FOLLOWBOT

GROUP 6 ADIL ALI (EE) DAVID FALTER (CPE) CARLOS GONZALEZ (EE) ABHINAV SHARMA (CPE)

MOTIVATION

- The FollowBot was a creation of our desire to make travel easier and streamlined
- AIRPORTS, GROCERY STORES, INDOOR MALLS, AND BEACHES ALIKE BECKON FOR AN EASY TO USE MOTORIZED ASSISTANT
- The search for convenience for the lazy and ability for the disabled brought abot the design and product choices we made
- AFTER CAREFUL CONSIDERATIONS TO EACH MARKET, WE SPECIFICALLY CHOSE AND IMPLEMENTED SEVERAL TECHNOLOGIES SPECIFICALLY BUILT FOR INDOOR TRACKING AND USE

PROJECT GOALS & OBJECTIVES

- CART TO BE ABLE TO AUTONOMOUSLY FOLLOW USER
- BE ABLE TO DETECT OBJECTS OR OBSTRUCTIONS AND STOP (COLLISION DETECTION)
- MOBILE APPLICATION TO INTERFACE WITH CART VIA
 BLUETOOTH
- The most accurate Bluetooth Localization Possible

SPECIFICATIONS AND REQUIREMENTS

Parameter	Design Specification
Range	3 feet
Speed	>1.5 mph
Charge Time	3 hours
Discharge Time	5 hours
Accuracy	<1.5 meter
Weight	<30 lbs
Carry Weight	<10 lbs
	Range Speed Charge Time Discharge Time Accuracy Weight

DISTRIBUTION OF WORK

TASK	Primary	Secondary
Bluetooth Localization(Positioning)	David	Abhinav
Object Avoidance & Pathing	Abhinav	David
PCB Design & Circuitry	Adil	Carlos
Construction & Motor System	Carlos	Adil

PART SELECTION

- MOVEMENT SYSTEMS: MOTORS, WHEELS, MOTOR CONTROLLERS
- Collision Detection: Sensors
- Positioning: Bluetooth Modules, Beacons
- POWER SYSTEM: BATTERY
- MAIN: MICROCONTROLLER

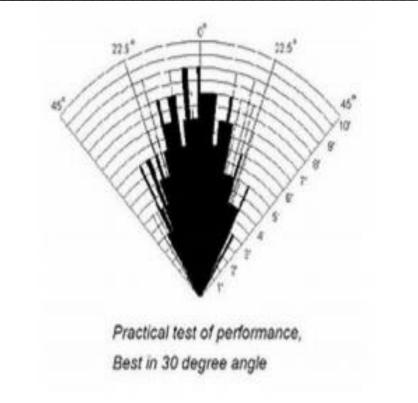
MICROCONTROLLER CHOICE

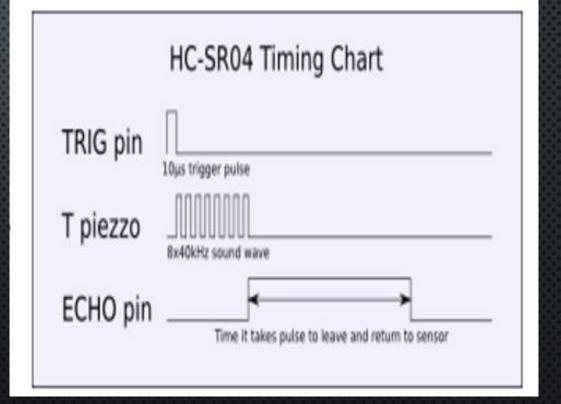
						ATMega328p	TI MSP432
MCU Solution	Cost	Active Power Consumption	Bluetooth?	Communit y	Developme nt	an andre stateter.	MSP432P401R
MSP 432	~\$10	80uA/MHz	Add-on	Good	Fair		Contraction of the second seco
ATMega32 8p	~\$25	20mA/MHz	Add-on	Excellent	Quite Easy	Raspberry Pi 2	BeagleBone Black
BB Black	~\$55	460mA/MHz	Onboard	Average	Easy		
Raspberry Pi 2	~\$40	240mA/MHz	Onboard	Excellent	Easy		

MICROCONTROLLER CHOICE (CONTINUED)

- CAME DOWN TO TWO MAJOR MICROCONTROLLERS (ATMEGA328P & MSP432)
- BOTH OFFERED EFFICIENT AND EFFECTIVE SOLUTIONS TO OUR DESIGN
- CHOSE A MORE RELIABLE MICROCONTROLLER (ATMEGA) FOR OUR SOFTWARE DEVELOPMENT PATH TO ENSURE BETTER CODE AND STABILITY
- ARDUINO OFFERS PLENTY OF ONLINE RESOURCES WHICH MAKE DEVELOPMENT AS WELL AS DEBUGGING MUCH EASIER FOR THE PROGRAMMERS

ULTRASONIC SENSORS


Sensor	Range	Cost	Resolution	Support
HC-SR04	2cm – 400cm	\$2.95	4cm	Little to none
LV-EZ3	0cm – 645cm	\$24.95	2.5cm	Good
PING)))	2.5cm – 304cm	\$29.99	4cm	Excellent


WHY ULTRASONIC?

