
Portable Watering Device

Chris Havekost, Joan Henriquez, Peter

Nachtigal, Ronak Patel

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida

Abstract – The Portable Watering Device is a self-sustained

system composed of a solar panel, a microcontroller with a few

sensors behind it, a water tank and a pump. The solar panel is

used to charge a battery on the device which we use to power

the system. The microcontroller behind the solar panel is

connected to a few sensors (temperature, humidity, pressure,

etc.) which are used to predict when the best time to water the

plants will be throughout the day. Users will be able to see and

control all this information from a smartphone application.

The three main requirements we are after with this device are

efficiency, portability and connectivity.

I. INTRODUCTION

Planting is a very popular hobby, many people like to

have plants at their residence for growing food,

landscaping, or making their home look beautiful. The

people who own a house have easy access to all the

resources required to maintain the plants, such as a water

sprinkler system. However, the people who rent an

apartment tend to grow plants on a balcony and have no

access to an automatic water sprinkler system that waters

the plants, and due to rental agreement restrictions, the

residents are sometimes not allowed to plant outside. House

owners could set the timer on their sprinkler system as

desired, but the apartment owners don’t have this luxury

and would have to water the plants themselves.

One of our teammates grew mint plants in his apartment

balcony and they were very healthy plants until summer

arrived. For a busy college student, he or she can water their

plants at most once/twice a day due to school or work

constraints. When it is too hot, watering plants once a day

isn't enough for the plants to survive. This is a problem we

brainstormed to find a solution for, and we thought what if

there was something that could water the plants for us when

we are out at work or school. We had this idea of a solar

powered and portable water sprinkler system that is smart

enough to understand the weather conditions and waters the

plants independently. We thought portability was important

because people who rent are more likely to move to another

apartment frequently and it will be best for them if they

were able to move the system with them easily rather than

getting a new one. So, the difficulty of growing plants in an

apartment balcony motivated us to build a solar powered

and portable water sprinkler system.

Some of the main high-level requirements we set for our

device are efficiency, portability and connectivity. The

system needs to be efficient enough to provide high

performance, while maintaining low power consumption. It

needs to be small in size and lightweight to help with

portability since apartment renters tend to move more often.

Lastly, it needs to show sensor data and let the user operate

the system from a smartphone application, helping them

connect with the device.

II. SYSTEM COMPONENTS

When starting out, we had to set some expectations for

the project. Any water pump we selected needed to be low

voltage and draw a low amount of current to save battery

power while simultaneously providing enough pressure to

propel a stream of water at least five feet. We had to find a

solar panel that could output enough energy to charge the

device's battery and be able to power the device on its own.

We set expectations higher when we asked ourselves to find

a microcontroller capable of being able to handle all sorts

of input from sensors, accept power from the battery and

solar panel, drive the water pump, and still be small enough

to fit into a portable container. We also wanted to design a

device that would be easy for anyone to assemble and be

user friendly. With these expectations in mind, we set out

to find the right components for our device while making

the least amount of compromises.

For our microcontroller, the Atmega328 is the one that

stood out among the rest because of its performance and

price. It features a clock rate of 20 MHz, a low-power mode

of 75 microAmps/MHz and only costs $2.18.

For our solar panel and battery combo, of all the

combinations we researched during Senior Design 1, we

decided to use the 9W solar panel and the V44 battery. This

is because the 6V solar panel will generate enough volts to

power all the components of the sprinkler system such as

the PCB, microcontroller unit, water pump, and all the

sensors. And the V44 battery will provide enough USB

outputs and capacity of 12,000 mAh for a long-lasting

charge and to power the system in case if the weather

conditions are not ideal for the system to generate power

via the solar panel. The price for the solar panel and battery

combo is $159, making it our most expensive component.

For the Wi-Fi Module, we have decided to go with the

ESP8266 since it has a lower cost ($6.95), takes up less

space and still maintains all the same functionality from the

Arduino Wi-Fi Shield, which is one of the best modules

available for Arduino embedded projects.

