
The Autonomous Cart

‘FollowBot’

Adil Ali (EE), Carlos Gonzalez (EE),

Abhinav Sharma (CPE), David Falter (CPE)

Dept. of Electrical Engineering and

Computer Science, University of Central

Florida, Orlando, Florida, 32816-2450

Abstract -- This paper will discuss the design, and

construction of an autonomous luggage cart. The cart

utilizes a microcontroller that receives positional
information to follow the user’s path. The positional
information will be wirelessly acquired from an application

on the user’s cellphone. Sensors will be used to avoid
collisions with any obstructions or objects in the specified
path. FollowBot’s purpose is to simplify and automate the

transportation of luggage and other materials.

Index Terms – Autonomous, Beacons, Bluetooth Low
Energy, Triangulation, Ultrasonic Sensing

I. INTRODUCTION

 FollowBot is an essence an autonomous vehicle that

is purposed towards the transportation of items such as

luggage, coolers, etc. which allows the user to simply

walk while their goods safely follow them to their

destination. The FollowBot’s main goals are to be

incredibly easy to use and have accurate tracking which

will be accomplished through the utilizations of a

plethora of sensors, microcontrollers, and external

receivers.

This robotic cart will include a two-layer copper

printed circuit board which houses the Atmega328p

microcontroller that will serve as the brain of the system.

The PCB will also contain the HM-10 Bluetooth 4.1

adapter which will be utilized to wirelessly broadcast the

user’s movement data to the microcontroller. An

Android cellular device will be connected to nine

Estimote Bluetooth low energy beacons which will

triangulate the user’s position based on a created

algorithm. This positioning data will then be transmitted

to the microcontroller for processing and if necessary

trigger the LM298 motor controller. The motor

controller is connected to two 12 volt Cytron motors that

are used to turn and move the cart in a variety of

directions. The front and sides of the cart will be fitted

with HC-SR04 ultrasonic sensors that function as a

collision detection system. This allows the cart to stop

when there is an obstruction, allowing for the safety of

this product to be maximized. The major subsystems of

the FollowBot are the movement, obstacle avoidance,

and communication systems which have been calibrated

and tuned to minimize latency making the user

experience as streamlined as possible.

II. SYSTEM OVERVIEW

When designing the FollowBot a specific set of

criteria or specification requirements were determined

by the group members. These requirements were meant

to serve as an evaluation or guideline as to how

successful our design approach was. Having guidelines

allows us to tune and spec the components to meet these

standards. The overall project requirement specifications

that were set were:

o Vehicle Size: 16”x16”x6.5” (WxLxH)

o Collision Detection Range: 5 cm to 100 cm

o Speed: atleast 2 miles per hour

o Battery Life: greater than 2 hours

o Tracking Accuracy: accurate to 2 meters

o Carry Weight: >25 lbs

o Unit Weight: <20 lbs

It is important to note that these were not the only

specfications set however, the ones listed above were the

primary constraints for the design. These specifications

are the minimum goals for the design and under the

proper conditions should be exceeded as to provide

maximum performance and efficiency.

III. SUBSYSTEMS

In this section each subsystem and its components

will be further discussed in order to provide a deeper

understanding into why certain designs were made and

how these designs affect the designs performance. The

analysis of each individual system will also provide a

clearer picture into how these subsystems come together

to form the backbone of the FollowBot.

Figure 1: Overall System Block Diagram

A. Microcontroller

 The microcontroller is a key part of this project: it

drives the hardware and allows it to do all the

functionality we have implemented. The microcontroller

is used for quite a few tasks: motion controls of the

motors because of software input, collision detection and

avoidance, and Bluetooth pairing and functionality. The

MCU (microcontroller unit) handled these tasks with

ease and maintain high functionality in real time to not

hinder the use of the product. Since the MCU is the

backbone of combining our software and hardware, it

was very important to understand the benefits and

drawbacks of several types and brands. We discussed

and juggled between several different types of

microcontrollers and even development boards that were

essentially mini-computers. We wanted a standout

choice that was easy to program, easy to implement

electronically, and powerful enough to handle all of our

tasks.

