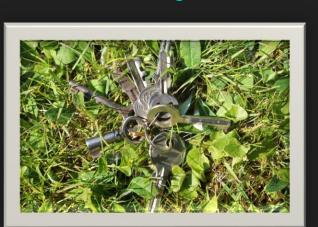
NextGen Asset Tracking Device (NAT)

Group 1 – NAT

Brianna Thomason Brittney Fry Lucas Dickinson Ralph Baird Wayne Marshall Computer Engineer Computer Engineer, Project Manager Electrical Engineer, Computer Engineer Computer Engineer Electrical Engineer

SPONSORED PROJECT



OYOUNG ENGINEERING SERVICES LLC **O**Professor Young **O**Professor McAlpin O This project is multilayered OThis SD project is only starting point OCS Team(s) will develop further **O**INS Algorithm • Other beneficial software features • Website additions • Additional Firmware functionality

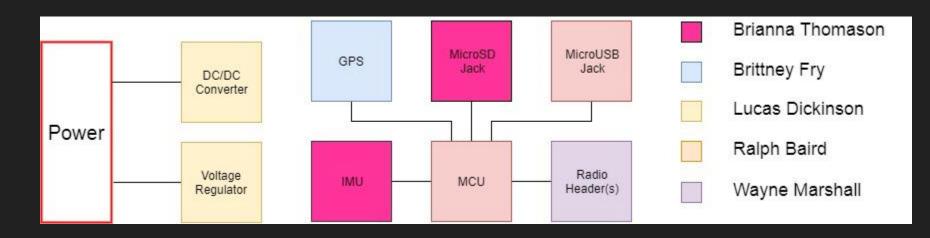
Motivation

Objects get lost all of the time

- Both for individuals and companies
- US =~20 to 50 billion dollars in lost or stolen equipment (Incorp, 2017)
- Companies embed software and hardware
 - O Find my iPhone (Apple)
 - Find my mobile (Samsung)
 - O Car keys tracker dongles
 - OnStar©
- O INS Tracking

Goals and Objectives

OMain Goal


OProduce a low-cost IOT module that can be attached to objects and report back its location

Other Goals

OSmall device

OLow power consumption

Overall Block Diagram

- The main processing power = Microcontroller
- Communication = Radio Modules
- \circ Location = GPS
- Backup Location/Motion Data = IMU

- Main information storage = SD
- O Power = Battery
- Everything communications with and through Microcontroller

Responsibilities

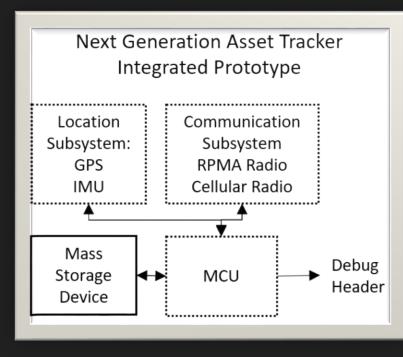
	Research					
	MCU	Radio	GPS	Power	IMU	MicroSD
Brianna					Primary	Primary
Brittney			Primary			
Lucas		Secondary		Primary		
Ralph	Primary					
Wayne		Primary		Secondary		

Responsibilities

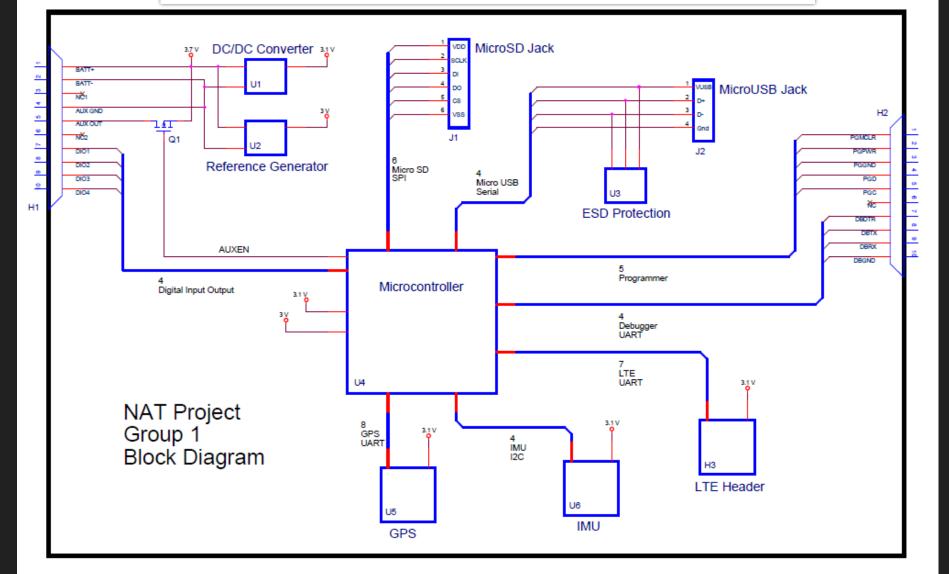
		Preliminary			Configuration	
	Schematic	Testing HW	РСВ	Firmware	GUI	Client GUI
Brianna				Secondary	Secondary	Primary
Brittney				Secondary	Primary	Secondary
Lucas	Primary	Secondary	Primary			
Ralph				Primary	Secondary	Secondary
Wayne	Secondary	Primary	Secondary			

