

Electronic Audio Sequencer
with Bluetooth enabled data

transfer

Brandon Marcoux, Giani Francis, Miguel
Chavez and Alexis San Javier

University of Central Florida, Department of
Electrical Engineering and Computer Science

Orlando, Florida, 32816

Abstract — This paper provides a detailed overview related
to the design methodologies and strategies for developing an
electronic audio sequencer with Bluetooth enabled data
transfer. The purpose of an audio sequencer is to allow
musicians and hobbyists to develop musical patterns quickly.
The goal is this project is to provide a more cost effective,
portable and simple alternative to other audio sequencers in
the market. The paper will first provide an overview of the
system components, and then go into more detailed and
technical explanations in the sections that follow.

I. INTRODUCTION

An Audio Sequencer is a unit which possesses a specific
number of segments (usually 8 or 16) and a specific number
of channels (typically between 4 and 16). One can think of
this unit as having segments on an x-axis and channels on a
y-axis. The x-axis segments are cycled through repeatedly
from left to right with respect to time and each segment can
trigger a sound sample contained within the
channel. Conversely, every channel can contain its own
sound sample and be triggered at any cycle. This allows the
user to program music, which at it’s very essence, is a
sequence of sounds organized relative to time. This is
accomplished by placing a switch/button on each segment
that controls its on and off state.
	

Physical audio sequencers are typically expensive and
aimed at more technically inclined musicians. There are
cheaper alternatives that exist purely as a software
applications. However, they forfeit the excitement and
feeling offered by using a physical unit. Physical units
typically require users to follow a manual closely in order
to take advantage of all the functionalities available on the
unit. Additionally, in order to load new sounds onto the
unit, it typically requires the use of a cable, or a storage
medium such as an SD card. The typical setup involves a
computer with a wired connection, which can be
cumbersome.	

	
All this being said, it would be ideal if a physical unit could

be of low cost while maintaining a certain level of portability.
The main goal of this project is to provide exactly this. The unit
is low cost from a user’s perspective, and it is lightweight and
portable, with only a few buttons and controls aside from the
sequencer array. It is also accompanied by a mobile application
that allows the user to control what sounds are assigned to
which sequencer channel. These channels are illuminated with
LEDs when active and triggered with a physical
mechanism. The unit is also versatile in its output possibilities
(multiple output formats – for example speaker, line-
level). Additionally, there is a substantial sound bank
accessible to users, along with the ability to contribute to this
sound bank with sets of audio samples. This allows the user to
really take ownership of the sounds they create.	

II. SYSTEM COMPONENTS

The sequencer as a whole consists of many hardware and
software components. The following section will give a brief
overview of the main components of the system. These will
then be discussed in further detail in the sections that follow.

A. Microcontroller
The microcontroller is the core component of the hardware.

It provides functionality and processes for all incoming and
outgoing information. The overall design of the sequencer is
built around the capabilities of the microcontroller. The device
will have a large amount of code to receive and interpret, and
then push out to dependent components

B. Multiplexed Components

Both the LEDs and buttons will require multiplexing given

the limited input/output pins of the microcontroller. These
components are the main connection between the system and
the outside world, as such, these features need to be
implemented in a smooth and efficient manner. The setups are
also complex, and they require detailed schematic
documentation.

C. Bluetooth hardware

The Bluefruit UART Friend, Bluetooth 4.0 BLE module is
required for our wireless design. The Bluetooth module will
allow us to send sound files, and sound sets wirelessly. Using
the BLE module, we will send serial data when pressing our
upload button on the mobile application. The raspberry pi will
receive the data via serial communication from the Bluetooth
module as ASCII data. The code that is written for the board
will check the data received and store it in the correct sound
files. Once the raspberry pi has the sound file, the rest of the

processing is handles by the main PCB which will
communicate with the raspberry pi via i2c communication.
Also, despite data transfer speed not being a requirement of
our design, we decided to optimize the speed of
communication. Currently sending 8 sound files takes
about 15 seconds. This is how we will interface our mobile
application with the microcontroller and the physical
sequencer.

D. Raspberry Pi

The purpose of the raspberry pi is to give our project

processing power. The ATmega328 could not handle
playing 8 sound files simultaneously, and therefore we
needed a microcontroller that could. The raspberry pi is
the receiver of serial data via Bluetooth communication.
The raspberry pi also functions as our sound player. When
the main PCB triggers sounds to be played via i2c
communication, the pi will handle it.