For the water pump, we saw that with a greater range of

operation voltage and a difference of only $3.00 compared

to the Lightobject it was the obvious choice for us to use

the 3M Water Circulation Micro Brushless Water Pump to

drive our plant showering aspect of the design. The price of

this pump is $12.

For the water level sensor, originally, we decided to go

with a small ultrasonic sensor due to its cost, size, and ease

of implementation. The ultrasonic sensor we had decided to

go with was the ELEC Freaks Ultrasonic Sensor HC-SR04

which cost $3.95. However, after finding out about water

level strip sensors, we thought it may be easier for our end

users to set up so we decided to give that a try.

We found that eTape manufactures different versions of

these continuous fluid level sensors, and we decided on one

of their 12-inch versions. We felt that this may be large for

some tanks, but the sensor has no problem sticking out the

top of a tank and its size makes it usable across a wider

variety of tanks. It cost a bit more money, coming in at

$39.95 for one sensor plus a resistor and required pin

connector but we felt that, despite the cost, using this type

of level sensor would be beneficial to our project. It is more

accurate than an ultrasonic sensor, with none of the

drawbacks. As long as the strip sensor fits into the tank, it

can measure any amount of liquid in it, whereas the

ultrasonic sensor needs a minimum distance between it and

the liquid. End users won’t have to mess around getting the

ultrasonic sensor mounted correctly to the top of the tank,

the strip sensor can be placed on the side of the tank and

attached with tape and will work as long as the pins are not

submerged.

For the temperature, pressure, and humidity sensors we

originally decided to go with the BME280 from Bosch

Sensortec which combines them all into a discrete little

package for only $7.58. Unfortunately, we realized we

would not be able to use the BME280 once we received

them in the mail since they were extremely small in size

and nearly impossible to solder into our PCB with our

current soldering tools and experience. Instead, we will be

using the DHT22 from Aosong for temperature and relative

humidity sensing. For barometric pressure sensing we will

be using the KP235 analog sensor from Infineon which cost

$8.43. While each of these cost more money and take up

more space than one of the Bosch sensors, we will actually

be able to use them effectively for this project and we will

take advantage of their increased accuracy.

Lastly, we have a few miscellaneous items that are

needed to make this project possible. Those items include

resistors, relays, capacitors, diodes, etc.

III. SYSTEM CONCEPT

As seen in the sketch below, our portable watering device

will consist of three main physical components. The first

component is the rectangular box that will house the water

pump and the PCB with all the supporting sensors. This box

will make sure that all the electrical components are safe

and protected from all the outside elements (i.e. water, dust,

excessive wind, etc.).

The second major component is the water tank. This tank

will be attached to both the wall mount and the PCB box.

The wall mount will give it structural support to stay in

place and the PCB box connection will allow the water tank

to talk to the PCB with its integrated water level sensor. For

the first few prototypes, the water tank will be a fixed height

and width determined by us. However, in the future we

hope to replace that with a modular system that can adapt

to a variety of bottles so that is it up to the user what kind

of size tank they want to have.

The third component is the solar panel. The solar panel is

the biggest physical component, and also the most

expensive, but we’ll get to that later. This component will

be attached to a hinge mechanism that will allow it to move

up and down. This mechanism will allow the entire device

to have a smaller footprint when in its “down” position.

This smaller footprint will allow the device to be easier to

carry and move around and also to package if we want to

think that far ahead. In the “down” position, the solar panel

will sit right in front of the “component” box and the water

tank. In the “up” position, the solar panel will sit on top of

the component box and the water tank at an angle. This will

no longer block the water pump and will allow the solar

panel to receive the highest amount of solar energy.

IV. HARDWARE DETAIL

Powering the board will be a solar panel and a battery.