- OPTICAL PHOTOTRANSISTOR ARE CHEAPER HOWEVER, THEY SUFFER FROM SHADOW INTERFERENCE AND HAVE LOWER SENSITIVITIES
- INFRARED SENSING SUFFER FROM ERROR BASED ON MATERIAL
- LIDAR SENSORS HAVE THE BENEFIT OF INCREDIBLY LARGE RANGE BUT ARE ALSO VERY EXPENSIVE.
- ULTRASONIC OFFERS THE BEST PRICE TO PERFORMANCE RATIO WITH ADEQUATE RANGE AND RELATIVELY LOW COST

Sensor Type	Sensing Range	Unit Price	Unit Size
Optical	0.5-15 cm	\$0.95	30mmx10mmx10mm
oplica	0.0 10 CIII	ψ0.70	
Lidar	0.1 cm to 40 m	\$119.67	48mm x 40mm x 20mm
Ultrasonic	2 cm to 4 m	\$3.95	45mmx20mmx15mm

ULTRASONIC SENSING PROCEDURE

BLUETOOTH ADAPTER

				HM-10
Modules	RN4020	RN52	CC2564MODA	
				3.6 V to 6 V
Operating Voltage	1.8 V to 3.6 V	3.0 V to 3.6 V	2.2 V to 4.8 V	
				12.7x27x1.5 mm
Size	11.5x19.5x2.5 mm	13.4x25.8x2.4 mm	7.0x7.0x1.4 mm	
				3 mA
Power Consumption (Idle)	<1.5 mA	12 mA	40 UA	
				~32 to 50
Power Consumption				mA
(Active)	16 mA	40 mA	41.2 mA	
Bluetooth Version	4.1	2.1	4.1	4.1
				10 meters
Operating Range	100 meters	10 meters	10 meters	

POSITIONING

- MOST COMMON POSITIONING TOOL IS GPS DUE TO ITS HIGH ACCURACY AND WIDESPREAD AVAILABILITY
- INDOOR POSITIONING CURRENTLY UTILIZES EITHER BLUETOOTH OR WIFI (CHRONOS)
- INDOOR POSITIONING IS RELATIVELY NEW AND UPCOMING

BLUETOOTH BEACONS

- THREE MAJOR TYPES OF BEACONS:
- IBEACON
- URLBEACON
- Eddystone
- WE ARE UTILIZING THE ESTIMOTE BEACONS FOR
 IOS AND UTILIZING AN IPHONE AS AN ESTIMATE
 STICKER

BATTERY TYPE

lon
Jrs
000
60
25
50
Ļ

HARDWARE – MOTOR SELECTED

Magnolora 12V DC 25MM 120RPM Powerful High Torque Motor

Characteristics:

• Used in applications such as robotics, household appliances, electric tools, etc.

Specifications:

- Nominal Voltage: 12
- No Load RPM: 120 RPM (Rotations Per Minute)
- Stall Current: 1.8 A
- Stall Torque: 111 oz-in = 8 kg-cm
- Shaft Diameter: 4 mm
- Shaft Length: 12 mm
- Shaft Type: D-Shaped
- Size: 25D x 52L mm
- Weight: 100 g

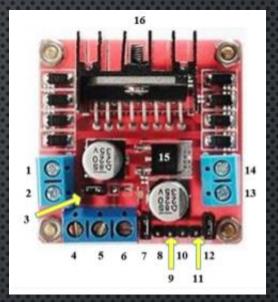
Questions/Concerns:

- Will it be able to handle a large amount of weight (Spur)?
- Will a 120 RPM motor be able to keep up with the user while moving load?

HARDWARE – MOTOR CONTROLLERS **MDD10A Dual Channel DC Motor Driver Controller**

Specifications:

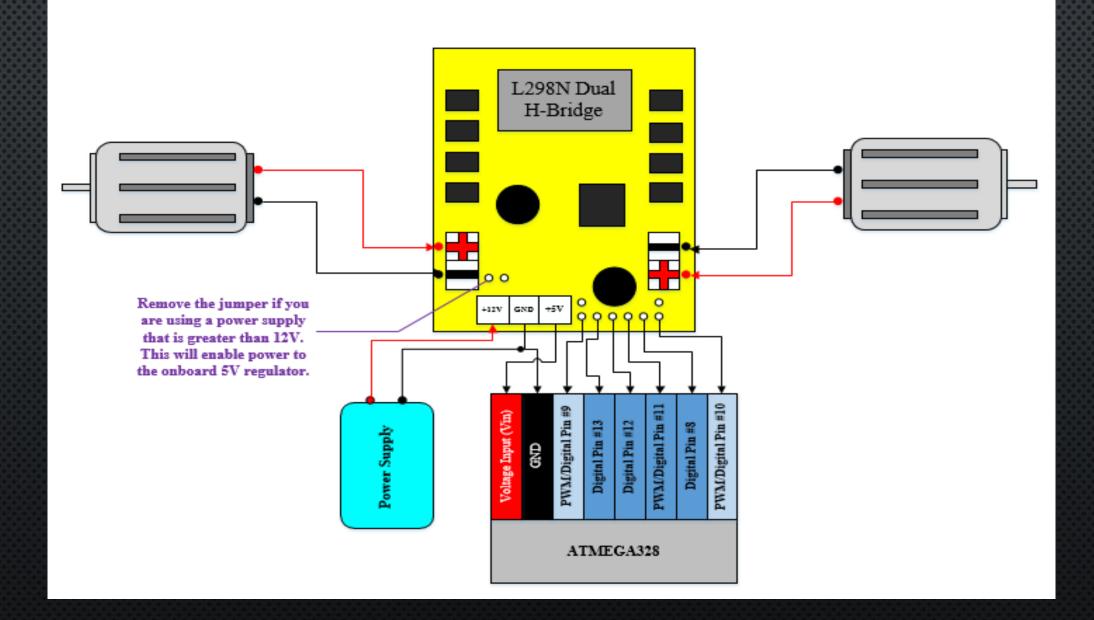
- Operates two brushed DC motors
- Supports PWM signal •
- NMOS H-Bridge for great efficiency and requires no heat sink •
- Sign-magnitude and locked-antiphase PWM operations are supported •
- Obtains solid state components for faster response time and minimize tear from mechanical relay •
- Push button is on the board to manually operate the motor ٠
- Drive voltage: 5
- Max PWM frequency is 20kHz (Hertz) Max continuous current up to 10A and 30A peak for each channel

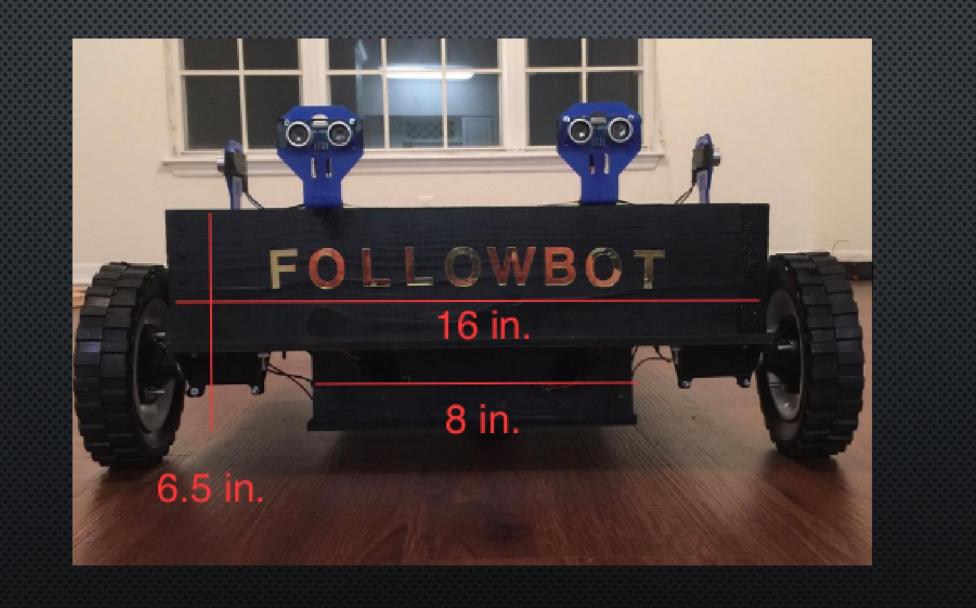


HARDWARE – MOTOR CONTROLLERS

L298N Dual H-Bridge DC Stepper Motor Controller

Components:


- 1. OUT1 (Motor A)
- 2. OUT2 (Motor A)
- 3. 12V Jumper: Removed if supply voltage > 12V
- 4. Supply Voltage
- 5. GND
- output voltage regu
- 7. PWM signal for Motor A
- 8. IN1
- 9. IN2
- 10. IN3
- 11. IN4
- 12. PWM signal for Motor B
- 13. OUT3 (Motor B)
- 14. OUT4 (Motor B)
- 15. Internal 5V voltage regulator
- 16. L298N Dual H-Bridge


Specifications:

- rrive Voltage: 5 35V faximum Stall Current: 3A
- Able to drive 2-phase stepper motors, 4-phase • stepper motor, or DC motors
- Supports PWM signal •
- Max power: 25W 0

HARDWARE – MOTION SYSTEM DESIGN

FINAL PRODUCT

HARDWARE - WHEELS

3 in. Hard Rubber Light Duty Swivel Caster

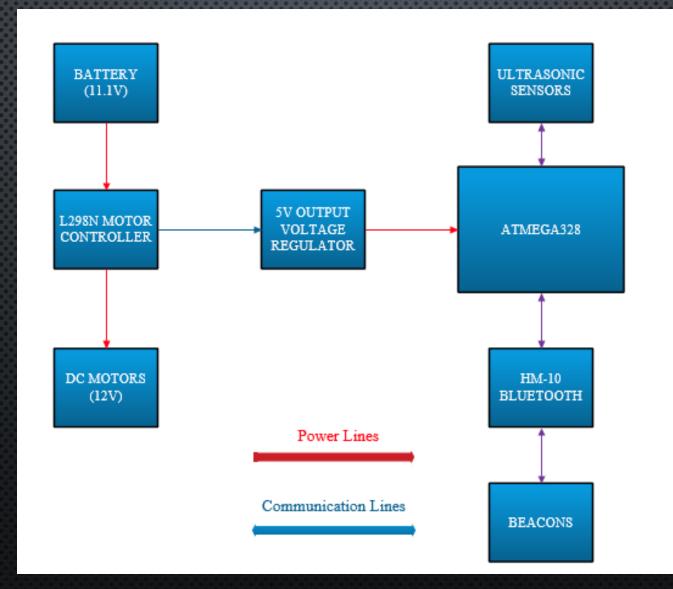
Characteristics:

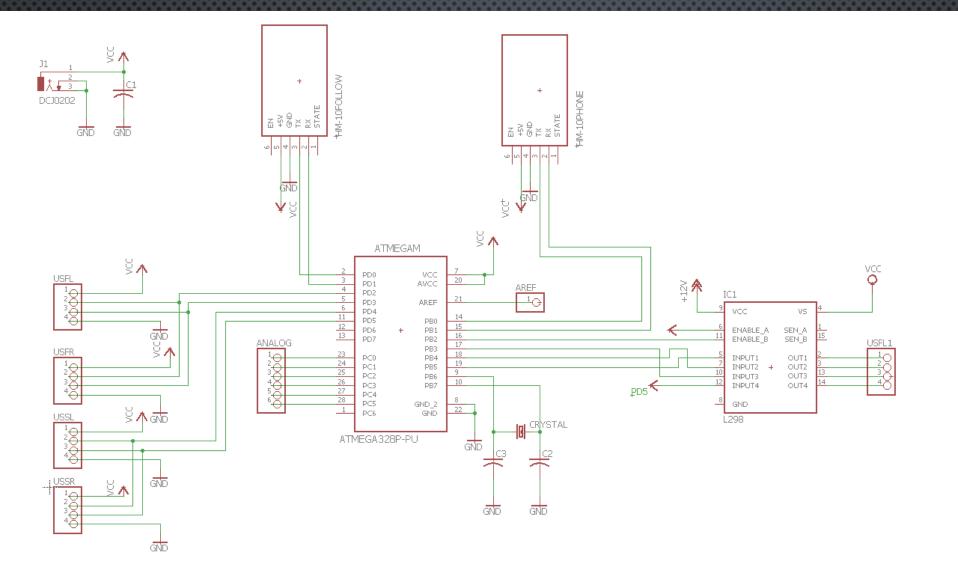
• Solid rubber for durability and smooth movement.

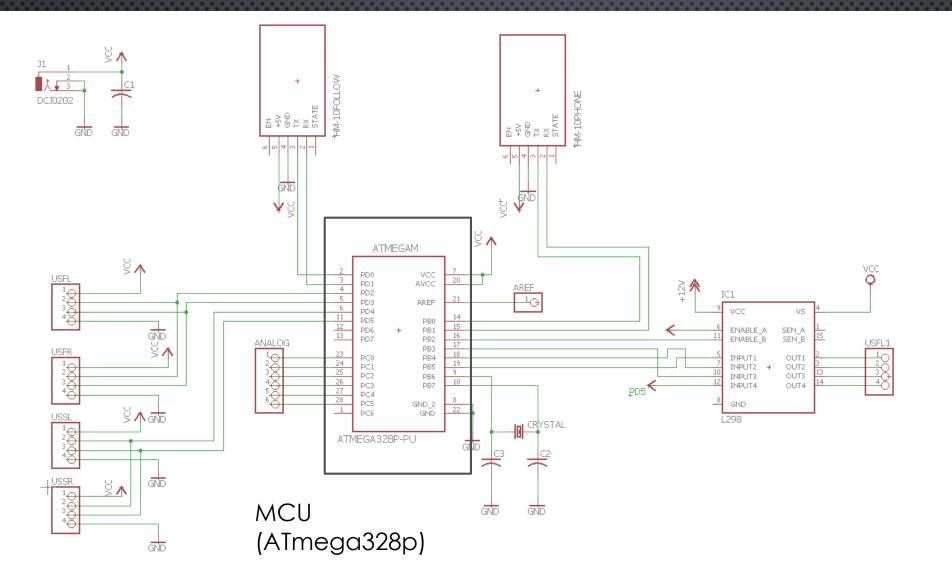
360 degree rotation
Includes double ball bearings and a zinc plated steel frame for more durability.

