

120 Page Senior Design 2 Document

Fall 2017

BRAIN HELMET

Group 4

Nada Algharabawi Computer Engineering

Stephan Morales Computer Engineering

Ryan Mortera Electrical Engineering

Jordan Yamson Electrical Engineering

Table of Contents
1.0 Executive Summary 1

2.0 Project Description 2

2.1 Project Motivation 2

2.2 Goals & Objectives 2

2.3 Requirements Specifications 3

2.4 Quality of House Analysis 4

3.0 Research Related to Product Definition 6

3.1 Existing Similar Projects and Products 6

3.1.1 SKULLY 6

3.1.2 Reevu 7

3.1.3 LiveMap 8

3.1.4 Nuvis 9

3.2 Relevant Technologies 10

3.2.1 Wireless Technologies 10

3.2.1.1 Why use wireless? 10

3.2.1.2 Wifi Wireless Network 10

3.2.1.3 Zigbee Wireless Module 11

3.2.1.4 Bluetooth 12

3.2.1.4.1 Bluetooth Versions 2.0,2.1 with EDR 13

3.2.1.4.2 Bluetooth Version 3.0 13

3.2.1.4.3 Bluetooth Version 4.0, 4.1 and 4.2 13

3.2.1.4.4 Bluetooth Version 5.0 14

3.2.1.5 Comparison of Wireless Technologies 14

3.2.1.6 Bluetooth (Selection) 14

3.2.2 Battery Technologies 14

3.2.2.1 Battery Constraints 15

3.2.2.2 Battery Types 15

3.2.2.3 Battery Capacity 16

3.2.2.4 Charging a Lithium-Ion Polymer Battery 16

3.2.3 Audio Technologies 17

3.2.3.1 Microphone 17

3.2.3.2 Speakers 18

3.2.4 Possible Features for the BRAIN Helmet 18

3.3 Strategic Components and Part Selections 20

3.3.1 Choosing a Bluetooth Module 20

3.3.1.1 0VC3860 Bluetooth 2.0 +EDR stereo audio processor 20

3.3.1.2 Silicon Labs WT32 Bluetooth Audio Module 21

3.3.1.3 Roving Networks RN52 22

3.3.2 Comparison of Bluetooth Modules 23

3.3.3 Audio Bluetooth Module Selection 25

3.3.3.1 Features of the RN52 Bluetooth Module 26

3.3.3.2 Senior Design 2 Update (Bluetooth) 30

3.3.4 Microcontroller 30

3.3.4.1 Microcontroller Research 31

3.3.4.2 Microcontroller Options 32

3.3.4.2.1 Texas Instruments MSP430 32

3.3.4.2.2 Atmel ATmega 33

3.3.4.2.3 Texas Instruments MSP432 34

3.3.4.3 Microcontroller Comparisons 34

3.3.4.3.1 Power Consumption 35

3.3.4.3.2 Cost 35

3.3.4.3.3 Memory Size 35

3.3.4.3.4 GPIO 35

3.3.4.3.5 Clock Frequency 35

3.3.5 Microcontroller Choice 36

3.3.6 Battery Comparisons 37

3.3.7 Battery Selection 41

3.3.8 Charger Selection 43

3.3.9 Voltage Regulation Selection 44

3.3.10 Helmet comparison & Selection 44

3.3.11 HUD comparison & Selection 45

3.3.12 Speaker Selection 47

3.3.13 Microphone Selection 48

3.4 Possible Architectures and Related Diagrams 49

3.4.1 Potential HUD GUI 49

3.5 Parts Selection Summary 50

3.5.A RN52 Bluetooth Module and Breakout Board 50

3.5.B Speakers and Microphone 51

3.5.C Li-Po battery Charger 51

3.5.D OLED Display 52

3.5.E Lithium-Ion Polymer Battery 52

3.5.F ATmega2560 52

4.0 Related Standards and Realistic Design Constraints 53

4.1 Android Standards: 53

4.1.1 Android Activity Lifecycle 54

4.1.2 Turn by Turn Notifications 55

4.2 Java Style Rules 55

4.3 FCC Standards 57

4.3.1 Incidental Radiators 57

4.3.2 Unintentional Radiators 57

4.3.3 Intentional Radiators 58

4.3.4 Industrial, Scientific and Medical Equipment 58

4.4 Radio Frequency Radiation Standards 58

4.4.1 IEEE 802.15.1 Standard for Wireless medium access control 59

4.4.1.1 What is IEEE? 59

4.4.1.2 IEEE 802.15.1 Standard Security 59

4.5 Motorcycle Helmet Standards 60

4.5.1 Department of Transportation 60

4.5.2 Snell Memorial Foundation 61

4.6 C++ Standards 62

4.6.1 ISO/IEC 9899:1990 62

4.6.1.1 Implementation compliance 62

4.6.1.2 C++ Object Model 63

4.6.1.3 ISO/IEC 14882:2003 63

4.6.1.4 ISO/IEC 14882:2011 63

4.6.1.5 ISO/IEC 2014 and 2017 63

4.6.2 Design impact of relevant standards 64

4.7 Soldering Standards 64

4.7.1 Lead Solder Safety 66

4.7.2 RoHS Compliant 68

4.8 Realistic Design Constraints 68

4.8.1 Economic and Time constraints 69

4.8.2 Environmental and Social constraints 70

4.8.3 Health, and Safety constraints 70

4.8.4 Manufacturability Constraints 71

4.8.5 Political Constraints 71

4.8.6 Sustainability Constraints 72

4.8.7 Ethical Constraints 72

4.8.8 Software Prototyping Constraints 73

4.8.9 Testing Constraints 73

5.0 Project Hardware and Software Design Details 74

5.1 Initial Design Architectures and Related Diagrams 75

5.1.1 Helmet Electronic Group Housing 76

5.1.2 Power Supply Layout 77

5.2 First Subsystem - Power Supply Unit 78

5.2.1 Power Supply Overview 78

5.2.2 Battery Recharging Design 78

5.2.3 Regulating Voltage 79

5.3 Second Subsystem - Bluetooth & Speakers 80

5.3.1 Speaker Breakdown (A) 81

5.3.2 Power Breakdown (B) 82

5.3.3 Microphone Breakdown (C) 82

5.3.4 Antenna (D) 82

5.4 Third Subsystem - Microcontroller & HUD 83

5.4.1 Software Testing Methodology 83

5.4.1.1 Connection via Bluetooth 85

5.4.1.2 Heads-up Display 85

5.4.2 Development Environment 86

5.4.2.1 Arduino IDE 86

5.4.2.2 Atmel Studio IDE 86

5.5 Fourth Subsystem - Android App 86

5.5.1 Mobile Application design Methodology 86

5.5.2 The Connection between Microcontroller and Mobile Application 87

5.5.3 Development Tools 88

5.5.4 Mobile Application Main Functionality 88

5.5.5 Software Application Prototype 88

5.6 Software Design 89

5.6.1 User Interface Design 89

5.5.1.2 Design Layout 90

5.6.2 Android 90

5.6.2.1 Android Studio 91

5.6.2.2 Building Software Application Using Android 91

5.6.3 Our Application 92

5.6.3.1 Navigation 92

5.6.3.2 Google Maps API 92

5.6.3 Mobile Application 93

5.6.3.1 Development Environment 93

5.6.3.2 Platform Choice 94

5.6.3.3 Use case Diagram 94

5.6.3.4 API Levels 95

5.7 Summary of Design 96

6.0 Project Prototype Construction and Coding 96

6.1 Integrated Schematics 96

6.2 PCB Vendor and Assembly 97

6.2.1 PCB Design 99

6.2.2 PCB Fabrication 101

6.3 Final Coding Plan 102

6.3.1 Coding Plan for Bluetooth Connection 102

6.3.2 Coding Plan for Navigation 103

6.3.3 Coding Plane for Phone Calls 103

6.3.4 Code Plan Summary 104

7.0 Project Prototype Testing Plan 104

7.1 Hardware Test Environment 104

7.1.1 Initial Development Test Environments 104

7.1.2 Post PCB Test Environments 105

7.2 Hardware Specific Testing 105

7.2.1 Power Supply Unit 105

7.2.2 Bluetooth Unit 105

7.2.1 Navigation HUD 106

7.3 Software Test Environment 107

7.3.1 Test types and location 107

7.3.1.1 Local Unit Tests 107

7.3.1.2 Instrumented Tests 107

7.3.2 Add a New Test 107

7.3.3 Run a test 108

7.3.4 Import Test Results 108

7.3.5 Export Test Results 108

7.3.6 Android App Testing 108

7.3.7 Software Testing Summary 109

7.4 Software Specific Testing 109

7.4.1 Bluetooth Device Scanning Testing 110

7.5 B.R.A.I.N User Troubleshooting Tips 111

8.0 Administrative Content 112

8.1 Milestone Discussion 112

8.1.1 Milestones 112

8.2 Project management 116

8.2.1 Management Plan 116

8.3 Division of Labor 117

8.4 Team Organization 118

8.4.1 Communication 119

8.4.2 Information Sharing 119

8.4.3 Web Based Git 120

8.5 Budget and Finance Discussion 120

8.5.1 Finance 120

8.5.2 Purchased Parts 121

9.0 Conclusion 122

Appendices 123

Appendix A - Copyright Permissions 123

Appendix B - Datasheets Appendix 126

Appendix C - Table of Abbreviations 127

Appendix D - References 129

List of Tables

Table 1 - Wireless Technologies ... 14
Table 2 - Battery Type Comparisons ... 16
Table 3 - Comparison of Features ... 23
Table 4 - Comparison of Specifications ... 24
Table 5 - LED Descriptions ... 29
Table 6 - Microcontroller Comparisons .. 36
Table 7 - Battery Comparisons for Power Supply Unit... 38
Table 8 - Stock Battery Consumption for Calculations... 41
Table 9 - Battery Comparisons of Life Time .. 41
Table 10 - HUD Comparisons ... 45
Table 11 - Procedures for Security .. 60
Table 12 - Comparing Standards of Motorcycle Helmets .. 62
Table 13 - ATmega2560 Pins .. 76
Table 14 - Used RN52 Pins... 76
Table 15 - RN52 Properties... 82
Table 16 - PCB Layer Design Descriptions ... 100
Table 17 - LED Interface ... 105
Table 18 - Troubleshooting Table ... 111
Table 19 - Jordan Yamson's Milestones .. 113
Table 20 - Ryan Mortera's Milestones ... 113
Table 21 - Stephan Morale's Milsetones ... 114
Table 22 - Nada Algharabawi's Milestones ... 114
Table 23 - Senior Design Two Documentation and Presentation 115
Table 24 - Senior Design Two Fabrication and Evaluation .. 115
Table 25 - Cost Analysis ... 121

1 | P a g e

1.0 Executive Summary

In today’s accelerated technological progression era, there are few ideas that have
not already been dreamt up and shortly after brought forth unto the world.
However, the beauty of electronics and programming lies in the ability to take past
research or inventions and adapt, improve, or simplify them for specific personal
use. Additionally, being able to replicate or make these changes while additionally
reducing production cost is a common goal found in many work places. As a
combination of future computer and electrical engineers, our team considered
several different already existing technologies and chose to embrace this “improve
on past design for a cheaper build” trait that would be constantly used in our future
careers.

Before we hit the gas on our Senior Design Project, our team first desired to
embrace Bluetooth technology and implement it into an important personal device
that is used on a daily basis. Eventually we focused our attention to improving the
daily ride for a motorcycle enthusiast and decided to create a Bluetooth
Recreational And Integrated Navigation helmet; the BRAIN Helmet. Motorcycle
helmets are typically designed without any electronic aspect but, with improving
portable and rechargeable battery technologies, smart helmets are slowly on the
motorcycle market’s horizon. Our team’s main goal for the BRAIN Helmet is to
allow motorcyclists to appropriately utilize their cell phones without distracting or
lowering the situational awareness of the rider. The helmet’s electronic group will
be mounted on the back of the helmet and attached to the helmet’s integrated
speakers, microphone, and heads-up display. The BRAIN Helmet will allow users
to visually see navigation notifications on the minimal display while additionally
being directed by the navigational audio being transmitted from their android
cellular device. Additionally, users will be able to take hand free phone calls or
listen to music. Overall, BRAIN Helmet users will be able to get to their destinations
safely without having to pull out their phones and address incoming phone calls
that may change their routes.

This document entails the research and design choices that led to the BRAIN
Helmet’s construction. To begin, specifications and requirement constraints are
described. Following this, the research and component selection will be detailed.
Lastly, the design process for hardware and software will be explained along with
their corresponding testing procedures for the BRAIN Helmet stock prototype.

2 | P a g e

2.0 Project Description
The BRAIN helmet will be a modern helmet integrated with current technologies
that will utilize a Bluetooth connection to an android device. This section serves as
an introduction into the BRAIN Helmet; depicting its purpose and developmental
guidelines. Here you will see detailed goals, objectives, and requirement
specifications laid forth by our senior design group for the BRAIN helmet.

2.1 Project Motivation

Due to the technological advantages at our disposal, traveling via GPS navigation
has become a standard for nearly every form of transportation. Driving, walking,
and biking to a new location has all been simplified by GPS Navigation via a
cellphone. While there are many to benefit from these advancements in GPS
tracking and traffic updates, motorcyclists remain limited in their utilization of
mobile navigation. Our desire is to develop a Bluetooth helmet that will
communicate with a motorcyclist’s cellphone navigation app to allow motorcyclists
to safely travel to their locations without having to pull out their mobile devices and
look down at their screens. This will not only keep the motorcyclist safe on the road
but will additionally avoid causing the rider to have to pull over to check for
directions. In addition to this, our helmet will address motorcyclists not safely being
able to wirelessly take phone calls. In moments of emergencies or plan changes,
a BRAIN Helmet user will ideally be able to save time by picking up phone calls to
receive updates on whether their destination needs to change. Lastly, the
recreational aspect of the BRAIN helmet entails being able to wirelessly listen to
music or other forms of audio entertainment such as podcasts. Many motorcyclists
create safety problems for themselves by using headphones that limit their ability
to hear their surroundings. The BRAIN Helmet having external speakers with easily
accessible volume control bypasses this safety concern and will allow users to
further enjoy their motorcycle ride. Essentially, the overall motivation for the BRAIN
Helmet is to allow riders to get to their destination safely and as quick as possible
by utilizing technology, and to enjoy their ride with audio provided pleasure.

2.2 Goals & Objectives

To fully meet a motorcyclist’s needs in the above described problems, our team
will implement several important factors in designing our easy to use helmet. First
and foremost, few motorcyclists would not have any interest in a new motorcycle
helmet that would break their bank so we are utilizing a low-cost approach by
implementing only necessary and best priced components in our electronic design.
Accordingly, the helmet will focus on low power consumption to allow users to have
a typical day of riding without having to charge their helmet. While this new
technology will differ from a casual motorcycle helmet, our design will focus on
keeping the helmet’s integrity in terms of safety, comfort, and weight.

3 | P a g e

This Bluetooth Recreational and Integrated Navigation (B.R.A.I.N) helmet will
function as an interface between the rider and their android phone. After Bluetooth
pairing with the device, a user will be able to start a navigation route, listen to
music, or even take a phone call while riding. During navigation, Riders will be
able to view a small HUD displaying their current speed and upcoming turns. The
HUD is not limited to just these uses and is subject to further utilization and features
as the BRAIN Helmet is designed. Additionally, the Bluetooth module allows the
navigational audio from the android device to relay the upcoming turns and further
instructions in real time. With the user’s comfort in mind, volume control will be
easily accessible on the helmet’s exterior via buttons along with a possible mute
button.

We are intending to integrate the following objectives into the BRAIN Helmet
system:

▪ The helmet to be completely wireless between the user’s android phone
and the helmet

▪ The phone navigation app shall send updates to the Bluetooth module to
update the HUD

▪ The phone navigation app shall be able to update itself using google maps
▪ The phone shall be able to connect to the Bluetooth device
▪ The user shall be able to answer and decline calls as they appear
▪ The Bluetooth module shall send signals to the MCU to update the HUD
▪ The MCU shall control the HUD display
▪ The speakers shall produce audible enough sound over the sound of a

motorcycle
▪ The battery of the system needs to be rechargeable
▪ The battery of the system needs to be lightweight
▪ The system shall implement a hand free environment
▪ The system shall incorporate low power components not capable of

dissipating uncomfortable, noticeable heat during use

2.3 Requirements Specifications
The following requirement specification guidelines were decided upon before the
development of the BRAIN helmet.

● The Motorcycle Helmet that we will be doing the modifications to will be a
standard street bike helmet. The rough size of the helmet should be as
follows:

○ ~10.6 x 13.8 x 10.4 inches
● There will be two speakers situated in the area of both ears on each side of

the helmet. The wiring will be integrated into the helmet from the electronic
group and will be negligible in size; not bothering the rider.

○ ~0.25” thick speaker, at least 40 mm diameter, impedance of at least
8 ohms

● The helmet will include a microphone to be wired through the helmet similar
to the speakers.

4 | P a g e

● The helmet will include a Heads-Up Display (HUD) on the visor of the
helmet. Movability has not been decided. The pixel resolution of the helmet
shall be as follows:

○ ~ 128x64 resolutions
● The helmet will have a rechargeable battery capable of at least 6 hours life

time and with the following specifications:
○ ~2000 mAh battery capacity
○ No larger than 3” x 3”

● The helmet will pair with a smartphone via Bluetooth with a relatively short
connection setup time.

○ ~approximately 1-2 minutes
● The helmet will include 5 buttons for answering phone calls, track control,

and toggling the display. In addition to the buttons there will also be a
potentiometer dedicated to changing the volume of the audio.

● The helmet will connect to a smartphone and be able to stream GPS
navigation signals to the HUD.

○ ~Using the integration of the Google maps API; the microprocessor
shall toggle LEDs in patterns or symbols distinguishable by the user.

● The helmet will have a Microcontroller with a I/O at around 3.3V-5V.
● The BRAIN electronic group shall be a low power consumption device:

o To enable 5 hours or more of life time the battery will have to be
able to supply the major components drawing no more than 400
mA per hour.

● The helmet will have the PCB on the back of the helmet connecting all the
parts.

○ ~The PCB should have dimensions of about 4” L * 4” W

2.4 Quality of House Analysis

The House of Quality (HOQ) depicted below in Figure 1 will be the foundation of
our project and is subject to small adjustments throughout the B.R.A.I.N Helmet
development. This HOQ is what the BRAIN Helmet team constructed in order to
appropriately verify and keep track of correlations between marketing
requirements and engineering requirements. The engineering requirements are
shown on the top section of the HOQ and have corresponding values listed at the
bottom of the HOQ. Alternatively, their compared marketing requirements are
visible on the left-hand side of the house of quality. It is worth noting that the
engineering requirement values on the bottom of Figure 1 are not set in stone for
the BRAIN Helmet team. These numerical guidelines will be further detailed in the
research and design section of this report.

5 | P a g e

Figure 1 - House of Quality

6 | P a g e

3.0 Research Related to Product Definition
The BRAIN Helmet will be integrated with the latest technologies of its time; as the
budget fits of course. The following will be a detailed explanation of previous
projects similar to our idea, modern technologies such as wireless and Bluetooth.
Battery technologies are also explained in this section. When it comes to modern
technologies, the BRAIN helmet will be incorporated with at least 2-year-old
devices. The BRAIN helmet will need all these types of technologies for the
wireless system that is being integrated onto it, as well as the OLED display being
attached to the screen.

3.1 Existing Similar Projects and Products
Once the general problem was addressed for the motorcycle community not
having a commonly used form of smart navigation; we began researching just what
efforts were made to solve the same problems the BRAIN Helmet is hoping to
solve. As we researched for SMART Bluetooth helmets, our main approach
involved looking around the market for similar products being sold or being
developed. Many products that we considered similar to the idea of the BRAIN
Helmet are shown in this section.

3.1.1 SKULLY

The SKULLY brand is quite arguably one of the most famous smart helmets on the
market; until recently when they had to claim bankruptcy and pull their products off
the market. The SKULLY AR – 1 was going to be one the world’s smartest
motorcycle helmet. The helmet was going to include a Heads-Up Display, that
would always be in focus. The helmet was to be DOT certified, fog and scratch
resistant, and have a quick release chin strap. The sizes for this helmet were to
vary from small to extra-large. There was to be integrated an ultra-wide-angle rear
view camera, GPS navigation all powered by a powerful microprocessor. The
helmet would connect wireless via WLAN and Bluetooth. The helmet would also
have integrated audio and hands-free calling. However, all of these features led to
an understandably large price cost. The base price of this helmet was starting at
around $1500. Unfortunately, this company just filed for bankruptcy this year
(2017). Our goal for the BRAIN Helmet is to meet the same marketing goals as the
SKULLY helmet; but at an affordable cost. Therefore, we are not going to have
nearly as stylish of a build, nor as many features as the SKULLY Helmet. The
BRAIN Helmet ideally would be able to reach out to the motorcycle community as
an affordable, reasonable purchase unlike the SKULLY was.

Figure 2 depicts a recent model of the SKULLY Helmet that was on the market
before SKULLY went bankrupt. Several of these helmets were available to pre-
order customers and were even tested and reviewed through blogs and YouTube
videos. While the helmet was a great benefit to some riders, it was commonly noted
that such a steep price drove the necessity and desire for the SKULLY helmet

7 | P a g e

lower. With SKULLY being such a hyped helmet that failed; our BRAIN Helmet
team took heavy consideration and note in the set back of building a beautiful
helmet versus an effective and cheaper alternative.

Figure 2 - SKULLY Helmet

Permission to use from SKULLY

3.1.2 Reevu

The Reevu Helmet is a motorcycle helmet with a reflective polycarbonate plate,
which would double as an internal safety shell for the rider. The outer shell casing
is made from a mix of carbon composites for lightweight, still with full impact
resistance. The most important key factor about the Reevu Helmet is that there is
a rear-view mirror allowing for the motorcyclist to see directly behind them just like
a rear-view mirror within a motor vehicle. Without having to move their head, a
motorcyclist equipped with the Reevu can see blind spots and directly behind of
rear traffic, all within the confines of a spectacular safe helmet. The Reevu mirror
mechanism can be removed or adjusted for different users just in case they were
too think the mirror was a distraction as they were riding. This motorcycle helmet
has even astounded industry experts in motorsports without its rear-view
technology, and that is due to its safety factor. The Reevu helmet is depicted along
with a view of its features in Figure 3; as seen on Reevu’s website.

This helmet has plenty of features such as comfort, ventilation, and low noise. The
Reevu helmet has liners and cheek pads within the helmet that can be removed
for washing. The ventilation for the helmet is designed using fluid dynamic
properties of the venture vent. This ventilation keeps the user of the Reevu at low
temperatures. Low noise for motorcyclists is a requirement due to the loudness of
most motorcycle mufflers. The Reevu is design with shell liners made out of dual
density EPS, that has high coefficient bump absorption. The Reevu helmet when
compared to our B.R.A.I.N. Helmet lacks in its ability for hands free device
communication, but it does have a technology of being able to see the rear of the
motorcyclist.

8 | P a g e

Figure 3 - Reevu Functioning Diagram

Permission to use from Reevu

3.1.3 LiveMap

The LiveMap motorcycle helmet is a new technologic helmet that has a built-in
augmented reality interface, GPS, Microphone and Speakers, and action camera.
This helmet is the ultimate technological helmet built and designed for everything
a motorcyclist needs and can be seen in figure 4. The only drawback of this helmet
is the price of it. The retail price for this helmet is going for $1500, whereas we
spent around $300 for many of the same functions. The main difference when
comparing our B.R.A.I.N. helmet is the display within the helmet. The LiveMap
uses an augmented reality interface with a built in light sensor to portray the
upcoming directions from the microcontroller. This augmented reality shows the
GPS route, speed, and customizable alerts and calls. The augmented reality
screen works in any time of day from extremely sunny, to the darks of night. This
is a great feature not only for its stylish look but its effectiveness in portraying data
to the rider without distractions. The built-in camera can record in 1080P and is
built within the helmet. This built-in camera is capable of recording whatever
happens while riding and can be saved to a removable MicroSD flash memory
device. Another plus about the LiveMap helmet is the modular construction that it
was built with, meaning you can customize exactly what you would want in the
helmet. This helmet is one of the very inspirations for our project, but we wanted
to make a cheaper more affordable version, which will be the B.R.A.I.N. Helmet.

9 | P a g e

Figure 4 - LiveMap Block Diagram Helmet

Permission to use from LiveMap

3.1.4 Nuvis

The Nuviz is a helmet attachment that has a Heads-Up display designed
specifically for motorcyclists. The attachable NUVIS is visible in Figure 5. It is an
attachable device that can go onto most modern motorcycle helmets. It is a device
that is essentially, a microphone, speakers, camera, and GPS, all with a HUD on
the bottom right of your helmet glass. The Nuviz also comes with a remote control
that can be attached to the throttle of your motorcycle to change the functions of
the helmet. Such as, when you’re receiving a phone call, you can accept the call
through the other device. The HUD displays navigation as calls, as well as the
music you are streaming from your phone. The device also take HD videos in a
still environment, and can be updated through software upgrades in the future. The
Nuviz is powered through a Qualcomm quad-core processor, that runs all the GPS,
accelerometer, gyroscope, and altimeter sensors. The Nuvis has two wireless
technologies, both Bluetooth and WLAN. This device has a replaceable and
rechargeable 3250mAh Li-ion battery, that should power the device for up to 8
hours. The Nuviz is marketed around $700. Again, while this is a great attachment
capable of being attached to any motorcycle helmet, the price range makes it a
rather unsightly purchase for many motorcyclists on the market for a Bluetooth
navigational smart motorcycle helmet.

10 | P a g e

Figure 5 - Nuvis Device

Permission to use from Nuvis

3.2 Relevant Technologies

The design of the BRAIN helmet includes many different modern devices within
the system. Implemented into our design, modern technology is used definitively
throughout. When researching which parts to use on the design, many different
technologies were analyzed to see which one would fit best for the system. The
following system is a list of relevant technologies that were compared and
decided upon to be implemented into the BRAIN Helmet.

3.2.1 Wireless Technologies
Wireless technology provides us with an opportunity for the user wearing the
SMART helmet to comfortably use the system without the use of a wire connection.
The Bluetooth technology is available on most cellular phones and we are utilizing
it to communicate the device to the helmet.

3.2.1.1 Why use wireless?

When it comes to our project of the B.R.A.I.N. helmet, we had to implement a
system where the user of a motorcycle would be able to use their mobile device
without distracting the driver. The best way possible was to make the system from
the user’s cell phone to the motorcyclist’s helmet wireless. This would make the
whole system literally able to pick and use without any assembly required from the
user. When researching wireless technologies, there were many different options
out there, including but not limited to: Wi-Fi, Zigbee, and Bluetooth. The following
will be an explanation of each type of communication.

3.2.1.2 Wifi Wireless Network

Wi-fi is a technology for wireless local area networking. Wi-fi commonly uses a 2.4
GHz Ultra High Frequency and a 5 GHz radio bands. Many different products use
this technology such as personal computers, video game consoles, smartphones,
digital cameras, and even smart televisions. Almost everything is connected using

11 | P a g e

Wi Fi. There is a certain type of Wi fi that would be beneficial in our project would
be ad-hoc mode. This means devices talk directly between each other without the
need to first talk to an access point where all devices are connected. Wi.fi used the
IEEE 802.11 standard which is a standard for media access control and physical
layer specifications, for certain computer communication in the 2.4, 3.6, 5, and 60
GHz frequency bands. Wi fi can transfer data to up to around 250 mb/s. The range
for a wi-fi connection can be up to about 100m. This depends mainly on the latest
wi-fi version and wi-fi protocol. Also, the range for the connection of Wi-Fi can be
extended using extra antennas. Multiple connections can be made under a Wi-fi
network, depending on the access point. Connection complexity for a Wi-Fi
network is usually very complex, since you must have to configure the wi-fi network
and network security pass code. With a wi-fi network, the security of the
communication is strong, with programs such as Wireless Equivalent privacy and
Wi-Fi protected Access. Power usage of Wi-Fi is unfortunately very high due to all
the security and longer distances of communication.