These two devices are intended to supply a steady 5V to the

voltage regulator, that powers the sensors and the

microcontroller, and all other components. The battery is

included because it can hold a charge when there is no

access to direct sunlight, keeping the integrity of our system

intact. The battery will be connected to a relay that will help

operate the water pump, and a voltage regulator will be

connected between it and the microcontroller and sensor

hub. The regulator will keep voltages at a constant level,

preventing damage and unwanted brown or blackouts.

The voltage regulator will be used to step down our

voltage for our sensors below five volts. Doing this

requires a buck converter acquired from T.I. The

TPS562200 takes voltage between four and a half to

seventeen volts and steps it down according to the figure

below. The optimum operating value is between 3.3 and

4.4 volts for the sensors and microcontroller. This range

would give a strong current of close to one amp which is

plenty to supply the four devices that will be powered from

this regulator. By using a basic voltage divider circuit at the

output of the buck converter, it is easy to control the output

voltage to the necessary level. For this project 4.2 volts

with around a .75 amp current will work and have some

extra power in case a part in the design draws more power

than expected. The figure below shows output current and

efficiency depending on output voltage [1].

After researching each of the microcontrollers, we

noticed they each showed a benefit whether it was the

highest clock rate, the lowest power draw, most on chip

memory or lowest power consumption. After doing initial

research it was noted that memory would also have to be

considered in this process to help reduce size and cost of

the printed circuit board. While architectures were

considered in our choice, the microcontrollers all had

similar reduced instruction set computer architectures.

While GPIO pins are also very important it was found that

all of the controllers had enough pins to support all of the

peripherals used by the project. The design of this project

will not be executing too many crucial instructions. It will

receive data from three sensors, transmit that data to an

application, and drive a relay if necessary. Since the data

isn’t too heavy then the controller doesn’t need to be too

extreme. After careful consideration and much research, we

decided to go with the ATmega328P-DIP package as our

microcontroller of choice.

For our water pump selection, it was imperative to have

a pump that was able to move enough water at a good rate

to have a great projection of water which could be

controlled to cover the patio or balcony of an apartment.

We also took into account the possibility that the voltage

being produced for the pump may not be able to reach the

highest max it can handle. Therefore, we had to find a pump

that could produce a great flow with a wide range of turn

on voltage. This creates a good flow and will allow us to

direct the spray direction and distance with ease by

purchasing or 3D printing a simple nozzle. With flow rate

considered to be a non-issue with our choice in pumps, the

comparison of turn on and operational voltages began. Most

water pumps are able to operate around 12 Volts input

which may not be able to be completed at all times. With

the potential of battery failure or a part of the PCB drawing

too much power it is important to take into account a range

at which pumps can operate. The two best pumps at doing

this were the Lightobject EWP-7L9 and the 3M Water

Circulation Micro Brushless Water Pump. The Lightobject

could operate at small voltages which is perfect for our low-

power design but would essentially still need a boost

converter to operate it. With a greater range of operation

voltage and a difference of only $3.00 compared to the

Lightobject it was the obvious choice for us to use the 3M

Water Circulation Micro Brushless Water Pump to drive

our plant showering aspect of the design.

Sensors will be gathering data and sending it to the

microcontroller. Three major types of data will be gathered

in order to make the decision to water the plants or not, they

are: temperature, humidity and barometric pressure. For all

three of these types of information the BME280 sensor

managed to capture all of the environmental information

easily. Unfortunately, this device was also found to be too

small to hand solder onto the Printed Circuit Board. With

this downfall, it was discovered the project would require a

few sensors in order to operate at its full potential and have

the ability to be assembled by the designers by hand. After

searching with the new criteria, the DHT22 temperature and

humidity sensor was found. This device works perfectly

with the Arduino bootloader that is on the Microcontroller

and has through hole based soldering to make it easier on

the designers. For barometric pressure the KP235 matched

the criteria of an operating range between 30 and 120 kPa

set for the sensor and also having a surface mounted design

large enough to be soldered by hand. For the water level

sensing it was originally planned to be an ultrasonic sensor

but was found to be affected by the water and humidity too

much. Therefore, it was changed to a water level sensor

that uses the pressure applied to the length of the device and

registers it as a resistance, that resistance is then translated

into a level between 1 and 0 for the level of water in the

container, this can be seen represented in the figure below

[2].