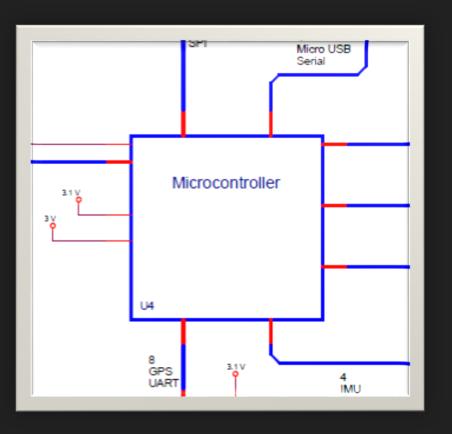
Specifications

General Specifications					
РСВ	Size	Approx. size of credit card			
Power	Voltage	Operate on 3.7V battery			
Location	Accuracy	<3m			
Software	Туре	Firmware, Configuration GUI, Client GUI			
Motion	Accuracy	<10degrees			


Specifications

Hardware Specific	Software Specific
Integrate low power 16-bit MCU	Windows based Config GUI
Integrate GPS receiver	Configure Device with MSD/HID
Integrate 9-axis MPU	Communicate with Config GUI over USB
Integrate Radio Module	Web Based Client GUI
Able to record data	Communicate with Client GUI over radio modules
Able to recharge battery	Firmware that interfaces MCU with Radio, MPU, and GPS modules
Able to move between power modes	Firmware that creates data packet(s) to be sent on the network

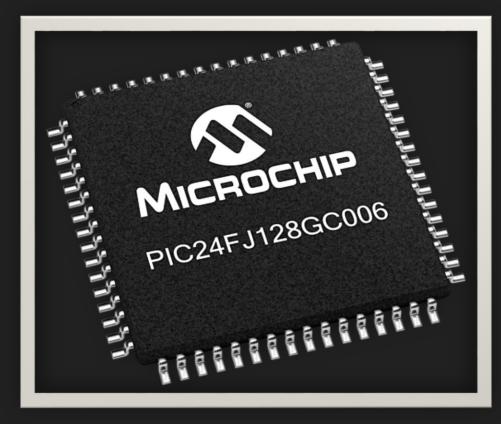

Hardware Architecture


- MCU, IMU, and GPS chips integrated to single board design
- Traces for I²C and UART from MCU to IMU and GPS respectively
- USB, UART, MSD and programming header on main board
- Off the shelf radio modules attaching to daughterboard interfaces
 - Removable and swappable during development

Electrical Block Diagram

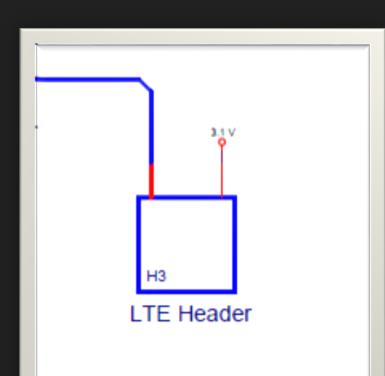
Microcontroller Section

Central digital logic


- Coordinates communication between GPS, IoT communication, IMU, and SD card
- Controls full and low-power states of all of the above

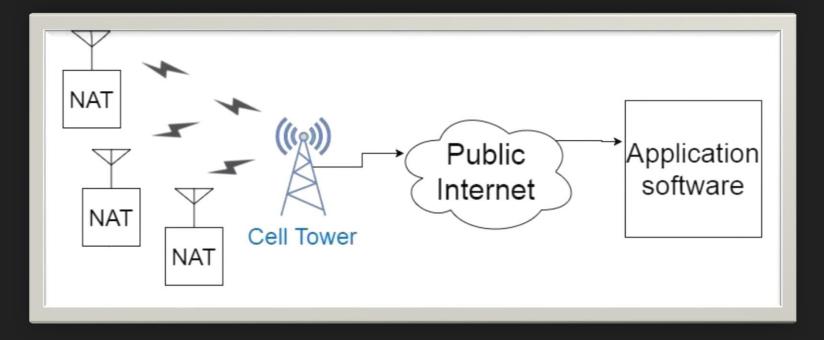
Microcontrollers

- Most straightforward solution
- Classroom experience in Embedded Systems
- Low power chips meet battery life requirement
- Flash programmability massively simplifies firmware development


PIC24FJ128GC006

- 16-bit architecture optimized for C programming
- Free (Gratis) development toolchain
- Configuration and diagnostics
 - UART communications ports
 - GPS (NMEA standard)
 - LTE (Hayes command set derivative)
 - Debug interface (TTY terminal emulator)
 - O I2C interfaces
 - Inertial measurement unit
 - SPI Interfaces
 - O MircoSD
 - USB interfaces

Communications Section



o Purpose

- Communication between NAT device and GUI application.
- GPS and IMU data to application software
- o LTE CAT 1
 - Similar to 4G LTE on cell phones
 - Designed with IoT and M2M in mind
 - 2G and 3G will be phased out
 - Operates on pre-existing networks