3.2.1.3 Zigbee Wireless Module

There is another wireless communication device that exists, and that is Zigbee.
Zigbee is an IEEE 802.15.4 specification used for a suite of high level
communication protocols to create Personal Area networks. The Zigbee module
takes advantage of low power digital radios in order to connect different devices
wirelessly. The Zigbee is a low-power, low data rate and low range wireless ad hoc
network. Zigbee is usually implemented within light fixtures, light switches, traffic
management systems, and any other industrial or consumer device that requires
short range low data transfer rate. Zigbee usually worked between 10 meters.
Zigbee is usually implemented low data rate applications that require long battery
life. Zigbee modules could be used for the new and improving Internet of Things,
due to its low power consumption, the Zigbee module can be used for many
wireless devices that would require little power and slow data rates. Zigbee
operates in the unlicensed 2.4 to 2.4835 GHz radio bands. There are 3 different
types of Zigbee devices are they are as follows:

● Zigbee Coordinator: The coordinator forms the root of the network tree and
can bridge to other networks. There is only one Coordinator in each network
since it is the device that started the network. This coordinator stores
information about the network, including acting as a Trust Center for the 128
security keys.

● Zigbee Router: The purpose of this device is to be exactly what its name

describes a router for certain communications passing through the device.
This helps when the Zigbee is connected to a bigger network and would
help sort out the chaos of the network by being able to micro managing the
network within itself.

12 | P a g e

● Zigbee End Device: This device contains just enough functionality to talk to
the parent node, but it cannot relay data from other devices. This means
that this part of the device isn’t powered on most of the time, which allows
the Zigbee to save on battery life. The ZED requires little memory which
makes manufacturing this device the cheapest.

The security of the Zigbee is based on a 128-bit key system. The trust between
devices must be assumed during the installation of the key. These keys are the
backbone of the security system for the Zigbee, meaning they are to be
communicated through a secure channel, or someone could be using it to steal
information.

3.2.1.4 Bluetooth

Bluetooth is one of a wireless technology standard for exchanging data over short
distances. It used short wavelength UHF radio waves in the ISM band at 2.4 GHz.
It was first invented by the telecom vendor Ericsson in 1994. It is managed by the
Bluetooth Special Interest Group (SIG). The IEEE standardized Bluetooth as IEEE
802.15.1. The SIG oversees development of specification, management of
qualification program, and protects the trademarks. Bluetooth uses a radio
technology called frequency-hopping spread spectrum. Bluetooth divides
transmitted data into packets, and transmits each packet of one of the 79
designated Bluetooth channels, each channel having a bandwidth of 1MHz. With
the Bluetooth low energy, 2MHz spacing is utilized, which would in turn
accommodate 40 channels. Ever since Bluetooth 2.0 +EDR which led to 4-DQPSK
and 8DPSK modulation, the Gaussian frequency-shift keying was the only
modulation that existed. Bluetooth is a packet-based protocol with a master-
structure. One master may communicate with up to 7 slaves in a piconet. All
devices share the master's clock. A piconet is an ad hoc computer network using
Bluetooth technology. Sometimes, the slaves can become masters once they have
connected to the device. These slaves are then lined up for commands in a round
robin fashion.

With the progress of technology over the years, Bluetooth has evolved as well.
When looking particularly at the different version of Bluetooth we can see how it
has evolved and progressed over time. There are different types of Bluetooth that
have been and these versions are as following:

● Bluetooth Versions 2.0, 2.1 with EDR
● Bluetooth Versions 3.0
● Bluetooth Versions 4.0,4.1, and 4.2
● Bluetooth Version 5

13 | P a g e

3.2.1.4.1 Bluetooth Versions 2.0,2.1 with EDR

The key features when analyzing Bluetooth version 2.0 and 2.1 +EDR is that it can
increase battery life within the device it is connected to. It operates at a 2.4 GHz
frequency. The basic rate that Version 2.0 without EDR supports is a bit rate of
1MBps whereas with EDR in the 2.1 version, the bit rate is double to 2 MBps. In
case of pairing scenarios, there is an “eavesdropper protection” that generates a
six-digit passkey that is stronger than a 16-digit alphanumeric character random
PIN code. In versions 2.1, there is a system known as “man-in-the-middle”
protection that would get rid of the possibility for a third party to intercept the
information you are transferring. Also in version 2.1, near field communication
(NFC) was introduced, this allowed communication between devices when
physically touched together or brought into proximity of each other.

3.2.1.4.2 Bluetooth Version 3.0
Bluetooth Version 3.0 also has something called High Speed enabled with it. This
version uses a data-substitution method which increased the throughput via the
use of a secondary radio that is already present in consumer devices. Bluetooth
Version 3.0, with its higher speed, allows for the transfer of music libraries between
devices, downloading photos in mass, and sending video files from one another.
This version is much faster than its predecessor. Key features of Bluetooth 3.0
include:

● Reduced power consumption by using the second radio only when
needed, which extends battery life inside the device

● Bluetooth 3.0 makes power control faster which in turn limits drop
outs, so no disconnections happen between devices

● Unicast Connectionless Data lowers latency rates, by sending small
amounts of data more quickly

3.2.1.4.3 Bluetooth Version 4.0, 4.1 and 4.2

Bluetooth 4.0 are also known as Low Energy Bluetooth, which was designed with
the Internet of Things in mind. The functionality of the Bluetooth 4.0 is for devices
that run for long periods of time, that must only use small amounts of energy.
Bluetooth 4.0 is used in many systems found in home appliances and security
systems, as well as fitness monitors and proximity sensors. The key features of
Bluetooth 4.0 include:

● Industry-Standard wireless protocol that allows for interoperability across
platforms

● Ultra-low peak, average and idle mode power consumption
● Standardized application development architecture

14 | P a g e

3.2.1.4.4 Bluetooth Version 5.0

The newest addition to the Bluetooth family is Bluetooth 5.0, it has 2 times the
speed of 4.0, 4 times the range, and 8 times the data transfer. It is still new, as in
it has been released only this year (2017), but this will push forward the thought of
everything being connected, also known as the Internet of Things.

3.2.1.5 Comparison of Wireless Technologies

Table 1 - Wireless Technologies

Specification Wi-Fi Zigbee Bluetooth (3.0)

Frequency 2.4 GHz / 5 GHz
ISM Bands

2.4 GHz ISM
Bands

2.4 GHz ISM
Bands

Maximum Range 100 meters 10 meters 30 meters

Maximum Data
Rate

5-600 Mbps 250 kbps 3 Mbps

Power
Consumption

50-110 mA 5 mA 30 mA

3.2.1.6 Bluetooth (Selection)

The reason why our group chose to go with the Bluetooth 3.0 technology is
because the range of the module is far enough for a motorcyclist to use the helmet
even from afar. The data rate is large enough for us to send signals for calls and
music at the same time (the module we picked is dual channel) and the power
consumption of the Bluetooth technology is perfect for our situation. We would be
able to implement a system that doesn’t use too much power over time, but still
can send the signals we need such as the signal for the HUD we are placing on
the front glass of the helmet.

3.2.2 Battery Technologies
In our current day and age, the available battery designs are constantly changing.
This is especially driven by the desire for rechargeable and mobile devices such
as our cellular phones. The figure below depicts the two major battery classes.

15 | P a g e

Figure 6 - Variety of Battery Types Considered

Permission from an open source

3.2.2.1 Battery Constraints

There are several factors already touched based on that we must consider in order
to truly make the BRAIN Helmet a user friendly and daily instrument used by
motorcyclists. Two such concerns are the size and weight of the battery. As you
can see in the above figure, the varying battery types allow various shapes,
weights, and versatility factors to be considered for the BRAIN Helmet. A heavy
battery would cause the motorcyclist to lose comfort in his helmet and possibly
strain their neck muscles over long rides. A large battery would not only likely lead
to being heavy but would also obstruct the overall size of the BRAIN Helmet’s
group of electronics. As a result, the aerodynamics of the BRAIN Helmet will be
altered. Because the BRAIN Helmet’s electronic group and therefore battery is
located on the helmet’s rear, there will not be a noticeable change in air drag from
the helmet upon forward view. However, if a motorcyclist turns his head to the left
or right side, he will feel greater air drag and therefore sound if there is a larger
battery. Therefore, in deciding a battery to power the BRAIN helmet, our goal is to
obtain a small and light enough battery that will power the electronic components
for over multiple hours.

3.2.2.2 Battery Types

For an application used daily such as the BRAIN Helmet, it is critically vital that the
battery is a secondary, or commonly known as a rechargeable battery. Because
of that, we avoided primary disposable batteries, such as replaceable 9V, Alkaline,
cell batteries, etc. Not only do they prove to be expensive to use daily, but they
would not last long enough for a daily ride as they don’t have a high enough battery
capacity.

16 | P a g e

3.2.2.3 Battery Capacity

Battery capacity ties in hand with the Energy Density of batteries. Battery Capacity
is the measure of electric charge that can be delivered at a specific voltage, and is
usually rated in milliamp hours (mAh). With that said, Primary batteries have a
lower energy density than most secondary batteries. For example, disposable
alkaline batteries have less energy per volume than a Lithium secondary battery.

Overall comparisons of the two battery types is shown in the table below.

Table 2 - Battery Type Comparisons

 Primary Batteries Secondary Batteries
Weight

Energy
Density

Battery
Capacity

Price

Legend
Green = Beneficial
Red = Disadvantageous

Up arrow = Higher value
Down arrow = Lower value

3.2.2.4 Charging a Lithium-Ion Polymer Battery

After reaching the conclusion that there will be a secondary battery in the BRAIN
Helmet, the next issue is choosing a battery charger system that will be capable of
recharging a secondary battery; specifically, a lithium-ion or lithium-ion polymer
battery. Many lithium-ion/li-po battery chargers exist on the market. An important
note in deciding the charger for the BRAIN Helmet involves choosing a input
connector common to users, and being able to limit the amount of current drawn
to charge the lithium-ion/li-po battery. In the case of the BRAIN Helmet, we have
decided a micro-usb external connector is appropriate for android users. The
drawn current will be discussed in further power supply design and charger
selection.

17 | P a g e

3.2.2.5 Regulating Battery Voltage
The BRAIN Helmet is planning to utilize a rechargeable lithium-ion/li-po battery. , Lithium
ion polymer batteries are created to quickly drop from their peak voltage to their
nominal voltage, and as their usage continues, drops even further to their depleted
cell minimum. This is depicted in the below figure.

Figure 7 - Sparkfun's Lithium Polymer Battery Discharge Curve

Permission from an open source

This attribute is taken into consideration for the BRAIN Helmet’s stock build. In
order to keep a steady delivery of power to the BRAIN Helmet’s electronic group,
a switching voltage regulator will be designed and implemented with the help of
Texas Instrument’s Webench design tool.

3.2.3 Audio Technologies
Microphones and speakers are needed to allow the user to hear the music and the
other person on the other end of the phone connection to hear. We will have a
microphone that can record the voice from the user and transmit to the host device
while at the same time sending signals to the speakers to create sounds that the
user can hear.

3.2.3.1 Microphone

The BRAIN Helmet will require an integrated microphone in order to allow the user
to communicate over Bluetooth for their phone calls or possibly voice recognition
software on individual user’s android devices. While there are multiple

18 | P a g e

microphones available to use, a simple microphone with a preamplifier is required
to amplify the voice of the user.

3.2.3.2 Speakers

To fully utilize the Bluetooth experience for the BRAIN Helmet user, two speakers
are also to be integrated with the microphone into the helmet. The speakers will
require sound amplification regardless of the speakers used. This will be detailed
further into the document.

3.2.4 Possible Features for the BRAIN Helmet

When first coming up with the design for the BRAIN helmet, the system could have
many other features added with it. The team who designed the project
brainstormed a lot about this idea for the BRAIN helmet and we had lots of features
in mind, but some just didn’t cut it. The ideas that are going to follow will be a list
and short description of some of these features that could be implemented or
would be implemented into the BRAIN helmet if time permits. Some of the ideas
for the helmet also could’ve been out of the budget of our team so we didn’t want
to go that route.

The first feature that could be installed would be a camera mounted on top or the
side of the helmet with our system. Cameras on motorcycle helmets wouldn’t be a
new innovation in the market but it would definitely come in handy due to
motorcyclists usually riding dangerously and lots of road rage on the roads could
lead to evidence in court. A camera that would be able to capture video at 1080P
and would be able to show videos of the riders first person perspective of the ride
they took on their motorcycle. The camera as a feature would be interesting to
integrate into the system because we would have the signals into the companion
app. This would mean we would have to implement either a higher transfer rate of
bluetooth or change to wi-fi as our wireless technology. We could implement the
feature of being able to transfer the videos directly from the camera onto the
companion app or stream the view from the camera into the companion app. This
feature was not chosen to be into the system due to the cost of this feature. The
cost of this feature would add on around $300 worth of hardware. The cost would
be due to the expense of a small form factor camera, that would be able to record
at a decent quality. Unfortunately, due to our project being self-funded, this feature
couldn't be implemented.

A rear-view camera and stream to the HUD that would be implemented into the
system was also another feature that could be added. A rear-view camera would
be able to stream a view of how a rear-view mirror would work in a car. This would
allow a motorcyclist to see more view behind them and would allow the rider to
ride more safely. This would mean safer riders on the road, and that is good for
everyone. This feature wouldn’t be as difficult to implement as the forward camera
previously discussed, but the reason why it isn’t going to be implemented is due to

19 | P a g e

the cost again. The cost of these parts are expensive when it comes to a self-
funded project.

Another feature of the BRAIN helmet that could be introduced is the use of
transducer speakers. These speakers push their sound waves into a surface and
that surface depending on its medium, plastic and wood work best, vibrates and
amplifies the sound generated from the speaker. We could use this for a better-
quality sound within the helmet due to outside noise from a highway or bust road
while riding a motorcycle could be a burden on sound. This type of speaker could
be implemented into our system later within the project. This would allow for better
sound quality within the helmet. The reason for not being in the initial design is due
to time constraints.

One feature that could be implemented is a HUD that is fully transparent and
projected onto the visor of the motorcycle itself. When dealing with this idea, we
had to first research the technology that would be able to project an image onto
the glass, when comparing it to an OLED display, the cost was dramatically
different. This idea of an augmented reality HUD on the glass was our original idea
for the HUD, but then realised it is out of the scope of the project we wanted to
design so we dropped the idea. The reason was due to the parts being far too
expensive, and the implementation would not have worked with the time we had
on this project.

With the microphone being implemented into the system, and the companion app,
we could implement voice commands within the system if time permits. The
hardest part of this feature would be the reading of certain voice commands within
the system and then transferring those signals to the companion app and allowing
it to do a function. The programming side would have more work and time would
be an issue for the system as a whole. This feature was not a real importance to
the system due to a motorcycle rider might not be able to adequately use these
voice commands due to the high amount of noise the surrounding area would give
off.

The last feature that could be implemented into the system at a later time would
be removable storage for the system. This could be used with the camera that
would be implemented in order to record high quality videos directly onto the
system. The storage would be in the form of microSD and be able to load music or
videos onto it for playback on the HUD.

Many features could’ve been added to the idea of the system but those were the
ones that were actual viable if time permitted. This project could have always had
more but the scope of the project was to just assist the motorcycle riders from
distractions of their phone, and to help them with things such as navigation that
wasn’t always readily available for them.

20 | P a g e

3.3 Strategic Components and Part Selections
The selection of the viable devices that will be integrated into our system was an
important task, due to there being many different options. When analyzing different
solutions for our goals, we obtained many different angles to our problems, but the
following section will explain why we selected the important components of our
system. Making sure to compare between each technology, and analyzing the
similarities and differences.

3.3.1 Choosing a Bluetooth Module

When comparing to other Bluetooth Modules out there on the market, there are
endless numbers of them due to Bluetooth being integrated in almost everything
in our daily lives. Searching high and low for a Bluetooth audio Module that would
work perfectly for our system but also not be overkill or too little to our needs wasn’t
as difficult due to the huge demand for Bluetooth in modern technology. We
reviewed many types of different Bluetooth modules, some of them include the
0VC3860, and Silicon Labs’ WT32.When analyzing the similarities and differences
of all 3, there are more similarities than differences. The price of each do vary,
where the RN52 prices at $20, the 0VC3860 at $15, finally the WT32 at $25. All
three come with programmable UART ports, which can be used to connect to a
microcontroller for better control. They also have more similarities between each
other such as dedicated digital signal processing modules (Analog to digital, and
Digital to Analog converters). One difference that sets the 0VC3860 and the WT32
apart from the RN52, is that they come with a built-in Li-Po battery charger. This
means that the system can use an on-board power when connected to an external
battery with a voltage regulator, but all three systems need at least 3.3V to 3.5V to
keep all applications running. Such as on the WT32 to power the Universal Serial
Bus (USB) on the device, you need 3.3 V into the VDD_CHG pin. Considering the
0VC3860 has the same battery charger to use outside batteries but also needs a
VDD_IO to use all applications. The following will be a breakdown of the features
and key specifications of each

3.3.1.1 0VC3860 Bluetooth 2.0 +EDR stereo audio processor

Features:
 Integrated single chip Bluetooth Stereo Audio
 Low Power Consumption
 Bluetooth Version 2.0 +EDR specification compliant
 Integrated hi-fi stereo audio CODEC with -90 dB SNR DAC
 Integrated 150 mA Lithium battery chargers
 Integrated Switching Voltage Regulator
 UART and SCCB interfaces
 Low Power Mode 1.8 V
 RoHS Compliant

21 | P a g e

Figure 8 - OVC3860 Stereo Audio Processor

Permission pending

Specifications:

 Power Supply: VDD 1.7V ~1.9V
 Vio:1.7~3.3V
 Vreg: 2.2V~4.2V
 Power Requirements: active:26mA
 In Sleep Mode: 400µA
 Temperature Operating Range
 In use: -10°C to 80°C
 Storage: -45°C to 125°C
 Operation Range: up to 10 m
 Package Dimensions: 7mm x 7mm x 0.9mm

3.3.1.2 Silicon Labs WT32 Bluetooth Audio Module

Figure 9 - WT32 Bluetooth Module

Permission pending

Features:
 Bluetooth Version 2.1+EDR
 Bluetooth Class 2 Radio
 Transmit Power: +7 dBm

22 | P a g e

 Receiver sensitivity: -86 dBm
 Integrated Chip antenna
 UART host interfaces
 802.11 co-existence interface
 10 programmable IO pins
 Li-Ion and Li-Poly battery charger

Specifications:

 Operating Voltage: 1.8V to 3.6 V
 Temperature range: -30°C to 85°C
 Dimensions: 35.75mm x 14.5mm 2.6mm
 Audio features include I2S, PCM and SPDIF interfaces
 Integrated DSP and Stereo Audio Codec

3.3.1.3 Roving Networks RN52

Figure 10 - RN52

Permission to use from Open Source

Features:
 Fully qualified Bluetooth 3.0 Module
 UART programmable console interface
 Dedicated GPIO pins
 Dual-Channel, differential audio input and output for highest audio quality
 Supports iAP to discover iOS devices
 Integrated amplifiers for driving 16 ohm speakers
 FCC, ICS, and CE certified
 Embedded Bluetooth stack profiles: A2DP, AVRCP, HFP/HSP and SPP
 Castellated SMT pads for easy and reliable PCB mounting

Specifications:

 Maximum Data rate 3 Mbps
 Radio Frequency Impedance: 50 Ohms
 Operation range: 10 meters or 33 feet

23 | P a g e

 Sensitivity: -85 dBm
 Supply Voltage: 1.8V-3.6V
 Working Temperature: -40°C to 85°C
 Standby current: < 0.5 mA
 Package Dimensions: 26.0mm x 13.5mm x 2.7mm

3.3.2 Comparison of Bluetooth Modules
Table 3 - Comparison of Features

0VC3860 Bluetooth 2.0
+EDR stereo audio

processor

Silicon Labs
WT32 Bluetooth
Audio Module

Roving Networks RN52

Integrated single chip Bluetooth
Stereo Audio

Bluetooth Version
2.1+EDR

Fully qualified Bluetooth 3.0 Module

Low Power Consumption Bluetooth Class 2 Radio Integrated amplifiers for driving 16 ohm
speakers

Bluetooth Version 2.0 +EDR
specification compliant

Transmit Power: +7 dBm Supports iAP to discover iOS devices

Integrated hi-fi stereo audio
CODEC with -90 dB SNR DAC

Receiver sensitivity: -86
dBm

Embedded Bluetooth stack profiles:
A2DP, AVRCP, HFP/HSP and SPP

Integrated 150mAH Lithium
battery chargers

Integrated Chip antenna FCC, ICS, and CE certified

Integrated Switching Voltage
Regulator

UART host interfaces

UART programmable console interface

UART and SCCB interfaces 802.11 co-existence
interface

Dedicated GPIO pins

24 | P a g e

0VC3860 Bluetooth 2.0
+EDR stereo audio

processor

Silicon Labs
WT32 Bluetooth
Audio Module

Roving Networks RN52

Low Power Mode 1.8 V 10 programmable IO pins Dual-Channel, differential audio input and
output for highest audio quality

RoHS Compliant Li-Ion and Li-Poly battery
charger

Castellated SMT pads for easy and
reliable PCB mounting

Table 4 - Comparison of Specifications

0VC3860 Bluetooth 2.0
+EDR stereo audio

processor

Silicon Labs WT32
Bluetooth Audio

Module

Roving Networks RN52

Power Supply: VDD 1.7V ~1.9V

Operating Voltage: 1.8V to 3.6 V

Maximum Data rate 3 Mbps

Vio:1.7~3.3V Temperature range: -30°C to
85°C

Radio Frequency Impedance: 50
Ohms

Vreg: 2.2V~4.2V Audio features include I2S, PCM
and SPDIF interfaces

Operation range: 10 meters or 33
feet

Power Requirements:
active:26mA

Integrated DSP and Stereo Audio
Codec

Sensitivity: -85 dBm

In Sleep Mode: 400µA Dimensions: 35.75mm x 14.5mm
2.6mm

Supply Voltage: 1.8V-3.6V

In use: -10°C to 80°C Working Temperature: -40°C to
85°C

Storage: -45°C to 125°C Standby current: < 0.5 mA

Package Dimensions: 7mm x
7mm x 0.9mm

 Package Dimensions: 26.0mm x
13.5mm x 2.7mm

25 | P a g e

3.3.3 Audio Bluetooth Module Selection
One of the components of our B.R.A.I.N. Helmet is the RN-52 Bluetooth Module.
This Bluetooth module will be the basis of how we connect wirelessly from our
input to one of the outputs, such as a pair of speakers. The RN52 comes equipped
with lots of features ready to be installed in a system for Bluetooth connectivity.
Some of the features that exist include having built in analog to digital converters,
digital to analog converters, low pass filters, and input and output amplifiers. It also
has a software configurable commands over a UART console interface. The RN52
is also compatible with older version of Bluetooth such as 2.1 +EDR, 1.2, and 1.1.
This module also includes dedicated GPIO pins allowing for microcontrollers to
efficiently control and operate functions. The size of the module is as a big as a
stamp size, built at 13.5 x 26.0 x 2.7 mm. This module is also FCC, ICS, CE, and
Bluetooth SIG certified. Applications for this specific Bluetooth module include but
not limited to, High quality, 2 channel audio streaming, Hands free audio, Wireless
speakers, remote control for media player, and computer accessories, and finally
used in our B.R.A.I.N Helmet.

RN52 Block Diagram

Figure 11 - RN52 Block Diagram

Permission to use from Open Source

The block diagram of the RN52 shows a better break down of the module itself.
Analyzing the diagram, you can see that the RN52 comes built made for 2
microphones for input signals, Bluetooth 3.0 radio frequency baseband chip, 2 IO
pins for speakers, designated channels for UART, USB, built in 16-bit RISC
architecture microcontroller, and a 16-bit digital signal processor CODEC.

26 | P a g e

3.3.3.1 Features of the RN52 Bluetooth Module
 Analog to Digital Converters

 Digital to Analog Converters

 Low Pass filters

 Input and Output Amplifiers.

 LED Interface

 Microphone Input

Figure 12 - Overview of Audio Interface Circuit

Permission to use from Open Source

Analog to Digital Converter (ADC)

The Analog to Digital converter that is built in the RN52 is a second-order delta
sum converter. The two ADC can support certain sample rates such as but not
limited to, 8 kHz, 11.025 kHz, 16 kHz, 24 kHz, and 32 kHz. These ADC analog
amplifier is a two- stage amplifier, where the first stage selects the correct gain for
either microphone or line input. A delta sum ADC is a modern converter to change
a signal from analog to digital. It is made of two main parts, the delta sum
modulator, and the digital/decimation filter. The uses of the ADC are to convert the
analog signal of the microphone into a digital signal to be used within the
microcontroller. The reason for a higher order ADC is to lower the modulator in
band quantization noise. The following diagram is a breakdown of a second-order

27 | P a g e

delta sum ADC. The second order trait can be explained by the number of
integrators the signal goes through before the output.

Digital to Analog Converter (DAC)

There are two DAC located on the RN52 for separate channels with identical
functions. Each DAC supports sample rates of 8 kHz, 11.025 kHz, 16 kHz, 22.05
kHz, 24 kHz, 32 kHz, and 44.1 kHz. The DAC uses the same architecture as the
ADC, with the use of the sigma delta modulator, but in this case of the RN52, it
has 3 integrators unlike the second order of the ADC.

Figure 13 - Second Order ADC in Time Domain

Permission to use from Open Source
Low Pass Filter

After the DAC, the analog signal needs to be passed through a low pass filter so
that the noise from the conversion doesn’t output an unclear sound to the
speakers. What a low pass filter does is only allows certain frequencies pass
through the filter up to a certain cut off frequency depending on the filter.

Figure 14 - Basic Low Pass Filter

Permission to use from Open Source

28 | P a g e

The use of low pass filters is almost infinite, they are used in all day to day based
electronic systems. How the low pass filter operates is at low frequencies the
capacitor acts like an open circuit so the current flows through resistor 2 with a
gain of -R2/R1. At higher frequencies, the capacitor acts like a short to R2 so of
course the current will go through the shunt and that would connect the output to
ground which wouldn’t allow any current to flow through. This reaction can be
confirmed quantitatively by defining the transfer function of the low pass filter as
H(s)= Vout(s)/Vin(s). Where we can define Vout(s)=-R2 in parallel with the
capacitor 1/sC and Vin(s) is just R1. And then changing from s domain to frequency
we can derive the transfer function is -K*(w/(s+w)) where K= the ratio of R2 and
R1. To figure out where the filter cuts off the frequencies it lets pass through we
find that it is where the maximum magnitude of the transfer function has been
reduced by . The use of this kind of filter in the RN52 would be used to not allow
the high frequency noise of the DAC go into the output or speakers of the system.

Figure 15 - Breadboard of Low Pass Filter

Microphone Input

The use of microphones is on feature that is built in with the RN52 Bluetooth Audio
Module. We needed to use the microphone in order to talk on the phone that is
connect wirelessly with the module. The specifics of the audio input are to be from
1 µA at 94 dB to about 10 µA at 94 dB. This means the sensitivity of the
microphones must be between -40 to -60 dBV. If any microphone is used below
these limits the microphone output must be pre-loaded with a large value resistor
to ground.

LED Interface

The RN52 has 2 pads for driving the LED indicators on the system. The firmware
that is preloaded on the RN52 can control both terminals and the battery charger
that can set LED0. The terminals on the RN52 are both open drain, meaning the
LED must be connect to a positive supply line, to a limiting current resistor. The

29 | P a g e

LED’s have a different combination that show different things that the Bluetooth
module is currently doing.

