 (Accelerometer)

♦ Amp consumption table.

Amp Consumption Table (Active onl	y)
ATmeage328p (8Mhz)	11.68mA
DS18B20 (temperature sensor)	1.5mA
SEN11574 (Heartbeat sensor) (APDS9008)	4mA
SH-HC-08 (Bluetooth) (CC2541)	8.5mA
MMA8451 (accelerometer)	0.165mA
Heat, Resistor, Capacitor, Diode, etc.	10mA
Total	35.845mA

Formula for Current drain.

 $hour = \frac{total \ capacity \ (mAh)}{Acutal \ current \ consumption(mA)}$

✤ 550mAh/35.845mA = 15.34h

Prototype & Testing

found Y: 2 Y: Front Y:	-212 -0.5 -212	2: 2: 2: 2: 2:	4152 9.85	m/s^2
Y: 2 Y: Front Y:	-212 -0.5 -212	Z: 3 Z:	4152 9.85	m/s^2
Y: 2 Y: Front Y:	-212 -0.5 -212	Z: 3 Z: 	4152 9.85	m/s^2
2 Y: Front Y:	-0.5	3 Z:	9.85	m/s^2
Front Y:	-212	. 7:	4124	
Y:	-212	7:	4124	
			4124	
1 Y:	-0.5	1 Z:	9.84	m/s^2
Front				
У:	-218	Z:	4112	
.1 Y:	-0.5	3 Z:	9.78	m/s^2
	Y: 1 Y: Front	Y: -218 1 Y: -0.5 > Front	Y: -218 Z: 1 Y: -0.53 Z: Front	Y: -218 Z: 4112 1 Y: -0.53 Z: 9.78 > Front

Hardware Schematic

✤ 1st schematic

 ATmega chip at 8 MHz for saving power.

 Ignore the crystal support for atmega chip at 16Mhz.

Hardware Schematic (continue)

SH-HC-08

 (bluetooth) and
 MMA8451
 (Accelerometer)
 will be integrated
 inside the circuit.

Hardware Schematic (continue)

+5\

 DS18B20 (temperature sensor) and SEN11574 (heartbeat sensor) will not be integrated

Power System

- Schematics for the power supply system.
- ♦ PCB blueprint.
- Cost to build power supply system.

Table cost for power system				
Battery 9V.	\$1.4			
2 capacitors 10uf	\$0.54			
Diode 1N4148	\$0.06			
3.5mm & 2.1 power jack	\$1.55			
L7805CV	\$0.44			
Total	\$3.99			

all part is available @ http://www.mouser.com distributed by Mouser Electronics INC

Hardware Design

The 1st PCB layout. (dimens 2.737 x 2.1)

inch)

- ➤ 1 layer.
- 4 screw at each corner
- Integrated on the pcb

Hardware Design (continue)

- The yellow area where DS18B20 and SEN 11574 will be connected with PCN with a pin.
- Need to account for and identify bad connections
- Pin 2.54mm female header will be used for the reinforcement pin connection for sensors.

Application Requirements

- User Friendly easily accessible information
 - least clicks as possible

✤ Useful

- pertinent information accurately display vitals
- Communicate with the harness wireless
 - able to transfer data
- ✤ Store Data
 - keep track of previous readings display previous data to see trends
- Notifications / Alerts
 alorts when readings
 - alerts when readings are critical notifications when necessary

<u>Implementation</u>

Platform: Android vs Apple

	AVAILABILITY	USABILITY	POPULARITY	PROJECT SIZE	COST	ACCESSIBILITY
ANDROID	~	~	~	~	1	~
APPLE	~	~	~	~		~

Operating System	4Q16 Units	4Q16 Market Share (%)	4Q15 Units	4Q15 Market Share (%)
Android	352,669.9	81.7	325,394.4	80.7
ios	77,038.9	17.9	71,525.9	17.7
Windows	1,092.2	0.3	4,395.0	1.1
BlackBerry	207.9	0.0	906.9	0.2
Other OS	530.4	0.1	887.3	0.2
Total	431,539.3	100.0	403,109.4	100.0