The most popular MCU in our list of

considerations is often considered a fan favorite for

tinkerers and small project designers around the world.

The ATmega328P is a very familiar microcontroller that

supports a wide range of applications. The ATMega was

a clear frontrunner in our choice of microcontroller due

to the tremendous support and coding libraries it shares

with Arduino, its biggest user. The biggest bonus of

going with Arduino to begin with is the overwhelming

amount of resources available on the internet to develop

with the chip itself. People have been working on

Arduino MCUs for years now and it has always had the

upper hand for people looking to get into custom projects

due to its ease of use. The ATMega328P also offered us

a great price point at roughly $4 per microcontroller. We

were able to get Arduino UNO boards for dev board

testing before ordering our PCB and this allowed for

rapid prototyping ahead of time. This MCU had very

clear strengths and thus beat out the competition for us

very early.

One of the biggest reasons this MCU was at the

top of our list was due to its inseparable relationship with

Java. The Arduino IDE is even written in Java, and

everything on the board can be used to communicate in

programs written in Java. The software engineers on our

team feel very comfortable with the language and thus

feel as though the ATMega chip could expedite the

development process greatly. This microcontroller

solution feels easy, but reliable, and thus makes it a very

strong contender. Despite being a “user friendly” choice

in the market, it is hard to underestimate the shadow that

it casts. Arduino has been around for a long time taking

the reigns as the leader of the public consumer market.

This board may not see as much use in industry, but it

certainly seems like a strong option for a project such as

ours. We used the Arduino IDE for software

development and testing, and though we used an

Arduino UNO dev board for most of the early

prototyping and development, swapping it out for a

soldered PCB with the Arduino software flashed onto the

board was simple enough. The microcontroller fit our

needs by providing us with enough pins, support for all

of our subsystems, and plenty of help with configuration

online.

B. Collision Detection & Obstacle Avoidance

(Ultrasonic Sensors)

While the focal point of this device is its movement

abilities and ease of use, one of the most important

considerations was the safety of both the user and other

people in this device’s operating area. This meant that

the FollowBot’s collision detection and obstacle

avoidance systems had to function flawlessly without

any hiccups. An HC-SR04 ultrasonic sensor was used to

accomplish this task as it allows for the detection of an

object in a range from 2 cm to 500 cm. Other options

such as lidar which provides a much larger range were

considered however, they deemed too expensive and

provided little to no improvement over the ultrasonic

sensors. The relatively large sensor range of the HC-

SR04 allows the cart to have adequate time to stop and

also provides it with enough space to turn if necessary.

The ultrasonic sensor works by sending out a sound

wave of a specific frequency every 10 microseconds.

The trigger pulse is sent through the TRIG pin on the

sensor after which eight 40 kHz sound waves are sent

out. The ECHO pin of the sensor then receives the

soundwave and from this the distance of the object can

be calculated by the time it took for the pulse to leave

and return to the ultrasonic sensor.

Figure 2: Ultrasonic Sensor Timing Chart [1]

There were two approaches to obstacle avoidance

that were considered during the design process. The first

is if the object is within a certain range then the cart

should stop and then turn until the object is no longer

present in the FOV. It could then proceed forward and

continue following the specified path. As shown in the

figure below the HC-SR04 works best when the object is

within ±30º of the sensors field of view.

Figure 3: Range & Field of View of Ultrasonic Sensors

[2]

The other simpler option is to simply stop the cart and

wait to see if the object passes. Our method of managing

object avoidance is to first observe our impending

“collision” and allow the code to assess whether it may

be an immediate issue. An example of such is a person

walking by 2 meters ahead that will have probably

cleared the space by the time our bot reaches the

destination. In this case, we cannot react preemptively

and stop our device. This implementation would be

clunky and inefficient, and borderline unusable in a

crowded environment. We chose to dynamically assess

collisions in our code, and we are using the ultrasonic

sensors to constantly update and send information to the

microcontroller to allow it to determine whether it wants

to stop or not.