A better explanation of the LED function, is explained when both LED’s are
flashing, the Bluetooth module is discoverable through your Bluetooth device. If
only LED0 is flashing, then that means the RN52 has been connected to a device
already. If only LED1 is flashing, then the RN52 is connectable because it recently
disconnected from its previous device. These LED’s on the RN52 system that we
attained were Green and Orange respectively.

Table 5 - LED Descriptions

LED Status Description

LED0 and LED1 Flashing The RN52 is discoverable to a device

LED0 only Flashing The module is Connected

LED1 only Flashing The module is Connectable

Restore Factory Defaults

Using a switch or push button, the GPIO4 pin on the RN52 can be used to restore
the RN52 back to its factory default settings. This is an important application of the
RN52 just in case the RN52 is misconfigured. To reset to factory defaults, the
GPIO4 should be on high power on power on, then toggle from low to high, low to
high, with 1 second intervals between. This would be useful in the case we
accidentally get stuck in an infinite loop while trying to connect our device.

Regulations of the RN52

The Federal Communications Commission CFR47 Telecommunications, Part 15
Subpart C “intentional Radiators” in accordance with Part 15.212 Modular
Transmitter shows approval of the RN52. The FCC regulates Radio Frequency
devices contained in electronic-electrical products that are capable of emitting
radio frequency energy by radiation, conduction, or other means. Since this energy
can cause an interference of radio services in the radio frequency range of 9kHz
to 3000 GHz. Almost all electronic devices emit some form of RF energy, but that
doesn’t mean all devices must be tested by the FCC. Only products by design, that
include circuitry that operates in the RF spectrum needs to be reviewed and
complied with the FCC equipment authorization procedure. The RF device must

30 | P a g e

be approved using the appropriate equipment authorization procedure before it
can be marketed, imported or used in the United States. For the RN52, this RF
device is under the “Intentional Radiators” subsection which is defined as a device
that intentionally generates and emits RF energy by radiation or induction. Many
other devices are under this subsection such as a wireless garage door opener,
RF universal remote control, Bluetooth Systems, Wi-Fi, and Alarm systems. The
RN52 meets all the regulations by the FCC in the RF exposure category. The
compliance of the FCC RF exposure requirements, “Evaluating Compliance with
FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields”
helps to assure that the RN52 is approved by the FCC. There is a statement that
must be said when using this device and it reads; “To satisfy FCC RF Exposure
requirements for mobile and base station transmission devices, a separation
distance of 20 cm or more should be maintained between the antenna of this
device and persons during operation. To ensure compliance, operation at closer
than this distance is not recommended. The antenna(s) used for this transmitter
must not be co-located or operating in conjunction with any other antenna or
transmitter.”

3.3.3.2 Senior Design 2 Update (Bluetooth)

Throughout the course of Senior Design 2, there were some major changes to
the system that were made. In the case of Bluetooth module selection, the RN52
was replaced by two different Bluetooth modules. The purpose of this split of
Bluetooth Modules was due to the app development. The GPS app was
developed with the Bluetooth Low Energy, which means it would not work with
our previous selected Bluetooth Classic Module. The first module we turned too,
was the BC127 Dual Mode Bluetooth Module. The reason behind this change
was it had a dual boot mode with both a Classic Bluetooth 4.2 as well as a
Bluetooth Low Energy Module for the application. The problem was solved, but
unfortunately there was a flaw with how much data was sending between the
BLE module on the BC127. Its data throughput wasn’t enough for the app and
wasn’t sending enough data from the phone to the system, so we needed to
bigger and better BLE, so we decided with the Bluefruit LE Adafruit Friend. This
BLE module is very useful because it had enough throughput to send all the data
from the phone to the system to update the HUD. The need to split the modules
was due to Classic Bluetooth being able to have audio profiles such as SPP, but
within BLE there are no audio profiles so the BC127 was for the audio system
whereas the Bluefruit LE was used for communication for the system for the
HUD.

3.3.4 Microcontroller

The main component of the smart helmet is through a low power microcontroller.
This will allow the connection from the host device to the helmet to offer navigation
instructions, music playback, answering phone calls and a heads-up display. There
will be tactile buttons on the helmet available to the user to change volume of the

31 | P a g e

sound from the speakers, accept or decline phone calls, and toggle the screens
for out heads-up display.

3.3.4.1 Microcontroller Research

Before we can decide on what processor to use for our system, we need to
determine what components that we need to attach to the system. We know that
with our initial drawing schematic we can tell that we needed a lot of GPIO pins to
get all the modules together. We need to anticipate the display pins to contain a
lot of wires for use to connect, but then we realize that there is an adaptor that
converts those ribbon wires into less wires and communicate through SPI or I2C.
We did have our MSP430G2 Launchpad microcontroller we used in our Embedded
Systems course the previous semester, but it does not have enough I/O pins to
connect everything together. Stephan did have an Arduino 101 microcontroller,
even though it had more wires, it doesn’t have enough ports to use for our system.
Our next step is to figure out just how many pins do we need for each component,
so we done some research into the components we selected and figured out that
there was a Bluetooth module that contains a ADC, DAC, and an audio DSP inside;
so, it includes both stereo output and microphone input. The Bluetooth module
contains 40 pins, but we are not using all of them depending on the communication
medium that we will choose later when assembling all the components together.
Based on the datasheet for that module, we don’t need connections to do firmware
updates, USB connection, and depending on the communication medium we can
save approximately 15 pins to not connect. With the Bluetooth module taken care
of we can confirm that we cannot use the Arduino 101 nor the MSP430G2 dev
boards for our main processor because they don’t have enough GPIO pins to
operate that module unless we have another processor that communicates to the
main processor, and that would take more work than selecting one main processor.
For debugging we are going to ass LEDs onto our PCB board to troubleshoot our
program running on that processor.

The other major component we need to take care of is the display. We did state
that there are adaptors to those displays that minimize the I/O pins that we need
to connect to the controller, it even includes an IC chip that controls the entire
display and contains header files that we can use too. The display that we bought
first to test is an 0.96” monochrome OLED display. This display has a 50-pin ribbon
cable that is connected to a 4-pin header, VCC, Ground, SDA, and SCL. It must
use I2C to communicate to the display. When we obtained the display and test it,
we found a potential issue that we need to address. That issue is that the header
files contains all the basic functions to add text into the display and rotate the
screen but no options to draw our own objects into the display. So, now we plan to
modify the header files to be able to create our own objects to visually
communicate the user the time, distance to the next turn, and which direction the
user need to turn while driving. Now, we need a processor with at least 40 GPIO
pins to communicate to the Bluetooth display, 4 for the display, and 5 for switches
and potentiometer for volume control. We want to have spare GPIO pins so that if
we want to add another display or upgrade other components during our

32 | P a g e

prototyping stage we would have enough room to implement it. It would not be
beneficial for us to run out of room on our current processor that we have to select
an alternative processor. We also need room to add debugging features into the
PCB design to troubleshoot and program the processor with our code. Our
electrical team will utilize the schematics that the manufacturers provide on their
development boards to allow us to flash the program onto our main PCB that we
will be making.

3.3.4.2 Microcontroller Options

Now that we have a great idea on what processor to have for our project we can
decide on selecting the right one for our project. While researching for the correct
microcontroller, we had no bias on what we prefer. We narrowed down our options
down to several products that all had similar characteristics of what it can deliver
for our system. All three options have a development board available for us to test
on and order only the processor for our system. Our first option is Texas
Instruments because they are known for their low-power microcontrollers and
excellent documentation. Their low power modes on the processors that they
currently provide promote efficiency on their processors by disabling the modules
built onto the processor until an interrupt occurs. The software that they provide
has all necessary features to run and debug the controller. The other option is
Atmel because they offer a larger inventory of microcontrollers to use with an
abundance of development boards to test our system. Atmel does offer
microcontrollers on their store, but they are not as popular in the market than the
Arduino. The Arduino microcontroller that they provide is powered by Atmel’s
processors. The Arduino is one of the popular and well-known microcontrollers in
the market because they appeal to tinkerers at any age. The three processors that
we chose for comparison are in different architectures. They are discussed on the
following sections.

3.3.4.2.1 Texas Instruments MSP430

Figure 16 - MSP430 Development Board

Obtained from Ti’s MSP430F5529LP Launchpad product page

33 | P a g e

The Texas Instrument’s MSP430 is our first option for our research because we
are familiar with their architecture from our microcontrollers from our embedded
systems course. The MSP430G2 that we used for our course is not compatible
with our project because it does not have enough GPIO pins to work with the
modules we want to connect to. The removable processor in that development
board was the main pro because we can flash the chip on the dev board and place
the processor into our PCB so we don’t have to add a debugger interface into the
main PCB board. After doing some research we found a processor that we can
use for our system, which is the F5529. This processor offers speeds up to 25Mhz,
128KB of flash, 8KB of RAM and an integrated 12-Bit ADC. The 16-bit
microprocessor has one communication channel for UART, I2C, or SPI.

3.3.4.2.2 Atmel ATmega

The AVR architecture from Atmel is our next option in selecting the right processor
to use. The popular microcontrollers that use their chips are from Arduino. We
looked around the inventory that Arduino offers and there was one clear
development board to use based on elimination. The dev board that we selected
for comparison is the Arduino Mega 2560 (Revision 3). This board could offer us
more than what we needed for the project, and it might prove beneficial in the
future when we add more features during the production stage. This offers four
distinct communication channels for UART, SPI, and I2C. The processor’s
frequency goes up to 16Mhz, contains 256KB flash and 8KB RAM. It also contains
16 analog input pins and 11 PWM pins. This unique feature that this board provides
are beneficial to us because it allows us to control the power individually to each
component to save overall power of the system. These pins can allow us to fade
the arrows on the display when indicating which lane the driver needs to go. If
there are extra pins available to us in the production stage, it can allow us room
for upgrades and/or additional features to the helmet.

Figure 17 - Arduino Mega 2560 R3 Development Board

34 | P a g e

Obtained from Arduino’s Mega 250 R3 product page

3.3.4.2.3 Texas Instruments MSP432

Figure 18 - TI MSP432P401R Development Board

Obtained from Ti’s MSP430F5529LP Launchpad product page

The MSP432 line of processors utilize the ARM architecture. This architecture is
the most popular in the market because most of the electronics like cell phones
uses it. The development board we considered is the MSP432P401R. It contains
a 32-bit ARM Cortex M4F running up to 48MHz, a 24 channel ADC, 256KB Flash
and 64KB RAM. This is the processor that can rival the ATmega2560 than the
F5529. With a generous amount of GPIO pins, this controller rivals against the
Arduino Mega because of said reason. Since this is from Texas Instruments, their
low power modes are another reason why we considered this for our comparisons.
With this board like the Arduino, we will consider using this development board in
addition to our selected controller in the production stage so we can compare the
different architectures’ capabilities hands-on. This processor has the capability of
having an embedded operating system if we add some components, which
requires us to program an application that will run independently from the
companion app on the mobile devices. This would not be used for our system
because it is unnecessary since it needs more power for the additional
components.

3.3.4.3 Microcontroller Comparisons

Before deciding on which processor to use, we must do some comparisons to see
which one we can use. The comparisons offer us to prioritize the processor’s
features and select the right one to use for the helmet. The table below summarize

35 | P a g e

each processor’s characteristics. The topics that we used for comparison is what
we are considering for our helmet.

3.3.4.3.1 Power Consumption

The processor will be in active mode most of the time that the system will be
connected to the host device. It will only be in low power mode if the helmet is not
connected to the device. There will be a switch to turn off the electronic system if
the user is not using it or without the electronic features enabled. Based on the
datasheets the MSP432 offers the lowest current rate and the ATmega2560, six
times higher current than the predecessor.

3.3.4.3.2 Cost

The cost of the microcontroller will be based on the development board costs and
the processor die cost. We compared each development board products and
determined that on the Texas Instrument’s side of the dev boards, they offer almost
3.5 times cheaper than the Arduino’s board. In addition to that, the Atmel processor
costs an average of 1.45 times more expensive than the Ti’s processors.

3.3.4.3.3 Memory Size

Memory size is not the biggest factor for our system since the programming code
is going to be optimized to reduce space as much as possible and most of the
processing will be mitigated from the Android application running on the host’s
device. But we still want ample space just in case for our header files that we
include our system take up significant space. The MSP432 has eight times more
RAM than the other two microcontrollers we considered. For Flash memory, the
MSP430 has twice as less space available for program space than the 256KB
space for the Arduino and the MSP432.

3.3.4.3.4 GPIO

For I/O we want a processor that has a lot of GPIO pins so that we offer
functionality to the system. If there are spare I/O pins, then it also offers us room
to add additional features while in the production stage or in the worst-case
scenario, different components that may require more I/O pins. The Arduino and
the MSP432 have similar I/O pins available with 86 for the 2560 and 84 for
MSP432.

3.3.4.3.5 Clock Frequency

Clock frequency is a moderate factor in our system. The faster the clock rate allows
the increase response rate of the display that we will be driving in the system. The
faster clock rate also can reduce the processing latency and will only be the
Bluetooth module’s latency that we need to take into consideration. The MSP432
is three times faster than the 2560 and 1.92 times faster than the ATmega2560.

36 | P a g e

3.3.5 Microcontroller Choice

Based on the datasheets and comparisons that these microcontrollers offer, we
decided to use the ATmega2560 processor in the Arduino development board
because it contains enough GPIO pins to comfortably function our system. Even
though it runs at a significantly higher power consumption rate than the others, we
can utilize lower clock frequencies to decrease the power to a point where the
system can run efficiently and lengthen the battery life. The unique features of the
processor like the four distinct communication channels and the abundance of
analog and PWM I/O pins is also why we selected this.

Table 6 - Microcontroller Comparisons

The above table describes the multiple options we considered for our
microcontroller. While many of the options shown above and on the market
currently are a possibility for the BRAIN Helmet, our computer engineering team
decided to choose the ATmega2560 regardless of its higher price value as it allows
the possibility for future features to be added to the helmet. The following figure is
a block diagram of the Atmel ATmega 2560. This block diagram depicts multiple
features that will allow the BRAIN helmet to receive and process the information
from the Bluetooth Low Energy module and Android Application. From there, the
ATmega2560 will decode and send characters to the Heads-up display (HUD) for
the motorcycle rider.

 TI MSP430F5529 ATmega2560 TI MSP432P401R
Processor Price $8.06 $11.85 $8.29
Dev Board Price $12.99 $45.95 $12.99
Power
Consumption

290 uA/MHz 500 uA/MHz 80 uA/MHz

RAM 8 KB 8 KB 64 KB
FLASH 128 KB 256 KB 256 KB
GPIO 63 Pins 86 Pins 84 Pins
Clock Frequency 25 MHz 16 MHz 48 MHz

37 | P a g e

Figure 19 - Block Diagram of Atmel ATmega2560

Obtained from Arduino’s Mega 250 R3 product page

3.3.6 Battery Comparisons
Once we agreed that a secondary battery would be best for the BRAIN helmet, the
decision initially fell upon deciding between a lithium ion battery and a lithium
polymer battery. In today’s continually developing electronic world, the process of
construction for lithium ion and lithium polymer batteries has become relatively
cheap that even with the greater advantage over primary batteries, the lithium ion
and lithium polymer battery’s price remains competitively cheap. Below is a
depiction of a new polymer lithium ion technology battery that we have considered
to use for our project. As evident in the below figure, the size of a lithium polymer
battery is barely larger than 4 quarters laid close together. While this is noticeably
larger than other battery choices previously discussed, it is not drastically larger.

38 | P a g e

Figure 20 - Sparkfun's Polymer Lithium-Ion Battery

Permission from an open source

Table 7 - Battery Comparisons for Power Supply Unit

However, there is common knowledge that the Lithium Ion batteries can be
dangerous if over charged or if the connectors become faulty they can even start

Battery Comparisons

Battery Nominal Voltage Battery Capacity Price
PRT-13813
[Lithium Ion]

3.7V 1000 mAh $9.95

PRT-08483
[Polymer
Lithium Ion]

3.7V 2000 mAh $12.95

458292
[Lithium Polymer]

3.7V 3800 mAh $13.59

Adafruit 328
[Polymer
Lithium Ion]

3.7V 2500 mAh $15.98

PRT-1385
[Lithium Ion]

3.7V 6000 mAh $29.95

PRT-11855
[Lithium Ion]

7.4V 1000 mAh $9.95

PRT-11856
[Lithium Ion]

7.4V 2200 mAh $15.95

39 | P a g e

sparks. This has caused the BRAIN Helmet to initially lean towards the more
expensive, but safer Lithium Polymer batteries. Upon further researching and
stumbling upon Sparkfun’s Polymer Lithium Ion Battery, we have decided to test
multiple batteries. This newer technology that allows the polymer lithium ion hybrid
battery to be safer than the older lithium ion batteries has caused us to follow suit
and test with the newer polymer lithium ion battery technology. We decided to also
purchase Lithium Polymer batteries to compare differences. It is important to note
that a proper charging circuit shall be implemented to keep the BRAIN Helmet user
safety a number one priority.

Now that the battery type has been decided upon, an exact battery with a nominal
voltage and battery capacity capable of powering the BRAIN Helmet must be
selected. In the Table below is a list of multiple batteries that were initially
considered for the BRAIN Helmet project.

Going back to the main goal at hand; Proper selection of a battery is started by
summing the max active currents drawn from the components of the BRAIN
Helmet and then comparing it to a battery’s battery capacity to find an
approximated run time between charging the polymer lithium ion battery.

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐶ℎ𝑎𝑟𝑔𝑒𝑠 (ℎ𝑜𝑢𝑟𝑠) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝐴ℎ)

∑ 𝑀𝑎𝑥 𝐴𝑐𝑡𝑖𝑣𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑠 (𝑚𝐴)

In the Battery Consumption for Potential Devices table above, both the
MSP430g2453 and the OVC3860 were the least power consuming devices,
however the power consumption differences are such negligible differences for our
given task, that it is not a huge hit to the BRAIN Helmet’s battery supply to stray
from our team’s decision to choose the RN-52 bluetooth module and the
ATmega2560.

Now if the BRAIN Helmet utilizes the ATmega2560 or MSP430g2453 at
approximately 3 volts, the ATmega2560 will pull approximately 500 μA and the
OVC3860 will pull approximately 300 μA. The below calculations will show how
long a battery would last if the battery was only supplying these microprocessors
and these calculations are based on the following equations:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒 (𝐻𝑜𝑢𝑟𝑠) =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴𝑚𝑝ℎ𝑜𝑢𝑟𝑠)

∑ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤𝑛 (𝐴𝑚𝑝𝑠)

Assuming a simple Lithium Polymer/Polymer Lithium Ion with a nominal 3.7
Voltage and a battery capacity of 1000 mAh:

ATmega2560:

40 | P a g e

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒 (𝐻𝑜𝑢𝑟𝑠) =
1000 𝑚𝐴ℎ

0.5 𝑚𝐴
= 2000 ℎ𝑜𝑢𝑟𝑠

MSP430g2453:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒 (𝐻𝑜𝑢𝑟𝑠) =
1000 𝑚𝐴ℎ

0.3 𝑚𝐴
= 3,333 ℎ𝑜𝑢𝑟𝑠

Further research has shown that it is a better approximation to multiply the
calculated battery life hours by 0.7~0.75 to account for extra battery drainage:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒 (𝐻𝑜𝑢𝑟𝑠) = 0.7 ∗
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴𝑚𝑝ℎ𝑜𝑢𝑟𝑠)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤𝑛 (𝐴𝑚𝑝𝑠)

Therefore,

ATmega2560:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒 (𝐻𝑜𝑢𝑟𝑠) = 0.7 ∗
1000 𝑚𝐴ℎ

0.5 𝑚𝐴
= 1400 ℎ𝑜𝑢𝑟𝑠

MSP430g2453:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒 (𝐻𝑜𝑢𝑟𝑠) = 0.7 ∗
1000 𝑚𝐴ℎ

0.3 𝑚𝐴
= 2,333 ℎ𝑜𝑢𝑟𝑠

While the MSP430g2453 does have noticeably larger lifetime for a standard lithium
ion battery, it is not necessary for the BRAIN Helmet nor does it outweigh the
benefits of the extra GPIO pins the ATmega2560.

For the exact battery life necessary, these values are confirmed by the table below
for our selected stock components:

· Microprocessor max active current is approximately 500 μA
· Bluetooth Module max active current is ~30 mA
· Heads-Up Display max active current ~21 mA

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤𝑛 (𝑚𝐴) = .5 + .15 + .15.1 + 20.9 = 51.5

Given the average current for the stock BRAIN Helmet build is ~52 mA, the
following table below compares different battery life times for comparing batteries
of different battery capacities. The Battery life values are derived from the above
equations.

In the case of the BRAIN Helmet, bigger isn’t always better. A larger battery
capacity leads to the battery size also being larger. Multiple manufactures were
considered for this approach as shown in the below table. While some batteries
grew in both length and height, some manufacturers simply “flattened” the battery.
A large flat battery could be implementable for the BRAIN Helmet, but would lead
to more time invested into ensuring the helmet remains aerodynamic. Additionally,
a larger battery is not totally necessary for the stock BRAIN Helmet features.

41 | P a g e

Table 8 - Stock Battery Consumption for Calculations

Stock Battery Consumption for Calculations

Device Operational
Voltage

Active current Sleep current

Microprocessors
ATmega 2560 1.8 – 5V

*Not using
above 3.6V

~500 μA 0.1 μA

Bluetooth Modules
BC127 3 ~ 3.6V ~15 mA <1 mA
UART Friend 3 - 16V Peak: 15.1mA <1 mA
Heads-Up Displays
LCD-13003
Breakout
[48x64 pixels]

3.3V
*generates
V LCD = 7.0-7.5V

10-20.9mA

<300 μA

Table 9 - Battery Comparisons of Life Time

Battery Life Time Comparisons

Battery Capacity (mAh) Battery Life Time (Hours)

1000 mAh 13.59

2000 mAh 27.18

2500 mAh 33.98

6000 mAh 81.55

3.3.7 Battery Selection

Due to the minor “disadvantage” in price, size, and weight of implementing a 2000-
3000 mAh battery, the BRAIN Helmet will use a 2500 mAh, 3.7 battery; the Adafruit
328. During the research and minor testing phase, the Ofeely 458292 Lithium-Ion
Polymer was also purchased due to its low price and high battery capacity.

42 | P a g e

However, the lack of a JST plug, less amount of public reviews, and the overall
grander size cause the BRAIN Helmet team to stray away from the 458292 and
back towards the Adafruit 328 for being superior in these three mentioned critiques
of the 458292 Lithium Ion Polymer battery.The dimensions of the Adafruit 328 are
approximately 2" x 2.55" x 0.30" (50.5mm x 60.2 mm x 7.9 mm) while the size of
the Ofeely 458292 Li-Po battery is 5.5” x 4.7” x 0.5”. The Ofeely 4582992 nearly
doubles the size of the Adafruit 328 for a battery capacity that does not seem to
be necessary for the BRAIN Helmet given the previous calculations. The
schematic drawing below depicts the basic rectangular shape of the Adafruit 328.
The relatively small Adafruit 328 will have no problem fitting into a designed
waterproof, protective, and aerodynamic 3-D printed casing to fit on the back of
the BRAIN Helmet.

Figure 21 - Adafruit 328 Drawing

Permission from an open source

The baseline for the BRAIN Helmet’s power system was originally to have a battery
life of full run time near 5 hours. The Adafruit 328 simply far shoots this lifetime by
over 6 times the run time as seen in the above calculations. This battery option
was chosen not only for its moderate size and price but additionally because the
spare battery lifetime may accommodate future features that may be included in
the BRAIN Helmet. This could include extra LEDs, possibly an accelerometer to
lessen the Bluetooth data transfer from the phone, or even a higher resolution
HUD. This also helps to avoid running the battery too low, as a fully drained Lithium
Ion/Lithium Polymer battery can be potentially damaged. Due to this, the batteries
considered for the BRAIN Helmet all include a protection circuitry. This protection
circuity is put in place to not only cut out the battery when completely dead at

43 | P a g e

~2.8V, but also to prevent over-charging when the voltage of the battery is going
too high. In terms of the Adafruit 328, the max charge of the battery is ~4.2V.

3.3.8 Charger Selection
In order to appropriately choose a battery charger for the BRAIN Helmet, a few
standard guidelines for the Adafruit 328 had to be addressed. The following
protocols are listed as critical guidelines for charging the Adafruit 328 on the
Adafruit website:
1. Do not overcharge the battery past the maximum safe voltage (~4.2V)

o Issue addressed by the on-cell protection circuit
2. Do not discharge the battery below the minimum safe voltage (2.75V)

o Issue addressed by the on-cell protection circuit
3. Do not charge the battery with more current than 1C

o For the Adafruit 328 this means do not charge with 2.5A
o Issue addressed by the on-cell protection circuit
o Also addressed by the Micro-usb to JST battery charger (See figure
below)
o Standard charge current is 0.2C = 500 mA

4. Do not draw more current than the battery can provide (0.5C)
o Issue addressed by the on-cell protection

5. Avoid charging the Adafruit 328 below or above specific temperatures (0~50
degrees Celsius)

o This problem is typically controlled by the charger and its charge rate
being set properly.

Figure 22 - Sparkfun Lithium Ion Battery Charger

Permission from an open source

The BRAIN Helmet shall utilize the SparkFun LiPo Charger Basic depicted in the
above figure. This MCP73831 charger utilizes:

44 | P a g e

● Charges 3.7V batteries at a rate of 500mA
o This is the standard recommended charge rate for the Adafruit 328

● Can Charge Li-Ion and Li-Polymer batteries.
● Standard Micro-USB connection to charge the battery
● This is a fitting connection for the BRAIN Helmet as the helmet will be

utilizing Android phones that for the majority uses a Micro-USB charger port.
● JST Jack to charge the battery
● $7.95
● 29.4 x 10.88 mm

The typical application circuitry for this MCP73831 Li-Polymer battery charger is
depicted below. This circuit is integrated onto the Sparkfun lithium-ion battery
charger. The input voltage originates from the micro-USB connection while the
single Li-Ion (Polymer) Cell Battery connects via a JST connector.

Figure 23 - Standard MCP73831 Li-Po battery charger circuit

Permission from an open source

3.3.9 Voltage Regulation Selection
Originally a Linear Voltage Regulator, or LDO, was planned to be used to regulate
the BRAIN Helmet’s power system. Upon the second semester of Senior Design,
changes were made to utilize a switching voltage regulator; the buck convertor.
This will be described in future detail.

3.3.10 Helmet comparison & Selection
Multiple helmets were considered for the BRAIN Helmet. Our primary marketplace
for shopping took place on amazon for this matter. They ranged from all sorts of
prices from forty dollars to three hundred dollars or more. As a first prototype of
the BRAIN Helmet, our immediate goal is to ensure that the electronics
components of our smart helmet work more than anything else. Therefore, we
already decided we’d go with an economically understandable pricing helmet. The

45 | P a g e

decision came down to deciding between a modular helmet, that is capable of
rotating the mask and visor up and over the head, or a full face helmet with only a
rotating visor. Because we did not want wires being stretched, or loose to allow
extra movement, we decided to stick with the SH-FF0016 full face helmet.

3.3.11 HUD comparison & Selection
As the front runner of the BRAIN Helmet, the Heads-Up Display (HUD) is a crucial
component for this product. The Heads-Up Display will be quite literally the only
visibly appealing feature of the BRAIN Helmet and therefore several aspects of
choosing the right display were taken into consideration. These include:

● A relatively lightweight module that will not add noticeable weight to the
BRAIN Helmet

● Non-distracting minimal display to avoid eye strain or blocking the road
o ~(0.7”-1.5”) diagonal size

● Low Input Voltage to keep power consumption low
● Low cost in case of replacement screens being required by User

Table 10 - HUD Comparisons

Considered Heads-Up Displays

Display Details Operational
Voltage

Active current Sleep current

Nokia 5110 LCD
[48x84 pixels]

2.7 ~ 3.3V
*Internally
generates
V LCD = 6.0-9.0V

240-300 μA

42 μA

ACROBOTIC LED
[128 x 64 pixels]

3.3~5VDC Unavailable Unavailable

Diymall IIC OLED
[128 x 64 pixels]

3.3~5VDC Unavailable Unavailable

LCD-13003
Breakout
[48x64 pixels]

3.3V
*Internally
generates
V LCD = 7.0-7.5V

10-20.9mA

<300 μA

uLCD-144-G2 GFX
1.44” [128x128
pixels]
RGB

4.0 - 5.5V 40-70mA 500 μA

μOLED-128-G2-
GFX
1.5” [128x128
pixels]

4.0 - 5.5V 60-200mA 500 μA

46 | P a g e

These features for the HUD has led to multiple Heads-Up Displays to be
considered. Comparisons of these displays are shown below.