Implementation

♦ IDE: Android Studio vs IntelliJ

	AVAILABILITY	USABILITY	POPULARITY	PROJECT SIZE	COST	ACCESSIBILITY
ANDROID STUDIO	✓	~	~	~	~	~
INTELLIJ	✓	~		~		✓

Implementation

♦ Language: Java vs C++

	AVAILABILITY	USABILITY	POPULARITY	PROJECT SIZE	соѕт	ACCESSIBILITY
JAVA	~	~	~	~	~	~
C++	✓	~	~	~	~	

<u>Software Design</u>

<u>UI Flow and Design</u>

FitPaws

💎 🖌 🛢 22:53

DASHBOARD

UI Flow and Design

		💎 🔺 🛢 21:40
Heart R	tate Reco	rds
02/18/17		60 bpm
03/05/17		120 bpm
05/28/17		78 bpm
07/07/17		115 bpm

Read Heart Rate

	💎 🖌 🛢 21:45
Femperat u	re Records
02/18/17	98.6 F
03/05/17	99.8 F
05/28/17	98.1 F
07/07/17	99.2 F
1	Natio tenas o citator 2014

<u>UI Flow and Design</u>

♥ ∡ ∎ 18:55 Client Records
Sparky
Fido
Marley
Bear
Spot
Pluto
Nala
Gizmo
Sugar
Rex
Clifford
Shiloh

<u>Team Member Design Breakdown</u>

	Design PCB, PCB etching, Soldering	Assembly Coding	Installation PCB to Harness	Software Application	Testing
Dominic Vu			Primary	Primary	Primary
Matthew Horton	Secondary	Primary	Primary		Primary
Hai Nguyen	Primary	Secondary	Secondary	Secondary	Primary

Development Budget

PARTS	WEBSITE	QUANTITY	PRICE		
Temperature sensor DS18B20	https://www.amazon.com/ELENKER-Water	5	\$11.99	\$11.99	package of 5
Bluetooth	https://www.amazon.com/Core51822-Bluet	3	\$7.95	\$23.85	
Heartbeat	https://www.walmart.com/ip/Heart-Rate-	3	\$5.80	\$17.40	
MCU Arduino Uno	https://www.amazon.com/Arduino-Uno-F	1	\$25.00	\$25.00	
Accelerometer	https://www.amazon.com/gp/product/B00SI	3	\$8.96	\$26.88	
ATMega328P	https://www.arrow.com/en/products/atmega	2	\$2.13	\$4.26	
9V Alkaline Battery	https://www.walmart.com	6	\$1.40	\$8.40	
Harness		0	\$0.00	\$0.00	
Circuit Enclosure		0	\$0.00	\$0.00	
Capacitors	https://www.amazon.com	6	\$0.26	\$1.56	
Diodes	https://www.amazon.com	3	\$0.54	\$1.62	
Power Jack	https://www.amazon.com	3	\$1.55	\$4.65	
Voltage Regulator	https://www.amazon.com	1	\$7.99	\$7.99	package of 20
				0	
				0	
				0	
				0	
				0	
				0	
					TOTAL
					\$133.60

 Each member of the group will contribute ¹/₃ of the total cost.

<u>Actual Cost Per Unit</u>

Cost Per Unit			
PCB	\$ 9.57		
Soldering	\$0		
Power Supply Build Above.	\$ 3.99		
ATmega328p	\$1.95		
DS18B20	\$9.95		
SH-HC-08	\$5.99		
MMA8451	\$7.95		
SEN 11574	\$5.00		
Pin Dip, Resistor, Container	\$1		
Software Development	\$0		
Harness	\$0		
Container	\$0		
Total.	\$45.4		

Project Progress

Percentage Complete

Percentage Complete

<u>What next?</u>

- Development of the assembly code.
- Software Implementation.
- Connection and communication between software and hardware.
- ✤ Integrate PCB into the harness.
- ✤ Testing.
- Checking for and fixing any issues.
- ✤ Final Presentation.