Communication Block Diagrams

Network System Diagram using Cellular Technology

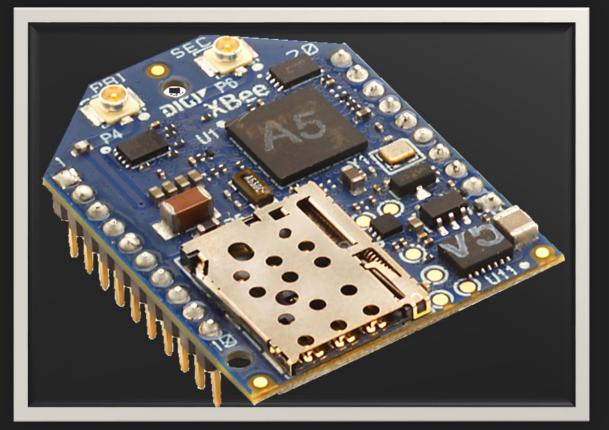
LPWAN

• Designed for M2M communication with embedded devices on the IoT

- Low power communication protocol
- O Effective over a wide are

• Most effective when used with infrequent, low bit-rate communications

	Sigfox	LoRa	Ingenu	LTE Cat M1
Range	~ 13 km	~ 11 km	~ 15 km	~ 15 km
Data Rate	100 bps	10 kbps	624 kpbs	1 Mbps
Battery Life	> 10 years	> 10 years	> 10 years	> 10 years

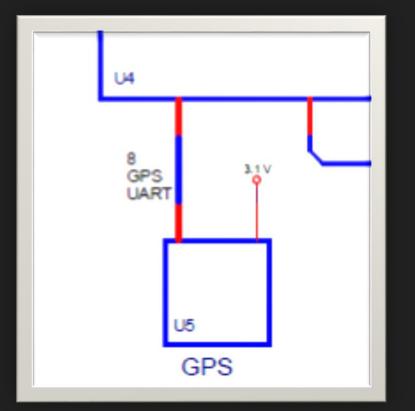

LTE CAT1

	CAT 4	CAT 1
Downlink peak rate	150 Mbps	10 Mbps
Uplink peak rate	50 Mbps	5 Mbps
Duplex mode	Full duplex	Full duplex
Maximum Transmit power	23 dBm	23 dBm

- O Low throughput
- Less power hungry than LTE CAT 3 or 4
- O Full duplex
- O Less complex

Digi XBEE LTE CAT1

Evaluation board for easy prototyping
XCTU for easy configuration and testing
XBee 20-pin form factor


Future upgrade

Free* data for 6 months
Large online support

Forums
Customer Support

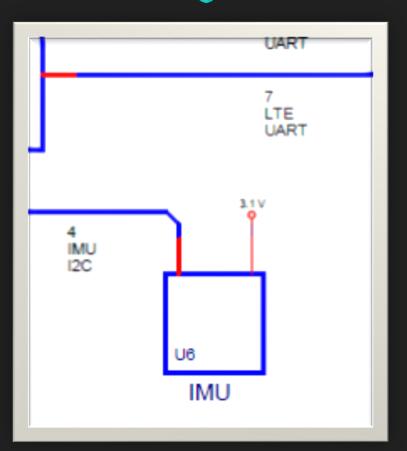
GPS Section

- Tracker device
 - O Location hardware necessary
- GPS = Main Location Hardware
- O Only communicate with MCU
- Receive the latitude, longitude, and altitude data and report

O Data will be

- O reported directly to users
 - O Radio modules and client software
- O Stored on SD card
- Used in INS software
 - O future implementation

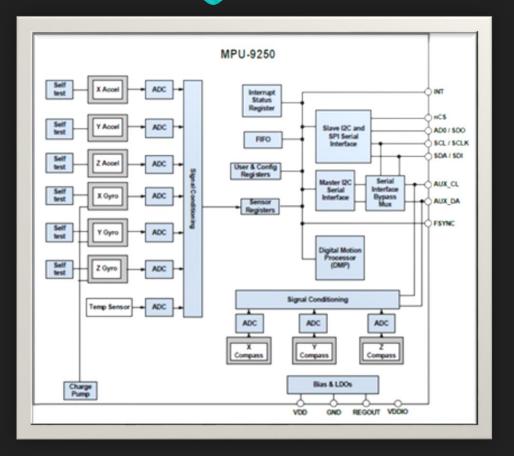
OriginGPS NanoHornet


 NanoHornet meets all of the needs of the NAT device

- Small Size (10mmX10mm)
- Horizontal accuracy of <2.5m
- O Quick TTFF (<1 second)
- Supply power within given range
- Embedded Antenna on the module

O No extra design necessary

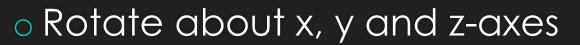
- Autonomous operation
- Self Managed Low power modes
- \circ Selectable interface between UART, SPI, and I²C
- Programmable baud rate



• IMU and GPS

- Force, angular rate and magnetic field
- Sense motion, track position
- Accelerometers, gyroscopes and magnetometers
- Inertial Navigation System (INS)