E. Database

Both the mobile application and the website will be

sending and retrieving data from the same database. The
database will be built using Google’s web platform known
as Firebase. Firebase provides a real-time database that
allows users to sync and store data among users. This real-
time database is a cloud hosted database where data is
stored in JSON format. This means that the database can be
updated in real-time across various platforms including iOS
and web applications, which makes it suitable for this
project

F. Mobile Application

The mobile application is responsible for downloading
the sound information from the database and sending it to
the sound board via Bluetooth. In order for a user to
download the sound files to the app, they will first have to
create a user profile.

When a user creates a profile, their preferences, sound
files, and user information will be stored into a database.
When the user’s account is approved by the admin, their
login credentials are encrypted and saved to the database.
Every time the user logs in, their credentials will be
compared with those in the database, and they will be
granted or denied access. If they login successfully, they
will then be granted access to the rest of the mobile
application. This is helpful because a user can store private
information.

The user will also be able to modify their own
information, such as emails and passwords. Additionally,
they will be able to create projects inside the application,
and the project will the sent to the database to be stored.

Whenever a user thinks a project is ready to be tested/played,
the user will send the project to the sound board via Bluetooth.

G. Website

A key feature of this project is a web application. The web

application is a necessary part of this project because it handles
the role of storing information to the database. This stored
information are sound files, that will be later used to create
music on the sound board by the user. Like the mobile
application, the user will also have the ability to login and
register, and they will be able to modify their own information,
such as emails and passwords.

III. System

Block diagrams are useful when representing a high-
level abstracted view of a system.

Fig. 1. System Block Diagram

. This diagram explains the interconnection of the different
parts of the system. The three main parts of the system are the
mobile application, the physical sequencer, and the website.
The website and the mobile application will share the same
database and will function as the software segment of the
project. The hardware segment will be built separately and
designed to communicate with the app and the website

The Sequencer Control Hardware encompasses the LED
drivers and multiplexing hardware as well as the button matrix
and its respective multiplexing hardware. The tempo segment
is a single potentiometer which will be used to select a discrete
tempo from a determined range. The user input may come in
various forms to influence each part of the system. The
triggering of the sound samples in the sets is controlled by the
user interaction (button push) via the Sequencer Hardware
Control, while the tempo or speed with which the samples are

triggered is controlled by the user turning a potentiometer
(as is the volume).

This project is a small board approximately 12 by 15
inches which contains solely LED buttons or switches,
potentiometers for volume and tempo, a button for start
and stop, and sound outputs. This is all controlled by a
microcontroller and a Raspberry Pi which will
communicate via some Bluetooth to an application on a
mobile device. This connection will allow the transfer of
various audio files and the ability to assign them to
individual channels.

IV. HARDWARE DETAILS

The hardware components outlined in section II, will
now be explained in technical detail.

A. Secondary LED array

The design of the secondary LED array is mentioned

here before the first because it is a simpler design, the main
array builds upon the functionality herein. The main array
controls one color with the ability to multiplex all 128
LEDs. The secondary array controls the second color
which is illuminated column by column showing the state
of the sequence, or which column is being triggered, with
respect to time. Whichever buttons have been selected in a
certain column in a certain row, will be illuminated with the
primary color to show that they are ready to be triggered,
when the secondary color arrives at this column at a
specific time t, the sound/sounds associated with the
primary color illuminated row/rows will be illuminated.

Fig. 2. Secondary LED array schematic

The secondary LED array can be seen as sweeping across

the matrix. Since bi-color LEDs are being used, the
primary and secondary color arrays will seem as one,
however the respective anodes of the LEDs. This means
that in viewing the schematic diagrams it is important to

note that they will be technically “on top” of each other. The
one value which is necessary to calculate in order to use the
MAX7219 is the Iset value. This is a value for a resistor which
is connected between an Iset pin and the positive voltage pin on
the MAX7219. The value of this resistor determines the
amount of current that will pass through the LEDs. This value
is calculated from the Forward Voltage and Forward Current of
the LEDs.

