
The Garaginator: Parking

Assistant

Jonathan Staudt, Elliot Rodriguez, Sebastian

Rodriguez, Jonathan Gillis

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

 Abstract -- This paper will describe the design and methods

used to create a fully functional and cheaply produced parking
garage monitoring system for currently existing garages. This
monitoring system uses optical sensors at the entrances and

exits of the garage to tally the number of current cars in each
garage. The Garaginator system will also utilize a kiosk which
will allow users to save their car’s location for future reference

upon returning to the garage. Garage space and availability
information will also be easily accessed through a web
application.

 Index terms -- Optical sensor, database system, web
application, QR codes, ATMEGA328P, C++, ESP8266.

I. INTRODUCTION

 A common problem among people using parking

garages is finding a spot to park when arriving. At the

University of Central Florida, parking is such a problem

that it is not uncommon for students to be absent or late for

quizzes and tests, simply because they could not quickly

and efficiently find a parking spot in which to place their

car. This often happens despite arriving on campus with an

amount of time in excess of the average amount of time,

which is an inordinate amount, beforehand. This is despite

students paying over $50, at minimum, for a parking pass

for one semester. Since public transportation in the city of

Orlando is severely lacking, bordering on absent, most

students have no other option than to drive to class every

day. Another problem that the Garaginator aims to solve, a

problem which a commuter may encounter after a long day

at work or school, is that of forgetfulness. After spending a

substantial amount of time away from the parking garage,

and thus the car, it is not uncommon for one to forget where

one parked. To this end, the Garaginator will implement a

vehicle tracking system.

 Numerous attempts have been made in the past to solve

this problem, but have ultimately been too costly to

implement on a large scale or are not feasible to implement

in an already existing garage. As such, the Garaginator

system was designed first and foremost with cost in mind.

The Garaginator consists of three main parts: optical

sensors located at the garage’s entrances and exits, a kiosk,

and a web application. The sensors are connected to the

kiosk which can interpret the data the optical sensors send;

this data being whether a car has exited or entered the

garage. In addition to interpreting signals from the sensors,

the kiosk can interface with the webserver, posting

information about the volume of cars currently in the garage

and recording vehicle locations. The kiosk has a keypad and

a display so that users can interact with the kiosk. User

interactions with the kiosk consist of entering user unique

identification information, inputting vehicle location, and

retrieving vehicle location information. A web application

also interfaces with the server, and allows users to query the

last recorded location of their vehicle, as well as view how

many cars are currently parked within the garage. Lastly, a

QR code printed and added to every parking spot can be

scanned by the web application, allowing them to enter

their vehicle’s parking information more easily.

 The kiosk will be powered from the power mains, via a

wall outlet, and will contain a linear voltage regulator. The

kiosk will communicate with the webserver using an

ESP8266 to communicate over Wi-Fi. The sensors will be

optical sensors which consist of one photodiode and one

laser per sensor. The laser will be driving the photodiode to

be constantly outputting voltage. When a vehicle obstructs

the laser, and prevents it from shining upon the photodiode,

the photodiode will stop conducting the voltage output will

go low, thus indicating that a vehicle has just entered or

exited the garage. The ATMEGA328P, which is the MCU

that drives the kiosk, will be able to differentiate whether a

car has entered or exited a garage depending upon which

pins have gone low. The optical sensors will be hardwired

to the kiosk. Hardwiring the sensors serves the purpose of

saving money on the cost of wireless transceivers and

microcontrollers.

 The webserver acts as the main back end component that

the user will never interface with. It will handle all requests

from both the web application and the kiosk application. It

will handle updating the database when the optical sensors

send signals to the ATMEGA328P, as well as send the

location of a user’s vehicle to ATMEGA328P when

requested. As stated previously, this communication will be

obtained through the utilization of an ESP8266 module.

The webserver will also authorize use of the system when a

user attempts to login. The webserver will also store a

user’s vehicles location, and send a simple completed

message to the user once complete. The webserver hosted

utilizing a node.js framework.