The BRIAN Helmet was originally drafted as a user-friendly helmet with a minimal
screen. Therefore, it is a necessity that the HUD has an appealing, and visible
HUD. Below in figure 24 is the uLCD-144-G2 GFX 1.44” diagonal length display.
This would be one of the fancier and larger screens available for the BRAIN Helmet
in terms of size and display elegance. In order to use such a display however would
lean towards using a second battery in series in order to maintain a decent daily
run time while supplying the higher 4~5.5V input this display requires. Alternatively,
an easier approach is using a higher voltage battery such as the 7.4V as shown in
the figure 24 below, however the size of this battery would be rather inconvenient
for the BRAIN Helmet; creating aerodynamic problems and therefore discomforting
the rider.

Figure 24 - uLCD-44-G2 GFX and required 7.4V lithium-ion battery

Permission from an open source

The use of the above LCD display or others with a common size and resolution
arises not only a higher power cost problem, but as a domino effect causes the
PCB and eventual 3D printed casing for the BRAIN Helmet’s electronic group to
increase in size and weight. While they appear to be small changes during the
research phase of the BRAIN Helmet, such a domino effect can lead to a less
comfortable motorcycle ride for the user; and therefore, defeating the purpose of
the BRAIN Helmet.The simple solution therefore is keeping a single 3.7V battery
that would require using a less powerful display such as the Diymall I2C HTDS-
WS96 OLED display with a 0.96” diagonal length. This I2C OLED HUD is not only
a decent 0.96” size display,but is additionally cost effective and easy to replace
and test.

47 | P a g e

As a light emitting diode (LED) display, the HTDS-WS96 maintains a lower power
consumption than a LCD counterpart; consuming only 0.08W when the entire
screen is illuminated, and 0.06W when the screen fully displays ASCII characters.
This is due to the OLED display not needing back light; and simply illuminating
itself. The main advantage of the HTDS-WS96 however is the variety of voltages
it can function at. According to the Diymall datasheet, the HTDS-WS96 can
operate between 2.7~6 volts, and therefore is a great candidate for the BRAIN
Helmet. With a voltage regulator of 3.3V, the Diymall HTDS-WS96 will operate
without the need of a larger battery voltage and can be powered by a 3.7V Lithium
Polymer battery.

Figure 25 - HTDS-WS96 HUD

Permission pending

3.3.12 Speaker Selection

The B.R.A.I.N helmet is going to have a feature of being able to stream music and
calls straight from the helmet to the wireless device, or the user’s phone via
Bluetooth. This means there must be speakers and microphone integrated within
the helmet in order to achieve this goal. This means the speakers and microphone
system must be able to:

● Fit within the confines of small space between the cushion of the user
and the shells of the helmet

● Make sure not to tamper with the safe integrity of the helmet
● Have the wires not show when connected to the Bluetooth Module

as for aesthetic reasons
● Work even if embedded behind a cushion
● Shall be able to hear the sound clearly from the speaker set, even

over the loud motorcycle
● A clear and not static input into the microphone for clear calls and

commands

48 | P a g e

When selecting different speakers and microphones we had to consider those
conditions. There weren’t many choices to go with since we needed a thin speaker
for the inside of the helmet, and we needed to have not that sensitive of a
microphone or it would pick up too much outside noise, i.e. the motorcycle itself.

Figure 26 - Cover Industrial Co. Dynamic Speaker

Permission from an open source

This is a dynamic speaker that has an external diameter of 40 mm. The rated
power input is 0.25 watts. The thinness of this speaker is really what attracted us
to it. The speaker’s thickness is at 4mm, which is astounding. The rated input
power is 0.25 watts. The impedance is 8 ohms. This speaker is one of the choices
we would go with due it its thin nature and its cheap when comparing to other
speakers. This speaker is $0.95.

Another option if we wanted to go the more expensive route, is to buy a set of
specifically built wired motorcycle helmet speakers and be able to just splice the
input cable (since it will be a 3.5mm jack) from the motorcycle speakers. We would
have to apply an external amplifier if it comes to this case. In Senior Design II we
will prototype if it is better to have the motorcycle helmet speakers made
ergonomically for the helmet or not. The amplifier would have to achieve a higher
gain to allow more clear sound to be sent to the bigger speakers. When comparing
this to the Cover industrial dynamic speakers, the system might be able to be heard
better with the motorcycle ergonomic speakers.

3.3.13 Microphone Selection
The microphone selection now isn’t set in stone but we have an idea of what we
are using to prototype. The microphone we are going to use initially is the Sparkfun
Electret Microphone for testing and design purposes. This electret microphone
breakout has a built-in amplifier for the gain. However, during testing phase it is
likely that the microphone will be soldered off and connected directly to the RN52
Bluetooth audio module. If during testing a separate microphone is instead
selected, it will be very similar in size to this electret microphone due to its relatively
cheap price; all while remaining effective for the BRAIN Helmet.

49 | P a g e

Figure 27 - Electret Microphone Breakout

Permission from an open source

This is a breakout of the actual mic that would be implemented into the PCB of our
system. This microphone uses the Texas Instrument oPA344 rail-to-rail precision
amplifier in order to achieve the gain it needs. This microphone has a built in 60
gain amplifiers before being set up to Microcontroller, in our case it needs to be
biased due to this amplifier. This will be done by using 47 nF capacitors and will
be discussed in the Design of the Bluetooth subsystem. This microphone is
powered at 3.3V to 5V which means this microphone can be set up on the same
voltage bus as the Bluetooth Audio Module. This would help when designing the
PCB.

3.4 Possible Architectures and Related Diagrams
The design of the BRAIN helmet includes possible architectures of how to integrate
the PCB onto the actual helmet itself. This section will include how we will being
dealing with the implementation of the system directly onto the helmet as well as
how the User interface will look within the HUD. The HUD will also have time and
navigational assistance projected onto it.

3.4.1 Potential HUD GUI
Once the BRAIN Helmet’s HUD and electronic group is installed, customization
and personalization options to the HUD GUI are available. However, a stock HUD
GUI is visible in the below figure and would include a navigation screen and a
punctual time screen. These screens can be toggled at the switch of a button that
will be located on the side of the helmet near future implemented volume keys.
These stock HUD GUIs are subject to change in styles, however the BRAIN
Helmet aims to still incorporate the same navigational turn and distance with
accurate time updates.

50 | P a g e

Figure 28 - Stock Navigation and Time HUD GUIs

Navigation

 Depict the motorcycle speed on the top right corner of the GUI

 Centrally display the distance before next turn

 Display turn signals of approaching turns by periodically blinking the
lane that needs to be turned. In the case of the figure above, it is the
right most arrow.

 Time

 Centrally display the current time in military or standard time

 During navigation display the google maps given Estimated time of
arrival (ETA)

 Outside of navigation, the display would not have ETA or a value
displayed on the bottom of the display. Alternatively, a song title
could be listed instead of the ETA.

3.5 Parts Selection Summary
This section of the report will depict and detail the parts selected for the BRAIN
Helmet. Many of these parts will be visible within Figure 29. There labels and
descriptions will be described in the following sections corresponding to the letters
next to their part in Figure 29.

3.5.A RN52 Bluetooth Module and Breakout Board

The RN52 is a 3.0 Bluetooth Module that has high transfer rates and easy connect
ability to android and iOS devices. This bluetooth module is perfect for our system
size wise, when thinking in a broad-spectrum due to it going on a PCB that will be
installed on the exterior of a motorcycle helmet. The breakout board RN52 was
used for testing the whole system before building it into a PCB. This was very
helpful due to troubleshooting and testing if the system or sub system worked.

51 | P a g e

3.5.B Speakers and Microphone

The choice for the speakers and microphone didn’t impact the design as much as
the other parts due to just having to be able to fit within a motorcycle helmet. The
thin speakers with a impedance of 8 ohms, and the electret microphone that needs
the same voltage as the other parts to operate. The microphone and the speakers
will be integrated directly into the helmet. Each speaker will be implemented on
both sides of the helmet within each ear cavity. A single microphone will be lined
within the BRAIN Helmet and mounted near the mouth hole of the helmet in a place
enabling little to none wind sound.

Figure 29 - Purchased Parts Laid Out

3.5.C Li-Po battery Charger

The battery charger we used was a standard breakout charger that allowed easy
pull off wires from the positive and negative terminal from the lithium polymer
battery. Additionally, it is easy to mount onto the BRAIN Helmet’s housing and
allows a micro-USB to charge the battery. The JST jack as well allows the
possibility to switch our Lithium Ion batteries that standardly utilize JST connectors.
This could be to replace a faulty battery, reduce, or increase the battery capacity
for the BRAIN Helmet system. If the BRAIN Helmet is deemed to not need a 2500
mAh battery capacity battery, swapping the Adafruit 328 to a smaller battery
capacity battery will allow the BRAIN helmet’s electronic housing to be even
smaller and more comfortable for the user.

52 | P a g e

3.5.D OLED Display

The OLED display will allow us to minimize power consumption than the typical
LED display. With the selection of OLED displays small enough to attach to the
helmet and minimize the field of view to the user made this a viable option to
consider. We have decided to go with the Diymall Oled display available on
amazon. With an economical price, replacing a cracked screen is also a viable
option.

3.5.E Lithium-Ion Polymer Battery

The Adafruit 328 Lithium Polymer battery is a decent sized battery with enough
battery capacity, 2500 mAh, to keep the BRAIN Helmet operating for an entire day.
It’s minimal size as seen in the previous figure will easily fit into the electronic group
housing along with the PCB and be replaceable if needed to; thanks to the
universal JST connector.

3.5.F ATmega2560

The reason why we pick the ATmega 2560 is to communicate to all of the modules
that utilize different communications. There are plenty of GPIO pins available on
this microcontroller just in case we want to upgrade the modules. This could
include a better display, or any additional modules needed for future extra features
on the BRAIN Helmet. It is also an advantage economically as the ATmega2560
development board is already in our possession.

53 | P a g e

4.0 Related Standards and Realistic Design
Constraints

When dealing with modern technologies, the BRAIN helmet will need to be built to
certain standards. This means the helmet will be using the following sections
standards to the highest degree. The system will be implemented with all modern
standards in mind in order to keep the BRAIN helmet safe and otherwise functional
in modern day. Further standard changes in the future will induce an adapted
design for the BRAIN Helmet if necessary.

4.1 Android Standards:
Android official programming language is Java. There are some additional rules
and guidelines that Android demonstrated in order to ensure that Java coding
criteria is met and considered. These guidelines are designed to give Android
developers’ good understanding of the rules that has to be followed to get a proper
Java coding environment. There are some certain rules and guidelines for writing
Java code that developers should follow and contribute to their code. Also, there
are some bad coding practices that Android Java developer have to avoid.

Android Company has described these standards and guidelines that Android Java
developer must understand and follow. These guidelines demonstrate good coding
skills that developers must understand and follow. Moreover, bad coding skills are
also demonstrated in order to be understood and avoided by all Android java
developers. All the required steps and suggestions that programming developers
need while writing their code is described with all required details. These details
include also all information needed to solve some bad coding practices that
developers must avoid.

1. Do Not Ignore Exceptions

Ignoring exceptions is one of the important things that needs to be handled while
writing your code. Many programmers may think they can avoid this bad skill, but
it is one of the most common things that developer must handle. When checking
errors and report it, error can be fixed and user can know that something wrong
has happened. For example, when parsing a string into an integer, the developer
must check if the string is actually a number then if an overflow can accrue or not.
Some acceptable alternatives are available to contributors such as: throwing the
exception to the caller of your method, throwing a new exception based on your
level of abstraction, and handling exception then substitute appropriate value in
the catch block. Avoid throwing a runtime exception unless this error cause the
program to crash.

2. Do not Catch Generic Exception

54 | P a g e

Avoid catching generic exceptions and throwable exceptions because it will be
caught in application- level error handling. Including generic exception in the code
obscure the failure handling properties of the code. This can cause compiler to
miss notifying developer with any types of exception that need to be handled
differently. Thus, it is a good coding practice to specify the type of exception might
accrue in your code instead of just throwing generic exception to the compiler. The
compiler need the type of exception in order to figure out how to solve the problem
and look for available solutions. Some alternatives that developer should consider
are: caching each exception individually, having more fine-grained error handling,
and rethrowing the exception.

3. Do not Use Finalizers

Finalizers are beneficial when an object is garbage collected and chunk of code
need to be executed. Android avoid using finalizers since no guarantees as when
a finalizer will be called and executed. Although, Android does not use Finalizers
but it is still can be implemented by defining a close() method.

4. Fully Qualify Inputs

There are two possible ways when a class bar is used from package for. These
two possible ways include:

● The number of import statements should be reduced.
● Trying to make the classes that are actually used more obvious to

maintainers so they can simply follow and analyze the code.

4.1.1 Android Activity Lifecycle

The new activities in an Android project are maintained as a stack. Each new
activity is placed on the top of the stack and waits his turn to run. There are four
important states for each activity on Android Studio as mentioned on Android
Official Website. There are the following:

 Activity at the beginning of the stack which means it is an active
Activity or a runing Activity.

 Paused Activity is alive until it killed because of the low memory
problem of the system.

 A stopped activity because of uncertainty by another activity. A
stopped acitivity can retains all state but it is no longer visible by user.

 The system can remove an activity from memory if it is paused or
stopped.

There are three important loops that must be understood in each activity wich
are: The entire lifetime, visible lifetime, and foreground lifetime. There are
serveral figures demonstrating the lifecycle of an activity in Android Studio

55 | P a g e

Project from Android Official’s Website in order to give a clear picture of how to
deal with activities and the important states of each activity.

4.1.2 Turn by Turn Notifications

One of the important features in our mobile Application is the navigation option
that facilitate to the driver getting sound notifications by the attached speakers
and direction notifications that will be displayed as signals on the LCD displayer
that will be attached on the front of the helmet. The software team is planning to
send these notifications to the rider when they become close enough to the turn
or the exit that he or she must go through. The Bluetooth connection between
Mobile Application and the main module should be good enough to handle all of
these sound and string streams that will be sent to the driver. Also,
Microcontroller should be set to receive these notifications and transform it to
signals that will be displayed on the LCD displayer. Driver should enter his
location and the address for the heading location and the application should
calculate the direction and send the notification to the driver.

4.2 Java Style Rules
1. Javadoc Standard Comments

Describe the purpose of the class or Interface in the Javadoc comments. The
copyright statement should be at the top of every file followed by package and
import statements then class or interface description.

2. Write short Methods

There is no certain limit for methods length, but it is preferred to be short and
consist. Programmer need to think about breaking up a method if it exceeds 40
lines without affecting program structure.

3. Define Field in standard places

The field can be defined at the top of the file or before the methods that will use
them.

4. Limit Variable Scope

Reducing the local variable scope to the minimum is a good coding practice.
Keeping local variable scope to the minimum increases programmers’ ability to
maintain and read code. Local variables should be declared in the innermost block
at the point where they are first used.

5. Order Import Statements
There are certain orders for import statement which are

● Android imports
● Imports from third parties
● Java and javax

56 | P a g e

6. Use Spaces for Indentation

Do not use taps for indentation instead use four space indents for blocks and 8
space indents for line wraps, function calls, and assignments.

7. Follow Field Naming Conventions

There are certain rules for Field Naming that have to be considered:

● Start with m for non-public and non-static field names
● Start with S for static field names
● Start with a lowercase letter for another field
● Use only caps letters for all public static final fields.

8. Use Standard Brace Style

Braces should be started from the line before, they should not be on the same line
where programmer decided to use them. For conditional statement braces has to
be on the same line around the statements.

9. Limit Line Length

100 characters should be the maximum length for each line of text in your code.
There are two exceptions for having the maximum length to be 100 characters
which are: if you have import lines or if the comment includes literal URL then it
can go beyond 100 characters.

10. Use Standard Java Annotations

Annotation should be listed before other modifiers for the same language element.
Simple annotations can be listed on the same line while if there are multiple ones
they should be listed one per line in alphabetical order.

11. Treat Acronyms as Words

Treat acronyms as word and try to make variable, classes, and methods names
easier to read.

12. Use TODO Comments

 TODO comments is short term solution for temporary code. It is a recommended
solution but still it can be used. In order to use it programmer should include TODO
in all caps followed by a colon.

13. Log Sparingly

Try to keep logging consistent in order to keep it useful. Long logging has bad
effects on performance. There are five different levels of logging which are
ERROR, WARNING, INFORMATIVE, DEBUG, and VERBOSE.

14. Be Consistent

57 | P a g e

These global style rules are presented in order to have a common vocabulary of
coding so people can focus on the main ideas of the code rather than how the
code is presented as described in Android Official Website.

4.3 FCC Standards

Using Bluetooth devices, and other devices that emit radio frequencies, there must
be some regulation due to the concern of health hazards. The Federal
Communications Commission regulates the standards for Radio Frequency
devices. A radio frequency device is defined as an electronic-electrical product that
are capable of emitting radio frequency, energy by radiation, conduction or by other
means. Such products have the ability to interfere in radio services operating in
the radio frequency of 9kHz to 3000 GHz. Per the FCC, all electronic-electrical
devices are capable of emitting radio frequency energy. Most, but not all, must be
tested to demonstrate compliance to the FCC rules for each type of electrical
function that is contained in the product. The rule for products, by design, that
contain circuitry that operate in the radio frequency spectrum need to demonstrate
compliance through the applicable FCC equipment authorization equipment. For
example, the device must go through verification, and also Declaration of
Conformity, in order to comply with the FCC regulations. There are certain types
of devices that are regulated by the FCC and others that can be under multiple
categories. This is difficult for the FCC sometimes, due to the multiple uses of one
device. The following are the categories the FCC see as Radio Frequency devices
that need to be regulated:

4.3.1 Incidental Radiators
This is an electrical device that is not designed to intentionally use, or intentionally
generate or emit radio frequency over 9 kHz. This means that the electronic device
may not be for a radio frequency purpose, but in the circuitry the device emits radio
frequency energy of over 9 kHz. This type of product does not have to obtain an
equipment authorization. It is regulated under the general operation conditions of
the FCC, and if there is harmful interference, the user must stop operation and
resolve the interference from the system. Examples of these types of electrical
devices are AC and DC motors, and basic electrical power tools (tools that do not
contain digital logic within).

4.3.2 Unintentional Radiators
This device by design uses digital logic, electrical signals operating at radio
frequencies for use within the device, or sends radio frequency signals by
conduction to associated equipment via connecting wiring, but is not intended to
emit radio frequency energy wirelessly by radiation or induction. Some of the
devices for example are coffee pots, cash registers, garage door receivers, and
other common electronic-electrical equipment that rely on digital technology.

58 | P a g e

4.3.3 Intentional Radiators
This device intentionally generates and emits radio frequency energy by radiation
or induction. This will include Bluetooth devices and Wi-Fi systems. These devices
are the main reason these regulations were put in place to make sure consumers
don’t get hurt and also designers don’t interfere with radio frequencies to the point
it could hurt others.

4.3.4 Industrial, Scientific and Medical Equipment
The devices that produce radio frequency energy other than telecommunications
such as production of physical, biological, chemical effects, heating, ionization of
gases, mechanical vibrations, acceleration of charged particles. Medical devices
aren’t under this category unless specifically designed to use generated radio
frequency energy for medicinal use. Examples of this are fluorescent lighting, arc
welders, microwave ovens, and medical diathermy machines.

4.4 Radio Frequency Radiation Standards
Whenever a circuit has any voltage or current flowing through it creates an
electromagnetic field around the material, whether it be a piece of wire or some
other form of hardware like a capacitor or inductor. This radiation is moving at the
speed of light around the piece of equipment. The different forms of
electromagnetic energy are referred to as the electromagnetic spectrum. A radio
frequency field both include an electric and a magnetic field, the intensity of a field
is defined by units of measure. These units of measure are volts per meter and
ampere for meter (volts for electric field and amperes for magnetic field). A radio
frequency wave both have a wavelength and a frequency. The wavelength of a
wave is the distance that is covered over one period to finish one cycle (due to
waves being in the time domain). The frequency of a radio frequency wave is the
number of waves passing at a given point in time. Frequency is measured by hertz
(Hz). One hertz is equal to 1/s, which means once cycle per second. Where the
radio frequency’s frequency lands on the electromagnetic spectrum is in the range
from 3 kHz to 300 GHz.

The reason why this is such a huge deal in safety, is that radio frequencies are
mainly used in telecommunication devices. This includes your cell phone,
television broadcasting, radio communication and satellite communication. Of
course, these waves are passing through your body to get to their destination, but
how much is too much? The quantity used to measure how much radio frequency
energy is absorbed by a body is defined as specific absorption rate (SAR). It is
expressed using unit of watts per kg or milliwatts per gram. With respect to a whole-
body human exposure, an average human adult can absorb up to 80 to 100 MHz
of radio frequency energy. Due to the body being able to only handle up to this
point of radiation, safety standards must be put in place on order for the protection
against bodily harm.

59 | P a g e

Effects of radio frequency radiation

The heating of tissue by radio frequency energy is called “thermal” effects.
Excessive exposure to high energy levels of radio frequency energy could lead to
the rapid heating of biological tissues. When there are low levels of radio frequency
radiation, there is no evidence that there are any negative biological effects due to
the energy. In most cases, such as living your day to day life of walking around
and radio frequency waves passing through you from your cellphone for example,
has no real effect on the temperature of the body. Although, there are situations
where high-powered radio frequency sources in a manufacturing facility may cause
harm to person.

In 1996, the World Health Organization established a program called the
International EMF Project, which was designed to review the science concerning
biological effects of electromagnetic fields. Other various countries have created
their own exposure to radio frequency energy standards. For the Unites states, the
Federal Communications Commission handles these affairs, ever since they were
created in 1985. Other agencies such as Environmental Protection Agency, and
National Institute for Occupational Safety and Health all have been involved with
monitoring the effects of Radio Frequency energy exposure to the public.

4.4.1 IEEE 802.15.1 Standard for Wireless medium access control

4.4.1.1 What is IEEE?
The Institute of Electrical and Electronics Engineers, is an association dedicated
to the innovation and technology. It is the world’s largest technical professional
society. It is designed to serve professionals involved in all aspects of the electrical,
electronic, and computing fields. This association helps create standards for these
fields.

4.4.1.2 IEEE 802.15.1 Standard Security
This standard was made for wireless personal area networks (WPAN), which are
used to convey information over short distances among a private, group of
participant devices. The reason this standard must deal with our B.R.A.I.N. Helmet,
is because of the use of Bluetooth technology, which is a form of WPAN. This
standard defines the physical layer and medium access control specification for
the wireless connectivity, for fixed, portable and moving devices. To protect the
peer-to-peer communications between the Bluetooth module master and slave,
there must be some way to secure the information. The standard for Bluetooth
security is embedded into the application and link layer of the system. Due to this
being used for a peer environment, each device must have an authentication and
encryption routines that are the same for all. There are 4 different procedures for
security when it comes to IEEE 802.15.1 devices, and is described in the following
table:

60 | P a g e

Table 11 - Procedures for Security

Procedure Size

BD_ADDR 48 bits

Private user key, authentication 128 bits

Private user key encryption length 8-128 bits

Random Number 128 bits

When analyzing the secret keys both for authentication and encryption, the keys
are derived during initialization. The size for the authentication key is always 128
bits, but for the encryption it varies due to the country you are living in. Increasing
the key size, will increase the security of the key. The encryption key is completely
different from the authentication key, but one is used to make the other. The keys
are usually static values, unless the devices connected wants to change it,
whereas when comparing to the random number. The random number generated
is dynamic is continually changes for security purposes. Usually, the random
number is nonrepeating, which means in the lifetime of the authentication key, the
value of the random number will never repeat. Randomly generated number
means that is impossible to predict the value of the number. Key management
within the system is usually set by the factory design presets and not by the user.
There are two types of keys, semi-permanent and temporary. The semi-permanent
key could be stored within the system and be used after the current session is
done or power to the system is gone. This means once the system is done using
that key for a session, it could be used again after, such as remembering a device
that was connected to the system before. A temporary key is limited to the session
it is created within. Once the system is done with that key, it will not be saved into
nonvolatile memory.

4.5 Motorcycle Helmet Standards
The standards regarding to the design standards of the helmet we are restricted
with regards to the safety of the helmet is detailed in this section. In one of the
standards we cannot modify the helmet or the integrity of the helmet will risk the
safety of the user.

4.5.1 Department of Transportation
From the department of National Highway Traffic Safety Administration, FMVSS
part 218, which establishes a standard minimum performance requirement for

61 | P a g e

helmets designed for motorcyclists. The safety integrity of the helmet is a big
concern when dealing with our project, due to us making changes to the outside
and inside. The DoT and NHTSA have established safety requirement standards
when it comes to motorcycle helmets. This standard is applied to all helmets
designed for motorcyclists. In order for a helmet manufacturer in the US to get the
DOT sticker, it must pass these certain standards. When testing a helmet, the
impact attenuation must be in accordance to the following: Peak accelerations
shall not exceed 400g, accelerations more than 200g shall not exceed a
cumulative duration of 2 ms, and acceleration more than 150g shall not exceed a
cumulative duration of 4 ms. When a penetration test is conducted, the striker shall
not contact the surface of the test head form. Configuration of the helmet, must
have a protective surface of continuous contour at all points on or above the test
line. The helmet shall provide peripheral vision clearance of at least 105 degrees.
These standards are put in place to keep the manufacturers of such helmets on
check, so that there is a standard of safety for those riding motorcycles.

4.5.2 Snell Memorial Foundation
The Snell Memorial Foundation is an organization that sets higher standards for
motorcycle helmets than the DOT does, which means if a manufacturer were to
get a Snell certification on their helmet, it would have a greater safety rating. The
Snell standards are said to the toughest standards in the world. Both standards
(DOT and Snell) both test their standards the same exact way, just the passing
specifications are much harder when it comes to the Snell’s requirements. The
helmet is tested by dropping the top of the helmet (also known as its head form)
onto a fixed steel anvil. The test is repeated on at least 4 different areas on the
helmet against either a flat or curved anvil. The amount of damage the helmet
takes against these impacts is measured in mechanical energy. This mechanical
energy or impact energy is measured in joules and is one of the standard
specifications that the helmet must not exceed. The following is a table of how
much Impact standards are when comparing a DOT and Snell Standards.

As you can see from the table, the standards for the Snell Foundation are more
rigorous than the DOT. Which means helmets with the Snell certified sticker have
a higher safety rating when it comes to standards of crashing. When choosing a
motorcycle helmet, using these standards helped get a grasp of how the standards
affect the safety integrity of the helmet.

62 | P a g e

Table 12 - Comparing Standards of Motorcycle Helmets

Item DOT FMVSS 218 Snell M-95/M2000

Impact Severity

Flat Anvil Small-63 Joules
Medium-90 Joules
Large – 110 Joules
Fall of about 1.83 Meters

 All sizes 150 Joules
Fall of about 3.06 Meters

Curved Anvil Small- 47.3 Joules
Medium- 67.6 Joules
Large- 82.5 Joules
Fall of 1.38 Meters

All sizes 150 Joules
Fall of about 3.06 Meters

Impact Criteria

Allowed Peak
Acceleration

400 G 300 G

Allowed Duration
requirement

2 ms over 200 G
4 ms over 150 G

N/A

4.6 C++ Standards

C++ was not initially standardized when it was first created by Bjarne Stoustrup at
Bell Labs in 1979. This extended language provides high-level features for
program organization. C++ standardization is controlled by the International
Organization for Standardization (ISO) starting from 1990 for the ISO/IEC
9899:1990. This borrows the C programming language and adds onto the
language more features like additional data types, templates, exceptions, operator
overloading, references, and additional library features. The standard introduced
in 1990 will be briefly explained the most important features that is important to our
system.