There is a table within the datasheet for the MAX7219 which

Forward Voltage/Current pairs and the associated resistor value
that should be used. The red-green LEDs we will be using have
a Forward Current of 20mA for each color, a 2-2.2 V Forward
Voltage for the red side, and 3-3.3 V Forward Voltage for the
green side. This means a 28k resistor for the red, and a 25k
resistor for the green. A higher resistor value is safe, so we can
choose a value close to these that is found in common pairs of
resistors. This provides a value higher than necessary which
provides a 20% margin above the max current (forward current
value). Limiting the current further can have the effect of
dimming the LEDs, however, so if in testing they seem to be
too dim, this is a value we may adjust (lowering the resistor to
exactly the specified value of 25k) in order to try to achieve
brighter lights.

C. Main LED Array

The main LED array is capable of controlling all 128 LEDs
individually and in any combination. For this we need more
than one MAX7219. The units support cascading, so they take
up no more than three pins including the secondary array. All
of the LEDs are controlled by 3 MAX7219s, one for the
secondary array, and two for the main array. Setting this up is
as straight forward as setting up one 8x8 matrix with one
MAX7219 and then repeating the process. To then make them
one the DOUT pin of the first is connected to the DIN pin of
the second and the clock and load signals are connected to each
from the same source.

Fig. 3. Main LED array schematic

Here we use the same resistor value calculated previously
for the Iset value. Since the values are very similar, we can
use the same values and change them if we notice a big
difference in testing. The 5V supply comes from the main
voltage regulator in the atMEGA328. TheDIN of the first
MAX7219 is coming from the DOUT of the secondary
LED driver

C. Button Multiplexing

The 74LS148 units are used to decode a row of 8 LEDs.
This means that all 16 rows are decoded with a single
74LS148 unit, the first 8 columns with another, and the
second 8 columns with a third. Each of these decoders has
3 outputs for a total of 9. The two column decoders have
their output combined with a multi NAND gate (LS08 unit)
to form 4 output lines, instead of 6 for a total of 7 output
lines. This is accomplished by detecting rows together and
columns together in a daisy chained configuration. This
triggers each entire row and entire column, which is enough
information to determine which individual LED is
signaling.

Fig. 4. Button Array Daisy Chain Configuration

	
D. Bluetooth hardware

Serial communication is the process of sending data bit-

by-bit, sequentially, over a communication channel or
computer bus. The communication channel in this case is
the Bluefruit UART friend Bluetooth module. Serial
communication is very similar to using a telephone. The
speaker on the phone that is held to your ear would be the
receiver (RX) and the microphone would be the transmitter
(TX). The transmitter on your end of the phone is connected
to the receiver of the caller on the other end of the phone.
The receiver on your end of the phone is connected to the
transmitter of the person on the other side of the phone.
Serial communication allows for bidirectional

communication where either person, or in this case,
component/application can send or receive information.

A serial communications interface (SCI) is a device that

allows the serial exchange, of one bit at a time, of data
between the microcontroller and peripherals such as
computers, mobile applications, websites, etc. In our case our
serial communication interface is the Bluefruit UART friend
Bluetooth module.

We can show the steps involved behind our design for data
transfer. Below is the steps taken to control the sequencer
from the mobile application.

1. Mobile app connects with the Bluetooth module
peripheral.

2. Mobile Application sends sounds associated with each
row in the LED matrix.

3. Bluetooth module receives serial data.
4. Microcontroller begins dumping the data into the

appropriate sound files
5. The main PCB connects with the microcontroller via

i2c communication
6. The main PCB tells the microcontroller how and when

to play the sounds sent to it via the mobile application.

The serial port on the microcontroller and board
communicates with the TTL voltage levels which are 0-5V.
This type of serial communication requires three connections
to function. The three connections include a transmitter (TX),
receiver (RX), and a common ground connection. The
Bluefruit UART friend Bluetooth module was designed for
serial communication. The transmitter line on the Bluetooth
module connects to the microcontroller’s receiver port.
Conversely, the Receiver line on the Bluetooth module
connects to the transmitter port on the microcontroller.

By default, the Raspberry Pi which utilizes GPIO pins

14(TX) and 15(RX) for serial communication. In order to
communicate with the Bluefruit Bluetooth module, the
raspberry pi’s TX and RX lines are connected to module’s RX
and TX pins, respectively. This connection protects against
any data collision when the mobile application is uploading
sound sets to the microcontroller.