Specifications:
Tire size is 3 in.
Maximum working load = 100 lbs.
Weight = .90 lb.

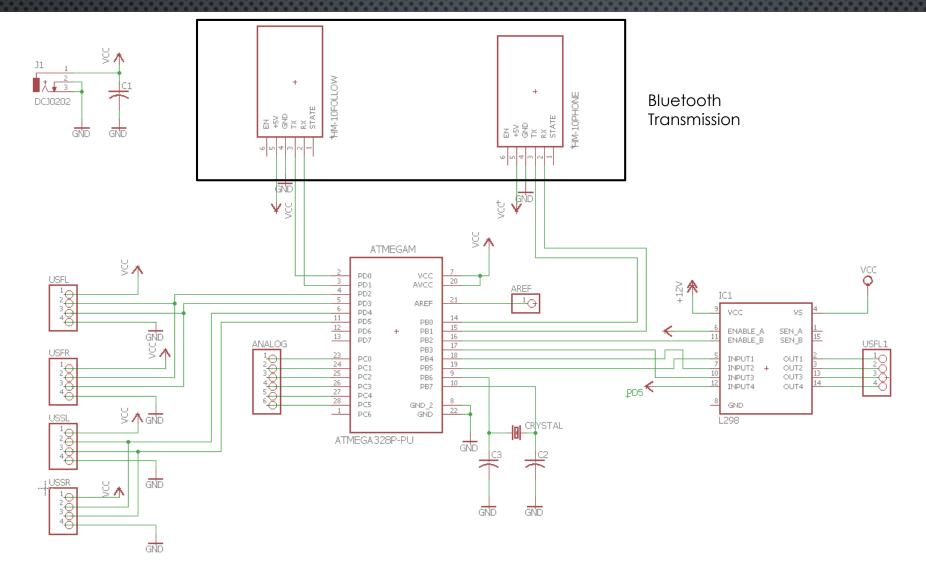
6 in. Semi-Solid Tire with Polypropylene Hub

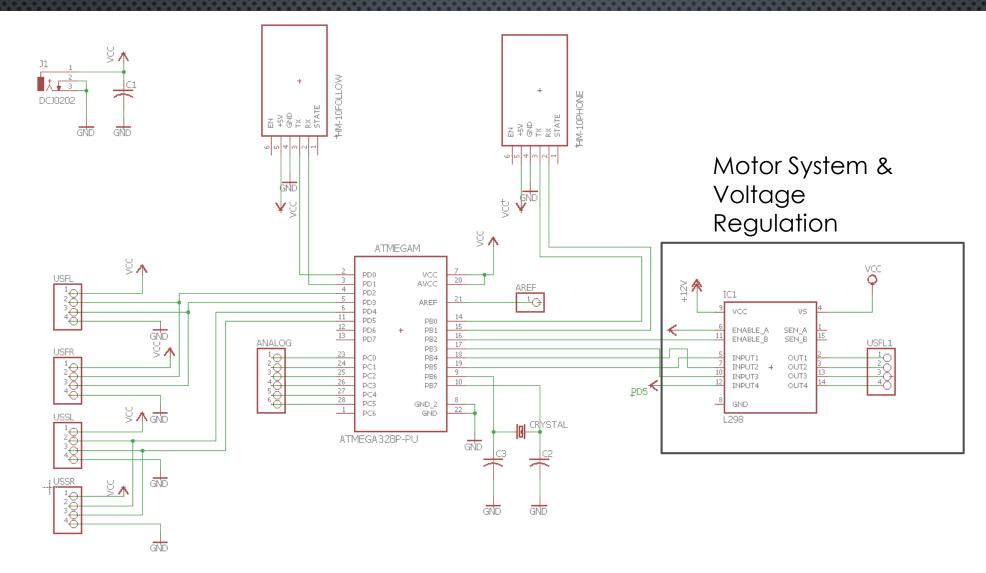

Characteristics:

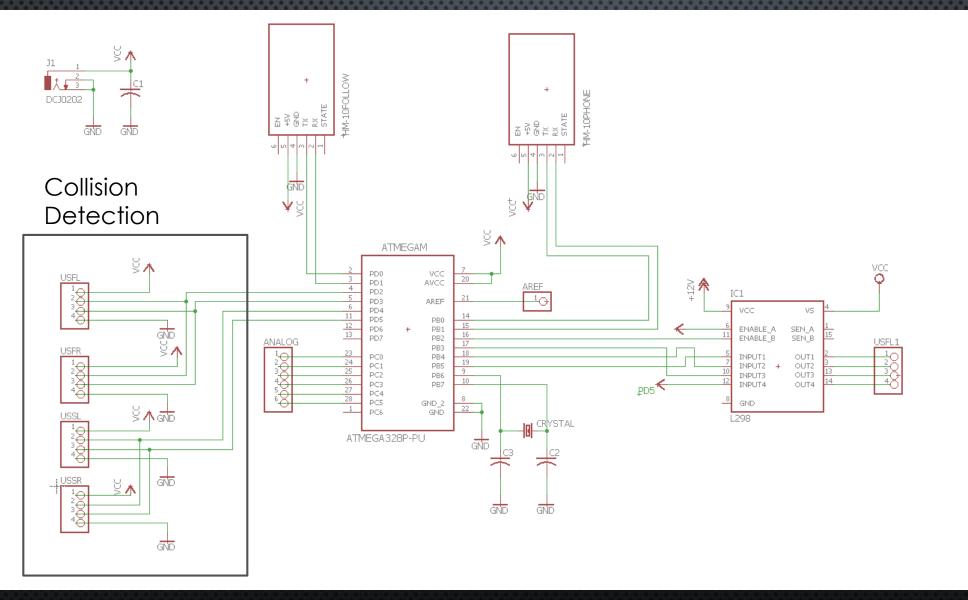

• Puncture-proof semi-solid rubber tire.

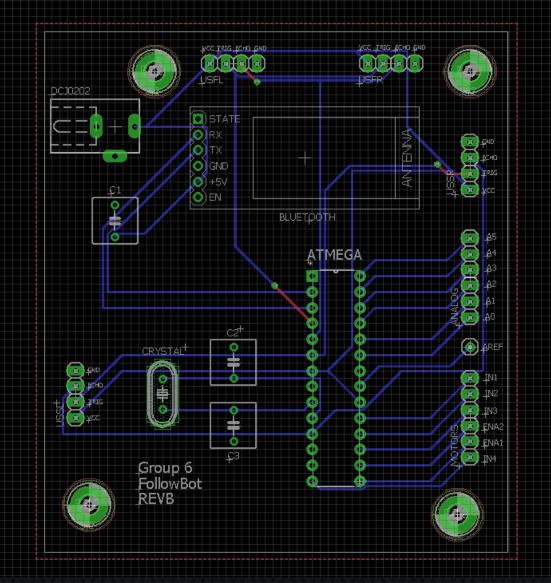

- Strong weather resistant polypropylene inner hub.
- Excellent traction in any terrain.

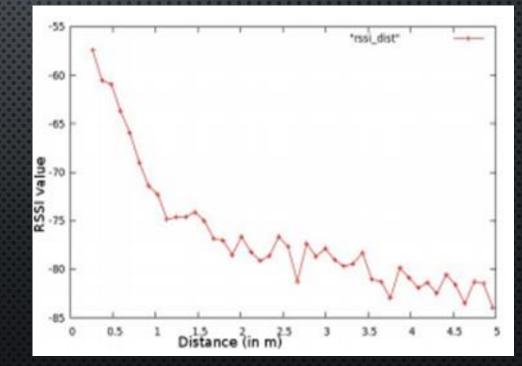
Specifications: Tire size is 6 in. Maximum working load = 94 lbs. Weight = 1 lb.


HARDWARE BLOCK DIAGRAM





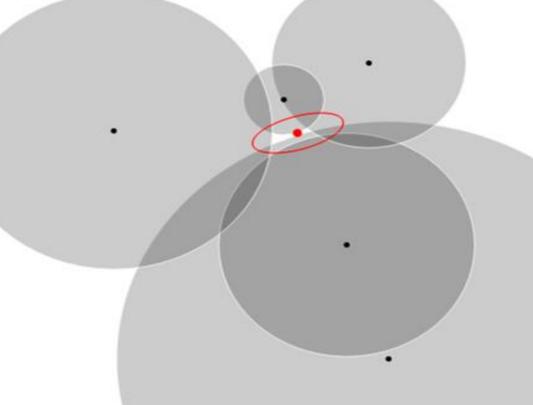

SYSTEM SCHEMATIC



PRINTED CIRCUIT BOARD

RECEIVED SIGNAL STRENGTH INDICATION (RSSI)