II. PROJECT REQUIREMENTS

 The Garainator system’s primary mission is to be a cost

effective and reliable solution for parking management,

while allowing the application’s users clear parking

availability information. The below requirements reflect

this mission and delineate the specific criterion for making

this mission a reality.
• The system will be able to count the vehicles

entering and exiting the garage with minimal

error. Cars should generally be counted entering

and exiting as close as possible to exactly once

each. Sensors shall be able to update within five

seconds.

• The kiosk should be quick and easy to use.

Students often wait until the very last minute to

drive to campus, especially for ones early in the

morning. If it is not quick and convenient many

students will not want to use it. The kiosk system

shall be able to respond to input commands

within five seconds.

• The system should be able to determine if a

vehicle and only a vehicle entering the garage.

The system shall utilize two sensors per entrance

or exit and AND the signals from each sensor

together. This will reduce false positives, such as

an animal or some other being entering or exiting

the garage, from triggering the sensors.

• Users shall be able to enter in their vehicle

information and their parking spot to a kiosk

system to be remembered.

• If a user has stored their vehicle’s location they

should be able to retrieve it via the kiosk or the

website, if they enter their correct user

information.

• The Garaginator system will be able to operate in

the extremely inclement climate that Florida

plays host to.

• The system will be able to provide information

about parking and the garages all week, all day,

and all year, to provide a reliable and informative

system to users.

• Each sensor will draw less than one Watt of

power

• The MCU shall send information about parking

to the webserver no less than once every thirty

seconds

• The Garaginator system shall utilize standard

110V AC and convert this to the required DC

voltages used within the Garaginator system

III. THE GARAGINATOR SYSTEM

 The Garaginator system is comprised entirely of four

distinctly different areas, which all come together to create

a beautiful product. These four areas are the hardware/PCB

design, the microcontroller and its firmware which

processes data, the webserver hosted using node.js, and

the web application.

Fig. 1. The Block Diagram for the Garaginator system, which
displays not only the various parts that make up the system, but
also the signal flow.

 The block diagram above clearly displays the various

parts and subsystems which serve to make the overall

Garaginator system. The power, which is the standard 110V

AC converted to DC voltages for use within the Garaginator

system, powers the microcontrollers as well as the sensors.

The microcontroller receives data from the sensors. This

data serves to tell the microcontroller whether a car has

exited or entered the garage. The microcontroller receives

data from the kiosk user interface as well, this data is unique

user data which serves to store where a user car has been

parked. The microcontroller also sends data to the kiosk

user interface. This data is sent when a request to see where

their car was parked. When this request is sent, the

corresponding data about the location of the vehicle is sent

by the microcontroller.

 Data from the sensors is processed by the

microcontroller and then sent to the backend server. From

this server, the data is sent both to the website and the

database. Both the website and the database send

information back to the backend server. The database will

update the backend server which will in turn update the

microcontroller. The website updates the backend server

with information regarding user information and logins

which then updates the microcontroller, aka the kiosk

system.

IV. DESIGN

A. Sensors

 The section serves to provide information about the

optical sensors, which the Garaginator system uses to detect

whether a car has exited or entered a garage at any given

moment in time. Other options were considered, such as

smart video systems as well as ultrasonic sensors.

Ultimately these sensors were dismissed due to their wide

cone of sensing and their inability to reduce false positives.

The optical sensors, when used in conjunction with an AND

gate to AND the signals togethers, serve to provide a small

cone of sensing, as well as an incredible degree of accuracy.

Not only this, but the optical sensor is incredibly simple,

consisting of a power source, a resistor, a photodiode, and

a laser dot diode. The optical sensor must be mounted in a

fashion which places the optical sensor in question in an

orientation which is perpendicular to the entrance or exit of

the garage. This is the optimal placement for the sensing of

vehicles entering or exiting a garage for the optical sensors

utilized by the Garaginator system. False positives in the

Garaginator system are defined as the optical sensors being

triggered by anything entering or exiting the garage that is

not a vehicle, that also triggers the microcontroller to send

a signal to the webserver that a vehicle has entered or exited

the garage. The way that the Garaginator system reduces

false positives is by having two optical sensors per entrance

or exit and running the signals from these optical sensors

through an AND gate. In this fashion, the microcontroller

does not trigger unless both optical sensors have been

triggered, which will only happen if an object as long as a

vehicle triggers the optical sensors.