V. AUDIO PLAYBACK

The initial idea for the system was to combine multiple
audio files into one in the mobile application and send and
play the combined sound on the atmega328. This would have
simulated multiple sounds while using the single thread
available in the single core atmega328. This became
infeasible when we realized that there were some edge cases
which required the sound files to change instantaneously while
others persisted. To solve this problem, we implemented

A A

B B

1

1

2

2

3

3

TITLE:

New Schematic REV: 1.0

Date: 2017-07-31 Sheet: 1/1
EASYEDA V4.7.8 Drawn By: brandonmarcoux

SN74LS148N
U1

41
52
63
74
EI5
A26
A17
GND8 A0 90 101 112 123 13GS 14E0 15VCC 16

SW1

1
2

3
4

SW2

1
2

3
4

SW3

1
2

3
4

SW4

1
2

3
4

SW5

1
2

3
4

SW6

1
2

3
4

+5V

atMEGA328 pin 5

atMEGA328 pin 6

atMEGA328 pin 7

10k
R2

10k
R3

10k
R1

10k
R4

10k
R5

sound playback using the Raspberry pi. While the
atmega328 keeps track of the states of each button and
their corresponding LED signals, the state is also send via
I2c to the Raspberry pi.

When the atmega328 receives an interrupt, it sends a
unique signal to the Raspberry pi prompting the pi that
some change has occurred. The signal that follows this
signal is a unique signal which is interpreted as the button
state which replaces the current button state in the
Raspberry pi’s memory.

At each change of state the state is sent to the Raspberry
pi, and at each step execution the Raspberry pi is
instructed to play the sounds for the given state. This
means that if a given row has three sounds selected, when
the step for this row is executed, these three sounds will be
played. A Java application loads and plays all of the
sounds and handles the multithreading while the audio
files are updated through a bash-script whenever new
sounds come in from the mobile device over
Bluetooth. This configuration allows a sound files of any
length to play and at least 16 sounds to be playing at
once. The Java application is controlled by a python
application which is monitoring the I2c bus and handling
the incoming signals.

In order for the sounds to be interpreted properly by the
program, they are vetted at the point that they are
uploaded to the database from the website. The input
dialog and associated backend ensures that the sound files
being uploaded are of a format which the end java sound
player application can interpret.

VI. SOFTWARE

The main objective of this project is to give users the
ability to develop musical sequences rapidly and
conveniently. This means giving them the ability to
change and edit their sounds sets in real time through
both a mobile and web platform. Given these
requirements, it is critical then to develop a highly
detailed and stable system software architecture.

	
A design can be thought of as the plan resulting from

the process of determining how to implement all of the
system requirements. Good design is about selecting,
adapting, and integrating several architectural design
styles to produce the desired result. In order to ensure
that the software architecture meets the specified

requirements, it is therefore necessary to develop the system
using an architectural model. This not only helps us to
understand the system, but it also provides a blueprint for
analyzing any and all of the dependencies within the system.

 Fig. 5. Class Diagram

From a single diagram, we can see an abstracted view of
the functionality and all its dependencies.

A. Database

The database is NoSQL, so unlike a SQL database there

are no tables or records. Instead, when data is added, it is
added to a JSON tree and becomes a new node with an
associated key. When data is fetched at a location in the
database, all the corresponding child nodes are also
retrieved. Therefore, it is important that the data structure be
kept as flat as possible. To accomplish this, we split the data
into separate paths, using a process called denormalization.
In a SQL database, relational schema is typically represented
with tables. However, since Firebase doesn’t have a query
language, it must be represented through the use of a JSON
Structure.

Fig. 6. Database Nodes

In general, the database stores three main nodes, Users,
Sound Sets, and the individual Sounds as shown in the
table. These nodes follow one similar pattern. When
accessing an object from the database the user must
provide its ID to get the object. The user ID is private
information and even the user themselves won’t even
know their user ID. This makes all information private and
available to the user only. This means any user that is
longed on won’t have access to any other user’s
information.

B. Web

The web application has a very user-friendly interface,
and it is size adaptive. This is useful because in today’s
tech-world, users consume web application in a variety of
different devices with varying dimensions. So no matter
the device that is used to view the website, it will be able
to still have all the main functionalities present. This can
be achieved through the bootstrap framework. Inside this
framework, we have the ability to specify how the user
interface is supposed to look at different sizes. This is
very noticeable on the navigation bar. On a desktop, the
navigation bar will be across the top with different tabs to
select from. While, if the website in smaller device such
as a phone or tablet the menu will dynamically change to
a stair mobile menu instead of the bar across. And this is
not limited to just the navigation bar, it’s actually very
beneficial for all the view in the application.