4.6.1 ISO/IEC 9899:1990

4.6.1.1 Implementation compliance

To comply with the programming language, it has to follow the rules established
by the International Standard. For example, if a program contains a violation while
compiling it will output one diagnostic message, except if it contains a violation for
a rule that does not need to display a message, the International Standard does
not make a requirement on how to implement with respect to the program. If a
program contains no violations of the rules from the International Standard, then

63 | P a g e

an implementation should, depending on the hardware capabilities, should accept
the program and will execute the program correctly. Their definition of correctly
executing the program can include undefined behavior based on the data being
processed. For classes and their templates, they can specify partial definitions.
Each implementation of the libraries should be complete based on the definitions
on the library clause. Implementations for functions, objects and its values it should
supply definitions consistent with the library clause definitions. The scope of the
variables is based on the permissions the C++ includes in the program. There are
two types of implementations, hosted and freestanding. Hosted implementation is
defined by the International Standard of the available libraries it has access to. For
freestanding implementation, it does not need to execute the program with
dependence to the operating system and has its own set of libraries needed to run
the program. An implementation may have extensions if they do not alter the
behavior of a complete program. They are required to diagnose programs using
these extensions based on the International Standard.

4.6.1.2 C++ Object Model

C++ can be able to create, destroy, access and manipulate objects. It is created
by a definition, new-expression, or by implementation if needed. The properties of
the object must be defined when a new object is created. When an object is
created, it can have a name, storage duration based on its lifetime, type, and
polymorphic. The implementation will generate information associated with the
objects in focus to make it possible to determine the object’s type during the
program execution. Each object can be associated with another object within its
class, from another class, or an array element.

4.6.1.3 ISO/IEC 14882:2003

This standardization was replaced in 2003 for the C++03 version named ISO/IEC
14882:2003. This version was updated to ensure greater consistency and
portability for implementers. It addressed language defect reports, library defect
reports, and introduced value initialization.

4.6.1.4 ISO/IEC 14882:2011

In August of 2011, C++03 standard is replaced by the C++11 version based on the
ISO/IEC 14882:2011. The core language improved by including multithreading
support, generic programming, uniform initialization, and increased performance.

4.6.1.5 ISO/IEC 2014 and 2017

The most recent standard in 2014 supersedes the C++ 2011 version by expanding
the standard library. This version was not significant enough to be officially
standardized in 2014 but in the 2017 version it will officially be standardized when
it finishes later this year. In the 2014 version, it extended the language to provide
high-level features for program organization.

64 | P a g e

4.6.2 Design impact of relevant standards

The impact of the standards that are listed above affect our design of the B.R.A.I.N.
helmet are the standards for RF devices and the coding standards. The design of
the helmet has a bluetooth module within its system, so when analyzing the
standards, we must make sure that the individual subsystems followed them. It
didn’t affect the design as much in a negative way, because the bluetooth module
we purchased (RN52) already met all the FFC and IEEE standards.

As for the coding standards, the C++ standard that we are using to program doesn’t
affect our system negatively unless we want to use a feature on a non-
standardized library. We are strictly using the most recent approved standard for
compatibility with the compilers and the IDE.

4.7 Soldering Standards
When connecting different electronics together either on a PCB or in general, the
connection between them must be conductive, which comes the term soldering.
NASA, has made a technical standard document “Soldered Electrical
Connections” which defines a certain standard when it comes to these connections
between electronic parts. This standard is needed when dealing with PCB’s or any
electronic system in order to have no faults within the system as well as a basis
for systems that will last.

When dealing with a printed circuit board, there are through holes in which your
chipsets such as in our project the RN52 Bluetooth Module would fit. Then there
would be connections from the RN52 onto the PCB itself. There should be no
stress relief within the leads from all components of a system. This means there
should be no constraints and when soldered to the board there is no possibility of
movement. When soldering onto a PCB the joints must not be subject to stress.
When positioning parts onto a PCB, it must be taken into account that no other
parts are obscured with others. Other components that have a conductive casing
should be never be mounted in close proximity to other conductors due to the
chance of conductivity. The visibility of markings wherever possible such as a part
type, value of part, etc. is a must when dealing with PCB, due to replicability.
Polarity is the most needed marking, then Traceability Code, and then value and
type of piece, when it comes to which type of marking should have precedent over
others. Glass encased parts such as diodes, and resistors, will be covered with
transparent resilient sleeving, such as conformal coating, or encapsulating where
damage from other sources is possible. When the connection between a PCB and
an exterior part such as a microphone, a hookup wire should not exceed the length
of 1 inch unless being soldered to the board.

Mounting of terminals in this standard must be made sure to check the terminals
of the PCB before soldering the parts together. The radial split of the terminal
should only have 3 cracks and must be separated by at least 90 degrees, if not

65 | P a g e

this will lead to faulty connections within the system. The parts of a system will be
mounted parallel to, and in contact with the mounting surface. This mean when
connecting to the PCB it should be flush horizontally. The lead lengths of both
sides of a part (such as a diode) should be equal on both sides before making the
soldered connection. There is a difference in mounting onto a PCB when the
through hole is plated or not. Most likely when dealing with our system, we will go
with the plated through hole for ease of use purposes. This means when soldering
we do not have to have a stress relief bend in order to make the connection non-
faulty.

Figure 30 - Plated through Hole vs Non-Plated permission submitted to

reproduce]
Permission to use from Open Source

Designing and implementing parts onto a PCB, only certain parts go in one through
hole. Never shall there be two parts into more than one hole, this can lead to a
shunt, and lose connection or worse, loss of usability of a device. Other non-
acceptable behavior when it comes to mounting onto some PCB from NASA’s
standards are never to use pressurized air onto a freshly soldered board because
this can lead to fragile solder joints or improper connection between the parts and
board. In order to allow for a good connection to be made the solder should be left
to cool at room temperature.

Figure 31 - Ribbon Lead Measurements permission submitted to reproduce

Permission to use from Open Source

In the final part of the PCB mounting, is the single surface lapped termination
section of the standard, where it talks about how to connect a ribbon lead to the
solder pad on a PCB. The solder pad should be a minimum 3 lead widths to a max

66 | P a g e

of 5.5 lead widths. The only portion that should beyond the pad is if it will be
connected to another part of the system if not it should not exceed the pads length.
The cut off of the lead shall be a minimum of 0.25 mm from the end of the soldering
pad. The solder fillet should be able to fit around at least three lead edges of the
pad, that’s why there must be extra space on the pad. If not the connection
between the part and the solder pad may not be good enough to be conductive.
The above figures show the measurements of what is allowed when it comes to
soldering pads and a ribbon lead terminal.

This standard explains how to mount onto a PCB with proper soldering techniques.
This standard will be used when creating our PCB in the near future. In order to
have viable connections between the electronics parts and the board, this standard
will be followed. The need for this standard in our system is one of the biggest
standards to be followed because if not followed correctly the system could not
work, all due to a faulty connection between two parts.

4.7.1 Lead Solder Safety

When it comes to PCB implementation, to connect different parts onto the board,
solder must be used. In our case, Sn40/Pb60 was used, which means 40% tin and
60% lead. There must be safety precautions when dealing with this material due
to health hazards in can cause due to the high temperature it is heated to. Care
and safety must be taken into consideration when dealing with lead and tin in this
situation.

Lead is known to be a neurotoxin and can lead to reproductive, digestive, memory
and concentration problems. Lead could also lead to muscle and joint pain. There
for when dealing with solder, such as ours that is 60% lead is considered to be
toxic for your health. When dealing with solder precautions must be taken or else
the handler can be inadvertently exposed to this “poison.” The risk of health issues
greatly reduces when the handling of solder is treated appropriately.
The biggest risk of exposure to solder is the ingestion of lead due to surface
contamination. In order to fight the risk of lead getting into your digestive system,
gloves can be worn or washing your hands before eating or touching of your face,
etc. This must be taken into consideration due to how often engineers don’t see
lead soldering as a big issue due to most of our group not worrying about the
residue that could be left on your body without you knowing. Chewing fingernails
is the number know overlooked habit that causes lead poisoning after dealing with
solder. The reason for lead poisoning to be so dangerous is due to the body’s
ability to excrete it from the system is almost nearly impossible on its own.
Remember to always be careful when it comes to lead soldering because health
complications could arise.

Another risk when soldering is the actual physical heat that is being dispersed into
the solder to melt it. The solder that we are using will be heated to around 400
degrees Celsius, which as you know extremely hot. When the electrical engineer
majors from the team deal with soldering onto the PCB, they must take into account

67 | P a g e

how hot the soldering needle is and make sure to always return it to its stand before
soldering another piece onto the PCB. If not, someone could get burnt or a faulty
soldered connection could be made. The soldering of the prototype of the breakout
boards to each other will be the biggest part of soldering in our project, we must
be very cautious to not burn ourselves or others when handling the solder
equipment.

Including the above risks, another is soldering with lead or any other metals, may
produce fumes from the heating of the metal. These fumes can be very hazardous
to one’s health. If inhaled it can result in occupational asthma or create worse
asthma conditions. The fumes from the solder can also cause eye and respiratory
tract irritation. When dealing with the fumes a mask and goggles could be used in
order to safely handle the fumes and make sure not to inhale whilst soldering the
parts onto the board. An exhaust or good ventilation while soldering can make a
huge difference when it comes to the fumes of the system.
The following will be a list of general safety precautions that should be taken to
dampen risk of injury (Carnegie Mellon University):

 Do not touch the tip of the soldering iron. It will be heated to around
400 degrees Celsius.

 Wires that are to be soldered, to be held with tweezers or pliers to
avoid burns of objects being heated

 When dealing with the soldering irons itself, make sure the sponge
that it will be resting on is wet during use

 Use a level surface when soldering, to avoid from imbalanced solder
connections

 Never put solder iron down on workbench, always return it to its
stand

 When not in use, make sure to unplug soldering iron

 Wear protective eye gear in order to protect from splatter of heated
solder

 Use low lead percentage or lead free solder when possible

 Always wash hands after dealing with soap and water and solder

 Work in well ventilated areas to avoid inhalation of toxic fumes

 Solder on fire proof surface that is not easily ignitable.

 If a situation arises where you were burned, immediately cool the
affected area under cold water for 15 minutes. Do not cover with
cream or ointment.

68 | P a g e

 In order to manage the waste of lead solder, you must discard it in a
container with a lid. This container must be metal and labeled
hazardous material.

In order to safely solder parts together we as a team use these safety guidelines
in order to not injure ourselves in the process. We take safety seriously and must
respect these rules in order to have a good product in the end, whilst not hurting
ourselves or each other.

4.7.2 RoHS Compliant

The RoHS stands for Restriction of Hazardous substances and this compliancy
impacts the entire electronics industry as well as many electronic devices. The
original RoHS was a directive that originated in the European Union in 2002, that
restricts the use of 6 hazardous materials found in electrical and electronic
products. All products in the EU market must pass this compliance, so if we were
to ever sell our product overseas our device would have to be RoHS compliant.
Electronic products from July 1, 2006 and onward must be RoHS to be sold in the
EU. Only a certain amount of work areas is affected by this compliance, basically
places that sell electrical or electronic products, equipment, cables or components.
The specificity of the RoHS is so precise is that it doesn’t allow max level of certain
hazardous materials, and they include but not limited to Lead, Mercury, Cadmium,
Hexavalent Chromium, Polybrominated Biphenyls and so on. The main reason for
bringing this compliance up into this paper is the fact that the compliance must
have less than a 1000 ppm. This means that there must be less than a thousand
lead parts per million. This means we couldn’t be able to use the 40% 60% Lead
solder previously spoken about in the above section. The use of a non-lead solder
would lead to faulty solder points in the system and would degrade our PCB system
heavily. The only concern about RoHS compliant is if we were to try and sell our
product across the Atlantic, the product would have to be soldered entirely
different.

4.8 Realistic Design Constraints

The initial cost of the project could be a setback when looking at the project. The
lack of experience in designing and building a PCB could be a potential roadblock
in the future. Time, is a constraint for everyone as we must finish this project in the
allotted time. A constraint that could come up would be how to mount the PCB onto
the helmet as well as integrate the microphone and speakers into the helmet
without compromising the safety of the helmet. The following will be a list of what
may come or has come to be a constraint when designing the B.R.A.I.N. Helmet.
These constraints are mainly the issues that came up whilst the designing phase
of this project. Through the knowledge, we learned to battle these constraints,
made the project have an overall better quality.

69 | P a g e

The following few pages will discuss the different kinds of constraints that can have
important effects on our project. Constrains are some conditions that a design
needs or would like to have. These constraints will place some limitations on the
requirements and operation conditions under which our project can be functioned.
These limitations include but not limited to: size of the final device, features that
must be included, and environment of operation. Some of these constraints can
change the shape of the design based on the budget limitations, or the technology
of the design might change based on the environment of operation. Constraints
can make certain things available in the design to guide the user to perform some
certain interactions. There are many types of constraints that must be considered
such as:

● Economic
● Time
● Health
● Safety
● Ethical
● Social
● Political
● Environmental
● Sustainability

4.8.1 Economic and Time constraints

When first designing, and coming up with the parts for the B.R.A.I.N helmet, the
economic constraints came and go. Due to our group wanting to keep our project
as our own, we had to fund our project out of our own personal funds. This made
choosing hardware for our project a little difficult as we didn’t want to increase the
cost of the project too much. We all equally paid for the parts so we all own an
equal percentage of the project. Due to the limitations that we have in our budget,
we have reduced the quality of parts that we have to elaborate into our project.

As we all know, everyone works and go to school full time so meeting up and
working as a group is a constraint. The way to work around this is to always keep
communication with the team and always update as soon as possible if anything
bad came up. When coming up with times to meet up, the progress of our design
started smoothly. As you know, time and finishing the project in a shorter semester
could have a huge effect on the final product, but as long as we kept the work up
and no procrastination, nothing is impossible.At the end of senior design two the
design, prototyping, implementation must be completed and the final device must
be completely functional in order to meet engineering requirements. To ensure that
everything works as supposed to be, team members should follow the plan and
the timelines demonstrated on the milestones section. These tables that are shown
on the millstones section list all the important tasks that have to be completed and
the competition dates for these tasks.

70 | P a g e

4.8.2 Environmental and Social constraints
Environmental and social constraints are extremely important for our device. Our
device will be used outdoor for motorcycle’s drivers, so it has to meet some
requirements. Our device consumes an average power that is very small and
should not have bad effects on the environment. Also, it should increase the safety
for motorcycle drivers which will decrease accidents and save our environment.
For social constrains our project is designed for motorcycles’ drivers. Motorcycles
have the same design all over the world so our project does not favor one group
against the other. Overall our project will cover all environmental and social to give
our users better experience from other products and options.

4.8.3 Health, and Safety constraints

There is always a need for concern of health and safety when it comes to handling
electronic devices. When building a circuit, we must consider some safety
guidelines to follow. Never to disobey lab rules when working on a circuit in the
lab, and always to follow directions in case of an emergency. There come
standards when working in the lab at the University of Central Florida, we must
take note of the Emergency Disconnects located in the room. We must make sure
to report any broken equipment to the lab instructor that is present. Taken into
consideration we were using the school’s equipment, we must make sure to not
destroy or break any of the lab equipment.

The main purpose of our project is the safety of motorcycle drivers which will also
increase the safety of the surrounded people and vehicles. Thus, one of our project
priorities is the safety which is taken into account by using high quality materials
as much as possible based on the project budget. Driver safety increases by using
our product since navigation notifications is sent to the driver and displayed on the
LCD displayer so the driver does not need to be distracted by checking mobile
device, Moreover, sound notifications will be sent to the drivers to notify them for
the close destination directions.

Moreover, all the parts is designed and placed on the most practical positions that
maximize the safety and usability of the device. The size of the LCD displayer has
been researched and studied to best fit the size of the helmet and the distance
between the driver eyes and where it should be placed so driver can catch the
signals without being distracted by the size of the displayer.

Also, all the electrical parts of the product have been checked and placed carefully.
All the wires and battery attachments are carefully placed and attached together
in a good position to maintain the driver safety.

71 | P a g e

4.8.4 Manufacturability Constraints

One of the important constraints that we have considered is the availability of
chosen materials. Our team has considered the duration of availability of the
required material and we also have taken into account the expected time for those
materials to be available on the market. In order for our project to be continued as
we have designed it, those materials have to be available for users on the market.
Otherwise, users have to do some design changes on order to integrate new parts
and technologies to our main idea.

Another constraint to take into account for our project is the availability of the
required and planned parts when start implementing the product. Sometimes some
of the parts are discontinued, no longer available on the market, or need a long
time to arrive. Thus, as our advisor suggested we have purchaes all the required
parts for our project, Also, we have purchased more that what we need for example
we have purchased three microcontrollers in addition to some extra parts from
each picea we have in order to be on the safe side.

Since the B.R.A.I.N Helmet is supposed to be help motorcyclists while they are
riding, the helmet must also be functional as a helmet still. We had to make sure
we didn’t drill any holes in the helmet our tamper the physically integrity of helmet
to make sure that the helmets original purpose was still intact. When considering
where to position the PCB and speakers and microphone system on the helmet
without breaking any of the regulations of the safety of the helmet was a constraint.

4.8.5 Political Constraints

Political constrains covers those issues related to:

 Products that are designed to outline the downsides of a specific race
or gender

 Projects that are supported by public fundings

 Products that are designed to be used in contradiction of the United
States of America

 Products that are designed to be used against the homeland security
of the United states of America

 Products that are mentally or physically destructive for users.

These are some of the issues that are considered by political constraints. After
doing an extensive research we found that political constraints are not applicable
to our project. Thus, any political constraint should not be relevant to our final
product.

72 | P a g e

4.8.6 Sustainability Constraints
The sustainability for products lie on some factors that include but not limited to
environmental factors, business survival, reliability and robustness of the product’s
supposed function. Our B.R.A.I.N Helmet’s sustainability goal is to be able to
function under the assumed normal operational conditions for a life span of at least
about 6 hours. Our system should function more than six hours since it does not
consume too much power. The environmental conditions such as rain, wind,
temperature, and hail need to be taken into account for this constraint. The quality
of material for the integrated parts need be good enough for the system to function
as proposed under different environmental conditions. However, waterproof
feature will a future designed improvement that we are planning to add. For us as
computer and electrical engineers the main design is the important for us now and
waterproof feature can be added easily later in future improvements.

To be effectively functioning on the motorcycle, system should be successfully on
the Helmet. The weight of the device should not be an issue so the driver should
be comfortable while driving and is able to use all the provided features easily and
safely. The LCD displayer should also be placed in a position where is easy for the
driver to see the signals without being distracted from driving. All parts of the
system will be placed inside a little box which will be located in a position that is
best for the driver safety and usability.

Moreover, the demand of the product based on how long it will be valuable in the
market. The lifetime of the product bas on the manufacturability material is
important but also the demand for the product in the market is an important
constraint that must be considered too. In the market safety is one of the most
important things not only for consumers but also as one of the most important
business values. B.R.A.I.N Helmet’s product is designed to make every person
and vehicle on the road safer in addition to the main purpose of our project which
is keeping motorcycles drivers’ safer. Thus, our product should be one of the most
demanded and suggested products in the market since it increase safety not only
for motorcyclist but also for all drivers on the road in general which will attract all
drivers and most of motorcycle’s companies.

4.8.7 Ethical Constraints
One of the most important priorities of this project is to increase the safety of the
motorcycle drivers in addition to all people and vehicles on the road. All the
integrated parts on the system have been chosen carefully after doing an extensive
research. Our team has decided to avoid using any material that are potentially
toxic, radioactive materials, or affect the lifetime of the product. When it comes to
choosing our project material, we have considered quality as we considered the
price. We have not decided to choose any part that has a bad quality of bad
materials in order to decrease the amount of our project budget.

73 | P a g e

The safety of our team during developing and implementing the design has been
taken into consideration seriously. Our team always try to follow all the safety
instructions that are demonstrated in University of Central Florida’s labs. Also,
when testing our final product on the road, all driving safety rules will be
considered.

Moreover, our team avoids using or inferring any existing patents. This has been
accomplished by doing an extensive research to make sure of all existing project
that are similar, and to give credit for any work that is done by some other people.

4.8.8 Software Prototyping Constraints
Software Prototyping is basically designing a prototype for the software
application. This should give us a basic idea of how the final design should look
like. There are many constraints that should be considered when designing a
software prototype. Developers should avoid focusing on the prototype more than
the actual design. Prototyping sometimes distract the contributors from doing the
actual work that they have to do. Developers should also avoid user confusion
between the final design and the prototype. Sometimes users misunderstood by
thinking that prototype is the actual system that will be implemented. Also,
sometimes the developer misunderstood user needs by proposing that all users
share the same needs and objectives. Developers should schedule meetings with
consumer to evaluate the effectiveness of the user interface and discuss potential
alternatives to the proposed system to consider all their needs and expectations
for the final product. Moreover, developer should avoid spending too much time on
the prototype and start working on the actual system. Also, designers should avoid
implementing expensive prototypes since prototypes are designed to give users a
very brief idea of how the final system should look like. For our project, Software
team has designed simple prototype including the main features that must be
offered for our project users. We have designed the prototype in the early stages
of our project after we have decided what is the final product for our project. Our
team did not spend too much time on it because it is just a basic picture of the final
design. Also, it was free it did not cost us money since it was designed on Android
Studio which is available for free for all Mobile Application programmers on Android
Official Website. Finally, after the prototype was designed and all team members
agreed on it, Software team has started working on the actual code for the
Software Application.

4.8.9 Testing Constraints

Our project is designed for people who drive motorcycles, so they can drive more
safely by avoiding using their mobile devices while driving. To test our design we
need a motorcycle, no one of our group members has a motorcycle. Our team has
already discussed this issue and one of the group member has suggested
borrowing his father motorcycle. Also, our advisor suggested testing our device on
a bicycle if needed. The team will test the device on bicycle as many time as

74 | P a g e

necessary since the availability time of the motorcycle is limited. Thus, our team
can avoid this issue by doing the necessary test on the bicycle and schedule every
three weeks one appointment with our friend father so we can test our design on
a motorcycle. One of our group members has a good experience for driving
motorcycles so he will drive it and do a real-world test for the design. The real-
world testing is very important and needs to be done as many times as possible a
decent enough time before the final demo so we have enough time to fix any
problems. Any new project and design will have some problem that will be
discovered during testing time, but nothing is impossible if we figured out these
problems before the final demo we can work as a group and fix these mistakes to
submit a well-finished design at the end.

5.0 Project Hardware and Software Design
Details
As the hardware and software research stage of the BRAIN Helmet project drew
to conclusions for methods and components to create the BRAIN Helmet, parts
were ordered and the System Design stage of the project immediately began. The
hardware team concentrated on finalizing a regulated, mobile, and rechargeable
power system that would be able to properly power all components of the BRAIN
Helmet’s electronic group. Additionally, audio amplification and signal clarity post
Bluetooth module communication was focused on in an attempt to create a
speaker and microphone system that would satisfy the BRAIN Helmet user. On
the other side of the design implementation, the software team focused on
developing an android specific application for interfacing the BRAIN Helmet’s
electronic group via Bluetooth to communicate to a user in the form of audio and
a heads-up display for safe navigation and recreational uses. Implementation of
the B.R.A.I.N. helmet will roughly follow the block diagram shown in Figure 32
below. The work incorporated into these components per person will be detailed
in the Administrative Content section of this report.

75 | P a g e

Figure 32 - BRAIN Helmet Component Block Diagram

The BRAIN Helmet Electronic group consists of a battery, a micro-USB to JST
battery recharger, Bluetooth modules, the ATmega2560 microcontroller, a
microphone, two speakers, and an OLED heads-up display. The BRAIN Helmet’s
PCB will hold the Bluetooth module, ATmega2560, battery, and the micro-USB
Lithium-Ion Polymer battery recharger. Pending decisions will decide whether to
use Bluetooth modules with built in DAC, ADC, and filtering. The Bluetooth
functioning PCB will be located on the back of the helmet and connect to 2
speakers and a mic as depicted in Figure 29.

5.1 Initial Design Architectures and Related Diagrams
The following two tables are the stock pins initially used in the design of the BRAIN
Helmet. These are the pins that will be interconnected as according to the final
schematic (figure 42). We chose a microcontroller and Bluetooth Module capable
of adding features at a later period due to extra GPIO pins, so this table is subject
to update in the final design of the BRAIN Helmet.

76 | P a g e

Table 13 - ATmega2560 Pins

ATmega2560
Pin Number Signal Characteristic
10, 31, 61, 80 VCC
11, 32, 62, 81, 99 Ground
20 Bluetooth SCK
21 Bluetooth MOSI
22 Bluetooth MISO
30 Power Switch
51, 52 Hardware to Flash the Program to

Memory
53 Display Analog Port

Table 14 - Used RN52 Pins

Bluetooth Module RN52
Pin Number Signal Characteristic
1, 18, 27, 44 Ground
32, 33 Two Debugging LEDs
40, 41, 42, 43 Speakers
34, 35, 36, 37, 38 Microphone
21 Power Switch
22 3.3V Power
31 MCU MOSI
30 MCU CLK
29 MCU MISO
20, 2, 6, 7, 8, 9, 10 MCU GPIO
4 MCU Analog GPIO

5.1.1 Helmet Electronic Group Housing

The BRAIN Helmet shall contain a single electronic group mounted onto the back
side of the helmet in an aerodynamic approach by using a 3-D printed case. This
case will hold the primary components of the BRAIN Helmet’s Electronic group;
allowing the micro-USB jack to be exposed to the user for recharging the BRAIN
Helmet’s battery. The housing will additionally allow buttons to be exposed for the
user. Other components such as the speakers and microphone will be embodied
into the helmet. In order to keep an aerodynamic approach, the electronic group
housing will breakout directly into the helmet and the speakers and microphone
wires will be lined through the helmet’s padding into their appropriate locations for
the users. Similarly, the wires to the Heads-up Display will be lined through the
helmet padding to allow the HUD to be at an appropriate position for the user.

77 | P a g e

Figure 33 - Prototype housing to attach to helmet

The above figure depicts an unofficial rendering of the electronic group housing
we would have 3-D printed for the BRAIN Helmet. The PCB (noted 1 in Figure
above) and the battery (noted 2 in figure above) will be the primary components
contained in the housing. Noted as a number 3 in the above figure is the earlier
described micro-usb input port to charge the battery. Testing will decide whether
or not the 3-D printed plastic housing can be fully enclosed or whether the
bluetooth module antenna will need to be exposed.

5.1.2 Power Supply Layout
The following figure is the layout for the Power supply unit powering the BRAIN Helmet.

Figure 34 - Power Supply Unit Layout Block Diagram

78 | P a g e

5.2 First Subsystem - Power Supply Unit

5.2.1 Power Supply Overview
The Power supply of the BRAIN Helmet consists of a 3.7V 2500 mAh Lithium-Ion
Polymer battery that is recharged at a current rate of 500 mA by a Micro-USB to
JST charger. The ground and ~3.7 positive voltage is then picked off the Lithium-
Ion Polymer battery recharger via breakout terminals as seen in Figure. These
breakout terminals allow the battery to not only supply the components of the
BRAIN Helmet electronic group, but also be recharged. However, in order to avoid
swaying voltages, a voltage regulator is implemented into the BRAIN Helmet’s
power system to regulate a 3.3V power supply to the rest of the helmet’s electronic
group. The voltage regulator maintains a 3.3 output voltage with a max output
current of 800 mA.