Fig. 2. Mockup of optical sensor system. The AND gate can be
seen on the left, with the laser bridging the entrance to activate the
photodiode.

 A mockup of the optical sensor system and the method

utilized to reduce false positives can be seen in the figure

above and the specifications for this optical sensor system

are shown in the tables that follow.

5V DC Supply

Working Temperature Range of -10°C to +40°C

650 mW Power

0V DC Ground

Fig. 3. Laser Dot Diode Specifications

Working Voltage

5V DC

Maximum

Detection Range

~3 – 4 meters

Minimum

Detection Range

~1 centimeters

Cone of

Measurement

0 degrees

Maximum

Output Voltage

1V DC

Resistor Load

2000 Ohms

Product

Dimensions

(8.89 x 5.842 x 1.016) centimeters

Weight

17 Grams

Operating

Temperature

-10°C to +40°C

Fig. 4. Photodiode Specifications

B. Wi-Fi Transceiver Module

 Wireless communication is a large enabler of the

Garaginator system. Due to this requirement of wireless

communication through Wi-Fi between the microcontroller

and the webserver, which ends up updating the database

and the web application, it has been decided that the

ESP8266 will be used with the Garaginator system. The

ESP8266 uses up to 2.4 GHz bandwidth. Utilizing the

ESP8266 module, the ATMEGA328P will be able to

communicate wirelessly with the webserver, thus allowing

the database and web application to be updating with the

sensor information which contains the information about

car entrances and exits. The ESP8266 was the most elegant

and simple solution to the problem of communication with

the webserver, due to only requiring the one ESP8266

module and therefore not requiring any superfluous

hardware and or software. Only one ESP8266 module will

be used and that will ESP8266 module will be used with the

ATMEGA328P microcontroller that forms the so-called

brains of the kiosk. The ESP8266 module contains eight

pins that it utilizes for power and sending of data. Not only

this, but the ESP8266 also has an antenna built right into

the module. The ESP8266 module utilizes two UART pins,

a receive and a transmit pin respectively, to send and

receive information from the ATMEGA328P

microcontroller. The ESP8266 also contains three GPIO

pins. Finally, the ESP8266 has two power wires, as well as

a ground wire. At one point in the development cycle of the

Garaginator system, it was considered that the ESP8266

module would be used with the sensors to wirelessly send

signals that a car has either entered or exited the garage.

This experiment in wireless optical sensing was eventually

scrapped and pushed to the wayside due to requiring too

many modules and microcontrollers. If this idea had been

realized, a microcontroller would have been needed for

each optical sensor, which would not only drive up cost but

also make the overall Garaginator system rather

cumbersome. The largest advantage that the use of the

ESP8266 module affords to the Garaginator system, is

mostly on the development side. This particular module is

ubiquitous amongst hobbyists, which may not seem like a

large advantage at first, but one must realize that this means

there is a massive amount of documentation available,

nearly any problem that has been encountered, either in

regard to the module itself or the firmware that drives it.

This serves to be a huge boon to the development of the

system and to the development team. Other communication

protocols were considered besides Wi-Fi, such as

Bluetooth, but ultimately, Wi-Fi prevailed due to the

simplicity of its implementation.