A key variable here is “stopping distance”. If the

object is an imminent collision for the FollowBot, it first

determines when it needs to stop based on its current

stopping distance. This variable is effected by the weight

on the device and the current speed of the vehicle. By

analyzing this in real time, the device will stop before

any collision occurs despite the user of the bot

continuing expecting their product to follow them. After

“handing the collision” – we consider this either the

object in the path clearing the way or finding an alternate

path – the device will resume its instruction and correctly

calculate where it needs to go and whether it needs to

catch up. By managing these directions and coordinating

our locomotion accordingly, there should be no cause for

collision unless forced by a foreign entity.

C. Power System

The power system of the FollowBot provided another

challenge as one needs to ensure that the power draw is

minimum to maximize the battery life of the cart. To

power the entire system a variety of different battery

options were tested including sealed lead acid batteries

as well as lithium polymer batteries. Originally the

FollowBot utilized a 7mAh 12-volt sealed lead acid

battery. The capacity of this battery was very large and

sealed lead acids are durable under heavy loads however,

it came with the drawback of being incredibly heavy.

This was detrimental to the design because if the weight

of the cart increased this meant the carriable weight

would decrease. Therefore, the battery was switched to a

smaller 2200 mAh 11.1-volt lithium polymer battery.

The Atmega328p and all of the peripheral devices such

as the Bluetooth adapter and the Ultrasonic sensors all

utilize 5 volt VCC connections. This meant that the

voltage from the battery had to be regulated to 5 volts

DC. This was accomplished by connecting the battery to

the motor controller and then the motor controller to the

Atmega328p and the secondary devices. The motor

controller has a built in switching regulator which

converts from 7 to 20 volts DC to 5 volts DC which is

perfect for the FollowBot. Utilizing a lithium polymer

battery as provides a few drawbacks with charging being

one of them. Lithium polymer batteries must be charged

using constant current/constant voltage charging. This

form of charging essentially keeps the charge current

constant until the battery reaches its fully charged state.

The fully charged state of a lithium polymer battery can

be defined when each cell of the battery pack has a

voltage of 4.2 volts. Once each cell reaches this peak

voltage then the charge rate is reduced. The voltage of

each cell should also undergo a process known as

balancing. This means that the voltage in each cell

should equalized to ensure the cells discharge at the same

rate. Lithium polymer batteries are also problematic in

that they have a higher internal resistance as compared

to other battery types and have a relatively low shelf life.

This means that more heat will be generated when the

battery is operating and also that they must be properly

stored or else they could be damaged due to adverse

environmental conditions (humidity, temperature, etc.)

D. Motor Controllers

The motor controller used for FollowBot was the

L298N Dual H-Bridge DC Stepper Motor Driver

Controller. It can drive one 2-phase stepper motor, one

4-phase stepper motor, or 2-4 DC motors. It contains an

H-Bridge circuit, as mentioned in the name, which

creates higher working efficiency. It is more stable and

reliable with a large capacity filter capacitance, and after

flow protection diode. It has low heat, and an outstanding

anti-interference performance. In addition, the motor

controller offers pulse width modulation, which can

independently manipulate the speed of each motor and

the direction by driving a current in either polarity. This

motor controller also offers a 5V input/output voltage

regulator. This voltage regulator is channeled in our PCB

to power up the microcontroller. Some important

specifications to know about this motor controller are

shown in the table below.

TABLE I

SPECIFICATIONS OF THE L298N

Specification Value Units

Drive Voltage 5-35 V

Max Stall

Current

3 A

Max Power 25 W

The FollowBot uses one motor controller to power

two DC motors. The motors used are Magnolora 12V DC

25MM 120RPM Powerful High Torque Motor. They

have a nominal voltage of 12V, stall torque of 111oz-in,

and a stall current of 1.8A. It is imperative to know these

specifications on a motor. The stall torque determines

how much weight the motors will be able to handle. The

stall current is the amount of current the motor will draw

at maximum torque conditions. The motor’s power can

be approximated by using the formula P = IV if it is not

listed on the manufacturer’s specifications. The motor’s

maximum power can by calculated by using the stall

current and nominal voltage. Sometimes the gear ratio

will be stated on the manufacturer’s specifications. The

gear down acts to increase torque and reduce the

revolutions per minute. The ratio means the amount of

revolutions that the driver gear must take to rotate the

driven gear once.