- BLUETOOTH BEACONS RETURN RSSI VALUES TO MODULE
- Using RSSI values you can get rough estimates of range
- $D = 10^{((TxPOWER-RSSI)/(10*N))}$
- D= DISTANCE: TXPOWER = SET BROADCASTING POWER: N= ENVIRONMENTAL FACTOR (BETWEEN 1 AND 4)



TRILATERATION WITH RANGE FILTER

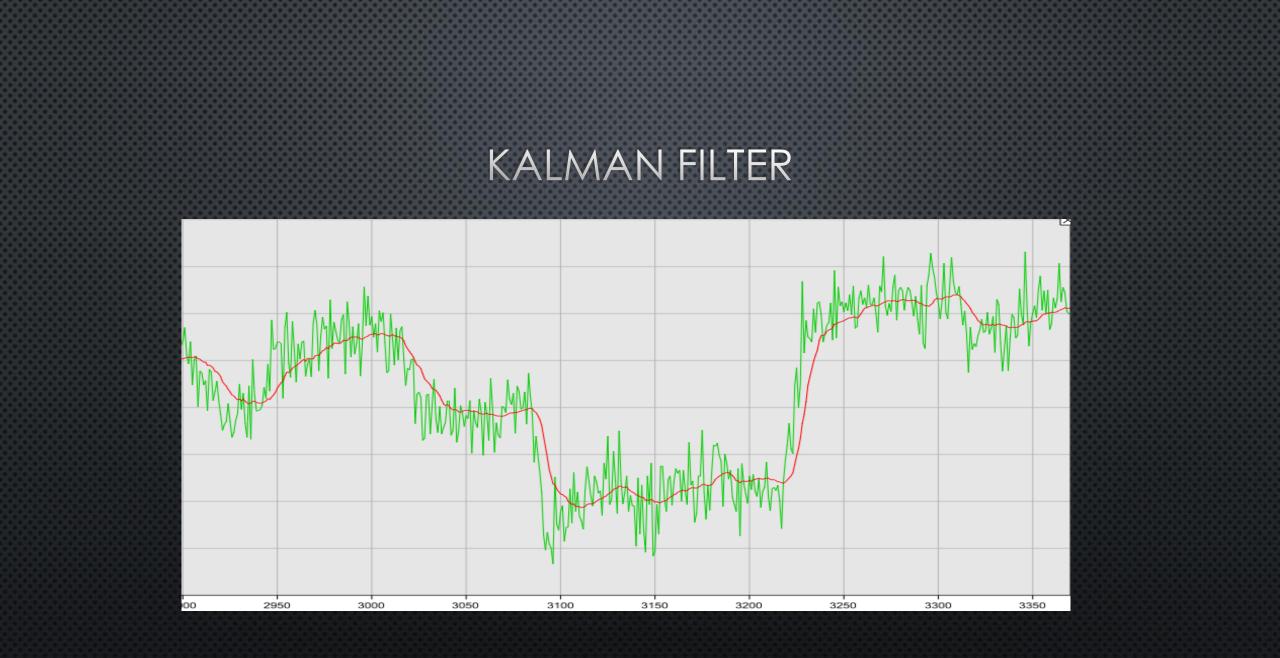
• Strengths

- QUICK APPROXIMATION OF BT MODULES LOCATION
- LOT'S OF OPEN SOURCE CODE AVAILABLE
- EASY TO IMPLEMENT
- COULD BE INTEGRATED WITH A PARTICLE FILTER
- WEAKNESSES
 - MORE THAN A METER OF INACCURACY FOR LOCATION OF MODULE
 - DUE TO INACCURACY OF LOCATION, THE ESTIMATED DIRECTION THE BOT FACES WILL BE INACCURATE
 - NEEDS MULTIPLE ACCESS POINTS

TRILATERATION

PARTICLE FILTERING WITH RANGE FILTER

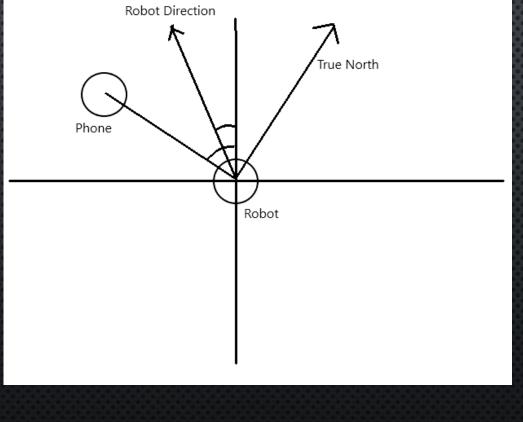
• Strengths


- VERY ACCURATE AFTER A CERTAIN PERIOD OF TIME
- ONLY NEEDS A SINGLE ACCESS POINT TO A RANGE FILTER
- CREATES PREDICTED PATH AS THE ACTUAL PATH IS HAPPENING

• WEAKNESSES

- INACCURATE FOR FIRST SEVERAL STEPS
- IF MODULE MOVES AROUND PARAMETER OF CIRCLE GENERATED USING RANGE FILTER, THE SYSTEM WILL LIKELY GET CONFUSED.