C. Database Management System

 For our database management system, we chose

MySQL. It is the most familiar DBMS to our group, as well

as a free one which goes along with our design philosophy

to keep cost as low as possible. For our database, we only

need to store user credentials, parking locations, and some

garage information. The database will be used when the

web server receives certain requests to send/update/delete

information in the database. The database will contain a

counter column for each garage in the garages table that

will be incremented and decremented based on the sensors

that send signals to our garage kiosk this is what we will

use to display real time data to our users that use the web

application. For our users, we are only saving their unique

id and passcode as well as a salt that is randomly generated

when the user is first created and is unique to that user. Our

last table is the vehicle_location table which allows users to

store and retrieve where they parked at any garage on

campus by storing the garage_id, floor_level, and

current_numbered_spot with their account_id.

Fig. 5. Database Schema

D. Web Application

 Our web application is hosted using NodeJS. The

backend web server is written in Node, while the front end

uses HTML, CSS and AngularJS. On the initial page, a user

will be able to see a table of all the garages with the current

number of vehicles in that garage, allowing that user to

decide where they want to try and find a parking spot based

on the information given by our system. This table is

updated by having the ESP8266 send a http post request to

our web server which than adds or subtracts from the

current amount of vehicles column for that specific garage

where the ESP is setup. When the current number of

vehicles in the garage equals or exceeds the maximum that

garage can hold we change the status to red giving the user

a quick visual they can go by to make their decision. Below

is a picture of the table on a mobile phone.

Fig. 6. Mobile Version of garage table

 The next feature in our web application is like the save

and retrieve vehicle location feature in the kiosk system.

Where we allow users to save and retrieve where they

parked their car by manually entering their exact location

using the garage name floor level and spot number. We also

have added a feature to allow a user to take a picture of a

QR code and then submit this picture into the system which

will than extract the JSON string embedded into the QR

code which holds the information of that spot and send it to

the web server to be saved. The QR code parser was a 3rd

party library that was initially created in C++ but then

ported over to JavaScript which worked perfectly for our

project allowing the client side to handle all the workload

leaving the server to handle other tasks. If our project were

to be implemented on campus, QR codes would be placed

on every spot in every garage to make it easier for users to

store their vehicles information. With the save spot feature

we leave it up to the users to save their spots to allow for

the garage map to display what spots are available on a floor

to floor basis. This gives users more detailed information

about each floor of the garage.

 The last feature in the web application is the retrieve spot

feature, once a user saves their vehicles location they can

retrieve that location every time and not have to worry

about losing that data. A user can change his vehicles

location at any point without consequences happening to

the system. The only downfall is that two users can save

their vehicles location in the same spot if entered manually,

if we forced the user to use the QR code this error could not

happen but we decided not to force the user to enter

information in a specific way.

 When a user visits the website, they have access to these

features if they created an account. When saving a spot or

retrieving a spot the user must enter their account user ID

as well as their 4-digit passcode. Once they have entered

their information they can use the save and retrieve spot

feature. To create an account a user can visit the create

account page, we don’t take any information from the user

besides their user ID and passcode, this was intentional

because we just wanted to show functionality of the overall

project. If needed the database table and web page can be

adjusted to retrieve more specific information from the

user. When they create an account, we save their password

by generating a random 16-byte salt string, this gets added

to their password and then hashed using a sha256

algorithm, this password then gets stored in the database

with the user’s ID and salt used to hash the user’s password.

 For demonstration purposes, we are hosting this website

on a Linux virtual machine run on one of our team members

home computer. In production, this would be able to run on

either a Windows or Linux environment.

E. Printed Circuit Board

 The creation and design of the printed circuit board

(PCB) was all done through Autodesk’s EAGLE CAD

scriptable electronic design automation program. This

program was chosen for its great online support and

widespread use. Due to its extensive free trial and support

of all popular operating systems, the program is one of the

most used PCB programs for hobbyists and amateur

designers. There are only minor flaws within the program

but the majority of which are easily overlooked. Such as the

minor inconvenience of having to log into a account with

the company every time the program is booted up. One of

the program’s strongest features is its streamlined process

of creating new footprints, libraries, and components within

the program. Along with the ability for real time

synchronization when designing with other’s involved. The

real-time synchronization feature allows multiple users to

create and edit the same design together on different

machines over the internet.