Torque is known as a rotational force. In other words,

it can be known as a twist to an object. It can be

calculated by a force that is acting at a distance away

from a pivot multiplied by the distance. DC motors rotate

rapidly and for most cases, they have low torque. To

increase the torque in a DC motor, a gear may be added.

However, the trade-off of adding a gear to a DC motor is

a decrease in the motor’s speed. To have an accurate

value for torque needed, the equation below can be used.

In this equation, M is the specified weight of the

FollowBot, 𝛼 is the maximum speed reached in two

seconds, g is gravitational force, 𝜽 is maximum incline

to climb, and r is radius of the drive wheels.

Process for DC Motor Control

Each type of motor has a specific way in which it can

be controlled and this varies depending on the type of

motor. Some motors have a more complex control

method while others are relatively simple. These

processes will be discussed and analyzed for DC motors

in this section.

1. Nominal voltage. DC motor controllers usually

have a range of voltage in their product

description. The motor’s nominal voltage meets

within the range of voltage that the motor

controller can supply.

2. Continuous current. The motor controller

selected provides a current equal to or greater

than the motor’s continuous current. However,

most motor controller manufacture companies

do not specify the motor’s continuous current

but instead specify the stall current. If this

happens, an easy way of estimating the motor’s

continuous current is to take 20% to 25% of the

stall current given for the motor.

3. Control method. This includes PWM, R/C,

UART, or analogue voltage. The pin types of

the microcontroller selected have control

methods that are needed.

4. Single versus dual. Dual DC motor controllers

can operate the direction and speed of two

identical dc motors. They only have one power

output, so controlling motors at different

voltages is not possible.

Pulse Width Modulation (PWM)

Pulse width modulation is an important factor of why

the FollowBot can move and turn. It is a unique

modulation technique used to encode a message into a

signal. The signal is a square wave that is continuously

switched on and off. This pattern of turning on and off

can simulate a range of voltage by changing the amount

of time the signal spends on against the time the signal

spends off. The continuation of the time that the signal is

on is called, the pulse width.

E. Motion System Design (Motor Configurations)

The image below shows the connection between the

motors with the motor controller, and the motor

controller with the microcontroller.

Figure 4: Motor Controller to Motor Configurations

The positive and negative wires of the motor on the

left are screwed to the positive and negative terminals on

the left of the motor controller. We will call these

terminals OUT1 (+) and OUT2 (-). This motor will be

controlling the left wheel of our design. The connection

will be the same for the motor on the right side. We will

call these terminals OUT3 (+) and OUT4 (-). This motor

will be controlling the right wheel of our design. There

will be one power supply. The positive wire of the power

supply is connected to the +12V input terminal and the

negative wire is connected to the GND terminal on the

motor controller. The last hardware details are the

connections between the pins on the motor controller and

the pins on the ATMEGA 328.

IV. PROTOTYPE DESIGN

Wood is the material used to design the FollowBot.

It consists of medium-density fiberwood (MDF) and

common board. MDF is used as the base while the

common board is used for the edges. The FollowBot has

two sections, one section is used to hold the electronic

components while the other is used to hold a specific

object, such as a luggage. The section that holds the

electronics is 8 x 8 inches while the section that holds the

object is 16 x 16 inches. Lastly, the height of the vehicle

is approximately 5.5 inches. The image gives a visual

representation of the dimensions of the FollowBot.

Figure 5: Prototype Base Construction

The vehicle design of FollowBot consist of three

wheels. The front two wheels are 6 inches in diameter,

semi-sold tire with polypropylene hub. They provide a

maximum working load of 94 pounds. The back wheel is

a 3 inch in diameter, hard rubber light duty swivel caster.