In order to decide which solar panel type is best for the

sprinkler system, we studied various different kinds of solar

panels available that have different manufacturing

processes and use different materials. Because they use

different materials, efficiency results vary as some elements

gather heat and convert heat to electricity faster than other

elements, and also some save more power than others.

After comparing the solar panels, we can say that it will

be best to use a single-crystal/monocrystalline solar panel

to power the sprinkler system. This is because we know that

the water sprinkler system is a small-scale system that will

only water a few plants sitting in an apartment balcony. For

a small-scale system, we will need a panel that is small in

size and that can generate enough power efficiently

otherwise if we have a polycrystalline panel, it will take up

quite a bit of space in the balcony. The monocrystalline

solar panel meets all of these requirements. Voltaic Systems

claims that these monocrystalline solar panels have an

efficiency of 19% and that they are waterproof. Because of

this, Voltaic Systems V44 panel was found to be the best

panel we could use for this sprinkler system.

There are many types of batteries available in the market

today, however, the one that will be used for this project is

a portable battery pack or a power bank. This is because

power banks are small size batteries that allow us to charge

small devices like phones, or tablets. After carefully

analyzing each type of battery technology, it was concluded

that the Lithium-Ion battery is the most promising battery

for this project. It has the highest charge storing capacity, it

provides high current output, and that it has a very slow

discharge rate so that it doesn’t runout of charge quickly

when it is not being used by the sprinkler system to get

power. The battery must have at least 2 USB ports with one

being a 2-amp port or higher and have a large milliamp per

hour storage capability. The V44 battery has two ports

containing a 1-amp and 2-amp output as well as a 12,000

mAh battery for long lasting life in case the solar panel is

damaged.

V. SOFTWARE DETAIL

The smartphone platform of choice for this project will

be Android, with the Integrated Development Environment

(IDE) of choice being none other than the official IDE for

Android App development, Android Studio. The reason for

this choice is because Android is a very flexible and

powerful platform with an immense number of tools, which

have everything we need to create our product. Apple’s iOS

platform is also very popular, but it requires the use of an

Apple computer and XCode in order to write any code for

its platform, a device only one out of the four team

members owns. This constraint is one of the main reasons

why the smartphone application will first be developed and

tested on the Android platform, and then may eventually

have an iOS version if time permits.

The Android Studio IDE provides one convenient

location for us to code, build, and test our application.

Although a few members of the development team have

Android phones, Android Studio provides us all with a

built-in emulator, allowing us to choose a variety of phones

to upload and run our code on, provided we have enough

RAM, without having to risk damaging one of our own

phones. For our microcontroller and the Wi-Fi Module, we

will be using the Arduino IDE to load sketches and flash

the module.

The code that will be running within the microcontroller

will have various functionalities. The first step is to be able

to properly read the incoming data from the various sensors.

We will first need to set up a serial connection with the

sensors so that they are able to send data to the

microcontroller unit for processing. After performing an

initial setup, initializing the serial connection and any

variables we will need, we can jump into the main loop of

the microcontroller, this is where we will request data from

the sensors on the board. Luckily, we will be able to use

some existing Arduino functions, such as analogRead(), to

help us grab this data from the sensors, as opposed to us

having to create our own communication protocol from

scratch. The analog to digital converter also aids us greatly

in helping to grab data from our analog components. We

will need to make sure the barometric pressure sensor and

water level sensor are both connected to analog pins on the

microcontroller and then they will have their analog signal

converted to a digital one. From there, we will be able to

take that digital data, manipulate it, and send it out to our

application to display the results to the end user. The

process is largely the same with the rest of our digital

components, although there will be less conversion and

overall processing to do before the data is ready.