 The design began at the schematic level. This side the

EAGLE CAD lets the user place any type of hardware they

need to first form their connections. Each piece of hardware

can either be design by the user within the program, or find

the correct hardware within their given library or libraries

download from other users and design sharing websites.

The majority of components needed for schematics can be

found created by someone else already on a variety of

filesharing and support websites for printed circuit board

design.

 Shown in the figure below is the layout of the

microcontroller within the entire EAGLE schematic.

Fig. 7. Microcontroller EAGLE Schematic

This schematic level allows us to layout the general

placement of all the hardware components and map their

connections accordingly. Each outgoing pin connection is

either directly connected or jump connected with a label.

As you can see some pin on the microcontroller aren’t

needed for this design such as pin numbers twenty-seven

and twenty-eight for PC4 ADC4 and ADC5. For this

microcontroller, it is fine to leave the pins floating and not

connected to ground or pull high to keep them inactive

without messing with the functionality of the

microcontroller.

 After the general schematic of the printed circuit board

is finished the next step is to create the layout on a circuit

PCB. Once the placement of each piece of hardware is

complete the next step is to map the connections between

all the pins. The layout of the hardware on the PCB largely

determines the effectiveness and organization of the wired

connections. The final design of the printed circuit board is

displayed below.

Fig. 8. PCB Schematic

 The connections for the hardware ended up being very

organized and clean because of the pre-planned layout. The

PCB manufacturers allow designers to apply painted on text

and figures onto the PCB for easy reference. In the layout

above the long rectangular chip in the center labeled

ATMEGAA32BP is the microcontroller. Above that is the

logo and name for this project “The Garaginator.” Above

that is the headers for the sensors used at every entrance and

exit to the parking garages. Only eight ports are needed.

The top-right six pin headers are only used when

programming the ATMEGAA32BP microcontroller. The

far-right bottom seven pin header will be used to connect

the keypad to the MCU and above to the right is the three-

pin header connection for the LCD output screen. To the

bottom middle of the PCB is the eight-pin connection and

layout for the Wi-Fi connection module, to the left of that

is the DC barrel jack from supplying power to the entire

PCB. The two largest three pin chips above it is the voltage

regulators for 5 volts DC and 3.3 volts DC. The rest of the

components are typical passive circuit components for

power regulation such as resistors and capacitors.

 The manufacturer JLC PCB was chosen as the printed

circuit board supplier because of their high speed and low

cost of production. Ten printed circuit boards from JLC cost

only $2.00 before taxes and shipping. The layout of the

sight is simple and straight to the point. Below shows a

figure of their quote process and options.

Fig. 9. JLC PCB Quote Options

 Most PCB manufacturers give a lot of extra options for

every aspect of the PCB design. For this project’s

application, most of these choices are very unnecessary,

such as whether there are bevels on the edges of the board.

JLC’s website only gives the basics, which are all that are

need for this application. The PCB in this design is a two-

layer FR4-standard material, about 1.6mm thick, and has a

HASL lead finish. As the PCB will be housed within a

Kiosk enclosure, there is not worry about needed a lead-

free finish on the surface of the board since it will be not

handled by the users or somehow find its way into the

surrounding environment.

F. Housing

 Most of the hardware will be housed in the Kiosk. This

includes the printed circuit board, keypad, LCD display,

and power supply. The Kiosk and sensor housing will

contain a hard-plastic case which has an aluminum bottom

sealed by four screws in each corner. The housing allows

for great insulation and grounding capabilities. It is also

capable of withstanding a wide range of temperature and

humidity with little to no deterioration. It isn’t necessary for

the housing to be water or air tight as it will be placed in the

shelter of a concrete garage, hidden from storms and

rainfall. The conditions of the surround air will be able to

penetrate the housing, and it is expected the heat generated

from the running hardware will deter any build-up of

condensation within or on the housings.