Figure 35 - Battery Charger Connections

Permission from open source

Currently the BRAIN Helmet electronic group pulls less than 100mA, so this was
deemed to be rather overkill, but a necessary precaution for future builds of the
BRAIN Helmet. This extra flexibility in current drawn from the battery will ensure
no accidental power drop outs and therefore avoid system failure during use.The
responsibilities of the entire power supply is depicted in Figure. The regulated 3.3V
will be used to power on the Bluetooth module, the ATmega2560, and the Diymall
128x64 pixel OLED Display.

5.2.2 Battery Recharging Design

Particular concern was aroused when first testing the Lithium-Ion Polymer Battery
for the BRAIN Helmet. Recharging Lithium-Ion batteries without precautions such
as an overcharge protection circuit can lead to harmful results for not just the

79 | P a g e

BRAIN Helmet electronic system but worst-case scenario to the motorcycle user.
The first step to avoid this problem was to purchase a Lithium-Ion Polymer battery
that is known to be safer than a pure Lithium-Ion battery. Additionally, the Adafruit
328 used has a built-in circuit protection that prevents current flow as the battery
reaches full charge. For the Adafruit 328, full charge is reached at ~4.2V. The
following figures show this circuit protection taking place. On the leftmost figure,
as the Adafruit 328 is charge a red Led is illuminated indicating the current flowing
and therefore the battery charging. The voltage coming out of the battery that
would be tied to the voltage regulator in the actual power supply build is being
measured at 4.16 in the left picture. However, in the right picture the battery is near
full charge (~4.2V) and the Adafruit 328 protection circuit cuts off further recharging
of the battery. This is evident on the Lithium-Ion battery recharger board as the red
led is no longer illuminated.

Figure 36 - Charging the battery with circuit protection

5.2.3 Regulating Voltage
A linear voltage regulator, or LDO, was the initial choice of voltage regulation on
the BRAIN Helmet. Typically, LDO regulators dissipate a lot of power, but because
the 3.7-4.2 varying voltage input was not much higher than the regulated 3.3 volts,
this was not still a concern. However, a higher efficiency is always attainable by
using a switching voltage regulator and for better experience this was our final
decision. The Voltage regulation circuit was designed with Texas Instrument’s
Webench design tool and produced the schematic shown in the figure below.
Therefore, in the final design of the BRAIN Helmet, every component’s supply
voltage, VCC, will be tied directly to the output node of the voltage regulation
circuit.

80 | P a g e

Figure 37 - Regulated Power Supply

5.3 Second Subsystem - Bluetooth & Speakers

Figure 38 - Bluetooth Audio Subsystem

The Bluetooth Module is one of the most critical parts of the project, due to the
wireless we need when connecting between the phone and the system on the
helmet. The Bluetooth system should do the following:

 Receive and Send data to and from the User’s Device
 Control those signals and output them either to the MCU or speakers
 Maintain compatibility with any User Device, using Bluetooth 3.0.

The Bluetooth module we initially chose was the Roving Networks RN-52. The
following is a parts description:

81 | P a g e

Part Description Cost

RN-52 Bluetooth Module Roving Network RN-52
Bluetooth Audio Module

$25.00

When designing the Bluetooth subsystem, we first had to figure out how the rn52
pins were laid out. At first, analyzing the datasheet for the Rn52 audio Bluetooth
module wasn’t too difficult, due to its plug and play usability. The profiles on the
RN52 Bluetooth device automatically came with factory settings that would allow
connection of the two most major phone types, iOS and android devices. The first
thing we did was see where to implement the speakers and if there were any need
for external amplification outside of the internal amplification of the RN52 Bluetooth
device. The RN52 Bluetooth module sub system is broken into 3 different parts,
the speakers, the microphone and the Power enable to the Bluetooth. The
connection of the Microcontroller to the Bluetooth module will be using the GPIO
pins along the left side of the Bluetooth module. The following will be a breakdown
of the internal and externals within each part of the Bluetooth subsystem.

5.3.1 Speaker Breakdown (A)
When looking at the picture at the top, you can see that the speakers are
connected to the speaker pins on the top right of the RN52 Bluetooth module
breakout board. It is denoted by using a yellow circle. The speakers are 0.25 watt
and have an 8-ohm resistance. The speakers are in 40 mm in diameter and just a
little over 4 mm thick. The reason for these choices of speakers were for the actual
thinness of the speaker. We are integrating these speakers into the shell of a
motorcycle helmet, so the thinner we can get a speaker the better due to
comfortability of the speakers and the safety of the user. Externally the speakers
are wired to the positive and negative of the speaker output from the RN52
Bluetooth Module. This is due to the need for both a left and right side of audio.
When first designing the speakers, we had to make sure we could hear the
speakers without any noise or static. Due to the low wattage of these specific
speakers, the Digital to Analog converter that is built inside of the RN52 Bluetooth
module can supply enough wattage that there is no static when listening to the
speaker. When building our system, if we do end up changing our speakers, we
would have to add in an external audio amplifier. This would increase the gain to
the speakers therefore making them sound clearer. This is only if we use higher
wattage speakers later down in the road. Even if we use different speakers, we
would have to find a set of thin or just as thin speakers. We will also implement a
potentiometer or a volume up or down with this system to increase the volume on
the speakers.

82 | P a g e

5.3.2 Power Breakdown (B)
The bottom left pins of the Bluetooth module are the PWR_EN, and VDD. The
Power enable pin can be connected via a button to turn on and turn off the system.
In our case, we would connect the Power system to the Bluetooth module via VDD.
The following is a table is the specifications of the RN52 Bluetooth Module:
Table X: Specifications of RN52 Bluetooth Module

Table 15 - RN52 Properties

Specification Description

Frequency 2.4 GHz

Max Data Rate 3 Mbps

Operation Range 10 Meters

Supply Voltage 3.3 V

The Rn52 has a supply voltage of 3.3 V, which luckily is the same as the supply
voltage for the microcontroller we are using, so we can have ease of voltage
regulation when it comes to the power system. This means that the microcontroller
and the RN52 can be on the same supply voltage bus and not cost us anything.

5.3.3 Microphone Breakdown (C)
The microphone system will be connected via the MIC_L + and MIC_R- pins. There
is a built-in analog to digital converter within the RN52 as explained before, and
will convert the incoming audio into a digital signal. This mic is powered at 3.3V
which means that the mic and the Bluetooth module itself both can be powered on
the same voltage bus without having to connect another node all together. The mic
must have capacitors at least of value 47 nF due to the gain of the internal amplifier
from the Bluetooth module. The mic will need some biasing due to the amplification
within the microphone breakout itself.

5.3.4 Antenna (D)
This part of the Bluetooth design has to do with the antenna of the actual system.
The following is a diagram is of the dimensions of the RN52 Bluetooth Module:

83 | P a g e

The problem with the antenna is that it cannot be covered with any metal or it will
act like a faraday cage and block any outgoing or incoming signals. So, when
designing and integrating our Bluetooth module onto the PCB and putting it on the
helmet, we need to make sure that we don’t block any of the signals going in or
out of the Bluetooth module or it would stop the whole system from working. We
must make sure that the antenna of the system is not blocked with metal in any
direction.

Figure 39 - RN52 Antenna Blow Up Schematic

Permission from open source

5.4 Third Subsystem - Microcontroller & HUD

Our software team will oversee creating two programs, one companion application
on the mobile device and the other programming the processor and components
on the helmet. The communication medium that the two devices that
communicates between them is through Bluetooth. We will program the application
onto a phone to test its capabilities to use the cellular data network from Google
Maps for directions.

5.4.1 Software Testing Methodology

When the microcontroller powers on or experiences a POR or a brown out, it will
initialize the components and check if everything is done correctly. When the
system is initialized, the system will start the Bluetooth connection and will search
for a device to connect. It can either search for a specific device saved into memory
or wait for a ping from a device to connect. If the helmet is not connected to a
device we will put it into low power mode and after a certain threshold we could

84 | P a g e

automatically turn off the system to save power. When a device is connected to
the system it will communicate to the host device to transmit audio. For the display,
we will initialize by showing the “SMART Helmet” text and the current version of
the software once it boots up. After a few seconds of the system being initialized,
the screen will refresh and tell the user of the current state of the system. It will
either display “Searching”, “Not connected”, or “Connecting”. With the companion
application, it will also inform the user about the current state in case of the user is
not looking at the screen. While the system is powered on it will display the current
battery state and can change color if it is low on battery. We are planning to have
the battery gauge in green for sufficient charge. When it reaches a certain
threshold, say 20%, then the system will change the color of the gauge to yellow
to inform the user that it is approaching to low charge. After that state, the system
will change the battery gauge to red when it approaches 10%. The system will
continue to function properly apart from the display only showing the battery state
and the current time. When the battery status changes to 5% and lower, the battery
gauge will flash red and disable the audio streaming and only display the flashing
battery gauge until it turns off or runs out of charge.

We want to be able to implement an error code system so that we can see if there
is something wrong with the code and prevent undetermined behavior. If at any
time the system encounters an error while turned on, the screen will display the
error code in hex format. Depending on the error code we can either display it on
the entire screen or show it in the corner of the screen. Depending on how we
implement our system, it may stop the execution of the system or will inform the
user that the system needs to be restarted to acknowledge the user that it did see
the error and troubleshoot properly.

Registers will be utilized in the processor. One of the registers will contain
information sent from the host device. With the companion application it can send
information on the current state of the application. This string of numbers will have
information that will be used to display the right information on the screen. The first
byte of the string will have the distance left before the next turn and the direction
of the next turn. The next byte of the string will have information on the current
time. The third byte will have the current song playing to show on the display. And
the fourth byte can be the status of the application. We may utilize this method but
if the information needs more space, then we will dedicate more registers for it.
The other registers will be information received from the modules. For the
Bluetooth module, we will have a register on the information received from the
device for the status of the module.

The outputs are the buttons and the potentiometer that is going to be attached to
the helmet at positions where the user can easily determine the functions of them.
The potentiometer will be used to adjust the volume of the audio driven to the
speakers. This will allow precise control on the volume the user wants to hear the
audio than having a button to step down the audio’s amplitude. The dial will be on
the right side of the helmet next to the other buttons. The two buttons near the

85 | P a g e

potentiometer will be used to change the tracks on the current song that is playing,
one for the previous and the other for the next track. A third button will be added
as a function button. These buttons will function as a confirmation to accept the
phone call when the user receives a phone call. On the left side of the helmet,
there will be a button near the display to toggle the screens displaying the different
information.

5.4.1.1 Connection via Bluetooth

One of the main concerns of the Bluetooth module is the options to establish the
connection to the host device. We could assume that the device would be visible
and can easily connect, but there are uncertainties of confirming that it works. We
know that every Bluetooth module in the market has a unique MAC address as a
fingerprint. What we would like to implement into our Android application is to
automatically detect that one device that we program to search. This would allow
us to help us out during our troubleshooting when the helmet would not connect to
the host. If we were to put this system into the market we would then consider
reprogramming the application to detect the device based on the name
programmed to the helmet.

5.4.1.2 Heads-up Display

For the Heads-up display we want to be able to easily inform the user information
that is short and intuitive. The display will have a button near the display to toggle
the different screens. We should not add too much information to the user at the
same time. At the moment we will have four screens in no specific order; It is
current time, distance to next turn and direction, time remaining of travel to
destination, and time and music. The colors that we will use will have a high
contrast to discern the objects from the background. With the header files the
display includes, there are some modifications that we need to implement to add
our own objects like the arrows to turn and center the text on the display.

Figure 40 - Display operating on breadboard with MCU

86 | P a g e

5.4.2 Development Environment

Programming the microcontroller requires us to use an IDE for flashing our code
to it. We could avoid using an IDE to program, but we would not be able to take
advantage of the debugging features that comes standard for them. We did have
experience on several IDE's that have the capability to program our
microcontroller, but it is not compatible with our architecture. For example, we
would like to use Code Composer Studio but it is exclusive for the Texas
Instruments processors. The software is utilizing the Eclipse IDE so we tried to get
that to work with our Arduino development board and it proved to be too much of
a hassle to send the file to the memory. We decided that we are going to use the
Atmel Studio program that the company offers to us. This is 100% compatible with
our processor and we can use this for debugging and troubleshooting. And as a
backup of our flashing to the memory we will also use the Arduino IDE that they
provide to easily upload the program into the board. Both programs use the C++
programming language.

5.4.2.1 Arduino IDE

The IDE that Arduino provides is a user-friendly interface that appeals to every age
of programmers. It is simple enough that anyone can use it, but with flaws for the
experienced programmer. It does not have a debugging option on the current
version and only allows us to compile and upload the code.

5.4.2.2 Atmel Studio IDE

Atmel provides their own version of the IDE for use with their architecture. It does
provide more advanced features than the Arduino software. One of the main
advanced features is the capability of writing AVR assembly codes. There is an
addon available to the software that has the capability to create and modify Arduino
files.

5.5 Fourth Subsystem - Android App
This section basically introduces the main methodology that our software

team has followed to develop and design Mobile Application. Also, we give a brief
description on connection between Microcontroller and Mobile Application. Then,
we described the importance of the developing tools that are available for
developer in order to create an efficient application with the minimum amount of
code. Finally, we will introduce the main functionality of our application and we
have provided a prototype created on Android Studio.

5.5.1 Mobile Application design Methodology
Software team has decided to follow Agile Methodology while developing Software
Application. Agile methodology is one of the most flexible methodologies because
any changes can be implemented on the design as any new information is

87 | P a g e

collected. While developing the project and implementing the design, new changes
and improvements can be added to the design. This is the first time for use to build
a project completely from the scratch, so there is a high chance that some of the
design criteria, parts, requirements, and anything related to the project might
change. Also software application might change based on that, some functions
may be added or deleted. Moreover, software libraries might change too. Based
on Agile methodology, any adjustments can be implemented on the application at
any time of implementation easily. The system be delivered in the early stages with
flexibility to accept any adjustments.

Our team has divided responsibilities and the tasks that have to be completed
based on our strengths and skills. These tasks have to be completed by certain
dated that are demonstrated on the milestones table. Each week or two weeks the
team will meet to confirm any progress or modifications that must be implemented
on the project. Which will also be confirmed with the software application. Thus,
the design will be consistent and contributed to the reports and discussion of these
weekly meetings. If there is any design modification all the group members can
work together and change it easily. This is the huge benefit of Agile Methodology
which is extremely better than any traditional methods that was previously
implemented. These methods are based on a strict plan that does accepts any
changes. There are order stages that must be followed and completed one by one
before moving to the next stage. Once one stage is complete, contributors can
move to the next stage without going back to the previous one.

5.5.2 The Connection between Microcontroller and Mobile
Application

The Microcontroller is a small device that has multiple functions which controls the
devices that are connected to it. Our project microcontroller is connected to
multiple devices which are speakers, microphone, power supply, PCB and Mobile
Application. Microcontroller and Mobile application have wireless communication
via Bluetooth. This connection is mainly established to transfer back and forth
streams of audio and string data.

For example, our application will call google maps functions to get navigation
direction will be transferred via Bluetooth to the microcontroller. This data has two
parts audio and string streams. The audio streams will be transferred to the driver
via speakers while the string streams will be converted to signals that should be
displayed on the LCD displayer. This transferred data is considered an output
because it is transferred to the user. There is also an input data that can be
displayed to the application which is the data received from the driver when he or
she receives a phone call and answer via the attached microphone. The driver
listen to data (an output) via speakers, replay and answer to phone calls (an input)
via microphone.

88 | P a g e

5.5.3 Development Tools

There are many useful tools that software writer must take advantage of in order
to develop an efficient application with the minimum amount of code, time, and
effort in addition to the best experience for users. To build our Brain Helmet’s
application software team will use Android operating system. This operation
system has an official integrated development environment called Android Studio.
Android Studio programming depends on Java language and the function and
packages available by Java. There are certain standards for Android and Java that
are demonstrated on the standards section. Also, there are detailed discussion of
android and Android Studio on the Software Design section. In order to make it
easily on software team to collaborate and keep updated with all changes and the
coding progress our software team has decided to use GitHub. This is a version
control system where the programmers can continue working on their code from
any place they want. There is also a detailed dissection about that in the last
section of this document.

5.5.4 Mobile Application Main Functionality

The main purpose of Mobile Application is to send and receive data. The most
important function that needs to be implemented is the Bluetooth connection. The
user should be able to click the device connection button on the main screen and
browse the available device which should include the Brain Helmet’s device. After
establishing a successful connection, user can use other feature such as
navigation.

The other important function that should be implemented in our application is the
navigation function, This function is based on calling Google’s maps function to
transfer data to our function which also be transferred to the microcontroller that
will transferred it to signals displayed on the LCD displayer. The remaining
functions is related to receiving phone calls and receiving and transforming data
from the phone to the microcontroller and vice versa.

5.5.5 Software Application Prototype

The initial prototype for the application is shown on the attached figure. This
prototype demonstrates the main features for our B.R.A.I.N Helmet’s application
which are: Bluetooth connection, Navigation, and phone calls. Once the Bluetooth
is connected to the main module, the application should function as proposed and
be ready to use by motorcyclist. This prototype is designed by using the official
building environment for Android which is Android Studio.

This prototype consist of a main activity which is the main screen for the
application. This main screen has three button which assigned to three different
tasks. The first task is the Bluetooth connection. After the Bluetooth connection is

89 | P a g e

established the driver can use the other two tasks. The navigation task is basically
connected to Google’s maps which has sound notifications and text directions that
will be sent to our application. Then these information will be manipulated and sent
to the microcontroller.

Figure 41 - BRAIN Helmet Application Prototype

5.6 Software Design
Before we start programming the interface and system, we need to plan ahead on how
are we going to implement it. Designing a system will be describe abstracted since we
don’t have a system built yet.

5.6.1 User Interface Design

Our goal from designing a user interface is to make the user experience as simple
as efficient by providing necessary features in a design that facilitate user’s
usability.

5.6.1.1 Design Consideration

Good user interface designs should allow users easily to perform main tasks
without wasting time on the application itself. Each interface design should be
designed based on the project features that user should be able to use and users’
needs. A good understanding of users’ needs can help software designer to design
an application that efficiently fits all users' requirements. The layout of the design
should be as simple as possible to help users with different experiences
accomplishing tasks quickly and more effectively. There are primary elements that
should be available in each interface design. All users are used to see those
elements in most of the applications they have. These elements include but not
limited to Checkboxes, Radio Buttons, Dropdown Lists, Buttons, Toggles, Text
Fields, Search Fields, Sliders, Tags, Icons, Notifications, Message Boxes and

90 | P a g e

Tooltips. Once interface designers tend to design an interface some important
information needs to be known about users. Designers should know what their
users’ needs and what could prevent them from achieving their tasks. Moreover,
they should be aware of their user's skills, experiences, tendencies, and goals.
Also, the designer should know how users will use the application by setting with
them and watching them using the product. Users can interact with applications
in two ways directly and indirectly. Direct use of software interfaces includes
Tapping a button, Swiping a card and Dropping an item with a fingertip. While
clicking with a mouse, tapping into a form field, and drawing on a Tablet are
examples of indirect interactions. Another important aspect that designers should
consider when building Software Applications is consistency. User interface should
be consistent so that users can remember how to use it again. Also, that can know
how their basic tasks can be accomplished. Consistent designs will increase
efficiency for users’ experiences.

5.5.1.2 Design Layout

Keep the design simple, clean, and consistent. Light colors should be used in the
Background of the user interface. In particular, white color is preferred when
designing the background of an application. Dark colors should be avoided on
backgrounds because it is very distracting and irritating for users. Also, avoid using
light text on light backgrounds which will decrease users’ readability. Contrast is
one of the essential elements that are needed to improve readability. The
maximum value of contrast can be reached by using a black text on a white
background.

5.6.2 Android

We have chosen Android which is one of the most popular mobile operating
systems designed by Google to build our Mobile Application. This mobile operating
system is designed particularly for touchscreen devices such as smartphones and
tablets. User Interfaces based on Android require direct interaction which involves
tapping and swiping. For Text inputs, a virtual keyboard will be provided. The
response will be immediate to user actions. The home screen can be made of
multiple pages that user can go back and forth. The default Android’s user interface
has a status bar on the top of the screen which includes information about the
device and its connectivity. Also, a Notification screen is included to show
important updates and information. Most Applications are written using Java
programming Languages and Android Software Development Kit (SDK). This kit
involves Software Libraries, Debugger, and an Emulator based on QEMU. Android
Development Tools (ADT) was used by Eclipse to support Google’s Integrated
Development Environment (IDE). Android Studio is an Integrated Development
Environment which was developed by Google. This Integrated Development
Environment is based on IntelliJ IDEA which is a Java Integrated Development
Environment for developing computer Software designed by JetBrains which is a
software development company whose tools are targeted towards software

91 | P a g e

developers and project managers. Android is supported by different kinds of
Hardware such as x86, x86 - 64 MIPS64, and MIPS. ARM is the most popular
hardware that supported Android’s user interfaces. Non-compulsory hardware
components may be combined with Android devices such as thermometers, GPS,
accelerometers, pressure sensors, and gaming controls.

5.6.2.1 Android Studio

Android Studio is the official Integrated Development Environment for developing
Applications using Android. Android Studio provides more features that facilitate
user experience while building Android Applications in addition to on IntelliJ’s code
editor and developer tools. These features include but not limited to the powerful
and fast emulator, unified environment, extensive testing tools, NDK support, C++
support, and a flexible Gradle-based build system. There are three basic elements
in each new Android Project. These three elements are resource files, source
code, and modules. Android can use one or modules such as Application, Library,
and Google App Engine modules. All Files can be founded on the Gradel Scripts
at the top level. Different kind of folders such as manifests, Java, and res can be
included in Application Module. The view of the project files can be customized so
that it focuses on certain aspects of designer’s Application.

5.6.2.2 Building Software Application Using Android

In order to create an Android, Project developer has to install Android Studio which
is the official Integrated Development Environment for developing Applications
using Android. Create a new project then enter the name and domain in the
specified fields. Keep the other options in the default settings then click next. Also,
maintain the default values in the Target Android Devices screen then click next.
Select an empty activity in the Add an Activity to the Mobile screen then click next.
Next, keep the default values in the Customize the Activity screen and click finish.
Android will open Integrated Development Environment (IDE) after some
processing. After reviewing the necessary files and making sure everything is
correct the Android project now is ready to be used. The next step is to run the
Application on a device or an emulator. The steps for running Android Application
on a device or an emulator after creating Android project are very different. To
execute the application on a real device, the developer needs to connect the
device to the development machine using a USB cable. Then, USB debugging on
the developer device has to be enabled by going to Settings then click on
Developer options. Then run the App from Android Studio by clicking on the App
Modula on the Project window the select Run. After that, in the Select Deployment
Target, select the attached device and click OK. Running an Android project on an
emulator involves more steps. The developer has to create Android Virtual Device
(AVD) in order to run his or her Application on an emulator. Then, close the Android
Virtual Device Manager window and return to project screen when the emulator

92 | P a g e

begins in order to run the Application. Then follow the same steps of running an
Application on a device to run the Application on an emulator.

5.6.3 Our Application

The main features that we are focusing on in our Application are calls, navigation,
Bluetooth. From the settings tab, the user can check connectivity to the device and
manipulate the remaining setting if he or she wants to change or reset something.
Calls and navigation will be displayed on LCD display so the driver can continue
driving focusing on the road without touching his or her phone. Also, the driver can
see notifications on the LCD display so he or she can continue driving safely.

5.6.3.1 Navigation

In present navigation is one of the most important features that are provided in any
useful application which is designed to help drivers. This technology has eased
drivers’ lives and kept many people safe. The idea behind our project is trying to
help Moto sickle’s stay safe as much as possible. By providing LCD display that
has notifications for the desired direction, the driver can focus on his or her way
without messing up with his or her phone. For now, we are thinking of integrated
this feature by calling google's maps Application on the same device that has
application in order to send data for our application which in turns will display
direction’s notification on the LCD display.

5.6.3.2 Google Maps API

Google offers developers access to their Maps API free of charge for testing, and
if the user wants to commercialize their product then they can get a paid service
for licensing. The API that they offer comes in several languages, but the one that
we are going to use is Java. With the Android Studio IDE software available to us
and a template of the Maps software they have all we need is an API key to obtain
permission to access their data. What we are planning to use is the directions API
within the overall API, which provides us the navigation that we need to help guide
the user to its destination. The companion app that we are developing will offer the
user a streamlined way to get navigation instructions while our helmet displays that
information. We are obtaining the navigation data so we push data to the display
like distance to the next turn, which lane to enter to turn, the estimated time of
arrival, and voice navigation. The API also allows us to get directions based on the
modes of transportation that they offer to broaden the application use of this helmet
for cyclists. Google’s documentation on how to use their API provides an
abundance of examples and explanations to help us develop the application.

For now, we are thinking of integrated this feature by calling Google’s Maps
application on the same device that has application in order to send data for our
application which in turns will display direction’s notification on the LCD display.
We did consider purchasing a GPS module and accelerometer and create our own

93 | P a g e

application to assist the user on the current location but that proves to not satisfy
our engineering requirements. Therefore, we are utilizing the API that Google has
so that we don’t need to invent something that is already available to us.

5.6.3 Mobile Application

In order for our project to be functioning as our group proposed, Mobile application
has to be connected to the main module. The first goal of our design is to keep
driver safe by preventing him or her from touching his or her phones while driving.
Thus, user interface is needed to facilitate mobile device connection to the main
module so driver can use the features that we are designing in this project.

The first task that need to be completed in our B.R.A.I.N. HELMET mobile
application is to check whether the driver device is connected via Bluetooth to the
main module so data can be sent from Mobile device and received by the
Microcontroller that is initially connected to the Bluetooth module. The Mobile
Application will have a button that user should click to check device connectivity.
After that user should see a screen with devices that available for connection.
B.R.A.I.N. HELMET device should be one of them. User should choose it in order
to be connected to it. After that user will see a screen with the device connection
statutes and settings. Then the navigation part should work properly after
connecting mobile device with the main controller.

The navigation part of the B.R.A.I.N. HELMET’s Application is based on
collaborating with Google’s Maps. The main idea is to set Application to work with
Google’s maps properly. Thus, the application is supposed to pull data from
Google’s Maps such as current location, direction, notifications, and the expected
arrival time. These dates has to modified and sent to the microcontroller which in
turn has to modify it and send to the user either to the LCD displayer or speakers.

5.6.3.1 Development Environment

B.R.A.I.N. HELMET’s Application will be developed using Android operating
system. Android is one of the most powerful operating systems for building Mobile
Applications. Android Studio is the platform used to build Android Apps. It has
many high-quality features that facilitate and accelerate building apps for Mobile
Applications developers and designers. Integrating Intellij IDEA to Android
Environment has added many good properties to coding and running applications.
These good properties include instant run, fast rich emulator, and intelligent code
editor. Android Packet Kit (APK) can be generated for all device types because of
Android Studio Gradle’s based property. Gradle- based builds provide Robust and
Flexible systems that can be optimized for all Android devices. Moreover,
developer can code with more self-confidence since Android provides many code
template, sample apps, and testing tools. In addition to the robust lint checks that
has 280 different checks across the entirety of the developer app as demonstrated
on Android’s official website.

94 | P a g e

5.6.3.2 Platform Choice

Android is the most used operating systems in the market nowadays. In addition
to the rich feature development environment for Android which is Android Studio,
Android is an open source Linux community which made it preferable for
developers and customers. The other choice that our group have considered is
iOS which is the operating system used for mobile devices manufactured by Apple
Inc. This operating system requires developers to purchase a license that costs
$99.00 each year. If the developer choose to purchase Apple Developer Enterprise
Program to get access to more devices, the price will be more expensive ($299.00
per year) as published on Apple’s Company website. Moreover, to develop an iOS
Application designer must have on an Apple computer while Android developers
can work on any platform. The official language for Android development is Java
which is an easy and clean programming language. The main parts of Android is
developed using Java and its Application Programming Interfaces (API) are
designed to be called from Java. The programming language of iOS and Mac OS
is C and Objective-C. The developer needs to write almost twice the code written
for Android Apps to get the same result.