At this point, we are almost ready to let the rest of the

code take over and deliver this data to our application,

however, we want to make sure we are getting accurate

readings. If we were to take just one sample to grab data

from one of our sensors, it could be tainted by noise from

the rest of the circuit or other uncontrollable factors. Since

we want to get accurate readings, we will be taking five

samples from our sensors and taking an average of all the

readings. We arrived at five samples, with small delays

between them, after reading through some of the datasheets

for our sensors. We believe this will smooth over any

random noise or signals that may be present during any one

reading of the sensor, and the cost in terms of time and

power is not very high.

Once we have the data from the sensors then it is time to

put the data to use and let the code make decisions. One of

the main parts of the microcontroller code will be the

algorithm that takes care of the “Automatic Watering

Mode” of the device. Although we are still working on the

fine details, the main idea is that the algorithm will be able

to automatically determine when would be the best time to

water the plants based on the data it is receiving from the

sensors. We are currently doing research to determine what

values from each sensor will be the deciding factors when

it comes time to water the plants or not.

The design of the user-interface (UI) for the Android

application will follow a simple one-screen system with

different sections. As the user scrolls through the screen,

they will be presented with more and more options. This

layout is not only simplistic, but also widely used. Having

a layout most users have already seen before will make the

application very easy to use. The application will revolve

around three main sections: Sensor Status (Home),

Watering Mode and Notifications. Below we can see a

prototype of the application’s Home screen.

When the application is first opened, it will send the user

directly to the “Home” screen, which is the default. From

this screen, users will be able to see all the relevant

information from the sensors, which includes the

temperature of the place in which the device is located, the

humidity, the amount of water left in the water tank, the

surrounding pressure, among other things. This information

will give the user a quick glance at the state of the system

and its surroundings. Since our device communicates to the

mobile application wirelessly, the user can be anywhere and

still be able to check the state of the system without having

to physically walk out to their balcony.

The second section is the “Watering Mode” screen,

showcased below. From this section, user will have the

ability to choose between the automatic watering mode or

a manual watering mode based on their preferences. The

automatic watering mode will make use of the sensors in

the device to determine when is the best time to water the

plants based on our algorithm.

The “Watering Mode” section will consist of a button to

enable/disable the automatic watering mode, followed by a

list of options for the manual watering mode when the

automatic one is disabled. Once a choice is made, the other

options will be unselected until the current option is turned

off. If the automatic watering mode is disabled, the user will

be able to choose from a list what option they want to go

with for the manual watering mode. For example, they will

have the option to either water the plants only at night every

day, or once every certain number of hours, or maybe even

just water the plants once the moisture drops to a certain

level, just to name a few. This way, if the user feels like our

automatic setting is not the most efficient, they will have

other options. It is important to note that new options can

be added later on with software updates based on customer

feedback, if this device was to make it into the market.

Lastly, we have the “Notifications” screen, showcased

above. From this section, users will have the ability to set

up their notification preferences for the device. This screen

will consist of a list of events that the user would like to get

notified about. Each event will have a toggle next to it

which the user can use to enable or disable the notification

for that event. The top of the screen will have a title that

says: “Notify me when…” and will be followed by the list

of events under it. Some of the events will be: “the water

level drops below 15%”, “the outside temperature is above

95 degrees F”, “the system has finished a watering cycle”,

etc. With this system, if any of those events happen on the

device, the user will be notified on their smartphones

through the app. For example, if the user has the water level

event enabled, they will get a notification as soon as the

water level reaches 15%, allowing them to go add more

water before it completely runs out. Just like the Watering

Mode screen, more options could also be added to this

section in the future based on needs or new requirements.