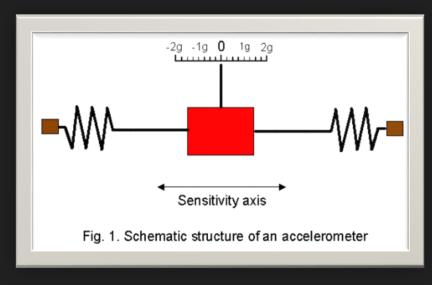
InvenSense MPU 9250



- Small size 3x3x1mm package
- Digital-output x, y, and z-axis angular rate sensors
- Programmed to collect data continuously or when triggered

3-Axis MEMS Gyroscope

- Maintains a reference direction
- Vibration sensed
- Signal amplified, demodulated and filtered
- Produces voltage proportional to angular rate



3-Axis MEMS Accelerometer

- Rate of change of velocity
- Detects and monitors vibration
- Multi-axes detects
 - Magnitude
 - o Direction

Source: Innoventions, INC

3-Axis MEMS Magnetometer

- Measures magnetic field
 - Relative change of a magnetic field at a particular location
- o 3-axis measurements
 - Direction and intensity of the magnetic field around the sensor

USB Interface

 USB 2.0 standard allows for one USB device to expose multiple interfaces – "composite device"

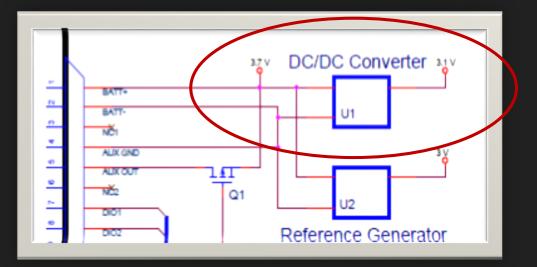
o HID

- Streams diagnostic data from each NAT peripheral for display on workstation
- Mass Storage Device (MSD)
 - Exposes SD card for configuration updates and access to the debug and operational logs

o USART

• Provides UART over USB, adding second option for UART debugging interface

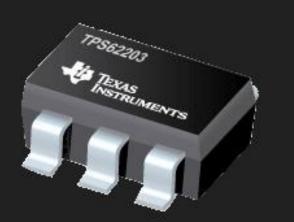
UART Debugging



- Diagnostic log saved to SD card with listings of major operational events and error messages transmitted over the debugging UART
- Development troubleshooting effects seen in real time

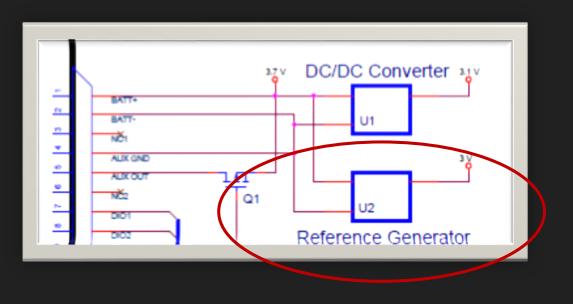
E ~	_	\times
Next Generaton Asset Tracker Software Revision 9/5/2017		^
Checking SD cardfound		
Configuration file loaded		
Initializing GPSok		
Inializing LTEPH error, check SIM card		
		\checkmark

DC/DC Converter Section



- Converts one voltage level to another.
- Step up (boost), step down (buck), inverts.
- Higher efficiency than linear
 - regulator
- Low waste heat