Moreover, this powerful environment allows the designers to integrate with version
control tools such as GitHub. Thus, this environment is very sufficient for our
project team members so we can share code and check updates. Also, our
software team can modify and continue working on building our project application
from any place they want. The combination of flexibly and efficiency for Android
makes it the best choice for our project application which fits all the features and
capabilities that our App must include.

5.6.3.3 Use case Diagram

The main goal of B.R.A.I.N. HELMET’s Application is to establish connection with
the main module to enable data to be sent from mobile device to LCD displayer
and speakers. Once the connection is established, driver can receive notifications
for the desired direction. These notifications can be heard on the speakers or
shown on the display that is placed on front of the helmet. Driver can drive safely
by watching signals on the LCD screen or hearing it on the speakers without
touching mobile device.

First of all when user open B.R.A.I.N. HELMET’s Application, three options will be
displayed on the screen. User needs to connect device to the main module to
enable the functionality of the App. By tapping on connect to device, user should
see a screen that has all Bluetooth connection devices. B.R.A.I.N. HELMET’s
device should be one of them, so user should select it. Now the Application will be
ready to send sound streams or string streams to main module. Main module will
be responsible after that to transfer these data to LCD and speakers.

95 | P a g e

Figure 42 - BRAIN Helmet's Application Use Case Diagram

5.6.3.4 API Levels

In order to build a useful Application for users API version has to be chosen
carefully. Each new project on Android Studio has certain setups that must be done
in initial setup for the project. One of these important settings is selecting the form
factor that your App will run on. For this project we have chosen our Application to
be run on phones and tablets. After that designer has to choose the level of API
that identifies the framework API revision offered by a version of the Android
platform. The basic role for choosing the API level is that lower levels of API target
most devices but have less features available. Most recent versions have more
features, so less code and testing will be needed. Developer should design an
Application that can be used by many users. Also, designers should not use the
very old versions of Android since not many users still have these devices.
Moreover, newest API levels are not held by many users yet. Thus, choosing the
median of these levels will be a smart choice since developers do not want to write
any useless Applications. For example, if developer choose API 8, 100% of
devices will be covered involving good features for developer. API framework’s
includes a set of Intents, a set of XML elements and attributes, a set of permissions
that applications can use, and a core set of packages and classes. API updates
should be included in each consecutive version of the Android platform.

96 | P a g e

Design of UI of HUD

Figure 43 - Original HUD GUI Sketches

The three images above are another rough sketching the minimalistic themed GUI
the BRAIN Helmet users will have. It will only display a few items to reduce the
time the driver takes his or her eyes away from the road and look at the screen.
The information will take the entirety of the screen. When we start programming
the interface, a single button will be implemented and placed next to the screen to
allow the user to change screens.

5.7 Summary of Design
The design for the Android application will be minimalistic and will help users of
any age to be able to connect to the helmet, get directions to their destination, and
drive there. The interface for the HUD display will have as little information as
possible so that the user can take the minimal amount of time looking at the screen
and keep the eyes on the road.

6.0 Project Prototype Construction and
Coding
The design of the system was a demanding task, but the following section will be
a brief description of the final design and software design of how it will be
implemented into the BRAIN helmet. The integrated schematic was done on the
program Eagle, made by Autodesk. The software is on the Microcontroller
Processor and the Android App Developer.

6.1 Integrated Schematics

The design for the BRAIN helmet schematic was done in the AutoDesk program
EAGLE. This program is used to build schematics for PCB design as well as the
design for the board. The program is easy to use and very efficient when it
comes to designs of your own system. Designing the system, the libraries for
each individual piece had to added into eagle in order to get that part within the

97 | P a g e

system. Figuring out the pin layout was the most tedious task, but it was
accomplished. This design will be tested with breadboard testing and that will be
explained later within the paper.

When coming with the design for the BRAIN helmet, the first objective was to figure
out the pins for each set up and how we were going to transfer data between each
piece of equipment. In our design, we have the RN52 Bluetooth module, the
Atmega2560, a charger for a Li-Po battery, a 3500 mAH Li-po battery, a OLED
display (0.96 inches), speakers, electret microphone, and switches and LED’s.
Each device has its own purpose within our system. The bluetooth module will
handle the wireless communication between the android phone and the app from
the android phone. The atmega will handle the signals read from the bluetooth
module and display what is needed on the OLED display. The LED’s in the system
will be implemented to be able to know if the bluetooth module is connected, or
has been connected with a wireless device. The charger, will allow the charging of
the power battery for the system.

Designing this schematic, we had to keep in mind what pins will be connected in
order to communicate with each other. The hardest connection was the connection
between the bluetooth module and the microprocessor. We didn't know if we want
to use UART or GPIO pins between the two. Once we figured this out, the
connections between the two devices was made and signals would pass through.
The system will be powered by a Li-Po battery that would be producing 3.7V-4.2V(
even though the most we need was 3.3V) to the bluetooth module, mic,
Microcontroller, and the OLED display. This battery should last over 30 hours on
a complete charge; though the possibility of varying due to future features is a likely
future plan. We will be integrating this schematic onto a printed circuit board inside
of a 3-D printed case and attaching it to the exterior of the motorcycle helmet. The
below figure is the final Schematic.

6.2 PCB Vendor and Assembly
The final design of our system will be implemented into a Printed CIrcuit Board.
The use of a printed circuit board is so that the connections between the main
devices will stay soldered together and will last a decent amount of time. Usually
these boards are designed through software such as Eagle Cad, and then sent to
PCB Vendors who then print the board. The exact holes and connections from
your eagle file will be implemented exactly the way it is sent on your file. The
vendors do tests on the connections from one slot to another but as in if the system
we are implementing works will be dawned upon ourselves. There are many
different vendor and assemblers for printed circuit boards. There are two main PCB
manufactures that were compared. Once is from elecrow, and the other
mypcbway. Both of these manufacturers you send the files of the PCB Design and
then depending on how many you want, they will send back your specified PCB.

98 | P a g e

Figure 44 - Final Schematic

Elecrow is a PCB manufacturer that operates online. They have a wide range of
options when it comes to PCB assembly. They have a 4-6 day lead time once the
order is sent in. The steps to fabricate a PCB are simple, just following a step by
step instructions from the website. First you must design your gerber files on eagle,
then you send it in. You must decide the dimensions of the pcb after this, when
selecting more than 50 fabrications, it would be wise to choose a default size of
PCB. In our case, this doesn't matter because at most we will order 3 PCB.Then
you can pick the color of the PCB that it will be printed on, in our case we will be
using green. Then you can choose what panelization that will be done on the
design file. The swift return of the PCB from elecrow would be the main reason we
would use this PCB assembler.

PCBway is another PCB manufacturer who has been in the business for up to 10
years. They are known for the easiest and most interactive PCB design company
in the world. There is an available instant PCB quote. They also have a system to
watch your PCBs on route to the designer, as well as updates on the work on your
PCB is going. PCBway uses many different inspection equipment when testing
such as Flying Probe Tester, X-ray, and Automated Optical Inspection Machine.
The facility has many engineers working to make sure the PCBs are good for even
their work. They are also known for their short lead time, due to this they have a
dependable on time ship time. The price of on PCBway is a fraction of the cost
compared to american and european PCB assemblers. There is even a refund and
return policy for hiccups within their exports.

99 | P a g e

We plan to use one of these two PCB assemblers, they have both great reviews
and lead times so depending on price quotes when we finish the PCB design. We
are leaning more towards PCBway, but it can change in Senior Design II.

6.2.1 PCB Design

The design of the Printed Circuit Board of our system will be created in the program
mentioned in a previous section Eagle. We will use this software to design the final
schematic of the circuit as well as go through the trials of designing a printed circuit
board. In order to test the multiple features we wanted to include on the BRAIN
Helmet, we designed and tested three separate PCBs. The first of which was with
the original RN52 Bluetooth module. Following our change into using two modules;
Bluetooth Low Energy and Bluetooth Classic, we decided to then move onto our
second printed circuit board. The second printed circuit board consisted of the
BC127, Atmega2560, buck convertor voltage regulator, and buttons. The final pcb
consisted of breaking the second pcb into a main pcb and a button pcb to be placed
on the side of the helmet. These board files are known as GERBER files and are
different from the schematic files in Eagle. These are the actual files that will be
sent to a PCB assembler such as PCBway, and then they will assemble our design
of the PCB so we can test our system. These files lay out the certain specifications
for board manufacturers. The GERBER files are written in a readable ASCII format,
that will be used to develop certain features of the system that we need on the
PCB. We will be using the latest version of layout program known as RS247X. The
difference between the RS247D and RS247X is the specificity of each type, the
“X” version is the newer, and more specific on the design. So, in our case it would
be better to go with this layout due to the system to be more precise, which in turn
lead to a better result. This standard includes, embedded format, embedded
apertures, custom aperture definitions, film control statements, multiple layers
embedded into a single file, and special polygon fill commands.

The composition of a PCB and the different layers on it, play a huge part into how
the design of a PCB is manufactured. There are many different layers when it
comes to a PCB, such as the copper layer, where the actual signals will be
conducted throughout the board. The insulation layers that protect these copper
layers, and then they are covered with something that is called the solder mask.
This solder mask is what gives the color to the board itself, such as green, red or
blue. Most manufacturers, use different colors based on what is available, for
example it is free for a PCB to be blue or green with the manufacturer known as
PCBway, but it costs extra to have either red or black boards printed. The last and
final layer of the PCB is the silkscreen layer, which is used to add text and logos
on top of the PCB.

Within the program, we are using to design our PCB, it has defaults for these
different layers. Here is a table of the layer, its color, and its purpose.

100 | P a g e

Table 16 - PCB Layer Design Descriptions

 Color of Layer Layer Name Purpose of Layer
Red Top This is the Top layer of

Copper
Blue Bottom Bottom layer of the

Copper Layer
Light Green Pads Through Hold pads, it will

be exposed copper on
both top and bottom

Light Green Vias Holes that are covered by
solder mask, has copper
on both top and bottom

Dark Yellow Unrouted Rubber band like lines
that show which pads
need to be connected

Grey Dimension Outline of the Board
Yellow bPlace Silkscreen printed on the

bottom of the PCB
White tPlace Silkscreen printed on the

Top of the PCB
Grey tStop Stopmask, is where

solder mask SHOULD
NOT be applied (top)

Grey bStop Stopmask, is where
solder mask SHOULD
NOT be applied (bottom)

The different layers of the PCB include the copper top and bottom, the solder mask
top and bottom, and the silkscreen top and bottom. The copper layer is an
important layer of the PCB due to it being the conductor or “wire” of the PCB. The
copper layer is usually the first layer to be recreated from the GERBER files. For
the top copper files, the extension is .cmp, and for the bottom copper files, it is.sol.
There are different methods for the copper layer of the PCB manufacture, there
are large volume, small volume and Hobbyist. The difference in these methods are
the number of items being put into the PCB itself. For PCB’s with bigger features,
the silk screen printing method is used for large volume. For small volume, usually
laser resist ablation, and PCB milling. For the Hobbyist level of PCB
manufacturing, there is a different approach, and that is laser printed resist. This
method is used to use heat transfer with an iron to bare laminate.

There are other methods of PCB manufacturing such as subtractive, additive and
semi-additive process. The subtractive process removes copper from the entirely
copper coated board, to make sure there are no unwanted copper. In the additive
method, the copper pattern is electroplated onto a bare substrate. The good thing
about the additive process uses less material and less waste is produced. Semi-

101 | P a g e

additive is used in most PCB manufacturers, where the un-patterned board has a
thin layer of copper already on it. A reverse mask is then applied, and then addition
copper is then plated onto the board in the unmasked areas. Then the copper may
be plated to any desired weight, Tin-lead and other plating are then applied
afterwards. The drilling of a PCB is also necessary for certain applications of the
board. The PCB will be drilled with a drill bit coated with tungsten carbide. This
element is recommended since many of the PCB materials are abrasive and
drilling requires high amounts of RPM. These holes are usually drilled by
computers that are reading computer generated files known as NCD files. The
NCD file is basically the blueprint that describes the location and size of holes that
must be drilled into the PCB. These holes can be made to be conductive, by
electroplating the metal eyelets, to connect board layers together. Most conductive
holes are intended for the insertion of a through-hole lead. When vias are required,
they aren’t drilled using the conventional method, they are drilled using lasers. For
multi-layer boards with three or more layers, drilling will produce smear of
decomposition products when the hole is plated through. Etch-back is used
chemically with a potassium permanganate. This etch-back process removes resin
and glass fibers so that the copper layers extend into the hole.

A solder mask layer or solder stop mask Is a thin layer of polymer that is applied
over the copper layer on a printed circuit board. This mask layer protects the
copper layer from oxidation and to prevent solder bridges from forming between
closely placed solder pads. A solder bridge is an unintended electrical connection
between two conductors, by the means of solder paste between two pads.
Printed circuit boards use solder masks to prevent this from occurring. These
masks aren’t uses for breakout boards, but used for mass produced boards that
are soldered automatically using reflow or another soldering technique. A solder
mask comes in different media, depending on the application. The lowest cost
solder mask is an epoxy liquid that is silkscreened through the pattern onto the
PCB. Others include liquid photo imageable solder mask or dry film photo
imageable solder mask. These processes typically go through a thermal cure
after the pattern is defined. This solder mask is used to protect the copper layer
of the PCB in order to keep the solder and connections between the solder and
copper from every causing a short or shunt within the system.

6.2.2 PCB Fabrication

Once the GERBER files that were described in layers in the previous section, the
actual fabrication process will take place at a PCB manufacturer. This section will
explain the basic manufacture process that takes place. The first step will be
choosing a PCB manufacturer. In our case, we will be going with PCBway. How
the PCB manufacturer starts is usually with a transfer of the files that are sent from
us the designer. The manufacturer uses a DMF check, then they laser print using
very precise printing technology to create highly detailed film of the PCB design.
After the precision prints are created, then comes the copper layering. In this step,
cleanliness is of upmost importance due to the fact that the copper is where the
current passes through the system so this layer is crucial for the whole system to

102 | P a g e

not create any shunts anywhere. Once the copper is laid out, then the board
receives blasts of UV light onto it. This light will pass throughout the board hardens
the photo resist that is underneath the copper. Once the board is done, it is washed
in an alkaline solution that will remove any left photo resist material. Then onto the
drilling explained earlier for the holes of the circuit. To remove any unwanted
copper from the board, there is a copper solvent that removes any excess that isn’t
covered by photo resist. Then another solvent is used again to wash the board one
last time, and now a board with a perfect protected copper layer is left. The
alignment of holes must be ensured to make sure that the drilling process doesn’t
ruin the board. Once the layers are placed together, it is impossible to correct ant
errors on other layers. The last step of PCB fabrication is when all the separate
layers of the PCB are bonded together. They are inspected by a technician, then
can be bonded together. This process is known as PCB prepreg. During this
process, the layers are placed over each other and then pressed together. It is
basically a PCB sandwich. The board is done with the actual assembly of the
board. The rest of the process deals with steps with for aesthetic purposes such
as labeling of certain parts on the PCB. This process depending on how big the
PCB can take up to 5 days at certain manufacturers.

6.3 Final Coding Plan
This section contains the main functions that we are planning to include in the code
for our Application. There are three main features that we are planning to integrate
on our application. These three features are Bluetooth connection, navigation, and
phone calls. First of all the Bluetooth connection must be established in order for
the remaining features to function. On Android Studio every new task added is
called Activity. For example the main screen of the application is an Activity. Then
if the user click the button of Bluetooth Connection a new activity will show up.

6.3.1 Coding Plan for Bluetooth Connection

This function is responsible for setting the Bluetooth connection for the application,
so Mobile device will have a wireless connection with main module. This method
will start by asking the user if this application can have access to the device. Then
it will ask the user if the application can turn the device Bluetooth on if it is turned
off. Then this method should look for all the available devices and list it on a screen
for the user. User should be available to pick any device from the devices that are
listed on the screen.

First of all the Bluetooth permission must be declared in order to perform any type
of Bluetooth communication such as looking for a connection, receiving and
transmitting data. Thus, developer must add both BLUETOOTH and
BLUETOOTH_ADMIN permissions in order to use Bluetooth features and set
device discovery. After that, Bluetooth Adapter must be initialized which is required
for all Bluetooth activities. Then the Bluetooth must be checked by calling

103 | P a g e

isEnabled () function which returns a Boolean value either true or false (enabled
or disabled).

Then in order for your mobile device to scan and look for devices, startLeScan ()
method must be added to the code. This method looks for available devices for
connection and let you know the result by implementing LeScanCallback () to
return the scan results. After that programmer must set the connection with
Generic Attribute Profile (GATT) server to read and write BLE Attributes. This is
our software team coding plan to establish Bluetooth connection which can be
reviewed on Android official Website with all steps and required functions.
Google’s play services SDK kit must be installed.

6.3.2 Coding Plan for Navigation
Our navigation function is based on Google’s Maps. Android Studio is prepared
with all the necessary development Environment to build Applications that depends
on Google’s maps for finding directions. There is a ready Google Map Activity on
the main screen for activities.

Purpose for navigation feature in our application is to help driver get notification
that direct him or her to the desired destination. Our Software team has already
started writing the code for our B.R.A.I.N Helmet project application. They have
decided to choose an empty activity on Android studio and build the navigation
part by part. First, they have written the code to integrate Orlando’s map to the
main screen. Then, they have designed a menu that contains three main option
which are: location, destination, and calculating the root. User should enter his or
her current location on the specified field. Then, user should enter the address of
the desired destination. Finally, the user should choose calculating the root from
the desired menu on order to calculate the root for him or her. Finally, user should
be able to see a blue line starting from user current location connected until the
final location. After that, driver should get a turn by tur notifications which are
displayed on the LCD displayer and transmitted to the speakers. Software team is
working to get this part done which means they are done with programing this part
of the application so they can move on and start programing receiving and
answering phone calls.

6.3.3 Coding Plane for Phone Calls
There are built-in application for phone calls provided by Android. For this part of
the application we need Android CALL_PHONE permission. Also, we need
ACTION-CALL and ACTION-DIAL to activate built in phone call functionality
accessible in Android devices. This is the main things that we are planning to
integrate in our Application. For sure, many other things have to be manipulated
and added to the code in order for everything to work together correctly at the end.

104 | P a g e

6.3.4 Code Plan Summary
All the steps that are needed to set the Bluetooth, Navigation and any other feature
that we are planning to include in our Application are listed and demonstrated on
Android official website. Software team is trying now to train themselves and follow
all perform all tutorials listed on Android Website in order to be prepared to write
an efficient and functional Application. This activity has google_maps_api.xml and
the MapsActivity.java files ready to edit. There are certain instructions to get
Google Maps API key to access Google maps Server. This is our plan to develop
this part of the application. Android official Website has all the important guidelines
and steps if we need any further assistance.

7.0 Project Prototype Testing Plan
The BRAIN helmet design once implemented needed to be tested. The parts
individually were tested before being implemented into the system as well as the
system as a whole. The design was tested in phases, such as the bluetooth module
pairing, Microcontroller and OLED displaying, and android app communication.
These had to be tested before being integrated together. The following is an
explanation of how each device is tested and in different environments.

7.1 Hardware Test Environment
The hardware for the BRAIN Helmet system needs to be tested before being
implemented into the entire PCB. The following section is a detailed description of
how we tested each main device before testing it as an entire system. Many of
these tests took place in UCF labs; including open labs and the Senior Design Lab.

7.1.1 Initial Development Test Environments
The BRAIN Helmet hardware primarily consists of the electronic group and a
casing that attaches to the helmet. Prior to the development of the final PCB build,
the subsystems of the electronic group will be constructed on breadboards in order
to ensure proper connection between pins and test of appropriate voltage ranges
and proper interaction over the Bluetooth connection between the Bluetooth
module and the android device. During this initial designing phase, subsystem
group members conducted tests at labs at UCF with available digital multimeters,
power supplies, and breadboards. Additional testing took place at personal
residences with mini-breadboards and handheld digital multimeters. After
subsystems tests prove conclusive, the breadboard version of the BRAIN helmet’s
electronic group will be assembled in a UCF lab to continue testing, fine-tuning,
and finishing the necessary BRAIN Helmet android application and microcontroller
programming for the Heads-UP Display.

105 | P a g e

7.1.2 Post PCB Test Environments
Once the PCB is fully built and assembled with the motorcycle helmet, the helmet
will have its integrated features tested in multiple environments. The first of these
environments will be the senior design lab at UCF. Shortly after, tests will be
conducted in moving vehicles with the BRAIN Helmet in the passenger seat and
on bicycles. After repeating successful tests, the helmet will be tested on an actual
motorcycle.

7.2 Hardware Specific Testing
To make our system work we have to manufacture a way to test the system to see if it
meets our requirements. For each subsystem explained we have a way to figure out ways
to see if the system works.

7.2.1 Power Supply Unit
The power supply unit has been monitored for proper voltage and current values.
This entails the initial voltage coming directly off the battery from ~3.7V - 4V and
the regulated voltage once tied to the voltage divider at 3.3V. In terms of purely the
power supply unit, the current being drawn into the battery was additionally
monitored through the Micro-USB to JST Lithium-Ion battery charger to ensure the
Adafruit 328 was not being charged at a current rate that would cause damage to
the battery. Therefore, the charging current into the Adafruit 328 was monitored to
be less than or equal to 500mA. Once the power supply unit is entirely connected
to the rest of the BRAIN Helmet’s electronic group, multiple tests will be conducted
to ensure the BRAIN Helmet provides users with an ample amount of usage for at
least 6 or more hours.

7.2.2 Bluetooth Unit
To test any of the commands or other uses of the Bluetooth Module, we must first
be able to connect it to our device. We do this buy powering on the Bluetooth
Device via 3.3 V from a power supply, and then we should see the LED’s hooked
up for configuring. The two LED’s are set up for when activated, flashing or off
signifies a certain action is available with the Bluetooth Device. The following is a
table that shows what the LED’s are doing for certain actions:

Table 17 - LED Interface

LED Status Description

LED0 and LED1 Flashing The RN52 is discoverable to a device

LED0 only Flashing The module is Connected

106 | P a g e

LED Status Description

LED1 only Flashing The module is Connectable

The Bluetooth Module must be tested to make sure when connected wirelessly the
pins are correctly sending to the MCU and then the MCU to the HUD for us to test
this, we must simply hook up the RN52 to a MCU and give it commands such as,
play, pause, or stop, when the Bluetooth device is paired with a phone, these
commands will then tell when to play, pause, or stop the music streaming from the
phone. The testing for the Bluetooth Module will also include the pairing of both
android and iOS devices. We do this by connecting an android phone, in our case
a google Pixel, and an iOS phone, an iPhone 7 Plus. These phones connecting
would mean the profiles within in the firmware of the Bluetooth Module are up to
date and able to pair with any big phone manufacturer. When testing the speakers
of the system, we first pair the phone, then play music to the device. Once the
music is playing, we cover the speakers with cloth in order to simulate how it would
sound inside the helmet, to see if the sound quality was good enough to even hear
through the thick layering of the Motorcycle Helmet. When testing the speakers,
we can apply an external amplifier to clear the static that might be being outputted.
Qualitatively, the speakers sounded well when not moving, but also since the user
will be moving, we tested the Sound quality on a bicycle to test if the sound of the
music was any different. To test the microphone of the system, we just wire the
Bluetooth System, and to make sure the microphone itself is working, we use an
oscilloscope to read the waves that are being generated from our voice. We also
must test if the microphone will have lots of noise and how it deals with the noise,
because this mic will be placed inside of a motorcyclist’s helmet, who is moving at
a high velocity, which means the air around will cause interference when it comes
to noise around what really needs to be picked up. So, when testing we ride a bike
with the microphone covered to see how the riding affects mic quality. Also, we
connect to the Bluetooth Device and to check if the mic works and phone calls can
be answered, we use the Bluetooth connected device to call another phone and if
we can go through with a regular phone call than we should be able to hear within
the helmet. We must make sure to test that the mic would be able to be heard
when covered due to it also being under a layer of cushion that will be layered for
the safety inside of the motorcycle helmet.

7.2.1 Navigation HUD
To test the navigation system on the app, the display should change based on the
current location on the user. While the user is driving, the display should poll the
data from the app and discern the code received from the app. When the user
pressed the button, the display should change and update the display based on
the variables on the software.

107 | P a g e

7.3 Software Test Environment
Android Studio is the official building environment for Android Applications. Android
Studio is designed to give the programmers a great experience by providing many
features and testing methods. There are two different types of testing that can be
made using Android Studio. Programmer can test the code by creating a JUnit test
that runs on the local JVM. Also, the Application can be tested directly on mobile
device.

In order to test our software application, software team will do continues testing on
Android Studio emulator. Also, they will do some direct test on the mobile device
itself between each new stage and progress they will make on the application.

7.3.1 Test types and location
There are different locations for tests that can be made on Android Studio
depending on the type of test that programmer needs to perform. The source code
and source sets are provided by Android Studio on their official website. The two
types of tests that Android contributors can implement are:

7.3.1.1 Local Unit Tests

These tests can be performed on the programmer’s computer by (JVM) Java
Virtual machine. It is located at “module-name/src/test/java/.” as demonstrated on
Android Studio Website. These tests are useful when there is no limitation on
Android Framework to minimize the execution time of the program. One of the
standard mocking libraries is used by this test since a modified version of
android.jar is used which includes stripped off final modifiers. These tests are
designed for testing programs that required integration and functional user
interfaces to test user interaction.

7.3.1.2 Instrumented Tests

These kinds of tests are the ones running on an emulator or hardware device. The
Instrumentation APIs must be accessed to enable information access to some
main parts on the Application. Also, it enables the programmer to control the
Application under test from your test code. These tests are located at module-
name/src/androidTest/java/.as demonstrated on Android Studio Website. It has its
separate AndroidManifest.xml file since it’s built into a different APK from the
application APK.

7.3.2 Add a New Test

Tests can be created for a specific class or method. The new tests can be either a
local unit test or an instrumental test. There are some steps that have to be
followed in order to create a new test:

● Open the java file that you want to test it

108 | P a g e

● Determine the part of the code that you want to test and click (Ctrl+Shift+T)
● Choose to create new test from the menu that appears
● Create test dialog will appear, select any methods to generate and edit any

fields then click ok.
● Choose Destination Directory dialog will appear, for instrumented test click

androidTest and for local unit test click test then click ok

7.3.3 Run a test
There are some steps that have to be followed in order to run a test:

● Click on Sync Project on the toolbar to make sure that your project is
synchronized with Gradle.

● Run your test by either: right click a test and click run in the project window,
or by right click a class or method in the test field from the code editor and
click run to test all methods in the class.

7.3.4 Import Test Results

On the Android Studio Website, there is description on how developer can view
test results. There are two simple steps that must be performed which are:

● Choose Import Test Results.
● Choose the file that you want to import from the drop-down menu which will

display the results on the Run window.

7.3.5 Export Test Results
The test results can be exported in XML or HTML format by doing the following
steps:

● Choose Export Test Results.
● Edit the settings as you need from the Export Test results dialog, and click

“ok”

7.3.6 Android App Testing
To test our application a real Android Mobile device will be used. Any android
device that is 5.1 or higher will be good to test our application since the API we are
choosing is 21 API level. A real-time testing on the Android phone will be done
continuously to check our application. Moreover, the application will be connected
to the main module via Bluetooth and tested too. By testing application on the
Android App directly developer can see the actual design of the application and do
a real-time testing by interacting with the application by tapping, entering, and
changing information on the application. Our application will display three main
features on the main screen the user can tap and choose what he or she needs.
For the navigation part, the user is required to enter his or her current location and
enter the desire destination. After that the user is required to tap into the calculation
route field from the navigation menu in order to get the directions. By doing these
tests and interact with the application directly developer can improve the

109 | P a g e

application and debug it easily since they can try and see all the mistakes that
must be fixed or avoided.