 The housing for the kiosk is only slightly larger than the

housing for the sensors. It is five by five inches with a small

outlet for the power supply and a window to mount the LCD

display. The Sensor’s housing is 4-1/8 inches by 2.75

inches with two small holes, one a half a centimeter in

diameter as an outlet for the sensor to be in the line of sight

of the laser, and the other hole is two millimeters diameter

for the input and output voltage wires coming from the

kiosk. The figure below shows the housing used for the

Photoresistor and laser housings.

Fig. 10. Sensors and Lasers Housing

The following figure shows the housing used for the Kiosk

before any drilling modification are made for the power

supply and mounting of the LCD display.

Fig. 11. Kiosk Housing

V. TESTING

 At the beginning of this semester we had already

completed individual testing on all hardware components.

This gave us time to focus on the integration of all the

hardware as well as the software. As well as our PCB

design which would bring all the hardware components

together.

 Since we had to switch our microcontroller in the middle

of senior design II we needed to test the new

microcontroller independently by running a few programs

and powering it on a breadboard. Once this was completed

we could focus on finishing our PCB design and send out

an order for it. Throughout the entire semester both the

high-level webserver and embedded software were

continuously tested during development. We used GitHub

as our source code repository and were not allowed to

commit into the master branch unless we knew our code

could at the least compile. Once we got the code to a

working point we hosted the web server on a Linux VM and

programmed one of the MCUs we bought with the

embedded software. We wanted to test our entire system

lifecycle in a controlled environment at first, we did this by

testing out our vehicle enter/exit feature first by breaking

the two lasers pointing to the photodiodes using a textbook.

From here we checked if the database column had been

updated for that specific garage, once that was checked we

checked if the web application table updated. Once we

checked all three of these items we could check off that this

feature was complete. Then we went into testing the kiosk

user interface, by going through the entire process a normal

user would go through, passing in their user information,

saving their spot and then retrieving their spot, once we

tested this and received no errors we checked off the kiosk

UI as complete. This ended our controlled environment

testing and now we moved on to a real-world environment.

We did this by taking our project over to garage B at UCF

and going through the same steps as our controlled

environment except we used a vehicle to break the sensors

instead of a textbook.

VI. CONCLUSION AND IMPROVEMENTS

 The Garaginator takes a very common problem that

many students and faculty run into every day which is

finding a parking spot and simplifies it for them. It allows

users to make an educated decision on where they can focus

their time to try and find a parking spot. Instead of going

into a garage blindly they can see how many vehicles are

already inside vs how many it can hold which gives them a

sense of confidence when entering the garage they choose.

We added other features such as the saving/retrieving

vehicle location to allow users who sometimes forget where

they park can easily store that information right after they

find their spot using our application. Improvements we

would like to have had were being able to track individual

spots without needing user input, this would have been

ideal to allow users to see garage availability on a floor

level view. We also would have liked to include user input

on certain features they would like to have seen in this

project.

 Due to time constraints as well as the scope of the

project we decided to not include these items. We wanted

to focus on keeping our design simple to the point and

cheap to assemble.

VI. GARAGINATOR TEAM

Fig. 12. From left to right: Jonathan Staudt, Sebastian
Rodriguez, Elliot Rodriguez, Jonathan Gillis

 The Garaginator design team is composed of two

electrical engineering students (Sebastian Rodriguez and

Jonathan Staudt) and two computer engineering students

(Elliot Rodriguez and Jonathan Gillis). Sebastian

Rodriguez was primarily responsible for the optical sensor.

Jonathan Gillis was responsible for the microcontroller and

the firmware load. Elliot Rodriguez developed the entire

backend webserver as well as the web client and database.

Jonathan Staudt was made responsible for soldering. The

PCB design was worked on cooperatively by Sebastian

Rodriguez, Jonathan Gillis, and Jonathan Staudt. As John

Donne once poetically stated, no man is an island, and

nowhere does that saying more aptly fit than when applied

to the Garaginator team. Although each member has his

primary focus, every member was called upon to help as

needed in the disciplines of the other team members;

whether it be troubleshooting a piece of hardware or testing

software.