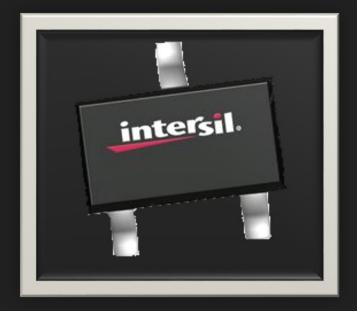
DC/DC Converter Selection

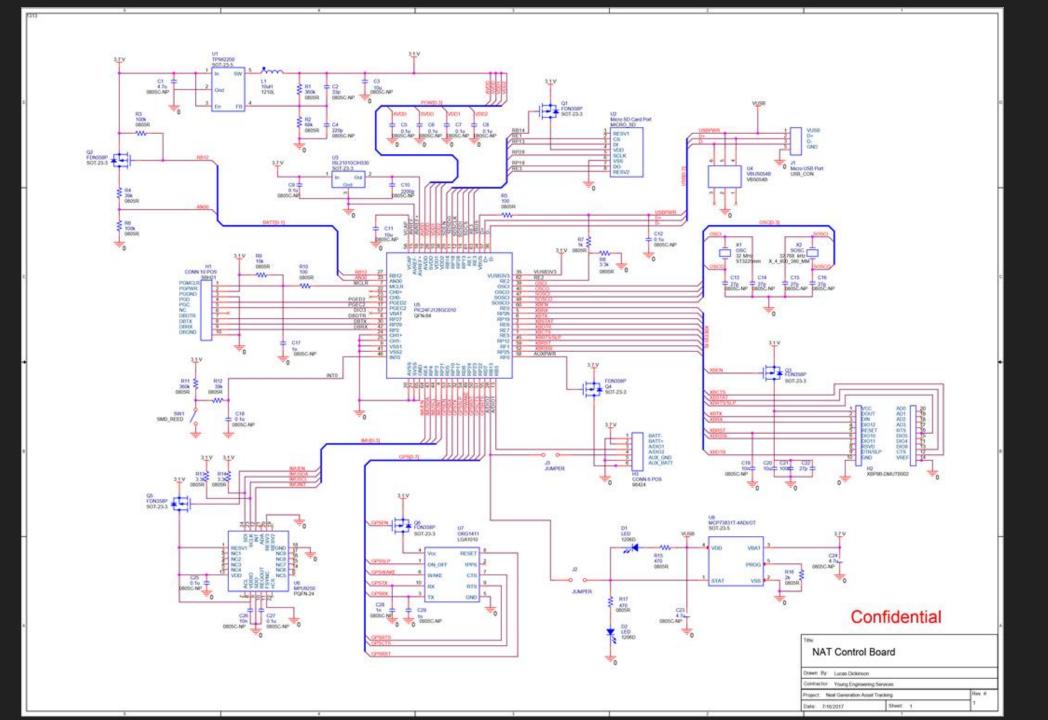


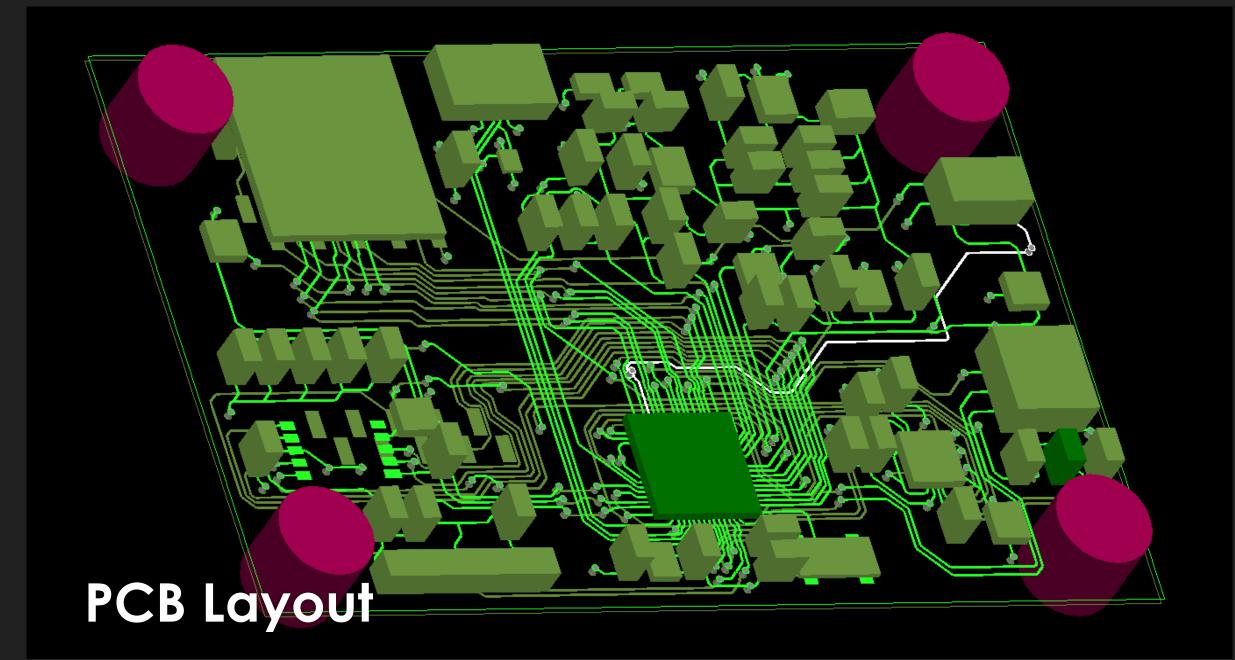
	LDO	Quiescent Current	Low Power	Output Current	Cost 1
TPS6220	Yes	15 μA – 30 μA	Yes	≤ 300 mA	\$0.96
LTC1701	Yes	135 µA	No	≤ 500 mA	\$2.12
FAN5307	No	15 μA – 30 μA	Yes	≤ 300 mA	\$1.23

- o Texas Instruments TPS6220
- high efficiency operation under normal loads
 - o 95 % efficiency
- Low Drop Out (LDO) operation
- Low power mode
- Minimal size and part requirements

Reference Generator Section




- Similar to voltage regulators
- Tighter output voltage tolerances
- Easy and cheap implementation
 PN junction diodes
 - Diode connected transistors


Reference Generator

ISL21080
3.0 volts reference generator
Provides Initial accuracy 0.2%
Used to calibrate 16-bit ADC or DAC
Maintains high accuracy over long periods

Hardware Progress

60% COMPLETE

- Completed integration of parts needed for development and testing
- Integration of new features in progress
 - USB charging
 - High voltage input
- PCB design and printing
- PCB stuffing
- The next steps in hardware will be decided after testing

Hardware Issues

 Ingenu going through changes
 Flow control not yet implemented; current design requires software delay to prevent overloading IMU chip by polling too often

Software Components

O 3 Major Pieces of Software
O Firmware
O Software inside the device itself
O Windows Configuration GUI
O Software the distributer will use to configure the device to the specific settings the user wants
O Web Client GUI