 Fig. 7. Web User Interface

All the pages on the web application have a footer at the

bottom and a navigation bar at the top. The footer consists
of more information about how the website was made. It
also displays the rights associated with the application.
This footer and navigation bar are found on all the pages.
This gives the user access to all of our different pages. The
pages are Home, Upload, Setting, Login/Register.

At home the user will find a welcome page. On this
page, we have information about our product and who we
are. Here we have information on how to use the sound
board as well. The next page is Upload. The user will only
have access to this page if they are logged in. If the user is
not logged in they will be routed to the login page. Once
the user is logged in they will be able to access the upload
page. From here they’ll be able to edit these sound sets, or
edit their profile settings. If they choose to edit a sound
set, they will be taken to another page, that will display the

current sounds in that set and they will be given the option to
delete sounds from that set or upload new ones. The Setting
page works similar to the Upload page. It has restricted access
unless the user is logged in. Once logged in the user will have
the ability to change different settings of their profile.

The final pages are the Login/Register page. The login page
consists of two text boxes where the user is able to input their
information to get verified. If the user does not already have
an account the user can choose the link below the login to be
able to create an account on the register page. This will be the
only way to access the register page, as we want the user to try
to sign on first. This gives us better user account control. In
the registration page the user can enter all the information to
create an account. This will be sent to the database so that
after the account is created the user will be able to sign on.

B. Mobile

The mobile application also has a very user-friendly

interface. The interface is mostly done without the use of
storyboard found in Xcode. This decision was made because
user experience is very important to us. To deliver the user
experience that we want we need to make our user interface
customizable to the need of each page.

The user will be greeted to a login page. This page will
appear if the user is either new to the application or is not
login in. If the user is new they will be able to select register
that will bring them to another page to register. The
registration will provide an area where the user can input
information about themselves. They will also be able to
include a picture for the user profile image.

After the user is logged in they will have access to the app.
Here they will be brought to the Project page. In this page,
there will be a list of projects the user has made. All this
information is getting pulled from the database in real time.
From here the user will have a few options: they can either
create a new project, go into an existing project, or go to the
menu.

To create a new, project the user will select a ‘+’ sign that is
found on the top right of the navigation bar. This appends
another item to the top of the list. To customize the project the
user then selects the newly created project found on the top of
the list. To go into an existing project the process is the same
as long as the user selects the one they want to modify. From
here the user is sent to a new page. In this page, the user can
do modifications to the project. Including changing different
sounds for each channel, editing the name of the project, and
any other modification we need to implement for the projects.
The information will not be saved automatically as we want to
be sure that all project changes are verify by the user before
saved. The action to save will actually consist of pressing the

save button and confirming to save in a pop up. After the
user saves the information for the project the application
returns to the project list. From here the user will see the
menu button. If the button is selected the side menu would
appear giving the option to switch to the other parts of the
project; Upload and Settings

 Fig. 8. Home Screen

If the user selects settings than the setting menu list will
appear on the screen. Similar to the project list the settings
list will be able to be selected. If the user selects one than
the user will be taken to the modification list. Here the
user will be able to modify the selected setting, i.e. name,
username, phone number, etc. Once the user is done
modifying the settings they will return to the setting list
screen. Here the user will still have access to the menu on
the top left corner as well as a button to press to log out on
the right corner. The menu can take the user to any other
page including upload. If upload is select the user will
encounter an upload page. Here the user will be able to
select from a dropdown with all the names of the project
they have stored on the database. After selecting one the
user can then press send and the project will be sent to the
sound board.

C. Firmware

There are many levels of firmware used to implement
the design. The lowest level firmware is the code on the
atmega328 chip. This firmware is running in a ‘check for
interrupts’ fashion. The main loop of the chip is
constantly checking the input registers which include the
chips reading button presses and the volume and tempo
control. The SN74LS148 decoder sends an output
detected signal whenever a button is pressed. The volume
and tempo controls read analog signals from
potentiometers. The interrupt check looks to see if there is
an output detected signal from the decoders or if the
tempo or volume values have changed significantly (small

fluctuations are expected, so we need to check if there has
been significant enough change to indicate a change in
potentiometer position). If any of these interrupts are
detected, associated actions are taken. This method is able to
detect changes even while processing other code due to the
fact that the potentiometer changes are persistent, and the
button state changes are of a longer duration than the number
of clock cycles used in any intermittent operations.