VI. WIRELESS COMMUNICATION

In order to communicate with our device from our

smartphone application, we need a way to communicate

with it wirelessly from long distances. This includes set up,

scheduling for watering, power on/off and more. While

Bluetooth was considered for this project, it ultimately did

not fill all the needs we had for the device, especially since

Bluetooth is a short-range communication. The ZigBee

technology was also briefly considered but the lack of

support online and examples made it a non-appealing

option. Therefore, we decided to go with a Wi-Fi-module

the board. For an Arduino-based microcontroller, there are

two popular options for Wi-Fi modules.

The first one is the Arduino Wi-Fi 101 Shield. This

component is a powerful Wi-Fi module with crypto-

authentication (developed with ATMEL) that connects an

Arduino-based board to the internet wirelessly in a very

simple and effective way. It connects to the PCB via SPI

port, supports TLS 1.1 (SHA256) and WEP/WPA2

Encryption types and uses the IEEE 802.11b/g/n standard

for its connection. It also supports both 3.3V and 5V

operating voltages.

The second option is the ESP8266 Wi-Fi Module. The

ESP8266 is a self-contained SOC with integrated TCP/IP

protocol stack that can give any microcontroller access to a

Wi-Fi network. With its default firmware, it has the same

functionality as the Arduino Wi-Fi Shield, but at a lower

cost. It is also designed to occupy minimal PCB area,

making it smaller than the Arduino Wi-Fi Shield. The only

disadvantage of the ESP8266 is that it is not capable of 5-

3V logic shifting and will require an external Logic Level

Converter in order to work.

As mentioned previously, we decided to go with an

ESP8266 Wi-Fi module to handle communications

between our Android application and the microcontroller

unit. The ESP8266 has a few modes of communication, but

for the purposes of our project and demo, we will be using

the module to connect to an access point that our Android

phone is already connected to. Once connected to the same

access point, the Wi-Fi module will receive commands over

HTTP from our phone. It will then take those commands

and transmit them over serial to our microcontroller. After

the microcontroller parses the string, it will acquire data

from the chosen sensor, format a new string to transmit

back to the ESP8266 module, then begin transmission.

Instead of receiving and immediately reading and

manipulating this new string, possibly losing data in the

process, the Wi-Fi module feeds the data into a character

array that we then manipulate. We package up this array

into an HTTP response, and send the data back to our

phone, where the Android application takes over

processing.

VII. PROJECT CONSTRAINTS

Time is a very precious item a lot of us take for granted.

With every group member taking multiple classes, working

and some even having extracurricular activities to attend for

an organization, time is definitely something we could use

a little more of. With so little free time, time management

and planning are two of the main values we try to improve

everyday so we do not fall behind with the project. By

setting up deadlines and milestones, we have been able to

stay on track and focused during this planning stage.

Power is another constraint. A major factor of this design

is the fact that it is self sustaining. In order to achieve that

the solar panel will provide a certain amount of power to

keep the system running. With the solar panel we have

picked out a max power output is at 9W. This means we

have to keep the power consumption of all the parts of the

design to a minimum. Anything exceeding this maximum

amount of power draw and the design will fail to work at

all. This is also an important factor in keeping the battery

charged longer. The more power draw the faster the battery

will drain. This limits the amount of peripherals added to

the design and the types of components we can use. For

instance a water pump limited to a lower voltage.

One constraint that was not really thought of at first is the

availability of the parts and components we planned to get.

While doing research, we were able to narrow down our

selections for each component technology and then

proceeded to finding the actual components that would fit

our needs. To our surprise, a lot of the components we

looked at were out of stock temporarily. This would not be

a big deal if we had a lot of time to create this project.

However, with a deadline of just a little over 4 months, parts

need to be ordered as soon as possible so they can start

being tested and implemented. We don’t have the luxury of

waiting for parts to become available again so we can order

them. For this reason, a few components had to be chosen

based on availability and not necessarily because they were

the absolute best option.