OWhat the client will use to find their device

Software Development

OIDE

OConfiguration GUI = Visual Studio

OFirmware = MPLab X

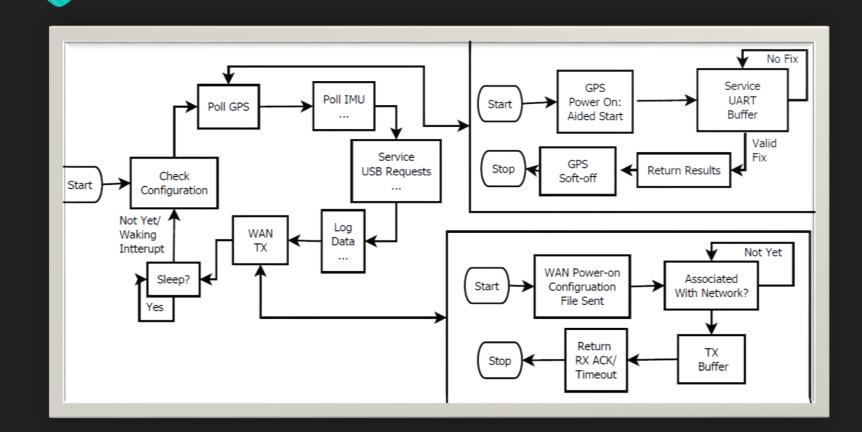
OVersion Control

• Every software component will use GIT

- Configuration GUI:
 - O GIT through Visual Studio Team Services

Firmware

• PIC24 program executes main loop, polling each peripheral for status and data


O State machines acting in a cooperative multitasking environment

• After position data is collected

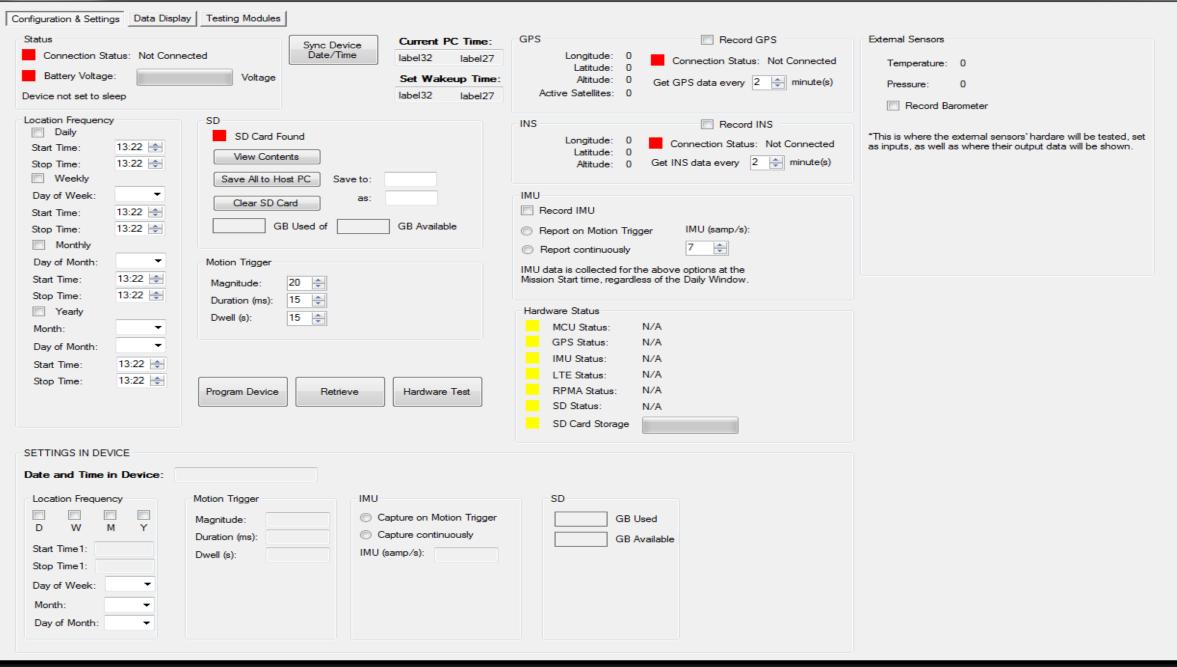
- Switches to low power mode once IoT transmission buffers are empty or configured timeout interval reached
- Returns to active processing based on configured timer or inertial measurement interrupts