The solid rubber on these wheels are great for durability

and smooth movement. The caster has a 100-pound

capacity weight, and can rotate 360 degrees to help

maneuver heavier weight on the FollowBot.

There are three 3D printed components on the

FollowBot which are used for important purposes. One

is used to mount the motors to the edges of the 16-inch

wood platform. Another one is used to mount the swivel

wheel to the back of the vehicle. The last one is used to

provide a connection between the motors, the shaft hubs,

and the wheels.

V. BLUETOOTH LE HARDWARE

Localization and communication with the mobile

application of it’s user using Bluetooth LE technology.

The three major components use to facilitate these

functionalities are the FollowBot’s Bluetooth LE

module, the Beacons who’s packets the module

consumes, and the Bluetooth module on the users mobile

device.

 When choosing the beacons for the FollowBot, the

primary points of discussion were cost, range,

reusibility, and supporting APIs. At twenty-one dollars

per beacon, 100m of range, an easy to use android and

iOS indoor location sdk, and other added on features

such as a fall detector; the Estimote location beacon was

selected as the best option. While having the ability to

transmit both iBeacon(Apple) and Eddystone(Google)

adverisement packets, the Estimote also has a setting to

send out a special Location packet that only contains

information needed to calculate the RSSI as well as the

UUID that a receiving bluetooth module would need to

identify the individual beacons. Aside from the

unnatractive, yet completely water proofing casing, there

is no better beacon for the purposes of this project.

 For the Bluetooth Module on the Followbot itself, the

HM-10 was selected for it’s low cost, large quantity of

available documentation, and compatibility with the

ATmega328P. It used Bluetooth 4.0 LE technology

which is necessary for consuming packets from LE

beacons. The board comes with an onboard LED with

different color and blinking combinations to assist the

developer working with the board. This module is also

extremely resistant to user error in voltage regulation as

it comes with its own allowing it to run efficiently with

souce from 3.3V to 6V. Similarly to other modules, the

HM-10 needs to be connected to the Microcontroller

using 4 wires: RXD, TXD, VCC, and Ground. The RXD

receives serial UART and the TXD transmits it. This is

what allows serial information on the location to be sent

from the mobile phone, to the HM-10 and ultimately to

the FollowBot so that it can use it for the locomotion

portion of the code base. The HM-10 is both iOS and

android compatible for serial communcation.

 The last portion of the Bluetooth chain of

communcation is the users mobile phone. The goal of the

team was to make the app both on the iOS and the

Android. This has been accomplished, however after

testing, there is a clear winner between the two

competing operating systems in regards to bluetooth

localization. Due to the large variety of hardware

configuration that can be found in the line of Android

phones, and the amount of fine tuning needed to

accurately find RSSI values between a beacon and a

module(see section VI) the iPhone ends up being far

superior for apps that are meant to be pushed out to

multiple devices. While the app for the Android may be

fine tuned for the Samsung Galaxy, there is a large

chance that it be hopelessly inaccurate when opened on

a Google Pixel. For these reasons the iPhone 5s+ will be

the only devices fully supported by the FollowBot.

VI. LOCALIZATION

For the FollowBot two separate localization

algorithms are deployed: one for the mobile application

and they other for the FollowBot itself. Both algorithms

at their base take advantage of the relative Received

Signal Strength Indicator(RSSI) between a beacon and a

module and use it to estimate the distance.

The most commonly used Formula and the one we

use for correlating RSSI to is:

d = 10^((TxPower)/10n)

In this formula d is distance, TxPower is a constant

and part of the packet sent by the beacon, and n, is an

environmental factor that can be tuned for different

modules. his value of n, needs to be heavily considered

when writing applications that are meant to be widely

used among different devices. With great variation, it is

nearly impossible to use this equation. This is the reason,

why FollowBot is currently only fully supported by iOS

devices. Below in Figure 6, you can see a rough

correlation between RSSI value and the distance.