At the press of a button the overall button state is updated

and the led array is updated to reflect this. The state of the
LEDs is controlled by a register inside the MAX7219s,
therefore the atmega328 is not required to constantly update
the LEDs. Aside from the button interrupts, the current step is
kept track and incremented based on the set value of the tempo
potentiometer. The press of a button and the increment of the
current step are the two values the Arduino sends to the
Raspberry pi in order to play the corresponding sounds.

The Raspberry pi has firmware in place to interpret the state

change signals from the atmega328, play sound files, and read
and store new sound files received from the Bluetooth chip
(from the mobile application). The Raspberry pi also has the
ability to write a signal back to the atmega328 when new
sounds are being loaded so that the atmega328 may notify the
user (via the LEDs) that songs are currently being loaded

VII. PCB DESIGN

The PCBs for our project were manufactured by our senior

design team using the Toner method. This method involves
printing our PCB layout onto paper and etching the design onto
copper boards using heat and an acid mixture. The steps for this
process are detailed below.

1. Laser print the PCB sketch onto a glossy paper
2. Cut out the PCB and fit to the dimensions of the copper

boards
3. Sand off the oxidized layer of the copper board and

clean off any extra dust with acetone (nail polish
remover)

4. Prepare a bowl of cold water, acid mixture (2 parts
muriatic acid, 1 part hydrogen peroxide), a hot
clothing iron, an even surface to iron on, a fine point
sharpie, a dry towel, and another bowl of water.

5. Melt the toner onto the copper board by placing the hot
iron onto the non-glossy side of the paper. Be sure that
the glossy side of the paper in face down on the copper
board. Equally distribute heat and pressure onto the
paper on board for about 10-20 minutes.

6. When the toner is fully transferred to the board,
quickly dump the board and paper into a bowl of ice
cold water. This step ensures that the paper will easily
slide off of the board.

7. Once all of the paper is removed from the board,
examine your sketch. If there are any broken or
faded lines, fill them in will a permanent marker.

8. Now the board is ready to be dumped into the acid
mixture. The time that the acid takes to remove the
copper from the board depends on the strength of
the acid. Be sure to mix and agitate every 5
minutes are so.

9. When the board has no visible copper left, place
the board into water to neutralize the effects of the
acid.

10. Finally, lightly scrub of the remaining toner with
steel wool, and now the board is ready to be tested.

Fig. 9. PCB for Button Array

Our main PCB housing the atmega328, all of the chips to
control the LEDs, and all of the chips to read in the button
states, are implemented as a two-layer PCB. There were
complications in ordering our PCB so we went about taking
the 2-layer design we send out for manufacturing and
printing each layer on a separate single layer PCB. We then
attached these back to back and manually routed the traces.

 CONCLUSION

This project has given our senior design team many
challenges and we’ve had to adjust and make tough design
choices as a result. Through all of the challenges and
hurdles, we have not only managed to create a product that
we envisioned, but we’ve also learned valuable lessons on
how to manage a team.

THE ENGINEERS

Brandon Marcoux is a 23-year-old
computer engineer student. Brandon hopes
to secure a Software Engineering job out of
school and start his own company
someday. He also hopes to never stop
making new things at home with the skills
and experience gained from school and
projects.

Miguel Chavez is a 23 year -old Computer
Engineering student. Miguel currently
works as intern at the Walt Disney World
Company. He develops sections of a .NET
web application that ensures accurate time
and pay recordings. As a hobby, Miguel
develops iOS applications and he hopes to
publish an app to the Apple App Store by
the end of next year.

Giani Francis is a 23-year-old Computer
Engineering student and entrepreneur.
Giani has worked in the modeling and
simulation field as a Software Engineer for
over a year and hopes to continue after
graduation. She plans create a company that
engineers business solutions in the near
future.

Alexis San Javier is a 23-year-old
Computer Engineering student. Alexis is
passionate about learning new programs
and working with cutting-edge
technologies. Alexis plans to get his
masters while working full-time as a
software engineer after graduation.

REFERENCES

[1] ARDUINO Access the Online IDE (2017) Retrieved 6/30/2017 from

https://www.arduino.cc/en/Main/Software	

[2] Firebase Firebase Guides (2017) Retrieved 7/5/2017 from

https://firebase.google.com/docs/guides/	

[3] "How it works | Bluetooth Technology Website." Bluetooth. (n.d.)

7/5/2017 from <https://www.bluetooth.com/what-is-bluetooth-
technology/how-it-works/le-p2p/>	
	