Firmware Flowcharts

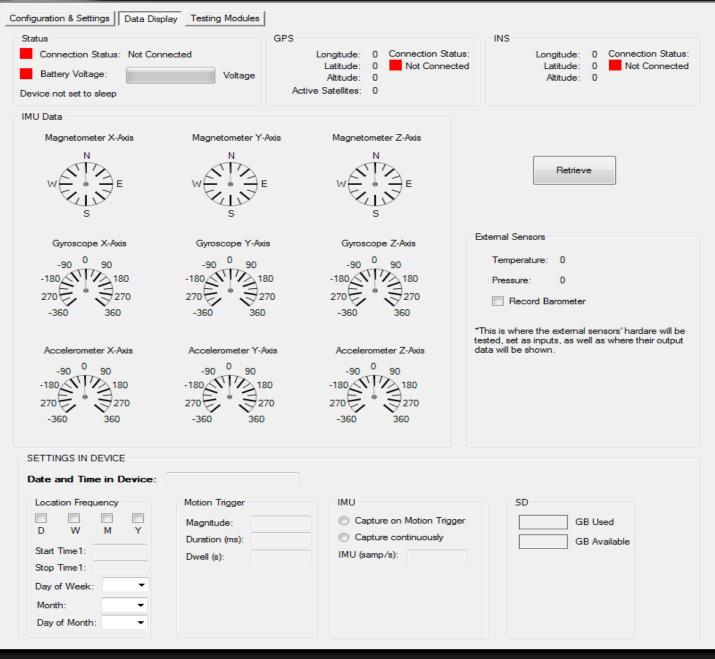
Firmware Current Progress

30 % COMPLETE

- O Progress
 - Isolated GPS and IMU modules complete
 - LTE, SD, and USB modules currently being developed
- O Next steps
 - Add state machines and process yielding to each module
 - Module integration and testing



Configuration GUI


• Software utilized by the manufacturer and distributer

- Will configure to settings client designated
- O Developed as a Windows form
 - O 3 Tabs
 - Configuration and Settings
 - O Data Display
 - O Testing Modules
- Connected to device over USB
- Not accessible to the client
 - Client has their own software
- Senior Design Version not final version (too many functions)

NAT_Config_GUI

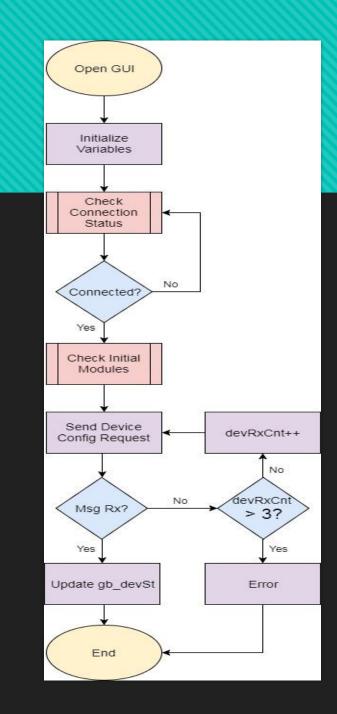
NAT_Config_GUI

AT_Config_GUI		
figuration & Settings Data Display Testing Modules		
Status	Radio Test Message	
Connection Status: Not Connected		
Battery Voltage: Voltage	RPMA Test Msg	
	Send RPMA Test Msg Msg Status bits/sec	
Device not set to sleep	LTE Test Msg	
Hardware Status		
MCU Status: N/A	Send LTE Test Msg Msg Status bits/sec	
GPS Status: N/A		
IMU Status: N/A	External Sensors	
LTE Status: N/A	Temperature: 0	
RPMA Status: N/A	Pressure: 0	
SD Status: N/A	riessure. U	
SD Card Storage		
SD Card Storage		
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE	IMU	
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE Date and Time in Device: Location Frequency Motion Trigger Magnitude:	IMU SD © Capture on Motion Trigger GB Used	
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE Date and Time in Device: Location Frequency Motion Trigger D W Magnitude:	Capture on Motion Trigger GB Used	
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE Date and Time in Device: Location Frequency Motion Trigger D W M Start Time 1: Duration (ms):	Capture on Motion Trigger GB Used GB Available	
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE Date and Time in Device: Location Frequency Motion Trigger D W Magnitude: Duration (ms):	Capture on Motion Trigger GB Used	
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE Date and Time in Device: Location Frequency Motion Trigger D W Magnitude: D W M Start Time 1: Dwell (s): Stop Time 1:	Capture on Motion Trigger GB Used GB Available	
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE Date and Time in Device: Location Frequency Motion Trigger D W Magnitude: D W Y Start Time 1: Day of Week: V	Capture on Motion Trigger GB Used GB Available	
SD Card Storage Retrieve Hardware Test SETTINGS IN DEVICE Date and Time in Device: Location Frequency Motion Trigger D W Magnitude: D W M Start Time 1: Dwell (s): Stop Time 1:	Capture on Motion Trigger GB Used GB Available	

Communication With Firmware

nat.cont 🔛

```
[Interrupt]
 2 Wake-Up Interval: true ;true/false
 3 Month: * ;1-12/*
   Day: * ;1-28/*
  Weekday: UMTWRFS ; UMTWRFS/U/M/T/W/R/F/S/*
   Time: 0100 ;0000-2400
 7
   [Motion Trigger]
 9 Wake on Motion: true ;true/false
10 Magnitude: 20 ;0-9999
   Duration: 15 ;0-9999 milliseconds
12 Dwell: 15 ;0-9999 seconds
13
14
   [GPS]
15 GPS Record: true ;true/false
16 GPS Poll: 2 ;2-30 minutes
17
18
   [IMU]
   IMU record: true ;true/false
19
20 INS record: true ;true/false
21
   Record: Continuous ;Continuous/MotionTrigger
   Sample Rate: 10 ;1-100 samples/second
```