Figure 6: Distance to RSSI

Unfortunately, in addition to the issue of n, the

formula has another issue it needs to deal with. The

fluctuation of RSSI values even without disturbances in

large. In Figure 7, you can see the heavy fluctation of

RSSI values, and when left unfiltered, these RSSI values

are just about useless for any meaningful localization

algorithm.

Figure 7: RSSI Over Time at 3 meters

In order to deal with the fluctuations in RSSI values,

it is absolutely necessary to filter out the noise. In our

algorithms we take advantage of two types of popular

filters.

On the ATmega328P the popular Kalman Filter, used

on the Apollo rocket and Tomahawk missiles, was

selected cancel out the RSSI noise. The Kalman filter

recursively estimates the current state of the distance by

using the previous state and current measurement. The

downside of the filter and any other particle filter is the

lack of previous states at the beginning of the

calculations, however this is not an issue with a robot

meant to follow a user over a long period of time.

Overtime, the FollowBot have more accurate idea of the

distance between itself and the Estimote Beacons.

Using the filtered distances, the final step of the

localization algorithm is to use those distances to find the

location of the FollowBot. For this, an iterative

Multilateration formula was deployed. While working

on this, it is important to note while the more beacons,

meaning more distances you have, the more accurate the

multilateration formula becomes. This fact needs to be

balanced with the amount of computation the

ATmega328P needs to perform in order to filter multiple

different streams of RSSI values and convert those into

distances and the distances into a location.

Figure 8: Trilateration

VII. LOCOMOTION

Locomotion of the FollowBot was one of our key

challenges when discussing and implementing the

project. Our design incorporates two wheels driven by

DC motors at the front of the machine as well as a swivel

wheel dependently turning at the rear middle. We chose

this style of locomotion due to the ability to quickly and

efficiently implement differential turning. We are

driving both motors using our ATMega328p and

allowing our mobile app to control the movements

through various equations present within the code. The

product can turn and adjust to variable movements based

on the user and make changes on the fly. Our Bluetooth

trilateration system allows for efficient tracking within

its observation radius and thus allows fine turning by

accounting for direction received by the host. The

hardware design was specifically implemented to allow

for the software to be able to translate movements into

directions. Our early prototypes were focused on 4-

wheel locomotion implementing motors in each wheel

and steering each side separately. We quickly realized

that this would cause more trouble than we needed to

deal with and we made the design choice to go with the

2 forward wheels driven by motors and a swivel wheel

at the back.

VIII. TURNING

Differential turning is a key principle that our code

and locomotion subsystem relies on. By allowing each

side to be independently controlled by software, we can

adjust wheel and motor speeds to issue any degree of turn

we may need. We can also completely stop and execute

directions to turn each wheel in opposite directions if we

need to turn on the spot, in the case of an imminent

collision. Previously, our prototypes displayed very

inconsistent and unreliable tests while turning. We had a

4-wheel system that also implemented differential

turning but the stress on the wheels due to the variations

caused very inefficient and slow turning. In addition to

our other problems, we decided to scrap that prototype

as a result and instantly implemented a new, functioning

design. While a 4-wheel design is usually optimal for

robotics and automotive applications, it relies heavily on

using an axle with implemented steering. We chose to go

without such subsystem, and our locomotion and turning

is thus more reliable.

Our main focus around maneuvering and turning as

key topics of study when researching our project was

accuracy and feasibility. Installing an axle and proper

steering system was far too mechanical for us and

involved many other aspects of design that seemed

unnecessary and past our abilities in the timeframe.

Since a 4-wheel design was limiting us and we did make

a transition to the 3-wheel differential turning idea, our

prototyping and development became a lot simpler. We

also switched from smaller hollow wheels filled with

foam to semi-solid large rubber wheels. These provided

a lot of stability and allowed our project to move way

faster and even carry more weight. We were not using

our motors to their full capacity and thus severely

impacting our turn radius and ability. Changing

strategies really helped us here.

VIIII. PROJECT OPERATION PROCEDURE

The FollowBot project aims to provide a user with a

seamless carrying companion that can assist them in

carrying burdensome cargo across various distances.