KALMAN FILTER


- Iterative approach to filtering. Highly efficient and used in military applications such as the Tomahawk missile
- Uses measurement uncertainty, Data interval, and averages a flow of number values
- Over time becomes more accurate by using previous estimate and a Estimation Uncertainty that it calculates dynamically

PATHING

- FOLLOWBOT NEEDS TO KNOW THE ANGLE IT MUST TURN AND THE DISTANCE IT MUST COVER.
- DISTANCE IS FOUND USING PYTHAGOREAN THEOREM BETWEEN LOCATION OF BOT AND PHONE
- ANGLE IS FOUND BY FINDING THE ANGLE BETWEEN THE DIRECTION THE FOLLOWBOT IS FACING AND THE Y-AXIS AND SUBTRACTING THAT FROM THE ANGLE CREATED BETWEEN Y AXIS AND THE LINE BETWEEN THE FOLLOWBOT AND THE PHONE

PATHING

REASONS FOR AGILE

- HIGHLY FLEXIBLE
 - WEEKLY MEETINGS WITH OCCASIONAL EMERGENCY DAILIES FOR BLOCKERS
- PROMOTES OWNERSHIP
 - TASKS ASSIGNED TO INDIVIDUAL TEAM MEMBERS
- EASY TO TRACK PROGRESS
 - WITH INDIVIDUALS OWNING PARTS OF THE SOFTWARE IT EASY TO KEEP THEM ACCOUNTABLE
- KEEPS MOMENTUM GOING
 - WITH A TASK COMPLETED AND WIN IN HAND AT THE END OF EACH SPRINT IT EASY TO KEEP MORALE HIGH AND WORK FROM STAGNATING

SPRINTS TO SUCCESS

- SPRINT 1 (OCT 1-7) TEST BLUETOOTH ACCURACY FOR GETACCURACY(), GETDISTANCE(), AND GETRSSI(). BUILD APPROXIMATION INFRASTRUCTURE FOR MOBILE APP AND ATMEGA.
 ORDER REST OF BT LE BEACONS. FINISH AND ORDER PCB
- SPRINT 2(OCT 8-14) BUILD FULL PROTOTYPE, TEST EFFECTIVENESS OF SIMPLE MOTOR CONTROL COMMANDS. DEVELOP FIRST PHASE OF PARTICLE FILTER WITH UNIT TESTS. START FIRST PHASE OF OBJECT AVOIDANCE AND PATHING SOFTWARE DEVELOPMENT.
- SPRINT 3(OCT 15-21) FINISH PARTICLE FILTER AND APPLY IT TO TRILATERATION INFRASTRUCTURE. FINISH OBJECT AVOIDANCE AND PATHING SOFTWARE. BEGIN DESIGN FOR FINAL ROBOT BODY AND HARDWARE ENCLOSURE.

SPRINTS TO SUCCESS

- SPRINT 4(OCT 22-28) INSTALL PCB INTO ROBOT HARDWARE ENCLOSURE. RUN SIMPLE MOTOR CONTROL COMMAND TESTS AND THE EFFECT OF WEIGHT ON THE ROBOT. MAKE CHANGES AS NECESSARY.
- SPRINT 5(OCT 29-NOV4) BURN FINAL SOFTWARE ONTO THE PCB. FINALIZE ASSEMBLY.
 BEGIN TESTING TO VERIFY SIMULATIONS.
- SPRINT 6 AND 7 (NOV 4-24) VERIFY SIMULATIONS AND MAKE FINAL IMPROVEMENTS.

BUDGET

Description	Manufacturer	Part Number	Quantity	Unit Cost	Total Cost
Microcontrollers	Arduino	ATmega328	3	\$4.83	\$14.49
Bluetooth Modules	HYY	HM-10	2	\$6.5	\$12.99
BLE Beacons	Lotton	B01MU7YC87	3	\$22.99	\$68.97
Ultrasonic Sensor	Elegoo	HC-SR04	5	\$1.97	\$9.86
Lead Acid Battery	ExpertPower	EXP1270	1	\$16.94	\$16.94
Battery Charger	UPG	D1761 SLA	2	\$7.01	\$14.02
Switching Regulators	Qunqi	MP1584EN	5	\$1.80	\$8.99
Motor Controllers	Daoki	L298N	5	\$2.97	\$14.98
Motors	Cytron	RB-Cyt-28	4	\$14.61	\$87.66
Wheels	Pololu	Dagu 120mm	4	\$14.95	\$29.9
РСВ	TBD		2	\$40	\$80
Vehicle Design	TBD				\$50
TOTAL					\$408.80

QUESTIONS?