- nat.conf file transmitted between device and GUI
- Will be stored always on the device
 - Storing current communication settings
- Configuration GUI will download the file from the device
 - Update this file directly with any updates from the GUI
 - Send the device the new file
 - The device will update its configuration settings based on changes in the file
 - Overwrite the old file with the new one

Configuration GUI Flow Charts

• When GUI is opened

O Initialize all variables in the software

- O Check to see if connected
 - O If not connected sit in loop until connected
- Get devices current nat.conf file
 - If the file does not arrive after certain time request again
 - Only request 3 times before failing and exiting loop
- Update the group of current device settings

Configuration GUI Flow Charts

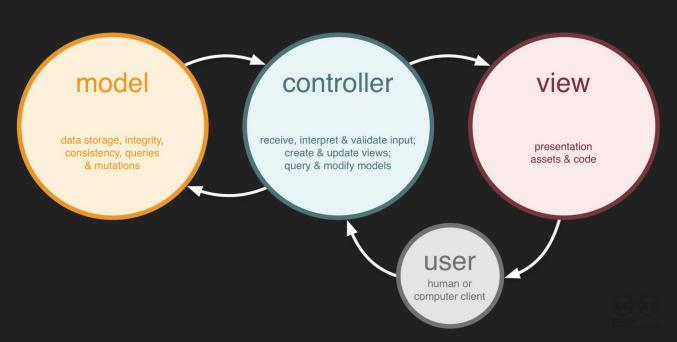
OWhile GUI is running
OWait for a button to be pushed
OTimer to make sure device still connected
OCheck connection every minute or so
OIf a button is pushed run that button's

specific code flow

Configuration GUI Current Progress

• The GUI layout has been created

- O Needs to be redesigned for updates in functionality
- The code behind the form has started to be written
- NEXT STEPS:


• Get the GUI to communicate with the NAT device VIA the nat.conf file

Web GUI

- Web GUI Current Progress
 To be started October 2017
 MVC (Model-View-Controller)
 3 interconnected parts
 Model
 Controller
 - O View

Model – View - Controller

Overall Software Progress

• Standalone firmware modules are 50% complete and module integration has not yet started

O Waiting for PCB

 Configuration GUI initial design layout is complete, core logic is waiting on firmware and changes will be incorporated during integration

• Web GUI and backend server software is still in design phase

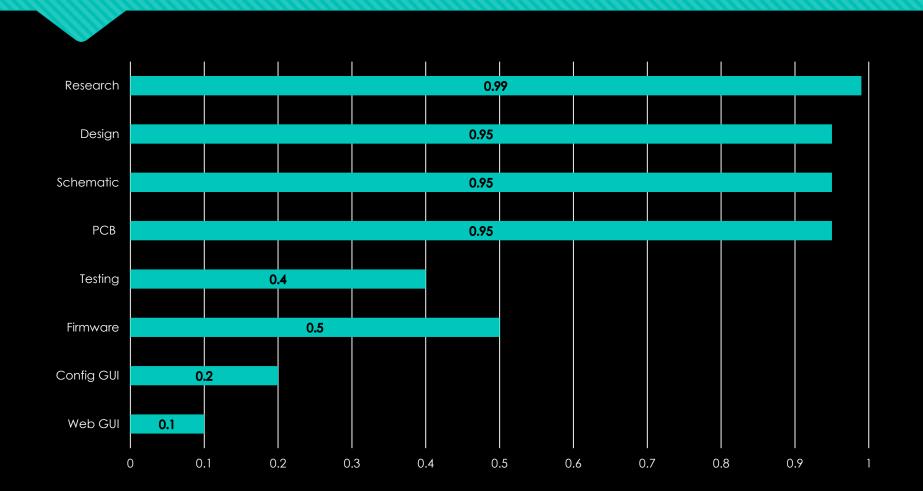
Software Issues

USB times out after 50 ms for some host polling operations
 o easily exceeded with blocking delay loops in current prototype modules
 o State machine and cooperative multitasking concept needed in firmware
 O LTE software module sends commands and data to LTE hardware

module too quickly for reliable operation

• Again, a state machine to provide non-blocking waits for command acknowledgement and valid network connectivity is needed

O Buffer-based flow control



Administrative Content - Budget

	Qty/Board * 4	Price/Unit	Total
LTE Module	4	\$99.00	\$396.00
			-
IMU	4	\$8.50	\$34.00
MCU	4	\$5.00	\$20.00
GPS Module	4	\$20.50	\$82.00
DC-DC Converter	4	\$1.50	\$6.00
Voltage Reference	4	\$1.50	\$6.00
SD Socket	4	\$10.50	\$42.00
USB ESD Protection Unit	4	\$1.00	\$4.00
TOTAL EST BUDGET		\$147.50	\$590.00

Administrative Content - Progress

Administrative Content – Final Steps

• Electrical Engineers (Hardware)

- O Waiting for the arrival of the PCB
- O Developing the Bill of Materials for sponsor
- Create the Kit of Parts to stuff PCB when it arrives
- Computer Engineers (Software)
 - Development and testing external to hardware awaiting PCB
 - Firmware on development boards
 - Configuration GUI with test text files
 - O Web GUI in early stages
 - Training next team(s)

Questions?