In order to test Application on the Android Mobile device directly some easy steps
must be followed to configure the phone and set it ready to test the application.
These steps are listed below:

 The USB debugging must be (turned on) on the Android Mobile Device.
This feature is mostly used for Applications debugging. Thus, the user can
keep this feature on all the time, but if the user is concern about security,
Bluetooth debugging can be turned off while not debugging applications.

 Double click the AndroidManifest.xml file in the current project’s of the
package explore.

 Then choose True from the debugging drop down menu which will enable
Android tools from checking the run of the application.

 Then select file and save the new AndroidManifest.xml file.
 Based on your type of computer set it to communicate with the Android

Mobile Device.
 Connect the Mobile Device to the configured computer by a USB cable.
 Finally, choose the device and run the project from the green play button.

The developer should see the actual application displayed on the mobile devive.
Then the developer can directly interact with application and test all the features it
has. If the application crashes for any reason the developer can set the debugging
point at any line as needed to test the part that need to be fixed. The developer
can disconnect the device from the computer to stop connection. To safely remove
the device from your computer do not just pull out the cable. Instead open finder
on your computer and search for the device under devices, then click on the eject
button next to the device name. When the device disappears, pull out the cable
from the device.

7.3.7 Software Testing Summary
After having a good understanding of these two-different kind of tests that are
provided by Android Studio. Software team has decided to perform Instrumental
Tests since it’s more relevant to our application. The software application that we
are planning to design require user interaction. Thus, the tests will be performed
on an emulator or on the mobile device itself. All of this information are
demonstrated and explained on android studio

7.4 Software Specific Testing
Software Application must be tested before submitting final product to be evaluated
by the faculty. In order to test this Application Android Studio will be used as
demonstrated on the previous section. Software team will perform continuous tests
by using emulator provided by android studio. Also, Software team will purchase

110 | P a g e

or use one of the team members Android mobile device since it is one of the good
testing environments.

Since we are integrating many important features into our application, Software
team has started building Application. Building application will require them to have
good experience writing code in java and using Android studio. If the coder has
good experience with java building application will be much easier since Android
studio is based on java with some more functions and coding tricks that developer
must be familiar with. Our Software team could successfully finish one little part of
the application which is creating the main activity that has our application main
features which are: bluetooth Connection, Navigation, and phone calls. We could
successfully set the Bluetooth discovery as demonstrated on the following section.
The remaining functions will be tested using the same methodology by using
Android mobile device and checking the functionality of the part being tested.

7.4.1 Bluetooth Device Scanning Testing
This is an initial testing for Bluetooth scanning functionality. After the Bluetooth get
access to the device and making sure that Bluetooth is turned on. The next thing
is searching and scanning for devices. As shown on the figure, all the available
devices are listed on the screen. Thus, we can say that this part of the application
is working correctly. Our main module Bluetooth is not ready yet or it should appear
as one of the available devices on the screen, then user should choose our
B.R.A.I.N Helmet device in order to establish connection. After that data can be
received and sent forth and back between Mobile device and main module. Driver
will be able to get navigation notification and phone calls efficiently.

Figure 45 - Scanning Bluetooth Devices

111 | P a g e

7.5 B.R.A.I.N User Troubleshooting Tips
These are some of the tips that we are provided for our B.R.A.I.N. HELMET’s
device users, so they can have some suggestion to solve some problems and
difficulties that they might face. This will assist not only the development and
testing of the BRAIN Helmet but additionally work towards the future final
troubleshooting guide for BRAIN Helmet users.

Table 18 - Troubleshooting Table

Issue Troubleshooting Steps

The device does not power on Open the BRAIN Helmet Electronic
Group to check all wires and make sure
of the connections. This is to rule out
faulty hardware

 Disconnect and replace the Lithium-Ion
rechargeable battery via the JST
Connection

 Make sure the battery is working with the
required voltage; LEDs not turning on will
be a full sign of failing voltage.

The Mobile Application does
not connect to the device via
Bluetooth or does not sync in a
reasonable time

 Check the Bluetooth connection settings
on the application.

 Disconnect the device and try to connect
it again

 Disable existing Bluetooth connections
to any media capable devices already
connected.

 Turn off the device and then restart the
android device and attempt to reconnect

 Restart the BRAIN Helmet

The LCD displayer does not
display the signals.

 Check connection and any loose wires
 Check the power connection
 Refer to battery replacement above

The speakers are not clear Check the helmet padding for
obstructions

112 | P a g e

8.0 Administrative Content
This section includes all the administrative parts that are related to our project.
Starting from the milestones and how we divide that main tasks and responsibilities
between us. Followed by project management methodology that we have followed
in order to ensure success for our project. Finally, we have discussed finance and
budget that we have proposed for our project. All of these sections will be
constantly updated through Senior Design One and Two as the BRAIN Helmet
proceeds through design, implementation, and testing.

8.1 Milestone Discussion
This section demonstrates the main tasks that we have to complete in order to
reach to our final goals for the BRAIN Helmet. These tasks have been divided
between the members of this group based on many factors that includes skills and
major. It is common practice that the Hardware Team will work together on their
tasks and the Software team additionally on their tasks together. Also, there are
tables provided to demonstrate these tasks based on certain deadlines that must
be completed on or before these dates.

8.1.1 Milestones
In this part, we will discuss our individual milestones tables that we have created
at the beginning of senior design one. These tables will basically show the
responsibilities and achievements that each group member will accomplish based
on clearly determined dates that group members have to follow. This also includes
some plans that we have made for Senior Design Two, so we can go ahead and
start working since there is a lot of work that has to be done. The due dates are
not determined yet for Senior Design Two. However, we as a team know the basic
parts that we can start working on it. Thus, being a little bit ahead can give as a
chance to start working on the PCB layout.

Milestones table will show the tasks which each project member has to achieve
and the due dates for the completion of each task. Before determining milestones,
we have met as a group many times to determine the project idea we did a lot of
research until we have decided on one idea that we like as one team. Also, as a
group, we met to discuss our project name and the features that we are supported
by this project at the end of this project. We have also met many times to decide
which parts do we need and who will be in charge of each part which ended up by
dividing responsibilities between us and creating our milestones’ tables.

113 | P a g e

Table 19 - Jordan Yamson's Milestones

Objectives Duration (Days) Achievement
Date

Research Bluetooth modules RN52, HUDs,
Batteries, and Power

14 June 15th, 2017

Research accessories to recharge batteries 14 June 15th, 2017

Assemble the Bluetooth Module RN52 with
4-ohm speakers and power supply as input
voltage

2 June 24th, 2017

Test the Bluetooth Module RN52 with 4-
ohm speakers and power supply as input
voltage

2 June 28th, 2017

Purchase 16-ohm speakers to test
additionally

1 June 17th, 2017

Solder wires to Bluetooth module RN52’s
breakout board for further testing

2 June 29th, 2017

Table 20 - Ryan Mortera's Milestones

Objectives Duration (Days) Achievement
Date

Research Bluetooth modules RN52, and
Power

14 June 15th, 2017

Assemble the Bluetooth Module RN52 with
4-ohm speakers and power supply as input
voltage

2 June 24th, 2017

Test the Bluetooth Module RN52 with 4-
ohm speakers and power supply as input
voltage

2 June 28th, 2017

Purchase Bluetooth Module 1 June 17th, 2017

Solder wires to Bluetooth module RN52’s
breakout board for further testing

2 June 29th, 2017

114 | P a g e

Table 21 - Stephan Morale's Milsetones

Objectives Duration (Days) Achievement
Date

Assemble the Bluetooth Module RN52 with
4-ohm speakers and power supply as input
voltage

2 June 24th, 2017

Test the Bluetooth Module RN52 with 4-
ohm speakers and power supply as input
voltage

2 June 28th, 2017

Purchase 16-ohm speakers to test
additionally

1 June 17th, 2017

Solder wires to Bluetooth module RN52’s
breakout board for further testing

2 June 29th, 2017

Table 22 - Nada Algharabawi's Milestones

Objectives Duration (Days) Achievement
Date

Research Wireless Pieces and Building
Software Applications

14 June 15th, 2017

Research Software Prototypes 14 June 15th, 2017

Deciding which environment to use for
Software Application

2 June 28th, 2017

Design the prototype for Mobile Application 1 June 17th, 2017

We have also placed some of our future plans for Senior Design Two. We have
determined the steps that need to be accomplished in chronological order and
assigned each of us the necessary tasks that need to be completed individually or
as one group. In Senior Design Two, the hardware team and software team will
work more separate than in Senior Design One. Goals will be set for both teams
and it will be to the team’s discretion who works together or separate on that
indivdual task. Group meetups and discussions will take place regularly in person
and electronically to ensure proper progress and to do cumulative testing of all
subsystems and eventually the final product. The following two tables are currently
under work but are the tables to be updated in Senior Design Two.

115 | P a g e

Table 23 - Senior Design Two Documentation and Presentation

Senior Design Two

Documentation and
Presentation

Complete Date Person in charge

CDR Presentation Sept. 22nd Group

Conference Paper Nov 17th Jordan Yamson

Middle Term Demo Nov. 1st Group

Final Paper Dec. 4th Jordan Yamson

Final Demo Nov. 29th Group

Final Presentation Nov. 29th Jordan Yamson

Exit Interview Dec. 5th Group

Table 24 - Senior Design Two Fabrication and Evaluation

Senior Design Two

Fabrication and
Evaluation

Complete Date Person in charge

Software Prototype 9/30/2017 Software Group

Hardware Prototype 9/30/2017 Hardware Group

Assemble 10/31/2017 Group

PCB Design 8/31 Hardware Group

PCB Layout 8/31 Hardware Group

Revisit Specs 9/27 Software Group

116 | P a g e

Senior Design Two

Fabrication and
Evaluation

Complete Date Person in charge

Robustness Testing Oct. 30th Group

Improvements Oct. 30th Group

8.2 Project management
In This section, we will go over roles distribution in our group and the structure of
our project. Also, we will cover our individual milestones for Senior Design one and
Senior design two in tables that show the tasks and the proposed completion date
for each one. In this section, we will also take a look at how we managed our
project-based on Finances, budget, and division of labor.

8.2.1 Management Plan
Project management is one of the important basics that any group needs to
understand and follow properly. A project management plan should be determined
by the beginning of the project, and all project members should understand it and
follow it continually in order to succeed. All successful project management discuss
group member’s roles, project finances, project constraints and many other
essential building blocks. One of the advantages of project management is splitting
the responsibilities and roles of the project between project members. In this way,
each member of the group will be assigned some work he or she has to complete
in a certain time of a clearly determined schedule. Having a clearly determined
schedule will motivate members to work hard in order to keep up with submission
dates which will ensure that the project will be complete at the determined time.
However, each group member has some strengths that make him or her qualified
for some responsibilities more than the other group members. Thus, group
members have to discuss their skills, strengths, and weaknesses so they can split
the work based on this information. Some team members might have common
skills and strengths especially if they are studying the same major. In this case,
they can share some of the responsibilities, or the can divide it between them
depending on what they like to do more. Also, some of the group members more
cooperative than the others, so they do not mind doing some extra work that helps
the project to proceed well. Moreover, in every new project, there will be some new
things that group members do not know well or have to teach themselves how to
do it or use it. In this case, these responsibilities have to be distributed between
them even if they do not have any experience with it. Thus, not all work will be
based on something they like or have excellent skills on it, but it also will be on
something that project requires or need in order to be done.

117 | P a g e

Another important thing that needs to be covered in the project management plan
is the finances. Finances are one of the important things that have to be
determined clearly at the beginning of the project. Each group member has a
different amount of money that he or she is willing to pay for the project depending
on their income and other reasons related to their social lives. Thus, after doing
some research on the required parts they need to be ordered, manufacturing costs,
and calculating everything they need in order to complete the project they can
determine the project’s budget. Team members have to follow project’s budget, or
the project will not finish as planned. Group members have to decide who will take
care of the finances during the project time, so he or she can make sure that they
do not exceed the budget and the limits they put on finances based on their
research and calculations. This member has to know exactly when and where
money must be spent and the amount that has to be spent. In this way, project
members can avoid breaking up their budget and losing their project.

8.3 Division of Labor
For Senior Design One we have decided to divide up the responsibilities between
as based on our skills and strengths. Since two of our group members are
Computer Engineers and the other two are Electrical Engineers we ended up
having Software team and Hardware team. Of course, we as a team will put the
things together at the end and help each other along the two semesters, we divided
responsibilities, but this is still a group work that can be done in a great way if all
team members do hard work and respect each other. Computer Engineers will do
most of the software work that is related to the project such as microcontroller
module, Mobile Application, Bluetooth module, Navigation module, Connections,
Software Power and such things.

Hardware team will work on Hardware parts of the project and then put everything
together with the software team to complete the project. Hardware work includes
but not limited to Hardware Power Management, Batteries, PCB Design, and
Power Testing. Hardware Power Management contains power supply for the
Microcontroller, Speakers, and backup battery for PCB. After doing an excellent
research on the necessary parts that the project needs, we have purchased the
necessary parts that we think are the best for our project based on power,
efficiency, price and other factors. Before deciding to buy any device or part of the
project, we compared it with other parts that are available in the market, and we
picked the ones that we think are better for our project. We also considered buying
some other parts such as a microcontroller. We have ordered three of them to
avoid problems such as releasing new versions or stopping producing the old ones
or timing issues such as taking a long time to arrive which is very risky since we
have a schedule and certain dates that we always have to consider and follow.

118 | P a g e

Figure 46 - Labor Division

8.4 Team Organization
To ensure reaching final goal, a plan must be designed and followed by all team
members. This plan has to be followed and maintained by all group members to
ensure that work is being accomplished. Each team member has some
responsibilities that must be done by himself or herself. Moreover, there is some
work need to be done by the whole group. In order to ensure work progress, group
member has to be in touch to know exactly how the work is going on. These

119 | P a g e

communications can be done by different ways depending on the task and the
reason for meeting.

8.4.1 Communication
One of the important things for any team to success is having excellent
communication methods. Any team member must be able to reach, share, and
review any part of the work related to the project. Our group is basically divided to
two teams: hardware team and software team. Some of the work need to be done
individually and some of it need to be done by the whole group. In order for the
group to continue progressing well in the project, team members have to get
access to all the project files, codes, designs, schematic, resources,
documentations, and anything else that is necessary for the project. All group
members has each other emails and phone numbers. However, that is not enough,
group should use something to share files, codes, and reports so they can keep
knowing the progress of the entire project parts. Moreover, sometimes it is difficult
for some members of the team to meet face-to-face every week because of
scheduling conflicts, or traffic issues. Thus, we have decided as one group to
choose some communication applications that can facilitate communication
between group members. We have created a group messages on our phone so
we can remind each other with the important deadlines and schedule meetings.
Also, to work on our reports and documents we have used Google’s Docs so we
can work together on one file or uploading files then review it or take a look on it.

There is a fixed every week meeting that all team members should attend. This
meeting is scheduled to be every Thursday two hours before class time on
Engineering One. Also, we have scheduled a meeting every week on Friday two
hours before class for Senior Design Two. The place can vary during Senior
Design Two since there are many things need to be completed. For example,
sometimes the meetings will be done on the lab to perform some tested related to
the final project deliverables. Other meeting can be done on Engineering One or
the library to work on the reports, presentations, and demo.

8.4.2 Information Sharing
In order to be informed with new updates and share information between all group
members, we are using Google Drive to upload and share files. Thus, all group
members can have access to all files related to the project. In this way we as one
group can keep track of all available resources, data, and accomplishments we
have done to complete our goal. Also, we can ensure that all required work is going
to be accomplished by or before its deadline, so group members can move to the
next step or next part. Also, Google Docs gives us a chance to work on documents
together so we can add, edit, and review files from any place we want so we can
save time and finish work as fast as possible. For Senior Design One most of the
group paperwork and researched files have been completed using Google Drive.
Also, we are planning to use the same methodology on Senior Design Two to

120 | P a g e

complete our paperwork, presentations, sharing test’s results and everything we
need to have as one group.

8.4.3 Web Based Git
In order for our team to get continues access to the software part of the project,
we will use GitHub. GitHub is a Web-Based Git or a Git repository housing service.
This web based graphical interface has many collaboration features include but
not limited to building software, reviewing codes, managing projects and it’s a free
repository at the same time. Our software team members are collaborating
effectively using this interface. Thus, they can, access code to review it and edit it
from anyplace they want. This saves a lot of time, effort, and for sure any
scheduling conflicts. Our work will continue smoothly by having a central location
that we can share our project’s software code. Also, team member can keep track
of the changes and updates so they can always know the progress of the work that
they have done. GitHub supports many formats and features beside source code
such as Documentation, Graphs, Issue Tracking, Emoji’s, and Photoshop. For our
project purpose, we will use it mostly for our source code.

One of the Software Team has created an account on GitHub to post the code and
all updates related to Software coding. This repository contains all the coding parts
related to our application. Since Software team has already started programming
our project application, they have added the parts that they have done. Each time
they modify or add a new section they always add it to our project GitHub account.
Also, they leave a comment next to the new update with the exact time at which
they have done these modifications. These comments include a brief description
to describe the new updates that has been added recently such as adding a new
feature or a new class, or start working on a new part of the application, and fixing
some mistakes on one of the classes. In this way, they stay organize and safe their
work from any problems that might happen.

8.5 Budget and Finance Discussion
This section will introduce the main issues we have considered when we determined the
budget that will cover our project. There is a table that demonstrate all the parts that we
have purchased in addition to the price for each part.

8.5.1 Finance
In order to determine the budget, we as a group have done extensive research on
the parts that we need for our project. For instance, the person who is responsible
for developing Bluetooth module has done research on that part and figure out
which device is more applicable for our project based on price, efficiency, safety
and other factors. Also, the team member who is in charge of system battery has
done research and find out which battery is more practical for our project based on
the time it lasts, safety, size, and price. After all of that, we have discussed all
options and decided for sure the parts that we are going to integrate into our

121 | P a g e

project. We have calculated the final cost for the project which is in the limits that
we have expected. One of the important aspects that we have tried to accomplish
in our project is making sure that production cost is low with excellent quality and
efficiency so the final product can be affordable to different levels of customers in
the market.

8.5.2 Purchased Parts
The below table is a detailed record of the cost analysis for the parts bought for
the BRAIN Helmet.

Table 25 - Cost Analysis

Part Number

Unit Cost
($)

Quantit
y

Total
Cost

Processor MSP430F5529 8.06 1 8.06
 ATmega2560 11.85 1 11.85

BT Modules BC127 26.95 3 80.85
 BC127 Breakout 44.95 1 44.95
 Bluefruit LE Friend 15.00 1 15.00

Speaker (x2) 00050016FP035A 3.50 2 7.00
 Com-10722 0.51 6 3.06

Microphone
BOB-12758
Breakout 2.95 2 5.90

Battery Adafruit 328 15.96 1 15.96
 Ofeely 458292 13.59 1 13.59

LiPo Battery
Charger PRT-102177 7.95 2 15.90
Helmet SH-FF0016 42.99 1 42.99
Buttons COM-09339 1.95 0 0

 Tactile Button 0.50 0 0
Potentiometer COM-09288 0.95 0 0

 COM-09117 2.95 0 0
HUD LCD-13003 14.95 1 14.95

 DiyMall I2C OLED 8.50 2 17.00
Voltage
Regulator COM-00526 1.95 3 5.85
Tools Mini-Breadboards 1.00 6 6.00

 Solder-Kit 25.50 1 25.5
 Solder Tip Cleaner 9.14 1 9.14
 SUM = 343.55

122 | P a g e

9.0 Conclusion
Overall, the main issue that we are addressing is to ease the user of hands-free
navigation and talking while keeping focused on the road. Just like the user
operating a motor vehicle that comes with navigation and hands-free talking
standard, we offered a cheaper alternative to those who prefer riding on
motorcycles. Based on our research, we can make a system that will connect to
the user’s cellular device to the helmet to listen to music, answering phone calls,
voice navigation all into one rechargeable system attached to the back of the
helmet. Products in the market today do offer a similar design of what we want to
implement, but at a price that is questionable based on our parts selection. The
battery life should last for several days of normal use and can also be used as a
normal helmet without powering it on. The user interface of the display is a
minimalistic style to offer the operator the minimal amount of time looking at the
screen to see information available to him. The buttons and potentiometer will be
placed around the helmet at spots that the user can easily remember and will be
tactile enough to sense the pressed button through the user wearing gloves. Even
though there are standards that we must conform to when we design our system
in addition to the constraints we encounter, we hope that this system will allow
further progression of the advancement of addressing convenient features to
motorcyclists.

123 | P a g e

Appendices

Appendix A - Copyright Permissions

Bluetooth.com Permissions

Live Map Permission:

NUVIZ Permission:

124 | P a g e

125 | P a g e

Silicon Labs Permission:

Sparkfun’s images and tutorial material are all CC BY-SA 4.0:

Omni Vision Permission:

126 | P a g e

Amazon Permission:

Appendix B - Datasheets Appendix
Roving Networks RN52 Datasheet
OVC3860 Datasheet
WT32 Datasheet
ATmega2560 Complete Datasheet

127 | P a g e

ATmega2560 Summary Datasheet
DIYMALL 0.96” OLED Display Datasheet

Appendix C - Table of Abbreviations

Acronym Definition

IntelliJ IDEA java Integrated Development
Environment for developing
computer Software

SDK Software Development Kit

JVM Java Virtual machine.

QEMU Quick Emulator

ADT Android Development Tools

IDE Integrated Development
Environment

JetBrains Which is a software development
company whose tools are targeted
towards software developers and
project managers.

GPS Global Positioning System

ARM Advanced RISC Machine

NDK (Native Development Kit) is a tool
that allows you to program in C/C++
for Android devices

AVD Android Virtual Device

PCB Printed Circuit Board

HOQ House of Quality

LCD A liquid-crystal display

APK Android Packet Kit

128 | P a g e

Acronym Definition

API Application Programming interfaces

HUD Heads-Up Display

GUI Graphical User Interface

Li-Po Lithium Ion Polymer/Lithium Polymer

BLE Bluetooth Low Energy

GATT Generic Attribute Profile

129 | P a g e

Appendix D - References

Aydin, M. (2012). Android 4. [electronic resource]: new features for application
development; develop Android application using the new features of Android Ice
Cream Sandwich. Birmingham, UK: Packt Pub., 2012.

Bluetooth Technology from https://www.bluetooth.com/what-is-bluetooth-
technology/how-it-works/le-broadcast

Burd, Barry. HOW TO TEST AN ANDROID APP ON A REAL DEVICE. (30 July
2017) Retrieved from http://www.dummies.com/programming/java/how-to-test-
an-android-app-on-a-real-device/
Chee Oh, C., Yilun, H., & Hoe Kyung Jung1, h. (2016). Augmented Reality
navigation System on Android. International Journal of Electrical $ Computer
Engineering (2088-8708), 6(1), 406-412.

Code Style for Contributors. Retrieved from
https://source.android.com/source/code-style

Erb. T. O., & Doda, N. (1989). Team Organization: promise-practices and
possibilities. Washington, DC: National Education Association, c1989.

FCC standards from https://www.fcc.gov/oet/ea/rfdevice#block-menu-block-4

Freedom of Information act for Government Documents
https://www.hq.nasa.gov/office/pao/FOIA/

Garrett, J. J. (2003). Elements of user experience: User-centered design for the
web. New York: American Institute of Graphic Arts; Indianapolis: New Riders,
2002.

Google Maps API. Retrieved from
https://developers.google.com/maps/documentation/directions/

GOT Standards from
https://one.nhtsa.gov/people/injury/pedbimot/NoMigrate/fmvss218.htm

Hicks, B. J., Medland, A. J., Mullineux, G., "The representation and handling of
constraints for the design, analysis and optimization of high speed machinery",
Artificial Intelligence for Engineering Design, Analysis and Manufacture
(AIEDAM), 20 (2006) 313-328.

IEE standards from IEEE standards website http://standards.ieee.org/ (Must sign
up and use account to reach standards)

Marcus, A. SIGGRAPH 93 tutorial notes: Graphic Design for User Interfaces.
August 1993.

130 | P a g e

Microchip processor product page retrieved from
http://www.microchip.com/wwwproducts/en/ATmega2560

PCB Design Process retrieved from
https://en.wikipedia.org/wiki/Printed_circuit_board#Copper_patterning

PCB Manufacturing Process retrieved from
https://www.pcbcart.com/article/content/PCB-manufacturing-process.html

Product page for Arduino development board retrieved from
https://store.arduino.cc/usa/arduino-mega-2560-rev3

Radio Frequency Radiation from
https://hps.org/hpspublications/articles/rfradiation.html
Shari Lawrence Pfleeger and Joanne M. Atlee, “Software Engineering: Theory
and Practice”, 4th Edition, Prentice Hall, 2010.

Rouse, Margaret. constraint (project constraint). Retrieved from
http://whatis.techtarget.com/definition/constraint-project-constraint

Snef standards retrieved from
http://www.smf.org/docs/articles/dot

Solder Mask definition retrieved from
https://en.wikipedia.org/wiki/Solder_mask

Sollenberger, Kyle. (2012, August 7). 1o User Interface Design Fundamentals.
Retrieved from http://blog.teamtreehouse.com/10-user-interface-design-
fundamentals.

Texas Instruments MSP430F5529 Product page retrieved from
http://www.ti.com/tool/msp-exp430f5529lp

Texas Instruments MSP432P401R Product page retrieved from
http://www.ti.com/tool/msp-exp432P401R

Texas Instruments WEBENCH Power Archite (2017)
https://webench.ti.com/webench5/power/webench5.cgi?origin=ti_panel&app=po
werarchitect&lang_chosen=en_US

Virgillito, Dan. (2016, May 18). How to Choose the Right UI Design Color for
Your WordPress Site. Retrieved from https://www.elegantthemes.com/blog/tips-
tricks/how-to-choose-the-right-ui-design-colors-for-your-wordpress-site.

Wienclaw, R. A. (2015). Project Management. Research Starters: Business
(online Edition),

Williams, John. Moore. (2017 May 30). 10 essential UI (user – interface) Design
Tips. Retrieved from https://webflow.com/blog/10-essential-ui-design-tips.

131 | P a g e

 (2016, January 19). 9 Differences between IOS and Android App Development.
Retrieved from https://www.cleveroad.com/blog/9-differences-between-ios-and-
android-app-development

 (2016). Atmel Studio 6 Integrated Development Environment. Retrieved from
http://ww1.microchip.com/downloads/en/DeviceDoc/8487B-Studio6-E-A4-
0912_LR.pdf

 (25 July 2017) Wikipedia C++ Standards retrieved from
https://en.wikipedia.org/wiki/C%2B%2B

(25 July 2017) Wikipedia C++03 Standard retrieved from
https://en.wikipedia.org/wiki/C%2B%2B#Standardization

(25 July 2017) Wikipedia C++11 Standard retrieved from
https://en.wikipedia.org/wiki/C%2B%2B11

(25 July 2017) Wikipedia C++14 Standard retrieved from
https://en.wikipedia.org/wiki/C%2B%2B14

(25 July 2017) Wikipedia C++17 Standard retrieved from
https://en.wikipedia.org/wiki/C%2B%2B17

 (27 July 2017) Wikipedia Software prototyping retrieved from
https://en.wikipedia.org/wiki/Software_prototyping

(27 July 2017) Helmet design by Matej Pezer Retrieved from
https://grabcad.com/library/helmet-design-by-matej-pezer-1

(18 June 2017) User Interface Guidelines Retrieved from
https://developer.android.com/design/index.html

(18 June 2017) AOSP Java Code Style for Contributors Retrieved from
https://source.android.com/source/code-style

(31 July 2017) Activity Lifecycle Retrieved from
https://developer.android.com/reference/android/app/Activity.html#ActivityLifecycl
e

(4 July 2017) Learn Git and GitHub without any code! Retrieved from
https://github.com/