Since the parts will be hand soldered onto the printed

circuit board it is important to select parts that are able to

be handled properly and soldered correctly onto the board.

Pins should have a fair amount of distance between them so

the risk of soldering the pins together or incorrectly is down

to a minimum. Also, the parts themselves should be large

enough to be handled by the person soldering. To small of

a part and the device might not be able to be soldered to its

ports properly. Since the soldering will be done by

teammates accuracy of soldering may be considerably

lower than a machine soldering job. This requires us to use

precision and patience in order to achieve the best form of

solder connections. While this saves on cost for the project

it leaves room for a lot of errors with the connections

between all of the parts on the PCB. One small mistake can

short the component or worse the board and the group

would have to restart their PCB with a fresh board.

While there are many more constraints, these are just

some of the main ones we faced as a team when developing

this device.

VIII. COMPONENT TESTING

When working with electronics, you never know if things

are working properly until you test them. Our approach for

hardware testing was pretty simple. We began by testing

each component individually. We checked to see if the solar

panel was able to charge the battery to full capacity, if the

battery was able to supply 5V output at 2 amps for a long

period of time without interruption, if the power circuit was

able to convert from 5V to 3.3V and keep constant current

out and if the relay circuit got switched by input voltage and

could drive the water pump through a relay terminal. After

individual testing was done, we went ahead and starting

connecting all the components on a breadboard to see if we

could retrieve all the sensor data and power all the systems

simultaneously.

IX. BUDGET & FUNDING

Below is a table that illustrates the price of each

component and how it compares to the others. The solar

panel and battery combo is by far the most expensive.

Component Price

Water Pump $12

Solar Panel & Battery $159

PCB $50-100

Micro-controller $2.18

Temperature Sensor

$9.95

Humidity Sensor

Barometric Sensor $8.43

Wi-Fi Module $6.95

Water Level Sensor $39.99

Water Tank $1-5

Miscellaneous Parts $20

This project will be entirely funded by the team. It will

be split evenly amongst the four teammates and will not

have a sponsor to take over the cost of the project. This

means each member is responsible for one-fourth of the

cost ranging from $290 to $350. Each member of the group

has agreed to this stipulation and believes it is fair. Receipts

and other forms of proof of purchase will be saved by each

team member and presented at a later date to form a final

total for the project, get an idea of who spent how much,

and how each member should be reimbursed.

X. CONCLUSION

The research and development of the self-sustaining

plant watering system was at first a large task to handle,

with only four group members. The research needed for the

solar designs, microcontroller, sensors and pumps were

vast seeing as though the market was flooded with

numerous designs and we had to obtain the best ones for

our project.

Our creation, a self-sustaining plant watering system,

was met with many complex and compact designs already

marketed today. With such a vast number of designs to

compare to, we were able to shape our design into the best

possible way for the constraints we obtained ourselves. By

combining the power of the sun, with the low-power-mode

based microcontroller, we were able to supply enough

power to have each sensor function properly as well as

obtain a desirable amount of force from the pump to push

out water for our plants.

Our goal was to design a simple and easy to take care of

system that could operate on its own or manually. The

integration of the software application with the hardware

allows our device to complete these tasks in an efficient

way, leaving little for the user to do. The only interference

needed is to set a time or state to water the plants and adding

water to the tank when it is low. This design is ideal for

those busy workers or students who don’t have time to take

care of their vegetation. As a product that could be

marketed to a broad range of users, our desire of creating a

wide used device was complete.

The completion of this project signifies the coming

together of thorough research and design concepts to

achieve the most efficient and user-friendly device. Overall,

the group is proud of this design and the work put in to

achieve a device that integrates all of the fields studied as

well as providing a product that helps keep our environment

green.

REFERENCES

[1] http://www.ti.com/product/TPS562200/datasheet

[2] https://cdn-shop.adafruit.com/datasheets/eTape+Datasheet

 +12110215TC-12_040213.pdf