User experience is a priority, and achieving seamless

integration between host and device is both exciting and

rewarding. To begin, a user should approach the idle

FollowBot with their handheld Bluetooth capable

device. The user must first download the FollowBot app

from their desired platform application store and prepare

for pairing. The user should now be able to sign in to

their account on the mobile interface and begin the

pairing process. An idle FollowBot will be constantly

searching for new devices to pair with, and associate

links based on information relayed by the Bluetooth

connection through the app.

Once the pairing process is complete, the user is now

on their way to burden-free travel. After the device and

the user’s mobile phone are paired, the FollowBot will

search for beacons around the area to gauge location and

initialize its following capabilities. The user will

designate the follow mode and will then proceed to be

closely shadowed. Travelling through crowds and

obstacles, the FollowBot should keep up with haste and

avoid any possible collisions along the way providing the

user with an efficient and safe experience. The user

should limit the use of FollowBot sessions to avoid

draining too much battery and should always stay a safe

distance away from the moving object while walking.

Once the user has reached their destination, they will be

able to disengage the device with a simple touch of a

button on their handheld device and continue on with

their travel. The bot will then reset and allow for

continued use by anyone else who may wish to test.

X. CONCLUSION

The goal this idea was to make a creative way for more

convenience in situations in which objects need to be

transported from one location to the next such as an

airport. FollowBot is an elegant solution to a popular

problem. Not only are does it aim to improve the public

market and general happiness across airports, we believe

it can expedite foot traffic and relieve blockages in many

of our country’s biggest airports. By creating a mobile

platform capable of carrying luggage and much more, we

believe that FollowBot can even have applications

beyond Senior Design. FollowBot prioritizes safety and

efficiency – this has been repeated and reiterated –

because it is a fundamental principal of our design. Areas

with large foot traffic can easily be a huge challenge for

an implementation such as this, and we want to show that

with good object detection and avoidance, this can be

surmounted. We believe that our choices in design have

been consistent with the consumer market as well as

strategically viable in real-world production. As this idea

expands, we hope it will be applied to different fields due

to its versatility. We faced plenty of challenges on our

way to making this a success, and we believe that every

design and software decision we made was crucial to that

success.

BIOGRAPHY

Carlos Gonzalez is currently a senior at the University

of Central Florida and will be graduating with a Bachelor

of Science in Electrical Engineering in December 2017.

After graduation, his goal is to pursue a career in the

United States Air Force.

Adil Ali will be graduating from the University of

Central Florida with a Bachelor’s of Science in Electrical

Engineering and plans to remain in the Orlando area to

pursue a career after graduation.

Abhinav Sharma will be graduating from the

University of Central Florida with a Bachelor’s of

Science in Computer Engineering and will be employed

with Texas Instruments in Santa Clara upon graduation.

David Falter will be graduating from the University of

Central Florida with a Bachelor’s of Science in

Computer Engineering and is currently employed as a

Support Software Lead at MINT Media Interactive

Software Systems LLC.

REFERENCES

[1] EngineersGarage. “Distance Finder Based on

AT89S52 and Ultra-Sonic Sensors HC-SR04.”

EngineersGarage, 5 Nov. 2014,

www.engineersgarage.com/contribution/experts/distanc

e-finder-based-at89s52-and-ultra-sonic-sensors-hc-sr04

[2] .Sapkota, Sagar. “Sagar Sapkota.” Build Circuit, 12

Dec. 2015, www.buildcircuit.com/simple-ultrasonic-

range-finder-using-hc-sr04/.

[3] Raghavan N Aswin “Accurate Mobile Robot

Localization in indoor environments using Bluetooth”

Retrieved July 7, 2017. Web.

http://www.cse.iitm.ac.in/~ravi/papers/Ashwin_ICRA1

0.pdf

http://www.buildcircuit.com/simple-ultrasonic-range-finder-using-hc-sr04/
http://www.buildcircuit.com/simple-ultrasonic-range-finder-using-hc-sr04/

